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Abstract

This thesis deals with the interplay of gravitation and light. It is split into four parts,
each of them giving an overview of one of our projects: In the first and second part, we
study the gravitational properties of laser light and use other light rays to illustrate these
properties. In the third part, light rays are used as a tool to determine the frequency
spectrum of an optical resonator in a background gravitational field. Finally, in the fourth
part, light plays both the role of the source of the gravitational field and the means to
perform a measurement. As the gravitational field of light is weak, its effects are too small
to be experimentally measured. However, with the progress of technology, they might be
detected in the future. They are of conceptual interest, revealing fundamental properties
of the nature of light.

In the first part, we determine the gravitational field of a laser beam: The laser beam is
described as a solution of Maxwell’s equations and has a finite wavelength and circular
polarization. This description is beyond the short-wavelength approximation, and allows
to find novel gravitational properties of light. Among these are frame-dragging due to the
laser beam’s spin angular momentum and the deflection of parallel co-propagating test
light-rays that overlap with the source laser-beam.

Further, the polarization of a test light-ray in the gravitational field of the laser beam is
rotated. This is analyzed in the second part. The rotation consists of a reciprocal con-
tribution associated to the gravitational analogue of optical activity, and a non-reciprocal
part identified as the gravitational analogue of the electromagnetic Faraday effect. There-
fore, letting light propagate back and forth between two mirrors, the gravitational Faraday
effect accumulates, while the effect due to the gravitational optical activity cancels. Inter-
estingly, using only classical general relativity, our analysis shows gravitational spin-spin
coupling, which is a known effect in perturbative quantum gravity.

In the third part, we study the effect of a gravitational field and proper acceleration on
the frequency spectrum of an optical resonator. The resonator is modelled in two different
ways: As a rod of matter with two attached mirrors at its ends, and as a dielectric rod
whose ends function as mirrors. The resonator can be deformed in the gravitational field
depending on the material properties of the rod. The frequency spectrum turns out to
depend on the radar length, which is the length an observer measures by sending a light
signals back and forth between the mirrors and measuring the time difference. The results
for the frequency spectrum may be used for measuring gravitational fields or acceleration
based on frequency shifts of the light.

Also in the fourth part we look at an optical resonator, this time a cubic cavity. While
in the third part we considered a background gravitational field, now the light inside
the cubic cavity is the source of the gravitational field. With this setup, we consider an
observer making a specific measurement of the speed of light and analyze the precision of
the measurement. Using quantum parameter estimation theory and analyzing the effect of
the gravitational field, we determine the number of photons inside the cavity which leads
to the best precision of the measurement.



Zusammenfassung

Das Thema dieser Dissertation ist das Zusammenspiel von Gravitation und Licht. Die
Arbeit ist in vier Teile unterteilt, die jeweils einen Uberblick iiber eines unserer vier Pro-
jekte geben. Im ersten und zweiten Teil beschaftigen wir uns mit dem Gravitationsfeld
eines Laserstrahls und verwenden weitere Lichtstrahlen um dessen Eigenschaften zu illus-
trieren. Im dritten Teil benutzen wir Lichtstrahlen um das Frequenzspektrum eines optis-
chen Resonators in einem Gravitationsfeld zu berechnen. Letztendlich, im vierten Teil, ist
das Licht sowohl die Quelle des Gravitationsfelds wie auch das Mittel um eine Messung
durchzufiihren. Das Gravitationsfeld von Licht is schwach, deshalb sind seine Effekte mo-
mentan zu klein um in einem Experiment gemessen zu werden. Mit dem Fortschritt der
Technologie konnte dies jedoch in Zukunft moglich sein. Jedenfalls sind die Effekte von
konzeptionellem Interesse, da sie fundamentale Eigenschaft von Licht enthiillen.

Im ersten Teil bestimmen wir das Gravitationsfeld von einem Laserstrahl. Dieser gehorcht
den Maxwell Gleichungen und hat eine endliche Wellenldnge und zirkulare Polarisation.
Unsere Beschreibung des Laserstrahls unterliegt nicht der paraxialen Naherung und ermo-
glicht deshalb, neue gravitative Eigenschaften von Laserlicht zu sehen: frame-dragging
aufgrund des Spin-Drehimpulses und die Ablenkung von parallel co-propagierenden Licht-
strahlen, die mit dem Laserstrahl iiberlappen.

Weiter wird die Polarisation eines Lichtstrahls gedreht, wenn dieser im Gravitationsfeld
des Laserstrahls propagiert. Dies ist das Thema des zweiten Teils. Die Rotation besteht
aus einem reziproken und einem nicht-reziproken Anteil, die respektive dem gravitativen
Analogon zur optischen Aktivitdt und dem gravitativen Analogon zum elektromagnetis-
chen Faraday Effekt zugeordnet werden konnen. Lasst man Licht zwischen zwei Spiegeln
hin und her propagieren, wird der gravitative Faraday Effekt verstarkt, wahrend sich der
Effekt aufgrund der gravitativen optischen Aktivitdt aufhebt. Interessanterweise illustri-
eren unsere Uberlegungen im Rahmen der klassischen Relativititstheorie eine gravitative
Spin-Spin Wechselwirkung, die man in der perturbativen Quantengravitation findet.

Im dritten Teil betrachten wir den Effekt eines Gravitationsfelds und einer Beschleunigung
auf das Frequenzspektrum eines optischen Resonators. Der Resonator ist entweder als
Materiestab modelliert, an dessen Enden zwei Spiegel angebracht sind, oder als Stab, der
aus einem dielektrischen Medium besteht, an dessen Enden das Licht reflektiert wird.
Je nach den materiellen Eigenschaften des Stabs, kann der Resonator im Gravitationsfeld
verformt werden. Das Frequenzspektrum héngt von der Radarlénge ab. Dies ist die Lange,
die ein Beobachter bestimmt, indem er ein Lichtsignal zwischen den Spiegeln hin und her
sendet und die Zeitdifferenz misst. Mit dem Ergebnis lasst sich moglicherweise die Stéarke
eines Gravitationsfelds oder einer Beschleunigung bestimmen, indem man die Frequenz
des Lichts im Resonator misst.

Auch im vierten Teil betrachten wir einen optischen Resonator, dieses Mal einen ku-
bischen. Wiéhrend im dritten Teil ein beliebiges Gravitationsfeld angenommen wurde,
wird letzteres nun vom Laserstrahl verursacht. Wir betrachten eine Messung der Licht-
geschwindigkeit, die ein Beobachter durchfiithrt, und analysieren die Prizision mittels
Quanten-Parameterschatzung. Unter Beriicksichtigung des Effekts des Gravitationsfelds
bestimmen wir die Anzahl Photonen im Resonator, welche die préaziseste Messung erlaubt.

ii
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Introduction

The twentieth century has seen the emergence of two theories lying at the core of modern
physics: general relativity and quantum mechanics. In both of these theories, light plays
an important role. Indeed, light is both a quantum and a relativistic object: It has
been experimentally confirmed that light behaves according to the predictions of quantum
mechanics. On the other hand, light enters the postulates of general relativity and is by
construction of the theory a relativistic object. By knowing precisely the gravitational
properties of light, it might be possible to gain insight into the role of gravity in quantum
mechanics, or the other way around, to learn about the role of quantum mechanics in
general relativity.

In our work, we studied on one side how light beams gravitate, and on the other side
how the behavior of light rays in a gravitational field influences specific measurements.
The latter includes the deflection of light rays, the rotation of their polarization and the
frequency shift they obtain in a gravitational field. We analyzed theoretical and specific
setups that could be used in a laboratory. The difficulty in experiments is the distinction
and detection of the gravitational effects, as they are very small even when using the most
powerful lasers of nowadays.

