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Abstract

This thesis deals with the interplay of gravitation and light. It is split into four parts,
each of them giving an overview of one of our projects: In the first and second part, we
study the gravitational properties of laser light and use other light rays to illustrate these
properties. In the third part, light rays are used as a tool to determine the frequency
spectrum of an optical resonator in a background gravitational field. Finally, in the fourth
part, light plays both the role of the source of the gravitational field and the means to
perform a measurement. As the gravitational field of light is weak, its effects are too small
to be experimentally measured. However, with the progress of technology, they might be
detected in the future. They are of conceptual interest, revealing fundamental properties
of the nature of light.
In the first part, we determine the gravitational field of a laser beam: The laser beam is
described as a solution of Maxwell’s equations and has a finite wavelength and circular
polarization. This description is beyond the short-wavelength approximation, and allows
to find novel gravitational properties of light. Among these are frame-dragging due to the
laser beam’s spin angular momentum and the deflection of parallel co-propagating test
light-rays that overlap with the source laser-beam.
Further, the polarization of a test light-ray in the gravitational field of the laser beam is
rotated. This is analyzed in the second part. The rotation consists of a reciprocal con-
tribution associated to the gravitational analogue of optical activity, and a non-reciprocal
part identified as the gravitational analogue of the electromagnetic Faraday effect. There-
fore, letting light propagate back and forth between two mirrors, the gravitational Faraday
effect accumulates, while the effect due to the gravitational optical activity cancels. Inter-
estingly, using only classical general relativity, our analysis shows gravitational spin-spin
coupling, which is a known effect in perturbative quantum gravity.
In the third part, we study the effect of a gravitational field and proper acceleration on
the frequency spectrum of an optical resonator. The resonator is modelled in two different
ways: As a rod of matter with two attached mirrors at its ends, and as a dielectric rod
whose ends function as mirrors. The resonator can be deformed in the gravitational field
depending on the material properties of the rod. The frequency spectrum turns out to
depend on the radar length, which is the length an observer measures by sending a light
signals back and forth between the mirrors and measuring the time difference. The results
for the frequency spectrum may be used for measuring gravitational fields or acceleration
based on frequency shifts of the light.
Also in the fourth part we look at an optical resonator, this time a cubic cavity. While
in the third part we considered a background gravitational field, now the light inside
the cubic cavity is the source of the gravitational field. With this setup, we consider an
observer making a specific measurement of the speed of light and analyze the precision of
the measurement. Using quantum parameter estimation theory and analyzing the effect of
the gravitational field, we determine the number of photons inside the cavity which leads
to the best precision of the measurement.
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Zusammenfassung

Das Thema dieser Dissertation ist das Zusammenspiel von Gravitation und Licht. Die
Arbeit ist in vier Teile unterteilt, die jeweils einen Überblick über eines unserer vier Pro-
jekte geben. Im ersten und zweiten Teil beschäftigen wir uns mit dem Gravitationsfeld
eines Laserstrahls und verwenden weitere Lichtstrahlen um dessen Eigenschaften zu illus-
trieren. Im dritten Teil benutzen wir Lichtstrahlen um das Frequenzspektrum eines optis-
chen Resonators in einem Gravitationsfeld zu berechnen. Letztendlich, im vierten Teil, ist
das Licht sowohl die Quelle des Gravitationsfelds wie auch das Mittel um eine Messung
durchzuführen. Das Gravitationsfeld von Licht is schwach, deshalb sind seine Effekte mo-
mentan zu klein um in einem Experiment gemessen zu werden. Mit dem Fortschritt der
Technologie könnte dies jedoch in Zukunft möglich sein. Jedenfalls sind die Effekte von
konzeptionellem Interesse, da sie fundamentale Eigenschaft von Licht enthüllen.
Im ersten Teil bestimmen wir das Gravitationsfeld von einem Laserstrahl. Dieser gehorcht
den Maxwell Gleichungen und hat eine endliche Wellenlänge und zirkulare Polarisation.
Unsere Beschreibung des Laserstrahls unterliegt nicht der paraxialen Näherung und ermö-
glicht deshalb, neue gravitative Eigenschaften von Laserlicht zu sehen: frame-dragging
aufgrund des Spin-Drehimpulses und die Ablenkung von parallel co-propagierenden Licht-
strahlen, die mit dem Laserstrahl überlappen.
Weiter wird die Polarisation eines Lichtstrahls gedreht, wenn dieser im Gravitationsfeld
des Laserstrahls propagiert. Dies ist das Thema des zweiten Teils. Die Rotation besteht
aus einem reziproken und einem nicht-reziproken Anteil, die respektive dem gravitativen
Analogon zur optischen Aktivität und dem gravitativen Analogon zum elektromagnetis-
chen Faraday Effekt zugeordnet werden können. Lässt man Licht zwischen zwei Spiegeln
hin und her propagieren, wird der gravitative Faraday Effekt verstärkt, während sich der
Effekt aufgrund der gravitativen optischen Aktivität aufhebt. Interessanterweise illustri-
eren unsere Überlegungen im Rahmen der klassischen Relativitätstheorie eine gravitative
Spin-Spin Wechselwirkung, die man in der perturbativen Quantengravitation findet.
Im dritten Teil betrachten wir den Effekt eines Gravitationsfelds und einer Beschleunigung
auf das Frequenzspektrum eines optischen Resonators. Der Resonator ist entweder als
Materiestab modelliert, an dessen Enden zwei Spiegel angebracht sind, oder als Stab, der
aus einem dielektrischen Medium besteht, an dessen Enden das Licht reflektiert wird.
Je nach den materiellen Eigenschaften des Stabs, kann der Resonator im Gravitationsfeld
verformt werden. Das Frequenzspektrum hängt von der Radarlänge ab. Dies ist die Länge,
die ein Beobachter bestimmt, indem er ein Lichtsignal zwischen den Spiegeln hin und her
sendet und die Zeitdifferenz misst. Mit dem Ergebnis lässt sich möglicherweise die Stärke
eines Gravitationsfelds oder einer Beschleunigung bestimmen, indem man die Frequenz
des Lichts im Resonator misst.
Auch im vierten Teil betrachten wir einen optischen Resonator, dieses Mal einen ku-
bischen. Während im dritten Teil ein beliebiges Gravitationsfeld angenommen wurde,
wird letzteres nun vom Laserstrahl verursacht. Wir betrachten eine Messung der Licht-
geschwindigkeit, die ein Beobachter durchführt, und analysieren die Präzision mittels
Quanten-Parameterschätzung. Unter Berücksichtigung des Effekts des Gravitationsfelds
bestimmen wir die Anzahl Photonen im Resonator, welche die präziseste Messung erlaubt.
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Introduction

The twentieth century has seen the emergence of two theories lying at the core of modern
physics: general relativity and quantum mechanics. In both of these theories, light plays
an important role. Indeed, light is both a quantum and a relativistic object: It has
been experimentally confirmed that light behaves according to the predictions of quantum
mechanics. On the other hand, light enters the postulates of general relativity and is by
construction of the theory a relativistic object. By knowing precisely the gravitational
properties of light, it might be possible to gain insight into the role of gravity in quantum
mechanics, or the other way around, to learn about the role of quantum mechanics in
general relativity.

In our work, we studied on one side how light beams gravitate, and on the other side
how the behavior of light rays in a gravitational field influences specific measurements.
The latter includes the deflection of light rays, the rotation of their polarization and the
frequency shift they obtain in a gravitational field. We analyzed theoretical and specific
setups that could be used in a laboratory. The difficulty in experiments is the distinction
and detection of the gravitational effects, as they are very small even when using the most
powerful lasers of nowadays.

We worked on four different but related projects, and accordingly the thesis is split into
four main chapters, each of them giving an overview of one of our four projects. The first
chapter deals with the gravitational field of a laser beam as one creates in a laboratory,
its gravitational characteristics and its influence on small particles or light rays [C]. The
second chapter focusses on one of these effects, namely the rotation of the polarization
of another light ray propagating in the gravitational field of the laser beam [D]. In the
third chapter, we consider a given gravitational field and study its influence on light rays
in order to give an expression for the frequency spectrum of an optical resonator in a
gravitational field [B]. Importantly, in this chapter the gravitational field could be, but is
not necessarily, generated by the light itself. In the fourth chapter, we consider a different
optical resonator, this time affected by the gravitational field of light itself [A]. In this
setup, we study the gravitational influence when making a specific measurement.

Two technical points concerning general relativity deserve to be explained before starting
with the main projects. One of them is the coordinate-invariance of general relativity
and the related difficulty to distinguish between actual physical effects and coordinate-
artefacts. We were careful to either work with coordinate-invariant quantities, or to work
with covariant quantities and to explain to which observer they correspond. In some
cases, it turned out to be useful to do the calculations in the proper detector frame, which
is a locally inertial frame for an observer and reduces to the Fermi normal coordinates
if the observer is freely falling. In other cases, it was possible to find expressions for
the effects containing the Riemann curvature tensor, which is invariant under coordinate
transformations in the linearized approximation to general relativity, which can be applied
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if the gravitational field is weak. Summarized, one needs to verify that the effect is actually
physical, and to make sure that it is analyzed in the frame of the observer measuring it.
Another important point, especially in the third chapter for the description of the optical
resonator, is the concept of length and extended objects: General relativity is a local
theory, which makes it hard to describe extended objects, implying that it is not possible
to associate a physical concept of length to them. For example, a one-dimensional extended
object has to be described by a sequence of segments, and a possibility to define its length
is in an operational way using light signals, therefore making it clearly observer-dependent.
The projects are not ordered in a chronological way: Our first article [A] left some points
that were interesting to study in more detail, such as the resonance frequency in a curved
spacetime, the gravitational field of laser light, and how they can be linked to measure-
ments. The gravitational field of laser light is studied in article [C], and the resonance
frequency in article [B]. Article [C] then provided the tools to look at the rotation of po-
larization discussed in article [D]. The following four chapters aim to give an overview of
our work and to explain the ideas intuitively.
We use the following conventions and notations: The metric is assumed to have the sig-
nature (−1, 1, 1, 1). Greek indices like α denote to spacetime indices, latin indices like a
denote to spatial indices, curly capital latin indices like A denote to spacetime indices in
the Minkowski frame, and ordinary capital latin indices like A denote to spatial indices in
the Minkowski frame. Further, c stands for the speed of light, ~ for the Planck constant,
G for Newton’s constant, and ε0 for the electric permittivity.
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Chapter 1

Gravitational Field of a Laser
Beam beyond the
Short-Wavelength Approximation

The gravitational field of light was already studied in the year 1931 by Tolman, Ehrenfest
and Podolski [1]. They considered the most simple model for light: an infinitely thin
pencil of constant energy density which is moving at the speed of light. Later on this
description was generalized in various ways. Among these models are cylindrical beams,
infinitely extended plane waves, or single photons (compare Appendix A). All of them
have one important feature in common: They describe light in the short-wavelength ap-
proximation, or equivalently, the paraxial approximation, meaning that they describe light
in the framework of geometric ray optics. In this approximation, there is no divergence,
no spreading, of the beam. This means that the wave-like nature of light is not taken into
account, and the Maxwell equations are not satisfied.1

In our project [C], we give a realistic description of a laser beam including the wave-like
nature of light and fulfilling the Maxwell equations. This description reveals features
of the gravitational field of a laser beam that are not visible in the short-wavelength
approximation: First, due to the helicity of the laser beam, frame-dragging appears. This
means that a particle moving initially radially outwards from the beamline of the laser
beam moves on a bent line. Second, a parallel co-propagating light ray, this means a light
ray propagating parallel to the beamline of the laser beam and in the same direction as
the laser beam, is deflected by the gravitational field of the laser beam. This is in contrast
to the statements obtained with the previous models. Third, the polarization vector of
a light ray propagating in the gravitational field of the laser beam is rotated. This is
the gravitational analogue of the Faraday effect appearing in electromagnetism, and the
subject of the next chapter. None of these features is visible in the short-wavelength
approximation, which indicates that they can be attributed to the wave-like nature of
light.

The gravitational effects are too small to be experimentally detected with current technol-
ogy, but with the fast improvement of the sensitivity of measurements, it might be possible
in the future. The effects are of conceptual interest, revealing fundamental properties of
light.

1For the plane wave metrics the Maxwell equations are fulfilled. However, they do not describe realistic
situations as the energy density of the beam does not decrease with the distance in any direction.
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In this chapter we introduce the description of the laser beam beyond the short-wavelength
approximation, outline the calculation of the gravitational field, and present some of its
characteristics. Various models for light beams in the short-wavelength approximation are
presented in Appendix B. Our calculations are done in the linearized approximation to
general relativity, which is introduced in Appendix A.

1.1 Description of the Laser Beam

We describe the laser beam as electromagnetic radiation satisfying the Maxwell equations.
This ensures that it has wave-like characteristics. In previous models for light beams, this
was not the case: They used the short-wavelength approximation, which means that the
momentum of the light beam diverges, while its wavelength vanishes - implying that there
is no wave-like behavior of the light beam. In these models, the light is moving along
null geodesics. The metric describing the gravitational fields of these beams has always
the same structure (Appendix B), which is typical for any energy densities moving at the
speed of light. In this case, it turns out that a test light-ray co-propagating parallel to
the source light-ray is not deflected. For our description of the laser beam beyond the
short-wavelength approximation, this is not the case, as we will explain.

More specifically, our laser beam is described as a perturbative solution to the Maxwell
equations, an expansion in the beam-divergence angle θ, which is the opening angle of the
beam and assumed to be small. Making the ansatz of an electromagnetic almost plane
wave, this solution turns out to be a Gaussian beam, which has the property that its
intensity distribution decreases with a Gaussian factor with the distance to the beamline
of the laser beam.

The solution is obtained as follows. First, in order to keep track of the orders of magnitude
more easily, we introduce the dimensionless coordinates τ = ct/w0, ξ = x/w0, χ = y/w0,
ζ = z/w0, where w0 is the beam waist, a measure of the radius of the beam at its focal
point. The vector potential describing the laser beam is given by a plane wave multiplied
by an amplitude which is slowly varying in the direction of propagation, as the beam
divergence is small. Further, the laser beam is considered to be propagating in positive
ζ-direction, such that its beamline lies on the ζ-axis. Corresponding to these features, one
makes the ansatz for the four-vector potential

Aα(τ, ξ, χ, ζ) = Avα(ξ, χ, θζ)ei
2
θ

(ζ−τ) , (1.1)

where A is the amplitude and vα the envelope function. The exponential factor describes
a plane wave propagating in ζ-direction with angular wave number k = 2

θw0
. A schematic

illustration of the laser beam is shown in Figure 1.1
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Figure 1.1: Schematic illustration of the laser beam: The opening angle is described by
the beam-divergence angle θ, and is assumed to be small. The beam waist w0 is a measure
for the radius of the laser beam at its focal point, more precisely the radius at which the
intensity of the beam falls to 1/e2 of its value on the beamline. The typical property of
the laser beam is that its intensity distribution decreases with a Gaussian factor with the
distance from the beamline.

We then impose the Maxwell equations for the vector potential, which in the Lorentz
gauge ηαβ∂αAβ = 0 reduce to wave equations,

(
−∂2

τ + ∂2
ξ + ∂2

χ + ∂2
ζ

)
Aµ(τ, ξ, χ, ζ) = 0 . (1.2)

The envelope function is assumed to vary slowly in the direction of propagation, which im-
plies that the Maxwell equations for the four-vector potential take the form of a Helmholtz
equation for the envelope function,

(
∂2
ξ + ∂2

χ + θ2∂2
θζ + 4iw0∂θζ

)
vα(ξ, χ, θζ) = 0 . (1.3)

This equation is solved by writing the envelope function as a power series in the beam-
divergence angle θ,

vα(ξ, χ, θζ) =

∞∑

n=0

θnv(n)
α (ξ, χ, θζ) . (1.4)

This leads to a differential equation for each order, where in even/odd orders the solution
of a lower even/odd order appears as a source term. The two lowest order equations have
a similar structure to a Schrödinger equation, and therefore their solutions are similar to
Gaussian wave packets.
We consider the laser beam to be rotationally symmetric about the beamline and to have
circular polarization, as in this case strongly oscillating terms in the energy-momentum
tensor cancel, making it possible to calculate the gravitational field.2

In the following we consider two different scenarios. In the first scenario, both the distance
of the emission and the absorption to the focal point of the laser beam are assumed to be
large. This has the advantage that there is no abrupt change in the energy distribution
at the location of the emission or absorption, as due to the spreading of the laser beam,
the energy density decreases with the distance to the focal point of the beam, such that
far away it is close to zero. In this case, as the envelope function has the argument
θζ rather than ζ, this is also the case for the energy-momentum tensor, and one finds

Tαβ = c2ε0 Re
(
F σ
α F

∗
βσ − 1

4ηαβF
δρF ∗δρ

)
/2.

2The polarization of light is defined with the duality transformation of the electromagnetic field,
Dϕ = eiϕΛ : Fµν 7→ Fµν cos(ϕ) + ?Fµν sin(ϕ), where the Hodge dual of the field strength is given by
?Fµν = 1

2
ωµνρσF

ρσ and ωµνρσ is the completely anti-symmetric tensor. The generator Λ of the duality
transformation is found to be the operator Λ : Fµν 7→ −i ? Fµν . The laser beam has right or left handed
circular polarization, if its field strength Fµν = ∂µAν − ∂νAµ is an eigenvector of Λ with eigenvalue ±1,
such that ΛFµν = ±Fµν .
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Different approach: optical vortices

Before starting the discussion of the gravitational field of the laser beam, we mention
the to our knowledge only other two results about the gravitational field of laser beams
beyond the short-wavelength approximation. They both deal with optical vortices. Optical
vortices are laser beams that carry orbital angular momentum; one can think of them as
winding around the optical axis like a corkscrew. A certain class of them are the Laguerre-
Gaussian beams, which are constructed with the generalized Laguerre polynomials. In [2],
the laser beam is described perturbatively. They consider the two leading orders, which
they call the paraxial approximation, equivalent to the short-wavelength approximation.
In comparison, in [C] we study the five leading orders and associate only the leading
order to the short-wavelength approximation. In [2], frame-dragging arises due to orbital
angular momentum, while in [C], it is due to spin angular momentum. In a subsequent
article [3] which appeared after [C], the gravitational field is again calculated for the optical
vortex. The energy-momentum tensor has the same structure as in our case up to the first
order,3 and frame-dragging due to spin and orbital angular momentum is discussed and
illustrated by looking at massive test particles. They do not find a deflection of the parallel
co-propagating light ray, as this only appears in higher orders, as we will explain.

1.2 Characteristics of the Gravitational Field

The metric describing the gravitational field is determined using the linearized approxima-
tion of general relativity, introduced in Appendix A. This is possible since the gravitational
field is expected to be weak. Then, the metric gαβ consists of the Minkowski metric ηµν
plus a small perturbation hµν .
In the first scenario, where the laser beam is considered to be long, the metric perturbation
is written in a power series of the beam divergence,

hαβ(ξ, χ, θζ) =
∞∑

n=0

θnh
(n)
αβ (ξ, χ, θζ) , (1.5)

and the Einstein equations are solved order by order. In this case they simplify to a two-
dimensional Poisson equation for the metric perturbation, with the energy momentum
tensor plus lower order solutions of the metric perturbation as source terms. They are
solved with the Green’s function for the Poisson equation.
In the second scenario, we consider the laser beam to be short; it is assumed to be emitted
at ζ = α and absorbed at ζ = β, chosen such that θζ � 1 holds. In this case, the metric
perturbation can be calculated with the retarded solution of the wave equation and is
given by

hαβ(τ, ξ, χ, θ) =
4Gw2

0

c4

∫ ∞

−∞
dξ′dχ′dζ ′

Tαβ

(
τ −

√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2, ξ′, χ′, θζ ′

)

√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2

.

(1.6)

Acceleration of massive test particles

The leading order of our perturbation corresponds to a laser beam with vanishing opening
angle, and thus to the laser beam described in the paraxial approximation. The metric

3Compare Eq. (4.1-4.3) in [3] and Eq. (40,52) in [C].

6



has the characteristic structure for light beams in the short-wavelength approximation

h(0)
ττ = h

(0)
ζζ = −h(0)

τζ = I(0) , (1.7)

where I(0) is obtained solving the Poisson equation in the case of the long beam or using
the retarded solution in the case of the short beam.4 For the case of the long laser
beam, the solution looks the same as the exact solution found by Bonnor [4] (Model 4 in
Appendix B2) for a light-like medium without divergence. For the case of a short laser
beam, letting the beam waist go to zero, one reproduces the solution for the thin beam
found by Tolman, Ehrenfest and Podolski [1] (Model 1 in Appendix B2).
The acceleration of massive test particles at rest due to the gravitational field of the laser
beam is given by the geodesic equation γ̈µ = −Γµνργ̇ν γ̇ρ, where γµ describes the trajectory
of the particle and the dot refers to the derivative with respect to proper time. The
acceleration transverse to the beamline of the laser beam γ̈ρ is proportional to ∂ρI

(0),
and the acceleration along the beamline γ̈ζ is proportional to ∂ζI

(0). These quantities are
illustrated in Figure 1.2.

0 2 4 6 8 10
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Figure 1.2: Behaviour of the acceleration of massive test particles initially at rest: The
plain blue line corresponds to the long laser beam, and the dashed red line to the short
laser beam. The plot a) shows the behaviour of the acceleration towards the beamline,
as a function of the distance to the beamline. The plot b) illustrates the behaviour of
the longitudinal acceleration in the direction of propagation as a function of the longi-
tudinal distance from the beam waist. The two derivatives of I(0) are plotted in units
of κw2

0P0/(2πc), where κ = 16πG/c4 and P0 is the power of the source laser-beam. For
the short source laser-beam, emission and absorption take place at ζ = −3 and ζ = 3,
respectively. In the plot a), we set ζ = 1, and in the plot b) we set ρ = 1/2.

The plot shows that the particle is accelerated towards the beamline of the laser beam.
The acceleration is zero on the beamline, reaches a maximum at a certain distance from the
beamline and then decreases with increasing distance to the beamline. The existence of a
maximal acceleration can be explained with Green’s theorem: As only the energy enclosed
in a cylinder whose radius is the distance of the particle to the beamline contributes to the
acceleration, the increase in the strength of the acceleration due to the increasing volume of

4For the long beam, it is given by I(0) = 8GPw2
0/c

5
(
Ei(−2|µ|2ρ2)− 2 log(ρ)

)
, where |µ|2 = 1/

(
1 +

(θζ)2
)
, P0 is the power of the laser beam and Ei is the exponential integral function. For the short beam,

it is given by I(0) = 8Gw2
0P0/c

5e−2ρ2
∫∞

0
dρ′ ρ′ log

(
β−ζ+

√
(β−ζ)2+ρ′2

α−ζ+
√

(α−ζ)2+ρ′2

)
J0(i4ρρ′)e−2ρ′2 , where J0 is the

Bessel function of the first kind.
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the cylinder competes with the decrease of the acceleration due to the increasing distance
from the beamline. Generally, the long laser beam induces a stronger acceleration than the
short laser beam, since the absolute amount of energy is larger. Parallel to the beamline,
there is no acceleration for the long laser beam, as in the zeroth order the beam is perfectly
cylindrical and its shape does not change in this direction. The energy-distribution of the
short laser beam however has a discontinuity at the points of emission and absorption.
In this case, the acceleration is maximal at these two points and vanishes in the middle
between the point of emission and the point of absorption.

With a numerical example, one sees that the acceleration is weak: For a long laser beam
with a power P0 ∼ 1015 W, a beam waist w0 ∼ 10−3 m, a particle at rest at the location
z = 0 and r =

√
x2 + y2 = w0 feels the radial acceleration of γ̈r ∼ −10−18 ms−2, where

γ is the worldline of the particle parametrized by its proper time. The same order of
magnitude is found in [5] (Model 1 and Model 2 in Appendix B2).

Frame-dragging

In the first order, the following components contribute to the metric perturbation:

hλτξ
(1) =− hλξζ (1) = Iλξ

(1) , (1.8)

hλτχ
(1) =− hλχζ (1) = Iλχ

(1) , (1.9)

where I
λ(1)
ξ and I

λ(1)
χ are determined by I(0).5 With the index λ we make explicit that the

solution depends on whether the laser beam has left-handed circular polarization (λ = ±1).
The result coincides with the exact solution for a rotating null fluid presented in [6] for a
certain set of parameters.6

In the first order, frame-dragging appears. Frame-dragging is the effect that a rotating
energy distribution draggs along the spacetime with it - other than in Newtonian grav-
ity, where a body generates the same gravitational field when it is rotating as when it
is not rotating. Frame-dragging can be illustrated by looking at the motion of a test
particle: Letting a massive test particle move radially outward from the beamline, the
frame-dragging causes it to move on a bent trajectory, i.e. letting the particle initially
move in the ξ-direction, one finds that the acceleration in the χ-direction is different from
zero, therefore forcing the particle to move on a bent line. This is schematically illustrated
in Figure 1.3. In particular, we find that the sign of the acceleration depends on whether
the laser beam is left- or right-handed circularly polarized, and that it falls off with the dis-
tance to the beamline of the laser beam in the same way as the energy-density of the laser
beam. In our case, the effect is due to the spin angular momentum. Frame-dragging effects
for optical vortices were shown in [2], where they stem from orbital angular momentum.

5They are given by I
λ(1)
ξ = 1

4
(θζ∂ξ + λ∂χ) I(0) and I

λ(1)
χ = − 1

4
(λ∂ξ − θζ∂χ) I(0).

6The parameters in [6] need to be chosen as α = θI
λ(1)
χ /

√
2, β = θI

λ(1)
ξ /

√
2 and A = I(0).
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Figure 1.3: Schematic illustration of the frame-dragging effect: A massive particle moving
radially outwards from the beamline, here in ξ-direction with the velocity γ̇ξ, is accelerated
in the transverse direction, here in χ-direction with the acceleration γ̈χ. The worldline of
the particle is described by the curve γ and parametrized with proper time.

As an example, for a particle moving radially outwards in ξ-direction with a velocity
v ∼ 10 m/s from the location x = w0, y = 0 and z = 0 and for a power of the laser
beam P0 ∼ 1015 W, a beam-divergence angle θ ∼ 10−3, a beam waist w0 ∼ 10−3 m, the
acceleration is given by d2γy/dt2 ∼ ±10−29 m/s2, where γ is the worldline of the particle.

Deflection of parallel co-propagating light rays

Interestingly, for any light beam described in the short-wavelength approximation, a test
light-ray propagating parallel to the source light-beam and in the same direction is not
deflected, while any other test light-ray is deflected (Appendix B3). This is not true for the
laser beam when it is described beyond the short-wavelength approximation - intuitively,
it is clear that the parallel co-propagating test light-ray should be deflected: As the laser
beam has an opening angle, one can think of it as a bundle of not exactly parallel light rays.
Then, the parallel co-propagating test light-ray is not parallel to the rays in this bundle
and gets deflected. Another argument is based on the observation that the parallel co-
propagating test light-ray is only not deflected from the source light-beam described in the
short-wavelength approximation when the latter propagates at the speed of light (Model
7 in Appendix B2). It is clear intuitively, as locally the energy flow in the laser beam is
not parallel to the beamline, and was shown both theoretically [7] and experimentally [8]
that the laser beam moves slower than the speed of light. This means that the parallel
co-propagating test light-ray should be deflected.

Indeed, we find a deflection of the parallel co-propagating light ray in the fourth order of
our expansion in the beam-divergence angle θ: From the geodesic deviation equation, we
find that the relative acceleration between two nearby geodesics is given by

aξ =− GP0θ
4

16πw2
0c

3
e−2ρ2 (

ρ2(4ξ2 + 3)− 6ξ2
)
, (1.10)

where for simplicity we gave the expression for the region where θζ � 1. The deflection
is schematically illustrated in Figure 1.4.
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Figure 1.4: Schematic illustration of the deflection of a parallel co-propagating light ray.
The parallel co-propagating light ray, described by the tangent γ̇ζ , is radially deflected; it
has the acceleration γ̈ξ (at χ = 0).

As a numerical example, for a power of the source laser-beam P0 ∼ 1015 W, a beam-
divergence angle θ ∼ 10−3, a beam waist w0 ∼ 10−3 m and at the location x = w0 and
y = 0, the acceleration towards the beamline between two nearby geodesics is given by
ax ∼ −10−31 m/s2.
The deflection decays in the same way as the energy-distribution of the laser beam, as a
Gaussion with the distance to the beamline of the laser beam. This means that the par-
allel co-propagating test light-ray is only deflected when it propagates within the energy-
distribution of the laser beam. In our article we show that this is in contrast to the deflec-
tion of a test light-ray in the gravitational field of a massive cylindrical rod which moves
at the propagation speed of the laser beam, as in this case the parallel co-propagating
test light-ray is deflected when propagating in the exterior of the massive rod. This shows
that focussed light and massive matter moving at the same speed do not have the same
gravitational properties.
Our result reveals that contrarily to the statements made in the short wave-length ap-
proximation, the parallel co-propagating light ray is deflected when using an accurate
description of the source laser-beam which takes into consideration the wave-like nature
of light and respects Maxwell’s equations.
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Chapter 2

Rotation of Polarization - Faraday
Effect and Optical Activity

The electromagnetic Faraday effect describes the rotation which the polarization of light
obtains when propagating in an electromagnetic field. The Faraday effect is non-reciprocal;
the effect does not cancel when the light propagates back and forth along the same path.
Additionally, there is a reciprocal rotation of the polarization of light due to the optical
activity. The analogy between the Maxwell equations in an electromagnetic field and in
a curved spacetime suggests that there is a gravitational analogue for the electromagnetic
Faraday effect and the rotation due to the optical activity. Indeed, it was shown that the
gravitational rotation of polarization of light occurs in spacetimes that are stationary and
non-static [9]. These are spacetimes for which there exists a coordinate-system such that all
components of the metric tensor are time-independent, but there exists no such coordinate
system such that the metric components that mix time and space vanish. The gravitational
field of the laser beam satisfies these conditions (Section 1.1). The gravitational rotation
of the polarization of light was first studied by Skrotsky [10] and by Balazs [11], and later
a coordinate-invariant description for the change of the polarization for a light ray coming
from flat spacetime, passing through a weak gravitational field, and going to flat spacetime
again was found by Plebanski [12]. The gravitational rotation of polarization of light was
studied for several systems: for moving gravitational lenses [13, 14, 15], in astrophysics
[16, 17], in the context of gravitational waves [18], for a rotating ring [19] and for a ring
laser [20]. It was also treated more formally in [21, 22, 23].

In this chapter we describe the rotation of polarization of a light ray propagating in the
gravitational field of a long laser beam [D]. We identify the non-reciprocal contribution
to the rotation as the gravitational Faraday effect and the reciprocal contribution as the
gravitational analogue of the optical activity. Notice that a strict analogy is only present
when the contribution of the outward propagation of the light ray is the same as the con-
tribution of the backward propagation. In the first section we explain the result [12] which
we use to calculate the rotation angle. Its application to test light-rays propagating in the
gravitational field of the laser beam is explained in the second section. As the gravitational
Faraday effect is non-reciprocal, it adds up when a test light-ray propagates back and forth
a cavity consisting of two mirrors. On the other hand, as the gravitational analogue of
optical activity is reciprocal, a ring cavity can be used to obtain the gravitational optical
activity as the leading order contribution. This is discussed in the third section, where we
also give a bound on the possible measurement precision.
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For the plots and numerical examples we choose the power P0 = 1015 W, the beam waist
w0 = 10−6 m, the beam divergence θ = 0.3 (this implies that the wavelength is given by
θπw0 ' 10−6 m) and the polarization λ = 1 and consider the parallel light rays to be at
χ = 0 and the orthogonal light ray to propagate in ξ-direction and to be at χ = 0.1.

2.1 Rotation of polarization

Both the Faraday effect and the optical activity rotate the polarization vector within the
plane of polarization, which is always perpendicular to the tangent to the path of the
light ray. When the light ray is deflected, the plane of polarization is tilted such that it is
again orthogonal to the tangent to the path of the light ray. This results in an additional
change δ~ω of the polarization vector ~ω. The change δ~ω depends on the initial polarization
~ω of the light ray,1 is not within the plane of polarization and does not contribute to the
gravitational Faraday effect nor to the gravitational optical activity. The rotation angle
for these two effects for the rotation within the plane of polarization is derived using the
formal analogy of Maxwell’s equations in a dielectric medium and in a gravitational field,
and using geometric ray optics [12]. For a light ray starting and ending in flat spacetime,
it is given by [12]

∆ =
1

2w2
0

∫ ∞

−∞
dτ γ̇aεabc∂bhαcγ̇

α , (2.1)

where γ̇α is the tangent to the path of the light ray parametrized by proper time τ and εabc
is the Levi-Civita tensor with εabc = 1. The positive sign refers to right-handedness. The
rotation of polarization ∆ and the change of polarization δ~ω are illustrated in Figure 2.1.

Figure 2.1: Change of the initial polarization vector ~ω of a light ray γ: The initial polar-
ization vector ~ω in the plane orthogonal to the tangent of the light ray is rotated within
this plane by the angle ∆ into R∆~ω (dashed arrow on the right) due to the gravitational
field, where R∆ is the corresponding rotation matrix. In addition, this plane is tilted due
to the deflection of the laser beam (solid circle on the right), such that it is orthogonal
to the tangent of the light ray. This leads to an additional change δ~ω of the polarization
vector. The rotation about the angle ∆ is due to the gravitational Faraday effect and the
gravitational optical activity.

The above result can be applied when the metric perturbation and its first derivatives
vanish as (

√
ξ2 + χ2 + ζ2)−1 for

√
ξ2 + χ2 + ζ2 → ∞. It is invariant under coordinate

transformations that approach the identity at spatial infinity.

1The explicit expression is given in Sec. 6 in [12].
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The interpretation of the rotation is the following: The polarization vector ~εξ = (1, 0, 0) de-
scribing linear polarization in ξ-direction is rotated into R∆~εξ =

(
cos(∆), sin(∆), 0

)
, where

R∆ is the matrix rotating by the angle ∆. The polarization vector ~ελtest = 1√
2
(1,−λtesti, 0)

for a test light-ray with circular polarization with helicity λtest = ±1 becomes R∆~ελtest =
eiλtest∆~ελtest ; the circularly polarized test light-ray obtains the phase λtest∆.

2.2 Test light-rays

In this section, we look at infinitely long test light-rays and a finitely long source laser-
beam. A test light-ray propagating parallel to the source laser-beam is described by
the tangent vector γ̇α± = c

w0

(
1, 0, 0,±1

)
, where the ”+” corresponds to the parallel co-

propagating and the ”−” to the parallel counter-propagating test light-ray.2 The corre-
sponding rotation angle for the parallel propagating light rays is given by

∆± = − 1

2w2
0

∫ ∞

−∞
dζ
(
∂χ (hξζ ± hτξ)− ∂ξ (hχζ ± hτχ)

)
, (2.2)

where hαβ is the metric perturbation (1.5) introduced in Chapter 1. The rotation of
polarization for the parallel co-propagating test light-ray is illustrated schematically in
Figure 2.2 and the value of the rotation angle is plotted in Figure 2.3 for the parallel test
rays.

Figure 2.2: Schematic illustration of the rotation of the polarization vector ~ω (here it
originally has only a component in the ξ-direction) of a parallel co-propagating test light-
ray with tangent γ̇α+ in the gravitational field of the laser beam.

Figure 2.3: The absolute value of the rotation angle for the parallel co-propagating and the
parallel counter-propagating test light-rays, ∆+ and ∆−, as a function of the orthogonal
distance ξ from the beamline and for the parameter values specified in the introduction.

2To ensure the null condition, and taking into account the deflection of the parallel counter-propagating
test light-ray, the tangents to the parallel and the anti-parallel test light-rays read γ̇α± = c

w0

(
1, ε±ξ , ε

±
χ ,±(1−

f±)
)
, where ε±ξ , ε±χ and f± are of the same order as the metric perturbation and turn out to be negligible

in the calculation.
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We also consider an orthogonal test light-ray which propagates in ξ-direction. Its tangent
reads3 γ̇± = c

w0

(
1,±1, 0, 0

)
. The rotation angle for the transversally propagating light ray

is given by

∆t± = ± 1

2w2
0

∫ ∞

−∞
dξ ∂χh

(0)
τζ −

θ

2w2
0

∫ ∞

−∞
dξ ∂χh

(1)
τξ , (2.3)

where we gave the result up to the first order in the metric perturbation.

The rotation angle ∆ turns out to depend on the helicity λ of the source laser-beam. As
the rotation angle is equivalent to the phase λtest∆ for the circularly polarized light ray, it
contains terms proportional to λλtest. This product is positive if the source beam and the
test light-ray have the same helicity, and negative if they have opposite helicity. This means
that the phase depends on the relative helicity of the two beams, which is gravitational
spin-spin coupling. With our analysis and using only classical general relativity, we thus
find a phenomenon which appears in perturbative quantum gravity.

Equations (2.2) and (2.3) give the rotation angle due to the gravitational Faraday effect
and the gravitational optical activity. The contribution from the gravitational Faraday
effect, which is the non-reciprocal part, is (in leading order) given by4

∆F
+− = ∆+ −∆− = − θ

w2
0

∫ ∞

−∞
dζ
(
∂χh

(1)
τξ − ∂ξh(1)

τχ

)
, (2.4)

for one forth- and back-propagation of a light ray propagating parallel to the source laser-
beam, and by

∆F
t+t− = ∆t+ −∆t− =

1

w2
0

∫ ∞

−∞
dξ ∂χh

(0)
τζ , (2.5)

for one forth- and back-propagation for a light ray propagating transversally to the source
laser-beam. The reciprocal contribution to the rotation angle is the gravitational analogue
of optical activity. It is (in leading order and for the propagation in one direction) given
by

∆OA
+− =

∆+ + ∆−
2

= − θ

2w2
0

∫ ∞

−∞
dζ
(
∂χh

(1)
ξζ − ∂ξh

(1)
χζ

)
, (2.6)

for the parallel light rays, and by

∆OA
t+t− =

∆t+ + ∆t−

2
=

θ

2w2
0

∫ ∞

−∞
dξ ∂χh

(1)
ξζ , (2.7)

for the transversal light rays.

For light beeing emitted from or passing through a rotating spherical body [10, 11] or a
rotating shell [16], it has been shown that the rotation angle for the polarization decreases
with the inverse of the square of the distance to the rotating object. If however the light is
only passing by these objects or any other stationary object, the polarization of the light
is not rotated [9, 24]. The statement is not true if the objects are in motion; then the
rotation of polarization is non-zero (see [15] for a moving point mass, [14, 9] for moving
gravitational lenses, [13] for a moving Schwarzschild object and [12] for moving stars).

3Again in order to satisfy the null-condition and taking into account the deflection of the light ray, the
tangent reads γ̇± = c

w0

(
1,±(1 − f±), ε±χ , ε

±
ζ

)
, where ε±χ , ε±ζ and f± are of the order of magnitude of the

metric perturbation and turn out to be negligible in the calculation.
4As the rotation angle is defined with respect to the propagation direction, the absolute rotation

accumulated on the way back and forth is given by the difference between the rotation angle acquired
during the propagation in the two directions.
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Even though the laser beam’s spacetime metric is stationary, it consists of an energy-
distribution in motion. Therefore, our results agree with the literature in the sense that
the rotation of polarization should be non-zero.

For parallel test rays, we find that the effect decreases with the inverse of the distance to
the beamline of the source beam if there is an overlap between the test ray and the source
beam’s region of largest intensity,5 and falls off with a Gaussian factor with the distance
to the beamline if there is no overlap between the test ray and the source beam’s region of
largest intensity. Instead, for transversal test rays, the effect always decays with the inverse
of the distance to the beamline. Even though formula (2.1) is not strictly applicable, the
test ray and the source beam can under some conditions both be considered as finitely or
infinitely extended. Then, the results are slightly different.

2.3 Cavities

Letting light propagate back and forth between two mirrors, the Faraday effect adds
up, since it is non-reciprocal. On the other hand, the reciprocal effect associated to the
gravitational optical activity cancels. The latter can be obtained as the leading order
accumulating effect when using a certain ring cavity.

In order to magnify the Faraday effect, we consider a cavity consisting of two mirrors at
locations ζ = A and ζ = B, between which the light propagates, as illustrated in Figure 2.4.
Orienting the cavity such that its axis is parallel to the beamline of the source laser-beam,
the light travels undeflected up to the third order in θ from A to B and obtains a deflection
of zeroth order when propagating back, which vanishes when the light ray propagates at
the center of the source laser-beam. When placing the cavity at a slightly larger distance
from the beamline of the source laser-beam, the Faraday effect becomes smaller. When
the light propagates during the time τ = LF/(πc), where F is the finesse of the cavity,
the total angle of rotation is given by ∆F

p = F∆F
+−/(2π). For a finesse F = 106 [25], and

the parameters given in the introduction, the rotation angle is of the order of magnitude
∆F
p ∼ 10−32 rad. Rotating the cavity by ninety degrees (Figure 2.4), the accumulating

angle is given by ∆F
t = F∆F

t+t−/(2π). For the same finesse and the same measuring time,
it is also of the order of magnitude ∆F

t ∼ 10−32 rad.

Figure 2.4: Schematic illustration of the parallel (left) and the orthogonal (right) cavity
in the gravitational field of the laser beam: The laser beam starts at α and ends at β. The
test light-ray propagates on the worldline γα between the mirrors of the cavity, A and B.
The Faraday rotation adds up after each roundtrip, while the rotation associated to the
gravitational optical activity vanishes.

5The region of the source beam’s largest intensity can be defined by a drop of the intensity by a factor
e−2. Then, this region has a radius w(ζ) =

√
1 + (θζ)2.
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Using a ring cavity, it is possible to have the rotation due to the optical activity as the
leading order effect which accumulates. Considering the ring cavity as in Figure 2.5,
where again the mirrors are far enough away from the beamline or the beam waist, the
polarization vector is rotated when the light propagates from A to B, but not when it
propagates from B to C to D to A. If we choose the light ray between A and B to be
propagating at χ = 0, it turns out that the gravitational Faraday effect vanishes and the
gravitational rotation of polarization is purely due to the gravitational analogue of optical
activity. The accumulated rotation angle is of the order of magnitude ∆OA

t ∼ 10−33 rad.

Figure 2.5: Schematic illustration of the ring cavity: The test light-ray propagates along
the path γα and is reflected at the mirrors A, B, C and D. The laser beam is emitted at
ζ = α and absorbed at ζ = β.

Since for the circularly polarized light rays the rotation angle is equivalent to a phase, the
precision of the measurement of the rotation angle is restricted by the shot noise. Using
classical light, the minimal uncertainty of the estimation of the phase φ = λtest∆ is of the
order of magnitude of δφ ∼ 1/

√
nM , where n is the number of photons in the cavity and M

the number of measurements [26]. If the cavity has the finese F and length L and is driven
by a laser with frequency ω/(2π) and power Pdr, the number of photons inside the cavity
is given by n = PdrFL/(π~ωc), and the average time a photon is inside the cavity is found
to be Tav = LF/(2πc). In the time T , M = T/Tav measurements can be made. Therefore,
it follows that δφ ∼

√
~ω/(2PdrT ). Using a cw-laser with the power Pdr = 100 kW [27]

with a wavelength of 500 nm and measuring during T = 106 s (approximately two weeks),
the minimal standard deviation scales as δφ ∼ 10−15 rad. The same order of magnitude
is obtained when using a squeezed state and using quantum metrology (Appendix C) for
the analysis.
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Chapter 3

Resonance Frequency of an
Optical Resonator in a Curved
Spacetime

In this chapter we explain our work on the influence of a gravitational field on the frequency
spectrum of an optical resonator [B]. While in the previous chapter light was the source
of the gravitational field, in this chapter it will only be the tool to probe the effects of
a given gravitational field, serving as test rays. The resonator is modelled as a rod with
two mirrors attached at its ends, between which the light is propagating back and forth.
In flat spacetime, it is clear how to describe the resonance frequency of the resonator: It
is defined as one of the harmonics, which are determined by the length of the resonator.
When the resonator is in a gravitational field, this concept needs to be changed, as in
general relativity, being a local theory, the meaning of length of an extended object is
not a priori clear. It turns out that the radar length has to be used in order to describe
the resonance frequency, which is defined in an operational way by an observer: The
observer sends out a light signal, measures the duration it takes to come back and infers
the distance from it. This makes it evident that the resonance frequency is observer-
dependent. Compared to a resonator in flat spacetime, there is another difficulty with
the resonator in a gravitational field: While in flat spacetime it is possible to describe the
resonator by a rigid rod, this is more complicated in curved spacetime. Strictly speaking,
perfectly rigid objects do not exist. We use the concept of ”Born rigidity”, where the
proper length between two segments of the rod is kept constant, as a first model of the
resonator. In a second model, the resonator is deformable: It consists of thin segments
which are accelerated in the gravitational field but stick together due to the material
forces. The resonance frequency in curved spacetime thus deviates from its definition in
flat spacetime for two reasons: First, for the concept of length the observer-dependent
radar length is used, and second, the resonator deforms in the gravitational field.

Through the dependence of the frequency spectrum on the gravitational field, it is possible
to determine the curvature of spacetime by performing a frequency measurement. This is
important for example for the measurement of gravitational waves with electromagnetic
resonators [28, 29, 30], tests of general relativity, or the measurement of the expansion of
the universe. Also, the influence of the gravitational field on the frequency spectrum can
be seen as a limitation of the precision of frequency measurements in the presence of a
gravitational field, which has to be taken into account.
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In the first section of this chapter, we explain how to describe a resonator in a gravitational
field. Its frequency spectrum is determined in the second section. The result is applied to
three examples in the third section.

3.1 Resonator in a Gravitational Field

The resonator consists of single segments. To these segments belongs a worldline, which
allows to construct spatial geodesics representing the rod. We will explain this in the
first subsection, while in the second subsection, we introduce the proper detector frame, a
locally inertial frame for an observer. This will simplify the calculations for the subsequent
discussions.

Describing the Resonator

We start by describing the resonator in a gravitational field or under acceleration. The
resonator consists of a rod with two attached mirrors (Figure 3.2). The rod is constructed
using worldlines and spatial geodesics: Each segment of the resonator is characterized by
a worldline γς(%) with ς ∈ [a, b], where γa(%) and γb(%) are the worldlines of the mirrors A
and B located at ς = a and ς = b respectively. The parameter % is chosen such that the
curves s%(ς) = γς(%) are space-like geodesics.1 To each worldline of the segments, which
is a time-like curve, we associate a spatial slice defined by the vectors that are orthogonal
to the worldline. In this spatial slice lie the tangents to the space-like curve s%(ς). This
construction is illustrated in Figure 3.1.

Figure 3.1: Representation of the rod by space-like and time-like curves: The space-like
curves s%(ς) represent the rod. They are orthogonal to the time-like curves γς(%) that
represent the worldline of the segments of the rod.

The rod is additionally accelerated, in the sense that the rod has a support on which the
non-gravitational acceleration (the spatial part of the proper acceleration with respect to
a local freely falling frame at the location of the observer) ~a is exerted.2 In terms of the
proper length Lp of the rod, the support is at a distance βLp/2 from the center of the rod,
where β ∈ [−1/2, 1/2]. Later, when we consider an observer performing a measurement,
the observer will do so at a distance σLp/2 from the center, where σ ∈ [−1/2, 1/2]. The
resonator is illustrated in Figure 3.2.

1With this choice, the world lines γς(%) do not need to be geodesics; the parameter % is not assumed
to be the proper time of the segments.

2We do not consider rotation of the resonator, as this effect leads to higher order terms in the eikonal
expansion for the light field inside the cavity, which we neglect in our description.

18



Figure 3.2: Illustration of the resonator: The mirrors A and B are attached to the begin-
ning and the end of the rod. The rod is supported at a distance βLp/2 from the center of
the rod, and an observer performs a measurements at a distance σLP /2 from the center
of the rod.

Proper Detector Frame

The proper detector frame is the natural frame for an observer: It is a locally inertial
frame in the neighbourhood of an observer in a gravitational field under acceleration. This
means that close to the worldline of an observer, the time coordinate is the proper time
of the observer and the coordinate distance is the proper distance. The proper detector
frame is thus a generalization of the Fermi normal coordinates, which are locally inertial
coordinates in the neighbourhood of a geodesic.

The proper detector frame is obtained by constructing a tetrad consisting of a time-like and
three space-like vectors, where the time-like vector corresponds to the tangent vector to the
worldline of the observer. The metric in the proper detector frame [31, 32] for vanishing
rotation, small acceleration ~a and small curvature (in the proper detector frame) reads

gP00(x) = −
(

1 +
2

c2
aJ(τ)xJ +R0I0J (γ(τ))xIxJ

)
, (3.1)

gP0J(x) = −2

3
R0KJL (γ(τ))xKxL , (3.2)

gPIJ(x) = δIJ −
1

3
RIKJL (γ(τ))xKxL , (3.3)

where RIJKL is the Riemann curvature tensor, γ(τ) the worldline and τ the proper time
of the observer. The construction of the proper detector frame is illustrated in Figure 3.3.
For the validity of the proper detector frame, the gravitational field can vary only slowly.
We make the assumption that it varies slowly enough such that during the time the light
needs to make one round trip inside the cavity, the curvature can be considered as constant
in time. The linearization of the metric in the proper detector frame is possible when the
gravitational field varies only slowly; the gravitational field does not need to be weak.
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Figure 3.3: Construction of the proper detector frame: For a worldline of an observer
γ(τ), one defines a tetrad by εµ0 , which is the tangent to the worldline, and three spatial
vectors εµJ , with J = 1, 2, 3. This tetrad gives rise to a coordinate system in which the
coordinate time along the worldline corresponds to the proper time of the observer, and
in a neighbourhood of the worldline, the coordinate distance corresponds to the proper
distance.

3.2 Frequency Spectrum in a Gravitational Field

One can expect the definition for the resonance frequency in flat spacetime, ωn = cnπ/L,
to have a similar form in curved spacetime, with the length L replaced by some well-
defined quantity in general relativity. In this section, we show that this is the case, and
explain the concept of length which gives an appropriate replacement for L.
The resonance frequency of the cavity ωn corresponding to the nth mode of the light is
determined by ψn = ωnT , where ψn is the phase with which the nth mode evolves and T
is a time difference measured by an observer. Therefore, the time difference is observer-
dependent, while the phase is not, making it already clear that the resonance frequency will
depend on the observer who measures it. In order to determine the resonance frequency,
one thus needs to know the evolution of the phase. This could be done by solving the
Maxwell equations in the curved background. Instead of doing so, we choose to describe the
light inside the cavity in the short-wavelength approximation, which allows us to find the
phase difference of the left- and the right-moving part of a standing light wave inside the
resonator. Using the short-wavelength approximation restricts the validity of our results
to the high frequency modes; for the lower modes, the short-wavelength approximation
breaks down.
Doing so, one finds that a meaningful notion of distance in the formula ωn = cnπ/L is the
radar length Rγσ , which is the distance determined by an observer by sending back and
forth a light signal and measuring the time duration Tγσ the light takes to travel. The
radar distance is given by Rγσ = c

2Tγσ . Thus, the frequency spectrum reads

ωσ,n =
cnπ

Rγσ
. (3.4)

To ensure that we only consider wavelengths much shorter than the resonator and that
the short-wavelength approximation is justified, we need the restriction n � 1. In the
following sections, we will calculate the resonance frequency explicitly for both a rigid and
a deformable cavity.
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Born Rigid Resonator

We start by describing the resonance frequency for a rigid resonator, i.e. a resonator as
in Figure 3.2 with a rigid rod to which the mirrors are attached. Strictly speaking, rigid
objects do not exist in general relativity. What we call rigid in the following is thus rigidity
as defined by Born [4]: The proper length between any two segments of the rod is kept
constant when measured along a spatial geodesic defined by either of the two worldlines
of the segments.3

As the resonance frequency depends on the radar length, we need to determine the latter:
To do so, we consider that the observer sends out a light signal, which satisfies the null con-
dition gPµν

(
ξ(ι)

)
ξ̇µ(ι)ξ̇ν(ι) = 0 and the geodesic equation ξ̈µ(ι) = −ΓP µνδ

(
ξ(ι)

)
ξ̇µ(ι)ξ̇ν(ι),

from which one obtains an expression for the tangent vectors to the path of the light ray.
Integrating over them, one finds the difference in proper time of the observer which the
light ray needs for one roundtrip, and from it the radar distance. One obtains for the
resonance frequency

ωσ,n =
cnπ

Lp

(
1− az(τ)

2c2
σLp −

Rτzτz
(
γ(τ)

)

24

(
3σ2 + 6σβ − 1

)
L2
p

)
. (3.5)

The first term in the bracket is the resonance frequency one obtains in flat spacetime.
The second term is a redshift due to the acceleration of the support of the cavity. Due
to symmetry reasons, it vanishes if the observer makes the measurement in the center of
the cavity. The third term is a gravitational redshift. In curved spacetime, it is always
there; only parts of it vanish if the measurement is done at the center of the rod or if
the rod is supported at its center. Summarized, the resonance frequency of the Born rigid
resonator consists of the resonance frequency one obtains in flat spacetime (first term) plus
corrections depending on the acceleration, the curvature, the location of the measurement
and the location of the support of the resonator.

Deformable Resonator

In this section we describe the frequency spectrum of an optical resonator which is de-
formed due to a gravitational field. The rod of the resonator is modeled as sequence of
segments that would follow geodesics due to the gravitational field, but are hold back by
material forces between the segments.
The segments are assumed to have density ρ and crosssection A. The acceleration of
a segment at rest in the gravitational field is given by the geodesic equation γ̈µrest =
−ΓP µσργ̇σrestγ̇

ρ
rest, and in our case the acceleration is approximately equal to the the proper

acceleration aµP . The acceleration leads to a force F z = mazP acting on the segments.4

The force induces a stress in the material, σzz = F z/A = ρLpa
z
P , which is linked to strain

εzz via the Young’s modulus Y by εzz = σzz/Y . The change of proper length of the rod
due to these deformations is given by integrating over the strain at every location of the
resonator. Incorporating the change of proper length in the expression for the resonance
frequency of the rigid resonator (3.5), one obtains

ωσ,n =
cnπ

Lp

(
1 +

az(τ)

2c2

(
c2

c2s
β − σ

)
Lp +

Rτzτz
(
γ(τ)

)

24

(
2
c2

c2s

(
3β2 + 1

)
− 3σ2 − 6σβ + 1

)
L2
p

)
,

(3.6)

3As any other definition of rigidity, the definition by Born has an issue: The motion of a Born rigid
object is completely defined by one of its points, which means that the body cannot be accelerated or put
into rotation without violating causality [33, 34].

4The forces transversal to the rod turn out to be negligible.
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where we replaced the Young’s modulus with the speed of sound in the material cs ac-
cording to cs =

√
Y/ρ.

This description of a deformable rod is consistent with the result for the deformable
resonator: Letting the speed of sound approach infinity, the change in proper length
vanishes and one recovers the frequency spectrum of the rigid resonator given in equation
(3.5). Letting the speed of sound approach the speed of light, the resonance frequency
agrees with the result one obtains with the definition of rigidity given in [35].

As an example we look at carbyne, which is a stiff material and has a very high Young’s
modulus. In this case, the speed of sound is c2

s = Y/ρ ∼ 109 m2/s2. Therefore, the ratio
c2/c2

s ∼ 108 is large, which means that the effect due to the change of the proper length
is dominating the effect due to the curvature of the spacetime and the acceleration of the
cavity. As the speed of sound in the stiffest materials is much smaller than the speed of
light, this observation remains valid for all materials. The effects due to the curvature and
the acceleration become relevant once the deformation effects are taken into account and
the frequency spectrum needs to be determined to a precision of the order of magnitude
of the redshift effects due to curvature and acceleration.

Dielectric Rod as Resonator

The resonator can also be modeled as a cylinder of a dielectric media in which light is
propagating and reflected at the rod’s ends, as illustrated in Figure 3.4.

Figure 3.4: Illustration of the resonator consisting of a cylinder of a dielectric medium:
The light propagates inside the medium and is reflected at the ends of the resonator.
Again, the resonator has the proper length Lp, the support lies at a distance βLp/2 from
the center of the resonator, and the observer performs the measurement at the distance
σLp/2 from the center of the resonator.

The metric tensor for the proper detector frame inside the dielectric medium is given by
[36, 37]

gP,diel
MN = gPMN −

(
c2

diel

c2
− 1

)
uMuN , (3.7)
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where cdiel is the speed of light inside the medium and uM the tangent vector to the
worldline of a segment of the rod. For the metric in the proper detector frame one obtains

gP,diel
00 (x) = −c

2
diel

c2

(
1 +

2

c2
aJ(τ)xJ +R0I0J(τ)xIxJ

)
, (3.8)

gP,diel
0J (x) = −2

3

c2
diel

c2
R0KJL(τ)xKxL , (3.9)

gP,diel
IJ (x) = δIJ −

1

3
RIKJL(τ)xKxL . (3.10)

The calculations for the resonance frequency can be done analogously, and one finds that
it differs by a factor cdiel/c from the results for the resonator consisting of a rod with
attached mirrors, where the light is propagating in free space,

ωdiel
σ,n =

cdiel

c
ωσ,n . (3.11)

3.3 Applications

The result for the resonance frequency is valid in any gravitational field which is varying
slowly enough such that the proper detector frame can be used, and for high enough fre-
quencies of the light inside the resonator such that the short-wavelength approximation
can be used. In this section we apply the results to a uniformly accelerated resonator, to a
resonator which is falling into a black hole, and to a resonator in front of an oscillating mas-
sive sphere. With these examples we illustrate that by measuring the resonance frequency,
the resonator could be used to indirectly measure other parameters, in our examples the
acceleration, the Schwarzschild radius or the mass of the sphere. For the numerical exam-
ples, we consider the relative frequency shift, defined by δσ,n = (ωσ,n − ω̄n)/ω̄n, where ω̄n
denotes to the resonance frequency of a resonator at rest in flat spacetime.