We worked on four different but related projects, and accordingly the thesis is split into
four main chapters, each of them giving an overview of one of our four projects. The first
chapter deals with the gravitational field of a laser beam as one creates in a laboratory,
its gravitational characteristics and its influence on small particles or light rays [C]. The
second chapter focusses on one of these effects, namely the rotation of the polarization
of another light ray propagating in the gravitational field of the laser beam [D]. In the
third chapter, we consider a given gravitational field and study its influence on light rays
in order to give an expression for the frequency spectrum of an optical resonator in a
gravitational field [B]. Importantly, in this chapter the gravitational field could be, but is
not necessarily, generated by the light itself. In the fourth chapter, we consider a different
optical resonator, this time affected by the gravitational field of light itself [A]. In this
setup, we study the gravitational influence when making a specific measurement.

Two technical points concerning general relativity deserve to be explained before starting
with the main projects. One of them is the coordinate-invariance of general relativity
and the related difficulty to distinguish between actual physical effects and coordinate-
artefacts. We were careful to either work with coordinate-invariant quantities, or to work
with covariant quantities and to explain to which observer they correspond. In some
cases, it turned out to be useful to do the calculations in the proper detector frame, which
is a locally inertial frame for an observer and reduces to the Fermi normal coordinates
if the observer is freely falling. In other cases, it was possible to find expressions for
the effects containing the Riemann curvature tensor, which is invariant under coordinate
transformations in the linearized approximation to general relativity, which can be applied



if the gravitational field is weak. Summarized, one needs to verify that the effect is actually
physical, and to make sure that it is analyzed in the frame of the observer measuring it.
Another important point, especially in the third chapter for the description of the optical
resonator, is the concept of length and extended objects: General relativity is a local
theory, which makes it hard to describe extended objects, implying that it is not possible
to associate a physical concept of length to them. For example, a one-dimensional extended
object has to be described by a sequence of segments, and a possibility to define its length
is in an operational way using light signals, therefore making it clearly observer-dependent.
The projects are not ordered in a chronological way: Our first article [A] left some points
that were interesting to study in more detail, such as the resonance frequency in a curved
spacetime, the gravitational field of laser light, and how they can be linked to measure-
ments. The gravitational field of laser light is studied in article [C], and the resonance
frequency in article [B]. Article [C] then provided the tools to look at the rotation of po-
larization discussed in article [D]. The following four chapters aim to give an overview of
our work and to explain the ideas intuitively.

We use the following conventions and notations: The metric is assumed to have the sig-
nature (—1,1,1,1). Greek indices like @ denote to spacetime indices, latin indices like a
denote to spatial indices, curly capital latin indices like A denote to spacetime indices in
the Minkowski frame, and ordinary capital latin indices like A denote to spatial indices in
the Minkowski frame. Further, ¢ stands for the speed of light, h for the Planck constant,
G for Newton’s constant, and €g for the electric permittivity.



Chapter 1

Gravitational Field of a Laser
Beam beyond the
Short-Wavelength Approximation

The gravitational field of light was already studied in the year 1931 by Tolman, Ehrenfest
and Podolski [1]. They considered the most simple model for light: an infinitely thin
pencil of constant energy density which is moving at the speed of light. Later on this
description was generalized in various ways. Among these models are cylindrical beams,
infinitely extended plane waves, or single photons (compare Appendix A). All of them
have one important feature in common: They describe light in the short-wavelength ap-
proximation, or equivalently, the paraxial approximation, meaning that they describe light
in the framework of geometric ray optics. In this approximation, there is no divergence,
no spreading, of the beam. This means that the wave-like nature of light is not taken into
account, and the Maxwell equations are not satisfied.!

In our project [C], we give a realistic description of a laser beam including the wave-like
nature of light and fulfilling the Maxwell equations. This description reveals features
of the gravitational field of a laser beam that are not visible in the short-wavelength
approximation: First, due to the helicity of the laser beam, frame-dragging appears. This
means that a particle moving initially radially outwards from the beamline of the laser
beam moves on a bent line. Second, a parallel co-propagating light ray, this means a light
ray propagating parallel to the beamline of the laser beam and in the same direction as
the laser beam, is deflected by the gravitational field of the laser beam. This is in contrast
to the statements obtained with the previous models. Third, the polarization vector of
a light ray propagating in the gravitational field of the laser beam is rotated. This is
the gravitational analogue of the Faraday effect appearing in electromagnetism, and the
subject of the next chapter. None of these features is visible in the short-wavelength
approximation, which indicates that they can be attributed to the wave-like nature of
light.

The gravitational effects are too small to be experimentally detected with current technol-
ogy, but with the fast improvement of the sensitivity of measurements, it might be possible
in the future. The effects are of conceptual interest, revealing fundamental properties of
light.

1For the plane wave metrics the Maxwell equations are fulfilled. However, they do not describe realistic
situations as the energy density of the beam does not decrease with the distance in any direction.



In this chapter we introduce the description of the laser beam beyond the short-wavelength
approximation, outline the calculation of the gravitational field, and present some of its
characteristics. Various models for light beams in the short-wavelength approximation are
presented in Appendix B. Our calculations are done in the linearized approximation to
general relativity, which is introduced in Appendix A.

1.1 Description of the Laser Beam

We describe the laser beam as electromagnetic radiation satisfying the Maxwell equations.
This ensures that it has wave-like characteristics. In previous models for light beams, this
was not the case: They used the short-wavelength approximation, which means that the
momentum of the light beam diverges, while its wavelength vanishes - implying that there
is no wave-like behavior of the light beam. In these models, the light is moving along
null geodesics. The metric describing the gravitational fields of these beams has always
the same structure (Appendix B), which is typical for any energy densities moving at the
speed of light. In this case, it turns out that a test light-ray co-propagating parallel to
the source light-ray is not deflected. For our description of the laser beam beyond the
short-wavelength approximation, this is not the case, as we will explain.

More specifically, our laser beam is described as a perturbative solution to the Maxwell
equations, an expansion in the beam-divergence angle 6, which is the opening angle of the
beam and assumed to be small. Making the ansatz of an electromagnetic almost plane
wave, this solution turns out to be a Gaussian beam, which has the property that its
intensity distribution decreases with a Gaussian factor with the distance to the beamline
of the laser beam.

The solution is obtained as follows. First, in order to keep track of the orders of magnitude
more easily, we introduce the dimensionless coordinates 7 = ct/wq, £ = x/wg, x = y/wo,
¢ = z/wp, where wq is the beam waist, a measure of the radius of the beam at its focal
point. The vector potential describing the laser beam is given by a plane wave multiplied
by an amplitude which is slowly varying in the direction of propagation, as the beam
divergence is small. Further, the laser beam is considered to be propagating in positive
(-direction, such that its beamline lies on the (-axis. Corresponding to these features, one
makes the ansatz for the four-vector potential

Aa(1,€,%,¢) = Ava(€, x, 00)e 8 € (1.1)

where A is the amplitude and v, the envelope function. The exponential factor describes
a plane wave propagating in (-direction with angular wave number k = ﬁ. A schematic
illustration of the laser beam is shown in Figure 1.1



Figure 1.1: Schematic illustration of the laser beam: The opening angle is described by
the beam-divergence angle 8, and is assumed to be small. The beam waist wq is a measure
for the radius of the laser beam at its focal point, more precisely the radius at which the
intensity of the beam falls to 1/e? of its value on the beamline. The typical property of
the laser beam is that its intensity distribution decreases with a Gaussian factor with the
distance from the beamline.

We then impose the Maxwell equations for the vector potential, which in the Lorentz
gauge n°? 0aAp = 0 reduce to wave equations,

(=02 + 0 + 0% + ) Au(r,6,x,¢) = 0. (1.2)

The envelope function is assumed to vary slowly in the direction of propagation, which im-
plies that the Maxwell equations for the four-vector potential take the form of a Helmholtz
equation for the envelope function,

(02 + 02 + 620 + 4iwo0ec) va(&, x,0¢) = 0. (1.3)

This equation is solved by writing the envelope function as a power series in the beam-
divergence angle 6,

o€, %, 6¢) Zen (& x,6¢) - (1.4)

This leads to a differential equation for each order, where in even/odd orders the solution
of a lower even/odd order appears as a source term. The two lowest order equations have
a similar structure to a Schrodinger equation, and therefore their solutions are similar to
Gaussian wave packets.

We consider the laser beam to be rotationally symmetric about the beamline and to have
circular polarization, as in this case strongly oscillating terms in the energy-momentum
tensor cancel, making it possible to calculate the gravitational field.?

In the following we consider two different scenarios. In the first scenario, both the distance
of the emission and the absorption to the focal point of the laser beam are assumed to be
large. This has the advantage that there is no abrupt change in the energy distribution
at the location of the emission or absorption, as due to the spreading of the laser beam,
the energy density decreases with the distance to the focal point of the beam, such that
far away it is close to zero. In this case, as the envelope function has the argument
0¢ rather than (, this is also the case for the energy-momentum tensor, and one finds

Tus = o Re (FIFS, = 11asF?F;,) /2.

2The polarization of light is defined with the duality transformation of the electromagnetic field,
D, = e%* . F,, — F,, cos(p) + *F,, sin(p), where the Hodge dual of the field strength is given by
*F, = %wWWF’m and wpupe is the completely anti-symmetric tensor. The generator A of the duality
transformation is found to be the operator A : Fj,, — —i* F,,. The laser beam has right or left handed
circular polarization, if its field strength F,, = 0, A, — 0, A, is an eigenvector of A with eigenvalue £1,
such that AF,, = £F,,.



Different approach: optical vortices

Before starting the discussion of the gravitational field of the laser beam, we mention
the to our knowledge only other two results about the gravitational field of laser beams
beyond the short-wavelength approximation. They both deal with optical vortices. Optical
vortices are laser beams that carry orbital angular momentum; one can think of them as
winding around the optical axis like a corkscrew. A certain class of them are the Laguerre-
Gaussian beams, which are constructed with the generalized Laguerre polynomials. In [2],
the laser beam is described perturbatively. They consider the two leading orders, which
they call the paraxial approximation, equivalent to the short-wavelength approximation.
In comparison, in [C] we study the five leading orders and associate only the leading
order to the short-wavelength approximation. In [2], frame-dragging arises due to orbital
angular momentum, while in [C], it is due to spin angular momentum. In a subsequent
article [3] which appeared after [C], the gravitational field is again calculated for the optical
vortex. The energy-momentum tensor has the same structure as in our case up to the first
order,? and frame-dragging due to spin and orbital angular momentum is discussed and
illustrated by looking at massive test particles. They do not find a deflection of the parallel
co-propagating light ray, as this only appears in higher orders, as we will explain.

1.2 Characteristics of the Gravitational Field

The metric describing the gravitational field is determined using the linearized approxima-
tion of general relativity, introduced in Appendix A. This is possible since the gravitational
field is expected to be weak. Then, the metric g,3 consists of the Minkowski metric 7,
plus a small perturbation A, .

In the first scenario, where the laser beam is considered to be long, the metric perturbation
is written in a power series of the beam divergence,

has(€,x.00) = > 0"hU (€. X, 6¢) . (1.5)

n=0

and the Einstein equations are solved order by order. In this case they simplify to a two-
dimensional Poisson equation for the metric perturbation, with the energy momentum
tensor plus lower order solutions of the metric perturbation as source terms. They are

solved with the Green’s function for the Poisson equation.

In the second scenario, we consider the laser beam to be short; it is assumed to be emitted
at ( = a and absorbed at {( = 3, chosen such that ¢ < 1 holds. In this case, the metric
perturbation can be calculated with the retarded solution of the wave equation and is
given by

hozB(Tv 57 X ‘9) =

4G 2 oo TaB T = \/(g - 5/)2 + (X - X/)2 + (C - C/)Qvg/a X/a 94/
CiUO / df/dX,dC/ ( )

—o0 VE=EP2+(x—x)?+(—¢)?
(1.6)

Acceleration of massive test particles

The leading order of our perturbation corresponds to a laser beam with vanishing opening
angle, and thus to the laser beam described in the paraxial approximation. The metric

3Compare Eq. (4.1-4.3) in [3] and Eq. (40,52) in [C].



has the characteristic structure for light beams in the short-wavelength approximation

0 0
W9 =n) = —nlY =10, (1.7)
where I is obtained solving the Poisson equation in the case of the long beam or using
the retarded solution in the case of the short beam.* For the case of the long laser
beam, the solution looks the same as the exact solution found by Bonnor [4] (Model 4 in
Appendix B2) for a light-like medium without divergence. For the case of a short laser
beam, letting the beam waist go to zero, one reproduces the solution for the thin beam
found by Tolman, Ehrenfest and Podolski [1] (Model 1 in Appendix B2).

The acceleration of massive test particles at rest due to the gravitational field of the laser
beam is given by the geodesic equation 4# = —I'}),4"4”, where v describes the trajectory
of the particle and the dot refers to the derivative with respect to proper time. The
acceleration transverse to the beamline of the laser beam 4 is proportional to 9,1 ©),
and the acceleration along the beamline 4¢ is proportional to Ocl (0). These quantities are
illustrated in Figure 1.2.
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Figure 1.2: Behaviour of the acceleration of massive test particles initially at rest: The
plain blue line corresponds to the long laser beam, and the dashed red line to the short
laser beam. The plot a) shows the behaviour of the acceleration towards the beamline,
as a function of the distance to the beamline. The plot b) illustrates the behaviour of
the longitudinal acceleration in the direction of propagation as a function of the longi-
tudinal distance from the beam waist. The two derivatives of I(®) are plotted in units
of kwiPy/(2mc), where k = 167G/c* and Py is the power of the source laser-beam. For
the short source laser-beam, emission and absorption take place at ( = —3 and ( = 3,
respectively. In the plot a), we set ( = 1, and in the plot b) we set p = 1/2.

The plot shows that the particle is accelerated towards the beamline of the laser beam.
The acceleration is zero on the beamline, reaches a maximum at a certain distance from the
beamline and then decreases with increasing distance to the beamline. The existence of a
maximal acceleration can be explained with Green’s theorem: As only the energy enclosed
in a cylinder whose radius is the distance of the particle to the beamline contributes to the
acceleration, the increase in the strength of the acceleration due to the increasing volume of

*For the long beam, it is given by I¥) = 8GPw3/c® (Ei(—2|u*p?) — 21log(p)), where |u> = 1/(1 +
(9()2), Py is the power of the laser beam and Ei is the exponential integral function. For the short beam,
it is given by I® = 8Gw3Pg/cse_2p2 I3 dp" p' log (B_C:— 'Eﬁ_zm) JO(Z'4PP/)€_2P,2, where Jp is the

a— a— P
Bessel function of the first kind.



the cylinder competes with the decrease of the acceleration due to the increasing distance
from the beamline. Generally, the long laser beam induces a stronger acceleration than the
short laser beam, since the absolute amount of energy is larger. Parallel to the beamline,
there is no acceleration for the long laser beam, as in the zeroth order the beam is perfectly
cylindrical and its shape does not change in this direction. The energy-distribution of the
short laser beam however has a discontinuity at the points of emission and absorption.
In this case, the acceleration is maximal at these two points and vanishes in the middle
between the point of emission and the point of absorption.