Uniform Acceleration

For an observer which is uniformly accelerated in flat spacetime, the relative frequency
shift is given by

δω,σ =

(
β

c2
s

− σ

c2

)
ax

2
Lp . (3.12)

As a numerical example, we consider a rod made of aluminium. Aluminium has the speed
of sound cs ∼ 103 ms−1. We consider the resonator to have the length Lp = 2 cm and
to be supported at one of the mirrors, therefore setting β = ±1, and to be accelerated
with 10 ms−2. The relative frequency shift turns out to be of the order of magnitude
δω,σ ∼ 10−7. In this case, the first term in equation (3.12) dominates, which stems from
the deformation of the resonator. In order to look at the effect coming purely from the
acceleration, which means the effect for a rigid cavity, we let the speed of sound go to
infinity and are left with the second term. Then, the relative frequency shift measured at
one of the mirrors is of the order of magnitude of δω,±1 ∼ ±10−18. This is in principle
measurable with the most precise clocks [38, 39].

Falling into a Black Hole

To illustrate that the result for the frequency spectrum is also true in strong gravitational
fields, we look at a resonator which is falling into a Schwarzschild black hole, as illustrated
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in Figure 3.5. If the resonator is oriented such that its rod points vertically towards the
black hole, the observer makes the measurement at the center of the resonator and the
speed of sound is taken equal to the speed of light, the relative frequency shift is found to
be

δω,0(τ) = −
rSL

2
p

8r3
, (3.13)

where rS is the Schwarzschild radius and r the radial distance from the center of the black
hole. There is nothing special happening at the event horizon of the black hole.

Figure 3.5: Artistic illustration of the resonator falling into a tilted Schwarzschild black
hole.

Oscillating Mass

As the last example, we consider the resonator in front of an oscillating massive sphere,
as illustrated in Figure 3.6. Our description of the frequency spectrum remains valid as
long as the variation of the gravitational field of the oscillating sphere is slow enough such
that the proper detector frame can be used.

Figure 3.6: Illustration of the resonator in the gravitational field of an oscillating mass:
The sphere of mass M is attached to a spring and oscillates with frequency Ω, and the
support of the resonator is at a distance R(τ) from the center of the massive sphere when
it is in the spring’s equilibrium position.

The sphere is attached to a spring and oscillating at the frequency Ω, such that the
distance between the center of the sphere and the center of the resonator is given by
R(τ) = R0+δR0 sin(Ωτ). Describing the sphere’s gravitational field with the Schwarzschild
metric, one obtains

δω,σ = −rSLp
4R2

0

((
c2

c2
S

β − σ
)

+

(
2
c2

c2
S

(3β2 + 1)− 3σ2 − 6βσ + 1

)
Lp

6R0

)
. (3.14)
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For the numerical example, we consider a gold sphere of mass m = 100 g, which oscillates
with an amplitude δR0 ∼ 1 mm. The resonator is assumed to have length Lp ∼ 1 cm and
be at a distance R0 ∼ 1 cm from the sphere, and to consist of a material with speed of
sound cs ∼ 103 ms−1. If the rod is supported at one of the mirrors, the relative frequency
shift is of the order of magnitude δω,±1 ∼ 10−18 and purely due to the deformation of the
rod.
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Chapter 4

A Measurement of the Speed of
Light in a Cavity

In project [A], we look at an observer performing a measurement of the speed of light
in vacuum: In a cubic cavity containing light, the observer determines the speed of light
according to c = ωλ/(2π), where ω is the frequency and λ the wavelength of the light.
The measurement is both analyzed in the framework of quantum parameter estimation
and in the framework of general relativity. In the former we derive a lower bound on
the quantum mechanical uncertainty in the measurement, which decreases with increasing
energy. However, when increasing the energy, the measurement does not take place in
empty free space any more due to the self-gravitation of light. This means that the
observer makes a systematic error when measuring the speed of light in vacuum. This
error has two different origins, the systematic error in the frequency measurement is due
to the gravitational redshift, and the systematic error in the calculation of the wavelength
is due to the deformation of the cavity. These two effects are discussed in detail in
Chapter 3. Another way to set up the experiment would be to measure the time period
a light signal needs to make one round trip in the cavity and to infer the speed of light
from it. Both the quantum mechanical uncertainty and the systematic error remain the
same; the systematic error arising because the observer does not take into account that
coordinate time and length have to be replaced by proper time and proper length.
In the current definition of the SI units the speed of light is defined the constant c =
299 792 458 ms−1, the second is defined by transition properties of the caesium atom, and
the meter is defined by the distance a light signal travels in a certain amount of time,
when propagating at the speed c. The experiment could be reformulated in SI units: with
the speed of light and measuring a time span, a length is inferred. The two approaches
are equivalent, one leading to a minimal uncertainty in the measurement of the speed of
light and the other giving a minimal uncertainty in the measurement of distance.
The chapter is organized as follows: In the first section we describe the cavity and the
light and determine its gravitational field. The quantum mechanical uncertainty and the
systematic error are analyzed in the second section.

4.1 The Gravitational Field of Light inside a Cubic Cavity

In the first subsection we explain how one obtains the vector potential and the energy-
momentum tensor corresponding to the light inside the cavity, and in the second subsection
we calculate the corresponding gravitational field. The calculations are performed in the
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linearized approximation to general relativity (Appendix A) and using the semiclassical
approximation. In the latter, the light field is treated quantum mechanically and the
gravitational field classically, meaning that in the Einstein equations, the expectation
value with respect to a certain quantum state is taken of the energy-momentum tensor.

Describing the Light

The light is contained in a cubic cavity of side length L with one corner in the origin of the
coordinate system. It is assumed to have perfectly reflecting walls, to whom the electric
field of the light is perpendicular and the magnetic field parallel. The electromagnetic
vector potential ~A satisfies the Maxwell equations

� ~A(x, y, z) = 0 , (4.1)

where the Lorenz gauge condition ~∇ ~A = 0 is imposed (we set the electric scalar potential
to zero) and where � = − 1

c2
∂2
t + ~∇2 and ~∇ = (∂x, ∂y, ∂z). A solution is given by

~A(x, y, z) =
1√
ε0
q(t)

(
2

L

) 3
2




1
0
0


 cos(kxx) sin(kyy) sin(kzz) , (4.2)

where q(t) is the time-dependent amplitude, ε0 is the electric permittivity and ~k =
(kx, ky, kz) is the wave vector. We assume that the mode in x-direction vanishes, the
mode in y-direction is in the first harmonic and the mode in z-direction is in the mth

harmonic. Then the vector potential reads

~A(x, y, z) =
1√
ε0
q(t)

(
2

L

) 3
2




1
0
0


 sin

(π
L
y
)

sin
(mπ
L
z
)
, (4.3)

where we used that the wavelength corresponding to the mth harmonic is given by λm =
2L/m and the wave number by km = 2π/λm. The corresponding electric field is given by

~E = − ~̇A and the magnetic field by ~B = ~∇× ~A. Quantizing them, q and its time-derivative
q̇ turn into the quadrature operators q̂ and p̂ respectively,1

q → q̂ =

√
~

2ωc

(
âω + â†ω

)
, (4.4)

q̇ → p̂ = −i
√

~ωc
2

(
âω − â†ω

)
, (4.5)

with the frequency ω =
√
k2
x + k2

y = π
L

√
1 +m2. From the electromagnetic field, the

energy-momentum tensor is calculated according to T̂00 = ε0
2

(
~̂E2 + c2 ~̂B2

)
, T̂0a = −1

c

[
~̂E × ~̂B

]
a

and T̂ab = −ε0
(
ÊaÊb + c2B̂aB̂b

)
+ T̂00δab. The light field is chosen to be in the quantum

state which is optimal for a frequency measurement [40],

|ψoptimal〉 =
|0〉ω + |ntot〉ω√

2
, (4.6)

1We label operators by hats.
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where ntot is the total number of available photons. In the following, we consider both the
total number of photons ntot and the mode number in z-direction m to be much larger
than one. Further, we assume symmetric operator ordering, which means that products of
annihilation and creation operators ââ† and â†â are replaced by (ââ†+ â†â)/2. Calculating
the expectation values of the energy-momentum tensor with respect to the quantum state
above, it turns out that only the components 〈T00〉, 〈T11〉, 〈T22〉, 〈T33〉 and 〈T23〉 are
different from zero.

Gravitational Field

In our description of the light field, we consider the light to be quantized, and determine
its gravitational field. We make the semi-classical approximation of general relativity: We
treat the fields quantum mechanically and the metric classically. In order to have well-
defined Einstein equations, we need to take the expectation value of the energy-momentum
tensor,

Rαβ −
1

2
gαβ = 8πG

〈
T̂αβ

〉
, (4.7)

where Rαβ is the Ricci tensor. The semiclassical approximation [41, 42] can be used if the

quantum fluctuations of the energy-momentum tensor are small, i.e. Var(T̂αβ) = 〈T̂ 2
αβ〉 −

〈T̂αβ〉
2 � 〈T̂αβ〉

2
. In the linearized approximation of general relativity (Appendix A), the

energy is assumed to be weak and terms quadratic in the energy-momentum tensor are
neglected. In this case, the above condition for the variance is satisfied and the semi-
classical approximation can be applied. The metric perturbation is thus given by

hµν(~x) =
4G

c4

∫ L

0
d3x′

〈
T̂µν(~x′)

〉

|~x− ~x′| . (4.8)

Since the mode number m is assumed to be large, terms containing a sine or cosine
function with m appearing as an argument are strongly oscillating, and thus vanish to a
sufficient approximation when integrating over them. In our case, this means that only
two components of the metric perturbation are different from zero, namely htt and hzz.

4.2 Measurement Precision

The precision of the measurement is limited due to the quantum mechanical nature of the
light; there is always a fundamental quantum mechanical uncertainty. As speed is not a
quantum mechanical observable, the uncertainty in its measurement is not given by the
Heisenberg uncertainty relation. Instead the observer performs measurements2 on quan-
tum mechanical observables, and infers the speed o flight from them. The uncertainty
in this procedure is described in the framework of quantum parameter estimation theory,
which offers an expression for the best achievable precision for the estimation of the pa-
rameter c, idealized over every possible measurement (Appendix C). The uncertainty δc
turns out to be lower bounded by

δc ≥ 1√
MFQ(c)

, (4.9)

2In general, quantum measurements are not constrained to observables, but belong to the larger class
of POVM (positive-operator valued measure) measurements.
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where M is the number of measurements the observer performs and FQ the quantum
Fisher information, defined in Appendix C. The observer, when performing the frequency
measurement, will be limited in the precision by this bound. In our case, the relative
minimal uncertainty δcCRLB is given by

δcCRLB

c
∼ 1

tntotω
√
M
∼ 1

tc
√
M ntot

λ

, (4.10)

where t is the measuring time, ω the frequency and λ = c/ω the wavelength of the
light. From this equation it becomes clear that one way for the observer to lower the
uncertainty in his measurement is to increase the number of photons in the cavity, and
thus the energy. However, when increasing the energy, a systematic error in the setup
of the measurement becomes more and more relevant: The observer does not take into
consideration the gravitational field of the light. This leads to problems when the observer
determines the speed of light in vacuum in the described way, as the observer thinks to be
doing the measurement in flat spacetime, while he is not. When the observer determines
the speed of light by doing a frequency measurement, he will make an error because he
does not take into account the gravitational redshift.3 The corresponding relative error in
our case scales as

δcerr

c
∼
(
lPl

Lp

)2

ntotm ∼
~G
c3L

ntot

λ
. (4.11)

The systematic error and the quantum mechanical uncertainty are different in nature. By
increasing the number of measurements, the measuring time or the ratio ntot/λ, the quan-
tum mechanical uncertainty can become arbitrarily small, without affecting the systematic
error. This corresponds to a sharp estimation of the wrong parameter. On the other hand,
increasing the size of the cavity or decreasing the ratio ntot/λ, the systematic error can
become arbitrarily small. This corresponds to an imprecise (high variance) estimation of
the actual parameter. Saying the measurement to be the most accurate when the system-
atic error and the quantum mechanical uncertainty are of the same order of magnitude,
we adjust the ratio ntot/λ and obtain the scaling for the relative minimal uncertainty

δcmin

c
∼ 1

c2

√
~G

Lt
√
M

, (4.12)

as illustrated in Figure 4.1. Again, it can be lowered by increasing the size of the cavity, the
measuring time or the number of measurements. For the measurement time t = LF/(πc)
(the time in which the intensity of the light in the cavity decreases by a factor 1/e), with
the length L = 1 m, the finesse F = 104 and M = 106 repetitions of the measurement, the
best possible precision scales as δcmin/c ∼ 10−38.

3When performing the analysis in more detail, one would need to take into account the gravitational
effects discussed in Chapter 3.
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Figure 4.1: The quantum mechanical uncertainty δcQCRB/c (short-dashed, red) and the
systematic error δcerr/c (long-dashed, green) and the sum of both of them δc/c (plain, blue)
as a function of the number of photons n. The minimal uncertainty δcmin/c corresponds to
the minimum of δc/c. For the plot we chose the wavelength λ = 5 · 10−7 m, the measuring
time t = L/c, the length of the cavity L = 1 m and the number of measurements M = 106.
The arrow indicates the optimal number of photons nopt, which minimizes the uncertainty.

In an experiment, a coherent state is more easily obtained than the optimal state (4.6).

The coherent state is defined by |ψcoh〉ω = exp
(
αâ†ω − α∗âω

)
|0〉ω and has the average

excitation number nav = |α|2. The minimal relative error in this case scales as

δcmin

c
∼
(

~Gλ
Lc5t2M

) 1
3

, (4.13)

and for the same parameters as in the previous numerical example and λ = 10−6 m, one
obtains δcmin/c ∼ 10−30.
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Conclusion and Outlook

Summarized, in projects [C] and [D], we studied the gravitational properties of laser beams,
finding novel features due to an accurate description of the laser beam. We studied some
of them in detail, with the hope that they might be experimentally detected in the future,
when technology becomes more advanced to measure small effects. More specifically, the
novel results are the following: A light ray which co-propagates parallel to the beamline
of the source laser-beam is gravitationally deflected by the latter. This statement is in
contradiction to previous results, which were obtained in the short-wavelength approxima-
tion. In the short-wavelength approximation, the wave-like nature of light is not taken into
account. We conclude from our analysis that the wave-like nature of light is essential when
looking at the gravitational properties of light. Further, there is a gravitational spin-spin
coupling: due to the effect of the spin angular momentum of the source laser-beam on its
gravitational field, the polarization of test light-rays is rotated.

Three next steps for further investigations could be the following: First, in order to improve
the measurability of the effects in an experiment, it would be better to use a laser pulse
rather than a steady laser beam. To do so, our analysis needs to be generalized to laser
pulses. Second, the laser beam we described carries spin angular momentum. We want to
extend our description to laser beams carrying additionally orbital angular momentum.
Third, it would be interesting to study the gravitational interaction of two laser beams
characterized according to our description.

In project [B] we analyzed the frequency spectrum of an optical resonator in a gravitational
field. The effect of the gravitational field on the frequency spectrum consists of a direct
influence of the curvature of spacetime and an indirect influence through the deformation
of the rod, depending on its material properties. As we show in examples, the order of
magnitude of the gravitational effect is big enough such that the effect could possibly be
measured in experiments. Also this article provides results that are useful for further in-
vestigations. In subsequent articles, we provide tools in order to apply quantum metrology
for the analysis of the measurement precision which we want to apply to the resonator
after describing it quantum mechanically, therefore extending the analysis in [B]. In this
way, the statements on the measurability of the gravitational effects should become more
precise, and a link to quantum mechanics would be built. It would also be interesting to
take rotation of the resonator in to account. This requires a description including higher
orders of the eikonal expansion of the light field inside the resonator.

In project [A] we consider relativistic effects in a specific measurement of the speed of
light and analyze the measurement precision using quantum metrology. Understanding
the procedure in a slightly different way, it is equivalent to the question of the minimal
length which is in principle measurable with this setup. While projects [B], [C] and [D]
were done using classical general relativity only, in project [A] we combine arguments from
quantum mechanics with general relativity. This is done in the realm of the semi-classical
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theory of general relativity, where the light field is treated quantum mechanically and the
gravitational field classically. The next step could be to describe the gravitational effects
on the frequency spectrum of the cavity as in project [B], expanding the results of [B] to
three-dimensional deformable cavities. This would improve the precision of the analysis
performed in project [A].
Summarized, this thesis deals with gravitation and light. Since light is both a relativistic
and a quantum object, knowing its characteristics in detail might lead to some hint con-
cerning the matching of gravity and quantum mechanics. Looking for gravitational effects
in quantum mechanics or quantum mechanical effects in general relativity is a possible
approach to tackle the problem, although not necessarily the right one. With our work we
do not address this question, but provide tools and ideas upon which further investigations
could build.
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Appendix A: Linearized Theory of
General Relativity

Assuming that the energy of the Gaussian beam is sufficiently small, we use the linearized
theory of general relativity [43] to describe its gravitational field. Then the metric gαβ
consists of the metric for flat spacetime ηαβ plus a small perturbation hαβ with |hαβ| � 1,

gαβ = ηαβ + hαβ . (A1)

Therefore one neglects terms quadratic in the metric perturbation. In this case, one sees
that the inverse of the metric reads gαβ = ηαβ − hαβ. In this appriximation, the Einstein
equations4 Rαβ − 1

2gαβR = 8πGTαβ can be simplified to a set of equations linear in the
metric perturbation.
We assume the metric perturbation to obey the Lorenz gauge condition, ∂αhαβ = 0,
which is equivalent to implying the harmonic gauge condition for the metric perturba-
tion, ∂αhαβ = ∂βh

α
α/2. The conservation of the energy-momentum tensor, ηαβ∂αTβγ = 0

implies that the continuity equation is satisfied [31, 5]. Taking into account that the
energy-momentum tensor is traceless for the electromagnetic field, the linearized Einstein
equations are found to be [43]

�hαβ = −κTαβ , (A2)

where we define κ = 16πG/c4 and � = −c−2∂2
t + ∂2

x + ∂2
y + ∂2

z is the d’Alembertian. This
is a wave equation, which has the retarded solution

hαβ(t, ~x) =
4G

c4

∫ ∞

−∞
d3x′

Tαβ (t− |~x− ~x′|, ~x′)
|~x− ~x′| , (A3)

where ~x = (x, y, z). As the full theory has an invariance under coordinate transformation,
its linearized approximation is invariant under linear coordinate transformations xα →
x̃α = xα + ξα, where the metric transforms as hαβ → h̃αβ = hαβ − ∂αξβ − ∂βξα (it is
assumed that |∂αξβ| is of the same order of magnitude as hαβ). In order to not violate
the gauge condition, ξα has to satisfy �ξα = 0. Since curvature is described by the second
derivatives of the metric, quantities depending on the curvature are invariant under linear
coordinate transformations. The Riemann curvature tensor in the linear approximation is
given by

Rαβγδ =
1

2
ηαρ (∂β∂γhδρ − ∂β∂δhγρ − ∂γ∂ρhβδ + ∂δ∂ρhβγ) . (A4)

4Rαβ is the Ricci tensor and R the Ricci scalar, which are contractions of the Riemann curvature
tensor describing the curvature of spacetime. Tαβ is the energy-momentum tensor, describing the energy
distribution. The Einstein equations thus relate the curvature of spacetime to the energy distribution.
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In Appendix B2, we present models for light rays in the short-wavelength approximation.
In this case, the only non-zero components of the energy-momentum tensor are Ttt, Ttz and
Tzz. If the radiation is moving at the speed of light, we have Ttt = −Ttz = Tzz. The metric
is given by ds2 = −(1−h)dt2 +(1+h)dz2−2hdtdz+dx2 +dy2, with h = htt = −htz = hzz.
In this case, the metric has similarities with the pp-wave metric, which is introduced in
Appendix B1.
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Appendix B: Models of Light
Beams in the Short-Wavelength
Approximation

Appendix B1: Plane Wave Metrics - pp-waves

For the different descriptions of light beams, either the linearized theory of general relativ-
ity or the pp-wave solutions to the Einstein equations are used: The linear approximation
of general relativity is applied if one deals with finitely extended energy distributions, as
then the metric perturbation remains small and the linear approximation remains valid.
On the other hand, for infinitely extended sources, the pp-wave solutions are useful, as
they are exact results not restricted to any domain of validity.
Heuristically, pp-wave metrics are obtained from the line element ds2 = (ηµν+hµν)dxµdxν

for electromagnetic radiation in the linearized theory by dropping the assumption that the
energy and thus the metric perturbation is small - therefore promoting the solution to an
exact solution to the Einstein equations [44].
More rigorously, they are obtained as follows [44]: They are defined to describe spacetimes
where there exists a covariantly conserved null vector field, i.e. a vector field Zα whose
norm and whose covariant derivative vanish, i.e. ZαZ

α = 0 and ∇αZβ = 0. Changing
from the coordinates {xµ} = (t, x, y, z) to the coordinates {yα} = (u, x, y, v) with u = z−t
and v = z + t, one finds the line element

gαβdy
αdyβ = 2dudv +K(u, yα)du2 + 2Ba(u, y

c)dudya + gab(u, y
c)dyadyb , (B1)

where ya, yb, yc ∈ {x, y}. This metric is called a plane wave metric if gab = δab, Ba = 0
and K(u, ya) = Aaby

ayb, where Aab = Aab(u), and thus

gαβdy
αdyβ = 2dudv +Aab(u)yaybdu2 + δabdy

adyb . (B2)

Then, the Ricci tensor has the only non-zero component Ruu = −δabAab. Accordingly, the
only non-vanishing component of the Einstein equations is

Ruu = 8πGTuu , (B3)

and therefore one finds the relation δabAab = −8πGTuu . Changing back from the coordi-
nates {yα} to coordinates {xµ} and defining A = Aaby

ayb, we obtain

gµνdx
µdxν = −(1 +A)dt2 + (1 +A)dz2 − 2Adtdz + δabdx

adxb . (B4)

To show the mentionned similarity to the linearized theory of relativity, we define the
tensor hµν with the only non-vanishing components h00 = h33 = −h03 = −A, which
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allows us to write the metric as gµν = ηµν + hµν . Here however, the expression is exact.
That the exact metric can be written in the same structure as the linearized version is not
surprising, as neither the Ricci tensor nor the Ricci scalar contain any non-linear terms
in the energy-momentum tensor. Therefore the Einstein equations are already linear, and
one expects an analogy to the linearized theory.

For an electromagnetic plane wave, which is given by the vector potential Aµ = Aεµe−iku,
the only non-vanishing component of the energy-momentum tensor5 is Tuu = δab∂uAa∂uAb.
Therefore, from δabAab = −8πGTuu, it follows that the plane wave metric (B2) reads

gαβdy
αdyβ = 2dudv +Adu2 + δabdy

adyb, A = −8πG∂uAa∂uAby
ayb . (B5)

Appendix B2: Models of Light Beams in the Short-Wavenength
Approximation

For most descriptions of the gravitational fields of light beams, the short-wavelength ap-
proximation is used. This means that the beams have a diverging momentum and a
vanishing wavelength. As the beam divergence angle is proportional to the inverse of the
wave number and thus proportional to the wavelength (Section 1.1), also the beam diver-
gence angle vanishes, such that these beams have a cylindrical symmetry. As intuitively
clear by letting the wavelength go to zero, in this approximation the wave-like nature of
the light is not visible. This is confirmed by noticing that the Maxwell equations, whom
electromagnetic waves underlie, are not fulfilled.

We review the most important models of laser beams in the short-wavelength approxima-
tion. Starting by the simplest ones, a single light ray and an infinitely extended plane
wave, we continue with beams whose energy density depends on the distance from the
beamline or falls off abruptly at a finite distance from the beamline, describing a cylinder
of light. In addition to static spacetimes, we also discuss a thin light pulse both in free
space and in a wave guide, and a single photon.

Model 1: infinitely thin, finitely long beam

The gravitational field of light was first studied in 1931 by Tolman, Ehrenfest and Podolsky
[1]. They considered the most simple description of a light beam: a single light ray, this
means an infinitely thin beam, which is emitted at z = a and absorbed at z = b, and
which is assumed to have constant energy per length. The metric is calculated using the
linearized theory of general relativity. Instead of assuming constant energy per length,
the same beam was also described as consisting of electromagnetic plane waves [5]. We
discuss the description of the light beam consisting of plane waves, keeping in mind that
for circular polarization, the energy per length is constant and the result concides with
the one found by Tolman, Ehrenfest and Podolski [1].

The vector potential of a transversally polarized plane electromagnetic wave travelling in
z-direction is given by

Aµ(t− z) = Aεµe−iω(t−z) , (B6)

whereA is the amplitude and the polarization vector is given by εµ = (0, ε1, ε2, 0). The field
strength tensor Fµν = Re (∂µAν − ∂νAµ) has the only non-zero independent components

5The energy-momentum tensor is given by Tµν = FµσF
σ
ν − 1

4
FσδF

σδ, with the field strength tensor
Fµν = ∂µRe(Aν)− ∂ν(ImAµ).
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F01 = F13 = −iωAε1e−iω(t−z) and F02 = F23 = −iωAε2e−iω(t−z). The energy-momentum
tensor Tµν = Re(Fµσ)Re(F σ

ν )− 1
4Re(Fµν)Re(Fµν) is then found to be

Tµν = u(t− z)M0 , M0 =




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 , (B7)

where u is the energy density, the energy per length (sometimes in the literature the energy
per volume is used, and multiplied by a small cross-section). This structure of the energy-
momentum tensor is characteristic for an energy density moving at the speed of light, when
it does not change its shape and is not rotating. Therefore, the matrix M0 appears in any
model of light beams using the short-wavelength approximation. The energy density for
circular polarization εcirc

µ = 1√
2
(0, 1, i, 0) and for linear polarization εlinµ = 1√

2
(0, 1, 0, 0) is

given by ucirc = A2ω2/2 and ulin(t− z) = A2ω2/2 sin2 (ω(t− z)). As mentionned before,
for circular polarization the energy density for the circular polarization is constant and the
description coincides with the model by Tolman, Ehrenfest and Podolski [1]. The metric
perturbation (A3) in the linearized theory of relativity is found to be

hµν(t, x, y, z) = 4G

∫ b

a
dz′

u
(
t− z′ −

√
x2 + y2 + (z − z′)2

)
√
x2 + y2 + (z − z′)2

M0 . (B8)

The integral may be solved conveniently by introducing the coordinate ξ = z − z′ +√
x2 + y2 + (z − z′)2. Together with dξ = ξ√

x2+y2+(z−z′)2
dz′, one finds for the metric

perturbation [5]

hµν(t, x, y, z) = 4G

∫ ξ(b)

ξ(a)
dξ

u(t− z − ξ)
ξ

. (B9)

Inserting the energy density for the circular and the linear polarization leads to

hcirc
µν (t, x, y, z) = −2Σ2k2G log

(
z − b+

√
r2 + (z − b)2

z − a+
√
r2 + (z − a)2

)
M0 , (B10)

for the circular polarization, and a somewhat longer expression for the linear polarization.6

Model 2: infinitely long beam of an infinite radius and an energy density which
does not depend on the transverse distance to the beamline

A formally simple, but not very realistic model of a light beam is an infinitely extended
plane wave, describing an infinitely long and infinitely wide light beam. For this beam,
there exists an exact solution to the Maxwell equations, the pp-wave metric (Appendix B1).
In [45], the solution is explicitly given for circular and linear polarization of the light. It is
obtained from the plane wave metric for electromagnetic fields (B5) by writing the Einstein
equations in the form δabAab = −8πGTuu as 1

2

(
∂2

1 + ∂2
2

)
A = 8πGTuu .7 For the vector

potential for electromagnetic waves Aµ(t − z) = Aεµe−ik(t−z), where A is the amplitude

6See Appendix A in [5].
7Compare Eq. (15) in [45].
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and εµ the polarization vector and integrating over the transverse directions, one obtains
for circular and linear polarization

Acirc = 4πGA2ω2
(
x2 + y2

)
, (B11)

Alin = 4πGA2ω2 sin2
(
ω(t− z)

) (
x2 + y2

)
. (B12)

where Acirc and Alin stand for the function A in the metric (B5) for circular and linear
polarization.

Model 3: infinitely long beam with an infinite radius and an energy density
depending on the transverse distance to the beamline

Making a step towards a more realistic description of the light beam, in [46] the same beam
as in Model 2 is considered, but with an energy density that depends on the radial distance
to the beamline. While in the previous models, the spacetime metric was determined based
on a known energy distribution, here one proceeds in the opposite direction for this model;
for a certain structure of the metric, the energy distribution is analyzed. The metric given
in [46]8 is obtained from the plane wave metric (B4) as follows: Changing to cylindrical
coordinates according to x = r cos(ϑ) and y = r sin(ϑ), one obtains

gµνdx
µdxν = −(1 +A)dt2 − 2dtdz + (1−A)dz2 + dr2 + r2dϑ2 . (B13)

Setting A = 1 and rescaling the t- and z-coordinates by t→ t/
√

2 and z →
√

2z, leads to

gµνdx
µdxν = −dt2 − 2dtdz + dr2 + r2dϑ2 . (B14)

The only non-zero components of the Ricci tensor turn out to be

R00 = −R03 = R33 =− σ . (B15)

With the Einstein equationsRtt = 8πGTtt, Rtz = 8πGTtz andRzz = 8πGTzz, one identifies
σ as the energy density. In [46] it is shown that it may be written as σ = DrC , with
constants C and D, thus showing that the energy density depends on the transverse
distance to the axis of the beam. However, this scaling with r of the energy density is not
the scaling one has in a typical laser beam, where it decreases by a Gaussian factor with
the distance to the beamline (Section 1.1).

Model 4: infinitely long beam with a finite radius and an energy density not
depending on the transverse distance to the beamline

In 1969, Bonnor described a cylindrical light beam. This beam has constant energy density
within a cylinder around the beamline, whereas outside of the cylinder the energy density
is zero. Again, the Einstein equations for this beam are solved by a plane wave metric.
However, since in this model the light beam is a described as a continuous fluid and not as
an electromagnetic wave, one does not start with the form for electromagnetic plane waves
of Eq. (B5), but with the more general form given in Eq. (B1), where one sets Ba = 0 and
Jab = δab. The line element then reads

gαβdy
αdyβ =2dudv +K(u, ya)du2 + δabdy

adyb . (B16)

8Compare Eq. (4) in [46].
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The cylinder is assumed to have radius a. Choosing both a solution to the Einstein
equations for the interior region of the beam where

√
y2

1 + y2
2 ≤ a and the exterior region

where
√
y2

1 + y2
2 ≥ a and demanding continuity at r = a, the following solution is obtained

in [4],

Kext(u, y
1, y2) =− 8Gmφ(u)

(
log

(√
y2

1 + y2
2

a

)
+

1

2

)
,
√
y2

1 + y2
2 ≥ a , (B17)

Kint(u, y
1, y2) =− 4Gmφ(u)

y2
1 + y2

2

a2
,
√
y2

1 + y2
2 ≤ a , (B18)

where m is a parameter and φ a function of the coordinate u. Finally, it remains to
identify the energy density of the beam. To do so, one calculates the Ricci tensor, Ruu =
−δab∂a∂bK(u, ya), and obtains with the Einstein equations the energy-momentum tensor,
Tuu = δab∂a∂bK(u, ya)/(8πG). For the interior and the exterior region of the cylinder, one
finds

T ext
uu =0 , (B19)

T int
uu =

mφ(u)

a2π
. (B20)

Altogether, this is a cylindrically symmetric solution, whose energy-momentum tensor
is non-zero within the radius a and vanishes outside of it. Therefore, this solution is
interpreted as a cylindrical beam of light with energy per unit length mφ(u)/(a2π). As
a consistency check, by taking the radius of the cylinder to be infinite, one recovers the
plane wave metric (B5).

Model 5: single photon

So far we discussed steady laser beams, which is the main interest in [C]. For completeness,
in this and the following two paragraphs, we discuss two other descriptions of light: single
photons and a thin laser pulse.

The gravitational field of a massless point particle,9 a single photon, was described both in
the linearized approximation of general relativity [49]10 and as a plane wave solution [50].
In [49] they also find an exact result by boosting the Schwarzschild metric. Their result
coincides with the exterior solution found in [50], where they proceed as follows: Setting
φ(u) = δ(u) in equation (B17) for the solution of the beam of circular cross-section and
locating the entire energy at u = 0 or t = z, one obtains

Kext(u, y
1, y2) =− 4πGmδ(u)

(
log

(
y2

1 + y2
2

a

)
+

1

2

)
, (B21)

Kint(u, y
1, y2) =− 2πGmδ(u)

y2
1 + y2

2

a2
. (B22)

This describes an infinitely thin slice of radius a moving at the speed of light. Considering
only the exterior solution and assuming the radius a to be small, it may be interpreted as

9This particle is moving in flat spacetime. The analogous situation of a single photon in a Schwarzschild
background is analyzed in [47, 48].

10As they explain, the calculation does not work by simply multiplying the energy-momentum tensor
of the one-dimensional beam with a Dirac-Delta function - there is a problem since the source is moving
at the speed of light.
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the description of a photon. If this photon is travelling on the path given by x0 = t0, it
is causally connected to the points (t, x, y, z) that satisfy x2 + y2 + (z − z0)2 = (t0 − t)2.
This means that its gravitational field reaches a point (t1, x1, y1, z1) if t0 = (t21−x2

1− y2
1 −

z2
1)/
(
2(t1 − z1)

)
. Since one deals with a retarded potential, one has t1 ≥ t0. The case

t1 > t0 is equivalent to t1 > z1. In this region, spacetime turns out to be flat. For t1 = z1,
one finds x1 = y1 = 0, which means that the point of evaluation of the metric, the observer,
lies on the path of the photon, as well as t0 = −∞, which means that the source of the
gravitational field lies infinitely back in the past. By looking at the Riemann curvature
tensor, it was found that the gravitational field depends only on the energy of the photon
for small distances from the beamline; further away, it is independent of the energy of
the photon. These two observations suggest that the gravitational field arises from the
emission process only, and that there is no gravitational effect due to the propagating
photon.

Model 6: infinitley thin pulse

That propagating light does not have any gravitational influence is supported by studying
a thin laser pulse. From the solution for the infinitely thin beam, one can derive the grav-
itational field of an infinitely thin light pulse. Here we review the calculation performed
in [5]11. The pulse is assumed to be emitted at z = za, propagate along the z-axis and be
absorbed at z = zb. The front of the pulse leaves the emitter at time t = 0 and the end
of the pulse at t = L; the pulse has thus the length L. The pulse is described by taking
the energy-momentum tensor for the infinitely thin beam and boxing its support, i.e. by
cutting out a piece of length L of the beam and letting it propagate from za to zb.
The metric perturbation then reads

hµν =4G

∫ zb

za

dz′
u
(
t−

√
x2 + y2 + (z − z′)2 − z′

)

√
x2 + y2 + (z − z′)2

M0 , (B23)

where u stands for the energy density corresponding to linear or circular polarization and
the integration boundaries za and zb will be determined in the following: The boundary of
integration is the intersection of the past light cone of the observer with the world sheet
of the pulse - in order to ensure that the observer is causally connected with the pulse.
The front and the end of the pulse at z = z̃b and z = z̃a intersect the past light cone of
the observer at the point (t, x, y, z) if

z̄b = z +
(t− z)2 − x2 − y2

2(t− z) , (B24)

z̄a = z +
(t− L− z)2 − x2 − y2

2(t− L− z) . (B25)

Respecting the location of emission and absorption, the region of integration is given by

[za, zb] =





∅ , I−, I+ ,

[a, z̄b] , II ,

[z̄a, z̄b] , III ,

[z̄a, b] , IV ,

[a, b] , V .

(B26)

11Compare also [51].
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The regions I through V are defined by (compare Figure 4.2)

� Region I: There is no causal connection between the observer and the pulse.

� Region II: The observer is causally connected with the emission process.

� Region III: The observer is causally connected with the propagating pulse, but not
with the emission nor the absorption process.

� Region IV: The observer is causally connected to the absorption process.

� Region V: The observer is causally connected with the emission process, the propa-
gation of the pulse, as well as the absorption process.

Figure 4.2: Spacetime diagram showing the different regions of causal connection.

With a substitution, the metric perturbation (A3) can be written in a simple way: Intro-
ducing ξ = z − z′ +

√
x2 + y2 + (z − z′)2, one obtains

hµν =4G

∫ ξ(zb)

ξ(za)
dξ
u (t− ξ − x1)

ξ
M0 . (B27)

In region III, one has ξ(zb) = t−z and ξ(za) = t−z−L. Therefore, the metric perturbation
is a function of t− z. In this case, the only non-zero component of the Riemann curvature
tensor is Rtztz = −1

2 (∂0 + ∂3)2 u(t − z). However, also this component vanishes as (∂0 +

∂1)h(t − x) = ∂h
∂(t−x)

∂t
∂t + ∂h

∂(t−x)
∂(−x)
∂x = 0. Therefore, the curvature is zero in region III,

where neither the emission nor the absorption process have any influence. One may thus
conclude that the propagation of the pulse does not produce a gravitational field. This is
in agreement with the result found in [50] that the propagation of a single photon does
not have any gravitational effect, and has been derived in the way we described in [52].

Model 7: infinitely thin pulse in a wave guide

In the previous sections, the light was propagating in free space and therefore at the speed
of light. In [53] an infinitely thin pulse in a wave guide is studied. The light in the wave
guide travels at the speed v < c, slower than the speed of light. In this case, the metric
takes a form which is different to the cases where the light is propagating at the speed of
light.
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In [53] the electric field is assumed to have transverse polarization and is of the form,

E2 =A2 sin
(
ω(vt− z)

)
, (B28)

B1 =A2v sin
(
ω(vt− z)

)
, (B29)

B3 =A2
√

1− v2 cos
(
ω(vt− z)

)
, (B30)

where A is the amplitude. The pulse is constructed as in the previous section. In the
spacetime region which is causally connected to the propagation of the pulse, but not the
emission nor the absorption process (region III as defined in the previous paragraph), this
leads to the metric perturbation hµν = hMµν , where the function h is given by

h =− 2GA2 log

(
vt− z +

√
(vt− z)2 + (1− v2)(x2 + y2)

vt− z − L+
√

(vt− z − L)2 + (1− v2)(x2 + y2)

)
, (B31)

and the matrix Mµν is defined by

Mµν =




1 0 0 −v
0 1− v2 0 0
0 0 0 0
−v 0 0 v2


 . (B32)

The metric perturbation has thus a different structure for light propagating at the speed
of light and light propagating slower than the speed of light.

Other models

There exist further models which we will not present in detail. We will just mention some
of them. In [54], a plane wave solution carrying angular momentum is presented. An
exact solution for a planar shell of null matter of constant and arbitrary energy density
is found in [55] and [56]. There exist further exact solutions to the Einstein equations
for an infinitely extended circular or elliptical beam whose energy density depends on the
radial distance to the beamline [57], and for the same beam but whose radius varies in
time [58]12. In [59], a solution in the linearized approximation for a beam of a rectangular
cross-section is given.

Appendix B3: The parallel co-propagating test light ray

As already noticed by Tolman, Ehrenfest and Podolski [1], there is an interesting effect
regarding the gravitational interaction of light when the light is described in the short-
wavelength approximation: A light ray propagating parallel to another light ray is not
deflected in the gravitational field of the latter. It is neither deflected if the beam is
described by the plane wave metric. This holds as long as the source beam is propagating
with the speed of light; when it is slower than the speed of light, the parallel propagating
light ray will be deflected [53].

More specifically, the parallel co-propagating test light-ray is defined by the tangent to
its geodesic γ (parametrized by %), γ̇µ(%) = c

w0
(1, 0, 0, 1 − f), where f is determined by

the null condition gµν γ̇
µ(%)γ̇ν(%) = 0. It follows that f is of the same order of magnitude

12These solutions have been criticized as they do not satisfy the Maxwell equations
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as the metric perturbation and may be neglected in the following. The originally parallel
test light-ray remains parallel, i.e. is not deflected, if the radial acceleration vanishes. The
acceleration is calculated with the geodesic equation γ̈µ(%) = −Γµνλγ̇

ν(%)γ̇λ(%).
For a laser beam in the short-wavelength approximation (such as in the models 1-4), for
which the metric perturbation is proportional to the matrix M0, we obtain, using that
the metric is independent of time, that the acceleration in the direction transverse to the
beamline (here in x-direction, for the y-direction the expression is analogous) vanishes,

γ̈x =
1

2
∂x (htt + hzz + 2htz) = 0 . (B33)

For the single photon (Model 5) and the infinitely thin light pulse (Model 6), the acceler-
ation vanishes in the region which is not causally connected to the emission or absorption,
as there the curvature and thus the gravitational field vanishes. For the infinitely thin
pulse moving at velocity v in a wave guide (Model 7), one obtains the following [53]: A
parallel propagating light pulse at velocity v′ has the transverse acceleration

γ̈x =− 1

2
∂2
xh(1− vv′)2 . (B34)

The light pulse travelling parallel to the source pulse is thus deflected unless both pulses
propagate at the speed of light.
Since coordinate acceleration does not have a proper meaning in general relativity, we
also look at the geodesic deviation equation,13 aµ = Dsµ(%)

d% = Rµνρσ
(
γ(%)

)
γ̇ν(%)γ̇ρ(%)sσ(%),

which describes the difference sµ(%) between two nearby geodesics γ(%) and γ′(%), and

where D2sµ

d%2 = γ̇µ(%)∇µ is the covariant derivative along the curve γ(%), compare Figure 4.3.

Figure 4.3: Illustration of the geodesic deviation equation: Two nearby geodesics γ(%) and
γ′(%) are separated by the vector sµ(%).

Considering two geodesics which are separated by sµ = (0, 1, 0, 0), we obtain for the Models
1-4,

ax = Rxttx +Rxzzx + 2Rxtzx =
1

2
∂2
x (htt + hzz + 2htz) = 0 , (B35)

meaning that the distance in the transverse direction between two nearby geodesics is
constant. We conclude that a test light ray co-propagating parallel to the beamline is not
deflected by the gravitational field of the light beam described by one of the models 1-4.
For the pulse in a wave guide (Model 7), we obtain for the acceleration in x-direction

ax = Rxttx +Rxzzx + 2Rxtzx =
1

2
∂2
x (htt + hzz + 2htz) =

1

2
∂2
z (htt + hzz + 2htz) +

1

2
∂2
zhxx .

(B36)

13The equation γ̈α = 0 is not tensorial. Therefore, if γ̈α = 0 holds in one coordinate system, it does
not necessarily hold in every coordinate system. The second covariant derivative a of the separation vector
in the geodesic deviation equation is a tensor. Therefore, when it vanishes in one coordinate system, it
vanishes in every coordinate system. The geodesic deviation equation can thus be used to decide whether
the parallel light ray is deflected or not.
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Using that the first term vanishes and hxx ∼ (1− v2) leads to

ax ∼ (1− v2) , (B37)

showing that the acceleration transverse to the beamline is non-vanishing if and only if
the pulse inducing the gravitational field moves slower than the speed of light.14,15

As we explain in Section 1.2, the parallel co-propagating test light-ray is deflected in the
gravitational field of the laser beam. The deflection appears if one describes the laser
beam beyond the short-wavelength approximation.

14The same statement can be shown for light beams propagating slower than the speed of light.
15That a parallel propagating light ray is not deflected is confirmed by the result that a superposition

of two plane wave metrics is again a solution to the Einstein equations [4]. There exist solutions for two
counter-propagating beams, which are not superpositions of two solutions for the two individual beams
[60, 61].
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Appendix C: Quantum Metrology

For a quantum mechanical observable, the quantum mechanical uncertainty is given by
the Heisenberg relation. However, often we are interested to infer the value of a parameter
which does not correspond to an observable. In this case, quantum parameter estima-
tion can be used to determine the fundamental quantum mechanical uncertainty that will
remain when performing an optimal estimation procedure. More precisely, consider a sys-
tem that depends on the parameter θ. The state of the system is described by the density
matrix ρ̂(θ). The value of the parameter θ is estimated by performing M measurements
on the system to collect the data {x1, x2, ..., xM}, which can be used to make the estimate
θest(x1, x2, ..., xM ). The precision of the measurement procedure is determined by how
close the estimated value θest is to the actual value θ. Assuming that there is no system-
atic error and therefore the expectation value of the estimator θest is equal to the actual
value θ, the precision of the measurement corresponds to the variance of the estimator
θest. A lower bound therefore is given by the Cramér-Rao Lower Bound,

Var(θest) ≥
1

MFQ(θ)
, (C1)

which states that the lower bound is inversely proportional to the number of measurements
M and the quantum Fisher information FQ. This bound can be saturated in the limit
of a large number of repetitions of the measurement. The quantum Fisher information is
a measure for the sensitivity of the quantum state on the parameter: Given a change of
the parameter, if the quantum state changes a lot the quantum Fisher is large, and if it
changes only a little bit the quantum Fisher information is small. In Chapter 4 we use the
quantum Fisher information for pure states |ψθ〉 depending on the parameter θ, which is
given by

FQ(θ) = 4
(
〈∂θψθ|∂θψθ〉 − | 〈ψθ|∂θψθ〉 |2

)
. (C2)
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Abstract
The speed of light in vacuum, one of the most important and precisely 
measured natural constants, is fixed by convention to c = 299 792 458 m s−1.  
Advanced theories predict possible deviations from this universal value, 
or even quantum fluctuations of c. Combining arguments from quantum 
parameter estimation theory and classical general relativity, we here establish 
rigorously the existence of lower bounds on the uncertainty to which the 
speed of light in vacuum can be determined in a given region of space-time, 
subject to several reasonable restrictions. They provide a novel perspective on 
the experimental falsifiability of predictions for the quantum fluctuations of 
space-time.

Keywords: speed of light, quantum metrology, general relativity

(Some figures may appear in colour only in the online journal)

1.  Introduction

It is generally accepted that the speed of light in vacuum c is a universal natural constant, 
isotropic, independent of frequency, and independent of the motion of the inertial frame with 
respect to which it is measured. These properties have been experimentally demonstrated with 
very high precision, e.g. isotropy up to a relative uncertainty of the order of  ∼10−9 [1], and lie 
at the basis of special relativity. By 1972, measurements of the speed of light became more pre-
cise than the definition of the meter [2], leading in 1983 to the definition of the speed of light 
in vacuum c = 299 792 458 m s−1. But attempts to quantize gravity have led to the concept of 
space-time as a fuzzy ‘quantum foam’ on the Planck length lPl =

√
�G/c3 � 1.62 × 10−35 m 
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2

[3–5] that implies an uncertainty or dispersion of c [6–9]. Experimental data based on gamma-
ray bursts, pulsars, and TeV-flares from active galaxies imply upper bounds on deviations of 
c over cosmic distances [10–16]. Quantum fluctuations of c were also proposed due to virtual 
fermion-anti-fermion pairs, leading to a scaling of the jitter of the arrival time of light pulses 
with propagation distance [17, 18]. Satellite experiments are being planned to verify funda-
mental space-time properties with unprecedented precision, such as the isotropy of c and its 
independence from the laboratory frame velocity [1].

Here we establish how precisely c in a given region of space–time may be determined  
in principle, i.e. independent of any technical challenges. Our approach is based on the firmly 
established quantum parameter estimation theory (q-pet) [19–26] and general relativity (GR) 
in semiclassical approximation [27]. Q-pet allows one to obtain a lower bound on the uncer-
tainty with which a parameter θ may be estimated that parametrizes a quantum state specified 
by a density matrix ρ(θ). The power of q-pet is due to the facts that (i.) the bound is reach-
able in the limit of a large number of measurements, and (ii.) it is optimized over all possible 
quantum mechanical measurements (positive operator valued measures, POVM [28]) and all 
data-analysis schemes (unbiased estimator functions). This so-called quantum Cramér–Rao 
bound (QCRB) [19–22] becomes relevant once all technical noise problems have been solved, 
and only the fundamental quantum uncertainties remain. It is the ultimate achievable lower 
bound on the uncertainty with which any parameter can be measured. Recently, the q-pet 
formalism was applied to the measurement of parameters in relativistic quantum field theory 
such as proper times and accelerations, the Unruh effect, gravitation, or the estimation of the 
mass of a black hole [29–32]. In the present work we go a step further by examining the back-
action of the quantum probe on the metric of space-time. Taking back-action into account was 
proposed before [33–37] but to the best of our knowledge we combine for the first time mod-
ern q-pet with a precise calculation of the back-action of the probe on the space-time metric. 
We show that there is an optimal photon number at which the perturbation of the space-time 
metric due to the probe equals the quantum uncertainty of the measurement itself, establishing 
thus an ultimate lower bound on the uncertainty with which c can be determined.

2.  Quantum parameter estimation

Any direct measurement of the speed of light has to use a light signal. Indirect measurements, 
e.g. through measuring the fine-structure constant, the electron charge and Planck’s constant, 
may need no light but do not reflect the definition of c as a speed and need an elaborate theor
etical framework for their interpretation. We consider definitions of c through c = ∆x/∆t (i.e. 
runtime measurements of a light pulse) as well as through c = ω/k (where ω is (2π times) 
the frequency and k the wavevector of a monochromatic e.m. wave) as direct measurements, 
as these (i.) use a light signal; (ii.) correspond to how c has actually been determined exper
imentally (in particular the most precise determinations of c to date use c = ω/k [2]), and 
(iii.) are based on simple three-letter formulas that need no elaborate theoretical framework 
for extracting c. These two definitions give c the meaning of a propagation speed or phase 
speed, respectively. Note that we only need c = ω/k at the frequency considered, not over all 
frequencies. For wave-lengths comparable to quantum-gravity length scales (assumed to be 
of order Planck-length), modifications of this linear dispersion relation have been proposed 
(see the discussion on rainbow gravity in section 5.2), but we restrict ourselves to frequencies 
where the linear dispersion is well verified experimentally. We emphasize that these defini-
tions of speed are only needed to determine a systematic experimental error due to GR effects. 
The quantum-mechanical uncertainty of c obtained from q-pet on the other hand is optimized 
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over all possible (POVM) measurements of the light signal and analysis schemees of the data, 
including those that measure the propagation distance ∆x of a light pulse over a time-interval 
∆t . We therefore do not have to worry about additional uncertainties of measurements of 
positions or times.

Any light signal can be decomposed in modes of the electromagnetic (e.m.) field which 
are the fundamental dynamical objects in quantum optics. Q-pet shows that with m modes the 
sensitivity can be improved at most by a factor 1/m [25]. Below we find that with at most n 
photons in a single mode the best sensitivity scales as ∝1/n; one can thus achieve for given 
maximum photon number nm the same sensitivity scaling as ∝1/(nm) as with m modes (for 
a strict proof see appendix A). In [38] the problems of positioning and clock synchronization 
were analyzed. They were reduced to measuring a travel time of a light pulse with constant 
c, which is closely related to measuring c for a known propagation distance. Also there it was 
shown that the best uncertainty in the arrival time of the pulse for a squeezed m-mode state 
scales as 1/(nm). Furthermore, using the Margolus–Levitin quantum speed limit theorem, 
it was argued in [38] that this is the optimal scaling possible for any state. The scaling ∝
1/n̄ for large average photon number n̄ was also obtained for phase estimation with two-
mode squeezed light in [39]. As for relativistic effects, if we are interested in knowing c in a 
given space-time region, they cannot be diluted by using several modes in parallel in different 
space-regions or sequentially. We can thus restrict ourselves to studying a single mode. For 
concreteness, we consider a cubic cavity with edges of length L, and perfectly reflecting walls 
or symmetric boundary conditions.

Maxwell’s equations  in vacuum with appropriate boundary conditions impose quanti
zed modes with wave vectors k that are independent of c, whereas the frequency ω = c|k|. 
Obtaining the best possible precision of c is thus equivalent to the optimal frequency measure-
ment of a harmonic oscillator, for which the quantum Cramér–Rao bound was calculated in 
[40]. The smallest δω/ω, and hence smallest δc/c for fixed maximum excitation 2n and for 
τ = ωt � 1, is achieved with the optimal state |ψopt〉 = (|0〉+ |2n〉)/

√
2. In a single measure-

ment, it leads to a minimal c-uncertainty

δc
c

� 1
2τn

.� (1)

For existing measurements with large n, coherent states are more relevant than the opti-
mal state. A coherent state with amplitude α at time t = 0, |ψcoh〉 = |α〉, evolves according to 
α(t) = αe−iωt [41] and leads to

δc
c

=
1
2

1
|( 1

2 + n) sin2 τ + nτ(τ + sin(2τ))|1/2
� 1

2τ
√

n
,� (2)

where the last equality is for large τ = ωt  and large average photon number n = α2 (τ 2α � 1) 
[40].

From these results one is tempted to conclude that δc/c can be made arbitrarily small by 
increasing n. However, the energy-momentum tensor increases ∝ n for n � 1, and will at some 
point perturb itself the metric of space-time. We argue that the ultimate sensitivity is reached 
when the general relativistic modification of space-time becomes comparable to the minimal 
quantum uncertainty of the measurement. This leads to a finite optimal number of photons, and 
a finite optimal sensitivity. Increasing the photon number even more will modify space-time 
to a point where one cannot speak of light propagation in vacuum anymore. In principle one 
may re-calculate from the measured value using GR what the speed of light in vacuum would 
be, but this is a counterfactual reasoning and not a direct measurement of c. On the other hand, 
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reducing the photon number would increase the quantum noise. The situation is very similar to 
the optimization of the photon number in LIGO-type gravitational wave interferometers, where 
one balances photon-shot noise against radiation pressure noise [42–44]. However, whereas 
radiation pressure noise is specific to the measurement instrument, in our case the properties of 
space-time itself and thus the very meaning of light propagation in vacuum are affected when 
increasing the photon number further, and this effect is unavoidable.

The gravitational effects sought here are well in the regime where Einstein’s field equa-
tions are valid: Firstly, we consider light at wavelengths λ and structures of the energy-momen-
tum tensor on scales much larger than the Planck-length (e.g. λ = 500 nm and a standard 
(possibly lossy) cavity of size L = 1 km). Secondly, we consider light fields of very large 
intensity and effects linear in the perturbation of the metric, for which the energy-momentum 
tensor should be well approximated by its quantum mechanical expectation value [45]. It 
is the effect of this average energy-momentum tensor on space-time that we calculate and 
compare to the minimal uncertainty of c obtained from q-pet, not the fluctuations of space-
time themselves. The former is established on the solid ground of general relativity, whereas 
the latter would require a quantum gravity theory to make reliable predictions. The quantum 
fluctuations that we are interested in here are those of light probing the space-time, which are 
reliably described by quantum optics. Our results therefore rely only on well-tested theories, 
in distinction to predictions of the fluctuations of space-time obtained by various theories of 
quantum gravity.

3.  Perturbation of metric due to light intensity

The modification of the metric of space-time is found from the weak field limit of the Einstein 
field equations, where the metric tensor is given by gµν = ηµν + hµν, i.e. the flat Minkowski 
metric ηµν = diag(−1, 1, 1, 1) (in terms of ct, x, y, z) plus a small perturbation, |hµν | � 1. 
Einstein’s equations yield a wave equation for the trace inverse, h̄µν = hµν − 1

2η
µνηαβhβα,

�h̄µν = −16π
G
c4 Tµν ,� (3)

where the (flat space-time) Lorenz gauge (FLG) condition h̄µν
,ν = 0 is used; see equa-

tion (18.8b) in [46]. The energy-momentum tensor Tµν  of the e.m. field reads [46]

T00 =
1
2
(ε0E2 + µ0H2), T0i = Ti0 =

1
c
(E × H)i,

Tij = − (ε0EiEj + µ0HiHj) + T00δij,
� (4)

where i, j ∈ {1, 2, 3} = {x, y, z}. We use the q.m. expectation value of Tµν  as source term 
in (3) for the (0 1 1) and the (01M) modes (ki = liπ/L, lx = 0, ly = 1, and lz = 1 or lz = M, 
respectively; Ωl = c|k|, and V = L3). This ‘semiclassical approximation’ is justified if one is 
interested only in effects to first order in hµν [45]. Using the (0 1 1) mode is motivated by the 
fact that it has lowest frequency and hence expected lowest GR impact. This will be verified 
by comparing to the (01M) mode with large M. For |ψopt〉 with n � 1, the solution of (3) for 
the (0 1 1) mode reads (ξ = πx/L)

h̄µν(ξ) = P
∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′)tµν(η′, ζ ′),

P =
4
√

2n
π

κ, κ =

(
lPl

L

)2

,
�

(5)

D Braun et alClass. Quantum Grav. 34 (2017) 175009



5

I(ξ, η, ζ) = ln

(
ξ +

√
ξ2 + η2 + ζ2

ξ − π +
√

(ξ − π)2 + η2 + ζ2

)
,� (6)

with dimensionless trigonometric functions tµν := Tµν/(n�Ωl/V) of order one inside the 
cavity, and zero outside (see appendix B). Tµ

µ = 0 for the e.m. field [47], hence hµ
µ = 0 and 

hµν = h̄µν .
The deviations of h̄µν in (5) from FLG are of second order in h and can be neglected [48]. 