With a numerical example, one sees that the acceleration is weak: For a long laser beam
with a power Py ~ 10> W, a beam waist wg ~ 1073 m, a particle at rest at the location
z =0 and r = /a2 + 42 = wy feels the radial acceleration of 4" ~ —107'® ms~2, where
~ is the worldline of the particle parametrized by its proper time. The same order of
magnitude is found in [5] (Model 1 and Model 2 in Appendix B2).

Frame-dragging

In the first order, the following components contribute to the metric perturbation:

A (1) _ A (1) _ gA(1
he® = — p W = 120 (1.8)
A (1 A (1 A
hTX( ) — _ hXC( ) — IX( ) (1.9)
where I’ and I))(‘(l) are determined by 1(°).> With the index A we make explicit that the

solution depends on whether the laser beam has left-handed circular polarization (A = £1).
The result coincides with the exact solution for a rotating null fluid presented in [6] for a
certain set of parameters.®

In the first order, frame-dragging appears. Frame-dragging is the effect that a rotating
energy distribution draggs along the spacetime with it - other than in Newtonian grav-
ity, where a body generates the same gravitational field when it is rotating as when it
is not rotating. Frame-dragging can be illustrated by looking at the motion of a test
particle: Letting a massive test particle move radially outward from the beamline, the
frame-dragging causes it to move on a bent trajectory, i.e. letting the particle initially
move in the &-direction, one finds that the acceleration in the y-direction is different from
zero, therefore forcing the particle to move on a bent line. This is schematically illustrated
in Figure 1.3. In particular, we find that the sign of the acceleration depends on whether
the laser beam is left- or right-handed circularly polarized, and that it falls off with the dis-
tance to the beamline of the laser beam in the same way as the energy-density of the laser
beam. In our case, the effect is due to the spin angular momentum. Frame-dragging effects
for optical vortices were shown in [2], where they stem from orbital angular momentum.

5They are given by I}V = 1 (0¢9; + A0y) ¥ and IR = —1 (A, — 0¢0,) 1.
5The parameters in [6] need to be chosen as o = 9];‘(1)/\@, 8= 9]2(1)/\5 and A =1,



Figure 1.3: Schematic illustration of the frame-dragging effect: A massive particle moving
radially outwards from the beamline, here in ¢é-direction with the velocity 4%, is accelerated
in the transverse direction, here in y-direction with the acceleration 4X. The worldline of
the particle is described by the curve v and parametrized with proper time.

As an example, for a particle moving radially outwards in £-direction with a velocity
v ~ 10m/s from the location z = wp, y = 0 and z = 0 and for a power of the laser
beam Py ~ 10" W, a beam-divergence angle § ~ 1073, a beam waist wg ~ 1073 m, the
acceleration is given by d?+Y/dt? ~ £1072 m/s?, where 7 is the worldline of the particle.

Deflection of parallel co-propagating light rays

Interestingly, for any light beam described in the short-wavelength approximation, a test
light-ray propagating parallel to the source light-beam and in the same direction is not
deflected, while any other test light-ray is deflected (Appendix B3). This is not true for the
laser beam when it is described beyond the short-wavelength approximation - intuitively,
it is clear that the parallel co-propagating test light-ray should be deflected: As the laser
beam has an opening angle, one can think of it as a bundle of not exactly parallel light rays.
Then, the parallel co-propagating test light-ray is not parallel to the rays in this bundle
and gets deflected. Another argument is based on the observation that the parallel co-
propagating test light-ray is only not deflected from the source light-beam described in the
short-wavelength approximation when the latter propagates at the speed of light (Model
7 in Appendix B2). It is clear intuitively, as locally the energy flow in the laser beam is
not parallel to the beamline, and was shown both theoretically [7] and experimentally [8]
that the laser beam moves slower than the speed of light. This means that the parallel
co-propagating test light-ray should be deflected.

Indeed, we find a deflection of the parallel co-propagating light ray in the fourth order of
our expansion in the beam-divergence angle 8: From the geodesic deviation equation, we
find that the relative acceleration between two nearby geodesics is given by

GPy0* 2

£ _ 07 620" ()2(4€2 4 3) — 6¢2 1.10

= ot " (PS4 3) 6 (1.10)

where for simplicity we gave the expression for the region where 8¢ < 1. The deflection
is schematically illustrated in Figure 1.4.



Figure 1.4: Schematic illustration of the deflection of a parallel co-propagating light ray.
The parallel co-propagating light ray, described by the tangent ¢, is radially deflected; it
has the acceleration 5¢ (at x = 0).

As a numerical example, for a power of the source laser-beam Py ~ 10 W, a beam-
divergence angle § ~ 1073, a beam waist wy ~ 1072 m and at the location = wy and
y = 0, the acceleration towards the beamline between two nearby geodesics is given by
a® ~ —1073 m/s%

The deflection decays in the same way as the energy-distribution of the laser beam, as a
Gaussion with the distance to the beamline of the laser beam. This means that the par-
allel co-propagating test light-ray is only deflected when it propagates within the energy-
distribution of the laser beam. In our article we show that this is in contrast to the deflec-
tion of a test light-ray in the gravitational field of a massive cylindrical rod which moves
at the propagation speed of the laser beam, as in this case the parallel co-propagating
test light-ray is deflected when propagating in the exterior of the massive rod. This shows
that focussed light and massive matter moving at the same speed do not have the same
gravitational properties.

Our result reveals that contrarily to the statements made in the short wave-length ap-
proximation, the parallel co-propagating light ray is deflected when using an accurate
description of the source laser-beam which takes into consideration the wave-like nature
of light and respects Maxwell’s equations.
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Chapter 2

Rotation of Polarization - Faraday
Effect and Optical Activity

The electromagnetic Faraday effect describes the rotation which the polarization of light
obtains when propagating in an electromagnetic field. The Faraday effect is non-reciprocal;
the effect does not cancel when the light propagates back and forth along the same path.
Additionally, there is a reciprocal rotation of the polarization of light due to the optical
activity. The analogy between the Maxwell equations in an electromagnetic field and in
a curved spacetime suggests that there is a gravitational analogue for the electromagnetic
Faraday effect and the rotation due to the optical activity. Indeed, it was shown that the
gravitational rotation of polarization of light occurs in spacetimes that are stationary and
non-static [9]. These are spacetimes for which there exists a coordinate-system such that all
components of the metric tensor are time-independent, but there exists no such coordinate
system such that the metric components that mix time and space vanish. The gravitational
field of the laser beam satisfies these conditions (Section 1.1). The gravitational rotation
of the polarization of light was first studied by Skrotsky [10] and by Balazs [11], and later
a coordinate-invariant description for the change of the polarization for a light ray coming
from flat spacetime, passing through a weak gravitational field, and going to flat spacetime
again was found by Plebanski [12]. The gravitational rotation of polarization of light was
studied for several systems: for moving gravitational lenses [13, 14, 15], in astrophysics
[16, 17], in the context of gravitational waves [18], for a rotating ring [19] and for a ring
laser [20]. It was also treated more formally in [21, 22, 23].

In this chapter we describe the rotation of polarization of a light ray propagating in the
gravitational field of a long laser beam [D]. We identify the non-reciprocal contribution
to the rotation as the gravitational Faraday effect and the reciprocal contribution as the
gravitational analogue of the optical activity. Notice that a strict analogy is only present
when the contribution of the outward propagation of the light ray is the same as the con-
tribution of the backward propagation. In the first section we explain the result [12] which
we use to calculate the rotation angle. Its application to test light-rays propagating in the
gravitational field of the laser beam is explained in the second section. As the gravitational
Faraday effect is non-reciprocal, it adds up when a test light-ray propagates back and forth
a cavity consisting of two mirrors. On the other hand, as the gravitational analogue of
optical activity is reciprocal, a ring cavity can be used to obtain the gravitational optical
activity as the leading order contribution. This is discussed in the third section, where we
also give a bound on the possible measurement precision.
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For the plots and numerical examples we choose the power Py = 10'® W, the beam waist
wo = 107%m, the beam divergence § = 0.3 (this implies that the wavelength is given by
Orwo ~ 107%m) and the polarization A = 1 and consider the parallel light rays to be at
x = 0 and the orthogonal light ray to propagate in £-direction and to be at x = 0.1.

2.1 Rotation of polarization

Both the Faraday effect and the optical activity rotate the polarization vector within the
plane of polarization, which is always perpendicular to the tangent to the path of the
light ray. When the light ray is deflected, the plane of polarization is tilted such that it is
again orthogonal to the tangent to the path of the light ray. This results in an additional
change 04 of the polarization vector &. The change & depends on the initial polarization
& of the light ray,! is not within the plane of polarization and does not contribute to the
gravitational Faraday effect nor to the gravitational optical activity. The rotation angle
for these two effects for the rotation within the plane of polarization is derived using the
formal analogy of Maxwell’s equations in a dielectric medium and in a gravitational field,
and using geometric ray optics [12]. For a light ray starting and ending in flat spacetime,
it is given by [12]
1 oo
A= 2/ dr A% €apeOphacy® , (2.1)
2wj J oo
where 4 is the tangent to the path of the light ray parametrized by proper time 7 and €4
is the Levi-Civita tensor with €,p. = 1. The positive sign refers to right-handedness. The
rotation of polarization A and the change of polarization 6 are illustrated in Figure 2.1.

&

Figure 2.1: Change of the initial polarization vector & of a light ray +: The initial polar-
ization vector & in the plane orthogonal to the tangent of the light ray is rotated within
this plane by the angle A into Ra& (dashed arrow on the right) due to the gravitational
field, where Ra is the corresponding rotation matrix. In addition, this plane is tilted due
to the deflection of the laser beam (solid circle on the right), such that it is orthogonal
to the tangent of the light ray. This leads to an additional change 6@ of the polarization
vector. The rotation about the angle A is due to the gravitational Faraday effect and the
gravitational optical activity.

The above result can be applied when the metric perturbation and its first derivatives

vanish as (/&2 +x2 + ()71 for /€2 4+ x2 +(? — oo. It is invariant under coordinate

transformations that approach the identity at spatial infinity.

!The explicit expression is given in Sec. 6 in [12].
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The interpretation of the rotation is the following: The polarization vector € = (1,0, 0) de-
scribing linear polarization in ¢-direction is rotated into Raé = (cos(A),sin(A),0), where
R is the matrix rotating by the angle A. The polarization vector €y, = %(1, —Atest?, 0)
for a test light-ray with circular polarization with helicity Atest = +1 becomes Ra€),.., =
gittest A g \iewr; the circularly polarized test light-ray obtains the phase AgestA.

2.2 Test light-rays

In this section, we look at infinitely long test light-rays and a finitely long source laser-
beam. A test light-ray propagating parallel to the source laser-beam is described by
the tangent vector 4§ = wio(l,0,0,jzl), where the 747 corresponds to the parallel co-

propagating and the ”—" to the parallel counter-propagating test light-ray.?> The corre-
sponding rotation angle for the parallel propagating light rays is given by
1 o
Ay = —2/ dg <3x (he¢ £ hre) — Oc (hyg £ th)) : (2.2)
2wj J -

where hqp is the metric perturbation (1.5) introduced in Chapter 1. The rotation of
polarization for the parallel co-propagating test light-ray is illustrated schematically in
Figure 2.2 and the value of the rotation angle is plotted in Figure 2.3 for the parallel test
rays.

X A
A LTE
A7y
A
T+

| "“ :

Figure 2.2: Schematic illustration of the rotation of the polarization vector @ (here it
originally has only a component in the £-direction) of a parallel co-propagating test light-
ray with tangent ¢ in the gravitational field of the laser beam.
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Figure 2.3: The absolute value of the rotation angle for the parallel co-propagating and the
parallel counter-propagating test light-rays, A, and A_, as a function of the orthogonal
distance £ from the beamline and for the parameter values specified in the introduction.

2To ensure the null condition, and taking into account the deflection of the parallel counter-propagating
test light-ray, the tangents to the parallel and the anti-parallel test light-rays read 4§ = w—co (17 eg:, ef, +(1-
fj[))7 where 62:, ef and fT are of the same order as the metric perturbation and turn out to be negligible

in the calculation.
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We also consider an orthogonal test light-ray which propagates in £-direction. Its tangent

reads® 44 = —( +1,0 O) The rotation angle for the transversally propagating light ray
is given by
A 1 > (0) 0
0 v —o0

where we gave the result up to the first order in the metric perturbation.

The rotation angle A turns out to depend on the helicity A of the source laser-beam. As
the rotation angle is equivalent to the phase At A for the circularly polarized light ray, it
contains terms proportional to AAiest. This product is positive if the source beam and the
test light-ray have the same helicity, and negative if they have opposite helicity. This means
that the phase depends on the relative helicity of the two beams, which is gravitational
spin-spin coupling. With our analysis and using only classical general relativity, we thus
find a phenomenon which appears in perturbative quantum gravity.

Equations (2.2) and (2.3) give the rotation angle due to the gravitational Faraday effect
and the gravitational optical activity. The contribution from the gravitational Faraday
effect, which is the non-reciprocal part, is (in leading order) given by*

0
Al =a,-a=-5 dg( achly — 8€h(Tlx)> , (2.4)
0

for one forth- and back-propagation of a light ray propagating parallel to the source laser-
beam, and by
1
At‘kt* - At+ — Atf == 2/ d§8 hTC 5 (25)
wo —

for one forth- and back-propagation for a light ray propagating transversally to the source
laser-beam. The reciprocal contribution to the rotation angle is the gravitational analogue
of optical activity. It is (in leading order and for the propagation in one direction) given

by
A+ A 0
0A _ P+ _ (1)
A+— - 2 T ow 2/ C( X g( — Och g) ) (2.6)

for the parallel light rays, and by

Apt + Ay 0
A9L = t+2 t _2w0/ dgathc, (2.7)

for the transversal light rays.

For light beeing emitted from or passing through a rotating spherical body [10, 11] or a
rotating shell [16], it has been shown that the rotation angle for the polarization decreases
with the inverse of the square of the distance to the rotating object. If however the light is
only passing by these objects or any other stationary object, the polarization of the light
is not rotated [9, 24]. The statement is not true if the objects are in motion; then the
rotation of polarization is non-zero (see [15] for a moving point mass, [14, 9] for moving
gravitational lenses, [13] for a moving Schwarzschild object and [12] for moving stars).

3 Again in order to satisfy the null-condition and taking into account the deflection of the light ray, the
tangent reads 4+ = w%)(lv +(1 - f%), ef, egi), where ef, ezt and f* are of the order of magnitude of the
metric perturbation and turn out to be negligible in the calculation.

4As the rotation angle is defined with respect to the propagation direction, the absolute rotation
accumulated on the way back and forth is given by the difference between the rotation angle acquired

during the propagation in the two directions.
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Even though the laser beam’s spacetime metric is stationary, it consists of an energy-
distribution in motion. Therefore, our results agree with the literature in the sense that
the rotation of polarization should be non-zero.

For parallel test rays, we find that the effect decreases with the inverse of the distance to
the beamline of the source beam if there is an overlap between the test ray and the source
beam’s region of largest intensity,” and falls off with a Gaussian factor with the distance
to the beamline if there is no overlap between the test ray and the source beam’s region of
largest intensity. Instead, for transversal test rays, the effect always decays with the inverse
of the distance to the beamline. Even though formula (2.1) is not strictly applicable, the
test ray and the source beam can under some conditions both be considered as finitely or
infinitely extended. Then, the results are slightly different.