For |ψcoh〉, h̄µν is the same as for |ψopt〉 plus retarded oscillation on top of it, with an amplitude 
of the same order. We therefore restrict the analysis to the time-independent part. For the 
(01M) mode, and n, M � 1, only h00 and h33 are non-negligible,

h00 = h33 � 4PM
∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′) sin2 η′.

From the geodesic condition ds2 = gµνdxµdxν = 0, the local modification of the coordinate 
speed of light

δc(x)/c = −1
2
(h00 + h11)� (7)

is obtained for the (0 1 1) mode, with similar expressions for δc(y) and 
δc(z) (see also figure  B1 in appendix B). For the (01M) mode with 
n, M � 1, δc(x)/c = δc(y)/c = − 1

2 h00 , δc(z)/c = 2δc(x)/c . One may object that accord-
ing to the equivalence principle one could always find a coordinate system (CS) in which 
c(x) = c(y) = c(z) = c, and that by the definition of c one should go to the free falling CS 
for measuring c, where c is always the same. However, one has to distinguish between the 
universal constant c entering Lorentz-transformations, and the experimental value cexp of 
the propagation speed of light obtained in measurements. The experimental definition of c, 
cexp = ∆x/∆t , where ∆x is the distance that a light signal travels in time ∆t  implies that 
for any finite ∆x the measurement is non-local, which precludes transforming the discussed 
GR effect away by a local transformation. It is to be expected that this non-local effect can 
be made arbitrarily small by moving the two points arbitrarily close to each other. More 
importantly, however, the measurement apparatus cannot be free falling in the gravitational 
field of the light it contains, as it carries that light with it. A time delay can be measured 
with a single clock by passing a short light pulse through a beam splitter (BS), reflecting 
it on a mirror and sending it back to the BS. The two passes through the BS trigger start/
stop of the clock by light scattered into detectors adjacent to the BS. The clock measures 
its proper time, dτ =

√−g00dt . ∆x has to be measured independently, i.e. with standard 
measurement rods. Hence, ∆x corresponds to the ‘proper length’ of the apparatus (dis-
tance between BS and mirror for a runtime experiment or length of the cavity when using 
ω = ck). ‘Proper length’ (not to be confused with ‘proper distance’) is defined as the length 
measured with standard measurement rods in the frame where the object is at rest [49]. We 
may assume the measurement rods as well as the measurement apparatus as sufficiently 
‘rigid’ (gravitational forces and modification of the e.m. forces that determine the shapes of 
these objects much smaller than the e.m. forces that determine their shape and arrangement 
[50, 51]), which means that ∆x remains unchanged when the light intensity is increased. In 
the limit R � L  (R  =  typical radius of curvature of space time), the experimentally found 
value cexp(x) = ∆x/∆τ � dx/dτ = c(x)/

√−g00  is then directly related to the coordinate 
speed c(x) determined above. This gives δcexp/c = −h11/2 for the (0 1 1) mode, where 
δcexp(x) := cexp(x)− c can be considered a systematic error in the determination of c.
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Since q-pet was based on the uncertainties δω, we also compare q-pet and GR based 
on the GR shift of the cavity resonance frequencies by solving the e.m. wave equa-
tion  in the entire cavity with mirrors at 0, xL and symmetric boundary conditions (SBC), 
Aµ(0, y, z) = Aµ(xL, y, z) (and correspondingly for the other directions). The unperturbed 
single modes are plane waves A3(t, x, y, z) = (�/(2ωε0V)) 1/2(eik(x−ct)a + h.c.), Aµ = 0 for 
µ ∈ {0, 1, 2}, and k := k0 = k1 > 0. This leads to Tµν = −�ω/(2ε0V)〈(a eik(x−ct) + h.c.)2〉 
for (µ, ν) ∈ {00, 01, 10, 11} inside the cavity, and Tµν = 0 else or outside. For |ψopt〉, Tµν  is 
time-independent, and for |ψcoh〉 we once more consider only the time-independent part. Then, 
hµν(ξ) = ε(ξ) for (µ, ν) ∈ {00, 01, 10, 11} and hµν = 0 else, where

ε(ξ) :=
√

2PM
∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′).� (8)

The wave equation describing the propagation of light in curved space-time reads ∇βFαβ = 0 
(see (22.17a) in [46]), with Fαβ = gαµgβν(Aν,µ − Aµ,ν). Using FLG for A and h, and hν

ν = 0, 
we obtain to first order in ε 

0 = −Aα,ν
ν + (hαµ,ν − hα

ν,µ)A
µ,ν ,� (9)

where indices are pulled up or down by the full metric gµν. Equation (9) is solved exactly by 
the original plane wave despite the changed metric, as the ε-correction in A3 is ∝ (∂x + ∂ct)

2. 
This reflects the well-known result that two parallely propagating beams of light do not affect 
each other gravitationally [52, 53]. The existence of a mode with unchanged dispersion rela-
tion suggests that judging whether the vacuum may still be considered as such based on the 
change of a single mode frequency can be insufficient. In such a case, the change of the 
metric can normally still be probed using other modes. In the example above the frequencies 
of modes propagating in different directions, e.g. A3 ∝ exp(ik(x + ct)), are modified locally 
by a relative amount of order ε(x), as can be shown by solving (9) in eikonal approximation.

To summarize, up to numerical prefactors of order 1, both systematic errors δcexp  obtained 
by measuring length over time or a shift of a cavity resonance, possibly in another mode, scale 
as

δcexp

c
∼ −κ n M� (10)

for n, M � 1. With this, we can now obtain the smallest possible uncertainty with which c can 
be determined in a given region of space-time.

4.  Minimal uncertainty of speed-of-light measurements

For |ψopt〉, equating (1) and the absolute value of (10) leads with M ∼ L/λ to an optimal pho-
ton number nopt ∼ (λ/lPl)

√
L/(cT), and a minimal

δc
c

∼ lPl

(c T L)1/2 ,� (11)

independent of frequency: the gain in quantum mechanical sensitivity due to longer dimen-
sionless evolution time for more energetic photons is exactly cancelled by the increased per-
turbation of the metric.

In an experiment, the measurement time is bounded from above by the finite photon-stor-
age time of the photons in the cavity. While obtaining optimal bounds including photon loss 
requires mixed state q-pet [54, 55], the sensitivity cannot be better than that obtained from the 
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pure states from which the state is mixed [56]. For known dissipation and decoherence mech
anisms one can try to find an adapted optimal state. However, the sensitivity cannot be better 
than if one had access to the full system and its environment. For photon loss the environ
ment can be modelled by additional modes coupled to the central mode by beam-splitter 
couplings, and including such ancilla modes cannot improve the estimation of a parameter 
of the original system when optimized over all initial states [57, 58], if the ancillas are inde-
pendent of the c we are interested in (which is the case for the modes outside the cavity and 
hence outside the space-time region considered). Our q-pet bound calculated for the ideal 
situation without photon loss therefore remains valid, but can in general in the presence of 
dissipation or decoherence not be reached anymore. For a cavity of length L and finesse F, the 
measurement time is bounded by T = LF/(πc). This leads to an optimal number of photons 
independent of the length of the cavity, n ∼ λ/(lPlF1/2). For numerical estimates we use in 
the following a standard situation: visible light with λ = 500 nm, a finesse F = 10 000, and 
L = 1000 m. The optimal n for the optimal state is then n ∼ 1026 , and the minimal uncertainty 
δc/c ∼ lPl/(LF1/2) ∼ 10−40.

For |ψcoh〉, equating (2) and (10) leads to nopt ∼ (Lλ2/(l2PlcT))2/3, and a minimal uncertainty

δc
c

∼
(

l2Plλ

L(c T)2

)1/3

.� (12)

For a cavity with finesse F, the length of the cavity is again irrelevant for the optimal photon 
number, nopt ∼ (λ/lPl)

4/3/F2/3, and δc/c ∼ l2/3
Pl λ1/3/(LF2/3) . Contrary to |ψopt〉, the mini-

mal uncertainty depends here on the wavelength. In principle, δc/c could therefore be smaller 
for |ψcoh〉 than for |ψopt〉, but only for wavelengths λ < lPl

√
cT/L in lossless cavities, and for 

λ < lPl
√

F in cavities with finesse F, which are outside the validity of the theory. For the lossy 
cavity considered, the optimal coherent state photon number is n ∼ 1035 and δc/c � 10−31, 
demonstrating the superiority of |ψopt〉. We display the various n-scaling regimes and the opti-
mal photon numbers located at the minima of the overall dependence of δc/c on n in figure 1.

5.  Comparison with similar bounds

The minimal uncertainties of c and hence the metric of flat space-time that we have derived 
are reminiscent of ideas about the fuzziness of space-time on the Planck scale, their different 
physical meaning not withstanding. The minimal uncertainty of δc that we have derived here 
translates, in experiments where a length L is measured through L = cT , to fluctuations δL of 
L. There has been a vast amount of work aiming at demonstrating a minimal length scale in 
physics and working out its consequences, see [59] for an excellent review. The majority of 
these works has tried to establish smallest uncertainties of positions or length measurements, 
but there have also been attempts to find minimal uncertainties of volumes, areas, gravitational 
fields, event horizons, and others. Here we focus on previous predictions of minimal uncer-
tainties of lengths or positions. For simplicity we set � = c = 1 in the rest of this section and 
neglect factors of order 1, unless otherwise noted.

5.1.  Previous thought experiments

Closest to our analysis are previous thought experiments that one way or another use classi-
cal gravity effects to bound quantum uncertainties from below. An illustrative example is the 
Heisenberg microscope with gravity [60]. In addition to the familiar Heisenberg microscope, 
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where attempts to resolve the position of a particle by scattering light from it result in an 
unknown momentum kick of order ω onto the particle, while limiting the spatial resolution to 
roughly the wavelength of the light δxQM ∼ 1/ω, one also considers the gravitational inter-
action of the photon with the particle. This leads to an acceleration of the particle of at least 
Gω/R2 if the photon is detected at distance R, and a corresponding displacement between the 
photon-particle interaction and the photon detection of order δxGR ∼ Gω. Taking the geomet-
ric mean of the two uncertainties gives immediately δx ∼

√
G = lPl. Alternatively, we can 

take the sum of the two uncertainties and minimize it over ω. This gives ω ∼ 1/
√

G = mPl, 
the Planck mass, and, up to a factor 2, again δx ∼ lPl .

Another popular argument goes back at least to Bronstein in 1936 [61], who, in the context 
of investigating how precisely a gravitational field might possibly be measured, came up with 
the request that the test particle should not collapse to a black hole. Later, Wigner and Salecker 
introduced a similar limitation to length measurements with light pulses [33, 34], where the 
clock should not become a black hole. The idea was refined for the measurement of lengths 
based on ‘material reference systems’ (MRS) [36], consisting of reference points of size s and 
mass M that contain a clock, light-gun and detector, arranged in space. The request that no 
event-horizon should form around the reference points beyond s implies M < s/l2Pl.

We can apply the black-hole argument to the Heisenberg-microscope, requesting that the 
photon’s event horizon should be at least smaller than the distance R, i.e. ω < R/l2Pl. Then 
δxQM � l2Pl/R, a bound obviously much weaker than the previous one for R � lPl . On the other 
hand, for the MRS the black-hole criterion leads again to δL � lPl if we assume s ∼ L and 
argue that the quantum mechanical uncertainty for a material particle scales as δL �

√
L/M. 

Figure 1.  Minimal uncertainty δc/c as a function of the number of photons n: The 
dashed red/blue line shows the minimal uncertainty obtained from the quantum 
Cramér–Rao bound for the optimal and coherent states given in equations (1) and (2), 
respectively. The dashed green line corresponds to the unavoidable systematic error 
in the measurement of c due to the light’s own gravitational effect. The sum of the 
minimal uncertainty given by the quantum Cramér–Rao bound and the systematic 
error for the optimal/coherent state is shown by the solid orange/light blue lines. The 
optimal number of photons minimizing δc/c for either optimal or coherent states lies 
at the minima of the solid orange/light blue lines. Parameters are λ = 500 nm , τ = 1, 
L = 1 km und M = L/λ.
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This latter scaling is based on a semi-classical picture [36] with an initial width of a wave-
package leading to a minimal width in momentum space, that is interpreted as particles 
spreading out with a corresponding momentum distribution, giving a correspondingly larger 
uncertainty for the position measurement at a later time T. The argument can be made more 
rigorous by minimizing the quantum-mechanically calculated expectation value 〈δx(0)δx(t)〉 
of a particle by minimizing over its mass [62]. One also recognizes in δL �

√
L/M the stand-

ard quantum limit (SQL), and in particular for M = Nω for a device dominated by the mass 
of N photons a scaling with 1/

√
N .

5.2.  Quantum gravity theories and phenomenological models

For most microscopic theories of quantum gravity it is difficult to extract bounds on mini-
mal uncertainties of lengths. In [59], a generalized uncertainty principle (GUP) of the form 
δxνδpν � 1 + lsE is given as a prediction of string theory, as well as a space-time uncertainty 
δxδT � l2s , where ls is a (yet unknown) string scale that might be of the order of lPl, and E the 
energy with which the string is tested. In [15] it was stated that Lie-algebra non-commuta-

tive space-times with non-commuting position coordinates, [xα, xβ ] = iRγ
αβxγ/mPl, lead to 

a δT  of the form δT ∼ LnEm/m1+m−n
pl  where m, n are some model-dependent powers with 

1 + m − n > 0. The lowest-order non-trivial case n = m = 1 that gives an energy dependence, 
corresponds to δT ∼ LE/mPl. Considering T as the travel time of a particle from source to 
detector, δT  implies an uncertainty of the radar length. Combining this δT  with the standard 
contribution from the Heisenberg uncertainty principle and minimizing over the energy gives 
a minimal length uncertainty that can be written in the form

δL � lαPlL
1−α� (13)

with some real value α ∈ [0, 1] [15].
Given the mentioned difficulty to extract predictions of fluctuations of positions or lengths 

from microscopic quantum gravity theories, mostly phenomenological GUPs have been used 
to generalize lower bounds based on the standard uncertainty principle. It is clear from dimen-
sional grounds that (13) is the generic form of a power law scaling with lPl if only lPl and L 
exist as length scales. Such a form is therefore also obtained in many other phenomenological 
theories, notably models that assume fluctuations on the scale of the Planck length and then 
ask how these accumulate during the propagation of a light signal. The simplest case are 
random walk models, which lead to α = 1/2 [63, 64]; α = 2/3 is known as the holographic 
model. If one assumes a fluctuation δλ of the wavelength λ of the light used to measure dis-
tances with α = 1/2, δλ � lPl(λ/lPl)

1/2, the fluctuations of the total length are given in the 

random walk model by δL � δλ(L/λ)1/2 = l1/2
Pl L1/2 , i.e. the new length-scale λ drops out. 

However, if the fluctuations δλ are added up coherently, i.e. all with the same sign, a much 
larger value results,

δL � (lPlL)1/2(L/λ)1/2.� (14)

The choice of model has therefore important implications for the falsifiability of the pre-
dicted minimal fluctuations. E.g. in [65] the coherence of Hubble-space telescope images of 
distant galaxies was used to bound possible quantum fluctuations of space-time from below. 
No fluctuations were found, but the coherent addition of the fluctuations was subsequently 
questioned [66].
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Modified commutation relations lead in general to a generalized uncertainty principle. In as 
much as this implies a fluctuating speed of light, Lorentz invariance can be violated, but need 
not (see e.g. the model of discrete space-time with modified commutation relations without 
violation of Lorentz invariance due to Snyder in 1947 [3]). In the same way, the (determin-
istic) dispersion relation of e.m. waves can be modified; such theories have become known 
as ‘rainbow gravity’. This class of theories contains doubly (or deformed) special relativ-
ity (DSR), with a kappa-deformed Poincaré group [67–72]. DSR is based on the idea that 
not only the speed of light is independent of the reference-frame, but also the small length-
scale lQG on which quantum-gravity effects become important, identified typically with the 
Planck-length. DSR has recently been elaborated further into ‘relative locality’ [73], a theory 
that emphasizes the importance of phase-space and suggests that momentum-space might 
be curved, which would imply non-linear conservation laws of energy and momentum, and 
a relativity of ‘locality’. Another formulation of DSR considered an energy-dependence of 
space-time [74, 67]. Earlier theories also proposed a time-dependent speed of light as solution 
to cosmological problems [75, 76].

In [77, 78] it was proposed that a non-linear dispersion relation might arise from averag-
ing a quantum-fluctuating metric over a relevant length scale of a test particle. Considering 
a ‘measurement process’ in relativistic rather than quantum terms, it was suggested that the 
metric relevant for a measurement process of the momentum pα of a particle with energy E 
is the ‘classical’ metric of GR plus an averaged perturbation of quantum-gravitational origin, 
assumed non-vanishing when averaging over the de Broglie wavelength λ = 1/E  of a deeply 
relativistic particle, thus introducing an extra energy-dependence into the (inverse) dispersion 
relation pα(E).

In [79] a modified dispersion relation was found in the context of a non-critical-string 
approach to quantum gravity. It leads to a minimal total uncertainty of a length measurement 
based on the propagation of massless particles

δL �
√
ηLlPl + lPl,� (15)

where η is a dimensionless parameter of order one, and clearly the first term dominates for 
L � lPl, giving (13) with α = 1/2, but α = 1 for L � lPl. Underlying (15) is an assump-
tion about the form of a decoherence-term in the modified quantum Liouville equation that 
arises from coupling matter to the degrees of freedom of space-time fluctuations that scales as 
E2/mPl with Planck-mass mPl and energy E of a particle. When generalizing this to a scaling 
En/mn−1

Pl , a dependence

δL � L1/nl1−1/n
Pl� (16)

was predicted, which is again of the form (13).
In [80], it was argued that a finite minimal uncertainty of time measurements is linked to 

the perturbative approach to quantization, whereas in a non-perturbative approach in principle 
infinite resolution could be achieved, as long as particle energies are not bound from above (as 
might happen with a modified dispersion relation). On the other hand, the authors find a finite 
minimum resolution both in perturbative and non-perturbative approaches, with a minimum 
length uncertainty

δL � lPl,� (17)

whereas for large background times T̄

δL �
√

lPlcT̄ ,� (18)
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as in the Wigner–Salecker case [33, 34]. In [64], other estimates of length fluctuations were 
discussed, one of them scaling as δL � (lQG c T)1/2, where lQG is expected to be lQG � lPl , 
which for L = cT  is again in line with (13) with α = 1/2.

5.3.  Comparison with our bounds

When trying to compare these previously found bounds with ours, the first thing to keep in 
mind, is that our bounds are fundamentally for δc/c, not δL/L. This is important as there is no 
quantum mechanical operator for the speed of light, hence one cannot apply directly the stan-
dard Heisenberg uncertainty principle. Rather, we resorted to q-pet, which gives generalized 
uncertainty relations [22]. Secondly, our bounds are based directly on the light field itself, not 
the quantum mechanical uncertainty in the position of a clock, an MRS point, or a test-parti-
cle. We have furthermore the choice of the state of the probe, notably it can be a multi-photon 
state, whereas previous derivations typically considered single-particle uncertainty relations, 
with a state that saturates Heisenberg’s uncertainty relation. Moreover, since the QCRB is 
optimized over all possible measurements of the light field and has a clear interpretation in 
terms of the minimal uncertainty of an estimator of c, there are no conceptual issues with the 
meaning of the measurement on very small length scales. Questions on how fluctuations at 
smaller length-scale add up do not arise. In random-walk models one might wonder why one 
should add up fluctuations of the wavelength, as no measurements are made at that length 
scale. In the q-pet approach, measurements on the length-scale of the wavelength are included 
just as any other measurement of the light field, and the uncertainty is the one of the best pos-
sible estimator of c, rather than fluctuations of a measured observable (whose existence at a 
very small length scale might be questionable; this issue was indeed recognized as one of the 
most important ones in the field, see section 4.2.5 in [59]).

By using a light signal, another length-scale comes into play, namely the wavelength λ of 
the light, as well as the propagation time, which in a cavity can be much larger than the length 
of the cavity. Depending on the quantum state used, λ is still present in the final result for the 
lower bound.

If we do translate our bounds for δc/c into a bound for fluctuations of length estimations 
δL by assuming δL = Tδc  with fixed T, we see from (11) that for the optimal state we get back 
δL � lPl for L = c T , i.e. this corresponds to α = 1 in (13). However, for T � L/c, one can 
get uncertainties much smaller than the Planck length, a fact that was not reflected by previous 
bounds. This insight results naturally from the use of q-pet, where time appears as a resource 
for more precise measurements, in sync with experimentalists’ habit to provide uncertainties 
per square root of Hz for fair comparison.

For a coherent state in a lossless cavity, the lower bound of δL implied by (12) reads 

δL � l2/3
Pl λ1/3(L2/(c T)2)1/3. If L = c T , this is as (13) for α = 2/3, but with L replaced by λ. 

One might wonder if there is a deeper reason behind the fact that a classical light signal repro-
duces the holographic model concerning the scaling of the smallest δL with lPl. Compared to 
the coherently added up fluctuations equation (14), this is, in the optical domain, still a much 
smaller value for any L larger than about 10−12 m.

Given their fundamental measurement-based nature, our bounds can serve for judging the 
falsifiability of quantum gravity theories and phenomenological models: predictions of fluc-
tuations in a given space-time region that are smaller than those given by our bounds can 
never be falsified through direct measurement as a matter of principle (subject to the made 
assumptions). While the prefactors depending on L,λ, T  for the coherent state matter, as a 
rule of thumb, predictions of fluctuations with α > 2/3 could not be measured with light in a 
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coherent state, as the measurements own smallest possible uncertainty ∝ l2/3
Pl  is larger. Length 

uncertainties ∝
√

lPlL of Wigner–Salecka-type theories as well as the bound in (15) are at 
least in principle falsifiable with light in a coherent state. The fluctuations (16) cannot be 
measured with light in a coherent state as soon as n > 3, but they would be accessible at least 
in principle to ‘quantum enhanced measurements’ using the optimal quantum state of light. 
However, it is unlikely that an optimal state of light with a sufficiently large photon number 
can ever be built, given the experimental difficulties of producing superpositions of Fock 
states with even a few photons. The fluctuations predicted in [17] are well above our bounds 
for any cavity of realistic size.

Several works discussed the possibility to measure fluctuations of space-time created on 
the Planck-scale with gravitational wave interferometers such as LIGO [37, 64, 81]. Bounds 
on lQG were obtained from experimental data from Caltech’s 40 m interferometer [82]. In 
[81] it was argued that the stated displacement noise level of that interferometer of order 

3 · 10−19 m
√

Hz
−1

 in the neighborhood of 450 Hz already rules out length fluctuations of the 
interferometer arms of order lPl per Planck-time interval for the random-walk accumulation 
of individual Planck-cell fluctuations to a total uncertainty. References [10–16] attempted to 
bound the supposed quantum fluctuations of space-time using the broadening of light pulses 
from far-away astronomical sources, but so far the uncertainty in the emission time of the light 
pulses as well as other sources of spreading the pulse are too large to say much about quantum 
fluctuations of the metric [13].

6.  Concluding discussion

Our results imply that one should not think of quantum fluctuations of space-time as existing 
independently of the measurement devices that probe them, but rather as something that can 
only be defined in conjunction with them. This is in line with the modern theory of quantum 
measurement, where the possible measurement results do not only depend on the quantum 
system, but also on the quantum probe and its initial quantum state.

Accordingly, we find different lower bounds for δc/c for the optimal state and a coher-
ent state. The former reproduces δL � lPl when translated to the uncertainty of a length and 
assuming a measurement time T � L/c, whereas the latter is substantially enhanced and still 

depends on the wavelength, scaling only as l2/3
Pl . Their derivation from standard quantum optics 

and GR is similar in nature to those of previous bounds based on Gedanken-experiments  
(see section 5.1) within QM and GR, but provides a conceptual advance by the use of q-pet, 
which includes the optimization over all possible measurements, and precise calculations 
rather than orders of magnitude arguments. Simple scaling arguments can be insufficient, as 
the discussions in the literature about how fluctuations on small scales add up on long dis-
tances have shown. Another example: in the Heisenberg microscope including gravity, one 
might arrange the particle half way between light source and detector. In that case the accel-
eration due to the gravitational pull will average to zero and it is not clear why the quantum 
uncertainty should be bounded from below by a gravitational effect—not to talk about ques-
tions of how the photon is supposed to be localized in space-time, when only its wavelength 
is specified. Such questions on how exactly the measurement is done, and whether a different 
setup might not avoid the limitations, do not arise in our q-pet approach.

Nevertheless, our bounds are of course subject to several (reasonable) restrictions as well: We 
consider direct measurements of the propagation speed or phase speed of an e.m. wave. Note, 
however, that the QCRB bounds the uncertainty for any measurement and estimation scheme,  
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as long as c is imprinted on the quantum state through the standard time evolution in quantum 
optics with (A.1) as hamiltonian. Ambiguities arising from a proper definition of arrival time of the 
pulse pertain to the level of different data analysis schemes and are fully covered by the QCRB.

We want to know the value of c in a given region of space-time, and we assume a suf-
ficiently rigid measurement apparatus whose length remains unchanged when the photon 
number is increased. Apparatuses with finite rigidity could deform under the influence of the 
gravity of the light signal and the modification of Coulomb’s law. For any realistic material 
that deformation should be negligible, however, compared to the one due to the light pressure; 
this will be examined in more detail in another publication [83]. The gravitative effect of the 
elastic energy was already shown in [50] to be smaller than the one of the e.m. field by a factor 
cs/c, where cs is the speed of sound in the cavity walls. We rely on the validity of quantum 
mechanics (more precisely quantum optics and q-pet) and GR in semiclassical approximation 
(i.e. Tµν  calculated as q.m. expectation value), and the validity of the linear dispersion rela-
tion ω = ck for wave-lengths well above the quantum-gravity/Planck length. For finding the 
optimal state, we assume a maximum possible photon number in the state. We neglect uncer-
tainties in c due to the expansion of the Universe [51], non–inertial observers, local gravita-
tion potentials e.g. from Earth or a (stochastic) gravitational-wave (GW) background [84], 
and quantum fluctuations of the mirror positions. In the quantum foam picture, also the latter 
should depend on the way they are measured, but in any case can only lead to reduced preci-
sion. The GW background at optical frequencies is expected to be extremely small, but might 
dominate at frequencies around 100–1000 Hz, where a large number of gravitational sources 
is expected to exist, see [85]. However, to cavities much shorter than the GW wavelength 
(300–3000 km for the above frequencies), the modified metric due to the GW appears as 
uniform, and the GW effect can hence in principle be eliminated by a cavity in free fall, in 
contrast to the GR effect of the light inside the cavity. More generally, any additional source of 
modification of the speed of light may lead to tighter lower bounds on the uncertainty of δc/c 
than ours, but will not invalidate them.
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Appendix A.  Single mode reduction of q-pet

We here prove that very generally for a given maximum amount of energy the optimal quantum 
measurement of c can be reduced to measuring a single mode of fixed frequency put into the 
optimal state |ψopt〉 = (|0〉+ |2n〉)/

√
2. Starting point is the Hamiltonian H for the e.m. field, 

decomposed into modes labelled by a mode-index k, consisting of wave-vector k and polar-
ization ε. Then

H =
∑

k

�ωknk = �c
∑

k

knk,� (A.1)

with angular frequency ωk = ck  and k = |k|. The Hamiltonian has the general form H = cG 
with a Hermitian generator G = �

∑
k knk . It leads in a given state |ψ〉 and propagation over 

total time T to QFI [22]
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Ic = 4∆G2T2 ≡ 4(〈G2〉 − 〈G〉2)T2.� (A.2)

Let G =
∑

i ei|i〉〈i| be the spectral decomposition of G, and |ψ〉 = ∑N
i=1 ci|i〉, where 

we assume that |1〉 (|N〉) are the states of lowest (largest) energy available. Then 
∆G2 =

∑N
i=1 pie2

i − (
∑N

i=1 piei)
2 with pi = |ci|2 and 

∑N
i=1 pi = 1. The Popoviciu inequal-

ity [86] states ∆G2 � (eN − e1)
2/4. It is saturated for p1 = pN = 1/2, pi = 0 else. The 

state |ψ〉 = (|1 > +eiϕ|N >)/
√

2  with an arbitrary phase ϕ saturates the inequality and 
thus maximizes Ic. If eN or e1 is degenerate, only the total probability for the degenerate 
energy levels is fixed to 1/2, and arbitrary linear combinations in the degenerate subspace 
are allowed. But the value of ∆G2 remains unchanged under such redistributions, and 
we may still choose just two non-vanishing probabilities p1 = pN = 1/2. The derivation 
did not make use of the multi-mode structure of the energy eigentstates. Hence, exactly 
the same minimal uncertainty of c can be obtained by superposing the ground state of a 
single mode with a Fock state of given maximum allowed energy as with an arbitrarily 
entangled multi-mode state containing components of up to the same maximum energy. 
Setting N = 2n leads to the announced optimal single-mode state.

Appendix B.  Calculation of the metric perturbation

The vector potential of the e.m. field in the cavity in Coulomb gauge A(r, t) = Υq(t)v(r), 
where Υ is a constant, q(t) the time dependent amplitude, and v(r) the mode function, with 
components

vx = N ex cos kxx sin kyy sin kzz,
vy = N ey sin kxx cos kyy sin kzz,
vz = N ez sin kxx sin kyy cos kzz.
�

(B.1)

The polarization vector e = (ex, ey, ez) is normalized to length one, and is orthogonal to the 
k-vector k = (kx, ky, kz), where ki = liπ/L, and li ∈ N0, and at most one of three given li can 
be zero. Therefore, there are two polarization directions (transverse modes) for each k vector, 
with the exception of cases where one of the li = 0, where only one polarization is possible. 
The request that the modes be orthonormal,

∫
d3rvl(r) · vl′(r) = δl,l′� (B.2)

leads to N =
√

8/V , and we can define the mode-volume Vl = V/8. Note that the index 
l stands here for both the discrete k vector and the polarization direction (1, 2). Finally, we 
choose Υ = 1/

√
ε0 , such that

A(r, t) =
∑

l

1√
ε0

ql(t)vl(r),

E(r, t) = −
∑

l

1√
ε0

q̇l(t)vl(r),

H(r, t) =
∑

l

1
µ0

√
ε0

ql(t)∇× vl(r).

�

(B.3)
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After quantization, the amplitudes ql become the quadrature operators of a harmonic oscillator, 

q̂l =
√

�
2Ωl

(âl + â†l ), p̂l =
1
i

√
�Ωl

2 (âl − â†l ), where Ωl = |kl|c. In the semiclassical approach 

the energy-momentum tensor for a single mode with mode function v is given by the quantum 
mechanical expectation value [46, 87],

T00 =
�Ω
4

(
−
〈
(â − â†)2〉 v2 +

〈
(â + â†)2〉 (∇× v)2/k2) ,

T0i =
i�Ω
2k

(〈
â2〉−

〈
â†2〉) (v × (∇× v))i,

Tij =
�Ω
2

(〈(
â − â†)2

〉
vivj,

−
〈(

â + â†)2
〉
(∇× v)i(∇× v)j/k2

)
+ T 00δij,

�

(B.4)

where k2 = k2, and we have used the symmetrized form (q̂p̂ + p̂q̂)/2 of the quantum mechan-
ical operators for the T0i components.

For a (01M) mode, lx = 0, ly = 1, lz = M  dictates e = (1, 0, 0) as unique possible polariza-
tion. For M = 1, the frequency Ωl =

√
2πc/L , and

v =

√
8
V
sin(πy/L) sin(πz/L)ex,

∇× v =

√
8
V
π

L
sin(πy/L) cos(πz/L)ey

−
√

8
V
π

L
cos(πy/L) sin(πz/L)ez.

�

(B.5)

For |ψopt〉 with n � 1, and neglecting terms of order O(n0) (all other terms are of order n), we 
find that for the fundamental (0 1 1) mode the only non-vanishing components of Tµν  can be 
expressed in terms of four functions,

Tµν = n
�Ωl

V
tµν� (B.6)

with the dimensionless tensor components t00(η, ζ) = f1(η, ζ), t11(η, ζ) = f2(η, ζ), 
t22(η, ζ) = f3(η, ζ), t33(η, ζ) = f̃3(η, ζ) = f3(ζ, η), t23(η, ζ) = t32(η, ζ) = f4(η, ζ), and

f1(η, ζ) = 2 − cos(2η)− cos(2ζ)
f2(η, ζ) = cos(2η) + cos(2ζ)− 2 cos(2η) cos(2ζ)

f3(η, ζ) =
1
2
(2 − 4 cos(2ζ) + 2 cos(2ζ) cos(2η))

f4(η, ζ) = sin(2η) sin(2ζ),

�

(B.7)

where we write x, y, z in units of L/π, ξ = xπ/L , η = yπ/L, ζ = zπ/L, and thus ξ, η, ζ ∈ [0,π]. 
Outside the cavity Tµν  vanishes. For this state the field equations  are solved with a time- 
independent metric. The wave equation reduces to the Poisson equation,

∆h̄µν = −16π
G
c4 Tµν .� (B.8)

The solution is obtained by integrating the inhomogeneity Tµν  over with the Green’s function 
of the Poisson equation, i.e.
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h̄µν =
4G
c4

∫
Tµν(x′)
|x − x′| d3x′

= P
∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′)tµν(η′, ζ ′),

�

(B.9)

where the parameter P  is given by

P = 4
√

2
n�G
πc3L2 =

4
√

2n
π

κ, κ =

(
lPl

L

)2

.� (B.10)

The integral kernel reads

I(ξ, η, ζ) = ln

(
ξ +

√
ξ2 + η2 + ζ2

ξ − π +
√

(ξ − π)2 + η2 + ζ2

)
.� (B.11)

Numerical evaluation of the two remaining integrals in equation (B.9) shows that they are of 
order one inside the cavity, and decay rapidly outside, as is required by the boundary condi-
tions of a flat metric far from the cavity.

For |ψcoh〉, we have to consider the full retarded solution of the wave equation according to

h̄µν =
4G
c4

∫
Tµν(t − |x − x′|/c, x′)

|x − x′| d3x′.� (B.12)

For example, the yz component reads h̄yz = h̄yz
opt +

4n�GΩ
c4

∫
dξ′dη′dζ ′ sin[2ω(t−|x−x′|/c)] sin(2η′) sin(2ζ′)

|x−x′| .  

This metric element is thus the solution of |ψopt〉 (B.9) plus some retarded oscillation on top 
of it, which is of the same order. In the following we will therefore restrict our analysis to the 
time-independent part given by |ψopt〉.

Figure B1.  Relative change of the local coordinate speed of light in x-direction as 
function of dimensionless coordinates η, ζ  at ξ = 1.5 in units of P = (4n/π)κ with 
κ = (lPl/L)2 (see equation (B.10)) for the (0 1 1) mode. The cavity extends from 0 to π 
in these units.
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For the (01M) mode, with M > 1, lx = 0, ly = 1, lz = M , the general expressions for 
Tµν  are more complicated, but for |ψopt〉 with n � 2, and in the limit of M � 1, we have 
T00 = T33 = 4n(�Ω/V) sin2 η, T11 = −T22 = 4n(�Ω/V) sin2 η cos(2Mζ). Corrections are of 
order 1/M. All other tensor elements of T vanish to order M0. The rapidly oscillating term 
cos(2Mζ) in T11, T22 leads to a rapid decay of ̄h11 and ̄h22 as function of M. Numerics indicates 
that the decay is roughly as 1/M for fixed (ξ, η, ζ ), including the factor M that is gained due 
to the prefactor Ω ∝ M  for large M. This means that for large n and M, only T00 = T33 are 
non-negligible, with

h̄00 = h̄33 � PMh̃(ξ, η, ζ),

h̃(ξ, η, ζ) := 4
∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′) sin2 η′,

�

(B.13)

where the dimensionless function h̃(ξ, η, ζ) is once more of order 1 inside the cavity and falls 
off rapidly outside. So using a higher mode has the effect of reducing the perturbation of the 
metric essentially to two diagonal elements of the metric tensors, but increases the perturba-
tion by a factor equal to the mode-index M.

In all cases, the amplitude of the space-time perturbation due to the e.m. field in the cavity 
scales as

h
µν ∼

(
lPl

L

)2

n M,� (B.14)

proportional to the number of photons n in the cavity, the mode index M, and the squared ratio 
lPl/L of Planck length lPl � 1.62 × 10−35 m and size L of the cavity. The expression remains 
valid for the fundamental mode with M = 1.

We note that throughout our analysis we tacitly assume that the photon densities in the cav-
ity are small enough and the cavity sufficiently large, such that we stay well below the critical 
(electric) field strength Ec = m2

ec3/(e�) = 1.3 × 1018 V m−1, where me is the mass of the 
electron, beyond which nonlinear corrections to Maxwellian electrodynamics due to polariza-
tion of the quantum vacuum become important [88]. This condition may be translated into 
a minimal cavity size L using an energy density O(�cnM/L4) and a critical energy density 

O(ε0E2
c). We obtain that L � (�3/4e1/2ε

−1/4
0 m−1

e c−5/4)(nM)1/4 = (2.1 × 10−13 m)(nM)1/4 
for linear electrodynamics in the cavity to hold. For the two types of cavities considered and 
all combinations of nopt and M, the lower bound on L is satisfied by the cavity sizes considered.

From hµν we now calculate a local measure of the modification of the coordinate speed of 
light defined through the geodesics of the modified metric.

A finite hµν leads to a new line element

ds2 = −(1 − h00)c2dt2 + (1 + hii)(dxi)2 + 2h23dydz� (B.15)

where the metric elements are, for the (0 1 1) mode,

h00 =
1
2
P(g1 + g2 + g3 + g̃3),

h11 =
1
2
P(g1 + g2 − g3 − g̃3),

h22 =
1
2
P(g1 − g2 + g3 − g̃3),

h33 =
1
2
P(g1 − g2 + g̃3 − g3), h23 = Pg4,

�

(B.16)
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with the definitions, see (B.9),

gi =

∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′) fi(η′, ζ ′),

g̃i =

∫ π

0

∫ π

0
dη′dζ ′I(ξ, η − η′, ζ − ζ ′)f̃i(η′, ζ ′).

� (B.17)

For the (01M) mode we have h00 = h33 with h00 given by (B.16) whereas hµν vanishes for 
all other values of μ,ν. The light ray trajectories are determined through the geodesic condi-
tion ds2 = 0. The speed of light in x1-direction (meaning all other dx j = 0, j �= 1, i.e. locally 
straight paths along x1 = x) is then c(x) = c

√
(1 − h00)/(1 + h11) , and correspondingly for 

the other directions. The relative change of the coordinate speed of light in xi-direction then 
reads, for the (0 1 1) mode with n � 1,

δc(x)/c = −1
2
(h00 + h11) = −1

2
P(g1 + g2),

δc(y)/c = −1
2
(h00 + h22) = −1

2
P(g1 + g3),

δc(z)/c = −1
2
(h00 + h33) = −1

2
P(g1 + g̃3).

�

(B.18)

For the (01M) mode with n, M � 1,

δc(x)/c = δc(y)/c = −1
2

h00 = −PM
4

(g1 + g2 + g3 + g̃3),

δc(z)/c = 2δc(x)/c,
� (B.19)

where the equalities in terms of the gi, g̃i are for |ψopt〉.
In figure B1, we plot the relative change of the coordinate speed of light in x−direction for 

the (0 1 1) mode. We see that up to position dependent functions of order 1 the relative change 
of speed of light is given by equation (5) in the main text. Very similar plots are obtained for 
other directions.
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Abstract
The effect of gravity and proper acceleration on the frequency spectrumof an optical resonator—both
rigid or deformable—is considered in the framework of general relativity. The optical resonator is
modeled either as a rod ofmatter connecting twomirrors or as a dielectric rodwhose ends function as
mirrors. Explicit expressions for the frequency spectrum are derived for the case that it is only
perturbed slightly and variations are slow enough to avoid any elastic resonances of the rod. For a
deformable resonator, the perturbation of the frequency spectrumdepends on the speed of sound in
the rod supporting themirrors. A connection is found to a relativistic concept of rigidity when the
speed of sound approaches the speed of light. In contrast, the corresponding result for the assumption
of Born rigidity is recoveredwhen the speed of sound becomes infinite. The results presented in this
article can be used as the basis for the description of optical and opto-mechanical systems in a curved
spacetime.We apply our results to the examples of a uniformly accelerating resonator and an optical
resonator in the gravitational field of a smallmoving sphere. To exemplify the applicability of our
approach beyond the framework of linearized gravity, we consider thefictitious situation of an optical
resonator falling into a black hole.

1. Introduction

In general relativity (GR), as coordinates have no physicalmeaning, there is no unique concept for the length of a
matter system. Some notion of length can be covariantly defined using geometrical quantities or properties of
matter. The ambiguity in the notion of length poses a problem for high accuracymetrological experiments,
where gravitational fields or acceleration have a significant role to play. For example, the frequency spectrumof a
resonator depends on its dimensions and hence knowledge of the precise values of these dimensions is of utmost
importance. Cases inwhich the effects of gravitational fields and accelerationmust be considered include those
inwhich the gravitational field is to bemeasured, such as in proposals for themeasurement of gravitational
waveswith electromagnetic cavity resonators [1–7] or other extendedmatter systems [8–14], tests of GR [15, 16]
or the expansion of the universe [17, 18]. Other situations are those inwhich themetrological system is
significantly accelerated [19–21]. A fundamental limit for the precision of a light cavity resonator as a
metrological system can even be imposed by the gravitational field of the light inside the cavity [22].

The twomost important concepts of length are the proper distance and the radar distance. The proper
distance is a geometrical quantity usually associatedwith the length of a rod that is rigid in the sense of that given
byBorn [23]. The radar distance is the optical length that can bemeasured by sending light back and forth
between twomirrors and taking the time between the two events as ameasure of distance. It is this radar length
that gives the resonance frequency spectrumof an optical resonator for large enoughwave numbers. However,
the resonators that are part of themetrological systems described in [1–22] are confined by solidmatter systems,
and therefore, the notion of proper length plays also a role.
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In section 2, we start our considerations bymodeling a one-dimensional resonator as a set of two end
mirrors connected by a rod ofmatter. If this rod is assumed to be rigid, the resonator is called a rigid optical
resonator. In section 3, we show that the resonance frequencies of an optical resonator are given by its radar
length. The general results derived in sections 2 and 3 are applied in the following sections.

Since proper length and radar length are generally different, it turns out that the resonance frequencies of a
Born rigid optical resonator change if the resonator is accelerated or is exposed to tidal forces. Furthermore, the
frequency of amode is dependent on the reference time, which, in turn, is dependent on the position of the
resonator in spacetime. Taking all this into consideration leads to an expression for the resonance frequencies of
a resonator that is dependent on acceleration and curvature. This is presented in section 4.

A realistic rod cannot truly be Born rigid; depending on its stiffness andmass density, it will be affected by the
gravitational field and its internal interactions have to obey the laws of relativistic causality. In section 5, we
derive expressions for the dependence of the resonance frequencies on the deformation of the rod and show that
the change in resonance frequencies depends only on the speed of sound in thematerial of the rod. In this article,
we restrict our considerations to cases where acceleration and tidal forces experienced by the optical resonator
vary slowly. This way, we can neglect elastic resonances of rod. At the end of section 5, we compare the change of
the resonance frequencies due to deformations of the rod to the change of the resonance frequencies due to the
relativistic effects presented in section 4. Additionally, we discuss the notion of a causal rigid resonatorwhich is
based on the definition of a causal rigid rod as one composed of amaterial inwhich the speed of sound is
equivalent to the speed of light.

The optical resonator can also befilledwith a dielectric, or equivalently, the rod that sets the length of the
resonator can be a dielectricmaterial and themirrors can be its ends. The case of homogeneous isotropic
dielectric is discussed in section 6, and it is shown that the relative frequency shifts are independent of the
refractive index of the dielectricmaterial. In section 7, we consider the case of a uniformly accelerated resonator,
in section 8we consider the case of a resonator that falls into a black hole and in section 9, we consider the
example of an optical resonator in the gravitational field of an oscillatingmassive sphere. In section 10we give a
summary and conclusions.

In this article,weassume that all effects on the optical resonator canbe described as small perturbations. In
section 5,wepresent a certain coordinate system x valid in a region around theworld line of the resonator’s center
ofmass inwhich the spacetimemetric takes the form   h= +g h , where h = -( )diag 1, 1, 1, 1 is
theMinkowskimetric and h is a perturbation. h is considered to be small in the sense that  ∣ ∣h 1 for
all , .

2. A rigid one-dimensional resonator in a curved spacetime

InGR, the gravitational field is represented by the spacetimemetric gμν on a smooth four-dimensionalmanifold
.We assume themetric to have signature (−1, 1, 1, 1). Then, for every vector vμ at a point p in, themetric
delivers a number = mn

m n( )g v v g v v, , which is either positive, zero or negative. These cases are called,
respectively, space-like, light like and time-like. For all space-like vectors vμ, the square root of the positive
number g(v, v) is called the length of this vector. A curve s(ς) parameterized by ςä[a, b] in the spacetime that
has tangents V V V¢ m( ) ≔ ( )s sd d that are always space-like is called a space-like curve. The geometrical distance

along this curve is the quantity ò V= ¢ ¢mn
m n( )L s g s sdp a

b
, which is called the proper distance. To define a

frequencywe need to knowhow tomeasure time. A timemeasurement inGR is defined onlywith respect to an
observer world line. An observer world line is a curve g ( )whose tangents   g g˙ ( ) ≔ ( )d d are always time-
like. The timemeasured along the observer world line g ( ) between the parameter values ñ1 and ñ2 is

  



ò g g= - mn

m n( ) ˙ ˙T g, dp 1 2
1

2 . This is the temporal counterpart to the proper distance, and it is called the

proper time. Additionally, at every point of aworld line γ(ñ), there is a corresponding set of spatial vectors v
called the spatial slice in the tangent vector space at γ(ñ)with respect to ġ ( ), which is defined by the
condition  g g =m n

mn˙ ( ) ( ( ))v g 0.
InGR, there exist different notions of rigidity as it turns out to be less than straightforward to formulate this

basic concept ofNewtonianmechanics in a relativistic way. Early attempts to understand rigidity in the
framework of electrodynamics date back to before Einstein’s formulation of the special theory of relativity
[24–28]. These approaches turned out to be inconsistent with Lorentz symmetry, which then led to the
formulation of a Lorentz invariant differential geometric definition of rigidity in [23] byMax Born after special
relativity was established. Formulated in amodernway, it is the condition of constant distance between every
two infinitesimally separated segments of a rigid body.Here, themeasure of distance is the infinitesimal proper
distance between the twoworld linesmeasured in the spatial slice defined by any of the twoworld lines. This
concept of rigidity is denoted as Born rigidity in literature. A short time after the publication by Born in 1909, it

2
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was found byHerglotz [29] andNöther [30] that Born rigidity is too restrictive. In particular, they found that,
with the exception of the singular case of uniform rotation, themotion of a Born rigid body is completely defined
by the trajectory of one of its points. Subsequently, therewere attempts to give a less restrictive definition of a
rigid bodywhich include the concept of quasi-rigidity inGR, a condition on themultipole-moments of a body
[31, 32], and themodel of a rigid body as a body inwhich the speed of sound is equal to the speed of light [33].
Here, wewill use, as our starting point, a definition of a rigid rod that is Born rigid, andwewill undertake a
perturbative analysis for small length scales, small accelerations, small velocities and small gravitational fields. In
this article, wewill show that two types of effects are found; those due to spacetime properties alone and those
due to small deformations of the rodwhich correspond to small deviations fromBorn rigidity. Since all effects
can be considered to be small, we remain in the linear regime, where the different effects can be assumed to be
independent.

Let us assume that we have a rod of very small diameter in comparison to its length, i.e., it is effectively one-
dimensional.We assume that theworld lines of the segments of the rod form a family of curves γς(ñ)
parameterized by ςwhichwe assume to be in the interval ςä[a, b]. The end points of the rod are γa(ñ) and γb(ñ).
The spacetime surface F(ñ, ς)=γς(ñ) can be called theworld sheet of the rod. See figure 1. for each curve, the
curve parameter ñ is chosen so that the curves  V V( ) ≔ ( )s F , are space-like geodesics in the sense of the auto-

parallel condition 
V ¢ =V¢ ( )( ) s 0s with respect to the Levi-Cevita connection∇of themetric g given as

z x z x z = ¶ + Gx
a b

b
a

bg
a b g for any two vectors ξ and ζ, where

G = ¶ + ¶ - ¶bg
a ar

b gr g br r bg( ) ( )g g g g
1

2
1

are theChristoffel symbols. Note that we do not assume that theworld lines of the segments of the rod be
geodesics. The segmentsmove under the interior forces of the rod.We also do not assume that ñ is the proper
time of all the segments. Later wewill assume that there is a single segment that has ñ as its proper time.

For every point of theworld sheet F(ñ, ς) of the rod, we assume that the tangent  V¢ ( )s lies in the spatial slice

defined by the tangent to the local segment’s world line gV˙ ( ), i.e.  g V¢ =V( ˙ ( ) ( ))g s, 0. Later, wewillfind that,

due to the condition that the curves sñ(ς) be geodesics, the condition  g V¢ =V( ˙ ( ) ( ))g s, 0 is fulfilled up to the
second order in the proper length of the rod divided by a length scale lvar, which is associatedwith local curvature
and acceleration.We say that the rod is rigid if the proper distance between every two points on the curve sñ(ς) is
independent of the parameter ñ. To further elucidate themeaning of the concept of a rigid rod thatwe use here,
we explain its relation to the concept of a rigid rod thatmay be familiar from special relativity in appendix A.

There are two possibilities to construct a rigid resonator from the rigid rod defined above. One option is that
the rod itself is the resonator: for example, it could be a resonator for electromagnetic waves in different spectral
ranges or a resonator for themany different quasiparticles inside and on the surface of a solidmatter system such
as phonons, plasmons and polaritons, tomention just a few, all of whichmay resonate between the ends of the
rigid rod. The second option is to create a cavity resonator by attaching twomirrors at the end points of the rod
such that the light is reflected between themirrors. In practice, this would be achieved bymaximizing the quality
factor of the resonator.We denote such resonators as rigid resonators. The second option is the focus of this
article, and it is illustrated infigure 2. Thefirst option for a homogeneous isotropic dielectric is discussed in
section 6.

A realisticmatter system can only be rigid for negligible tidal forces and accelerations.Wewill discuss our
model for a deformable resonator affected by tidal forces and acceleration in section 5. In section 3, wewill

Figure 1.Theworld lines γς(ñ) of the segments of the rod are assumed to form a family of curves which give rise to the rod’s world
sheet. The curve parameter ñ, which is not necessarily equivalent to their proper time, is the parameter for a family of space-like curves
sñ(ς) that represent the rod.We assume that the curves sñ(ς) are space-like geodesics and cross theworld lines of each segment
orthogonally.

3
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derive an expression for the resonance frequency spectrumof a resonator, rigid or deformable, under the
condition that the timescale for light propagation between themirrors ismuch smaller than the timescale on
which the rigid resonator length is changing.

3. Resonance frequencies

In this section,wewill derive an expression for the resonance frequencies of the resonator described above. Aswe
are dealingwith an extended object inGR, the obtained resonance frequencies are ambiguous aswewill see in the
following:first, everymode k existing in the resonator evolveswith a certain phaseψk, this is a covariant quantity.
In order to extract a frequencyωk from the phase, we require a timeT such thatwe can express the phase as
ψk=ωkT. As stated in section 2, such a timemeasurement is defined onlywith respect to an observer and the
timemeasured by the observer along the curve γ(ñ) is the proper time   




ò g g= - mn

m n( ) ˙ ˙T g, dp 1 2
1

2 .

Through the family of curves associatedwith the rigid rod, we can define a family of observers along the curves
γς(ñ)=sñ(ς).We see that every point in the resonator corresponds to a different observer and, therefore, we
cannot give a proper time to thewhole resonator, therefore the frequencies of themodesmust depend on the
point in the resonatorwhere they are observed.

First, wewill consider the case of an optical resonator, discussing other cases at the end of the section. The
resonance frequencies can be obtained from the evolution of the phaseψk of a resonatormode. This can be
found by explicitly solvingMaxwell’s equations in the curved spacetime under consideration.However, we can
achieve the same resultmuch faster by implementing the short wavelength expansion or geometric optical limit.
The purpose of the following calculation is to prove the expression in equation (5), which gives the resonance
frequencies in terms of the radar distance between the two ends of the resonator. Some readersmaywant to
jump to equation (5) directly.

In the short wavelength expansion, the electromagnetic field strength tensor for a freely propagating,
monochromatic light wave is given as [34]

åf
l
a

=mn
a
l mn

=

¥
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( )( )F x xRe e , 2S x

n
n

n
i

0
,

where the complex valued second rank tensorsfn, μν(x) give the slowly varying amplitudes,λ is thewavelength,
α is the length scale of the slow changes of the properties of the lightfield and the real function S(x) is the eikonal
functionwhich describes the rapidly varying phase. In particular,α is the smallest of the length scales given by
thewaist of the resonatormode, the acceleration of the cavity and the spacetime curvature. This statement will
get its fullmeaning in section 5, where the effects of themotion of the resonator and the spacetime curvature on
the proper length of the resonator are considered explicitly by using a particular set of coordinates called the
proper detector frame.We assume that l a andλ<Lp.Wewill only consider linear polarization in the
following.Wefind that the results for the change of the frequency spectrumdo not depend on the polarization.
Therefore, the results also apply to circular and elliptic polarized fields as those can be obtained as superpositions
of linearly polarized fields.

The raised gradient of the eikonal function x ¶m mn
nˆ ( ) ≔ ( )x g S x is the normal vector field to thewave fronts

defined by S(x). Applying theMaxwell equations to the eikonal expansion in equation (2), wefind in leading

Figure 2. Illustration of ourmodel of an optical resonator consisting of twomirrors that are attached to the ends of a rod.We assume
that the resonator ismoved along a trajectory γ(ñ) by a support which is attached at a distance (1−β)Lp/2 frommirror A. Since
proper time depends on the position in the gravitational field so does themeasured frequency of a resonatormode.We assume the
frequency to bemeasured at a distanceσ Lp/2 from the center of the resonator towardsmirror B.
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order that xmˆ ( )x must be a light like vector field, i.e. x x =m n
mn

ˆ ( ) ˆ ( ) ( )x x g x 0 [35]5. Additionally, the light like

condition implies that the integral curves of the tangents xmˆ ( )x are light like geodesics. In other words, there

exist curves ξ(ς) that have the tangents x x Vmˆ ( ( )): the light rays of geometric optics. Furthermore, the light like

property implies x ¶ =m
mˆ ( ) ( )x S x 0, whichmeans that the phase a

l
( )S x is constant along the light rays.Wewill

use these properties of the eikonal function and its gradient to derive the frequency spectrumof the optical
resonator in the following.

Inside a resonator, we create standingwaves.Hence, wemust assume that, for the resonator, there are
stationary solutions ofMaxwell’s equations that fulfill the boundary conditions at themirrors. This assumption
is valid if we assume that coordinates exist in a small region containing the resonator such that the positions of
themirrors and themetric change only very slightly in the time span that light needs to propagate between the
mirrors. Assuming that linearly polarized standing cavitymode solutions exist, we consider the superposition of
two counter-propagating linearly polarized light waves = +mn mn mn( ) ( ) ( )F x F x F xr lres , where mn ( )F xr and mn ( )F xl

are as in equation (2)with the eikonal functions S r(x) and S l(x), respectively. mn ( )F xl represents thewave
propagating to the left (negative direction) and mn ( )F xr represents thewave propagating to the right (positive
direction).We obtain

å åf
l
a

f
l
a

= +mn
a
l mn

a
l mn

=

¥

=

¥
⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( ) ( )( ) ( )F x x xRe e e . 3S x

n
n
r

n
S x

n
n
l

n
res i

0
,

i

0
,

r l

Wedefined a rigid cavity by assuming that there are twomirrors attached to the ends of a rigid rod.We
consider the gravitational attraction of the twomirrors, all atoms in the rigid rod and the light itself to be
negligible.We assume in the following that themirrors are so close to the ends and so tightly attached thatwe can
identify their world lines with those of the end points of the rod, i.e. γA(ñ)=γa(ñ) and γB(ñ)=γb(ñ). Starting at
ñ=ñ1 with themirror at γA(ñ1), we can define a curve ξ

r(ς)with ςä[ς1, ς2] such that x V g=( ) ( )r
1 A 1 and

x V g=( ) ( )r
2 B 2 for some ñ2 and x V V x x V x V= = ¶m m mn

n( ) ˆ ( ( )) ( ( ))g Sd dr r r, , (see figure 3 for an illustration).
Since all tangents of ξ r(ς) are light like, this is a light like curve and can be interpreted as the path of amassless
point particle, a single photon, frommirror A tomirror B. Atmirror B, the photon is reflected and the tangent of
its path becomes g¶mn

n ( ( ))g Sl
B 2 .We can define a curve ξ l(ς)withςä[ς2, ς3] such that x V g=( ) ( )l

2 B 2 and

x V g=( ) ( )l
3 B 3 for some ñ3 and x V V x x V x V= = ¶m m mn

n( ) ˆ ( ( )) ( ( ))g Sd dl l l, ,
. This is the light like curve

representing the path of the photon back to themirror A. Atmirror A, the photon is again reflected and the
tangent becomes g¶mn

n ( ( ))g Sr
A 3 .

Then, a condition can be formulated that is necessary to fulfill the boundary conditions at each of the
mirrors: the phases of the left propagating and the right propagating parts of gmn ( ( ))F res

A and gmn ( ( ))F res
B have

tomatch by amultiple of 2π. In appendix B, the derivation of this condition is given. Since the phase is constant
along the geodesics ξ r and ξ l, wefind that the change of the eikonal function at the position of themirrormust
have been  d g g p= - =a

l
a
l

( ( ( )) ( ( )))S S S m2A A 3 A 1 where Îm . An observer atmirror A canmeasure this

phase and associate it with a frequency and a change in proper time as  d w=a
l

( )S T ,pA A 1 3 . The proper time

differenceTp(ñ1, ñ3) is proportional to the radar lengthRA=cTp(ñ1, ñ3)/2 of the resonatormeasured at
ñ0=(ñ3+ñ1)/2 by an observer travelingwithmirror A. Therefore, wefind that the frequencies of themodes
of the resonatormeasured by an observer along theworld line ofmirror A are given as

w
p

= ( )cn

R
, 4nA,

A

wherewe assume n>0, i.e. we consider only positive frequencies. A similar analysis can bemade formirror B,
which leads to w = p

n
cn

RB,
B
. Accordingly, for any other observer inside the cavity, we obtain

Figure 3.The resonance frequencies of a resonator can be derived in the geometric optical limit by considering light bouncing back
and forth between the twomirrors of the optical resonator.

5
For anymatter field in the eikonal approximation, the gradient of the eikonal function has to fulfill the characteristic equationswhich

derive from the highest derivative part of thematter field equations. In the case ofMaxwells electrodynamics, the characteristic equations are
simply given by the light cone condition. Formore details about this analysis see [34, 36, 37].
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w
p

=g
g

( )cn

R
, 5n,

whereRγ is obtained by following a light like geodesic from the observer to one of themirrors, after reflection, to
the secondmirror and, after the second reflection, back to the observer. It is clear that this is an approximate
value; the notion of frequencymeans the rate of repetition of a signal. For this notion tomake sense, it has to be
constant at least for a few repetition cycles. Hence, the observermeasuring the frequency has tomove slowly in
comparison to the time that a light pulse needs to propagate between themirrorsRγ/c.

There is anotherway to understand equation (5): electrodynamics in a Lorentzian spacetime can be
interpreted as electrodynamics in a non-dispersive, bi-anisotropic, impedancematchedmediumusing the
Plebanski constitutive equations [38]

e e= + ( )D E
c

w H
1

, 6i ij
j

ijk
j k0

m m= - ( )B H
c

w E
1

, 7i ij
j

ijk
j k0

wherewe define the spatial co-vector as ≔w g gi i0
00 and the permittivity and permeabilitymatrices

e m= -≔ ∣ ∣g g gdetij ij ij
00.Maxwell’s equations in the curved spacetime gμν take the formofMaxwell’s

equations in this effective dielectricmedium inflat spacetime.Note that the spatial co-vectorwj, whichmixes the
electric andmagnetic field components, is defined by the spacetimemixing components of themetric. If the
metric is orthogonal in the chosen set of coordinates,wj vanishes andwe are left with a normal anisotropic
medium.

Let us assume that the coordinate systemwas chosen such that the coordinate time t coincides with the
proper time atmirror A and that z is the coordinate along the light ray. In this case, wefind that the radar length
of the resonatormeasured by an observer atmirror A can bewritten as

ò ò

ò ò

= - = ¢ =

= =

-
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⎝
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b

a

b

a

b

1

2

where vph=dz/dt is the coordinate dependent phase velocity of the light and nz=c/vph can be understood as
an effective index of refraction. Equation (8) shows that the radar length can be understood as the optical path
lengthmeasured by a ray sent frommirror A tomirror B.Hence, equation (5) is the condition that the
frequenciesmeasured atmirror Amust bemultiples of the speed of light divided by the optical path length.

At the end of this section, wewould like to discuss the effect of higher order terms in the eikonal expansion.
We derived the frequency spectrum (4) and (5) from anecessary condition for the existence of linearly polarized
standingwave solutions of the electromagnetic field in the resonator. This is the condition at the leading order in
the eikonal expansion. Terms in the eikonal expansion of higher ordermay be complex functions in general, this
can lead to additional phase shifts at the boundaries which, in turn, can lead to frequency shifts. Such additional
frequency shifts can be either considered as systematical errors that limit the predictive power of our approach or
have to be evaluated independently to be subtracted from the result of themeasurement. One particular source
of additional frequency shifts is rotation of the resonator about an axis orthogonal to its optical axis. For
earthbound experiments, such rotationwill be induced by the rotation of the Earth, for example, which can be
measured independently and taken into account explicitly. The effect of rotationmay be calculated by taking
higher orders of the eikonal expansion into account or using othermethods of electrodynamics such as the
paraxial wave equation.Herewe assume that the optical resonator is non-rotating andwe restrict our
considerations to the expression for the frequency spectrum given in equation (5). In the next section, wewill
look at its application.

4. Born rigid optical resonators

In this section, wewill derive the resonance frequencies of a Born rigid resonator in terms of its constant proper
length. For this purpose, we choose towork in a particular coordinate systemwhichwewill introduce in the
following.

Along theworld line of an observer γ(τ), an orthonormal, co-rotating tetrad  tm ( ) ( Î { }0, 1, 2, 3 , all
calligraphic capital letters will run from0 to 3 in the following) can be definedwhere  g t=m m˙ ( )0 is the tangent
to theworld line of the observer,  tm ( )J (Jä{1, 2, 3}, all capital non-calligraphic letters will run from1 to 3 in
the following) are space-like,     t t g t h=m n

mn( ) ( ) ( ( ))g and h = -( )diag 1, 1, 1, 1 . There also

exists a corresponding co-tetrad em with   
e d=m

m . The proper distance along the space-like geodesics
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extending from γ(τ) in the spatial directions generated from  tm ( )J and the proper time τ along theworld line of
the observer generate a coordinate system that is associatedwith the observer (see figure 4). This coordinate
systemonly exists in the vicinity of the observer’s world line, as it can only here be ensured that the spatial hyper-
planes generated by  tm ( )J at different τ do not intersect. In these coordinates, the spacetimemetric seen by a
non-rotating observer can be given simply in terms of: the Riemann curvature tensor along γ(τ) given as

       t t t t t g t g t= a b g d
as

s
bgd( ) ( ) ( ) ( ) ( ) ( ( )) ( ( ))R g R where

= ¶ G - ¶ G + G G - G Ga
bgd g bd

a
d bg

a
gr
a

bd
r

dr
a

bg
r ( )R ; 9

and the non-gravitational accelerationwith respect to a local freely falling frame, represented by the spatial
vector em m≔ aaJ J , where g= m

g
m( ˙ )˙a .

This coordinate system is called Fermi normal coordinates for a freely falling, non-rotational observer (a=0)
[39] or the proper detector frame if proper acceleration occurs [9, 40]. The proper detector frame of a non-rotating
observer is accurate for proper distances [40]








 

=
⎧⎨⎩

⎫⎬⎭∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ( )l
c

R

R

R
x

a
min ,

1
, . 10

Jvar

2

1 2
,

In the following, wewill assume that the length of the resonator Lp is small in comparison to the scale lvar.We
consider γ(τ) to be theworld line of the point at which the rod that holds the resonator is supported.We assume
that this point is somewhere inside the resonator. If it is not attached to any device, we assume that the center of
acceleration is the rod’s center ofmass.We also assume that the resonator is not rotating in the frame of the
observer.We orient the spatial geodesic representing the rigid rod along the z-direction at γ(τ), i.e.

V¢ =t ( ) ( )s 0, 0, 0, 1 . By construction of the proper detector frame, the geodesics sτ(ς) run along the z-coordinate.
Then, we consider two cases; for the first case we assume that


⎧⎨⎩

⎫⎬⎭∣ ∣ ∣ ∣ ( )
R

c

a

1
min , 11

z z
J0

0
1 2

2

andwe take curvature into consideration. For the second case,weneglect curvature. In the following,we treat the
first case directly and the second case canbe obtainedby setting the contributions of curvature to zero in the
equations for the relative frequency shift. In particular, in both cases, we are allowed to consider onlyfirst order
contributions of theproper acceleration.With this assumption,we can consider themetric in theproper detector
frame as a linearly perturbedflat spacetimemetric.Wedefine themetric perturbation   h-≔h gP P . For
example, in the gravitationalfield of the Earth, the inverse of the square root of the spatial curvature in thedirection
away from the center of theEarth is of the order of 1011 m,while the length scale given by c2 over the gravitational
acceleration is of the order of 1016 m.Therefore, the condition (11) is fulfilled by four orders ofmagnitude for the
acceleration.

Neglecting quadratic terms in the acceleration, we obtain for the following components of the spacetime
metric in the proper detector frame of a non-rotating observer [40] (as above, Latin indices are used for the
spatial components with respect to the tetrads and spatial indices are raised and loweredwith the spatialmetric

Figure 4.The proper detector frame can be defined along any time-like curve γ. The time coordinate is the proper time τmeasured
along the curve. The spatial coordinates at a proper time τ0 are constructed from the proper distances along space-like geodesics that
originate at γ(τ0). The pointwith coordinates (cτ0, x, y, z) is found by following the spatial geodesic with tangent  mxa

a a proper
distance + +( )x y z2 2 2 1 2 from γ(τ0).
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δIJ=diag(1, 1, 1))
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Since we assumed V¢ =t ( ) ( )s 0, 0, 0, 1 and by construction of the proper detector frame, the proper length of
the geodesics sτ(ς) is Lp=b−a, where the spatial positions of themirrors are (0, 0, b) and (0, 0, a)with b 0
and a 0. Then, we find from equation (12) that t »( )g c z, 0, 0, 0

z
P

0 for all τ and z along the resonator.
Furthermore, by construction, all segments of the rod remain at fixed coordinate positions along the z-axis
andwe find that  g =V

-˙ ( ) (( ) )g , 0, 0, 0P
00

1 2 . Since V¢ =t ( ) ( )s 0, 0, 0, 1 , we obtain  
 g V¢ =V˙ ( ) ( )g sP

t V-( ) ( ( ) ( ))g g c z, 0, 0,P
z

P
00

1 2
0 . From equation (12) and one of the symmetries of the Riemann tensor

 = -R R follows that the condition  
 g V¢ =V˙ ( ) ( )g s 0P , whichwe assumed in our definition

of a rigid resonator in section 2, is approximately fulfilled for a small proper length of the resonator6.
To obtain the frequency of the rigid resonatormeasured by an observer at xusing equation (5), we have to

calculate the corresponding radar distance between themirrors. The radar distance is obtained from the
trajectories x i( ) of light like particles bouncing back and forth between themirrors as described in section 3 and
illustrated infigure 3. In section 3, we already assumed that acceleration and curvature only change very slowly
with τ. Under this assumption, we can replace acceleration and curvature in equation (12) by their values at τ0.
The trajectories x i( ) have to fulfill the null condition 


 x i x i x i =( ( )) ˙ ( ) ˙ ( )g 0P and the geodesic equation

that governs themotion of test particles 

  x i x i x i x i= -G( ) ( ( )) ˙ ( ) ˙ ( )¨ . Infirst order in hP , onefinds for

theChristoffel symbols


 

     hG = ¶ + ¶ - ¶( ) ( )h h h
1

2
, 13P P P

which shows that the Christoffel symbols are of the same order as h
P . Then, tofirst order in h

P , the
trajectories are given by  x i i i i d i= +  +  ( ) ( ) ( )c , 0, 0,0, , where i 0, are constants and the functions
d i ( ) are of the same order as h

P .With  = -R R , wefind that »g 1
zz
P and = »g g 0

z
P

z
P

0 0 along

x i( ), andwe obtain that d i i i»  
˙ ( ) ( )ch c c, 0, 0,P0

00 0, and d i i i»   
˙ ( ) ( )ch c c, 0, 0, 2

z P
00 0, solve the light

cone condition and the geodesic equation. The difference in coordinate time τ between sending and receiving
the light pulse is given as
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where i a, and i b, are the parameter values at which the ray intersects with theworld lines ofmirror A and
mirror B, respectively. A transformation of the integration variable to x i= ( )z z leads to
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which reduces to
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wherewe defined b -≔ b L2 1p and used a=(β−1)Lp/2.Under the assumption of slowly changing
acceleration and curvature, the coordinate time δ τneeded for a round trip of a light pulse inside the resonator is
independent of the point on the z-axis where it was sent from and received at, as long as it is sent and received at
the same point. Therefore, we can calculate the radar length of the resonatormeasured at a given position

6
Here small proper lengthmeans that the proper detector framemetric (12) is still a valid approximation to the actual spacetimemetric.

8

New J. Phys. 20 (2018) 053046 DRätzel et al



z0=(σ+β)Lp/2 along the z-axis inside the resonator (σä[−1, 1]) as

t dt
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Equation (18)was calculated for a given time τ0 tomake our assumption of slow changes of acceleration and
curvature explicit. Of course, we are free to choose the value of τ0. Therefore, we can replace τ0 in equation (18)
with τ. Then, the relative change of the resonance frequenciesmeasured at z0=(σ+β)Lp/2 is given as

d
w
w

t
s

t
s sb- » - - + -w s ≔ ¯

( ) ( ) ( ) ( )
c

L
R

L
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1
2 24

3 6 1 , 19n

n

z

p
z z

p, 2
0 0 2 2

where w̄n is the nth resonance frequency of the resonator for vanishing acceleration and curvature.
Wefind that the only linear contribution of the acceleration az to the resonance frequency spectrum in

equation (19) is via a position-dependent red shift. It vanishes forσ=0, which corresponds to a frequency
measurement in the center of the resonator. The term3σ2 corresponds to a pure red shift with respect to the
center of the cavity. The term 6βσ is due to the displacement of the resonator’s support from its center. In order
tomove the support along the trajectory γ(τ), while keeping the proper length of the resonator constant, the
acceleration t t t b= +( ) ( ) ( )c R La a 2z z

z z pcm
2

0 0 must be applied to the center ofmass of the resonator7. Based
on these considerations, we can rewrite equation (19) as

d
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s» - - -w s
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2 24
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z z
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cm

2
0 0 2 2

However, a realistic rod can never be rigid. In the next section, wewill consider the first order deviations from
the rigid rod by taking the deformation of the rod due to small inertial and gravitational forces into account.

5.Deformable optical resonators

In the proper detector frame, every segment of the rod has aworld line with constant spatial components. The
acceleration of a segment of the rod at x=(cτ, 0, 0, z), in comparison to a freely falling test particle initially at
rest at the same position as that segment, can be derived from the geodesic equation



  g t g g t g t= -G( ) ( ) ˙ ( ) ˙ ( ) ( )¨ , 21x x x xrest, rest rest, rest, rest rest, rest

where, infirst order in themetric perturbation, the tangent for a test particle at rest is
g = - -˙ ( ( ( )) )c g x , 0, 0, 0P

xrest, 00
1 2 with t- » +-( ( )) ( )g h zx 1 , 0, 0, 2P P

00
1 2

00 . The dotmeans the derivative

with respect to the curve parameter τrest. Infirst order in hP , the Christoffel symbols are given by equation (13)
and are proportional to themetric perturbation. Therefore, expanding equation (21) infirst order in themetric
perturbation, wefind  g » - Gc¨ xrest,

2
00 . Since t t g t= » +˙ ( )c h zd d 1 , 0, 0, 2P

xrest rest,
0

00 , we obtain

» - GcaP
J J2

00 for the proper and tidal accelerations.
We consider the effect of aP on the resonator’s endmirrors and the resulting deformation of the rod to be

negligible in comparison to the direct effect of aP on the rod. Then, we obtain the inertial and tidal forces on the
rod bymultiplication of aPwith themass density ρ. These forces give rise to stresses within the rod, represented
by the stress tensorσKL. For static forces and forces that change very slowly, the stresses are related to the strain
viaHooke’s law as

e s= -( ) ( ), 22IJ IJKL KL
1

where -1 is the inverse of the stiffness tensor for thematerial the rod is composed of. From the strain, we can
calculate the deformation of the rod by integration along the length of the rod from its center ofmass. Since the
change of diameter of the rod and its deformations in the x–y-plane are not of interest for us, we can restrict our
considerations to εzz, εxz and εyz.We assume a constant cross sectionA of the rod, andwe assume that the
diameter of the rod ismuch smaller than its length. The contribution of εxz and εyz on the length of the rod are of
second order in themetric perturbation and can be neglected (see appendix C) if

á ñ á ñ { ∣ ∣ ∣ ∣ } ( )L c w L c wa a amax , . 23P
z

p P
x

s x p P
y

s y,av
5

max
2 2 4 5

max
2 2 4

where aP
x

max and aP
y

max are themaxima of proper acceleration in the x-direction and y-direction, respectively,
wx andwy are the diameters of the rod in the x-direction and y-direction, respectively, and aP

z
,av is the largest of

7
This result can be directly obtained by considering the differential acceleration between the support and the center of the cavity by use of

the geodesic deviation equation.
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the values given by b tá ñ∣ ( )∣az and b tá + ñ( ) ∣ ( )∣L c R3 1 6p z z
2 2

0 0 , where áñdenotes the averaging over the
observation time (see appendix C for the derivation).With these considerations, the tidal accelerations in the
proper detector frame in the transversal direction can be neglected if the following conditions hold

 á ñ á ñ{ ∣ ∣ ∣ ∣ } ( )w c R w c Ra max , , 24P
z

x x x y y y,av
2

0 0
2

0 0

Additionally, we assume that the various contributions to the transversal tidal acceleration do not oscillate on
resonancewith any elasticmode of the rod that is not already on resonancewith the oscillations of the
longitudinal acceleration and the longitudinal tidal acceleration. Inmost situations of interest, it should be easy
to fulfill these conditions by choosing an appropriate orientation of the resonator and appropriate values forwx

andwy. In particular, the conditions are fulfilled for the examples given in sections 7–9.
Under the above conditions, the only non-zero component of the stress tensor of interest for us isσzz and its

relation to the strain is given as

e s= ( )
Y

1
. 25zz zz

whereY is the Young’smodulus of the rodmaterial. If we assume a constantmass density, the force along the rod
in the positive z-direction can be obtained as
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0 0 . For the force along the rod in the
negative z-direction, we find
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Since the support of the resonator is inside the resonator, we obtain the total deformation of the resonator by
integrating the strains e =+

+F Azz
z and e =-

-F Azz
z on the two sides of the resonator from z= 0 to the ends,

respectively. The effective change of the proper length is
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where r=c Ys is the speed of sound in the rodmaterial. The acceleration induces a contraction of one side of
the resonator and an expansion of the other. Therefore, the acceleration amounts to a change of the proper
length, proportional to the displacementβ Lp/2 of the support with respect to the center of the resonator. The
change of the proper length proportional toR0z0z(τ) can be split into two terms. The termproportional toβ2

corresponds to the acceleration t t t b= +( ) ( ) ( )c R La a 2z z
z z pcm 0 0

2
0 0 of the center ofmass of the resonator that

we discussed at the end of section 4. For a freely falling resonator (β=0=az(τ)), only the second term in the
brackets remains.

From equations (19) and (28), wefind for the relative change of the resonance frequencies of the deformable
resonator
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Note that the deformation of the resonator changes the coordinate position of every point inside the resonator8.
This leads to a change in the trajectory of a light pulsewithin the resonator, and thewhole calculationwemade in
section 4would be changed.However, this changewould only amount to a change of the resonance frequencies
in second order in themetric perturbation andwe can neglect it.

Again, we canwrite the relative shift of the resonance frequencies in a neater way using the center ofmass
acceleration as

d
t

b s
t

s» - + + -w s

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )
c

c

c
L

R c

c
L

a

2 24
2 1 3 . 30

x

s
p

z z

s
p,

cm
2

2

2
0 0

2

2
2 2

As expected, wewould obtain the result in equation (20) for the Born rigid rod from equation (30) if the speed of
sound in thematerial was infinite. This coincides with the observation that a Born rigid rod violates causality, as

8
Any deformation of the rod also leads to a change of density and the speed of sound in the rodwhich, in turn, leads to amodulation of the

deformation of the rod.We consider this effect to be negligible here. In particular, it corresponds to a nonlinear correction ofHook’s law.
Therefore, the result in equation (29) can be considered accurate as long asHook’s law can be applied. As the deformations considered are
supposed to be small, Hook’s law should holdwith a very good accuracy.
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its segments would need to interact with an infinite speed. Amore realistic definition of a rigid rodwas given in
[33] as a rod inwhich the speed of sound is equivalent to the speed of light. In appendixD,we show that the
approach of [33] leads to the same expression of the change of the length of the rigid rod as our equation (28).
The relative shift of the resonance frequencies for such a causal rigid rod is found from equation (30) in the limit
c cs as

d
t

b s
t

s» - + -w s
( ) ( ) ( ) ( ) ( )

c
L

R
L

a

2 8
1 . 31

z

p
z z

p,
cm

2
0 0 2 2

In particular, wefind that the contribution of curvature to the relative frequency shift vanishes if the frequency is
measured at one of themirrors corresponding toσ=±1.

However, the speed of sound cs in every realisticmaterial is alwaysmuch smaller than the speed of light: for
example the speed of sound in aluminum is of the order 5×103m s−1. To date, thematerial with the highest
ratio of Young’smodulus and density r =Y cs

2 is carbyne, with a value of the order of 109 m2 s−2 [41], which
would correspond to a speed of sound of the order of 3×104 m s−1. Therefore, wefind that the effect of the
deformation ofmatter is by far themost dominant and the rod is far from rigid (may it be Born rigid or causal
rigid) in all realistic situations. However, the relativistic effect of gravitational red shift gives a fundamental limit
on the definition of the frequency spectrumof an optical resonator as a property of the resonator alone; when
resonance frequencies of an optical resonator are to be specifiedwith a precision of the order of this relativistic
effect, the position of the frequencymeasurement has to specified.

Finally, wewant to point out that the ratio of Young’smodulus and density is called the specificmodulus. In
this sense, c2 can be thought of as the specificmodulus of spacetime. It is interesting to note that this value is off
by a factor 4 from the value 4c2 given for the specificmodulus of spacetime in [42].

6.Deformable dielectric optical resonators

Up to this point, we have only discussed the case of an empty cavity resonator. Now, let us assume that the rod
itself is the optical resonator. In particular, we assume that it consists of an isotropic homogeneous dielectric
medium (seefigure 5). In [43], it was shown that light rays in an isotropic dielectric follow light like geodesics
with respect to the dielectricmetric tensor (see also [34, 44])

   = - -
⎛
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⎞
⎠⎟ ( )g g

c

c
u u1 , 32P P,diel diel

2

2

where m= -( )cdiel
2 1 is the speed of light inside themedium and  

=u g uP is the normalized tangent
vector to theworld line associatedwith the local segments of the dielectric. In our case, these are the segments of
the resonator, and therefore,  = +( ) ( )u z h1 2, 0, 0, 0P

00 and  » - +( ) ( )u z h h h h1 2, , ,P P P P
00 01 02 03 . From

equation (32), we obtain themetric

t t t
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2
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2
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,diel

Now, all of the considerationsmade for the empty resonator above can also bemade for a resonator composed of
an isotropic, homogeneous dielectric by using themetric 

g P,diel for the propagation of the phase fronts given by
the eikonal function.Hence, we obtain the resonance frequencies in an isotropic homogeneous dielectric by

Figure 5. In the case of a dielectric optical resonator, we consider the rod itself to be the resonator.
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multiplying the result for the empty resonatorwith cdiel/c. This factor cancels in the relative frequency
perturbation so that

d d=w s w s ( ). 34,
diel

,

A similarmetric as in (32) has been shown to arise for particles or quasiparticles in othermatter systems, e.g. for
electrons in graphene [45]. Our analysismay also apply to these situations.

7. Example: uniform acceleration

To illustrate the applicability of our results, wewill consider some examples in the following. A particularly
straightforward example is the situation of a non-rotating resonator that is uniformly accelerated along the
optical axis. From the equivalence principle follows that this situation is similar to the situation of an optical
resonator kept vertically at a fixed position in the gravitational field of amassive object like the Earth.However,
sincewe are considering an extended object, the curvature of the gravitational fieldwould also enter the
frequency spectrumof the resonator as in equation (30). Hence, the effect of uniform acceleration and a
gravitational field do only coincide if the effect of curvature can be neglected. For uniform acceleration, wefind

d
b s

» -w s

⎛
⎝⎜

⎞
⎠⎟ ( )

c c

La

2
. 35

s

x
p

, 2 2

Forβ=±1, a length of the resonator of Lp∼2 cm, an acceleration of the order of 10 ms−2, which is similar to
the gravitational acceleration of the Earth, and a speed of sound in the rod of the order of -10 ms3 1 (similar to the
speed of sound in aluminum), we obtain a relative frequency shift of the order of 10−7. This frequency shift is
given only by the first term in equation (35) as the second term is smaller by about 11 orders ofmagnitude. Since
thefirst term is due to the deformation of the resonator it is aNewtonian effect.

For the caseβ=0 thefirst term in (35) vanishes.What remains is a purely relativistic effect, the gravitational
red shift, due to a difference in proper time between the center of the resonator and every other point along the
optical axis. Setting the parameterσ to−1 and+1means that the frequency ismeasured at themirror A and
mirror B, respectively.Wefind a relative frequency shift of the order of -10 18. Themeasurement of such a
small frequency shift seems to be experimentally challenging butmay be feasible with state of the art technology.
For example, currently, optical clocks reach a relative precision of 10−18 over an integration time of 1 s [46, 47].
Of course, higher frequency shifts can be reachedwith longer cavities and larger accelerations. In particular, the
effect of gravitational red shift was alreadymeasured on the length scale of about 33 cm [48]. As argued above,
the effect of gravitational red shift gives a limit on the validity of the concept of the frequency spectrum as a
property of the optical resonator itself. For the parameters of the example above, we find that a reference for the
frequencymeasurement has to be givenwhen the frequency spectrum is to be specifiedwith a relative precision
of 10−18.

8. Example: plunge into a black hole

Weconsider the results derived in this article as a basis for optomechanics in relativity and gravity which implies
their application to experiments in laboratories on the surface of the Earth or in space. However, our approach is
not limited to spacetimes that only bearweak gravitational effects. It is the spacetimemetric seen by the optical
resonator in its proper detector frame that has to be a linearizedmetric. This is ensured by the condition

l Lpvar . To illustrate the applicability of our results to spacetimeswith strong gravitational effects, we consider
the situation of a non-rotating resonator that falls into a non-rotating black hole (seefigure 6). To this end, we
consider the Schwarzschildmetric in spherical Schwarzschild coordinates (ct, r,ϑ,f)

J= -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )g f r

f r
r rdiag ,

1
, , sin , 362 2 2

where f (r)=1−rS/r and rS is the Schwarzschild radius.We assume that the support of the resonator falls
radially from r= R into the center of the black hole atf=0 andϑ=π/2. The corresponding trajectory is
given in [49] as

 =( ) ( ) ( )r R cos 2 , 372

  t = +
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )c

R R

r2
sin , 38

S

1 2

parameterized by ñ.We see that r= 0 for ñ=π, whichmeans that the singularity at the center of the black hole
is reached infinite proper time t p= R cr2 S

3 2 1 2. The tangent to theworld line of the falling support of the

12

New J. Phys. 20 (2018) 053046 DRätzel et al



resonator is






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where ñ=ñ(τ) is implicitly given by equation (38), ġ1 can be obtained directly from equations (37) and (38) and
ġ0 can be found from the normalization condition g g = -m n

mn˙ ˙ ( ( ))g r c2. Then, the time line can be found as

γ=(ct(τ), r(ñ(τ)),π/2, 0), where òt t g t= ¢ ¢
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All other orthonormal tetrads can be obtained by orthogonal transformations in three-dimensions on the spatial
part of the tetrad (40). Due to the spherical symmetry of the spacetime and the radial trajectory of the resonator
atϑ=π/2 andf=0, we can restrict our considerations to rotations in the  m1 –

m
3 -plane. Then, we define the

rotated frame

    

    

j j
j j
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2 2 3 3 1

where the anglejä[0,π/2] gives the orientation of the resonator in the  m1 – m3 -plane. From the tetrad (41), we
obtain the proper detector frame. The z-direction is defined by  m3 andwefind from equation (29) that

d
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where no proper acceleration appears since the resonator is assumed to be freely falling. The curvature tensor
componentR0z0z(τ) is explicitly given as
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Here, we used that =f f¯R 0r0 for the Schwarzschildmetric. The expressions for the other curvature tensor
components appearing in equation (42) atϑ=π/2 are given as
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Figure 6.Artistic representation of the optical resonator plunging radially into a black hole.
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Weobtain


t

j
= -

+( ) ( ( ))
( ) ( )R

r

r

1 3 cos 2

4
, 45z z

S
0 0 3

andwefind that the specification of the angle of orientation of the rodj gives rise to a numerical factor which
vanishes only atj = -( )arccos 1 3 2. Hence, forj ¹ -( )arccos 1 3 2, the frequency shift is proportional to
the frequency shift atj=0, which corresponds to vertical orientation. For a vertically oriented causal rigid
resonator supported at its center, we find the relative frequency shift at its center is given by


d t » -w ( ) ( ) ( )r L

r8
. 46

S p
,0

2

3

The time evolution of this frequency shift is plotted infigure 7.We see that the frequency shift in equation (46)
staysfinite until r= 0 is reached at ñ(τ)=π. In particular, there is no effect due to the crossing of the event
horizon at rS. As stated at the beginning of this section, our approach is accurate only for l Lpvar . From

equation (45), wefind that = ( )l r rSvar
3 forj=0. The stellar black hole has a Schwarzschild radius of the

order of 103 m. For an optical resonator of a length of the order of 10−2 m, this implies that that our approach
breaks downwhen a radius of the order of 1 m is reachedwhich is far beyond the event horizon at r=rS.

The effect of the event horizon can be seen by considering a situation inwhich themeasured frequency is
imprinted on a signal at the center of the resonator and sent out radially to an observer that stays at constant
coordinate r=R>rS. This observer receives a signal with frequency


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where r(t) and τ(t) are given implicitly by the time line γ(τ). Thefirst factor on the right-hand side of
equation (47) corresponds to the gravitational red shift and the second factor to theDoppler shift due to the
relative velocity between the emitter and the receiver. The red shift factor f (r(t))1/2 vanishes when the resonator
passes the event horizon and becomes imaginary.

The above result can be applied aswell to an optical resonator falling towards the Earth. For a distance from
the center of the Earth of the same order as its radius, wefind that the relative frequency shift in equation (46) is
of the order of 10−27 for an optical resonator of 2 cm length. This relativistic effect ismostly gravitational red
shift due to curvature. It is far frombeing observable with state of the art technology.However, it gives a
fundamental limit of the validity of the concept of frequency spectrum as a property of the optical resonator
without any reference as discussed above.

9. Example: an oscillatingmass

As a third example, we consider the situation of a non-rotating resonator in the gravitational field of an
oscillating solid sphere ofmassivematter. The result could be used to consider the possibility of detecting the
gravitational field of a small sphere of densematerial, like gold or tungsten (see figure 8). This situation is similar
to the one considered in [50, 51], where the resonator is a secondmassive sphere on a support with restoring
force.Here wewill restrict ourselves to the derivation of the resonance frequency spectrum and an evaluation of
its relative change for certain realistic experimental parameters. Also, we assume that the solid sphere is the only

Figure 7.The frequency shift of a vertically oriented optical resonator falling into a black hole is plotted over the normalized proper
timemeasured at the center of the resonator.
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source of a gravitational field affecting the optical resonator. Tomodel an earthbound experiment, the
gravitational field of the Earthwould have to be taken into account aswell. To derive ourmodel of the
gravitational field of amassive sphere, we start from the Schwarzschildmetric, which is given as

= +
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in isotropic Cartesian coordinates =( ˜ ˜ ˜ ˜ ˜)x ct x y z, , ,0 , where ≔r GM c2S
2 is the Schwarzschild radius of the

sourcemass and + +≔ ( ˜ ˜ ˜ )R x y z2 2 2 1 2. Tofirst order in rS/R, the difference of (48) from theMinkowski
metric diag(−1, 1, 1, 1)has only four non-zero components, namely = = = =˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜h h h hS

xx
S

yy
S

zz
S r

R00
S . Let us

assume that the spheremovesmuchmore slowly than the speed of light and that we are close enough to the
sphere so that all changes of the gravitational field can be considered to be instantaneous.With this, we can
model themetric perturbation for themoving sphere by replacingR by g-(˜) ≔ (( ˜ (˜))˜R t x tM

x 2 g+ -( ˜ (˜))˜y tM
y 2

g+ -( ˜ (˜)) )˜z tM
z 2 1 2, where gm (˜)tM is the trajectory of the sourcemass. The resultingmetric perturbation
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Weassume that the support of the resonator is at rest in the isotropic coordinates on the z̃ axis in the negative z̃
direction. To be completely accurate, wewould need tofix the proper distance between the support of the
resonator and the average position of the sphere, as this corresponds to the assumption that the distance isfixed
by anothermatter system. Furthermore, in every realistic situation, the proper distancewould change as the
matter system is affected by the gravitational field of the sphere and the gravitational force experienced by the
resonator.However, any small error in the position of the resonator will be negligible, as it corresponds to a
small change of the acceleration and curvature that we already assumed to be small. From equation (13), wefind
that an acceleration t g t t=  » G » -g t( ) ( ˙ ( )) ( )˜ ˙ ( ) ˜a c c r R2z z z

S
2

00
2 2 along the z̃ -axis is necessary to keep the

resonator at a fixed position <z̃ 00 on the z̃ -axis, i.e. g t t=( ) ( ˜ )z, 0, 0, 0 . For the linearly perturbedmetric,
the curvature tensor is given as

h ¶ ¶ - ¶ ¶ - ¶ ¶ + ¶ ¶bgd
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1

2
. 51M M M M

Weassume that the resonator isfixed along the z̃ -axis. From the equation (51), we obtain the curvature
component t t= -( ) ( )˜ ˜ ˜ ˜R r Rz z S0 0

3.
To construct the proper detector frame, we need tofix the tetrad corresponding to the observer at the

support of the cavity. Sincewe assume that the support stays at rest in the coordinates ( ˜ ˜ ˜ ˜)x x y z, , ,0 , we have
 =m -(( ) )˜ ˜g , 0, 0, 0S

0 00
1 2 .We define the three spatial vectors of the tetrad  mJ with J= 1, J= 2 and J= 3 such

that they point in the x̃-direction, ỹ-direction and z̃ -direction, respectively. Therefore, wefind
 =m -( ( ) )˜ ˜g0, , 0, 0

xx
S

1
1 2 ,  =m -( ( ) )˜ ˜g0, 0, , 0

yy
S

2
1 2 and  =m -( ( ) )˜˜g0, 0, 0,

zz
S

3
1 2 .We conclude that the

transformation to the proper detector frame is a linearized coordinate transformation. A linearized coordinate
transformation leaves the curvature tensor invariant andwe obtain t t= -( ) ( )R r Rz z S0 0

3. Furthermore,
t e t t= »m

m( ) ( ) ( )˜a a az z z tofirst order in themetric perturbation.
Let us assume that themotion of the sphere can be described as t d t= + W( )R R R sin0 0 , whereR0 is the

average distance between the sphere and the position of the support of the resonator, δR0 is the amplitude of the
sphere’s oscillation and 2πΩ its frequency. If we assume that δR0 ismuch smaller thanR0, the proper
acceleration and the curvature can bewritten as

Figure 8. Illustration (not to scale) of the resonator placed in front of a gold sphere that oscillates by a lever with frequencyΩ/2π. The
gravitational field of the sphere induces a change of the resonance frequencies of the resonator.
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Thefirst terms in (52) and (53) are constant, andwe can calculate their effect on the frequency spectrumusing
equation (29). The resulting time dependent resonance frequencies are given by equation (29) as
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Let us assume that the sphere is of gold or tungsten, that themass of the sphere is 100 g (corresponding to a
radius of the order of rsph∼1 cm), which corresponds to a Schwarzschild radius of the order of 10−27 m, the
amplitude of the oscillations δR0 is of the order 1 mm,while the length of the resonator andRmin, theminimal
distance between the resonator and the sphere, are of the order of 1 cm. Then, wefind thatR0=rsph+δ
R0+Rmin+Lp(1+β)/2 takes values between 2 and 3 cm. This results in values for acceleration and spacetime
curvature of the order of - -10 ms10 2 and 10−25 m−2, respectively.Wementioned above that the speed of sound
in a rod of aluminum is about 5×103m s−1. Therefore, the relative change of the resonance frequencies of a
resonatorwith its lengthfixed by an aluminum rod, in the gravitational field of themovingmass, yields
d ~w

-10 18 forβ=±1, where the acceleration is dominant, and d ~w
-10 19 forβ=0, where only the

curvature contributes. The relativistic effects in equation (54) are ten orders ofmagnitude smaller. Hence, to
detect them, thewhole experimental setupwould need to be under control with this precision.

For oscillation frequenciesΩ far below any elastic resonances of the resonator rod, we can also derive the
effect of the sinusoidallymodulated terms in (52) and (53)with equation (29).Wefind
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For the parameters used above, we find forβ=±1 an amplitude of the frequency oscillations of the order of
10−19. The temporalmodulation of the frequency shiftmay be an advantage in experimental situation as itmay
be used to increase sensitivity. As for the example of uniform acceleration, the values for the frequency shifts that
we found for this setup seem to be challenging but not out of reach of state of the art experimental techniques.
Oscillations of the sourcemass on resonancewith the elasticmodes of the resonator rodmay be used to increase
the effect on the frequency spectrum significantly. However, the consideration of this situation is beyond the
framework developed in this article. It will be treated in a future article.

10. Conclusions and outlook

Wederived an expression for the resonance frequencies of an optical resonatormoving in aweak gravitational
field in a relativistic setup. Firstly, we considered a Born rigid resonator, whichwe assumed to be constructed
fromaBorn rigid rod. Secondly, we considered a deformable resonator, wherewe assumed the rod to consist of a
realisticmaterial withfinite Young’smodulus. In this context, we discussed the concept of a causal rigid rod.
Besides gravitational effects, the expressions that we derived take proper acceleration of the resonator into
account. Aswell as empty optical resonators, we considered optical resonators filledwith a homogeneous
dielectricmaterial.

Our investigation revealed three fundamentally different effects. One is a simple gravitational red shift: the
resonator is an extended object and time runs differently at different points inside the resonator. Therefore, the
resonance frequencies of the resonator are not a global property of the resonator, but depend also on the position
inside the resonator at which it ismeasured. The second effect is due to the difference between proper length and
radar length, which leads to a shift of the resonance frequencies in the presence of non-zero curvature and
acceleration even for a Born rigid resonator. The third effect is the deformation of the resonator due to curvature
and acceleration, when the resonator is deformable. The deformation of the resonator is governed by only one
parameter, the speed of sound cs in the rod. It turns out that the effects of deformations are larger than the
relativistic effects, red shift and difference between proper length and radar length, by a factor c cs

2 2. A causal
rigid rod can be considered to be onewith the speed of sound equivalent to the speed of light, overcoming the
problems of Born rigidity [33].We gave an expression for the resonance frequency spectrumof a causal rigid rod
in equation (31). Since the largest speed of sound in anymaterial is still many orders smaller than the speed of
light, the deformations of realisticmaterials will dominate over the relativistic effects significantly. Therefore, a
very high degree of control over thematerial parameters would be necessary to observe the relativistic effects.
However, the relativistic effect of gravitational red shift can be seen as posing a fundamental limit on the validity
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of the concept of the frequency spectrum as a property of the optical resonator alone; when resonance
frequencies are to be specifiedwith a precision of the order of the gravitational red shift, the position of
frequencymeasurement has to be specified additionally.

The results derived in this article can be applied to general spacetime geometries if acceleration and tidal
forces in the proper detector frame of the resonator are small enough. This includes freely falling resonators in
strong gravitational fields like a black hole beyond the Schwarzschild radius or a uniformly accelerated cavity
whichwe gave as examples in this article. As a third example calculation, we considered the gravitational effect of
an oscillating tungsten or gold sphere on the resonance frequencies of an optical resonator in section 9. This
situation is similar to the one considered in [50, 51], where the resonator is a secondmassive sphere on a support
with a restoring force.

Note that our results can be applied to oscillating gravitational fields like that due to the oscillating source
mass as long as the oscillation frequency ismuch smaller than the elastic resonances of the rod that constitutes
the optical resonator. In the particular situation of an aluminum rod of a few centimeters and an oscillating
sourcemass of a few gram, this is a very good approximation as the elasticmodes of the rod have frequencies of
the order of 100 kHz, which is hard to achieve with a sourcemass of this size. However, for longer resonators,
smaller sourcemasses or other oscillating gravitational fields like gravitational waves, elastic resonancemay be
achievedwhich can amplify the effect on the frequency spectrum significantly. A gravitational wave is a
particular example of a situation inwhich the acceleration vanishes and only an oscillating curvature remains9.
Sincewe already identified the deformation effects of a realistic rod as the dominant effect, the effect of
oscillating curvature on the rod can be treated similar to the effect of a gravitational wave on the antenna of a
resonantmass detector (see for example [9] and chapter 37 of [49] as a reference for the latter). A detailed
description for a resonantly driven optical resonator as a follow up of this article will be given in a future
publication.

The precision ofmetrological experiments with resonators depends strongly on the knowledge of the
resonance frequencies of these resonators. On the one hand, the effects of acceleration and curvature on the
resonance frequencies can be seen as an experimental systematic errorwhich has to be taken into account. On
the other hand, these effects can be used tomeasure a proper acceleration or spacetime curvature. In such
experimental situations, themodel we usedwill certainly not be fully valid and the effects have to be calculated
for the precise apparatus that is used.However, the results of this article can serve as a basis for investigations of
the accessibility of spacetime parameters and parameters of states ofmotion in themore advanced framework of
quantummetrology [16].

In our analysis, the only non-Newtonian effects are the relativistic red shift and time dilation and the
difference between radar length and proper length.However, the formalism employed here contains further
relativistic effects (see table I of [40]) such as the Sagnac effect andmagnetic type gravitational effects such as
frame dragging, which induces the Lens–Thirring effect in gyroscopes. It would be interesting to include these
effects in amore detailed analysis. Oneway could be an extension to three-dimensional optical resonator
geometries and the inclusion of the polarization of the lightfield.

In the future, it would be desirable to have a description beyond the restrictions to small accelerations and
curvatures. For that purpose, a fully relativistic description of elasticity has to be used such as those presented in
[32, 33, 52]. For significant variations of the curvature on the length scale of thewavelength of the resonator
modes, it would be necessary to abandon the eikonal approximation and to derive the resonance frequencies
directly from solutions of theMaxwell equations in a curved spacetime. This is the case if the effect of the
gravitational field of the light inside the resonator is to be considered in full generality [22]. Furthermore, the
effect of rotation of the resonator has to be considered in the future. This can be done by considering higher
orders of the eikonal expansion or usingmethods of electrodynamics like the paraxial approximation.
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AppendixA. Relation to the concept of a rigid rod in special relativity

In special relativity, the proper length of a rod is given as the coordinate distance between its endpoints, calculated
in the coordinate systemdefinedby the rest frameof the rod.Here, we callLp(sñ) the proper length of the rod and
describe it in the following. By definition, for everyñ0 and every point  V( )s 00

of the space-like curve  V( )s
0

representing the rod, there is a space-like tangent  V V V¢ V( ) ≔ ( ) ∣s sd d00 0 0
. For every point of the curve  V( )s

0

representing the rod, there is an associated vector in the tangent space 
 V( )Ts 0 0

via the inverse of the exponential

map,where the exponentialmap is given as  
 

V V( ) ( )Texp :s s
0 0 0 0

and  
V V V V- ¢ =V (( ) ( )) ( )( ) s sexps 0 0

0 0 0 . In

particular, the twoendpoints of the rod  ( )s a
0

and  ( )s b
0

are associatedwith the vectors V V- ¢( ) ( )a s0 00
and

V V- ¢( ) ( )b s0 00
. Since  V( )s

0
is a space-like geodesic (in the sense of the auto-parallel property), the proper distance

from  V( )s 00
to  ( )s a

0
and  ( )s b

0
is equivalent to thenormof V V- - ¢( ) ( )a s0 00

and V V- ¢( ) ( )b s0 00
, respectively,

with respect to themetric gμν at  V( )s 00
. Hence, for every point  V( )s 00

on the rod, there is a representationof the

rodas a straight line V V¢ ( )s 00
in the tangent space to this point and the sumof the proper distances in both

directions of the rod is equivalent to the length of the line given as  
V V- ¢ ¢V( ) ( ( ) ( ))( )b a g s s,s 0 0

0 0 0 0
.We canfind

coordinates such that


h=V mn mn( )( )gs 0 0
. This is called a local Lorentz frameat  V( )s 00

. In the local Lorentz frame, the

coordinate distance (in tangent space)between the endpoints of the line V V¢ ( )s 00
is equivalent to its length

 
V V- ¢ ¢V( ) ( ( ) ( ))( )b a g s s,s 0 0

0 0 0 0
. In special relativity, the spacetime and the tangent space to every point canbe

identified since spacetime isflat. Then, the length of the line representing the rod in tangent space is also the proper
length of the rod. Therefore,we can identify Lp(sñ) as the generalizationof the proper length of a rigid rod inGR.

Appendix B. Boundary conditions

In the following, wewill will applyMaxwell’s equations to the eikonal expansion in equation (2) along the same
lines as in [35].Wewill write z z =m

r r
m; for the covariant derivative. In the following, wewill apply the Lorenz

gauge condition andMaxwell’s equations to the eikonal expansion in equation (2).Maxwell’s equations in
vacuum imply that [35]

+ - + =mn l
l s

m ns
s
n ms abmn

ab( ) ( )F R F R F R F 0, B1;
;

whereRμν is the Ricci tensor.We have

å a
l
f x f

l
a

= +mn l
a
l mn l mn l

=

¥
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0
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In leading order, wefind the null condition x x =ls
l s

ˆ ˆg 0. By taking the covariant derivative of the null condition

and taking into account that x = ¶m mˆ ( )S x , wefind

x x x x x x x= = = =ls
l s m

s
s m

s
sm

s
m s( ˆ ˆ ) ˆ ˆ ˆ ( ) ˆ ˆ ( )g S x0 2 2 2 B4; ; ; ;

whichmeans that the integral curves of the vector field xsˆ are light like geodesics. These are the light rays of
geometrical optics. In the next to leading order, wefind

f x f x= +mn l
l

mn l
lˆ ˆ ( )0 2 . B50, ; 0, ;

Wedefine the scalar

*f f fag bd
ab gd≔ ( ) ( )g g , B60 0, 0,

1 2

and the polarization tensor f0,μν=f0,μν/f0.Wefind that

x x f f f f f= -l
mn l

l
mn l mn l

- -ˆ ˆ (( ) ( ) ) ( )f B70, ; 0
1

0, ; 0
2

0, 0;
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* *x f f f f f f f f= - +l
mn l mn

ag bd
ab l gd ab l gd

- -⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) ( ) ( ) ( )g g

1

2
B80

1
0, ; 0

3
0, 0, ; 0, 0, ; 0,

f f x f f x= + =mn l
l

mn l
l- -( ) ˆ ( ) ˆ ( )1

2
0. B90

1
0, ; 0

1
0, ;

Thismeans that the zeroth order polarization tensor is parallel transported along the light rays. Furthermore, for

linear polarization, we canwrite j=mn mn( ) ¯f fexp i0, 0 0, , wheref and mnf̄0, are real. From x =mn l
lˆf 0; , wefind

thatj x =l
lˆ 00, . Therefore, the phase of the zeroth order amplitude function does not change along the light ray.

In particular, we can assume thatf0,μν is real everywhere aswe can set the initial conditions accordingly.
With these considerations,we can investigate the boundary conditions at themirrors. To express theboundary

conditions in a covariant form,wedefine the frames of themirrors in the following.The tangents g m˙ ( )A and
g m˙ ( )B of theworld lines of themirrors define a spacetime split; the spatial slice at themirror (i)=A,B is defined

as the set of vectors r( i)μ such that g =mn
m n˙ ( )( ) ( )g r 0i

i (no summation of i). Inside these spatial slices, we can

define three orthonormal vectors  m( )
j
i such that the vector  m( )i

3 is orthogonal to themirror and the normal vectors

 m( )i
1 and  m( )i

2 are tangential to themirror10. Furthermore,we choose  m( )i
1 to be directed in the polarization

directionof the right propagating lightfield at themirror (i). Togetherwith   g g=m m˙ ( ) ∣ ˙ ( )∣( )
( ) ( )

i
i i0 , the vectors

 m( )
J
i (Jä {1, 2, 3}) formanorthonormal tetrad.Using the tetrads, the components of thefield strength tensor in the

frameof themirror are given as       g= m n
mn( ) ( ( ))( ) ( ) ( )

( )F Fi i i
i . Then, the boundary conditions at themirrors

are that the electricfield is perpendicular and themagneticfieldparallel to themirrors, i.e.  = =( ) ( )( ) ( )F F0i i
01 02

and  =( )( )F 0i
12 .

The tetrads were defined such that the polarization direction of the lightfield is in the direction of  m( )i
1 .We

define    f f gm n
mn( ) ≔ ( ( ))( ) ( ) ( )
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n
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i,01 0 1 , which are non-zero andwefind the boundary conditions
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From the lowest order inλ/α, wefind that

  f f= +
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Above, we found that the zeroth order amplitude tensors are real. Then, the boundary condition (B11) can only
be fulfilled for all ñ if  f f=( ) ( )r l

0,01 0,01 and  g g p= +a
l

a
l

( ( )) ( ( ))( ) ( ) ( )S S m2r
i

l
i i , where Î( )m i .

AppendixC.Deformations of a rod

For isotropicmedia, the stiffness tensor depends only on the Young’smodulusY, the shearmodulusG and the
Poisson ratio ν.We have

e s n s s= - +( ( )) ( )
Y

1
, C1xx xx yy zz

e s n s s= - +( ( )) ( )
Y

1
, C2yy yy xx zz

e s n s s= - +( ( )) ( )
Y

1
, C3zz zz xx yy

e e s= = ¹ ( )
G

i j
1

2
for . C4ij ji ij

Since the change of thickness of the rod holding the resonator and its deformations in the x–y-plane are not of
interest for us, we can restrict our considerations to εzz, εxz and εyz. The elements of the strain tensor εxz and εyz
lead to a deformation of the curve s(ς) in the x and y-direction, respectively. Since the corresponding forces are
always transversal to the line elements of the rod, they only bend the rod and do not change its proper length. In
the proper detector frame, the proper length of the part of the rod in the positive z-direction of the support is
approximately given as

10
We only need the latter to be defined up to rotations around  m( )i

1 in the spatial slice.
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where δ b is the shift of the z-coordinate of the position ofmirror B. For the analysis of the transversal
deformations, let us assume that the rodhas a rectangular cross sectionwith side lengthswx andwy. Furthermore,
let us consider the extreme case ofβ=1. An expression for the transversal deformation of such a rod can be
found, for example, in equation (2.2) [53]. For the x-direction, we find
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max is themaximal acceleration in x-direction experienced by a part of the rod.With V¢ = =s sd d 0 at
z= 0, we obtain that
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A similar expression can be found for ¢ ¢s sy z .With equation (C5), we obtain the approximate upper bounds for
the change of the z-position of themirror B

d +
⎛

⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟ ( )b

L

c w w

a a9

7
. C8

p

s

P
x

x

P
y

y

7

4
max

2

2
max

2

2

Then, the newposition ofmirror B is approximately d-( ( ) ( ) )s L s L L b, ,x
p

y
p p , wherewe get

 ( ) ( ) ( )s L
L

c w
s L

L

c w

a a3

2
and

3

2
, C9x

p
p

s

P
x

x

y
p

p

s

P
y

y

4

2
max

2

4

2
max

2

by integration equation (C7) and the corresponding expression for the y-direction. Since δb, ( )s Lx
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are already of second and first order in themetric perturbation, respectively, the change of the round trip time
can be calculated as
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Let us define aP
z

,av as the larger of the values of b tá ñ∣ ( )∣az and b tá + ñ( ) ∣ ( )∣L c R3 1 6p z z
2 2

0 0 , where áñdenotes the
averaging over the interaction time. Comparison of equation (C8)with equation (28) shows that the effect of the
transversal bending on the length of the rod can be neglected in comparison to the effect of the longitudinal
deformations if
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In the gravitationalfieldof a smallmassive sphere of 100 gof the example in section 9, anobserver at rest experiences
an accelerationof the orderof 10−10 ms−2. Sowe assume = - -a 10 msP

z
,av

10 2, á ñ - -∣ ∣a 10 msP
x

max
10 2 and

á ñ - -∣ ∣a 10 msP
y

max
10 211. Let us consider an aluminumrodwhere = ´ -c 5 10 mss

3 1. For a rodof length 1 cm,we
find that L w 10p x

3 and L w 10p y
3 is sufficient to fulfill the conditions in equation (C12). Let us consider the

situation for accelerations of the order of 10ms−2 as they are experienced in the gravitationalfieldof theEarth. Sowe
assume = -a 10 msP

z
,av

2, á ñ -∣ ∣a 10 msP
x

max
2 and á ñ -∣ ∣a 10 msP

y
max

2. For an aluminumrodof length 10 cm,
the conditions in equation (C12) are fulfilled for L w 10p x and L w 10p y . For larger accelerations, the
orientationhas tobe chosen such that a aP

x
P
z

max ,av and a aP
y

P
z

max ,av to fulfill the conditions and still use a rod.

Now, let us consider the longitudinal deformation. From » - G » ¶c c haP
j j

j
2

00
2

00, we obtain the inertial and
tidal forces on the rod bymultiplicationwith themass density ρ. Since h00 contains terms that are independent of
z and terms that are proportional to z and z2, we canwrite the acceleration as

11
We consider themassive sphere as the only source of a gravitational field here. In an earthbound laboratory, the effect of the Earth’s

gravitational field has to be taken into account aswell.
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Let us assume that the rod has a constant cross sectionA and a constantmass density. Then, the sumof inertial
forces and gravitational force along the rod acting on a segment of the rod at z>0 can be approximated as
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where, by considering the acceleration only at x=0=y, we neglected terms proportional to thewidth of the
rod. For the force along the rod acting on a segment of the rod at z<0, we find
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Due to the support, this corresponds to the stresses
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The differential force in the x-direction acting on a one-dimensional segment of the rodwith coordinates x, y
and z induced by all one-dimensional segments with the same z-coordinate, the same y-coordinate and ¢ >x x
can bewritten as
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for the differential force induced by all one-dimensional segments with the same z-coordinate, the same y-
coordinate and ¢ <x x. Since themetric (12) contains constant, linear and quadratic terms in the spatial
coordinate and » - GcaP

j j2
00, we conclude that t( )x y z xad , , , dP

x cannot depend on y infirst order in the
metric perturbation, andwefind that the acceleration in the x-direction can bewritten as
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Thefirst term corresponds to an acceleration that all segments feel in the sameway. Therefore, it does not lead to
a stress. Hence, the stress on a segment of the rod at z becomes
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An equivalent expression can be derived for the stressσyy. The length change of the rod is given as
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Since the highest polynomial order of terms in themetric perturbation in the coordinates is 2,
t =( )∣x za , , 0,

x P
x

x
d

d 0 can only contain terms that are independent of z and terms that are linear in z. Hence, we
find
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Therefore, the effect of acceleration and curvature on the proper length viaσxx andσyy is suppressed by a factor
nw Lx p and νwy/Lp, respectively, in comparison to the effect viaσzz. Formostmaterials ν<1 andwe can

assume that w L 1x p . Therefore, if b t( )a , 0, 0, 0P
z or b t+ =( ) ( )∣L za3 1 , 0, 0, 6p z P

z
z

2 d

d 0 is of the same order

or larger than t =( )w xa , , 0, 0 4x x P
x

x
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d 0 and t =( )∣w ya , 0, , 0 4y y P
y

y
d

d 0 and if the oscillations of the transversal

stresses are not on resonant with any elasticmode of the rod that the longitudinal stresses are not on resonance
with, we can neglect the effect of the transversal stresses andwe can restrict our considerations to s+zz and s

-
zz .

Then, we canwrite the conditions as
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AppendixD. The causal deformable rod from relativistic elasticity

In [33], a covariant formulation of the relativistic elastic rodwas given. In this section, we show that the
definitions of [33] lead to our result equation (31) for the causal rigid rodwhen applied to themetric in
equation (12) in the proper detector frame.