2.3 Cavities

Letting light propagate back and forth between two mirrors, the Faraday effect adds
up, since it is non-reciprocal. On the other hand, the reciprocal effect associated to the
gravitational optical activity cancels. The latter can be obtained as the leading order
accumulating effect when using a certain ring cavity.

In order to magnify the Faraday effect, we consider a cavity consisting of two mirrors at
locations ( = A and ¢ = B, between which the light propagates, as illustrated in Figure 2.4.
Orienting the cavity such that its axis is parallel to the beamline of the source laser-beam,
the light travels undeflected up to the third order in 8 from A to B and obtains a deflection
of zeroth order when propagating back, which vanishes when the light ray propagates at
the center of the source laser-beam. When placing the cavity at a slightly larger distance
from the beamline of the source laser-beam, the Faraday effect becomes smaller. When
the light propagates during the time 7 = LF/(wc), where F is the finesse of the cavity,
the total angle of rotation is given by Ag = FAY_/(2m). For a finesse F' = 10° [25], and
the parameters given in the introduction, the rotation angle is of the order of magnitude
Ag ~ 10732rad. Rotating the cavity by ninety degrees (Figure 2.4), the accumulating
angle is given by A" = FAfH, (27). For the same finesse and the same measuring time,
it is also of the order of magnitude Af ~ 10732 rad.

Figure 2.4: Schematic illustration of the parallel (left) and the orthogonal (right) cavity
in the gravitational field of the laser beam: The laser beam starts at « and ends at 5. The
test light-ray propagates on the worldline v between the mirrors of the cavity, A and B.
The Faraday rotation adds up after each roundtrip, while the rotation associated to the
gravitational optical activity vanishes.

5The region of the source beam’s largest intensity can be defined by a drop of the intensity by a factor

e~2. Then, this region has a radius w(¢) = /1 + (6¢)2.
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Using a ring cavity, it is possible to have the rotation due to the optical activity as the
leading order effect which accumulates. Considering the ring cavity as in Figure 2.5,
where again the mirrors are far enough away from the beamline or the beam waist, the
polarization vector is rotated when the light propagates from A to B, but not when it
propagates from B to C to D to A. If we choose the light ray between A and B to be
propagating at y = 0, it turns out that the gravitational Faraday effect vanishes and the
gravitational rotation of polarization is purely due to the gravitational analogue of optical
activity. The accumulated rotation angle is of the order of magnitude AY4 ~ 10733 rad.

Figure 2.5: Schematic illustration of the ring cavity: The test light-ray propagates along
the path v* and is reflected at the mirrors A, B, C and D. The laser beam is emitted at
¢ = a and absorbed at { = .

Since for the circularly polarized light rays the rotation angle is equivalent to a phase, the
precision of the measurement of the rotation angle is restricted by the shot noise. Using
classical light, the minimal uncertainty of the estimation of the phase ¢ = Aest A is of the
order of magnitude of §¢) ~ 1/v/nM, where n is the number of photons in the cavity and M
the number of measurements [26]. If the cavity has the finese F' and length L and is driven
by a laser with frequency w/(27) and power Py, the number of photons inside the cavity
is given by n = Py, F'L/(mhwc), and the average time a photon is inside the cavity is found
to be Toy = LF/(2wc). In the time T';, M = T'/T,, measurements can be made. Therefore,
it follows that d¢ ~ \/hw/(2P4,T). Using a cw-laser with the power Py, = 100 kW [27]
with a wavelength of 500 nm and measuring during 7' = 10°s (approximately two weeks),
the minimal standard deviation scales as d¢ ~ 10~ rad. The same order of magnitude
is obtained when using a squeezed state and using quantum metrology (Appendix C) for
the analysis.
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Chapter 3

Resonance Frequency of an
Optical Resonator in a Curved
Spacetime

In this chapter we explain our work on the influence of a gravitational field on the frequency
spectrum of an optical resonator [B]. While in the previous chapter light was the source
of the gravitational field, in this chapter it will only be the tool to probe the effects of
a given gravitational field, serving as test rays. The resonator is modelled as a rod with
two mirrors attached at its ends, between which the light is propagating back and forth.
In flat spacetime, it is clear how to describe the resonance frequency of the resonator: It
is defined as one of the harmonics, which are determined by the length of the resonator.
When the resonator is in a gravitational field, this concept needs to be changed, as in
general relativity, being a local theory, the meaning of length of an extended object is
not a priori clear. It turns out that the radar length has to be used in order to describe
the resonance frequency, which is defined in an operational way by an observer: The
observer sends out a light signal, measures the duration it takes to come back and infers
the distance from it. This makes it evident that the resonance frequency is observer-
dependent. Compared to a resonator in flat spacetime, there is another difficulty with
the resonator in a gravitational field: While in flat spacetime it is possible to describe the
resonator by a rigid rod, this is more complicated in curved spacetime. Strictly speaking,
perfectly rigid objects do not exist. We use the concept of ”Born rigidity”, where the
proper length between two segments of the rod is kept constant, as a first model of the
resonator. In a second model, the resonator is deformable: It consists of thin segments
which are accelerated in the gravitational field but stick together due to the material
forces. The resonance frequency in curved spacetime thus deviates from its definition in
flat spacetime for two reasons: First, for the concept of length the observer-dependent
radar length is used, and second, the resonator deforms in the gravitational field.

Through the dependence of the frequency spectrum on the gravitational field, it is possible
to determine the curvature of spacetime by performing a frequency measurement. This is
important for example for the measurement of gravitational waves with electromagnetic
resonators [28, 29, 30], tests of general relativity, or the measurement of the expansion of
the universe. Also, the influence of the gravitational field on the frequency spectrum can
be seen as a limitation of the precision of frequency measurements in the presence of a
gravitational field, which has to be taken into account.
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In the first section of this chapter, we explain how to describe a resonator in a gravitational
field. Its frequency spectrum is determined in the second section. The result is applied to
three examples in the third section.

3.1 Resonator in a Gravitational Field

The resonator consists of single segments. To these segments belongs a worldline, which
allows to construct spatial geodesics representing the rod. We will explain this in the
first subsection, while in the second subsection, we introduce the proper detector frame, a
locally inertial frame for an observer. This will simplify the calculations for the subsequent
discussions.

Describing the Resonator

We start by describing the resonator in a gravitational field or under acceleration. The
resonator consists of a rod with two attached mirrors (Figure 3.2). The rod is constructed
using worldlines and spatial geodesics: Each segment of the resonator is characterized by
a worldline v.(p) with ¢ € [a, b], where 7,(0) and (o) are the worldlines of the mirrors A
and B located at ¢ = a and ¢ = b respectively. The parameter p is chosen such that the
curves s,(s) = 7.(0) are space-like geodesics.! To each worldline of the segments, which
is a time-like curve, we associate a spatial slice defined by the vectors that are orthogonal
to the worldline. In this spatial slice lie the tangents to the space-like curve s,(s). This
construction is illustrated in Figure 3.1.

Figure 3.1: Representation of the rod by space-like and time-like curves: The space-like
curves s,(s) represent the rod. They are orthogonal to the time-like curves ~(p) that
represent the worldline of the segments of the rod.

The rod is additionally accelerated, in the sense that the rod has a support on which the
non-gravitational acceleration (the spatial part of the proper acceleration with respect to
a local freely falling frame at the location of the observer) @ is exerted.? In terms of the
proper length L,, of the rod, the support is at a distance SL,/2 from the center of the rod,
where § € [—-1/2,1/2]. Later, when we consider an observer performing a measurement,
the observer will do so at a distance oL,/2 from the center, where o € [—-1/2,1/2]. The
resonator is illustrated in Figure 3.2.