The author of [33] formulates the theory of one-dimensional relativistic elastic bodies by considering a
motion of a one-dimensional continuummoving in a 1+1-dimensional spacetime.Our arguments from
sections 2, 4 and 5 lead exactly to such a situation. The rod is dragged along theworld line of its support or its
center ofmass is assumed tomove along a geodesic. All accelerations of the rod segments are encoded in the
metric in the proper detector frame given by equation (12). Furthermore, our rod is assumed to lie along a spatial
geodesic andwe neglect all transversal accelerations.What remains is only gravitational effects along the rod
encoded by themetric corresponding to the line element

t t= - - +( ( )) ( )s h z zd 1 , d d . D1P2
00

2 2

Due to our assumption that acceleration and curvature only change very slowly, wefind that this situation
corresponds to equation (22) of [33]. The coordinate transformation in equation (23) of [33], =˜ ( )z f z with

ò= ¢ - -( ) ( )f z z hd 1
z P

0 00
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infirst order in themetric perturbation since =- ( ˜) ˜f z z1 in zeroth order in themetric perturbation. The rigid
rod of [33] has constant coordinate length in the coordinates t( ˜)z, , which are called conformal coordinates
because the line element differs from the that ofMinkowski space only by a conformal factor f ( ˜)e z2 , where in our
case, t= -f ( ( ˜))( ˜) h ze 1 ,z P2

00 . This rigid rod can be called a causal rigid rod because the speed of sound in the
rodmaterial is equivalent to the speed of light. In contrast, a Born rigid rodwould correspond to an infinite
speed of sound.

The square root of the conformal factor is the stretch constant of [33].We obtain the proper length of the
causal rigid rod by integrating the stretch constant fromone end of the rod to the other.However, we have to
note that the stretch factor also contains boundary conditions of the rod; every point at which f ( ˜)z vanishes
corresponds to a free end of the rod. Therefore, we cannot just use the expression for h P

00 that we used in
section 5.We have to consider the two sides of our rod separately, and in each situation, add a constant to h P

00

such that the free end is at a or b. Adding a constant to themetric does not change any dynamics andwe are free
to do such an operation.We define
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andwe reproduce the result of equation (28) for cs=c.
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Abstract
Light carries energy, and therefore, it is the source of a gravitational field. The 
gravitational field of a beam of light in the short wavelength approximation 
has been studied by several authors. In this article, we consider light of 
finite wavelengths by describing a laser beam as a solution of Maxwell’s 
equations  and taking diffraction into account. Then, novel features of the 
gravitational field of a laser beam become apparent, such as frame-dragging 
due to its spin angular momentum and the deflection of parallel co-propagating 
test beams that overlap with the source beam. Even though the effects are too 
small to be detected with current technology, they are of conceptual interest, 
revealing the gravitational properties of light.

Keywords: linearized gravity, general relativity, laser beam, paraxial beam, 
Maxwell’s equations, diffraction

(Some figures may appear in colour only in the online journal)

1.  Introduction

The gravitational field of a light beam has first been studied by Tolman, Ehrenfest and Podolski 
in 1931 [36], who described the light beam as a one-dimensional (1D) ‘pencil of light’. Later, 
a description for the gravitational field of a cylindrical beam of light of a finite radius has been 
presented by Bonnor [4]. In this description, light has been modeled as a continuous fluid 
moving at the speed of light. A central feature of these two models is the lack of diffraction; 
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2

the beams do not diverge. This corresponds to the short wavelength limit where all wavelike 
properties of light are neglected. Further studies of the gravitational field of light that share 
this feature include the investigation of two co-directed parallel cylindrical light beams of 
finite radius [3, 24], spinning non-divergent light beams [23], non-divergent light beams in the 
framework of gravito-electrodynamics [13], and the gravitational field of a point like particle 
moving with the speed of light [1, 38].

In contrast, the wavelike properties of light have been taken into account in [37], where 
the gravitational field of a plane electromagnetic wave has been investigated. An approach to 
take finite wavelengths into account for the case of a laser pulse has been given in [26, 28], 
where, however, diffraction has been neglected. In this article we describe the laser beam as 
a solution to Maxwell’s equations. This is done perturbatively by an expansion in the beam 
divergence, which is considered to be small. The zeroth order of the expansion corresponds to 
the paraxial approximation and coincides with the result of [4]. In the first order in the beam 
divergence, frame-dragging due to the spin angular momentum of circularly polarized beams 
occurs. In the fourth order in the divergence angle, a parallel co-propagating test beam of light 
overlapping with the source laser beam is found to be deflected by the gravitational field of 
the laser beam.

The properties of light are inherent in modern physics. They were used to derive special 
and general relativity and they are often the basis for new approaches to spacetime theories. 
Furthermore, the gravitational field of laser beams is a phenomenon on the interface of general 
relativity and quantum mechanics as laser beams can be brought into non-classical states. For 
the progress of modern physics it is of great importance to study such phenomena, as they may 
give some insight into quantum gravity. Hence, it is necessary to study the gravitational prop-
erties of laser light in sufficient detail. In this article one of the most fundamental features of 
laser light, its wave properties, is taken into account for the first time. Therefore, even though 
the effects we present in this article are very small and not measurable with current technol-
ogy, they are of general interest for the physics community.

We would like to point out that, if detection of the gravitational field of light may be feas-
able at some point in the future, it is very likely that strongly focussed laser beams will be 
involved in the corresponding experiments. However, due to the wavelike nature of light, 
there is a fixed relation between a laser beam’s divergence angle and the width of its focus. 
This feature limits the experimental possibilities further. This has to be taken into account to 
obtain the sensitivity that would be necessary to detect the gravitational field of light at some 
point in the future. Therefore, future advanced detection schemes that may be promising to 
detect the gravitational field of light have to be assessed using the detailed description given 
in this article. Hence, this article is of importance to future considerations of the possibilities 
to detect the gravitational field of light.

We proceed as follows: in section 2, we describe a focused laser beam as a solution to 
Maxwell’s equations. This is done perturbatively, as an expansion in the small beam divergence 
angle θ. Furthermore, we derive the energy–momentum tensor for a circularly polarized laser 
beam. In section 3, we introduce the framework of linearized gravity. The equations determin-
ing the metric perturbation and solutions with Green’s functions are given in section 4. Then 
we discuss the specific effects appearing in the different orders of the expansion in θ of the 
gravitational field: in section 5, we discuss the zeroth order, which corresponds to the paraxial 
approximation. Frame-dragging happens in the first order of the metric perturbation and is 
explained in section 6. The deflection of a co-propagating parallel light ray in the gravitational 
field of the laser beam is shown in section 7. Some conclusions are given in section 8.
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Throughout the article, we use the following notation: for spacetime coordinates we 
use greek indices, like xα, and for spatial coordinates we use latin indices, like xk. For the 
Minkowski metric, we choose the convention ηαβ = diag(−1, 1, 1, 1).

2.  Describing the laser beam

In this section  we describe the laser beam as a Gaussian beam, a perturbative solution to 
Maxwell’s equations. The solution is expanded in the beam divergence, which is assumed to 
be small. Finding a solution for the vector potential, we calculate the energy–momentum ten-
sor, which will be used in the next section to determine the spacetime metric.

2.1. The field strength tensor

The laser beam is a monochromatic plane wave whose intensity distribution in the directions 
perpendicular to the direction of propagation decreases with a Gaussian factor. It is a perturba-
tive solution of Maxwell’s equations: an expansion in the beam divergence, the opening angle 
of the beam, which is assumed to be small. This solution is obtained by making the ansatz that 
the vector potential is a plane wave enveloped by a function depending on the spatial position.

More specifically, the vector potential of the Gaussian beam is obtained as follows: it has 
to satisfy Maxwell’s equations in form of the wave equations,

�Aα(t, x, y, z) = 0,� (1)

where � = ηαβ∂α∂β = − 1
c2 ∂

2
t + ∂2

x + ∂2
y + ∂2

z  is the d’Alembert operator and we choose 
the Lorenz gauge condition ηαβ∂αAβ = 0. For convenience, we work in the dimensionless 
coordinates τ = ct

w0
, ξ = x

w0
, χ = y

w0
, ζ = z

w0
, where w0 is the beam waist. Writing {xα} for the 

coordinates {ct, x, y, z} and {xᾱ} for the coordinates {τ , ξ,χ, ζ}, we obtain for the Minkowski 
metric

ηᾱβ̄ =
dxα

dxᾱ
dxβ

dxβ̄
ηαβ = w2

0 diag (−1, 1, 1, 1) .� (2)

The vector potential transforms as Aᾱ = dxα
dxᾱ Aα. We make the ansatz that the vector potential 

is monochromatic and can be written as

Aᾱ(τ , ξ,χ, ζ) = Avᾱ(ξ,χ, θζ)ei 2
θ (ζ−τ),� (3)

where θ = 2/(w0k) is the divergence angle of the beam, k is the wave vector and A is the 
amplitude. The vector envelope function vᾱ is assumed to depend on ζ only through the com-
bination θζ. With the ansatz (3), we obtain the Helmholtz equation for the envelope function

(
∂2
ξ + ∂2

χ + θ2∂2
θζ + 4i∂θζ

)
vᾱ(ξ,χ, θζ) = 0.� (4)

We consider θ to be small, which implies that the envelope function changes much more 
slowly in z-direction than in x-direction or in y-direction. Then, we make the ansatz that vᾱ 
can be written as a power series of θ,3

vᾱ(ξ,χ, θζ) =
∞∑

n=0

θnv(n)
ᾱ (ξ,χ, θζ),� (5)

3 An expansion in orders of θ2 has been presented by Davis [12]. Here, we consider the general expansion to allow 
for helicity eigenstates later on.
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where v(n)
ᾱ  are the coefficients in the power series. The Helmholtz equation (4) leads to the 

differential equations
(
∂2
ξ + ∂2

χ + 4i∂θζ
)

v(0)
ᾱ (ξ,χ, θζ) = 0,� (6)

(
∂2
ξ + ∂2

χ + 4i∂θζ
)

v(1)
ᾱ (ξ,χ, θζ) = 0,� (7)

(
∂2
ξ + ∂2

χ + 4i∂θζ
)

v(n)
ᾱ (ξ,χ, θζ) = −∂2

θζv(n−2)
ᾱ (ξ,χ, θζ), for n > 1.� (8)

Note, that this set of equations couples components of vᾱ of odd n to other components of 
odd n and components with even n to other components of even n. Therefore, we obtain two 
independent hierarchies of components of vᾱ. We will couple odd and even components later 
when we introduce helicity.

Equation (6) is known as the paraxial Helmholtz equation. It can be interpreted as a 
Schrödinger equation in two spatial dimensions with m/� = 2 when θζ is seen as a time vari-
able, i.e.

i∂θζv(0)
ᾱ (ξ,χ, θζ) = −1

4
∆2dv(0)

ᾱ (ξ,χ, θζ),� (9)

where ∆2d = ∂2
ξ + ∂2

χ is the two dimensional Laplace operator. A solution of equation (9) has 
to spread similar to the wave packet of a massive particle in quantum mechanics. Here, the 
spreading of the wave packet corresponds to the divergence of the beam. The solution of equa-
tion (9) that we are interested in is a Gaussian wave packet. Furthermore, we want the wave 
packet to be centered on the optical axis and to be rotationally symmetric about the optical 
axis. With these conditions, we obtain for the lowest order

v(0)
ᾱ (ξ,χ, θζ) = ε

(0)
ᾱ v0(ξ,χ, θζ),� (10)

where the function v0 is given by

v0(ξ,χ, θζ) = µ(θζ)e−µ(θζ)ρ2
,� (11)

and where ρ =
√
ξ2 + χ2 , ε(0)

ᾱ  is the constant polarization co-vector and µ(θζ) = 1/(1 + iθζ) 
relates the spread of the Gaussian wave packet and the divergence angle of the beam. 
Equation  (10) represents the Gaussian beam in lowest order in the divergence angle θ. A 
graphic representation can be found in figure 1. The first order solution fulfills the same par-
axial Helmholtz equation as the zeroth order solution. Therefore, we set

v(1)
ᾱ (ξ,χ, θζ) = ε

(1)
ᾱ v0(ξ,χ, θζ).� (12)

The equations  for the higher order terms in equation  (8) correspond to Schrödinger equa-
tions with an additional term proportional to the solution of the equation two orders lower, 
which has the effect of a source term,

i∂θζv(n)
ᾱ (ξ,χ, θζ) = −1

4
∆2dv(n)

ᾱ (ξ,χ, θζ)− 1
4
∂2
θζv(n−2)

ᾱ (ξ,χ, θζ), for n � 1.
�

(13)

Finally, we have to specify the polarization co-vectors εᾱ and the terms in the expansion of 
the envelope function of even n. We will do so for a Gaussian beam of circular polarization in 
the following. First, note that the components of the vector potential are not independent; the 
Lorenz gauge condition we imposed leads to
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Aτ =
iθ
2
∂τAτ =

iθ
2
(∂ξAξ + ∂σAσ + θ∂θζAζ) .� (14)

With this identity, Aτ  can be eliminated from the space-time components of the field strength 
tensor Fᾱβ̄ = ∂ᾱAβ̄ − ∂β̄Aᾱ as

Fτ ā = −Fāτ = −2i
θ

Aā −
iθ
2
δb̄c̄∂ā∂b̄Ac̄,� (15)

where δb̄c̄ is the Kronecker delta. As the vector potential, the field strength tensor can be 
expanded as

Fᾱβ̄ =

∞∑

n=0

θn w0E0√
2

fᾱβ̄(ξ,χ, θζ)ei 2
θ (ζ−τ),� (16)

where E0 =
√

2A/(w0θ) and a direct relation between v(n)
ᾱ  and f (n)

ᾱβ̄
 can be established, which 

is given in appendix A.

2.1.1.  Circularly polarized beams.  In the last step, we have to specify the polarization of the 
beam that we want to consider. In this article, we will focus on circularly polarized beams. We 
define a circularly polarized beam as a helicity state which is an eigenstate of the generator of 
the duality transformations F′

ᾱβ̄
= Fᾱβ̄ cosϕ+ �Fᾱβ̄ sinϕ, where �Fᾱβ̄ = 1

2

√
−det(η)εᾱβ̄γ̄δ̄Fγ̄δ̄ 

is the Hodge dual of Fᾱβ̄ and εᾱβ̄γ̄δ̄ is the completely anti-symmetric Levi-Civita symbol with 
ε0123 = −1. The invariance of Maxwell’s equations under these duality transformations and 
the corresponding conservation laws were worked out in [8]. The generator of the duality trans-
formation Dθ = exp(iϕΛ) : Fᾱβ̄ �→ F′

ᾱβ̄
 is Λ : Fᾱβ̄ �→ −i � Fᾱβ̄ since � � Fᾱβ̄ = −Fᾱβ̄.

The vector potentials of well-defined helicity are eigenstates of Λ with eigenvalues λ = ±1. 
There are two options to obtain these eigenstates. One option is to start with a helicity eigen-
state of zeroth order in θ, construct the corresponding higher order terms of the expansion of 
the envelope function of even n with equation (13), obtain the odd terms in the expansion of 
the envelope function with the Lorenz gauge condition in equation (14), calculate the field 
strength tensor and project it with (1 + λΛ)/2. This option is presented in appendix C.

Figure 1.  Schematic illustration of the Gaussian beam, the beam waist w0, the 
Rayleigh length zR and the beam divergence θ. More specifically, the figure illustrates 
the scalar envelope function v0 of the vector potential of the Gaussian beam in a plane 
that contains the optical axis (represented by the dashed horizontal line). Due to the 
rotational symmetry of the envelope function about the optical axis, the vertical axis can 
be any direction transversal to the optical axis. The thick curved lines mark the distance 
w(ζ) = 1/|µ(θζ)| from the optical axis at which the absolute value of the envelope 
function reaches 1/e times its maximum.
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In the main text of this article, we follow the second option, where a vector potential is 

constructed order by order by taking into account the condition (1 − λΛ)Fλ
ᾱβ̄

= 0 and the 
expansion in equation (16) in each order separately. This construction is presented in appendix 

A. Starting from v(0)
ᾱ = ε

(0)
ᾱ v0 , where ε(0)

ā = w0(1,−λi, 0)/
√

2 and ā ∈ {ξ,χ, ζ}, and taking 
the solutions of even orders from [30] into account, we obtain

vλ(0)
ā = ε

(0)
ā v0,� (17)

vλ(1)
ā = −ε

(1)
ā

iw0µ

2
√

2
(ξ − iλχ) v0,� (18)

vλ(2)
ā =

µ

2

(
1 − 1

2
µ2ρ4

)
vλ(0)

ā ,� (19)

vλ(3)
ā =

µ

4
(
4 + µρ2 − µ2ρ4) vλ(1)

ā ,� (20)

vλ(4)
ā =

µ2

16

(
6 − 3µ2ρ4 − 2µ3ρ6 +

1
2
µ4ρ8

)
vλ(0)

ā ,� (21)

where ε(1)
ā = w0(0, 0, 1). The corresponding vector potential is given as Aλ

ᾱ =
∑4

n=0 θ
n 

Avλ(n)
ᾱ (ξ,χ, θζ)ei 2

θ (ζ−τ), where the component Aλ
τ  is given through the Lorenz gauge condi-

tion in equation (14). Linearly polarized Gaussian beams are obtained as linear combinations 
of helicity eigenstates; for example, Aξ

ᾱ := (A+
ᾱ + A−

ᾱ )/
√

2 is the vector potential of a laser 

beam that is linearly polarized in the ξ-direction. Note that all terms of higher than leading 

order in equation (17) decay faster than vλ(0)
ā  for θζ → ∞. Hence, vā ≈ vλ(0)

ā  for large θζ.

2.2. Three distinct scenarios

The beam divergence θ, which is assumed to be small, is related to the wave vector k, the beam 
waist w0 and the Rayleigh length zR through

k =
2

w0θ
=

2
zRθ2 .� (22)

The beam waist w0 describes the width of the beam at its focal point, i.e. at ζ = 0, and the 
Rayleigh length is the distance from the focal point along the direction of propagation such 
that the cross section of the beam is doubled, as illustrated in figure 1. There are basically three 
scenarios for which the condition that θ is small is satisfied:

	 1.	�k = constant : if the wave vector k is kept constant, the beam waist w0 and the Rayleigh 
length zR have to be large, and zR � w0 has to hold. Keeping the wave vector constant 
is the characteristic feature of a plane wave. If the beam is very long, its gravitational 
field may be compared to that of infinitely extended plane waves, which are described by 
particular pp-wave metrics4.

	 2.	�w0 = constant : keeping the beam waist w0 fixed, the wave vector k and the Rayleigh 
length zR have to be large, and in addition we find zR � 1

k. This situation describes an 
almost parallel beam of a given waist. If the beam is very long and the beam waist is 

4 See chapter 35 in [9].
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considered to be small, such that it is approximately a cylinder of light, its gravitational 
field may be compared to the solution found by Bonnor [4] for an infinitely long cylinder 
of light.

	 3.	�zR = constant : keeping the Rayleigh length fixed, the wave vector k has to be large and 
the beam waist w0 has to be small. This case corresponds to a very thin and almost parallel 
beam along the z-axis, whose energy-density is accordingly high. The corresponding 
gravitational field is the solution given by Tolman, Ehrenfest and Podolski [36].

In the following, we will keep the beam waist w0 constant.

2.3. The energy–momentum tensor

To derive the gravitational field of the laser beam, we have to derive its energy–momentum 
tensor first. Let us define the real part of Fᾱβ̄ as Re(F)ᾱβ̄. In terms of Re(F)ᾱβ̄, the energy–

momentum tensor is defined as Tᾱβ̄ = c2ε0(Re(F)ᾱ
σ̄Re(F)β̄σ̄ − 1

4ηᾱβ̄Re(F)δ̄ρ̄Re(F)δ̄ρ̄). 
Therefore, the energy–momentum tensor can be decomposed into the real term

(Tr)ᾱβ̄ =
c2ε0

2
Re

(
Fᾱ

σ̄F∗
β̄σ̄ − 1

4
ηᾱβ̄Fδ̄ρ̄F∗

δ̄ρ̄

)
,� (23)

the complex term

(Tc)ᾱβ̄ =
c2ε0

4

(
Fᾱ

σ̄Fβ̄σ̄ − 1
4
ηᾱβ̄Fδ̄ρ̄Fδ̄ρ̄

)
,� (24)

and its complex conjugate (Tc)∗
ᾱβ̄

. The term (Tc)ᾱβ̄ is highly oscillating with i(ζ − τ)/θ 
while these oscillations cancel in (Tr)ᾱβ̄ . For eigenstates of the helicity operator with eigen-
value λ = ±1, the highly oscillating terms in (Tc)ᾱβ̄ and its complex conjugate vanish and it 
remains Tᾱβ̄ = (Tr)ᾱβ̄. Therefore, the highly oscillating parts of the energy–momentum ten-
sor can be interpreted as a result of the interference of contributions of different helicity in the 
field strength that come into play for linear or elliptical polarization. In the following, we will 
only consider circular polarization.

The components of the energy–momentum tensor are directly related to the energy density 
Eλ, the Poynting vector �Sλ and the Maxwell stress tensor σλ

ij  of the electromagnetic field,

Tλ
ᾱβ̄ =




Eλ −Sλ
ξ /c −Sλ

χ/c −Sλ
ζ /c

−Sλ
ξ /c σλ

11 σλ
12 σλ

13

−Sλ
χ/c σλ

12 σλ
22 σλ

23

−Sλ
ζ /c σλ

13 σλ
23 σλ

33


 .

�

(25)

For the field strength tensor Fλ
ᾱβ̄

= ∂ᾱAλ
β̄
− ∂β̄Aλ

ᾱ of a circularly polarized laser beam, which 
we specified in section 2.1.1, the energy density, the Poynting vector and the stress tensor 
components are given in appendix B.

The power transmitted in the direction of propagation is given by P =
∫ 2π

0 dφ
∫∞

0 dρ ρSζ. 
In the leading order in the expansion in θ, we obtain P0 = πcε0E2

0w2
0/2, where E0 is the ampl

itude of the electric field in the leading order at the beamline. We may then express the ampl

itude in terms of the power as E0 =
√

2P0
πcε0w2

0
. For a power of P0 ∼ 1015 W and a beam waist 

of w0 ∼ 10−3 m , the amplitude is E0 ∼ 1012 V m−1.
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As the field strength tensor, the energy–momentum tensor can be expanded in orders of θ 

as Tλ
ᾱβ̄

=
∑

n θ
ntλ(n)
ᾱβ̄

. Then, the gravitational field of the laser beam can be calculated for each 

order and effects of different orders can be identified. We will present this analysis up to fourth 
order in θ in the following sections.

3.  Linearized gravity

Assuming that the energy of the laser beam is sufficiently small, we use the linearized theory 
of general relativity5 to describe its gravitational field. In appendix D, we make a rough esti-
mation to show that this is reasonable. The metric gαβ consists of the metric for flat spacetime 
ηαβ plus a small perturbation hαβ with |hαβ | � 1,

gαβ = ηαβ + hαβ .� (26)

Therefore one neglects terms quadratic in the metric perturbation. In this case, one sees that 
the inverse of the metric reads gαβ = ηαβ − hαβ. The Einstein equations can be simplified to 
a set of linear equations in the metric perturbation. As the full general relativity has an invari-
ance under coordinate transformation, its linearized approximation is invariant under linear 
coordinate transformations xα → x̃α = xα + ξα, where the metric perturbation transforms 
as hαβ → h̃αβ = hαβ − ∂αξβ − ∂βξα.6 Since curvature is described by the second deriva-
tives of the metric, quantities depending on the curvature are invariant under linear coordinate 
transformations.

To derive the linearized version of the Einstein equations, we assume the Lorenz gauge condi-
tion, ∂αhαβ = ∂βhαα/2. The energy–momentum tensor has to be conserved, ηαβ∂αTβγ = 0, 
which implies that the continuity equation is satisfied [21, 26]. The remaining gauge freedom 
is given by linear coordinate transformations ξα that satisfy �ξα = 0. Taking into account that 
the trace of the energy–momentum tensor Tσ

σ is identically zero for the electromagnetic field, 
we obtain the linearized Einstein equations7

�hαβ = −κTαβ ,� (27)

where κ = 16πG/c4 and G is Newton’s constant.
In general relativity, coordinates have no physical meaning. Since the values of the comp

onents of the metric tensor depend on the choice of coordinates, we cannot extract physical 
information directly from them. Therefore, we have to investigate effects on test particles to 
learn about the gravitational field. The motion of test particles is governed by the geodesic 
equation

d2γµ

d�2 = −Γµ
νρ

dγν

d�
dγρ

d�
,� (28)

where, in linearized gravity, the Christoffel symbols are given as

Γµ
νρ =

1
2
ηµσ (∂νhσρ + ∂ρhσν − ∂σhνρ) .� (29)

A more direct way to analyse gravitational effects is through the spread and the contraction 
of the trajectories of test particles. This way, the test particles serve as each others reference. 

5 See chapter 18 in [9].
6 It is assumed that |∂αξβ | is of the same order of magnitude as hαβ.
7 See equation (18.8b) in [9].
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The relative acceleration between two infinitesimally close geodesics γ(�) and γ′(�) param
eterized by �  is given by the geodesic deviation equation

aµ =
D2sµ

d�2 = Rµ
ρσα(γ)γ̇

ργ̇σsα,� (30)

where s is the separation vector between the geodesics, D/d� = γ̇µ∇µ is the covariant deriva-
tive along the geodesic γ(�) and Rµ

ρσα is the Riemann curvature tensor. This is illustrated in 
figure 2. In the linearized theory, the pulled down Riemann curvature tensor is given by

Rαβγδ =
1
2
(∂β∂γhδα − ∂β∂δhγα − ∂γ∂αhβδ + ∂δ∂αhβγ) .� (31)

Since the metric perturbation transforms as hαβ → h̃αβ = hαβ − ∂αξβ − ∂βξα, we find that 
Rαβγδ is invariant under a linearized coordinate transformation.

4. The metric of the laser beam

Solving equation (27) for the energy–momentum tensor (25) with emitter and absorber8 at 
general positions can be quite cumbersome. In the following, we will consider two different 
limiting situations instead; we consider the case of the distance between emitter and absorber 
of the laser beam being very large and very small.

In the first situation, we can neglect the rapid change of the field strength at the emitter and 
the absorber of the laser beam. Then we can take into account that Tᾱβ̄ is changing slowly in 

ζ. In particular, we have Tλ
ᾱβ̄

= T̄λ
ᾱβ̄

(ξ,χ, θζ). Therefore, we can expand the metric perturba-
tion similar to equation (5) as

hλᾱβ̄(ξ,χ, θζ) =
∞∑

n=0

θnhλ(n)
ᾱβ̄

(ξ,χ, θζ),� (32)

and the linearized Einstein equations (27) lead to the differential equations

∆2dhλ(0)
ᾱβ̄

= −κw2
0 t̄λ(0)

αβ ,� (33)

∆2dhλ(1)
ᾱβ̄

= −κw2
0 t̄λ(1)

ᾱβ̄
,� (34)

Figure 2.  Schematic illustration of the geodesic deviation equation: two nearby 
geodesics γ(�) and γ′(�) are seperated by the vector sµ(�).

8 In this article, emitter and absorber always refers to the emitter and the absorber of the source laser beam for the 
case of a finitely extended beam. The emitter can be associated with the laser resonator and the active material and 
the absorber can be imagined as a beam dump.
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∆2dhλ(n)
ᾱβ̄

= −κw2
0 t̄λ(n)

ᾱβ̄
− ∂2

θζhλ(n−2)
ᾱβ̄

, for n > 1.� (35)

The solutions hλ(n)
ᾱβ̄

 of equations (33)–(35) can be given by using the free space Green’s func-

tion for the Poisson equation in two dimensions as

hλ(n)
ᾱβ̄

(ξ,χ, θζ) = − κ

4π

∫ ∞

−∞
dξ′dχ′ log

(
(ξ − ξ′)2 + (χ− χ′)2)Qλ(n)

ᾱβ̄
(ξ′,χ′, θζ),

�

(36)

where Qλ(n) is the source term on the right hand side of equations  (33)–(35), respectively. 
The form of the solutions in equation (36) was fixed by an additional condition that we did 
not discuss yet; we want the components of the Riemann curvature tensor to vanish at infinite 
distance from the beamline. As stated in section 3, the Riemann curvature tensor governs the 
spread and the contraction of the trajectories of test particles. This means, if the Riemann ten-
sor vanishes, parallel geodesics stay parallel and there is no physical effect as the only refer-
ence for a test particle in linearized gravity can be another test particle. We can assume that 
there is no gravitational effect for infinite spatial distances from the beamline. Therefore, we 
assume that the Riemann curvature tensor Rµ

ρσα vanishes for ρ → ∞. The full discussion of 
the curvature condition and its implications are given in appendix F. Additionally, appendix 
F contains expressions for the components of the metric perturbation up to third order in θ.

As we did before for the vector potential, the field strength tensor, the energy–momentum 
tensor and the metric perturbation, we expand the Christoffel symbols and the Riemann tensor 
in orders of θ,

(Γλ)ᾱβ̄γ̄(ξ,χ, θζ) =
∞∑

n=0

θn(γλ(n))ᾱβ̄γ̄(ξ,χ, θζ),� (37)

and

Rλ
ᾱβ̄γ̄δ̄(ξ,χ, θζ) =

∞∑

n=0

θnrλ(n)
ᾱβ̄γ̄δ̄

(ξ,χ, θζ),� (38)

respectively. With equations (31), (29) and (32), we can derive direct relations between the 

terms of the expansions rλ(n)
ᾱβ̄γ̄δ̄

 and (γλ(n))ᾱ
β̄γ̄

 and terms in the expansion of the metric pertur-

bation hλ(n)
αβ . They are given in appendix E.

4.1.  Small distance between emitter and absorber

In the second situation, where we assume a short distance between emitter and absorber of the 
laser beam, the rapid change of the field strength at emitter and absorber of the laser beam can-
not be neglected. Then, we solve the Einstein equations (27) by use of their retarded solution

hλᾱβ̄(τ , ξ,χ, ζ) =
κ

4π

∫ ∞

−∞
dξ′dχ′dζ ′

Tλ
ᾱβ̄

(
τ −

√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2, ξ′,χ′, θζ ′

)

√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2

.

� (39)
Furthermore, we can set θζ � 1 and we can expand the function e−|µ(θζ)|2ρ2

 appearing in the 
energy–momentum tensor in θ before the integration, which simplifies the calculations signifi-

cantly9. Expressions for hλ
ᾱβ̄

 up to second order in θ for the case of small distances between 
emitter and absorber of the laser beam can be found in appendix H.

9 Due to the Gaussian profile of the beam, large values of ρ do not contribute significantly and (θζ)nρ2 can be 
considered as small for all n � 1.
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In the following, we discuss the metric perturbation in different orders in θ and present its 
physical effects. As already the effects in the leading order of our expansion are too small to 
be measurable with current technology [26], this will also be the case for the effects in the 
higher orders. However, the effects are of conceptual interest, as they illustrate the gravita-
tional properties of light.

5.  Zeroth/leading order

The metric in the leading order corresponds to the full metric at θ = 0, and thus to the metric 
for the laser beam in the paraxial approximation. Then, the components of the Poynting vec-
tor transversal to the beamline vanish and the only non-zero component of the Maxwell stress 

tensor is σλ
ζζ. Furthermore, σλ

ζζ = Eλ = −Sλ
ζ /c, which leads to

Tλ(0)
ᾱβ̄

= E(0)




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 =: E(0)M0

ᾱβ̄ ,

�

(40)

where E(0) = ε0w2
0E2

0|v0|2 = 2P0|v0|2/(πc). Therefore, the metric perturbation is found as

hλ(0)
ᾱβ̄

= I(0)M0
ᾱβ̄ ,� (41)

where, for the case that the emitter and absorber of the laser beam are far away from each 
other, we find from equation (36)

I(0) =
κw2

0P0

2πc

(
1
2

Ei
(
−2|µ|2ρ2)− log(ρ)

)
,� (42)

where Ei(x) is the exponential integral function. The solution (42) can be compared with the 
exact solution derived by Bonnor for an infinitely extended beam of a light-like medium with-
out divergence. The derivation of the metric for a Gaussian profile of the energy density of 
the medium is given in appendix G. Bonnor’s solution is split into an interior and an exterior 
solution that are matched at a finite transversal radius a. If the beam is infinitely extended in 
the transverse direction, we are left with an interior solution only which reads

gB
ᾱβ̄ = ηᾱβ̄ − κw2

0P0

2πc

(
log(ρ)− 1

2
Ei

(
−2ρ2)

)
M0

ᾱβ̄ .� (43)

For θ = 0, we have µ(θζ) = 1, and the solution in equation (41) coincides with (43).

5.1.  Small distance between emitter and absorber of the laser beam

For the case when the emitter and absorber of the laser beam are close to each other, we have 
to take the second approach described in section 4. With θζ � 1, the retarded potential (39) 
in leading order in θ becomes

I(0) =
κw2

0P0

2πc
e−2ρ2

∫ ∞

0
dρ′ ρ′ log

(
β − ζ +

√
(β − ζ)2 + ρ′2

α− ζ +
√

(α− ζ)2 + ρ′2

)
J0 (i4ρρ′) e−2ρ′2

,� (44)
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where J0 is the Bessel function of the first kind. For small beam waists, w0 � 1, the solution 
for the laser beam (44) approaches the solution for the infinitely thin beam (45), as shown in 
appendix I. We obtain

I(0)
w0→0 =

κw2
0P0

2πc
log

(
β − ζ +

√
(β − ζ)2 + ρ2

α− ζ +
√

(α− ζ)2 + ρ2

)
.� (45)

Thus, in the paraxial approximation, we may say that the solution for the laser beam approaches 
the solution for the infinitely thin beam of constant energy per length of [36] as the beam waist 
goes to zero. Note that the limit w0 → 0 can only be considered for the leading order of the 
laser beam here. This is because θ = 0 implies that the condition θζ � 1 can be satisfied for 
all w0. In contrast, for any non-vanishing θ, the conditions w0 → 0 and θz/w0 = θζ � 1 imply 
z → 0.

In figure 3, the function I(0) and its derivatives are illustrated for the three cases of the 
infinitely long Gaussian beam, the Gaussian beam with short distance between emitter and 
absorber of the laser beam with a Gaussian profile, and the infinitely thin beam.

5.2.  Acceleration of a test particle at rest

Let us consider the acceleration a massive test particle would experience if it was initially at 
rest at given ρ and ζ. Then, the initial normalized tangent to its worldline γ(τ̃), where τ̃  is the 

proper time, is given as γ̇ = cw−1
0

(
1 + hλ(0)

ττ /(2w2
0), 0, 0, 0

)
, where the dot refers to the deriva-

tive with respect to proper time. From the geodesic equation (28) and the form of the metric 
in zeroth order, we find

γ̈ρ � c2

2w4
0
∂ρI(0) and γ̈ζ � c2

2w4
0
∂ζI(0).� (46)

Plots of ∂ρI(0) and ∂ζI(0) for the three different cases above are given in figure 3. As a numerical 
example for the long beam, for the power P0 ∼ 1015 W, the beam waist w0 ∼ 10−3 m , a parti-
cle at rest at the location z  =  0 and r =

√
x2 + y2 = w0 is accelerated by γ̈r ∼ −10−18 ms−2.10  

This is of the same order of magnitude as for the infinitely thin beam [26].

5.3.  Curvature

For the leading order, we can find the components of the curvature tensor using equation (E.2) 
in appendix E and equation (41). The only non-zero independent components of the Riemann 
curvature tensor for the metric perturbation given in equations (42) and (44) and the limit of 
an infinitely thin beam in equation (45) are

R(0)
τ iτ j = R(0)

ζiζj = −R(0)
τ iζj = −1

2
∂i∂jI(0).� (47)

For the case of a far extended beam neglecting emitter and absorber of the laser beam that was 
given in equation (42), we obtain

10 Here and in the following numerical examples, in order to express the acceleration in the coordinates {ct, x, y, z}, 
the Leibnitz rule has been applied and it has been used that the difference between proper time and coordinate time 
is proportional to the metric perturbation.
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R(0)
τξτξ = R(0)

ζξζξ = −R(0)
τξζξ = −κw2

0P0

4πc
|µ|2
ρ4

(
(ξ2 − χ2)−

(
4ξ2ρ2 + ξ2 − χ2) e−2|µ|2ρ2

)
,� (48)

R(0)
τχτχ = R(0)

ζχζχ = −R(0)
τχζχ =

κw2
0P0

4πc
|µ|2
ρ4

(
(ξ2 − χ2) +

(
4χ2ρ2 − ξ2 + χ2) e−2|µ|2ρ2

)
,� (49)

R(0)
τξτχ = R(0)

ζξζχ = −R(0)
τξζχ = −κw2

0P0

2πc
|µ|2ξχ
ρ4

(
1 − (1 + 2ρ2)e−2|µ|2ρ2

)
.

�

(50)

Figure 3.  These plots show the value of the leading order of the metric perturbation 
I(0) (part a, d) and its first derivatives (part b, c, e, f) for the Gaussian beam with infinite 
distance between (plain, blue), the Gaussian beam with short distance between emitter 
and absorber of the laser beam (dashed, red), and the infinitely thin beam (dotted, 
purple) in units of κP0w2

0/(2πc). In the second and the third cases, the distance between 
laser beam’s emitter and absorber is chosen to be 6. In the first row, the functions are 
plotted for ζ = 1 and in the second row for ρ = 1/2. The second row does not contain 
plots for the case of large distances between emitter and absorber of the laser beam as 
there is no dependence of I(0) on ζ in that case. We find that the values for I(0) and its first 
derivatives are usually larger for the infinitely thin beam than for the other two cases. 
This is due to the divergence at the beamline for the case of the infinitely thin beam. In 
the other two cases, the gravitational field is spread out as the sources are. In (b), we 
see that the absolute value of the first ρ-derivative of I(0) reaches a maximum at a finite 
distance from the beamline. Note that ∂ρI(0) is proportional to the acceleration that a 
test particle experiences if it is initially at rest at a given distance ρ to the beamline. We 
see that acceleration is always directed towards the beamline. It is larger in the case of 
an infinite distance between emitter and absorber of the laser beam than in the case of 
a finite distance, which we can attribute to the larger extension of the source (and thus 
the larger amount of energy) in the former than in the latter. In (e), which shows plots 
for the cases of finite distance between laser beam’s emitter and absorber, we see that 
∂ρI(0) still is the largest at the center between emitter and absorber of the laser beam 
and decays quickly once their positions at ζ = ±3 are passed. ∂ζI(0) is proportional to 
the acceleration in the ζ-direction. As expected it vanishes for infinite distance between 
emitter and absorber of the laser beam. In (f), we see that the acceleration is directed 
towards the center between the laser beam’s emitter and absorber and its absolute values 
reaches its maximum at ζ = −3 and ζ = 3, the ζ-coordinates of emitter and absorber of 
the laser beam respectively.
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5.4.  Comparison to the infinitely thin beam

In the paraxial approximation (i.e. for θ = 0) and for small beam waists, the Riemann curva-
ture tensor of the infinitely long laser beam approaches the Riemann curvature tensor of the 
infinitely thin beam, as does the metric. It is also interesting to compare the curvature for the 
infinitely thin beam with that for the full solution given in [4] by Bonnor. The analysis can 
be found in appendix G for a beam with a Gaussian profile cut off at a radius a. The corre
sponding solution splits into an interior solution and an exterior solution. For a → ∞, we 
obtain the solution in equation (43) that we compared with our leading order metric perturba-
tion already. In appendix G, we give the components of the curvature tensor in the exterior 
region (r  >  a) in equation (G.8). We show that it coincides with the components of the curva-
ture tensor of an infinitely thin beam. In particular, the curvature is independent of the radial 
dependence of the beam intensity; only the total power of the beam is important.

6.  First order and frame dragging

The metric perturbation for large distances between emitter and absorber of the laser beam in 

first order in θ is determined by the first order of the energy–momentum tensor, t̄λ(1)
ᾱβ̄

, which 

has the only independent non-zero components

θ̄tλ(1)
τξ = −θ̄tλ(1)

ζξ = −Sλ(1)
ξ = −E(0)θ|µ|2(θζξ + λχ),

θ̄tλ(1)
τχ = −θ̄tλ(1)

ζχ = −Sλ(1)
χ = λE(0)θ|µ|2(ξ − λθζχ).

� (51)

Note that ζ̃ = θζ  is the coordinate that is considered for the asymptotic expansion in equa-

tions (6)–(8). Therefore, Sλ(1)
ξ  and Sλ(1)

χ  are indeed of first order in θ regarding the expan-

sion (5).
From equation (34), we obtain for the metric perturbation in first order in θ

hλ(1)
ᾱβ̄

=




0 Iλ(1)
ξ Iλ(1)

χ 0

Iλ(1)
ξ 0 0 −Iλ(1)

ξ

Iλ(1)
χ 0 0 −Iλ(1)

χ

0 −Iλ(1)
ξ −Iλ(1)

χ 0




,

�

(52)

where

Iλ(1)
ξ =

1
4
(θζ∂ξ + λ∂χ)I(0) = −κP0w2

0(θζξ + λχ)

8πcρ2

(
1 − e−2|µ|2ρ2

)
,� (53)

Iλ(1)
χ = −1

4
(λ∂ξ − θζ∂χ)I(0) =

κP0w2
0(λξ − θζχ)

8πcρ2

(
1 − e−2|µ|2ρ2

)
.� (54)

For small θζ, the terms proportional to θζ can be neglected in (53) such that we find

Iλ(1)
ξ =

λ

4
∂χI(0) and Iλ(1)

χ = −λ

4
∂ξI(0).� (55)

It is interesting to note that our solution coincides with the exact solution of Einstein’s equa-
tions presented in [5] by Bonnor for a rotating null fluid. In particular, we can identify our 

functions in the metric with those of [5] as α = θIλ(1)
χ /

√
2, β = θIλ(1)

ξ /
√

2 and A  =  I(0). Our 
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equation (34) corresponds to the equations (2.16) and (2.17) in [5]. Similar expressions for the 
metric of a circularly polarized light beam are presented in [15].

6.1.  Small distance between emitter and absorber of the laser beam

For small distances between emitter and absorber of the laser beam, we find directly equa-

tion (55), where I(0) has to be taken from equation (44). In figure 4, the function Iλ(1)
ξ  is illus-

trated as a function of ξ and ζ for χ = 1. The plots for Iλ(1)
χ  would look similar when plotted 

as a function of χ and ζ for ξ = 1.

6.2.  Curvature

It was shown in [5] that the rotation of the null fluid leads to frame dragging. This has been 
shown to be the case as well in [34] for a laser beam of light with angular momentum. Here, 
we obtain the frame dragging effect in the curvature tensor components. The only non-zero 
components of first order (see equation (E.2)) are

rλ(1)
j̄ζ̄ j̄k = −1

2
∂̄j

(
∂̄jh

λ(1)
ζk̄ − ∂k̄hλ(1)

ζ̄j

)
,

rλ(1)
j̄τ j̄̄k = −1

2
∂̄j

(
∂̄jh

λ(1)
τ k̄ − ∂k̄hλ(1)

τ j̄

)
,

rλ(1)
j̄τζτ = −1

2
∂̄j∂θζhλ(0)

ττ ,

�

(56)

where j̄ �= k̄. For small θζ, we can neglect rλ(1)
j̄τζτ  and we find

rλ(1)
ξζξχ = −λ

κw2
0

2
ξE(0) = −rλ(1)

ξτξχ and rλ(1)
χζχξ = λ

κw2
0

2
χE(0) = −rλ(1)

χτχξ.
�

(57)

Figure 4.  Considering θζ � 1, the first two plots show the function I(1)
ξ  for an infinite 

distance between emitter and absorber of the laser beam (plain, blue) and a short 
distance between laser beam’s emitter and absorber (dashed, red) as a function of ξ 
for ζ = 0.1 and χ = 0 (plot (a)) and as a function of ζ at ξ = 1/2 and χ = 1 (plot (b)). 
The functions are plotted in units of κw2

0P0/(2πc). In (b) there is no plot for the case 
of infinite distance between emitter and absorber of the laser beam as the result does 
not depend on θζ. Plot (c) shows the deflection in the χ-direction a light test particle 
would experience if it would move radially outwards in the ξ-direction at χ = 0 for an 
infinite distance between emitter and absorber of the laser beam (plain, blue) and a short 
distance between laser beam’s emitter and absorber (dashed, red). This effect is induced 
by frame dragging. We see that the effect changes sign for the case of a short distance 
between the laser beam’s emitter and absorber.
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The non-zero curvature components rλ(1)
ξτξχ and rλ(1)

χτχξ lead to the precession of gyroscopes, 

which can be seen most straight forward in the framework of gravitomagnetism [22]; they can 
be interpreted as gravitomagnetic fields that govern the motion of test particles in a gravita-
tional Lorentz force law.

6.3.  Deflection of test particles

The frame dragging effect can be studied alternatively using the geodesic equation (28) and 
the expressions for the Christoffel symbols in equation (E.1). Let us consider a test particle 
moving radially outwards with velocity v. We will only consider terms linear in v in the fol-

lowing. Then, the initial tangent γ̇(0) = cw−1
0

(
1 − f , v/c, 0, 0

)
 to the test particle’s world line 

γ(τ̄) at γ(0) = (0, ξ, 0, 0) and f (v, ξ,χ, θζ) is chosen such that γ̇(τ̄) fulfills the condition 
gµ̄ν̄(γ(τ̄))γ̇

µ̄(τ̄)γ̇ν̄(τ̄) = −c2 at τ̄ = 0, where again τ̄  is the proper time and the dot repre-
sentes the derivative with respect to it. In first order in the metric perturbation, we find that

γ̈χ(0) =
cv
w4

0
θ
(
∂χh(1)

τξ − ∂ξh(1)
τχ

)
= −λv θ

κP0

2πw2
0
|µ|2e−2|µ|2ρ2

.� (58)

We see that massive test particles do not propagate radially. Their trajectories are transversally 
bent, where the sign of the bending depends on the polarization of the laser beam. This is the 
effect of frame dragging. For v ∼ 10ms−1, P0 ∼ 1015 W, θ ∼ 10−3, w0 ∼ 10−3 m , z  =  0 and 
x  =  w0, the acceleration is of the order of magnitude d2γy(0)/dt2 ∼ ±10−29 ms−2.

The effect in equation (58) decreases exponentially with the distance to the beamline. The 
same is true for the curvature components in equation (57). The effect is due to the spin angu-
lar momentum due to the helicity of the beam. In contrast, in [34], frame dragging effects for 
ρ � 1 have been shown to arise from the orbital angular momentum of optical vortices. In 
figure 5, the above deflection is illustrated. It is interesting to note that, by direct calculation 
from the expressions for the metric perturbation up to third order in θ in appendix F, we find 
for ρ � 1

Rᾱβ̄γ̄δ̄ ≈
(

1 +
θ2

2

)
R(0)
ᾱβ̄γ̄δ̄

,� (59)

Figure 5.  Schematic illustration of the frame dragging effect: a massive particle moving 
radially outwards from the beamline (here in ξ-direction) is accelerated in the transverse 
direction (here in χ-direction).
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up to third order in θ. All other terms decay exponentially with ρ2. Therefore, far away from 
the beam and up to third order in θ, there are no effects beyond those that already exist in 
zeroth order. All additional effects appear only where the energy distribution of the source 
beam is non-vanishing; they are effects of a local gravitational coupling between the source 
and test particles. In the next section, we will discuss another such effect in fourth order in θ, 
the deflection of parallel co-propagating test rays.

7.  Fourth order—the deflection of parallel co-propagating test rays

As discussed in [36] for a finitely long and infinitely thin light beam, a test ray propagating 
parallel to it is not deflected. It has also been shown [4] that the superposition of two exact 
solutions of the Einstein equations for pp-waves travelling in the same direction is again a 
solution, confirming the result of the linearized theory. In our description, there are two more 
important characteristics of the laser beam playing an important role, both of them coming 
from the wave-like nature of light: first, the laser beam is diverging. Second, in [14], it was 
argued that light in a laser beam does not move with the speed of light along the beamline, but 
with a slightly smaller velocity. The origin of the effect is the superposition of plane waves 
with different wave vectors, which leads to a reduced effective propagation speed. This was 
confirmed experimentally in [11]. In [14], the difference between the speed of light and the 
group velocity of light in a laser beam was found to be11 δvθ = c − vθ = c/(k2w2

0) = cθ2/4. 
It has been shown by Scully that two parallel co-propagating thin beams in a wave-guide, 
since they are propagating slower than the speed of light, do gravitationally interact with each 
other [32]. Therefore one may wonder whether the source laser beam deflects an originally 
parallel co-propagating test ray. We will investigate this question in the following. The setup 
is illustrated in figure 6.

A parallel co-propagating test light ray is described by the light-like tangent vector 
γ̇ᾱ = w−1

0 c(1, 0, 0, 1 − f ), where f is determined by the null-condition and found to be of the 
same order of magnitude as the metric perturbation, and therefore does not contribute in the 

Figure 6.  Schematic illustration of the source laser beam and the parallel co-propagating 
test ray of light: we look at the deflection of the test ray of light due to the gravitational 
field of the laser beam.

11 In [14], a different definition of the beam waist is used (see equation (28) of [14]) such that w = w0/
√

2 in equa-
tion (40) of [14].
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following, and again the curve is parametrized with proper time and the dot stands for the 
derivative with respect to it. With the geodesic equation, we obtain

γ̈ j̄
+ = −c2w−2

0

[
Γj̄
ττ + 2Γj̄

τζ + Γj̄
ζζ

]
� (60)

= −c2w−4
0 θ4

[
−1

2
∂̄j

(
h(4)
ττ + 2h(4)

τζ + h(4)
ζζ

)
+ ∂θζ

(
h(3)
τ j̄ + h(3)

ζ̄j

)]
.� (61)

From the expression for the components of the energy–momentum tensor in appendix B and 
equation (35), we find

∆2d

(
h(4)
ττ + 2h(4)

τζ + h(4)
ζζ

)
= −κw2

0P0

2πc
|µ|6ρ4e−2|µ|2ρ2

,� (62)

which is solved by equation (36) as

h(4)
ττ + 2h(4)

τζ + h(4)
ζζ =

κw2
0P0

32πc

(
Ei

(
−2|µ|2ρ2)− 2 log(ρ)−

(
3
2
+ |µ|2ρ2

)
e−2|µ|2ρ2

)
.� (63)

The components of the metric perturbation in third order in θ which appear in the second term 
in equation (61) can be found in appendix F. We obtain for j̄ ∈ {ξ,χ}, assuming that θζ � 1,

γ̈ j̄ =
cκP0

32πw2
0
θ4 xj̄

ρ2

(
1 − (1 − ρ4)e−2ρ2

)
.� (64)

For large distances from the beamline (ρ � 1) and j ∈ {x, y}, the acceleration becomes

γ̈ j̄ =
cκP0

32πw2
0
θ4 xj̄

ρ2 ,� (65)

which is an apparent repulsion. This is due to the second term in equation (61). If we had con-
sidered only the first term in equation (61), we would have obtained the same absolute accel-
eration as in equation (65), but with the opposite sign. Hence, the first term in equation (61) 
induces an attraction and the second term a repulsion.

However, coordinate acceleration does not have any physical meaning in general relativ-
ity. Therefore, we have to investigate the geodesic deviation to learn about the meaning of 
the coordinate acceleration (65). With the separation vector sᾱ = (0, 1, 0, 0) and the tangent 
γ̇ᾱ = w−1

0 c(1, 0, 0, 1 − f ), we obtain for the acceleration of the separation vector in ξ-direction 
from equation (30)

aξ =
θ4c2

2w4
0

(
∂2
ξ

(
h(4)
ττ + 2h(4)

τζ + h(4)
ζζ

)
− 2∂ξ∂θζ

(
h(3)
τξ + h(3)

ξζ

)
+ ∂2

θζh(2)
ξξ

)
.

� (66)
With the expressions for the combinations of the metric perturbation given above and in 
appendix F, we obtain in the case of θζ � 1

aξ = −κcP0θ
4

16πw2
0

e−2ρ2 (
ρ2(4ξ2 + 3)− 6ξ2) ,� (67)

which vanishes far from the beamline. Therefore, we found that the deflection in equation (64) 
is a coordinate effect. More precisely, the geodesic deviation in equation (66) can be split into 
two parts. The first part is the ξ-derivative of the coordinate acceleration γ̈ j̄  in equation (64). 

The second part is the second θζ-derivative of h(2)
ζζ  which corresponds to the change of the 
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definition of length in the ξ-direction. The contributions of the two parts to the geodesic devia-
tion cancel for large distances from the beamline. As a numerical example, for P0 ∼ 1015 W, 
θ ∼ 10−3, w0 ∼ 10−3 m , x  =  w0 and y  =  0, one has ax ∼ −10−31 ms−2. Notice that this is 
the relative acceleration of two test light rays. The interesting point is that it is non-zero.

7.1.  Comparison to the boosted infinitely long massive cylinder

The reduced propagation speed argued for in [14] suggests that the result in equation (64) may 
be compared to the deflection of a parallel test ray by a cylindrically symmetric mass distribu-
tion moving with v = c − δvθ along the cylinder axis (see figure 7). That is the content of this 
subsection.

The exterior gravitational field of a cylindrically symmetric mass distribution of rest of 
mass per unit length m (dimensionless units) is described by the Levi-Civita metric [18],

ds2 = −ρ4mc2dt2 + ρ8m2−4m (
dρ2 + dz2)+ P2ρ2−4mdφ2,� (68)

in the cylindrical coordinates (ct, ρ,φ, z), where ρ =
√

x2 + y2  and we set P  =  1. The param
eter m can be considered to be a dimensionless quantity representing the mass or energy per 
unit length for 0 < m < 1

2 [6]. Now, we let the cylinder move in positive ζ-direction with 
normalized velocity β = v/c, and thus make the coordinate transformation

ct → γ(ct − βz),
z → γ(z − βct),

� (69)

where γ = (1 − β2)−1/2 and β = v/c. The line density of energy m is a quotient of an energy 
scale E and a length scale L. The energy seen by an observer in the rest frame is E ′ = γE . Due 
to Lorentz contraction, the length scale seen in the rest frame becomes L′ = L/γ. Therefore, 
the line density of energy seen in the rest frame becomes m′ = γ2m. Then, the metric becomes

ds2 = γ2
(
−ρ4γ−2m′

+ β2ρ8γ−4m′2−4γ−2m′)
c2dt2 − 2γ2β

(
−ρ4γ−2m′

+ ρ8γ−4m′2−4γ−2m′)
cdtdz

+ γ2
(
−β2ρ4γ−2m′

+ ρ8γ−4m′2−4γ−2m′)
dz2 + ρ8γ−4m′2−4γ−2m′

dρ2 + P2ρ2−4γ−2m′
dφ2.

� (70)

Figure 7.  A massive cylinder moving at the speed v < c and a parallel co-propagating 
test light beam: we investigate the gravitational deflection of the test beam due to the 
gravitational field of the cylinder.
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Transforming to cylindrical coordinates according to ρ =
√

x2 + y2  and dρ = 1
ρ2 (xdx + ydy), 

as well as dφ = 1
ρ2 (−ydx + xdy), and assuming γ−2m′ to be small and expanding the terms 

ργ
−2m′

 as ρm = 1 + γ−2m′ log(ρ) and neglecting quadratic terms in γ−2m′, we obtain

ds2 = −
(
1 + (1 + β2)4m′ log(ρ)

)
c2dt2 + 16βm log(ρ)cdtdz +

(
1 − (1 + β2)4m′ log(ρ)

)
dz2

+
(
1 − (1 − β2)4m′ log(ρ)

) (
dx2 + dy2) .

�
(71)

This metric can be decomposed into the Minkowski metric plus the small perturbation

hαβ = −4m′ log(ρ)




1 + β2 0 0 −2β
0 1 − β2 0 0
0 0 1 − β2 0

−2β 0 0 1 + β2


 .� (72)

We can identify the line density of energy with that of a beam of light as m′c4/G = P0/c. 
Then, the metric ηαβ + hαβ coincides with the metric of an infinitely long beam of light with 
constant energy density P0/(π(w0/2)2c) confined to a cross section of π(w0/2)2 for β = 1 
given in [4], up to constants.

From the metric (72), we find that the parallel test ray with tangent γ̇µ = c(1, 0, 0, 1) is 
deflected in x-direction according to

γ̈x = −4GP0

c3

x√
x2 + y2

(1 − β)2.� (73)

Assuming 1 − β = δv/c = θ2/4, we find that the result in equation (73) differs from equa-
tion (65) by its sign and a factor 1/2. Considering the geodesic deviation with the separation 
vector sα = (0, 1, 0, 0), we obtain

ax =
1
2
∂2

x (htt + 2htz + hzz) ,� (74)

and, inserting the expressions for the metric,

ax =
4GP0

c3

x2 − y2

(x2 + y2)2 (1 − β)2.� (75)

In contrast, for the gravitational field of the focused laser beam, we did not find a deflection 
for large distances. From this result, we see that the gravitational field of light in a Gaussian 
beam does not simply behave as massive matter moving with the velocity derived in [14] 
along the beamline. The reason is that the divergence of the laser beam does not only lead to 
a reduced group velocity, but also to a change of the metric along the beamline. This leads to 
the appearance of the second and third term in equation (66), which cancel the effect of the 
first term for large distances from the beamline. In particular, we mentioned above that the first 
term in equation (61) induces an attraction with the same absolute value as the acceleration in 
equation (64). Accordingly, if we had considered the first term in equation (61) only, we would 
have obtained an expression that would coincide with that for the geodesic deviation induced 
by the boosted rod given in equation (75) up to a factor 2. Therefore, we can conclude that 
the additional effects due to the divergence of the light beam cancel the attraction due to the 
reduced propagation speed of the light in the beam.
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8.  Conclusion

We analyzed the gravitational field of a focused laser beam, describing the laser beam as a 
solution to Maxwell’s equations. We calculated the five leading orders of the metric perturba-
tion expanded in the divergence angle θ of the beam explicitly and discussed the difference 
to the solutions when the laser beam is treated in the paraxial approximation. Already in the 
paraxial approximation, the gravitational field of a laser beam turns out to be too small to 
be detected with current technology [26]. This is also the case for the effects we describe. 
However, they are of conceptual interest as they reveal the gravitational properties of light, 
and with the progress of technology, they may possibly be measurable in future experiments.