"'With this choice, the world lines ~s(0) do not need to be geodesics; the parameter g is not assumed
to be the proper time of the segments.

*We do not consider rotation of the resonator, as this effect leads to higher order terms in the eikonal
expansion for the light field inside the cavity, which we neglect in our description.
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Figure 3.2: Illustration of the resonator: The mirrors A and B are attached to the begin-
ning and the end of the rod. The rod is supported at a distance 5L,/2 from the center of
the rod, and an observer performs a measurements at a distance oLp/2 from the center
of the rod.

Proper Detector Frame

The proper detector frame is the natural frame for an observer: It is a locally inertial
frame in the neighbourhood of an observer in a gravitational field under acceleration. This
means that close to the worldline of an observer, the time coordinate is the proper time
of the observer and the coordinate distance is the proper distance. The proper detector
frame is thus a generalization of the Fermi normal coordinates, which are locally inertial
coordinates in the neighbourhood of a geodesic.

The proper detector frame is obtained by constructing a tetrad consisting of a time-like and
three space-like vectors, where the time-like vector corresponds to the tangent vector to the
worldline of the observer. The metric in the proper detector frame [31, 32] for vanishing
rotation, small acceleration @ and small curvature (in the proper detector frame) reads

(30 =~ (1+ Zasr)e + Roos () aa” ) (3.)
(%) = =% Roxesr (+(7)) 2" (32
95 (%) = 81 — 3 Rigcar (4 () et (33

where Ryjk is the Riemann curvature tensor, v(7) the worldline and 7 the proper time
of the observer. The construction of the proper detector frame is illustrated in Figure 3.3.
For the validity of the proper detector frame, the gravitational field can vary only slowly.
We make the assumption that it varies slowly enough such that during the time the light
needs to make one round trip inside the cavity, the curvature can be considered as constant
in time. The linearization of the metric in the proper detector frame is possible when the
gravitational field varies only slowly; the gravitational field does not need to be weak.
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Figure 3.3: Construction of the proper detector frame: For a worldline of an observer
v(7), one defines a tetrad by €, which is the tangent to the worldline, and three spatial
vectors e’j, with J = 1,2,3. This tetrad gives rise to a coordinate system in which the
coordinate time along the worldline corresponds to the proper time of the observer, and
in a neighbourhood of the worldline, the coordinate distance corresponds to the proper
distance.

3.2 Frequency Spectrum in a Gravitational Field

One can expect the definition for the resonance frequency in flat spacetime, w,, = cnn/L,
to have a similar form in curved spacetime, with the length L replaced by some well-
defined quantity in general relativity. In this section, we show that this is the case, and
explain the concept of length which gives an appropriate replacement for L.
The resonance frequency of the cavity w, corresponding to the n'® mode of the light is
determined by v, = w,T , where 9, is the phase with which the n*® mode evolves and T
is a time difference measured by an observer. Therefore, the time difference is observer-
dependent, while the phase is not, making it already clear that the resonance frequency will
depend on the observer who measures it. In order to determine the resonance frequency,
one thus needs to know the evolution of the phase. This could be done by solving the
Maxwell equations in the curved background. Instead of doing so, we choose to describe the
light inside the cavity in the short-wavelength approximation, which allows us to find the
phase difference of the left- and the right-moving part of a standing light wave inside the
resonator. Using the short-wavelength approximation restricts the validity of our results
to the high frequency modes; for the lower modes, the short-wavelength approximation
breaks down.
Doing so, one finds that a meaningful notion of distance in the formula w,, = cn7/L is the
radar length R, which is the distance determined by an observer by sending back and
forth a light signal and measuring the time duration 7', the light takes to travel. The
radar distance is given by R, = §T,,. Thus, the frequency spectrum reads

Wom = ;:j . (3.4)
To ensure that we only consider wavelengths much shorter than the resonator and that
the short-wavelength approximation is justified, we need the restriction n > 1. In the
following sections, we will calculate the resonance frequency explicitly for both a rigid and
a deformable cavity.
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Born Rigid Resonator

We start by describing the resonance frequency for a rigid resonator, i.e. a resonator as
in Figure 3.2 with a rigid rod to which the mirrors are attached. Strictly speaking, rigid
objects do not exist in general relativity. What we call rigid in the following is thus rigidity
as defined by Born [4]: The proper length between any two segments of the rod is kept
constant when measured along a spatial geodesic defined by either of the two worldlines
of the segments.?

As the resonance frequency depends on the radar length, we need to determine the latter:
To do so, we consider that the observer sends out a light signal, which satisfies the null con-
dition gfy (§(L))é“(L)£”(L) = 0 and the geodesic equation £#(1) = —rke ({(L))é”(L)é”(L),
from which one obtains an expression for the tangent vectors to the path of the light ray.
Integrating over them, one finds the difference in proper time of the observer which the
light ray needs for one roundtrip, and from it the radar distance. One obtains for the
resonance frequency

enm () a®(7)
L, 2¢?

Ri.rz (’Y (T) )
24

Won = oL, — (30 + 608 — 1) Lg) . (3.5)
The first term in the bracket is the resonance frequency one obtains in flat spacetime.
The second term is a redshift due to the acceleration of the support of the cavity. Due
to symmetry reasons, it vanishes if the observer makes the measurement in the center of
the cavity. The third term is a gravitational redshift. In curved spacetime, it is always
there; only parts of it vanish if the measurement is done at the center of the rod or if
the rod is supported at its center. Summarized, the resonance frequency of the Born rigid
resonator consists of the resonance frequency one obtains in flat spacetime (first term) plus
corrections depending on the acceleration, the curvature, the location of the measurement
and the location of the support of the resonator.

Deformable Resonator

In this section we describe the frequency spectrum of an optical resonator which is de-
formed due to a gravitational field. The rod of the resonator is modeled as sequence of
segments that would follow geodesics due to the gravitational field, but are hold back by

material forces between the segments.
The segments are assumed to have density p and crosssection A. The acceleration of
a segment at rest in the gravitational field is given by the geodesic equation ¥l =

-rr bVt Vst s and in our case the acceleration is approximately equal to the the proper

acceleration af,. The acceleration leads to a force F* = ma% acting on the segments.?
The force induces a stress in the material, 0,, = F*/A = pLya?, which is linked to strain
€. via the Young’s modulus Y by €., = 0,,/Y. The change of proper length of the rod
due to these deformations is given by integrating over the strain at every location of the
resonator. Incorporating the change of proper length in the expression for the resonance

frequency of the rigid resonator (3.5), one obtains

enm a*(t) (2 Reor((7)) (2 2 2 2
e — — 1 _ _
Wo,n L (1 + 502 (Cgﬁ 0'> L,+ 54 26g (38°+1) —30% — 608 + 1 Ly |,
(3.6)

3As any other definition of rigidity, the definition by Born has an issue: The motion of a Born rigid
object is completely defined by one of its points, which means that the body cannot be accelerated or put
into rotation without violating causality [33, 34].

4The forces transversal to the rod turn out to be negligible.
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where we replaced the Young’s modulus with the speed of sound in the material c; ac-
cording to ¢s = \/Y/p.

This description of a deformable rod is consistent with the result for the deformable
resonator: Letting the speed of sound approach infinity, the change in proper length
vanishes and one recovers the frequency spectrum of the rigid resonator given in equation
(3.5). Letting the speed of sound approach the speed of light, the resonance frequency
agrees with the result one obtains with the definition of rigidity given in [35].