For small values of the beam waist and for θ = 0, which corresponds to the paraxial 
approximation in our case, our solution for the laser beam corresponds to the solution for the 
infinitely thin beam [36]. If in addition we consider the laser beam to be infinitely long, we 
recover the solution for an infinitely long cylinder [4].

In first order in the divergence angle, we found frame dragging due to spin angular momen-
tum of the circular polarized laser beam. This is similar to the result of [34] for beams with 
orbital angular momentum. In contrast to frame dragging induced by orbital angular momen-
tum, the effect we find decays exponentially with the distance squared from the beamline 
divided by the beam waist parameter w0. This property coincides with the decay of the energy 
density of the beam. Hence, frame dragging due to the spin angular momentum of the beam 
is proportional to the local energy density of the beam. During the peer reviewing process 
for the publication of this article, the article [35] by Strohaber appeared on the Arxiv preprint 
server. In the article, frame dragging due to intrinsic angular momentum including spin of 
light beams is derived and discussed.

The statement of [36] by Tolman et al that a non-divergent light beam does not deflect grav-
itationally a co-directed parallel light beam has been recovered in different contexts: two co-
directed parallel cylindrical light beams of finite radius [3, 4, 24], spinning non-divergent light 
beams [23], non-divergent light beams in the framework of gravito-electrodynamics [13], par-
allel co-propagating light-like test particles in the gravitational field of a 1D light pulse [26]. 
In fourth order in the divergence angle, we found a deflection of parallel co-propagating test 
beams. This shows that the result of [36] and [4] only holds up to the third order in the diver-
gence angle. This could have been expected from the fact that the group velocity of light in a 
Gaussian beam along the beamline is not the speed of light [11, 14]. However, the deflection 
of parallel co-propagating light beams by light in a focused source laser beam decays like the 
distribution of energy of the source beam with the distance from the beamline. This means 
that the effect does not persist outside of the distribution of energy given by the source laser 
beam like the frame dragging effect due to spin angular momentum. This is in contrast to the 
deflection that one obtains from a rod of matter boosted to a speed close to the speed of light. 
Therefore, we conclude that focused light does not simply behave like massive matter moving 
with the reduced velocity identified in [26, 34]. This is due to the divergence of the laser beam 
along the beamline which leads to additional contributions to the metric perturbations which 
do not appear in the case of the boosted rod. These additional contributions cancel the effect 
induced by the reduced propagation speed of light in the focused beam.

9.  Outlook

As an extension of the research presented in this article, it would be interesting to study the 
gravitational interaction of two parallel co-propagating focused laser beams in the description 
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presented here. The result could be compared to the corresponding results presented in [3, 4, 
24]. In particular, it would be interesting to see if there exists a contribution to the gravitational 
interaction of the two beams that does not decay exponentially with the square of the distance 
between the beamlines of the beams.

It would be interesting to know if the solutions to Maxwell’s equations developed in this 
article can be used as a basis for a quantum field theoretical description of the gravitational 
interaction of two laser beams in the framework of perturbative quantum gravity (PQG). Then, 
the effect of localization on light-light interactions could be considered for light with quantum 
properties. For example, in [25, 27] it is shown that the differential cross section for gravi-
tational photon scattering can be amplified or suppressed when the scattering photons are in 
specific polarization entangled states initially. It would be interesting to see how this effect 
depends on the distance between the beams. Furthermore, in [7], the effect of entanglement in 
the position of a source of a gravitational field was investigated in the framework of semiclas-
sical gravity. Similar questions could be considered in the framework of PQG using focused 
laser beams in spatial superposition states or with squeezed light as sources.

Another step from the results presented in this article into a different direction could be the 
consideration of a pulse of light in a focused laser mode. The framework used in this article 
would need to be extended to envelope functions that depend on time and the position along 
the beamline. Approaches for the description of such beams are given for example in [2, 19, 
31, 39]. An expression for the gravitational field of a focused laser pulse could be used to 
have a closer look at the implications of focusing for possible experiments trying to detect the 
gravitational field of light. In particular, the pulsed beams would produce a pulsed gravita-
tional signal that could be detected with resonator systems like small scale gravitational wave 
detectors (for example [16, 29, 33]) or quantum optomechanical systems.

The gravitational field of a focused laser pulse could be used as well to check the results 
of [26] where the laser pulse is modeled as a 1D rod of light with an energy density that is 
modulated as that of a plane wave. In particular, for the model used in [26], all gravitational 
effects are induced by the emission and the absorption of the light pulse alone; there is no 
gravitational effect related to the propagation of the pulse. This situation may change once 
divergence of the beam is taken into account.

It could be worthwhile to see whether a similar solution for the gravitational field of a 
focused laser beam as we derived in this article could be derived considering the full coupled 
set of the Einstein–Maxwell equations. The resulting metric could be compared to the one in 
[20] and it could be investigated if the results of [20] about the effective gravitating mass and 
angular momentum can be reproduced when divergence of the beam is taken into account. It 
would also be interesting to consider the gravitational field of the electromagnetic field dis-
tribution used in this article to model a focused laser beam in dynamical spacetime theories 
with spacetime torsion like Einstein–Cartan-theory and the Poincaré-gauge-theory of gravity 
[17]. In particular, we found that frame dragging due to the spin angular momentum of light is 
proportional to the local energy density of the beam. This is similar to the effect of spin angu-
lar momentum on test particles or fields via spacetime torsion as torsion is not a propagating 
degree of freedom in Einstein–Cartan-theory and Poincaré-gauge-theory.
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Appendix A.  Vector potential of a circularly polarized laser beam

From the expansion of the field strength Fλ
ᾱβ̄

=
∑∞

n=0 θ
n w0E0√

2
f λ(n)
ᾱβ̄

(ξ,χ, θζ)ei 2
θ (ζ−τ), where 

E0 =
√

2A/w0θ, and the Lorenz gauge condition

Aτ =
iθ
2
∂τAτ =

iθ
2
(∂ξAξ + ∂χAχ + θ∂θζAζ) ,� (A.1)

we obtain a direct relation between vλ(n)
ᾱ  and f λ(n)

ᾱβ̄
 (where λ refers to the polarization state) as

f λ(n)
0ζ = ∂ξvλ(n−1)

ξ + ∂χvλ(n−1)
χ + 2∂θζvλ(n−2)

ζ

− i
2
∂θζ

(
∂ξvλ(n−3)

ξ + ∂χvλ(n−3)
χ + ∂θζvλ(n−4)

ζ

)
,

�
(A.2)

f λ(n)
0̄j = −2ivλ(n)

j̄ + ∂̄jv
(n−1)
ζ − i

2
∂̄j

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ + ∂θζvλ(n−3)

ζ

)
,

� (A.3)

f λ(n)
j̄ζ = −2ivλ(n)

j̄ + ∂̄jv
λ(n−1)
ζ − ∂θζvλ(n−2)

j̄ ,� (A.4)

f λ(n)
ξχ = ∂ξvλ(n−1)

χ − ∂χvλ(n−1)
ξ .� (A.5)

Since the vector potential fulfills the wave equation (1), we have that �Fᾱβ̄ = 0. In particular,
(
∂2
ξ + ∂2

χ + 4i∂θζ
)

f (0)
ᾱβ̄

(ξ,χ, θζ) = 0,� (A.6)

(
∂2
ξ + ∂2

χ + 4i∂θζ
)

f (1)
ᾱβ̄

(ξ,χ, θζ) = 0,� (A.7)

(
∂2
ξ + ∂2

χ + 4i∂θζ
)

f (n)
ᾱβ̄

(ξ,χ, θζ) = −∂2
θζ f (n−2)

ᾱβ̄
(ξ,χ, θζ), for n > 1.� (A.8)

The components of the Hodge dual of the field strength tensor are given as

�f λ(n)
0ζ = −f λ(n)

ξχ , �f λ(n)
0ξ = −f λ(n)

χζ , �f λ(n)
0χ = f λ(n)

ξζ ,� (A.9)

�f λ(n)
ξζ = −f λ(n)

0χ , �f λ(n)
χζ = f λ(n)

0ξ and � f λ(n)
ξχ = f λ(n)

0ζ ,� (A.10)

and we obtain that a helicity eigenstate has to fulfill the conditions

0 = f λ(n)
0ζ + iλ � f λ(n)

0ζ = f λ(n)
0ζ − iλf λ(n)

ξχ

= −iλ
(
∂ξvλ(n−1)

χ − ∂χvλ(n−1)
ξ

)
+ ∂ξvλ(n−1)

ξ + ∂χvλ(n−1)
χ + 2∂θζvλ(n−2)

ζ

− i
2
∂θζ

(
∂ξvλ(n−3)

ξ + ∂χvλ(n−3)
χ + ∂θζvλ(n−4)

ζ

)
,

�

(A.11)

0 = f λ(n)
0ξ + iλ � f λ(n)

0ξ = f λ(n)
0ξ − iλf λ(n)

χζ

= −2ivλ(n)
ξ + ∂ξv(n−1)

ζ − i
2
∂ξ

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ + ∂θζvλ(n−3)

ζ

)

− iλ
(
−2ivλ(n)

χ + ∂χvλ(n−1)
ζ − ∂θζvλ(n−2)

χ

)
,

�
(A.12)
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0 = f λ(n)
0χ + iλ � f λ(n)

0χ = f λ(n)
0χ + iλf λ(n)

ξζ

= −2ivλ(n)
χ + ∂χv(n−1)

ζ − i
2
∂χ

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ + ∂θζvλ(n−3)

ζ

)

+ iλ
(
−2ivλ(n)

ξ + ∂ξvλ(n−1)
ζ − ∂θζvλ(n−2)

ξ

)
,

�

(A.13)

0 = f λ(n)
ξζ + iλ � f λ(n)

ξζ = f λ(n)
ξζ − iλf λ(n)

0χ = −iλ
(

f λ(n)
0χ + iλf λ(n)

ξζ

)
,� (A.14)

0 = f λ(n)
χζ + iλ � f λ(n)

χζ = f λ(n)
ξζ + iλf λ(n)

0ξ = iλ
(

f λ(n)
0ξ − iλf λ(n)

χζ

)
,� (A.15)

0 = f λ(n)
ξχ + iλ � f λ(n)

ξχ = f λ(n)
ξχ + iλf λ(n)

0ζ = iλ
(

f λ(n)
0ζ − iλf λ(n)

ξχ

)
,� (A.16)

where the last three conditions are fulfilled if the first three conditions are fulfilled. The 
remaining conditions can be rewritten as

0 = (∂ξ + iλ∂χ)
(

vλ(n−1)
ξ − iλvλ(n−1)

χ

)
+ 2∂θζvλ(n−2)

ζ

− i
2
∂θζ

(
∂ξvλ(n−3)

ξ + ∂χvλ(n−3)
χ + ∂θζvλ(n−4)

ζ

)
,

�
(A.17)

0 = −2i
(

vλ(n)
ξ − iλvλ(n)

χ

)
+ (∂ξ − iλ∂χ) v(n−1)

ζ

− i
2
∂ξ

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ

)
+ iλ∂θζvλ(n−2)

χ − i
2
∂ξ∂θζvλ(n−3)
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�

(A.18)

0 = −2i
(

vλ(n)
ξ − iλvλ(n)

χ

)
+ (∂ξ − iλ∂χ) v(n−1)

ζ

− λ

2
∂χ

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ

)
− ∂θζvλ(n−2)

ξ − λ

2
∂χ∂θζvλ(n−3)

ζ .
�

(A.19)
The sum and the difference of equations (A.18) and (A.19) lead to

0 = −4i
(

vλ(n)
ξ − iλvλ(n)

χ

)
+ 2 (∂ξ − iλ∂χ) v(n−1)

ζ − i
2
(∂ξ − iλ∂χ)

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ

)

− ∂θζ

(
vλ(n−2)
ξ − iλvλ(n−2)

χ

)
− i

2
(∂ξ − iλ∂χ) ∂θζvλ(n−3)

ζ ,
�

(A.20)

and

0 = − i
2
(∂ξ + iλ∂χ)

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ

)
+ ∂θζ

(
vλ(n−2)
ξ + iλvλ(n−2)

χ

)

− i
2
(∂ξ + iλ∂χ) ∂θζvλ(n−3)

ζ

= − i
2
(∂ξ + iλ∂χ)

(
∂ξvλ(n−2)

ξ + ∂χvλ(n−2)
χ

)
+

i
4
(
∂2
ξ + ∂2

χ

) (
vλ(n−2)
ξ + iλvλ(n−2)

χ

)

+
i
4
∂2
θζ

(
vλ(n−4)
ξ + iλvλ(n−4)

χ

)
− i

2
(∂ξ + iλ∂χ) ∂θζvλ(n−3)

ζ

= − i
4
(∂ξ + iλ∂χ)

2
(

vλ(n−2)
ξ − iλvλ(n−2)

χ

)

− i
2
(∂ξ + iλ∂χ) ∂θζvλ(n−3)

ζ +
i
4
∂2
θζ

(
vλ(n−4)
ξ + iλvλ(n−4)

χ

)
,

�

(A.21)
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respectively. For the leading/zeroth order envelope function, we find from equation  (A.20) 

that vλ(0)
ξ = iλvλ(0)

χ . For the first order envelope function, we obtain from equation (A.17) the 

condition

0 = (∂ξ + iλ∂χ)
(

vλ(0)
ξ − iλvλ(0)

χ

)
,

which is fulfilled for vλ(0)
ξ = iλvλ(0)

χ . Furthermore from equation (A.20), we find the condition

0 = −2i
(

vλ(1)
ξ − iλvλ(1)

χ

)
+ (∂ξ − iλ∂χ) v(0)

ζ .� (A.22)

For the second order, we obtain from equation (A.17)

0 = (∂ξ + iλ∂χ)
(

vλ(1)
ξ − iλvλ(1)

χ

)
+ 2∂θζvλ(0)

ζ

= − i
2
∆2dvλ(0)

ζ + 2∂θζvλ(0)
ζ ,

which is always fulfilled since vλ(0)
ζ  fulfills equation (6). Additionally from equation (A.20) 

and with vλ(0)
ξ = iλvλ(0)

χ , we find the condition

0 = −2i
(

vλ(2)
ξ − iλvλ(2)

χ

)
+ (∂ξ − iλ∂χ) v(1)

ζ − i
4
(∂ξ − iλ∂χ) (iλ∂ξ + ∂χ) vλ(0)

χ

= −2i
(

vλ(2)
ξ − iλvλ(2)

χ

)
+ (∂ξ − iλ∂χ) v(1)

ζ +
λ

4
(∂ξ − iλ∂χ)

2 vλ(0)
χ .

�

(A.23)

Assuming vλ(2)
ξ = iλvλ(2)

χ , we find that the first term in the condition vanishes and we can 

solve for v(1)
ζ  as

v(1)
ζ = −λ

4
(∂ξ − iλ∂χ) vλ(0)

χ .� (A.24)

The condition in equation  (A.21) is automatically fulfilled in second order due to 

vλ(2)
ξ = iλvλ(2)

χ . For the third order, we find from equation (A.17)

0 = ∂θζvλ(1)
ζ +

λ

4
∂θζ (∂ξ − iλ∂χ) vλ(0)

χ ,� (A.25)

which is just the θζ-derivative of equation (A.24). From equation (A.20) follows that

0 = −4i
(

vλ(3)
ξ − iλvλ(3)

χ

)
+ 2 (∂ξ − iλ∂χ) v(2)
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2
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χ
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(
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ξ + ∂χvλ(1)
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)
,

�

(A.26)

where we used equation (A.22). The last condition of third order comes from equation (A.21) 
as

0 = − i
4
(∂ξ + iλ∂χ)

2
(

vλ(1)
ξ − iλvλ(1)

χ

)
− i

2
(∂ξ + iλ∂χ) ∂θζvλ(0)

ζ

= −1
8
(∂ξ + iλ∂χ)∆2dvλ(0)

ζ − i
2
(∂ξ + iλ∂χ) ∂θζvλ(0)

ζ ,
�

(A.27)
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which is fulfilled since equation (9) has to hold. In fourth order, we find from (A.17)

0 =(∂ξ + iλ∂χ)
(

vλ(3)
ξ − iλvλ(3)

χ

)
+ 2∂θζvλ(2)

ζ
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,

�

(A.28)

which is satisfied due to equations (7) and (8). From equation (A.20), we obtain in fourth order

0 =− 4i
(

vλ(4)
ξ − iλvλ(4)

χ

)
+ 2 (∂ξ − iλ∂χ) v(3)
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2
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− i

2
(∂ξ − iλ∂χ) ∂θζvλ(1)

ζ .
�

(A.29)

Assuming vλ(4)
ξ = iλvλ(4)

χ  and taking into account vλ(2)
ξ = iλvλ(2)

χ , which we assumed before, 

we obtain

0 = 2 (∂ξ − iλ∂χ) v(3)
ζ − i

2
(∂ξ − iλ∂χ)

(
∂ξvλ(2)

ξ + ∂χvλ(2)
χ

)
− i

2
(∂ξ − iλ∂χ) ∂θζvλ(1)

ζ .� (A.30)

With equation (A.24), we obtain that

v(3)
ζ = −λ

4
(∂ξ − iλ∂χ)

(
vλ(2)
χ +

i
4
∂θζvλ(0)

χ

)
.� (A.31)

Again with equation (A.24), we can check that the higher order Helmholtz equation (8) is 

fulfilled by v(3)
ζ  given in (A.31). The last condition that we have to check is the fourth order 

condition in equation (A.21), which becomes

0 = − i
4
(∂ξ + iλ∂χ)

2
(

vλ(2)
ξ − iλvλ(2)

χ
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− i
2
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i
4
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χ

)
,

�

(A.32)

which may be written as, using vλ(2)
ξ = iλvλ(2)

χ  and vλ(0)
ξ = iλvλ(0)

χ  ,

0 = − i
2
(∂ξ + iλ∂χ) ∂θζvλ(1)

ζ − λ

2
∂2
θζvλ(0)

χ ,� (A.33)

and is fulfilled due to equations (A.24) and (6). We conclude that a vector potential for a circu-
larly polarized laser beam up to fourth order in the divergence angle θ is given by equations (6)–
(8), equations (A.24) and (A.31) and the additional sufficient conditions vλ(2n)

ξ = iλvλ(2n)
χ  and 

vλ(2n)
ζ = 0 for n ∈ {0, 1, 1} and vλ(2n+1)

ξ = 0 = vλ(2n+1)
χ  for n ∈ {0, 1}.

Starting from v(0)
ᾱ = εᾱv0, where εᾱ = w0(0, 1,−λi, 0)/

√
2 and the solutions of even 

orders that can be found in [30],

v(0)
ᾱ (ξ,χ, θζ) = ε

(0)
ᾱ v0(ξ,χ, θζ),� (A.34)
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v(2)
ᾱ (ξ,χ, θζ) =

µ(θζ)

2

(
1 − 1

2
µ(θζ)2ρ4

)
v(0)
ᾱ (ξ,χ, θζ),� (A.35)

v(4)
ᾱ (ξ,χ, θζ) =

µ(θζ)2

16

(
6 − 3µ(θζ)2ρ4 − 2µ(θζ)3ρ6 +

1
2
µ(θζ)4ρ8

)
v(0)
ᾱ (ξ,χ, θζ),� (A.36)

where v0(ξ,χ, θζ) = µ(θζ)e−µ(θζ)ρ2
. This leads to the expressions for the odd orders

v(1)
ζ (ξ,χ, θζ) = − iw0µ(θζ)

2
√

2
(ξ − iλχ) v0(ξ,χ, θζ),� (A.37)

v(3)
ζ (ξ,χ, θζ) =

µ(θζ)

4
(
4 + µ(θζ)ρ2 − µ(θζ)2ρ4) v(1)

ζ (ξ,χ, θζ).� (A.38)

Appendix B.  Poynting vector, Maxwell stress tensor and energy

For the vector potential of a circularly polarized laser beam given by equation (17), the energy 
density, the Poynting vector and the stress tensor components are given as

Eλ = E(0)
[

1 +
|µ|2θ2

2

(
1 + |µ|2(2 − (4|µ|2 − 3)ρ2)ρ2

)
+

|µ|2θ4

16

(
− 3 + 2|µ|2(4 − ρ2 + ρ4)

+4|µ|4(4 − ρ2 − 5ρ4)ρ2 + 2|µ|6(8 + 52ρ2 + 9ρ4)ρ4 − 48|µ|8(2 + ρ2)ρ6 + 32|µ|10ρ8
)]

,

� (B.1)
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4
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θ2

2

(
− λχ+ 3|µ|2(θζξ + λχ)
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(
3 − 4|µ|2

)
ρ2|µ|2(θζξ + λχ)

))]
,

�
(B.5)

σλ
χχ = E(0)θ2|µ|4(ξ − θζλχ)

[
(ξ − θζλχ) +

θ2

2

(
− ξ + 3|µ|2(ξ − θζλχ)

+ ρ2|µ|2
(
−2ξ − 2(1 − 3|µ|2)(ξ − θζλχ) +

(
3 − 4|µ|2

)
ρ2|µ|2(ξ − θζλχ)

))]
,

�
(B.6)
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σλ
ξχ = E(0)λθ2|µ|4

[
(θζξ + λχ)(θζλχ− ξ)− θ2

4

(
θζ

(
6|µ|2 − 1

) (
ξ2 − χ2)+ 4(3(|µ|2 − 2))λξχ

+ 2ρ2
(

3θζ
(
2|µ|2 − 1

)
|µ|2

(
ξ2 − χ2)+ 2

(
6|µ|4 − 6|µ|2 + 1

)
λξχ

+
(
4|µ|2 − 3

)
ρ2|µ|4(θζξ + λχ)(θζλχ− ξ)

))]
,

�

(B.7)

σλ
ξζ = Sλ

ξ − E(0) θ
3

2
(θζξ + λχ)|µ|4ρ2,� (B.8)

σλ
χζ = Sλ

χ + λE(0) θ
3

2
(ξ − θζλχ)|µ|4ρ2,� (B.9)

σλ
ζζ = Eλ − E(0)(θρ|µ|)2

[
1 +

(
θ|µ|

2

)2 (
4 − 4ρ2 + (8 + 6ρ2 − 8ρ2|µ|2)ρ2|µ|2

)]
,� (B.10)

where E(0) = ε0w2
0E2

0|v0|2 = 2P0|v0|2/(πc).

Appendix C. The projected solution

Following the second option to construct the field strength tensor for a circularly polarized beam 

described in section 2.1, we start from the zeroth order envelope function v(0)
ᾱ = ε

(0)
ᾱ v0 , where 

ε
(0)
ᾱ = (0, 1,−λi, 0)w0/

√
2. We define cylindrical coordinates (ρ,φ, ζ) such that ξ = ρ cosφ 

and χ = ρ sinφ. Then, the components of the field strength tensor of the helicity eigenfunc-

tion Fλ,pro
ᾱβ̄

= (1 + λΛ)Fλ
ᾱβ̄

/2 become

Fλ,pro
τξ = −iλFλ,pro

ζχ = −iw2
0E0v0 ei 2

θ (ζ−τ)

[
1 +

(
θµρ

2

)2 (
2 + e−2iλφ − µρ2)

+

(
θµρ

2

)4 (
6 + 4e−2iλφ −

(
4 + e−2iλφ)µρ2 +

1
2
µ2ρ4

)]
,

�

(C.1)

Fλ,pro
τχ = −iλFλ,pro

ξζ = −λw2
0E0v0 ei 2

θ (ζ−τ)

[
1 +

(
θµρ

2

)2 (
2 − e−2iλφ − µρ2)

+

(
θµρ

2

)4 (
6 − 4e−2iλφ −

(
4 − e−2iλφ)µρ2 +

1
2
µ2ρ4

)]
,

�

(C.2)

Fλ,pro
τζ = −iλFλ,pro

χξ = −w2
0E0v0 ei 2

θ (ζ−τ)θµρe−iλφ

[
1 +

(
θµρ

2

)2

(3 − µρ2)

]
.

�

(C.3)

Since ΛFᾱβ̄ = −i � Fᾱβ̄, the projection (1 + λΛ)/2 is equivalent to adding the dual field of 
Fᾱβ̄. In the approach of complex source points presented in [10], adding the dual corresponds 
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to adding a magnetic dipole to the electric dipole that would create Fᾱβ̄. In contrast to [10], we 
add the dual with a phase shift of −π/2 to add −i � Fᾱβ̄ and not just �Fᾱβ̄.12

C.1.  Poynting vector, Maxwell stress tensor and energy

For the field strength tensor Fλ,pro
ᾱβ̄

 of a circularly polarized laser beam given in equation (C.1), 

the energy density, the Poynting vector and the stress tensor components are given as

Eλ = E(0)

[
1 +

(θρ|µ|)2

2
(
2 + (4|µ|2 − 3)(1 − ρ2|µ|2)

)

+
(θρ|µ|)4

16
(
96|µ|4 − 72|µ|2 + 5 − 2ρ2|µ|2

(
2(32|µ|4 − 36|µ|2 + 8)− (4|µ|2 − 3)2ρ2|µ|2

))
]

,

� (C.4)

Sλ
ξ = −E(0)θ|µ|2

[
(θζξ + λχ) +

(θρ|µ|)2

2
(
(6|µ|2 − 2)θζξ + (6|µ|2 − 3)λχ− (4|µ|2 − 3)(θζξ + λχ)ρ2|µ|2

)
]

,

Sλ
χ = λE(0)θ|µ|2

[
(ξ − λθζχ) +

(θρ|µ|)2

2
(
(6|µ|2 − 3)ξ − (6|µ|2 − 2)λθζχ− (4|µ|2 − 3)(ξ − λθζχ)ρ2|µ|2

)
]

,

Sλ
ζ = −Eλ +

1
2
E(0)(θρ|µ|)2

[
1 +

(
θρ|µ|

2

)2

2
(

2|µ|2 + 1
2
+ (4|µ|2 − 3)

(
1 − ρ2|µ|2

))
]

,

�

(C.5)

σλ
ξξ = E(0)θ2|µ|4(θζξ + λχ)

[
(θζξ + λχ)� (C.6)

+
(θρ|µ|)2

2
(
(8|µ|2 − 3)θζξ + (8|µ|2 − 5)λχ− (4|µ|2 − 3)(θζξ + λχ)ρ2|µ|2

) ]
,

�

(C.7)

σλ
χχ = E(0)θ2|µ|4(ξ − λθζχ)

[
(ξ − λθζχ)

+
(θρ|µ|)2

2
(
(8|µ|2 − 3)ξ − (8|µ|2 − 5)λθζχ− (4|µ|2 − 3)(ξ − λθζχ)ρ2|µ|2

) ]
,

�
(C.8)

σλ
ξχ = E(0)λθ2|µ|4

[
(θζξ + λχ)(θζλχ− ξ)− 1

2
θ2ρ2

(
(θζλχ− ξ)(θζξ + λχ)(4|µ|2 − 3)ρ2|µ|4

+ 4θζξ2(2|µ|2 − 1)|µ|2 − 4θζχ2(2|µ|2 − 1)|µ|2 + λξχ
(
16|µ|4 − 16|µ|2 + 3

))]
,

�

(C.9)

σλ
ξζ = −Sλ

ξ − E(0) (θρ|µ|)2

2
θ(θζξ + λχ)|µ|2,� (C.10)

σλ
χζ = −Sλ

ξ + E(0)λ
(θρ|µ|)2

2
θ(ξ − λθζχ)|µ|2,� (C.11)

12 Note that this symmetrization of the field strength tensor done in [10] is also performed in [12] without giving 
reference to a magnetic dipole moment.
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σλ
ζζ = Eλ − E(0)(θρ|µ|)2

[
1 +

(
θρ|µ|

2

)2

2
(
2|µ|2 + (4|µ|2 − 3)

(
1 − ρ2|µ|2

))
]

,

�

(C.12)

where E(0) = c2ε0w2
0E2

0|v0|2.

Appendix D.  Validity of the linear approximation of general relativity

In the linearized version of general relativity, we decompose the metric into the Minkowski 
metric plus a perturbation, which is assumed to be small, equation  (26). In this section, 
we make a rough calculation (just considering orders of magnitude) to verify that the lin-
ear approximation is justified, i.e. that it is possible to neglect terms quadratic in the metric 
perturbation.

From the Einstein equations it follows that the second derivative of the metric perturbation 
is proportional to 8πG

c4  times the energy–momentum tensor,

∂2h ∼ 8πG
c4 T .� (D.1)

When considering spatial components (the other components can be considered to be of the 
same order of magnitude), we integrate to obtain an area A on the right hand side,

h ∼ 8πG
c4 TA.� (D.2)

Identifying TAc as the Power P, we obtain

h ∼ 8πG
c5 P.� (D.3)

In our calculation, we wrote the metric perturbation in the form (where we write ε for all 
expressions of order O(θ0)

h ∼ ε+ θε+ θ2ε.� (D.4)

The linearized theory is valid if one can neglect terms of the order O(h2), i.e. if h2 � h. In our 
case, this condition translates to ε � θ2. From the above equations, we see that ε ∼ 8πG

c5 P. The 
condition then becomes

8πG
c5 P � θ2.� (D.5)

For a power of the order of magnitude P ∼ 1015 W, we thus have to require θ � 10−18. If we 
consider θ to be equal to zero, the condition becomes ε2 � ε, which is also satisfied.

Appendix E.  Expansion of Christoffel symbols and curvature tensor

With the equations (29) and (32), we can derive a direct relation between the terms of the 

expansions (γλ(n))ᾱ
β̄γ̄

 and hλ(n)
αβ . We obtain for ī, j̄, k̄ ∈ {ξ,χ}
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(γλ(n))ττζ = (γλ(n))ζττ = − 1
2w2

0
∂θζhλ(n−1)

ττ ,

(γλ(n))ζζζ = 1
2w2

0
∂θζhλ(n−1)

ζζ ,

(γλ(n))τζζ = − 1
w2

0
∂θζhλ(n−1)

ζτ

(γλ(n))j̄
ζζ = − 1

2w2
0
∂̄jh

λ(n)
ζζ + 1

w2
0
∂θζhλ(n−1)

j̄ζ ,

(γλ(n))j̄
ζτ = − 1

2w2
0
∂̄jh

λ(n)
ζτ + 1

2w2
0
∂θζhλ(n−1)

j̄τ ,

(γλ(n))j̄
ττ = − 1

2w2
0
∂̄jh

λ(n)
ττ ,

(γλ(n))ζj̄ζ = 1
2w2

0
∂̄jh

λ(n)
ζζ ,

(γλ(n))ζī̄j =
1

2w2
0

(
∂̄ih

λ(n)
j̄ζ + ∂̄jh

λ(n)
īζ − ∂θζhλ(n−1)

ī̄j

)
,

(γλ(n))ζj̄τ = 1
2w2

0

(
∂̄jh

λ(n)
τζ − ∂θζhλ(n−1)

j̄τ

)
,

(γλ(n))τj̄ζ = − 1
2w2

0

(
∂̄jh

λ(n)
τζ + ∂θζhλ(n−1)

j̄τ

)
,

(γλ(n))τī̄j = − 1
2w2

0

(
∂̄ih

λ(n)
τ j̄ + ∂̄jh

λ(n)
τ ī

)
,

(γλ(n))ī
j̄τ = 1

2w2
0

(
∂̄jh

λ(n)
τ ī − ∂̄ih

λ(n)
τ j̄

)
,

(γλ(n))ī
ζ̄j =

1
2w2

0

(
∂̄jh

λ(n)
īζ − ∂̄ih

λ(n)
j̄ζ + ∂θζhλ(n−1)

ī̄j

)
,

(γλ(n))k̄
ī̄j =

1
2w2

0

(
∂̄ih

λ(n)
j̄̄k + ∂̄jh

λ(n)
ī̄k − ∂k̄hλ(n)

ī̄j

)
,

� (E.1)

where hn
ᾱβ̄

= 0 if n  <  0. With the equations  (31) and (32), we can derive a direct relation 

between the terms of the expansions rλ(n)
ᾱβ̄γ̄δ̄

 and hλ(n)
αβ . With j̄, k̄ ∈ {ξ,χ}, we obtain

rλ(n)
ξχξχ = ∂ξ∂χhλ(n)

ξχ − 1
2

(
∂2
ξhλ(n)

χχ + ∂2
χhλ(n)

ξξ

)
,

rλ(n)
j̄ζ̄ j̄k = 1

2∂θζ

(
∂̄jh

λ(n−1)
j̄̄k − ∂k̄hλ(n−1)

j̄̄j

)
− 1

2 ∂̄j

(
∂̄jh

λ(n)
ζk̄ − ∂k̄hλ(n)

ζ̄j

)
,

rλ(n)
j̄ζk̄ζ = 1

2

(
∂θζ∂k̄hλ(n−1)

j̄ζ − ∂2
θζhλ(n−2)

j̄̄k − ∂θζ ∂̄jh
λ(n−1)
k̄ζ + ∂̄j∂k̄hλ(n)

ζζ

)
,

rλ(n)
j̄0̄j̄k = 1

2 ∂̄j

(
∂k̄hλ(n)

0̄j − ∂̄jh
λ(n)
0k̄

)
,

rλ(n)
j̄0k̄0 = − 1

2 ∂̄j∂k̄hλ(n)
00 ,

rλ(n)
j̄0ζ0 = − 1

2 ∂̄j∂θζhλ(n−1)
00 ,

rλ(n)
j̄0ζk̄ = 1

2 ∂̄j

(
∂k̄hλ(n)

0ζ − ∂θζhλ(n−1)
0k̄

)
,

rλ(n)
ζ0ζk̄ =

1
2∂θζ

(
∂k̄hλ(n−1)

0ζ − ∂θζhλ(n−2)
0k̄

)
,

rλ(n)
ζ0ζ0 = − 1

2∂
2
θζhλ(n−2)

00 .

�
(E.2)

Appendix F.  Metric perturbation for large distances between emitter and 
absorber of the laser beam up to third order in the divergence angle

As stated in section  4, solutions of equations  (33)–(35) can be given by equation  (36). 
However, the Green’s function of the Poisson equation in two dimensions is only specified up 

to a constant which for our degenerate equation (33) in three dimensions becomes a function 

of θζ. This leads to an additional term hλ(n)rest
ᾱβ̄

(θζ) that we have to specify by a further condi-

tion. Here, we use the physical condition that the Riemann curvature tensor has to vanish at 
an infinite distance from the beamline to ensure that no physical effects are induced by the 
gravitational field of the laser beam at infinity. We find

hλ(n)gen
ᾱβ̄

(ξ,χ, θζ) = hλ(n)
ᾱβ̄

(ξ,χ, θζ) + hλ(n)rest
ᾱβ̄

(θζ),� (F.1)

where hλ(n)
ᾱβ̄

(ξ,χ, θζ) is given in equation (36). Since the Riemann curvature tensor is linear in 

the metric perturbation, it consists of a term induced by hλ(n)
ᾱβ̄

 and a term induced by hλ(n)rest
ᾱβ̄

. 

The term induced by hλ(n)rest
ᾱβ̄

(θζ) does not depend on the distance to the beamline. Let us 

assume that the term in the curvature tensor induced by the first term in equation (31) van-

ishes for ρ → ∞. Then, the term in the curvature tensor induced by hλ(n)rest
ᾱβ̄

(θζ) has to vanish 

everywhere for the curvature to vanish for ρ → ∞. Therefore, hλ(n)rest
ᾱβ̄

(θζ) cannot contribute 

to the curvature tensor and can be set to zero in equation (F.1). It turns out that the contribution 
of the first term in equation (F.1) to the curvature tensor vanishes at infinity, indeed, up to the 

fourth order in θ, as we will show in the following. Therefore, we assume hλ(n)rest
ᾱβ̄

(θζ) = 0 

in this article. In the following, we give expressions for hλ(n)
ᾱβ̄

(ξ,χ, θζ) up to third order in θ.
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In zeroth order, we have (see section 5 for comparison)

hλ(0)
ᾱβ̄

=
κw2

0P0

2πc

(
1
2

Ei
(
−2|µ|2ρ2)− log(ρ)

)



1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 .� (F.2)

In first order, we have

hλ(1)
ᾱβ̄

=
κP0w2

0

8πcρ2

(
1 − e−2|µ|2ρ2

)



0 −(θζξ + λχ) (λξ − θζχ) 0
−(θζξ + λχ) 0 0 (θζξ + λχ)

(λξ − θζχ) 0 0 −(λξ − θζχ)

0 (θζξ + λχ) −(λξ − θζχ) 0


 .

� (F.3)
In second order, we find for the only non-vanishing independent components of the metric 
perturbation

hλ(2)
ττ =

κw2
0P0

32πc

(
4Ei

(
−2|µ|2ρ2)− 8 log(ρ)− (5 − (4 − 6ρ2)|µ|2 − 8ρ2|µ|4)e−2|µ|2ρ2

)
,� (F.4)

hλ(2)
τζ = −κw2

0P0

32πc

(
2Ei

(
−2|µ|2ρ2)− 4 log(ρ)− (3 − (4 − 6ρ2)|µ|2 − 8ρ2|µ|4)e−2|µ|2ρ2

)
,� (F.5)

hλ(2)
ζζ = −κw2

0P0

32πc

(
1 − (4 − 6ρ2)|µ|2 − 8ρ2|µ|4

)
e−2|µ|2ρ2

,� (F.6)

hλ(2)
ξξ =

κw2
0P0

32πρ4|µ|2c

(
ρ4|µ|2Ei

(
−2|µ|2ρ2)− 2ρ4|µ|2 log(ρ) + (ξ2 − χ2)− 2(ξ2 − χ2 − 2θζλξχ)|µ|2

+
(
−(ξ2 − χ2) + 2(ξ2 − χ2 − 2θζλξχ− 2ρ2ξ2)|µ|2 + 4ρ2(ξ2 − χ2 − 2θζλχξ)|µ|4

)
e−2|µ|2ρ2

)
,

� (F.7)

hλ(2)
χχ =

κw2
0P0

32πρ4|µ|2c

(
ρ4|µ|2Ei

(
−2|µ|2ρ2)− 2ρ4|µ|2 log(ρ)− (ξ2 − χ2) + 2(ξ2 − χ2 − 2θζλξχ)|µ|2

−
(
−(ξ2 − χ2) + 2(ξ2 − χ2 − 2θζλξχ− 2ρ2χ2)|µ|2 + 4ρ2(ξ2 − χ2 − 2θζλχξ)|µ|4

)
e−2|µ|2ρ2

)
,

� (F.8)

hλ(2)
ξχ = − κw2

0P0

16πρ4|µ|2c

(
1 − (1 + ρ2|µ|2)e−2|µ|2ρ2

) (
−ξχ+ (2ξχ+ θζλ(ξ2 − χ2))|µ|2

)
.� (F.9)

In third order, we obtain the only non-vanishing independent components

hλ(3)
τξ = − κP0w2

0

32πcρ2

(
(4θζξ + 3λχ) +

(
− (4θζξ + 3λχ)− 2ρ2(3θζξ + 2λχ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζξ + λχ)|µ|4 + 8ρ4(θζξ + λχ)|µ|6
)

e−2|µ|2ρ2

)
,

�

(F.10)
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hλ(3)
τχ = − κP0w2

0

32πcρ2

(
(4θζχ− 3λξ) +

(
− (4θζξ + 3λχ)− 2ρ2(3θζχ− 2λξ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λχ)|µ|6
)

e−2|µ|2ρ2

)
,

�

(F.11)

hλ(3)
ζξ =

κP0w2
0

32πcρ2

(
(2θζξ + λχ) +

(
− (2θζξ + λχ)− 2ρ2(2θζξ + λχ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζξ + λχ)|µ|4 + 8ρ4(θζξ + λχ)|µ|6
)

e−2|µ|2ρ2

)
,

�

(F.12)

hλ(3)
ζχ =

κP0w2
0

32πcρ2

(
(2θζχ− λξ) +

(
− (2θζξ + λχ)− 2ρ2(2θζχ− λξ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λχ)|µ|6
)

e−2|µ|2ρ2

)
.

�

(F.13)

Now, with the expressions for the terms in the expansion of the curvature tensor given in 

appendix E, we can show that the contribution of hλ(n)
ᾱβ̄

(ξ,χ, θζ) to the curvature vanishes for 

ρ → ∞. From equation (F.1), we obtain that

∂̄jh
λ(n)
ᾱβ̄

= − κ

4π

∫ ∞

−∞
dξ′dχ′ xj̄

(ξ − ξ′)2 + (χ− χ′)2 Qλ(n)
ᾱβ̄

(ξ′,χ′, θζ),� (F.14)

where xj̄ ∈ {ξ,χ}. From the expressions in appendix B, we see that all terms in the energy–
momentum tensor decay like exp(−2|µ|2ρ2) for ρ → ∞. From the expressions above, we find 

that this is true for ∂2
θζhλ(0)

ᾱβ̄
 and ∂2

θζhλ(1)
ᾱβ̄

 as well. Furthermore, ∂2
θζhλ(2)

ᾱβ̄
 decays at least as ρ−2 

for ρ → ∞. Hence, for n � 4 we find that the sources Qλ(n)
ᾱβ̄

 (the terms on the right hand side 

of the differential equations in equations (33)–(35)) are falling off at least as ρ−2 for ρ → ∞. 

Therefore, the first derivatives of hλ(n)
ᾱβ̄

(ξ,χ, θζ) in the directions ξ and χ will go to zero for 

ρ → ∞ for n � 4. From the expressions above, we find that ∂2
θζhλ(n−2)

ττ  and ∂2
θζhλ(n−2)

τ k̄  
decay like exp(−2|µ|2ρ2) for ρ → ∞ for n � 4. Therefore, we find that the contribution of 

hλ(n)
ᾱβ̄

(ξ,χ, θζ) to the curvature vanishes for ρ → ∞ and n � 4. Hence, the term hλ(n)rest
ᾱβ̄

(θζ) 

can be set to zero as argued above.

Appendix G.  An exact solution for the infinitely long laser beam  
with boundary in the paraxial approximation

An exact solution for the infinitely long laser beam in the paraxial approximation, i.e. for 
θ = 0, is constructed as follows: we make the ansatz of a plane wave metric [4],

ds2 = w2
0

(
−dτ 2 + dξ2 + dη2 + dζ2)+ K

(
dτ − dζ

)2
,� (G.1)
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in the dimensionless coordinates (τ , ξ,χ, ζ) = (ct, x, y, z)/w0. The radius of the beam is sup-
posed to be a, such that the energy density �  is given by �w2

0 = Tττ = Tζζ = −Tτζ  within 
this radius, and vanishes outside of it. Then the function K = K(ξ, η) in the interior region, for 
ρ � a, and in the exterior region, for a < ρ, is determined by

�w2
0 = − 1

κw2
0

(
∂2
ξ + ∂2

η

)
Kint,

0 = − 1
κw2

0

(
∂2
ξ + ∂2

η

)
Kext.

�

(G.2)

For the laser beam for θ = 0, the energy density is given by �w2
0 = E(0) = 2P0

πc e−2ρ2
. Writing 

equation (G.2) in cylindrical coordinates, we obtain

1
ρ
∂ρ
(
ρ ∂ρKint

)
= −2κP0w2

0

πc
e−2ρ2

,

1
ρ
∂ρ
(
ρ∂ρKext

)
= 0.

�

(G.3)

Integrating twice over ρ leads to

Kint(ρ) =
κP0w2

0

4πc
Ei

(
−2ρ2)+ C1 log(ρ) + C2,

Kext(ρ) = D1 log(ρ) + D2,
�

(G.4)

where Ei(x) = γ + log(|x|) + iarg(x) + x + x2

4 + x3

18 + ... is the exponential integral. For the 
metric to be finite at r  =  0, we set C1 = −κE2

0w2
0/(2πc), and for the interior solution to match 

the exterior solution at r  =  a, i.e. to be continuous and differentiable, we choose D2  =  0 and 

C2 = κP0w2
0(2πc)−1

(
e−2a2

log(a)− 1
2 Ei(−2a2)

)
, s.t. the final solution reads

Kint = −κP0w2
0

2πc

(
log(ρ)− 1

2
Ei(−2ρ2)− e−2a2

log(a) +
1
2

Ei(−2a2)

)
,

Kext = −κP0w2
0

2πc

(
1 − e−2a2

)
log(ρ).

�

(G.5)

If the beam is infinitely extended in the transverse direction, we are left with an interior solu-
tion only which reads

K(ρ) = −κP0w2
0

2πc

(
log(ρ)− 1

2
Ei

(
−2ρ2)

)
.� (G.6)

The metric may be written as the Minkowski metric plus a small perturbation 
hµν = K(ρ)M0, s.t. the only non-vanishing independent components of the Riemann curva-
ture tensor Rτ iτ j = Rζiζj = −Rτ iζj = − 1

2∂i∂jK(ρ) (for i, j ∈ {ξ, η}) are given by

Rint
τξτξ = Rint

ζξζξ = −Rint
τξζξ = −κP0w2

0

4πc
1
ρ4

(
(ξ2 − η2)−

(
4ξ2ρ2 + ξ2 − η2) e−2ρ2

)
,

Rint
τητη = Rint

ζηζη = −Rint
τηζη =

κP0w2
0

4πc
1
ρ4

(
(ξ2 − η2) +

(
4η2ρ2 − ξ2 + η2) e−2ρ2

)
,

Rint
τξτη = Rint

ζξζη = −Rint
τξζη = −κP0w2

0

2πc
ξη

ρ4

(
1 − (1 + 2ρ2)e−2ρ2

)
,

�

(G.7)
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in the interior region and

Rext
τξτξ = Rext

ζξζξ = −Rext
τξζξ = −κP0w2

0

4πc
ξ2 − η2

ρ4

(
1 − e−2a2

)
,

Rext
τητη = Rext

ζηζη = −Rext
τηζη =

κP0w2
0

4πc
ξ2 − η2

ρ4

(
1 − e−2a2

)
,

Rext
τξτη = Rext

ζξζη = −Rext
τξζη = −κP0w2

0

2πc
ξη

ρ4

(
1 − e−2a2

)
,

�

(G.8)

in the exterior region. We see that the result for the exterior region corresponds to the Riemann 
curvature tensor for the infinitely thin beam plus a contribution proportional to e−2a2

, which 
vanishes in the limit as a → 0. The factor

P0 =
1
2
πcε0E2

0w2
0(1 − e−2a2

) = cε0E2
0w2

0

∫ 2π

0
dφ

∫ a

0
dρ ρe−2ρ2

� (G.9)

is the total power in the circular region with radius a that contains the source of the 
gravitation field seen in the exterior region. Therefore, expressing the curvature in the 
exterior region through the total power P0, we obtain the same result as for the infinitely 
thin beam. This coincides with the result from Newtonian gravity that the gravitational 
field outside of a spherical symmetric source distribution does not depend on the radial 
dependence of its density.

Appendix H.  Metric perturbation for small distances between emitter  
and absorber of the laser beam

In this appendix we provide the calculations for the metric perturbation for the case of a small 
distance between the emitter and absorber of the laser beam up to the second order in more 
detail. In the beginning we calculate the integrals we would need to calculate if the mirrors at 
ζ = α and ζ = β  were not curved. In a next step we will include the correction for the case 
when they are curved. The beam is assumed to be emitted at the location of the wavefront 
for which ζ = α on the ζ-axis, propagate along the ζ-axis and be absorbed at the location of 
the wavefront for which ζ = β  on the ζ-axis. The mirrors at the emission and absorption are 
curved such that the phase along them is constant. The phase of the Gaussian beam (without 
the term including the time) is given by

ϕ(ρ, ζ) =
θζρ2

1 + θ2ζ2 +
2
θ
ζ.� (H.1)

For the ζ-coordinate of the mirror at the emission at ζ = α, which we call ζ̄α, setting 
ϕ(0,α) = ϕ

(
ρ, ζ̄α(ρ)

)
, and for the ζ̄β-coordinate of the mirror at the absorption, setting 

ϕ(0,β) = ϕ
(
ρ, ζ̄β(ρ)

)
, we obtain

ζ̄α(ρ) = α

(
1 − θ2

2
ρ2
)

,

ζ̄β(ρ) = β

(
1 − θ2

2
ρ2
)

.
�

(H.2)
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We start by calculating two integrals that will be useful in the following. The first one is

Ia =

∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′

∫ β

α

dζ ′
1√

(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2
e−2(ξ′2+χ′2).

�

(H.3)

Introducing for any quantity u a shifted quantity u′′ by u ′′ = u′ − u, and changing to cylindri-
cal coordinates (ξ′′,χ′′, ζ ′′) = (ρ′′ cos(φ′′), ρ′′ sin(φ′′), z′′), we obtain

Ia =

∫ β′′

α′′
dζ ′′

∫ 2π

0
dφ′′

∫ ∞

0
dρ′′

ρ′′√
ρ′′2 + ζ ′′2

e−2(ρ′′2+ρ2−2ρρ′′ cos(φ′′−φ)).

� (H.4)

Using the Bessel function of the first kind, J0(ix) = 1
π

∫ π

0 dφex cos(φ), leads to

Ia = 2πe−2ρ2
∫ ∞

0
dρ′′ ρ′′ log

(
β − ζ +

√
(β − ζ)2 + ρ′′2

α− ζ +
√

(α− ζ)2 + ρ′′2

)
J0 (i4ρρ′′) e−2ρ′′2

.

� (H.5)
The second integral we calculate is the same as before but with a factor ζ ′ in the nominator,

Ib =

∫ β

α

dζ ′
∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′ ζ ′√

(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2
e−2(ξ′2+χ′2).

� (H.6)
In the same way as before, we obtain

Ib = ζ Ia + 2πe−2ρ2
∫ ∞

0
dρ′′ ρ′′

(√
ρ′′2 + (β − ζ)2 −

√
ρ′′2 + (α− ζ)2

)
J0(i4ρρ′′)e−2ρ′′2

.

� (H.7)
Every other integral we need to solve to calculate the metric perturbation can be expressed 
through derivatives of these integrals, using the following identities (and equivalently for Ib if 
there is an additional factor ζ ′ in the numerator):
∫ β

α

dζ ′
∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′ ξ′√

(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2
e−2(ξ′2+χ′2)

=

∫ β′′

α′′
dζ ′′

∫ ∞

−∞
dξ′′

∫ ∞

−∞
dχ′′ ξ′′ + ξ√

ξ′′2 + χ′′2 + ζ ′′2
e−2(ξ′′+ξ)2+(χ′′+χ)2

= −1
4
∂ξIa,

∫ β

α

dζ ′
∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′ ξ′2√

(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2
e−2(ξ′2+χ′2) =

1
4

(
1 +

1
4
∂2
ξ

)
Ia,

∫ β

α

dζ ′
∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′ ξ′4√

(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2
e−2(ξ′2+χ′2) =

1
16

(
1
16

∂4
ξ +

3
2
∂2
ξ + 3

)
Ia.

� (H.8)
Including the correction of the boundaries of the integral due to the curvature of the mirrors, 
we obtain for the first integral

IA =

∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′

∫ ζ̄β(ρ
′)

ζ̄α(ρ′)
dζ ′

1√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2

e−2(ξ′2+χ′2)

=

∫ ∞

−∞
dξ′

∫ ∞

−∞
dy′ log


 ζ − ζ̄β(ρ

′) +
√

(ζ − ζ̄β(ρ′))2 + (ξ − ξ′)2 + (χ− χ′)2

ζ − ζ̄α(ρ′) +
√

(ζ − ζ̄α(ρ′))2 + (ξ − ξ′)2 + (χ− χ′)2


 e−2(ξ′2+χ′2).

� (H.9)
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Inserting ζ̄β(ρ′) = β
(

1 − θ2

2 (ξ
′2 + χ′2)

)
 and ζ̄α(ρ′) = α

(
1 − θ2

2 (ξ
′2 + χ′2)

)
 and expanding 

to the second order of θ leads to

IA = Ia + θ2δIa,� (H.10)

where we defined

δIa = −1
2

∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′ (ξ′2 + χ′2)e−2(ξ′2+χ′2)

(
β√

(β − ζ)2 + (ξ′ − ξ)2 + (χ′ − χ)2
− α√

(α− ζ)2 + (ξ′ − ξ)2 + (χ− χ)2

)
.

�

(H.11)

Changing the coordinates as done previously and using equation (H.8), we obtain

δIa = −1
8

(
1 +

1
4
(∂2

ξ + ∂2
χ)

)

∫ 2π

0
dφ′′

∫ ∞

0
dρ′′ ρ′′

(
β√

(β − ζ)2 + ρ′′2
− α√

(α− ζ)2 + ρ′′2

)
e−2

(
ρ′′2+ρ2−2ρρ′′ cos(φ−φ′′)

)

= −π

4

(
1 +

1
4
(∂2

ξ + ∂2
χ)

)(
e−2ρ2

∫ ∞

0
dρ′′ ρ′′

(
β√

(β − ζ)2 + ρ′′2
− α√

(α− ζ)2 + ρ′′2

)
J0(i4ρρ′′)e−2ρ′′2

)
,

�
(H.12)

where we express again the integration over the angle through the Bessel function of the first 
kind. Adjusting the boundaries in the second integral, we obtain

IB =

∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′

∫ ζ̄β(ρ
′)

ζ̄α(ρ′)
dζ ′

ζ ′√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2

e−2(ξ′2+χ′2)

= ζIA +

∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′ e−2(ξ′2+χ′2)

(√
(ξ − ξ′)2 + (χ− χ′)2 +

(
ζ̄β(ρ′)− ζ

)2 −
√
(ξ − ξ′)2 + (χ− χ′)2 +

(
ζ̄α(ρ′)− ζ

)2
)

.

� (H.13)

Since the integral IB only appears in the second order of the metric perturbation, it is enough 
to expand it to the first order in θ,

IB = Ib + O(θ).� (H.14)

The metric perturbation, which is given by integrating over the retarded energy–momentum 
tensor divided by the distance from the observer to the source point,

hλ
αβ = 4G

∫ ∞

−∞
dξ′

∫ ∞

−∞
dχ′

∫ ζ̄β(ρ
′)

ζ̄α(ρ′)
dζ ′

Tλ
αβ

(
τ −

√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2, ξ′,χ′, ζ ′

)

√
(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2

,

�
(H.15)
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is then found to be, expressed in terms of the integrals calculated above,

hλαβ =
κw2

0P0

4π2c

(
IaM0 + λθ

1
4







0 −∂χ ∂ξ 0
−∂χ 0 0 ∂χ
∂ξ 0 0 −∂ξ
0 ∂χ −∂ξ





 Ia

+ θ2

(
1
2

(
1 − 1

16

(
1

16
(
∂4
ξ + ∂4

χ

)
+

3
2
(
∂2
ξ + ∂2

χ

)
+ 3

)
+

1
8

(
1 +

1
4
(
∂2
ξ + ∂2

χ

)
+

1
16

∂2
ξ∂

2
χ

)))
IaM0




0 ∂ξ ∂χ 0
−∂ξ 0 0 −∂ξ
∂χ 0 0 −∂χ
0 −∂ξ −∂χ 0


 Ib +

1
4




0 0 0 0
0 1 + 1

4∂
2
χ − 1

4∂ξ∂χ 0
0 − 1

4∂ξ∂χ 1 + 1
4∂

2
ξ 0

0 0 0 0




Ia +
1
8

(
2 +

1
4
(
∂2
ξ + ∂2

χ

))
Ia




1 0 0 − 1
2

0 0 0 0
0 0 0 0
− 1

2 0 0 0




)
.

�

(H.16)

Appendix I. The infinitely thin beam as the limit of small beam waists  
in the laser beam

For θ = 0, the condition θζ � 1, which is equivalent to θz � w0, is satisfied also for small 
beam waists, more specifically for w0 � lvar, where the length scale lvar is defined by 
lvar = min {x, y}. In this case, only the zeroth order of the solution for the laser beam is non-
zero, and one recovers the solution of the infinitely thin beam: equation (44) written in the 
coordinates (x, y, z) reads (as can be seen from the expression for Ia in appendix H)

I(0) =
κP0

2πc

∫ b

a
dz′

∫ ∞

−∞
dx′dy′

1√
(x − x′)2 + (y − y′)2 + (z − z′)2

e
−2 x′2+y′2

w2
0 .

� (I.1)
Applying twice the saddle point approximation in the form

lim
N→∞

∫ ∞

−∞
dx g(x)e−Nf (x) = lim

N→∞
e−Nf (x0)g(x0)

√
2π

Nf ′′(x)
,� (I.2)

where x0 is a stationnary point of f, we obtain

lim
w0→0

I(0) = lim
w0→0

κw2
0P0

2πc
log

(
b − z +

√
(b − z)2 + r2

a − z +
√
(a − z)2 + r2

)
.� (I.3)

For small enough w0, we thus have approximately

I(0) =
κw2

0P0

2πc
log

(
b − z +

√
(b − z)2 + r2

a − z +
√

(a − z)2 + r2

)
,� (I.4)

and, written again in dimensionless coordinates,

I(0) =
κw2

0P0

2πc
log

(
β − ζ +

√
(β − ζ)2 + ρ2

α− ζ +
√

(α− ζ)2 + ρ2

)
.� (I.5)
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Erratum: The gravitational field of a laser beam beyond the short wavelength
approximation

Fabienne Schneiter,1, ∗ Dennis Rätzel,2, † and Daniel Braun1

1Eberhard-Karls-Universität Tübingen, Institut für Theoretische Physik, 72076 Tübingen, Germany
2University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria

The paper contains a number of errors, most of them typos and most of them in the appendix, which we herewith
correct. The main results and conclusions presented in the paper are unchanged.

• Fig. 1: The angle θ is defined as only half the angle shown. The beam waist w0 is defined as the radius, not the
diameter, of the laser beam.

• Eq. (14): The index σ should be replaced by χ.

• Section 2.1.1: The sentence “The vector potentials of well-defined helicity (...)” should read “The field tensors
corresponding to the vector potentials of well-defined helicity (...)”.

• Eq. (18): The factor w0 should be removed.

• Section 2.1.1, at the end: The sentence “Note that all terms of higher than leading order in equation (17) decay
(...)” should be replaced by “Note that all contributions to vα except the leading order decay (...)”.

• Eq. (36): The right hand side (rhs) has to be multiplied by −κ−1, and the phrase after the equation should
read “the Qλ(n) are the right hand sides of Eqs. (33), (34) and (35) for n = 0, 1 or n > 1, respectively, and the

t̄λ(n) are defined through the expansion T̄λ
ᾱβ̄

(ξ, χ, θζ) =
∑∞
n=0 θ

nt̄
λ(n)

ᾱβ̄
(ξ, χ, θζ).”

• Eq. (39): The rhs has to be multiplied by w2
0.

• Eq. (44): The rhs has to be multiplied by 2.

• Eq. (45): The rhs has to be multiplied by 1/2.

• Fig. 3 has to be updated:
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• Fig. 4 has to be updated:
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• Eq. (47): The expansion coefficients of the Riemann curvature tensor should be denoted by a small letter r, and
the indices i and j should have bars.

• Eq. (48), (49) and (50): The factor |µ|2 is at the wrong position. Furthermore, the expansion coefficients of the
curvature tensor should be denoted by a small r. The equations should read

r
(0)
τξτξ = r

(0)
ζξζξ = −r(0)

τξζξ = −κw
2
0P0

4πc

1

ρ4

(
(ξ2 − χ2)−

(
4|µ|2ξ2ρ2 + ξ2 − χ2

)
e−2|µ|2ρ2

)
, (1)

r(0)
τχτχ = r

(0)
ζχζχ = −r(0)

τχζχ =
κw2

0P0

4πc

1

ρ4

(
(ξ2 − χ2) +

(
4|µ|2χ2ρ2 − ξ2 + χ2

)
e−2|µ|2ρ2

)
, (2)

r
(0)
τξτχ = r

(0)
ζξζχ = −r(0)

τξζχ = −κw
2
0P0

2πc

ξχ

ρ4

(
1− (1 + 2|µ|2ρ2)e−2|µ|2ρ2

)
. (3)

• Eq. (51): S
λ(1)
ξ and S

λ(1)
χ have to be multiplied by 1/c.

• Eq. (64): The term ρ4 has to be multiplied by 2.

• Eq. (68), the reference [6] in the following paragraph: It should be “Bonnor et al, Interpreting the Levi-Civita
vacuum metric, Classical and Quantum Gravity 9 (1992) 2065-2068”.

• Eq. (71): m has to be replaced by m′, and in the sentence before, the rhs of the equation for dρ has to be
multiplied by ρ.

• Eq. (72), the second sentence after the equation: w0/2 has to be replaced by w0.

• Eq. (73): The rhs has to be multiplied by ρ−1= (x2 + y2)−
1
2 .

• Eq.(74) and (75) and the sentence before should read “(...) sα = dL(0, 1, 0, 0), where dL is an infinitesi-

mal length, we obtain ax = c2dL
2 ∂2

x

(
1
c2htt + 2

chtz + hzz
)
, and, inserting the expressions for the metric, ax =

4GP0dL
c3

x2−y2
(x2+y2)2 (1− β)2.”

• Appendix A: The coordinate-indices “0” should be replaced by “τ”.

• Eq. (A.28): The upper index λ of v
λ(2)
ζ is missing in the first term in the fifth line.

• Eq. (B.1): There was a wrong sign in front of one of the terms. It should read

Eλ = E(0)

[
1 +
|µ|2θ2

2

(
1 + |µ|2(2− (4|µ|2 − 3)ρ2)ρ2

)
+
|µ|2θ4

16

(
− 3 + 2|µ|2(4− ρ2 − ρ4)

+4|µ|4(4− ρ2 − 5ρ4)ρ2 + 2|µ|6(8 + 52ρ2 + 9ρ4)ρ4 − 48|µ|8(2 + ρ2)ρ6 + 32|µ|10ρ8

)]
. (4)

• Eqs. (B.2), (B.3) and (B.4): The left hand side has to be multiplied by 1/c. In Eqs. (B.2) and (B.3), there are
brackets missing. These two equations should read

Sλξ
c

= E(0)θ|µ|2
[
(θζξ + λχ)− θ2

4

(
λχ− 2|µ|2

(
(2− ρ2)θζξ + 2(1− ρ2)λχ+ (θζξ + λχ)(4 + 3ρ2 − 4|µ|2ρ2)|µ|2ρ2

))]
(5)

Sλχ
c

= −λE(0)θ|µ|2
[
(ξ − θζλχ)− θ2

4

(
ξ − 2|µ|2

(
2(1− ρ2)ξ − (2− ρ2)θζλχ+ (ξ − θζλχ)(4 + 3ρ2 − 4|µ|2ρ2)|µ|2ρ2

))]
(6)
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• Eq. (B.7): There was a bracket too much. It should read

σλξχ = E(0)λθ2|µ|4
[
(θζξ + λχ)(θζλχ− ξ)− θ2

4

(
θζ
(
6|µ|2 − 1

) (
ξ2 − χ2)+ 4(3|µ|2 − 2)λξχ

+2ρ2
(
3θζ

(
2|µ|2 − 1

)
|µ|2

(
ξ2 − χ2)+ 2

(
6|µ|4 − 6|µ|2 + 1

)
λξχ+

(
4|µ|2 − 3

)
ρ2|µ|4(θζξ + λχ)(θζλχ− ξ)

))]
.

• Eqs. (B.8) and (B.9): Sλξ and Sλχ have to be multiplied by 1/c

• Eq. (C.5): The right hand sides of the equations for Sλξ , Sλχ and Sλζ have to be multiplied by −c.

• Eq. (C.8): Two factors were interchanged. It should read

σλχχ = E(0)θ2|µ|4(ξ − λθζχ)
[
(ξ − λθζχ) + (θρ|µ|)2

2

(
(8|µ|2 − 5)ξ − (8|µ|2 − 3)λθζχ− (4|µ|2 − 3)(ξ − λθζχ)ρ2|µ|2

) ]
(7)

• Eqs. (C.10) and (C.11): There was a wrong sign, a factor c missing, and an index ξ that should be replaced by
χ. They should read

σλξζ = Sλξ /c− E(0)
(θρ|µ|)2

2
θ(θζξ + λχ)|µ|2 and σλχζ = Sλχ/c + E(0)λ

(θρ|µ|)2
2

θ(ξ − λθζχ)|µ|2 (8)

• Eq. (D.4) should read h ∼ ε+ θε+ θ2ε+ θ3ε+ θ4ε. Accordingly, the sentence in the paragraph below should be
changed to “In our case, this condition translates to ε� θ4.”

• Eq. (D.5) should read 8πGP/c5 � θ4. Then, the sentence below should be changed to “For a power of the order
of magnitude P ∼ 1015 W, we thus have to require θ � 10−10.”

• Appendix E, first line and the sentence after Eq. (E.1): The indices of the metric perturbation should have bars.
The metric perturbation should have a superscript “λ(n)” instead of “n”.

• Eq. (E.2): The indices “0” should be replaced by “τ” and the third equation in the left column should read

r
λ(n)

j̄ζk̄ζ
=

1

2

(
∂θζ∂k̄h

λ(n−1)

j̄ζ
− ∂2

θζh
λ(n−2)

j̄k̄
+ ∂θζ∂j̄h

λ(n−1)

k̄ζ
− ∂j̄∂k̄hλ(n)

ζζ

)
, (9)

• Eq. (F.7) and Eq. (F.8): There are two factors 2 missing in each of them and there is a wrong sign in Eq. (F.8).
They should read

h
λ(2)
ξξ =

κw2
0P0

32πρ4|µ|2c

(
2ρ4|µ|2Ei

(
−2|µ|2ρ2

)
− 4ρ4|µ|2 log(ρ) + (ξ2 − χ2)− 2(ξ2 − χ2 − 2θζλξχ)|µ|2

+
(
−(ξ2 − χ2) + 2(ξ2 − χ2 − 2θζλξχ− 2ρ2ξ2)|µ|2 + 4ρ2(ξ2 − χ2 − 2θζλχξ)|µ|4

)
e−2|µ|2ρ2

)
, (10)

hλ(2)χχ =
κw2

0P0

32πρ4|µ|2c

(
2ρ4|µ|2Ei

(
−2|µ|2ρ2

)
− 4ρ4|µ|2 log(ρ)− (ξ2 − χ2) + 2(ξ2 − χ2 − 2θζλξχ)|µ|2

−
(
−(ξ2 − χ2) + 2(ξ2 − χ2 − 2θζλξχ+ 2ρ2χ2)|µ|2 + 4ρ2(ξ2 − χ2 − 2θζλχξ)|µ|4

)
e−2|µ|2ρ2

)
. (11)

• Eq. (F.9): There is a factor two missing in front of the term ρ2|µ|2.

• Eqs. (F.11) and (F.13): In each of them there is a wrong sign and χ’s have to be replaced/interchanged with
ξ’s in a few terms. The equations should read

hλ(3)τχ = − κP0w
2
0

32πcρ2

(
(4θζχ− 3λξ) +

(
− (4θζχ− 3λξ)− 2ρ2(3θζχ− 2λξ)|µ|2

−2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λξ)|µ|6
)
e−2|µ|2ρ2

)
, (12)

h
λ(3)
ζχ =

κP0w
2
0

32πcρ2

(
(2θζχ− λξ) +

(
− (2θζχ− λξ)− 2ρ2(2θζχ− λξ)|µ|2

−2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λξ)|µ|6
)
e−2|µ|2ρ2

)
. (13)
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• Eq. (F.14): The rhs has to be multiplied by 2/κ.

• Appendix G: The coordinate “η” should be called “χ”.

• Eq. (G.4), two lines after, E2
0 in the constant C1 should be replaced by P0.

• Eq. (G.9): P0 should read P a0 .

• Eq. (H.1): Expanded up to second order in θ, the phase should read

ϕ(ρ, ζ) = θζ
(
ρ2 − 1

)
+

2

θ
ζ + sgn(ζ)

π

2
. (14)

The sentence before Eq. (H.1) should read “The phase of the electric field of the Gaussian beam (...)”.

• Eq. (H.4), the sentence before: It should read ”Introducing for any coordinate u ∈ {ξ, χ, ζ} a shifted coordinate
u′′ by u ′′ = u′−u, and changing to cylindrical coordinates (ξ′′, χ′′, ζ ′′) = (ρ′′ cos(φ′′), ρ′′ sin(φ′′), z′′), we obtain,
with α′′ = α− ζ and β′′ = β − ζ,”.

• Eq. (H.7): After the equation, we should insert “The third integral we define is” and the equation

Ic =

∫ ∞

−∞
dξ′
∫ ∞

−∞
dχ′

∫ β

α

dζ ′
ζ ′2√

(ξ − ξ′)2 + (χ− χ′)2 + (ζ − ζ ′)2
e−2(ξ′2+χ′2) . (15)

Accordingly, the sentence in parenthesis before Eq. (H.8) should read “(and correspondingly for Ib or Ic)”.

• Eq. (H.9): In the second line, the integral
∫∞
−∞ dy′ should be replaced by −

∫∞
−∞ dχ′.

• Eq. (H.12): The factors
(

1 + 1
4

(
∂2
ξ + ∂2

χ

))
should be replaced by

(
2 + 1

4

(
∂2
ξ + ∂2

χ

))
.

• Eq. (H.14), sentence before the equation: “first order” should read “lowest order”.

• Eq. (H.15): The rhs has to be multiplied by c−4.

• Eq. (H.16): There are a few typos and terms missing in the equation. It should read

hλαβ =
κw2

0P0

2π2c


Ia




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


+

λθ

4




0 ∂χ −∂ξ 0
∂χ 0 0 −∂χ
−∂ξ 0 0 ∂ξ
0 −∂χ ∂ξ 0


 Ia (16)

+
θ2

4




(
1

2

(
∂2
ξ + ∂2

χ

)
Ic +

(
1− 1

4

(
∂2
ξ + ∂2

χ

)
− 2

162
(
∂2
ξ + ∂2

χ

)2
)
Ia + 4δIa

)



1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1




+

(
1 +

1

8

(
∂2
ξ + ∂2

χ

))
Ia




2 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0


+




0 ∂ξ ∂χ 0
∂ξ 0 0 −∂ξ
∂χ 0 0 −∂χ
0 −∂ξ −∂χ 0


 Ib +




0 0 0 0
0 1 + 1

4
∂2
χ − 1

4
∂ξ∂χ 0

0 − 1
4
∂ξ∂χ 1 + 1

4
∂2
ξ 0

0 0 0 0


 Ia





 .

• Eq. (I.1): The rhs has to be multiplied by π−1.

• Eq. (I.3), (I.4) and (I.5): The rhs of the equations have to be multiplied by 1/2.
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Rotation of polarization in the gravitational field of a laser beam - Faraday effect and
optical activity

Fabienne Schneiter,1, ∗ Dennis Rätzel,2, † and Daniel Braun1

1Eberhard-Karls-Universität Tübingen, Institut für Theoretische Physik, 72076 Tübingen, Germany
2Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany

We investigate the rotation of the polarization of a light ray propagating in the gravitational field
of a circularly polarized laser beam. The rotation consists of a reciprocal part due to gravitational
optical activity, and a non-reciprocal part due to the gravitational Faraday effect. We discuss how
to distinguish the two effects: Letting light propagate back and forth between two mirrors, the
rotation due to gravitational optical activity cancels while the rotation due to the gravitational
Faraday effect accumulates. In contrast, the rotation due to both effects accumulates in a ring
cavity and a situation can be created in which gravitational optical activity dominates. Such setups
amplify the effects by up to five orders of magnitude, which however is not enough to make them
measurable with state of the art technology. The effects are of conceptual interest as they reveal
gravitational spin-spin coupling in the realm of classical general relativity, a phenomenon which
occurs in perturbative quantum gravity.

I. INTRODUCTION

The gravitational field of a light beam was first studied
in 1931 by Tolman, Ehrenfest and Podolski [1], who de-
scribed the laser beam in the simplest way, namely as a
single light ray of constant energy density and without
polarization. Since then, various models for light beams
have been considered, such as in [2–4], all of them having
in common that the short-wavelength approximation is
used. This means that the light is either described as a
thin pencil or as a continuous fluid moving at the speed of
light and without any wave-like properties. Recently, we
studied the gravitational field of a laser beam beyond the
short-wavelength approximation [5]: The laser beam is
modeled as a solution of Maxwell’s equations, and there-
fore, has wave-like properties. In this case, there ap-
pear gravitational effects of light that were not visible in
the previous models, such as frame-dragging due to the
light’s spin angular-momentum, the deflection of a paral-
lel propagating test ray, and the rotation of polarization
of test rays. The latter is the subject of this article.
Effects of gravitational rotation of polarization were first
described in 1957 independently by Skrotsky [6] and
by Balazs [7]. In 1960, Plebanski found a coordinate-
invariant expression for the change of the polarization for
a light ray coming from flat spacetime, passing through a
weak gravitational field, and going to flat spacetime again
[8]. The gravitational rotation of polarization has been
studied for several systems: for moving objects, moving
gravitational lenses [9–11] and other astrophysical situa-
tions [12, 13], in the context of gravitational waves [14],
for rotating rings [15], for ring lasers [16] and for linearly
polarized lasers in a waveguide [17]. It was also treated
more formally in [18–20].
Rotation of polarization is well-known from classical op-

∗ fabienne.schneiter@uni-tuebingen.de
† dennis.raetzel@physik.hu-berlin.de

tics, when light rays pass through certain media (see
e.g.[21]). For this, the medium needs broken inversion
symmetry, a property certain materials have naturally.
Such media with “natural optical activity” lead to differ-
ent phase velocities of right- and left-circularly polarized
light. The effect is “reciprocal”, i.e. when the light ray is
reflected back through the medium, the rotation of polar-
ization is undone. In contrast hereto is the Faraday effect,
which can be created even in isotropic media by applying
a magnetic field. Here, the rotation is “non-reciprocal”,
i.e. the polarization keeps rotating in the same direction
relative to the original frame when the light propagates
back along the path. In this article, we consider the ro-
tation of the polarization vector of test rays in the grav-
itational field of a circularly polarized laser beam in free
space. It turns out that the rotation of polarization con-
tains both a reciprocal and a non-reciprocal part. The
former can hence be interpreted as gravitational optical
activity and the latter as a gravitational Faraday effect,
also called Skrotsky effect.

The laser beam is described as a perturbative solution
to Maxwell’s equations, an expansion in the beam di-
vergence angle θ, which is assumed to be smaller than
one radian. The description of the laser beam and its
gravitational field is given in detail in [5] and summa-
rized below. We look at the rotation of the polarization
of test rays which are parallel co-propagating, parallel
counter-propagating, or propagating transversally to the
beamline of the source laser-beam, and consider a cavity
where the rotation of the polarization vector accumulates
after each roundtrip. We thus propose a measurement
scheme which may possibly be realized in a laboratory
in the future, when the sensitivity in experiments has
improved accordingly.

The description of the gravitational field of a laser beam
is reviewed in section II, and the calculation of the ro-
tation of light polarization in curved spacetime in sec-
tion III. In section IV, we calculate the Faraday effect for
test rays. As already mentioned, only the non-reciprocal
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part of the rotation which is not due to the deflection can
be associated with the Faraday effect, which is discussed
in section V. Considering a cavity in a certain arrange-
ment, the rotation angles acquired after each roundtrip
of the light inside the cavity sum up. This is the subject
of section VI, where we look at a one-dimensional cavity
and a ring cavity and discuss the possible measurement
precision of the rotation angle. We give a conclusion and
an outlook in section VII.
To keep track of the orders of magnitude, we introduce
dimensionless coordinates by dividing them by the beam
waist w0 as τ = ct/w0, ξ = x/w0, χ = y/w0 and
ζ = z/w0, where c is the speed of light. Greek indices like
xα refer to dimensionless spacetime coordinates and latin
indices like xa refer to dimensionless spatial coordinates.
For the spacetime metric, we choose the sign convention
(−,+,+,+), such that the Minkowski metric η in the di-
mensionless coordinates reads η = w2

0diag(−1, 1, 1, 1). In
the numerical examples and plots, we use the following
values: the beam waist w0 = 10−6 m, the beam diver-
gence θ = 0.3 rad (this determines the wavelength, which
is given by πθw0 ' 1µm), the polarization λ = 1, and
the power of the source laser-beam, which is directed in
the positive z-direction, P0 = 1015 W.

II. THE GRAVITATIONAL FIELD OF A LASER
BEAM BEYOND THE SHORT WAVELENGTH

APPROXIMATION

In this section, we summarize the description of the laser
beam and its gravitational field presented in [5]. A laser
beam is accurately described by a Gaussian beam. The
Gaussian beam is a monochromatic electromagnetic, al-
most plane wave whose intensity distribution decays with
a Gaussian factor with the distance to the beamline. It
is obtained as a perturbative solution of Maxwell’s equa-
tions, namely an expansion in the beam divergence θ,
the opening angle of the beam, which is assumed to be
smaller than one radian. The electromagnetic four-vector
potential describing the Gaussian beam is obtained by
a plane wave multiplied by an envelope function that
is assumed to vary slowly in the direction of propaga-
tion, in agreement with the property that the diver-
gence of the beam is small. Corresponding to these fea-
tures, one makes the ansatz for the four-vector potential
Aα(τ, ξ, χ, ζ) = Ãvα(ξ, χ, θζ)ei

2
θ (ζ−τ), where Ã is the am-

plitude and vα the envelope function.1 The exponential
factor describes a plane wave propagating in ζ-direction
with wave number k = 2/(θw0), where w0 is the beam
waist at its focal point. The laser beam propagates in
positive ζ-direction such that its beamline concides with
the ζ-axis. The beam is illustrated in figure 1.

1 More precisely, the complex-valued vector potential A we con-
sider is the analytical signal of the real-valued physical vector
potential, which is obtained by taking the real part of A.

Figure 1. Schematic illustration of the laser beam propa-
gating in the positive ζ-direction: The beam divergence θ
describes the opening angle of the laser beam and is assumed
to be a small parameter (smaller than 1 rad), and the beam
waist w0 is a measure for the radius of the laser beam at its
focal point. The intensity of the laser beam decreases with a
Gaussian factor with the distance from the beamline.

Like the four-vector potential for any radiation, Aα sat-
isfies the Maxwell equations, which, in vacuum, are given
by the wave equations

(
−∂2

τ + ∂2
ξ + ∂2

χ + ∂2
ζ

)
Aµ(τ, ξ, χ, ζ) = 0 , (1)

where the Lorenz-gauge condition is chosen. Since the
envelope function varies slowly in the direction of prop-
agation, the wave equations (1) reduce to a Helmholtz
equation for each component of the envelope function,

(
∂2
ξ + ∂2

χ + θ2∂2
θζ + 4iw0∂θζ

)
vα(ξ, χ, θζ) = 0 . (2)

This Helmholtz equation is solved by writing the enve-
lope function as a power series in the small parameter
θ. One obtains an equation for each order of the expan-
sion of the envelope function, with a source term con-
sisting of the solution for a lower order, where even and
odd orders do not mix. The beam is assumed to have
left- or right-handed circular polarization, which we la-
bel by λ = ±1.2 We define this to be the case if its
field strength, defined as Fαβ = ∂αAβ − ∂βAα, is an
eigenfunction with eigenvalue ±1 of the generator of the
duality transformation of the electromagnetic field given
by Fαβ 7→ −iεαβγδF γδ/2, where εαβγδ is the completely
anti-symmetric tensor with ε0123 = −1. Our definition of
helicity is based on the invariance of Maxwell’s equations
under the duality transformation and the conservation of
the difference between photon numbers of right- and left-
polarized photons shown in [22] (see also [23–26]). For
θ = 0, this leads to the usual expressions for the field
strength of a circularly polarized laser beam.
It turns out that the energy-momentum tensor, which
one may expect to be oscillating at the frequency of the
laser beam, does not contain any oscillating terms when

2 The vector potential describing the laser beam thus depends on
the parameter λ, and so do its energy-momentum tensor, the
induced metric perturbation and the effects we calculate in the
following sections. Therefore, these quantities can be thought
of as being labelled by an index λ, which we suppress in the
following, except for appendix A, where we write the index λ
explicitly.
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circular polarization is assumed. The energy-momentum
tensor reads (see appendix A for the explicit expressions)

Tαβ =
c2ε0

2
Re

(
F σ
α F

∗
βσ −

1

4
ηαβF

δρF ∗δρ

)
. (3)

The power series expansion of the envelope function in-
duces a power series expansion of the energy-momentum
tensor and the expansion coefficients are identified as dif-
ferent order terms of Tαβ in θ.
Since the energy density of a laser beam is small com-
pared to the one of ordinary matter, one may expect its
gravitational field to be weak. The spacetime metric de-
scribing the gravitational field is thus assumed to consist
of the metric for flat spacetime ηαβ plus a small pertur-
bation hαβ . Terms quadratic in the metric perturbation
are neglected; this is the linearized theory of general rel-
ativity. In this case, the Einstein field equations reduce
to wave equations for the metric perturbation [27]

1

w2
0

(
−∂2

τ + ∂2
ξ + ∂2

χ + ∂2
ζ

)
hαβ = −16πG

c4
Tαβ , (4)

where G is Newton’s constant and where the Lorenz-
gauge has been chosen. Like the envelope function and
the energy-momentum tensor, the metric perturbation is
expanded in the beam divergence,

hαβ(ξ, χ, θζ) =
∞∑

n=0

θnh
(n)
αβ (ξ, χ, θζ) . (5)

For a laser beam extending from minus to plus spatial in-
finity, the wave equations (4) result in a two-dimensional

Poisson equation for each h
(n)
αβ , with a source term con-

sisting of a term of the energy-momentum tensor of the

same order and a term proportional to h
(n−2)
αβ , where even

and odd orders do not mix. Details and the solutions for
the zeroth, the first and the third order, which are rele-
vant for our purposes, are given in appendix A.
For a finitely extended source beam, the solution of (4)
with time-independent energy-momentum tensor of the
source laser-beam can be calculated using the Green’s
function of the three-dimensional Poisson equation,

hαβ =
4Gw2

0

c4

∫
dξ′dχ′dζ ′

Tαβ (ξ′, χ′, θζ ′)
|~x− ~x′| , (6)

where ~x = (ξ, χ, ζ) and ~x′ = (ξ′, χ′, ζ ′). The solution (6)
is discussed in detail in [5].

III. ROTATION OF POLARIZATION IN A
WEAKLY CURVED SPACETIME

In this section, we explain the expression presented in
[8] for the rotation angle that the polarization vector of
a test ray acquires when propagating in a gravitational
field.
For a light ray propagating through a gravitational field
and starting and ending at spatial infinity, the rotation

angle of polarization within a plane perpendicular to
the propagation direction (in the following called ray-
transverse plane) is given by equation (5.33) in [8]. For
our set of coordinates, it takes the form

∆ =
1

2w2
0

∫ ∞

−∞
dτ ta0εabc∂bhcα(τ, %⊥ + τt0)tα0 , (7)

where εabc is the Levi-Civita symbol in three dimensions
with ε123 = 1, ta0 = γ̇a(τ0) is the initial tangent to the
curve describing the light ray parametrized by the di-
mensionless parameter τ , and the line %⊥ + τt0 with
%⊥ = (ξ0, χ0, 0) constant is equivalent to the spatial part
of the ray γ including terms up to linear order in the met-
ric perturbation. Therefore, the evaluation of the metric
perturbation along the line %⊥ + τt0 instead of γ the ac-
tual, possibly deflected trajectory of a light ray in the
gravitational field of the source is justified as the correc-
tion would be of higher order in the metric perturbation.

The sign of the rotation angle ∆ is chosen such that the
positive sign refers to right-handedness (handedness of
rotation as inferred from equation (5.20) of [8]). Equation
(7) was obtained using the formal analogy of Maxwell’s
equations in a dielectric medium and Maxwell’s equations
in a gravitational field and using geometric ray optics for
vectors. It is shown in [8] that the expression in equation
(7) is invariant under coordinate transformations that
approach the identity at spatial infinity. For equation
(7) to be valid, the metric perturbation and all its first
derivatives have to vanish at least as ρ̃−1 for ρ̃ → ∞,

where ρ̃ =
√
ξ2 + χ2 + ζ2.

For a light ray that is not deflected by the gravitational
field, i.e. that does not change its direction of propaga-
tion, the ray-transverse plane is the same everywhere far
away from the laser beam, where spacetime is flat. How-
ever, when the light ray is deflected, this plane is tilted
after passing the gravitational field with respect to the
one before entering the gravitational field. Therefore,
the rotation of the polarization vector within the ray-
transverse plane given in equation (7) is superimposed
with a change of the polarization vector δ~ω due to the
deflection of the light ray. The latter consists of a rotation
plus a deformation which depend on the initial polariza-
tion vector ~ω.3 It does not contribute to the gravitational
Faraday effect or the optical activity. An experimental-
ist who wants to measure these effect would thus have
to correct for the deflection effects. The change of the
polarization vector is illustrated in figure 2.

3 See section 6 in [8].
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Figure 2. Change of the initial polarization vector ~ω of a
light ray γ: The initial polarization vector ~ω in the initial
ray-transverse plane (represented by the solid circle on the
left and the dashed circle on the right) is rotated by the angle
∆ into R∆~ω (dashed arrow on the right) due to the gravita-
tional field, where R∆ is the corresponding rotation matrix.
Additionally, the deflection of the laser beam tilts the ray-
transverse plane into its final orientation (solid circle on the
right) such that it stays orthogonal to the tangent of the de-
flected laser beam. The tilt leads to an additional change δ~ω
of the polarization vector ~ω. The rotation by the angle ∆
consists of a reciprocal part due to the gravitational optical
activity and a non-reciprocal part due to the gravitational
Faraday effect.

Another approach how to describe the rotation of po-
larization is described in appendix B. It agrees with the
results presented in this section.

For a linearly polarized test ray, the interpretation of
the rotation of the polarization vector is clear: For ex-
ample, for a test light-ray propagating in ζ-direction,
the polarization vector describing linear polarization
in ξ-direction, ~εξ = (1, 0, 0), is rotated into R∆~εξ =
(cos(∆), sin(∆), 0), where R∆ stands for the matrix ro-
tating by the angle ∆ about the ζ-axis. For a cir-
cularly polarized test ray with helicity λtest = ±1
and with the corresponding polarization vector ~ελtest =

(1,−λtesti, 0)/
√

2, one obtains R∆~ελtest = eiλtest∆~ελtest .
This means that the circularly polarized test ray acquires
the phase λtest∆. In general, for an elliptically polarized
test light ray, the acquired phases of the circular compo-
nents lead to a rotation of the major axis of the ellipse
by an angle ∆.

IV. ROTATION OF POLARIZATION IN THE
GRAVITATIONAL FIELD OF A LASER BEAM

In this section, we investigate the rotation of the polariza-
tion vector of a test ray passing through the gravitational
field of a source laser-beam according to equation (7).

We consider different orientations of the test ray with re-
spect to the source beam: parallel co-propagating, par-
allel counter-propagating, and transversal test rays. We
find that the effect depends strongly on the orientation
of the test ray. In particular, we obtain that the order of

the metric expansion4 that causes the rotation of polar-
ization depends on the orientation of the test ray.
The source laser-beam is assumed to propagate along the
ζ-axis, to be emitted at ζ = α and absorbed at ζ =
β. The parallel co-propagating test ray is emitted at
ζ = A and absorbed at ζ = B and the parallel counter-
propagating test ray is emitted at ζ = B and absorbed at
ζ = A. The test ray that is oriented transversally to the
beamline of the source laser-beam is emitted at ξ = A
and absorbed at ξ = B or vice versa.
In subsection IV A we focus on an ideal situation of in-
finitely long test rays. The source laser-beam is con-
sidered to be either finitely or infinitely extended. In
subsection IV B we look at finitely long test rays and a
finitely extended source laser-beam, and we discuss the
the long-range behavior of the rotation of polarization of
the test rays. In subsection IV C, we discuss the gravita-
tional coupling between the spin of the source laser-beam
and the spin of the test ray.

A. Infinitely extended test ray

For the infinitely extended test rays, the conditions for
the application of equation (7) are immediately seen to
be fulfilled for the finitely extended source beam, as the
metric perturbation and all its first derivatives vanish at
least as ρ̃−1 for ρ̃ → ∞. This follows directly from the
Green’s function which is proportional to 1/ρ̃ in three
dimensions.
For the parallel test rays, for an infinitely extended source
beam and an infinitely extended test ray it will always be
understood that the emitter and absorber of the test ray
are sent to infinity more rapidly than those of the source-
beam, i.e. |A|, |B| � |α|, |β| → ∞, such that also here
the test ray indeed begins and ends in flat spacetime. For
the transversal test rays, for an infinitely extended source
beam and infinitely extended test rays, it is assumed that
|A| and |B| approach infinity fast enough for them to be
in flat spacetime.
Besides the strict validity of equation (7), the infinite
test-ray has also the advantage to lead to relatively sim-
ple analytical expressions for the rotation angles.

1. Parallel test rays

We start by looking at the rotation of the polarization
vector of test rays which are parallel co-propagating or
counter-propagating with respect to the source laser-
beam as illustrated in figure 3.

4 Generally, with the order of the metric expansion, we refer to the
order in θ. Any higher order terms of the metric perturbation
itself are neglected in the linearized theory of general relativity.
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Figure 3. Schematic illustration of the rotation of the polar-
ization vector ~ω (here it originally has only a component in
ξ-direction) of a parallel co-propagating test ray with tangent
γ̇+ in the gravitational field of the laser beam.

The parallel co- and counter-propagating test rays are as-

sumed to have a distance ρ =
√
ξ2 + χ2 from the beam-

line, and to travel from ζ = −∞ to ζ = ∞ and from
ζ =∞ to ζ = −∞, respectively. They are considered to
have transversal polarization described by the polariza-
tion vector wµ = (0, wξ, wχ, 0). The initial tangents to
their worldlines are given by γ̇±(τ0) = (1, 0, 0,±(1−f±)),
where the ”+” corresponds to the co-propagating test ray
and the ”−” to the counter-propagating test ray. The
parameter f± ensures that γ̇± satisfies the null con-
dition. It is proportional to the metric perturbation,
which means that it does not contribute in equation
(7) and can be neglected in the following calculations.
Since the integration in equation (7) is along the line
%⊥ + τt0 = (ξ0, χ0,±τ), we can change the integration
variable from τ to ζ when neglecting terms quadratic in
the metric perturbation. Then, for the parallel propagat-
ing test rays we obtain (see equation (D1))

∆± = − 1

2w2
0

∫ ∞

−∞
dζ
(
∂χ (hξζ ± hτξ)− ∂ξ (hχζ ± hτχ)

)
.

(8)

Notice that the metric perturbation contains a factor w2
0,

such that ∆± is dimensionless. For the co-propagating
test ray, the contribution coming from the first order of
the metric perturbation cancels, and one obtains in lead-
ing order (the third order in θ)

∆+ = λ
GP0θ

3

c5

∫ β

α

dζ |µ|2(1 + 2|µ|2ρ2)e−2|µ|2ρ2 , (9)

where |µ|2 = (1 + (θζ)2)−1. Note that ζ in (9)
parametrizes the source beam (i.e. corresponds to ζ ′ in
(6)). The derivation of (9) (see appendix E for details)
uses an asymptotic expansion in 1/B, i.e. assumes that
B � |ζ ′|, |ρ′|, as well as a finite cut-off ρ0 of the energy
density in radial direction that is then sent to infinity.
The expression with ρ0 kept finite is given by (E15). For
an infinitely extended source beam, we can then simply
evaluate the limit α → −∞ and β → ∞. An alter-
native derivation that starts from an infinitely extended
source beam and an infinitely extended test ray is given
in appendix D.

The integrand in (9) decreases as a Gaussian with the
distance to the beamline. The Gaussian factor is the
same as the one that appears as a global factor in the
energy-momentum tensor of the source beam (see [5] or
appendix A), which implies that significant contributions
to ∆+ for the infinitely extended test ray are only accu-
mulated in regions where the energy distribution of the
source beam does not vanish. In addition, (E15) shows
that there is no effect outside of a finite beam when a
cut-off of the energy-momentum distribution is consid-
ered.

The sign of the rotation angle in equation (9) depends
on λ, which specifies the handedness of the light in the
source laser-beam. The dependence of the rotation angle
∆+ on the distance to the beamline is illustrated in the
upper graph of figure 4.

For the counter-propagating test ray, we obtain in leading
order (the first order in θ)

∆− = −λ8GP0θ

c5

∫ β

α

dζ |µ|2e−2|µ|2ρ2 . (10)

for the finitely extended source beam and the infinitely
extended test ray. Equation (10) is derived with the same
limiting procedures as (9). Its version with finite radial
cut-off of Tµν is given in (E8). The integrand in equa-
tion (10) decreases in the same way as the one in equa-
tion (9) with the same Gaussian factor with the distance
to the beamline that can be found as a global factor in
the energy-momentum tensor of the laser beam. We find
that there are no significant contributions to the rota-
tion angle ∆− outside of the energy distribution for an
infinitely extended test ray (see equation (E8)) when in-
troducing a cut-off of the energy-momentum distribution
in transversal direction. The dependence of the rotation
angle ∆− on the distance to the beamline is illustrated in
the lower graph in figure 4. The two orders of magnitude
larger values for ∆− compared to those for ∆+ arise due
to the factor θ2/8 present in the expression for ∆+ but
not in the one for ∆− (compare equations (9) and (10)).
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Figure 4. The absolute value of the polarization rotation
angle ∆+ (upper graph) for a parallel co-propagating light
ray and ∆− (lower graph) for a parallel counter-propagating
light ray as a function of the transversal distance ρ from the
beamline. The blue (dashed-dotted) line gives the rotation
angle for the infinitely extended source beam and test ray.
The green (unbroken) line gives the rotation angle for a source
beam with emitter and absorber at ζ = −200 and ζ = 200, re-
spectively, and infinitely extended test ray. The red (dashed)
line gives the numerical values for the same extensions of the
test beam and a finitely extended test light-ray with emit-
ter (absorber) and absorber (emitter) at ζ = A = −600 and
ζ = B = 600, respectively, for the co-propagating (counter-
propagating) beam. For the parameters given in the introduc-
tion, the factor 8GP0/c

5 is of the order 10−37. The plots show
good agreement between our results for finitely and infinitely
extended beams close to the beamline.

2. Transversally propagating test rays

The transversally propagating test ray is described by the
initial tangent γ̇± = (1,±(1−f±), 0, 0). Due to the same
argument as before, we do not have to take into account
the parameter f±. For the rotation angle of the polariza-
tion vector, we obtain for the infinitely extended source
beam and infinitely extended test ray (see appendix D
for the detailed derivation) including terms up to first
order

∆t± =± 1

2w2
0

∫ ∞

−∞
dξ ∂χh

(0)
τζ +

θ

2w2
0

∫ ∞

−∞
dξ ∂χh

(1)
ξζ

=± 4πGP0

c5
erf
(√

2|µ|χ
)

+ λ
2
√

2πGP0θ

c5
|µ|e−2|µ|2χ2

.

(11)

Let us denote the first term in equation (11) as ∆
(0)
t±

and the second term as ∆
(1)
t± . Then, we find that ∆

(1)
t± =

λθ
4 ∂χ∆

(0)
t+ . One might think that the symmetry of the

beam geometry implies that ∆
(0)
t± should vanish at ζ = 0

as the term is independent of the helicity of the source
beam. However, the symmetry is broken due to the di-
rection of propagation of the source laser-beam. This can
also be seen from the fact that only the τζ-component of
the metric perturbation contributes to the effect, which
would vanish for a massive medium at rest (see for ex-
ample the Levi-Civita metric for an infinitely extended
rod of matter [28]). The effect is similar to the deflec-
tion of a transversally propagating test ray, which is both
deflected radially towards the laser beam as well as in ζ-

direction [1]. To illustrate the ζ-dependence of ∆
(1)
t± , a

numerical evaluation and a comparison to results for a
finitely extended source beam (see the following subsec-
tion) are given in figure 5.

Figure 5. First order contribution (corresponding to the
leading order effect of gravitational optical activity) to the
rotation angle ∆t+ for the polarization vector of an transver-
sally propagating test ray with λ = +1: The blue, continu-
ous line corresponds to the infinitely extended source beam,
and the red, dashed line corresponds to the finitely extended
source beam, emitted at α = −200 and absorbed at β = 200.
The test ray runs from ξ = A = −600 to ξ = B = 600 at
χ = 10. We find that the results for the infinitely extended
source beam and test ray can be used to describe the effect
in the case of the finitely extended source beam and test ray
to some approximation for ζ-positions that are in between
emitter and absorber, but far from them. It can be seen that
the rotation decreases fast at the ends of the finitely extended
source beam.

The first and the second term in equation (11) are fun-
damentally different in their dependence on the variable
χ, which can be interpreted as the impact parameter of
the scattering of the test light-ray with respect to the

source beam. ∆
(1)
t± is proportional to the same Gaus-

sian function of χ that appears as a global factor in the
energy-momentum tensor of the source beam for ξ = 0,
which means that it vanishes if there is no overlap of the
source beam and the test ray in the same way as in the
case of ∆+ and ∆− above. Instead, the first term in
equation (11) vanishes at χ = 0 and saturates for large
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values of χ at a finite value, see figure 6 for plots showing
numerical values for the first term in (11) and for the
finitely extended source beam.

Figure 6. The rotation angle ∆t+ (zeroth and first or-
der) for the polarization vector of an transversally propagat-
ing test ray: The blue, plain line corresponds to the infinitely
extended source beam, and the red, dashed line corresponds
to the finitely extended source beam, emitted at α = −200
and absorbed at β = 200. For the finitely extended source
beam, the test ray is emitted at ξ = A = −600 and absorbed
at ξ = B = 600. In the first plot, |∆t+ | is given as a function
of the coordinate ζ along the beamline for χ = 10. For the
parameters given in the introduction, the factor 8GP0/c

5 is
of the order 10−37. We find that the results for the infinitely
extended beam approximate those for the finitely extended
beam for ζ-positions in between emitter and absorber that
are far from emitter and absorber. It can be seen that |∆t+ |
decays quickly outside of the range of the finitely extended
source beam and test ray in contrast to |∆t+ | for the infinitely
extended ones that always overlap. In both cases, the maxi-
mal effect is obtained close to ζ = 0. In the second plot, the
angle ∆t+ is given as a function of χ at ζ = 0. For large val-
ues of χ, it reaches a constant value for the infinitely extended
source beam and test ray (undashed, blue) and decreases for
the finitely extended source beam and test ray (dashed, red).
A dependence on χ as 1/χ2 is found for larger values of χ
using a multipole expansion presented in appendix F.

Up to numerical factors of order 1, the prefactors in equa-
tions (9), (10), and (11) can be interpreted as the ratio
of the power P0 of the source laser-beam to the Planck
power Ep/tp = E2

p/~, where Ep =
√

~c5/G is the Planck
energy, which explains the smallness of the effect.

B. Finite vs. infinite source beams and test rays
and the long range behavior

For potential future experiments, finitely extended test-
rays are relevant. It may even not be possible to realize
extensions of the test ray much larger than that of the
source beam or one may need to know details about the
decay of the effect for large distances from the beamline.
It should then be kept in mind that (7) holds for test rays
that begin and end in flat spacetime. This is a condition
which can be fulfilled only approximatively for a finitely
extended test-ray. Furthermore, only under this condi-
tion has the rotation of the polarization a clear physical,
coordinate-invariant meaning. To give a physical mean-
ing to the rotation angle for a finitely extended test-ray, a
physical reference system may be considered that extends
from emitter to absorber. To this end, matter properties
of the reference system like its density and stiffness have
to be taken into account to obtain a reliable result. This
is very similar to the considerations we made in [29] for
the frequency shift of an optical resonator in a curved
spacetime. We do not follow such an approach in this
article.

Here we rather focus on the question under which con-
ditions equation (7), when integrated over a finitely ex-
tended test ray, leads to results comparable to those of
the infinitely extended test-ray. We will find that suf-
ficiently close to the beamline the results from the fi-
nite integration can be very close to those of an infinite
test-ray, which suggests that the latter, rigorous results
with clear physical meaning, also remain valid for ex-
periments using a finitely extended test-ray close to the
source beam. The situation is quite different, however,
in the far field, where results from the finite source beam
and the infinitely extended one, both evaluated using (7),
can differ siginificantly. This can be shown with a multi-
pole expansion based on equation (6) or by numerically
evaluating equation (6). The basic expressions for the
numerics are given in appendix C and the multipole ex-
pansion is performed in apendix F. Here we briefly dis-
cuss both approaches and the main results.

The numerical values for the rotation angle for finitely
extended test rays and source beams presented in fig-
ure 4 are obtained from equations (C6) and (C7). The
derivative in equation (7) acting on the metric perturba-
tion is shifted to the energy-momentum tensor by pulling
it into the integral, using the symmetry of the function
|~x − ~x′| to replace the derivative for an un-primed co-
ordinate by a derivative for a primed coordinate and
partial integration. The resulting expressions are eval-
uated using Python and the scypy.integrate.quad and
scypy.integrate.romberg methods. The results for the
finitely extended beam and those for the infinitely ex-
tended beam are very similar close to the beamline, see
figure 4. The region in the ξ-χ-plane containing most
of the energy of the source beam can be defined by a
drop of its intensity by a factor e−2, which implies a ra-
dius w(ζ) =

√
1 + (θζ)2 of that region. In standard no-
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tions w(ζ) is called the width of the beam as a realistic
beam is never infinitely extended in the transversal direc-
tion and is usually considered to extend only on length
scales of the order of w(ζ). Equations (9) and (10) imply
that there is only a significant rotation angle accumu-
lated along an infinitely extended test ray if the latter
overlaps with the region bounded by the source beam’s
width, as the integrands in equations (9) and (10) are
proportional to the same Gaussian function that can be
found as a global factor in the energy-momentum ten-
sor of the source beam. In the following, we will call
this situation an overlap of the test light ray and the
source beam. That ∆− and ∆+ are only non-zero for
an overlap of test ray and source beam is confirmed by
equations (E15) and (E8), where a cut-off of the source
beam’s energy-momentum distribution is considered. For
θζ � 1, we find that w(ζ) ≈ θζ. Therefore, a test ray
at ρ � 1 overlaps with the source beam only in regions
where |θζ| > ρ. For the infinitely extended source beam
and test ray, there is always an overlap, but it does not
need to be the case if at least one of the two beams has
finite length.

Note that for large values of θζ, the energy-density of
the source laser-beam is proportional to (θζ)−2 (while
transversally it decreases as a Gaussian with the distance
to the beamline). The same is true for the integrands in
equations (9) and (10). Therefore, ∆± in equations (9)
and (10) are approximately proportional to 1/(θζ) evalu-
ated at the boundaries of the regions where test ray and
source beam overlap. For the infinitely extended beams,
this implies that the rotation angles in equations (9) and
(10) are approximately proportional to 1/ρ for large ρ.
The proportionality of ∆− and ∆+ to 1/ρ holds as well
for finitely extended source beams if ρ� −θα or ρ� θβ.
For larger values of ρ, there is no overlap of test ray and
source beam (this is illustrated in figure 7 and figure 8).

Then, ∆− and ∆+ decay proportional to e−Σρ2/ρ2 and

e−Σρ2 , respectively, where Σ = 2/(θα)2 for α ≥ −β or
Σ = 2/(θβ)2 for β ≥ −α, as shown in equation (E11)
and equation (E17), respectively.

Figure 7. Illustration of the overlap of the test ray with the
source laser-beam: A test ray may overlap with the source
laser-beam only if the latter is long enough. In the illustra-
tion, the path of the test ray is labelled by γ and starts and
ends at A and B respectively for the short source laser-beam
(starting and ending at α and β respectively) or at A′ and B′
for the long source laser-beam (starting and ending at α′ and
β′ respectively).

Figure 8. The function −δ− (the integrand in equation (10))
for the polarization vector of the parallel counter-propagating
light ray is plotted as a function of the coordinate along the
beamline ζ for a distance from the beamline ρ = 10. The
blue (unbroken) line gives the rotation angle for the infinitely
extended source beam and test ray as in equation (10). The
red (dashed) line gives the numerical values for a finitely ex-
tended source beam with emitter and absorber at α = −200
and β = 200, respectively, based on (6). It can be seen
that δ− decays quickly outside of the range of the finitely
extended beam in contrast to δ− for the infinitely extended
source beam, which continues to decay like 1/ζ2 for large ζ
just as the source beam’s energy density. The region left of
the steep descent around ζ ∼ −70 and the region right of the
steep ascent around ζ ∼ 70 correspond to the overlap regions
of source beam and test light-ray. In the case of an infinitely
extended source beam, these regions are infinitely extended.
In the case of a finitely extended source beam, the overlap
regions end at the end of the source beam as can be seen with
the steep ascent close to ζ = −200 and the steep descent close
to ζ = 200 for the red (dashed) curve.

The behavior for large distances from the beamline and
finitely extended test rays can be analysed with a mul-
tipole expansion, assuming that the source term in the
form of the derivatives of the energy-stress tensor can
be effectively cut-off at w(ζ). This is presented in ap-
pendix F. One finds that for ∆± the lowest contributing
moment is a quadrupole leading to a 1/ρ3 decay for fi-
nite B = −A. At the same time, the prefactor of these
terms decay as 1/B2 for B � ρ. Higher multipoles lead
to an even faster decay, both with ρ and B. Hence, in the
case of a finitely extended source beam and an infinitely
extended test ray that does not overlap with the source
beam, one expects to recover the fast decay of ∆± with
ρ obtained in equations (9) and (10). However, a resum-
mation of the multipole expansion would be needed to
find out its functional form. This is beyond the scope
of the present investigation. Nevertheless, the analysis
makes clear that ∆± sensed by a finitely extended test
ray in the far-field regime is not captured accurately by
the results from the idealized infinitely extended test ray
for the cases considered.
For the transversal test ray, the χ-dependence of ∆t± for
χ� 1 changes drastically for the finitely extended source
beam compared to the infinitely extended one. In partic-
ular, the result that the first term in equation (11) does
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not vanish for large distances from the beamline turns out
to be an effect of the infinite extension of source beam
and test ray. Alternatively, this can also be seen as fol-

lows: As ∆
(0)
t± is of zeroth order, it remains present when

describing the laser beam in the paraxial approximation,
in which the gravitational field of an infinitely extended
source beam has the form h00 = h33 = −h30 ∝ ln(ρ) (see
[3, 30] and consider an infinite pulse length or see [2], con-
sider an energy distribution localized to the beamline,
and subtract the Minkowski metric from the resulting
spacetime metric). From equation (7) and for a transver-
sal infinitely extended test ray, we immediately obtain a
rotation angle proportional to the first term in equation
(11). On the other hand, the solution for the gravita-
tional field for a finitely extended source beam can be
found in [1]. In appendix G, using this solution and
an infinitely extended test ray, we obtain the radial de-
pendence of the rotation angle as 1/χ, and for a finitely
extended test ray, we find that the rotation angle is pro-
portional to 1/χ2 for large χ. This is corroborated by the
multipole expansion, where we find a monopole contribu-
tion responsible for the 1/χ2 behavior to zeroth order in θ
for χ� B. As function of B = −A it saturates for large
B (i.e. B � χ) and gives a β/χ behavior, see appendix F.

Since ∆
(1)
t± = λθ

4 ∂χ∆
(0)
t+ , we find that ∆

(1)
t± decays as 1/χ3

for finitely extended source beams and test rays and as
1/χ2 for finitely extended source beams and infinitely ex-
tended test rays. The corresponding multipole expansion
is given in appendix F.

C. Rotation of polarization and gravitational
spin-spin coupling

The rotation angles ∆± as well as the first order contri-
bution to ∆t± are proportional to the helicity λ of the
source laser-beam. As explained in the end of section III,
the rotation angle is equivalent to a phase for circularly
polarized test light rays, which is given by −λtest∆. This
phase contains the product of the helicities of the source
laser-beam and the test ray, λλtest. Therefore, the phase
depends on the relative helicity of the two beams. This
is gravitational spin-spin coupling.
We can consider the source beam as its own test beam,
λtest = λ, such that λtest∆+ = C+ where C+ > 0 is
a function that increases monotonously with the end of
the source beam at ζ = β (see (9)). Since C+ enters as
a phase Exp(iC+), it can be combined with the global
plane wave factor at the end of the beam ζ = β as
Exp(iΦ) where Φ = 2(β−τ)/θ+C+. This leads to the lo-

cally modified wave number k̃ = ∂βΦ = (2 + θ ∂βC+) /θ
at ζ = β. Effectively, this leads to the interpretation of
a locally modified dispersion relation and an effectively
reduced speed of light. This self-interaction effect is pro-
portional to the intensity of the electromagnetic field. It
is reminiscent of the apparent modification of the speed
of light found in [31] based on the eikonal approxima-
tion of the solution of the relativistic wave equation of a

light-beam in its own gravitational field.

V. FARADAY EFFECT AND OPTICAL
ACTIVITY

The electromagnetic Faraday effect is a non-reciprocal
phenomenon. Non-reciprocity means that the effect does
not cancel when the test ray propagates back and forth
along the same path. We investigate this feature for its
gravitational analogue.
The rotation angle given in equation (7) is defined with
respect to the propagation direction. Therefore, the ab-
solute rotation accumulated on the way back and forth
through spacetime seen by an external reference system
at the starting point of the test ray’s trajectory at spatial
infinity is given by the difference between the rotation an-
gle acquired on the outbound trip and the one acquired
on the way back. For a tangent vector tµ0 with t00 = 1
and ta0 = d δam with m ∈ {ξ, χ, ζ} and d = +1 for out-
bound and d = −1 for back propagation, we obtain from
equation (7) the rotation angle

∆ =
1

2w2
0

∫ ∞

−∞
dτ εmbc∂b(hcm + dhcτ ) , (12)

and therefore, the Faraday rotation becomes

∆F =
1

w2
0

∫ ∞

−∞
dτ εmbc∂bhcτ . (13)

We find that the gravitational Faraday effect is given by
the spacetime-mixing component of the metric perturba-
tion hcτ . In contrast, the first term in (12) containing a
purely spatial component of the metric perturbation does
not depend on the propagation direction and cancels on
the way back and forth. This is the gravitational optical
activity.
For the rotation due to the gravitational Faraday effect
after one roundtrip for the parallel test ray, we obtain
from equation (8) to leading order

∆F
+− = ∆+ −∆−

= − θ

w2
0

∫ ∞

−∞
dζ
(
∂χh

(1)
τξ − ∂ξh(1)

τχ

)
. (14)

Adding the rotations due to the transversal back and
forth propagation leads to (the explicit expression is iden-
tical to twice the positive contribution of the first term
in equation (11)),

∆F
t+t− = ∆t+ −∆t− =

1

w2
0

∫ ∞

−∞
dξ ∂χh

(0)
τζ , (15)

which means that the effect is of zeroth order. The con-
tribution of gravitational optical activity is given as (to
leading order and for one direction of propagation)

∆Op
+− =

∆+ + ∆−
2

= − θ

2w2
0

∫ ∞

−∞
dζ
(
∂χh

(1)
ζξ − ∂ξh

(1)
ζχ

)
(16)
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for the parallel test rays, and

∆Op
t+t− =

∆t+ + ∆t−

2
=

θ

2w2
0

∫ ∞

−∞
dξ ∂χh

(1)
ξζ (17)

for the transversal test rays.
From the vanishing of ∆+ in first order in the metric per-
turbation, we deduce that the first order contributions of
optical activity and the Faraday effect to the polarization
rotation accumulated along a parallel co-propagating test
ray have the same absolute value and cancel each other.
In contrast, the two contributions add for the counter-
propagating test ray. This situation can be compared to
the result of Tolman et al. [1], which states that a test ray
is not deflected in the gravitational field of a source light-
beam if it is parallel co-propagating, while it is deflected
if it is parallel counter-propagating. It is the motion of
the source of gravity that breaks the symmetry; its mo-
tion with the speed of light leads to the extreme case of
equal absolute values of the two effects.

VI. TEST RAYS IN CAVITIES

In a one-dimensional cavity containing light that prop-
agates back and forth, the effect associated with grav-
itational optical activity cancels while the gravitational
Faraday effect adds up. In a ring cavity or an optical
fiber coiled around the beamline, the full polarization
rotation is accumulated and the gravitational Faraday
effect represents the leading order effect. For the case
of a transversally oriented ring cavity, a situation can be
created in which the Faraday effect vanishes and only the
gravitational optical activity accumulates.

A. Parallel linear cavity

We consider a cavity consisting of two mirrors between
which the light propagates back and forth, with the axis
of the cavity oriented parallel to the beamline and at a
distance ρ from the beamline. The setup is illustrated in
figure 9.

Figure 9. Schematic illustration of the parallel cavity in the
gravitational field of the laser beam: The source laser-beam
starts at α and ends at β. The test ray propagates on the
worldline γ between the mirrors A and B of the cavity. The
Faraday effect adds up after each roundtrip, while the rotation
associated with gravitational optical activity vanishes.

Up to third order in θ, the light travels undeflected from
ζ = A to ζ = B and picks up a small deflection of zeroth
order in θ when travelling from ζ = B to ζ = A. The
deflection vanishes when the light ray propagates at the
center of the source beam, at ρ = 0. In this case only
the angle due to the Faraday effect accumulates. For
one back and forth propagation, it is given by equation
(14). Letting the light propagate during the time τ =
LF/(πc), where F is the finesse of the cavity, the total
angle of rotation is given by ∆cav,+− = ∆F

+−F/(2π). For
a cavity of finesse F = 106 [32] and the parameters given
in the introduction, the rotation angle is of the order
of magnitude ∆cav,+− ∼ ±10−32 rad. For a cavity at
distance ρ > 0 from the center of the laser beam, the
effect is smaller, and one has to take into consideration
the deflection when the test ray is counter-propagating
to the source laser-beam.

B. Transversal linear cavity

Rotating the parallel cavity by ninety degrees, we obtain
a transversal cavity, as illustrated in figure 10. Anal-
ogously to the parallel cavity, one finds that the total
angle of rotation is given by ∆cav,t+t− = ∆F

t+t−F/(2π).
For a finesse of F ∼ 106 and the parameters given in the
introduction, it is of the order ±10−32 rad.

Figure 10. Schematic illustration of the transversal cavity in
the gravitational field of the laser beam: The test ray prop-
agates along the worldine γ, marked as a red line, and is
reflected at the mirrors A and B. The source laser-beam is
emitted at ζ = α and absorbed at ζ = β. The Faraday effect
adds up after each roundtrip, while the rotation associated
with gravitational optical activity vanishes.

C. Ring cavity

In order to measure the polarization rotation including
the contribution due to optical activity for the transversal
light ray, we consider a ring cavity: The light propagates
from A at (ξ, χ, ζ) = (−∞, χ1, 0), to B at (ξ, χ, ζ) =
(∞, χ1, 0), to C at (ξ, χ, ζ) = (∞, χ2, 0), where χ1 and
χ2 have opposite sign, to D at (ξ, χ, ζ) = (−∞, χ2, 0)
and back to A. The ±∞ can be replaced by distances
from the beamline much larger than β. The polarization
rotation accumulated when propagating from A to B and
from C to D add up. The setup is illustrated in figure 11.
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Figure 11. Schematic illustration of the ring cavity setup:
The test ray propagates along the path γ and is reflected at
the mirrors A, B, C and D. The source laser-beam is emitted
at ζ = α and absorbed at ζ = β. A similar situation can be
created with a test ray in a wave guide that is wound many
times around the source beam.

The rotation of polarization after one roundtrip is given
by twice the expression in equation (11) for χ1 ∼ 1
and χ2 ∼ −1. For χ1 � β, χ2 � −β and α = −β, we
have shown that the effect decays as β/χ2 in appendix F.
As the first term in equation (11) corresponding to the
gravitational Faraday effect is of zeroth order in θ, it does
not depend on the beam waist for the fixed wavelength
given by πθw0. This means that the beam has to be long,
but it does not need to be focused. Again for a finesse of
F = 106 and the parameters given in the introduction,
the rotation is of the order of magnitude ∆t+F/(2π) ∼
10−32 rad.
For χ1 = 0 and χ2 = −∞ or at least −χ2 very large,
we find that the polarization rotation due to the Fara-
day effect vanishes (see also equation (E22)) and the ro-
tation due to gravitational optical activity remains (see
also equation (E23)). Then, the accumulated effect is by
one order smaller than that due to the Faraday effect at
χ1 = χ2 > 1.
A ring cavity can also be used to amplify the rotation
angle of the polarization the parallel co-propagating test
ray acquires: Since it is not deflected, one can let the
light ray pass through the gravitational field N times
just in the direction of propagation of the source beam,
such that the effect is amplified by a factor N .

D. Measurement precision of the rotation angle

The rotation angle ∆ is experimentally inferred by mea-
suring the additional phase difference that the right- and
left-circularly polarized components of the test ray ac-
quire when propagating in the gravitational field as ex-
plained in the end of section III. The measurement pre-
cision of the phase Φ = −λtest∆ is restricted by the shot
noise. Using classical light, the minimal uncertainty in
a phase estimation cannot exceed the shot noise limit,
which is of the order of magnitude δΦ ∼ 1√

nM
, where n

is the number of photons of the light inside the cavity and

M the number of measurements [33]. For a cavity res-
onator driven by a laser with frequency ω/(2π) and power
Pdr, we find a number of photons n = PdrTav/(~ω), where
Tav is the average time a photon spends in the resonator.
Therefore, the number of measurements that can be per-
formed with n photons in an experimental time Ttot is
given as M = Ttot/Tav, giving nM = PdrTtot/(~ω),
which is the total number of photons passing the cav-
ity in time Ttot.
The measurement precision becomes thus better by in-
creasing the power of the driving laser and lowering
its frequency. For cw-laser beams with power Pdr =
100 kW [34],5 for a wavelength of approximately 500 nm
and a total experimental time of about two weeks, i.e.
Ttot ∼ 106 s, the minimal standard deviation is given by
δφ ∼ 10−15 rad. Its order of magnitude does not change
when using a squeezed (single mode coherent) state with
the currently maximal squeezing of 15 dB [36]6 and ana-
lyzing the uncertainty with the corresponding quantum
Cramér-Rao bound [37].
The Cramér-Rao bound is a tight bound on the uncer-
tainty of an unbiased phase-estimation that can in prin-
ciple be achieved in a highly idealized situation, where
all other noise sources such as thermal noise, electronic
noise, seismic noise etc. are neglected. The sensitivity
can be increased by using more than one mode, but with-
out entangling the modes or creating other non-classical
states no gain in sensitivity at fixed total energy is pos-
sible [38].
For a more practical benchmark of current state-of-the-
art measurement precision, consider the LIGO observa-
tory. It obtains a sensitivity for length changes of their
arms of the order of 10−20 m (strains of the order of
10−23 (Hz)−1/2 on an arm length of the order of 103 m
[39]), which corresponds to a phase sensitivity of the or-
der of 10−11 rad at about 1000 nm wavelength. Another
obstacle is that the source-laser power of 1015 W that we
considered here can so far only be reached in very short
pulses, which means that an extension of our analysis to

5 Of course the power of the driving laser cannot be unlimited as
the cavity mirrors have to withstand the heating due to scattered
light. The finesse F ∼ 106 leads to a circulating power in the
cavity of the order of 1010 W, which leads to a necessary size of
the beam at the mirrors of the order of 1 m [35]. Assuming the
transversal setup described in section VI, the waist of the test
ray has to be smaller than the waist of the source beam and the
divergence angle of the test ray must be smaller than one radian
to ensure a complete overlap of the focal regions of the source
beam and the test ray. We assumed a waist of the source beam of
the order of 10−6 m, which implies a maximum waist of the test
ray of the same order. Furthermore, the divergence angle of the
test ray below one radian implies that the distance between the
mirrors of the test ray has to be of the order of several meters.
The situation for the longitudinal cavity turns out to be even
more challenging. However, the given parameters serve as an
upper limit of what would be possible in the near future.

6 Note that this degree of squeezing has only been reached for
much a smaller beam power of the order of mW, which would
actually lead to a decrease in the sensitivity.
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pulsed source beams will be required when one day sub-
stantially larger powers and more sensitive measurements
might become available. We conclude that the angles due
to the gravitational Faraday effect of the order of mag-
nitude ∆ ∼ 10−32 rad cannot be measured with current
and near-future technology.

VII. SUMMARY, CONCLUSION AND
OUTLOOK

We analyzed the rotation of polarization for a test ray
propagating in the gravitational field of a laser beam.
We distinguished the non-reciprocal contribution to the
rotation due to the gravitational Faraday effect from the
reciprocal contribution associated with the gravitational
optical activity. As the rotation angle is equivalent to a
phase for circularly polarized test rays, the precision of
the measurement of the effect investigated in this article
is limited by the shot-noise limit when using classical
light. With this analysis we found that the rotation of
polarization of a test ray induced by the gravitational
field of a circularly polarized source laser-beam is too
small to be measured with state-of-the-art technology.
The effects are of fundamental interest, however.
For an infinitely extended (or at least very long) test ray
propagating parallel to the source beam, we found that
the local rotation picked up by the polarization vector
of the test ray is proportional to the energy density of
the source beam. In that case, we concluded that ef-
fects are only present for an overlap of the test ray and
the source beam’s region of highest intensity bounded by
its width. Using the approximation of an infinitely ex-
tended source beam, such an overlap is always present
for parallel propagating test rays and we find a decay
of the integrated rotation angle with the inverse of the
distance to the beamline of the source beam. In the re-
alistic situation of a finitely extended source beam, this
dependence on the distance remains approximately valid
as long as there is a significant overlap. However, for
the finitely extended source beam, there is no overlap
for distances from the beamline larger than the exten-
sion of the beamline multiplied by the divergence angle
of the source beam. Above that limit, we find that the
polarization rotation picked up by a parallel propagating
infinitely extended test ray decreases as a Gaussian with
the distance to the beamline of the source beam. For a
finitely extended test ray far from the beamline of the
source beam, we find that the effects decay with the in-
verse of the third power of the distance using a multipole
expansion. However, a finitely extended test ray begins
and ends in regions with non-vanishing gravitational ef-
fect of the source beam. Hence, the interpretation of the
rotation angle is not straight forward. To overcome this
problem, a physical reference system could be considered
that extends or is moved from the beginning to the end
of the test ray.
For transversally propagating test rays, the situation is

different: The leading order effect decreases with the in-
verse of the distance from an finitely extended source
beam for an infinitely extended test ray and with the in-
verse square for a finitely extended test ray. Therefore,
of the effects investigated in this article, the rotation of
polarization of a transversal test ray should be the easi-
est to detect, while we reiterate that a detection will not
be possible in the near future. It is interesting to note
that the effect remains there also in the geometric optical
limit and is independent of the source beam’s helicity.

Only the gravitational Faraday effect contributes to the
leading order effect for the transversal test ray. The grav-
itational optical activity induces the next to leading order
term, and it decays one order more strongly with χ than
the gravitational Faraday effect.

It has been shown that for light passing through or be-
ing emitted from a rotating spherical body [6, 7] or a
rotating spherical shell [12], one obtains a rotation of the
polarization proportional to the inverse of the square of
the distance to the rotating object. On the other hand,
when the light ray is only passing by these objects or
any stationary object, there is no rotation of polariza-
tion [40, 41]. However, if these objects are in motion,
it has been shown that the polarization is rotated (for a
moving point mass [42], for gravitational lenses [10, 41],
for a moving Schwarzschild object [9], for moving stars
[8]). As the laser beam, although its spacetime metric is
stationary, consists of an energy-distribution in motion,
our results agree with the literature in the sense that the
rotation of polarization is non-vanishing.

As another interesting fundamental insight, we found
that to first order in the divergence angle θ, the polar-
ization vector of a parallel counter-propagating test ray
rotates, while this is not the case for a co-propagating
test ray. We argue that this asymmetry is due to the
propagation of the source laser-beam. This is similar to
the deflection of a parallel test ray by the gravitational
field of a laser beam which is non-zero for a counter-
propagating ray and vanishes for a co-propagating ray
[1].

The gravitational field of the laser beam depends on its
polarization. This is in agreement with the gravitational
field of a polarized infinitely thin laser beam or pulse de-
rived in [3] and the gravitational field of a polarized elec-
tromagnetic plane wave presented in [43]. However, the
gravitational field in the models [3, 43] does not depend
on the direction of linear polarization and neither on the
helicity of light in the case of circular polarization. This is
in contrast to gravitational photon-photon scattering in
perturbative quantum gravity discussed in [44]. In [5], we
showed that the gravitational field of a laser beam con-
sidered as a proper perturbative solution of Maxwell’s
equations beyond the short wavelength approximation
does depend on the helicity of the laser beam. In the
present article, we showed that, accordingly, the polar-
izations of two light beams couple gravitationally; two
circularly polarized light beams inflict on each other a
phase shift depending on the relation between their he-
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licity. This is gravitational spin-spin coupling of light
(see [45] for a general review on gravitational spin-spin
coupling).
Together with frame-dragging and the deflection of a par-
allel co-propagating test ray discussed in [5], the gravi-
tational Faraday effect and gravitational optical activity
are only visible when the source is treated beyond geo-
metric ray optics. It can be expected that angular orbital
momentum of light would contribute to the effects men-
tioned above (see [4] for an investigation of the gravita-
tional field of light beams with orbital angular momen-
tum).
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Appendix A: Metric perturbation (from [5])

In this appendix, we give the explicit expressions for
the metric perturbation as derived in [5]. The metric
perturbation is obtained from the electromagnetic field
of a circularly polarized laser beam given in [5], which
is determined by the vector potential Aα(τ, ξ, χ, ζ) =

Ãvα(ξ, χ, θζ)ei
2
θ (ζ−τ), where Ã is the amplitude, vα =∑∞

n=0 θ
nv

(n)
α is the envelop function, whose spatial com-

ponents, a ∈ {ξ, χ, ζ}, are given up to third order in θ
by

vλ(0)
a = ε(0)

a v0 , (A1)

vλ(1)
a = −ε(1)

a

iµ

2
√

2
(ξ − iλχ) v0 , (A2)

vλ(2)
a =

µ

2

(
1− 1

2
µ2ρ4

)
vλ(0)
a , (A3)

vλ(3)
a =

µ

4

(
4 + µρ2 − µ2ρ4

)
vλ(1)
a , (A4)

where µ = 1/(1 + iθζ), the function v0 is given by

v0(ξ, χ, θζ) = µe−µρ
2

, (A5)

and ε
(0)
a = w0(1,−λi, 0)/

√
2, ε

(1)
a = w0(0, 0, 1) and λ =

±1 refers to the helicity. Since we work in the Lorenz
gauge, the τ -component of the vector potential is given
as

Aτ =
iθ

2
∂τAτ =

iθ

2
(∂ξAξ + ∂σAσ + θ∂θζAζ) . (A6)

The leading order is thus the usual expression for the elec-
tromagnetic field of the Gaussian beam in the paraxial
approximation. The higher orders are corrections to the
paraxial approximation. The corresponding components
of the energy-momentum tensor are given as Tττ = E ,

Tτj = −Sj/c and Tjk = σjk for j, k ∈ {ξ, χ, ζ}. For
the vector potential of a circularly polarized laser beam
given by equation (A1), the energy density E , the Poynt-

ing vector ~S and the stress tensor components σjk up to
third order in θ are given as

Eλ = E(0)

[
1 (A7)

+
|µ|2θ2

2

(
1 + |µ|2(2− (4|µ|2 − 3)ρ2)ρ2

)]
,

Sλξ /c = E(0)θ|µ|2
[
(θζξ + λχ) (A8)

−θ
2

4

(
λχ− 2|µ|2

(
(2− ρ2)θζξ + 2(1− ρ2)λχ

+(θζξ + λχ)(4 + 3ρ2 − 4|µ|2ρ2)|µ|2ρ2

))]
,

Sλχ/c = −λE(0)θ|µ|2
[
(ξ − θζλχ) (A9)

−θ
2

4

(
ξ − 2|µ|2

(
2(1− ρ2)ξ − (2− ρ2)θζλχ

+(ξ − θζλχ)(4 + 3ρ2 − 4|µ|2ρ2)|µ|2ρ2

))]
,

Sλζ /c = Eλ − 1

2
E(0)(θρ|µ|)2 , (A10)

σλξξ = E(0)θ2|µ|4(θζξ + λχ)2 , (A11)

σλχχ = E(0)θ2|µ|4(ξ − θζλχ)2 , (A12)

σλξχ = E(0)λθ2|µ|4(θζξ + λχ)(θζλχ− ξ) , (A13)

σλξζ = Sλξ /c− E(0) θ
3

2
(θζξ + λχ)|µ|4ρ2 , (A14)

σλχζ = Sλχ/c+ λE(0) θ
3

2
(ξ − θζλχ)|µ|4ρ2 , (A15)

σλζζ = Eλ − E(0)(θρ|µ|)2 , (A16)

where |µ|2 = 1/(1 + (θζ)2) and E(0) = ε0w
2
0E

2
0 |v0|2 =

2P0|µ|2Exp(−2|µ|2ρ2)/(πc).

1. Field equations

The linearized Einstein equations take the form

∆2dh
λ(0)
αβ = −κw2

0 t
λ(0)
αβ , (A17)

∆2dh
λ(1)
αβ = −κw2

0 t
λ(1)
αβ , (A18)

∆2dh
λ(n)
αβ = −κw2

0 t
λ(n)
αβ − ∂2

θζh
λ(n−2)
αβ for n > 1 ,(A19)

where t
(n)
αβ are the coefficients of the power series ex-

pansion of the energy-momentum tensor in orders of θ,

i.e. Tαβ =
∑
n θ

nt
(n)
αβ .
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2. Zeroth order

The metric perturbation in the leading (zeroth) order of
the expansion in the beam divergence is given by [5]

hττ = hζζ = −hτζ = I(0) , (A20)

where the function I(0) is given by

I(0) =
8GP0w

2
0

c5

(
1

2
Ei
(
−2|µ|2ρ2

)
− log(ρ)

)
, (A21)

where Ei(x) = −
∫∞
−x dt

e−t

t is the exponential integral.

3. First order

The metric perturbation in the first order of the expan-
sion in the beam divergence is given by [5]

h
λ(1)
αβ =




0 I
λ(1)
ξ I

λ(1)
χ 0

I
λ(1)
ξ 0 0 −Iλ(1)

ξ

I
λ(1)
χ 0 0 −Iλ(1)

χ

0 −Iλ(1)
ξ −Iλ(1)

χ 0


 , (A22)

where the functions Iλξ
(1) and Iλχ

(1) given by

Iλξ
(1) =

1

4
(θζ∂ξ + λ∂χ) I(0)

= −2GP0w
2
0(θζξ + λχ)

c5ρ2

(
1− e−2|µ|2ρ2

)
, (A23)

Iλχ
(1) = −1

4
(λ∂ξ − θζ∂χ) I(0)

=
2GP0w

2
0(λξ − θζχ)

c5ρ2

(
1− e−2|µ|2ρ2

)
. (A24)

4. Third order

The only non-zero components of the metric perturbation
in the third order of the expansion in the beam divergence
are given by

h
λ(3)
τξ = − GP0w

2
0

2c5ρ2

(
(4θζξ + 3λχ) +

(
− (4θζξ + 3λχ)− 2ρ2(3θζξ + 2λχ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζξ + λχ)|µ|4 + 8ρ4(θζξ + λχ)|µ|6
)
e−2|µ|2ρ2

)
, (A25)

hλ(3)
τχ = − GP0w

2
0

2c5ρ2

(
(4θζχ− 3λξ) +

(
− (4θζχ− 3λξ)− 2ρ2(3θζχ− 2λξ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λξ)|µ|6
)
e−2|µ|2ρ2

)
, (A26)

h
λ(3)
ζξ =

GP0w
2
0

2c5ρ2

(
(2θζξ + λχ) +

(
− (2θζξ + λχ)− 2ρ2(2θζξ + λχ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζξ + λχ)|µ|4 + 8ρ4(θζξ + λχ)|µ|6
)
e−2|µ|2ρ2

)
, (A27)

h
λ(3)
ζχ =

GP0w
2
0

2c5ρ2

(
(2θζχ− λξ) +

(
− (2θζχ− λξ)− 2ρ2(2θζχ− λξ)|µ|2

− 2ρ2(−2 + 3ρ2)(θζχ− λξ)|µ|4 + 8ρ4(θζχ− λξ)|µ|6
)
e−2|µ|2ρ2

)
. (A28)

Appendix B: Another approach to determine the
rotation of polarization (as described in [11])

Another result for the rotation of the polarization was
obtained in [11], where the polarization vector is parallel

transported through the gravitational field, again start-
ing and ending in flat spacetime. The angle of rotation
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in the αβ-plane is given by

∆̃αβ =

∫ ∞

−∞
dτ̃ γ̇γΓδαγgβδ , (B1)

where τ̃ is the parameter parametrizing the geodesic γ.
It is obtained as follows: The polarization vector ωα is
parallel transported if

γ̇α∂αω
γ + γ̇αωβΓγαβ = 0 . (B2)

Integrating along the geodesic γ, the change of polariza-
tion is given by

δωγ =

∫ ∞

−∞
dτ γ̇α∂αω

γ = −
∫ ∞

−∞
dτ γ̇αωβΓγαβ . (B3)

From the change of polarization, the angle of rotation in
the plane βγ is obtained by writing

(ω + δω)γ =
(
gγβ + ∆̃γ

β

)
ωβ , (B4)

which has the form of an infinitesimal rotation. The ro-
tation angle is given by (B1). This result is coordinate-
invariant if the metric perturbation vanishes far away
from the source of the gravitational field. This is not
the case for the laser beam. However, in some cases the
result can be applied, as we will explain. Also, (B1)
describes a four-dimensional rotation. If the test light-
ray is deflected by the laser beam (as for the parallel
counter-propagating and the transversal light ray), one
has to be careful when applying this formula, as the ray-
transversal plane tilts when the light ray is deflected. In
our case, the formula can be applied. Indeed, it leads to
the same results as we obtain with equation (7): For the
parallel co- and parallel conter-propagating light rays,
one obtains (to third and first order in the expansion in
θ, respectively)

∆̃+
ξχ =− θ2

2w2
0

∫ ∞

−∞
d(θζ)

(
∂χ

(
h

(3)
ξζ + h

(3)
τξ

)

− ∂ξ
(
h

(3)
χζ + h(3)

τχ

)
− ∂θζh(2)

ξχ

)
, (B5)

∆̃−χξ =− 1

2w2
0

∫ ∞

−∞
d(θζ)

(
∂χ

(
h

(1)
ξζ − h

(1)
ξτ

)

− ∂ξ
(
h

(1)
χζ − h(1)

χτ

))
. (B6)

The last term of the integrand in the above equation for
∆̃+
ξχ vanishes when integrating from ζ = −∞ to ζ = ∞,

as in our case hξχ(∞) = hξχ(−∞). Therefore, we see

that ∆̃+
ξχ = ∆+ and ∆̃−χξ = ∆−. The same is the case for

the transversally propagating light rays: We find (up to
the first order in the expansion in θ)

∆̃t+

χζ =
1

2w2
0

∫ ∞

−∞
dξ

(
∂χh

(0)
τζ − θ∂χh

(1)
ξτ + θ∂ξh

(1)
χζ

)
,

(B7)

∆̃t−
ζχ =

1

2w2
0

∫ ∞

−∞
dξ

(
− ∂χh(0)

τζ − θ∂χh
(1)
ξτ − θ∂ξh

(1)
χζ

)
.

(B8)

As h
(1)
χζ (ξ = ∞) = h

(1)
χζ (ξ = −∞), we obtain ∆̃t+

χζ = ∆t+

and ∆̃t−
ζχ = ∆t− .

Appendix C: Derivation for finitely extended source
and test beams

Starting from the solution in equation (6) for the lin-
earized Einstein equations, we find with equation (8),
using the identity ∂xa

1
|~x−~x′| = −∂xa′ 1

|~x−~x′| , and partial

integration (the energy-momentum tensor vanishes at in-
finity)

∆± = −2G

c4

∫ B

A

dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′|(
θ
(
∂χ′
(
t
(1)
ξζ ± t

(1)
τξ

)
− ∂ξ′

(
t
(1)
χζ ± t(1)

τχ

))

+ θ3
(
∂χ′
(
t
(3)
ξζ ± t

(3)
τξ

)
− ∂ξ′

(
t
(3)
χζ ± t(3)

τχ

)))
. (C1)

The energy-momentum tensor of the finitely extended
beam is given by multiplying the expressions in appendix
A for the infinitely extended beam with the Heaviside
functions Θ(ζ − α(ρ)) and Θ(β(ρ) − ζ), where α(ρ) and
β(ρ) describe the ζ-coordinate of the source beam’s emit-
ter and absorber, respectively. This truncation of the
energy-momentum tensor leads to a violation of the con-
tinuity equation of general relativity, which in our case
means neglecting recoil on emitter and absorber. This
corresponds to energy and momentum being inserted into
the system and dissipated from it, respectively, and can
lead to apparent effects close to emitter and absorber that
may not be present in practice. The best approximation
of reality by our model of the finitely extended beam will
be achieved for points far from emitter and absorber but
close to the beamline (see also [46] for a detailed analysis
of a similar situation).
When the surfaces of emitter and absorber are consid-
ered to match the phase fronts of the beam, they are
curved and, therefore, depend on ρ. This dependence
is of second order in θ. The derivatives in equation
(C1) lead to Dirac delta functions α′(ρ)δ(ζ − α(ρ)) and
β′(ρ)δ(β(ρ)−ζ), and hence to evaluation of the integrand
at the surfaces of emitter and absorber, respectively, in-
tegrated over the transversal directions. For each term in
equation (C1), this contributes even higher order terms.
In the following, we restrict our considerations to the
leading order only (to first order for ∆− and to third or-
der for ∆+). Therefore, the contributions of the curved
surfaces of emitter and absorber can be neglected and we
set α and β to be constants. From the expressions given
in appendix A for the energy-momentum tensor, one sees

that t
(1)
ξζ = −t(1)

τξ and t
(1)
χζ = −t(1)

τχ . The derivatives ap-
pearing in the expression for ∆± of the first order terms
are given by

∂χt
(1)
ξζ =

2P0

πc
|µ|4

(
− 4χ|µ|2(θζξ + λχ) + λ

)
e−2|µ|2ρ2 ,(C2)

∂ξt
(1)
χζ =

2P0

πc
|µ|4

(
− 4ξ|µ|2(θζχ− λξ)− λ

)
e−2|µ|2ρ2 ,(C3)
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and the derivatives of the third order terms are found to
be

∂χ
(
t
(3)
ξζ + t

(3)
τξ

)
= −P0

πc
|µ|6ρ2e−2|µ|2ρ2

(
λ

+(−4|µ|2 + 2/ρ2)χ(θζξ + λχ)
)
, (C4)

∂ξ
(
t
(3)
χζ + t(3)

τχ

)
= −P0

πc
|µ|6ρ2e−2|µ|2ρ2

(
− λ

+(−4|µ|2 + 2/ρ2)ξ(θζχ− λξ)
)
. (C5)

Considering only the leading order terms in θ, we obtain
for the rotation angles of the parallel co- and the parallel
counter-propagating test rays

∆− = −8GP0

c5
2λθ

π

∫ ∞

−∞
dξ′dχ′

∫ β

α

dζ ′K(ξ′, χ′, ζ ′)

|µ(ζ ′)|4(1− 2|µ(ζ ′)|2ρ′2)e−2|µ(ζ′)|2ρ′2 , (C6)

∆+ =
8GP0

c5
λθ3

π

∫ ∞

−∞
dξ′dχ′

∫ β

α

dζ ′K(ξ′, χ′, ζ ′)

|µ(ζ ′)|6ρ′2(1− |µ(ζ ′)|2ρ′2)e−2|µ(ζ′)|2ρ′2 , (C7)

where |µ(ζ ′)|2 = 1/(1 + (θζ ′)2) and

K(ξ′, χ′, ζ ′) = log

(
B − ζ ′ + (ρ′′2 + (B − ζ ′)2)1/2

A− ζ ′ + (ρ′′2 + (A− ζ ′)2)1/2

)
,

(C8)

with ρ′′ =
√

(ξ′ − ξ)2 + (χ− χ′)2.
For the transversal test ray, we find along the same lines
(neglecting again the effect of the curved surfaces of emit-
ter and absorber as they are at least of second order in
θ), using equation (D8),

∆t± =
2G

c4

∫ B

A

dξ

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′|
∂χ′
(
±t(0)

τζ + θt
(1)
ξζ

)
. (C9)

From the expressions for the energy-momentum tensor
in appendix A, we find that the derivatives in the above
equation are given by

∂χt
(0)
τζ =

8P0

πc
|µ|4χe−2|µ|2ρ2 , (C10)

∂χt
(1)
ξζ =

2P0

πc
|µ|4(λ(1− 4|µ|2χ2)

−4θζξχ|µ|2)e−2|µ|2ρ2 (C11)

which leads to the rotation angle for the transversal test
ray

∆t± =
8GP0

c5
1

2π

∫ ∞

−∞
dξ′dχ′

∫ β

α

dζ ′Kt(ξ
′, χ′, ζ ′)

|µ(ζ ′)|4
(
± 4χ′ + θ(λ(1− 4|µ(ζ ′)|2χ′2)

−4θζ ′ξ′χ′|µ(ζ ′)|2)
)
e−2|µ(ζ′)|2ρ′2 , (C12)

where the function Kt is given by

Kt(ξ
′, χ′, ζ ′)

= log

(
B − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (B − ξ′)2)1/2

A− ξ′ + (χ′′2 + (ζ − ζ ′)2 + (A− ξ′)2)1/2

)
,

(C13)

where χ′′ = χ′ − χ.

For the numerical analysis, we transform the found ex-
pressions for the rotation angles into the cylindrical coor-
dinates

(
ρ′, φ′, ζ ′

)
with φ′ = arccos(ξ′/ρ′) or

(
ρ′′, φ′′, ζ ′

)

with ρ′′ =
√
ξ′2 + χ′′2 and φ′′ = arccos(ξ′/ρ′′).

Appendix D: Derivation for infinitely extended
source and test beams

For the parallel test rays, we obtain from equation (7)
and t0,± = γ̇±(τ0) = (1, 0, 0,±(1− f±))

∆± =
1

2w2
0

∫ ∞

−∞
dτ ta0εabc∂bhcα(%⊥ + τt0)tα0 (D1)

=
1

2w2
0

∫ ∞

−∞
dτ εζbc∂b (hcζ(ξ, χ,±τ)± hcτ (ξ, χ,±τ))

=− 1

2w2
0

∫ ∞

−∞
dζ
(
∂χ(hξζ ± hξτ )− ∂ξ(hχζ ± hχτ )

)
.

The rotation angle for the parallel counter-propagating
test ray is thus given by (considering the leading order
only)

∆− =− θ

2w2
0

∫ ∞

−∞
dζ
(
∂χ

(
h

(1)
ξζ − h

(1)
τξ

)

− ∂ξ
(
h

(1)
χζ − h(1)

τχ

))
. (D2)

From the expressions for the metric perturbation in ap-

pendix A, we see that h
(1)
ξζ = −h(1)

τξ , h
(1)
χζ = −h(1)

τχ . For
the derivatives in the above expression, we find

∂χh
(1)
ξζ − ∂ξh

(1)
χζ =

8GP0w
2
0

c5
λ|µ|2e−2|µ|2ρ2 , (D3)

which leads to the rotation angle for the parallel counter-
propagating test ray

∆− =−λ8GP0θ

c5

∫ ∞

−∞
dζ |µ|2e−2|µ|2ρ2 . (D4)

Along the same lines, we find in leading order

∆+ =− θ3

2w2
0

∫ ∞

−∞
dζ
(
∂χ

(
h

(3)
ξζ + h

(3)
τξ

)

− ∂ξ
(
h

(3)
χζ + h(3)

τχ

))
. (D5)
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From the expressions for the metric perturbation in ap-
pendix A, one finds for the derivatives in the above ex-
pression

∂χ

(
h

(3)
ξζ + h

(3)
τξ

)
− ∂ξ

(
h

(3)
χζ + h(3)

τχ

)

=− λ2GP0w
2
0

c5
|µ|2(1 + 2ρ2|µ|2)e−2|µ|2ρ2 . (D6)

Then, the rotation angle for the parallel co-propagating
light ray is given by

∆+ =λ
GP0θ

3

c5

∫ ∞

−∞
dζ |µ|2(1 + 2ρ2|µ|2)e−2|µ|2ρ2 . (D7)

For the transversal test ray, we obtain from equation (7)
and γ̇± = (1,±1, 0, 0)

∆t± =
1

2w2
0

∫ ∞

−∞
dτ ta0εabc∂bhcα(τ, %⊥ + τt0)tα0

=± 1

2w2
0

∫ ∞

−∞
dξ (∂χhτζ − θ∂θζhτχ)

+
1

2w2
0

∫ ∞

−∞
dξ (∂χhξζ − θ∂θζhξχ) , (D8)

Considering the terms up to first order in θ, it is given
by

∆t± =± 1

2w2
0

∫ ∞

−∞
dξ ∂χh

(0)
τζ +

θ

2w2
0

∫ ∞

−∞
dξ ∂χh

(1)
ξζ .

(D9)

From the expressions for the metric perturbation in ap-
pendix A, we obtain for the derivatives appearing in the
above expression

∂χh
(0)
τζ =

8GP0w
2
0

c5
χ

ρ2

(
1− e−2|µ|2ρ2

)
, (D10)

∂χh
(1)
ξζ =− 1

4
(θζ∂χ∂ξ + λ∂2

χ)I(0) . (D11)

The first term in equation (D11) leads to an integration
over a derivative, which vanishes,

∫ ∞

−∞
dξ ∂χ∂ξI

(0) = ∂χI
(0)
∣∣∣
ξ=∞

ξ=−∞
= 0 . (D12)

Then, we obtain for the rotation angle for the transversal
test ray

∆t± =± 4πGP0

c5
erf
(√

2|µ|χ
)

+ λ
2
√

2πGP0θ

c5
|µ|e−2|µ|2χ2

. (D13)

Appendix E: Derivation for finitely extended source
beams and infinitely extended test rays

For an infinitely extended test ray and a finitely extended
source beam, we obtain

∆− = −2G

c4
∂χ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′|
(
tξζ(ξ

′, χ′, ζ ′)− tτξ(ξ′, χ′, ζ ′)
)

+
2G

c4
∂ξ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′|
(
tχζ(ξ

′, χ′, ζ ′)− tτχ(ξ′, χ′, ζ ′)
)

= −4Gθ

c4
∂χ

∫ β

α

dζ ′
∫ ρ0(ζ′)

0

dρ′ ρ′
∫ 2π

0

dφ′

lim
B→∞

KB(ξ, χ, ζ, ρ′, φ′, ζ ′)t(1)
ξζ (ρ′, φ′, ζ ′)

+
4Gθ

c4
∂ξ

∫ β

α

dζ ′
∫ ρ0(ζ′)

0

dρ′ ρ′
∫ 2π

0

dφ′

lim
B→∞

KB(ξ, χ, ζ, ρ′, φ′, ζ ′)t(1)
χζ (ρ′, φ′, ζ ′) , (E1)

where cylindrical coordinates ρ′ =
√
ξ′2 + χ′2 and φ′ =

arctan(χ′/ξ′) are used and the function KB is given by

KB(ξ, χ, ζ, ρ′, φ′, ζ ′)

= log

(
B − ζ ′ + (ρ′′2 + (B − ζ ′)2)1/2

−B − ζ ′ + (ρ′′2 + (B + ζ ′)2)1/2

)
, (E2)

where ρ′′2 = (ξ′−ξ)2 +(χ′−χ)2 = ρ′2 +ρ2−2ρ′ρ cos(φ−
φ′), and ρ0(ζ ′) = ρ0/|µ(ζ ′)| is the finite transversal ex-
tension of the beam that is related to the width of emit-
ter and absorber and ρ0 is a constant. For β/B � 1,
−α/B � 1 and ρ0(ζ ′)/B � 1 for all ζ ′ ∈ [α, β], we
obtain

KB(ρ′, φ′, ζ ′)

= log

(
B − ζ ′ + (ρ′′2 +B2(1− ζ ′/B)2)1/2

−B − ζ ′ + (ρ′′2 +B2(1 + ζ ′/B)2)1/2

)

≈ log

(
2(B − ζ ′) + ρ′′2/(2B(1− ζ ′/B))

ρ′′2/(2B(1 + ζ ′/B))

)

= log

(
1 + ζ ′/B
1− ζ ′/B +

4B2

ρ′′2
(1− (ζ ′/B)2)

)

≈ log

(
4
B2

ρ′′2

)
. (E3)

In order to evaluate the expression for ∆−, one needs to
take derivatives of the function KB . One finds

∂χ log

(
4
B2

ρ′′2

)
t
(1)
ξζ − ∂ξ log

(
4
B2

ρ′′2

)
t
(1)
χζ (E4)

=
2P0

πc
|µ′|4e−2|µ′|2ρ′2

(
λρ′∂ρ′ + θζ ′∂φ′

)
log
(
ρ′′2
)
.
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Therefore, one finds for the following expression appear-
ing in the expression for ∆−,

∂χ

∫ ρ0(ζ′)

0

dρ′ ρ′
∫ 2π

0

dφ′ lim
B→∞

KB(ρ′, φ′, ζ ′)t(1)
ξζ

− ∂ξ
∫ ρ0(ζ′)

0

dρ′ ρ′
∫ 2π

0

dφ′ lim
B→∞

KB(ρ′, φ′, ζ ′)t(1)
χζ

=
2P0

πc
|µ′|4

∫ ρ0(ζ′)

0

dρ′ ρ′e−2|µ′|2ρ′2

∫ 2π

0

dφ′
(
λρ′∂ρ′ + θζ ′∂φ′

)
log
(
ρ′′2
)
. (E5)

The term containing the φ′-derivative vanishes under the
integral. With

ρ′∂ρ′
∫ 2π

0

dφ′ log
(
ρ′2 + ρ2 − 2ρρ′ cos(φ′ − φ)

)

= 2πρ′∂ρ′





log
(
ρ′2
)

for ρ ≤ ρ′

log
(
ρ2
)

for ρ > ρ′





= 4π

{
1 for ρ ≤ ρ′
0 for ρ > ρ′

}
= 4πΘ(ρ′ − ρ) , (E6)

we obtain

2P0λ

πc
|µ′|4

∫ ρ0(ζ′)

0

dρ′ ρ′
∫ 2π

0

dφ′ (E7)

e−2|µ′|2ρ′2ρ′∂ρ′ log
(
ρ′′2
)

= −2P0λ

c
|µ′|2

∫ ρ0(ζ′)

0

dρ′Θ(ρ′ − ρ)∂ρ′e
−2|µ′|2ρ′2

= −2P0λ

c
|µ′|2

{ ∫ ρ0(ζ′)
ρ

dρ′ ∂ρ′e−2|µ′|2ρ′2 : ρ ≤ ρ0(ζ ′)
0 : ρ > ρ0(ζ ′)

}

=
2P0λ

c
|µ′|2Θ(ρ0(ζ ′)− ρ)

(
e−2|µ′|2ρ2 − e−2|µ′|2ρ20(ζ′)

)
.

Finally, we obtain for the rotation of polarization for the
parallel counter-propagating test ray

∆− = −λ8GP0θ

c5

∫ β

α

dζ ′ (E8)

Θ(ρ0 − |µ′|ρ)|µ′|2
(
e−2|µ′|2ρ2 − e−2ρ20

)
,

which leads to equation (10) for ρ0 → ∞. We see that
∆− vanishes if there is no overlap with the beam, i.e. if
ρ > ρ0(α) and ρ > ρ0(β). For large ρ, there is only an
overlap for large ζ ′ for which ρ0(ζ ′) ≈ ρ0θζ

′ and |µ′| =
|θζ ′|−1. Evaluating the integral, we find

∆− = λ
8GP0

c5ρ

[
Θ(−θα− ρ/ρ0)

( √
π

2
√

2

(
erf

(
−
√

2ρ

θα

)
− erf

(√
2ρ0

))
− e−2ρ20

(
− ρ

θα
− ρ0

))

+Θ(θβ − ρ/ρ0)

( √
π

2
√

2

(
erf

(√
2ρ

θβ

)
− erf

(√
2ρ0

))
− e−2ρ20

(
ρ

θβ
− ρ0

))]
. (E9)

For ρ0 →∞, we obtain

∆− = −λ4GP0

c5ρ

√
π√
2(

erfc

(√
2ρ

θβ

)
+ erfc

(√
2ρ

θ|α|

))
, (E10)

where erfc is the complementary error function. For ρ�
θβ and ρ� −θα, using the asymptotic expansion of the

complementary error function, we obtain

∆− ≈ −λ2GP0θ

c5ρ2

(
βe−2(ρ/θβ)2 + |α|e−2(ρ/θα)2

)
. (E11)

For ∆+, it follows from equation (C1) that in leading
order (third order in θ), the rotation of polarization for
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the parallel co-propagating light ray is given by

∆+ = −2G

c4
∂χ lim

B→∞

∫ B

−B
dζ (E12)

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′| (tξζ + tτξ)

+
2G

c4
∂ξ lim

B→∞

∫ B

−B
dζ

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′| (tχζ + tτχ)

= −2Gθ3

c4
∂χ

∫ β

α

dζ ′
∫ ρ0(ζ′)

0

dρ′ ρ′

∫ 2π

0

dφ′ lim
B→∞

KB(ρ′, φ′, ζ ′)
(
t
(3)
ξζ + t

(3)
τξ

)

+
2Gθ3

c4
∂ξ

∫ β

α

dζ ′
∫ ρ0(ζ′)

0

dρ′ ρ′

∫ 2π

0

dφ′ lim
B→∞

KB(ρ′, φ′, ζ ′)
(
t
(3)
ξζ + t

(3)
τξ

)
.

The relevant combination of derivatives of the function
KB with the approximation given in equation (E3) is
given by

∂χ log

(
4
B2

ρ′′2

)(
t
(3)
ξζ + t

(3)
τξ

)
(E13)

−∂ξ log

(
4
B2

ρ′′2

)(
t
(3)
χζ + t(3)

τχ

)

= −P0

πc
|µ′|6ρ′2e−2|µ′|2ρ′2

(
λρ′∂ρ′ + θζ ′∂φ′

)
log
(
ρ′′2
)
.

Again, the term containing the derivative with respect to

φ′ vanishes under the integration over φ′ and we obtain

−P0λ

πc
|µ′|6

∫ ρ0(ζ′)

0

dρ′ ρ′3
∫ 2π

0

dφ′

e−2|µ′|2ρ′2ρ′∂ρ′ log
(
ρ′′2
)

=
P0λ

c
|µ′|4

∫ ρ0(ζ′)

0

dρ′Θ(ρ′ − ρ)ρ′2∂ρ′e
−2|µ′|2ρ′2

=
P0λ

c
|µ′|4

{ ∫ ρ0(ζ′)
ρ

dρ′ ρ′2∂ρ′e−2|µ′|2ρ′2 : ρ ≤ ρ0(ζ ′)
0 : ρ > ρ0(ζ ′)

}

= −P0λ

c
|µ′|4Θ(ρ0(ζ ′)− ρ)

[
2

∫ ρ0(ζ′)

ρ

dρ′ ρ′e−2|µ′|2ρ′2

+
(
ρ2e−2|µ′|2ρ2 − ρ0(ζ ′)2e−2|µ′|2ρ0(ζ′)2

)]

= −P0λ

c
|µ′|2Θ(ρ0(ζ ′)− ρ)

[
− 1

2

∫ ρ0(ζ′)

ρ

dρ′ ∂ρ′e
−2|µ′|2ρ′2

+|µ′|2
(
ρ2e−2|µ′|2ρ2 − ρ0(ζ ′)2e−2|µ′|2ρ0(ζ′)2

)]

= −P0λ

2c
|µ′|2Θ(ρ0(ζ ′)− ρ)

(
(1 + 2|µ′|2ρ2)e−2|µ′|2ρ2

−(1 + 2|µ′|2ρ0(ζ ′)2)e−2|µ′|2ρ0(ζ′)2
)
. (E14)

Finally, the rotation of polarization for the parallel co-
propagating light ray is given by

∆+ = λ
GP0θ

3

c5

∫ β

α

dζ ′

Θ(ρ0 − |µ′|ρ)|µ′|2
(

(1 + 2|µ′|2ρ2)e−2|µ′|2ρ2

−(1 + 2ρ2
0)e−2ρ20

)
, (E15)

which leads to equation (9) for ρ0 →∞. In this case, we
find that

∆+ = −θ
2

8

(
1− ∂σ

)
∆−(
√
σρ)
∣∣∣
σ=1

. (E16)

Again, we find that ∆+ vanishes if there is no overlap
with the beam, i.e. if ρ > ρ0(α) and ρ > ρ0(β). For
ρ0 →∞, ρ� θβ and ρ� −θα, we find

∆+ = λ
GP0θ

3

2c5

(
β

(
1

ρ2
+

1

(θβ)2

)
e−2(ρ/θβ)2

−α
(

1

ρ2
+

1

(θα)2

)
e−2(ρ/θα)2

)

≈ λGP0θ

2c5

(
1

β
e−2(ρ/θβ)2 +

1

|α|e
−2(ρ/θα)2

)
.(E17)

For ∆t± for a finitely extended source beam and an in-
finitely extended test ray we obtain, considering only the
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leading order contribution,

∆
(0)
t± = ± 1

2w2
0

∫ ∞

−∞
dξ ∂χh

(0)
τζ

= ∓2G

c4

∫ β

α

dζ ′
∫

ρ≤ρ0(ζ′)
dξ′dχ′

lim
B→∞

∂χKt,B(ξ′, χ′, ζ ′)t(0)
τζ , (E18)

where the function Kt,B is given by

Kt,B(ξ′, χ′, ζ ′) (E19)

= log

(
B − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (B − ξ′)2)1/2

−B − ξ′ + (χ′′2 + (ζ − ζ ′)2 + (B + ξ′)2)1/2

)
,

and where χ′′ = χ′ − χ. For B � 1, we obtain

Kt,B(ξ′, χ′, ζ ′)

= log




B − ξ′ + (B − ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(B − ξ′)2
)1/2

−B − ξ′ + (B + ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(B + ξ′)2
)1/2




≈ log




B − ξ′ + (B − ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(2(B − ξ′)2)
)

−B − ξ′ + (B + ξ′)
(

1 + (χ′′2 + (ζ − ζ ′)2)/(2(B + ξ′)2)
)




= log

(
2(B − ξ′) + (χ′′2 + (ζ − ζ ′)2)/(2(B − ξ′))

(χ′′2 + (ζ − ζ ′)2)/(2(B + ξ′))

)

≈ log

(
B + ξ′

B − ξ′ +
4B2

χ′′2 + (ζ − ζ ′)2
(1− ξ′2/B2)

)

≈ log

(
4B2

χ′′2 + (ζ − ζ ′)2

)
. (E20)

With the derivative of Kt,B with respect to χ,

∂χ log

(
4B2

χ′′2 + (ζ − ζ ′)2

)
= 2

χ− χ′
χ′′2 + (ζ − ζ ′)2

(E21)

we obtain for the zeroth order of the rotation of polar-
ization of the transversal test ray

∆
(0)
t± = ∓4GP0

πc5

∫ β

α

dζ ′
∫

ρ≤ρ0(ζ′)
dξ′dχ′ (E22)

χ− χ′
χ′′2 + (ζ − ζ ′)2

|µ′|2e−2|µ′|2ρ′2 .

Note that for χ = 0, the integrand is anti-symmetric in

χ′ and ∆
(0)
t± vanishes. For the first order contribution, we

find

∆
(1)
t± = λ

4GP0

πc5

∫ β

α

dζ ′
∫

ρ≤ρ0(ζ′)
dξ′dχ′

χ′(χ− χ′)
(χ− χ′)2 + (ζ − ζ ′)2

|µ′|4e−2|µ′|2ρ′2 . (E23)

For χ = 0, the integrand is symmetric in χ′ and ∆
(1)
t±

does not vanish.

Appendix F: Multipole expansion of the far field for
finitely extended source and test beams

For the finitely extended source beam, one can get ana-
lytical approximations of ∆ in the far field. For simplicity
we assume here that the source beam extends from −β
to β, and the probe beam from −B to B. The maximal
radial extension of the source beam, reached at ζ ′ = ±β,
is then given by ρ′ = θβ/

√
2. This is the maximum scale

on which all components of the energy-stress tensor and
its derivatives fall off like a Gaussian (for smaller values
of |ζ ′| the decay is even faster). Far field means then

that the probe beam should be a distance ρ � θβ/
√

2
from the source beam when passing parallel to the source
beam. A much shorter distance of order ρ ' 1 suffices
for the transversal beam passing at the beam waist for
being in the far field regime.
From eqs.(6,8) we obtain, after shifting derivatives to the
prime-coordinates and partial integration,

∆± =− 2G

c4θ

∫ B

−B
d(θζ)

∫
d3x′

1

|~x− ~x′|[
∂χ′(Tξζ(~x

′)± Tτξ(~x′))

− ∂ξ′(Tχζ(~x′)± Tτχ(~x′))
]
. (F1)

For the partial integration we assume once more that
we are in the far-field, so that boundary terms are
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exponentially suppressed through the Gaussian factor
exp(−2|µ|2ρ2). The source term relevant for ∆− is given
to first order in θ by (see Appendix A, eqs.(A22)

S−(ρ′, ζ ′) ≡ πc

4P0θ

[
∂χ′(Tξζ(~x

′)− Tτξ(~x′))

−∂ξ′(Tχζ(~x′)− Tτχ(~x′))
]

=
2e
−2 ρ′2

1+θ2ζ′2 λ(1 + θ2ζ ′2 − 2ρ′2)

(1 + θ2ζ ′2)3
. (F2)

Manifestly, S− enjoys azimuthal symmetry. It is then
useful to expand the function 1/|~x − ~x′| as (see e.g. [47]
p. 93)

1

|~x− ~x′| =
∞∑

l=0

rl<
rl+1
>

Pl(cosϑ′)Pl(cosϑ) , (F3)

where Pl are the Legendre-polynomials, r< (r>) is the
smaller (larger) of |~x| and |~x′|, and ϑ (ϑ′) the angle be-
tween the z-axis and ~x (~x′). For calculating the far field,
we can set everywhere r> = r = |~x| and r< = r′ = |~x′|.
This leads to

∆− =
∞∑

l=0

∆
(l)
− (F4)

= −16GP0θ

c5

∞∑

l=0

∫ B

−B
dζ

Q
(l)
−

(ρ2 + ζ2)(l+1)/2
Pl(

ζ√
ρ2 + ζ2

) ,

where the multipoles Q
(l)
− are given by

Q
(l)
− =

∫ β

−β
dζ ′
∫ ∞

0

ρ′dρ′ (ρ′2 + ζ ′2)l/2

× Pl(
ζ ′√

ρ′2 + ζ ′2
)S−(ρ′, ζ ′) , (F5)

and we have used that in cylinder coordinates ϑ =

arccos(ζ/
√
ρ2 + ζ2), and correspondingly for ϑ′. The

multipoles and their contributions to ∆− can be calcu-
lated analytically. All odd multipoles vanish, and so do
the monopole and dipole contribution (l = 0, 1, respec-
tively). ∆− is then dominated by the quadropole contri-
bution l = 2. The correction due to higher order mul-
tipoles l = 4, 6, ... decays quickly with l. We therefore
limit ourselves to listing the results for l = 2, 4, 6. Note
that the direct dependence on ζ ′ of 1/|~x − ~x′| (rather
than on θζ as for the rest of the integrand) brings about
additional θ dependence. Neglecting these higher order
terms, we find

Q
(2)
− =

βλ

4
, (F6)

Q
(4)
− =

βλ

8
(−3 + 4β2) , (F7)

Q
(6)
− =

3βλ

64
(15− 40β2 + 16β4) , (F8)

and, with Ω ≡ 8λθGP0/c
5,

∆
(2)
− =

Ωβ

2

B

(B2 + ρ2)3/2
, (F9)

∆
(4)
− =

Ωβ(−3 + 4β2)

16

(2B3 − 3Bρ2)

(B2 + ρ2)7/2
, (F10)

∆
(6)
− =

Ωβ(15− 40β2 + 16β4)

256
(8B4 − 40B2ρ2 + 15ρ4)

(B2 + ρ2)11/2
. (F11)

For ∆+, the lowest contributing terms are from the
derivatives of the third order of the metric. The expres-
sion for S− is replaced by S+ given by

S+(ρ′, ζ ′) ≡ πc

P0θ2

[
∂χ′(Tξζ(~x

′) + Tτξ(~x
′))

−∂ξ′(Tχζ(~x′) + Tτχ(~x′))
]

(F12)

= −e
−2 ρ′2

1+θ2ζ′2 λρ′2(1− ρ′2/(1 + θ2ζ ′2))

(1 + θ2ζ ′2)3
.

Also here the monopole contribution (l = 0) and all con-
tributions with odd l, in particular the dipole contribu-
tion (l = 1) vanish. The lowest order non-vanishing con-
tributions are

Q
(2)
+ = −βλθ

2

16
, (F13)

Q
(4)
+ =

βλθ2

64
(9− 8β2) , (F14)

Q
(6)
+ = −3βλθ2

128
(15− 30β2 + 8β4) , (F15)

to be substituted into the expression corresponding to
(F5), i.e.

∆+ =
∞∑

l=0

∆
(l)
+ (F16)

= −16GP0θ

c5

∞∑

l=0

∫ B

−B
dζ

Q
(l)
+

(ρ2 + ζ2)(l+1)/2
Pl(

ζ√
ρ2 + ζ2

) .

This leads to

∆
(2)
+ = −Ωθ2

8

Bβ

(B2 + ρ2)3/2
, (F17)

∆
(4)
+ =

Ωθ2(−9 + 8β2)

128

(−2B3 + 3Bρ2)

(B2 + ρ2)7/2
, (F18)

∆
(6)
+ = −Ωθ2Bβ(15− 30β2 + 8β4)

512
(8B4 − 40B2ρ2 + 15ρ4)

(B2 + ρ2)11/2
, (F19)

where we recall that Ω contains already one factor θ.
So both ∆± fall off as 1/ρ3 in the far-field due to the
quadrupole contribution. For fixed ρ, β that contribution
decays as 1/B for large B, i.e. B � ρ. This can be traced
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back to the integral over ζ in and would not be the case
for the monopole contribution.

For ∆t± we start with the lowest, zeroth order in θ. It
is then useful to keep the derivatives of the energy-stress
tensor outside the calculation of the multipoles, as oth-
erwise the cylindrical symmetry gets spoiled. We find

∆
(0)
t± =∓ 8GP0

c5

∫ B

−B
dξ ∂χ

∞∑

l=0

Pl(
ζ√
ρ2+ζ2

)

(ρ2 + ζ2)(l+1)/2
Q

(0)(l)
t± ,

(F20)

Q
(0)(l)
t± =

∫ β

−β
dζ ′
∫ ∞

0

dρ′ρ′(ρ′2 + ζ ′2)l/2Pl(
ζ ′√

ρ′2 + ζ ′2
)

× 1

1 + θ2ζ ′2
e
−2 ρ′2

1+θ2ζ′2 . (F21)

Also here, all the odd-power multipoles (l = 1, 3, 5, . . .)
vanish due to the fact that the Legendre-polynomials of
odd order are odd, whereas the rest of the integrand in

Q
(0)(l)
t± is even in ζ ′. The three lowest non-vanishing mul-

tipoles read

Q
(0)(0)
t± =

β

2
, (F22)

Q
(0)(2)
t± =− 1

24
β(3− 4β2) , (F23)

Q
(0)(4)
t± =

1

160
β(15− 40β2 + 16β4) . (F24)

The corresponding contributions to ∆t± at ζ = 0 are

∆
(0)(0)
t± = ±Ω̃

Bβ

χ
√
B2 + χ2

, (F25)

∆
(0)(2)
t± = ±Ω̃

Bβ(3− 4β2)(2B2 + 3χ2)

24χ3(B2 + χ2)3/2
, (F26)

∆
(0)(4)
t± = ±Ω̃

Bβ(15− 40β2 + 16β4)

640χ5(B2 + χ2)5/2

(8B4 + 20B2χ2 + 15χ4) , (F27)

where Ω̃ = 8GP0/c
5. We see that now there is a

contribution from the monopole that leads to a decay
as 1/χ2 with the minimal distance χ from the beamline
when evaluated at ζ = 0 and in the limit of χ� B. The
next (quadrupole) term contributes a 1/χ4 decay. In the
limit of B → ∞ at fixed χ, the monopole contribution
converges to a β/χ2 behavior.

For the first order term in ∆t± , the contribution to the
Faraday effect, we obtain with the expressions for the
energy-momentum tensor given in appendix A, using the

symmetry of |~x−~x′| and performing a partial integration,

∆
(1)
t± =

2Gθ

c4
∂χ

∫ B

−B
dξ

∫ ∞

−∞
dξ′dχ′dζ ′

1

|~x− ~x′| t
(1)
ξζ

=
λθ

4
∂χ∆

(0)
t+ −

GP0θ
2

πc5
∂χ

∫ B

−B
dξ ∂ξ

∫ ∞

−∞
dξ′dχ′

∫ β

−β
dζ ′

1

|~x− ~x′|
ζ ′

1 + θ2ζ ′2
e
−2 ρ′2

1+θ2ζ′2 . (F28)

We neglect the second term as it is of higher order in θ.
For the first term, we find from the multipole expansion

of ∆
(0)
t+ for ζ = 0

∆
(1)(0)
t± = −λθ

4
Ω̃
Bβ(B2 + 2χ2)

χ2(B2 + χ2)3/2
, (F29)

∆
(1)(2)
t± = −λθ

4
Ω̃

Bβ(3− 4β2)

8χ4(B2 + χ2)5/2

(2B4 + 5B2χ2 + 4χ4) , (F30)

∆
(1)(4)
t± = −λθ

4
Ω̃
Bβ(15− 40β2 + 16β4)

128χ6(B2 + χ2)7/2

(8B6 + 28B4χ2 + 35B2χ4 + 18χ6) .(F31)

In a real experiment, it should be kept in mind that the
gravitational effects from emitter and absorber and the
power-supplies feeding them, as well as heat-radiation
from the absorber may lead to effects that mask the ro-
tation of the polarization of the source beam itself in the
far field, if their dipole- or monopole-contributions do not
vanish. If one wishes to evaluate these effects, a careful
modelling of the entire setup will be necessary.

Appendix G: The infinitely thin beam

The metric perturbation induced by an infinitely thin
beam of light that extends along the ζ-axis from −β to β
is given by the only non-zero components hττ = −hτζ =
hζζ = h, where h is given as [1]

h =
4GP0w

2
0

c5
log

(
β − ζ + (ρ2 + (β − ζ)2)1/2

−β − ζ + (ρ2 + (β + ζ)2)1/2

)
.

(G1)
Therefore, we find with equation (7) at ζ = 0 and for
large χ

∆t± ≈ ±
1

2w2
0

∫ B

−B
dξ ∂χh

(0)
τζ

≈ ±8GP0

c5
βB

χ
√
B2 + χ2

, (G2)

where we considered a test ray extending from −B to B,
and

∆t± ≈ ± 8GP0

c5
β
χ , (G3)

for the infinitely extended test ray.
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