As an example we look at carbyne, which is a stiff material and has a very high Young’s
modulus. In this case, the speed of sound is ¢2 = Y/p ~ 107 m?/s?. Therefore, the ratio
c?/c ~ 108 is large, which means that the effect due to the change of the proper length
is dominating the effect due to the curvature of the spacetime and the acceleration of the
cavity. As the speed of sound in the stiffest materials is much smaller than the speed of
light, this observation remains valid for all materials. The effects due to the curvature and
the acceleration become relevant once the deformation effects are taken into account and
the frequency spectrum needs to be determined to a precision of the order of magnitude
of the redshift effects due to curvature and acceleration.

Dielectric Rod as Resonator

The resonator can also be modeled as a cylinder of a dielectric media in which light is
propagating and reflected at the rod’s ends, as illustrated in Figure 3.4.

frequency
center measurement

l l

GN"O"""N“ONNN"NONN"O"N"NNN"NOO
I T

BL,/2  oL,/2

Figure 3.4: Illustration of the resonator comnsisting of a cylinder of a dielectric medium:
The light propagates inside the medium and is reflected at the ends of the resonator.
Again, the resonator has the proper length L, the support lies at a distance SL,/2 from
the center of the resonator, and the observer performs the measurement at the distance
oL,/2 from the center of the resonator.

The metric tensor for the proper detector frame inside the dielectric medium is given by
(36, 37]

2
P,diel Cqi
IV = I — (i;el - 1) UMUN (3.7)
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where cgie1 is the speed of light inside the medium and u™ the tangent vector to the
worldline of a segment of the rod. For the metric in the proper detector frame one obtains

i 2 2
gop (%) =~ (1 + as(r)r’ + ROIOJ(T)xIxJ) : (3.8)
Pdiel(\ _ _ 2 Clia K L
9oy (X)= 32 Roryr(r)z™z™, (3.9)
i 1
g1 (%) = 01y — gRIKJL(T)-TKﬂfL : (3.10)

The calculations for the resonance frequency can be done analogously, and one finds that
it differs by a factor cqie/c from the results for the resonator consisting of a rod with
attached mirrors, where the light is propagating in free space,

el _ L, (3.11)
C

o,n

3.3 Applications

The result for the resonance frequency is valid in any gravitational field which is varying
slowly enough such that the proper detector frame can be used, and for high enough fre-
quencies of the light inside the resonator such that the short-wavelength approximation
can be used. In this section we apply the results to a uniformly accelerated resonator, to a
resonator which is falling into a black hole, and to a resonator in front of an oscillating mas-
sive sphere. With these examples we illustrate that by measuring the resonance frequency,
the resonator could be used to indirectly measure other parameters, in our examples the
acceleration, the Schwarzschild radius or the mass of the sphere. For the numerical exam-
ples, we consider the relative frequency shift, defined by 05, = (Won — Wp)/wn, Where wy,
denotes to the resonance frequency of a resonator at rest in flat spacetime.

Uniform Acceleration

For an observer which is uniformly accelerated in flat spacetime, the relative frequency

shift is given by

5 —(/B—G) “r (3.12)

YT\ e2) 27 '
As a numerical example, we consider a rod made of aluminium. Aluminium has the speed
of sound ¢5 ~ 10°ms™!. We consider the resonator to have the length L, = 2cm and
to be supported at one of the mirrors, therefore setting 5 = +1, and to be accelerated
with 10ms~2. The relative frequency shift turns out to be of the order of magnitude
Ow,g ~ 1077, In this case, the first term in equation (3.12) dominates, which stems from
the deformation of the resonator. In order to look at the effect coming purely from the
acceleration, which means the effect for a rigid cavity, we let the speed of sound go to
infinity and are left with the second term. Then, the relative frequency shift measured at
one of the mirrors is of the order of magnitude of &, 11 ~ +£107!8. This is in principle

measurable with the most precise clocks [38, 39].

Falling into a Black Hole

To illustrate that the result for the frequency spectrum is also true in strong gravitational
fields, we look at a resonator which is falling into a Schwarzschild black hole, as illustrated
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in Figure 3.5. If the resonator is oriented such that its rod points vertically towards the
black hole, the observer makes the measurement at the center of the resonator and the
speed of sound is taken equal to the speed of light, the relative frequency shift is found to
be
rst%

T
where rg is the Schwarzschild radius and r the radial distance from the center of the black
hole. There is nothing special happening at the event horizon of the black hole.

bwo(T) = (3.13)

Figure 3.5: Artistic illustration of the resonator falling into a tilted Schwarzschild black
hole.

Oscillating Mass

As the last example, we consider the resonator in front of an oscillating massive sphere,
as illustrated in Figure 3.6. Our description of the frequency spectrum remains valid as
long as the variation of the gravitational field of the oscillating sphere is slow enough such
that the proper detector frame can be used.

Q
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Figure 3.6: Illustration of the resonator in the gravitational field of an oscillating mass:
The sphere of mass M is attached to a spring and oscillates with frequency 2, and the
support of the resonator is at a distance R(7) from the center of the massive sphere when
it is in the spring’s equilibrium position.

The sphere is attached to a spring and oscillating at the frequency (), such that the
distance between the center of the sphere and the center of the resonator is given by
R(71) = Ro+dRosin(§27). Describing the sphere’s gravitational field with the Schwarzschild
metric, one obtains

rsLy c? c? 9 9 L,
o = — 22 (S5 25 1) — 302 — 1) =2 . 14
O, e <<c§5 O‘) + ( ) (38 +1) —30° — 660 + 6k, (3.14)
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For the numerical example, we consider a gold sphere of mass m = 100 g, which oscillates
with an amplitude 0 Ry ~ 1 mm. The resonator is assumed to have length L, ~ 1cm and
be at a distance Ry ~ 1cm from the sphere, and to consist of a material with speed of
sound ¢z ~ 103 ms~!. If the rod is supported at one of the mirrors, the relative frequency
shift is of the order of magnitude d,, +1 ~ 10~ and purely due to the deformation of the
rod.
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Chapter 4

A Measurement of the Speed of
Light in a Cavity

In project [A], we look at an observer performing a measurement of the speed of light
in vacuum: In a cubic cavity containing light, the observer determines the speed of light
according to ¢ = wA/(2m), where w is the frequency and A\ the wavelength of the light.
The measurement is both analyzed in the framework of quantum parameter estimation
and in the framework of general relativity. In the former we derive a lower bound on
the quantum mechanical uncertainty in the measurement, which decreases with increasing
energy. However, when increasing the energy, the measurement does not take place in
empty free space any more due to the self-gravitation of light. This means that the
observer makes a systematic error when measuring the speed of light in vacuum. This
error has two different origins, the systematic error in the frequency measurement is due
to the gravitational redshift, and the systematic error in the calculation of the wavelength
is due to the deformation of the cavity. These two effects are discussed in detail in
Chapter 3. Another way to set up the experiment would be to measure the time period
a light signal needs to make one round trip in the cavity and to infer the speed of light
from it. Both the quantum mechanical uncertainty and the systematic error remain the
same; the systematic error arising because the observer does not take into account that
coordinate time and length have to be replaced by proper time and proper length.

In the current definition of the SI units the speed of light is defined the constant ¢ =
299792458 ms—!, the second is defined by transition properties of the caesium atom, and
the meter is defined by the distance a light signal travels in a certain amount of time,
when propagating at the speed c. The experiment could be reformulated in SI units: with
the speed of light and measuring a time span, a length is inferred. The two approaches
are equivalent, one leading to a minimal uncertainty in the measurement of the speed of
light and the other giving a minimal uncertainty in the measurement of distance.

The chapter is organized as follows: In the first section we describe the cavity and the
light and determine its gravitational field. The quantum mechanical uncertainty and the
systematic error are analyzed in the second section.

4.1 The Gravitational Field of Light inside a Cubic Cavity

In the first subsection we explain how one obtains the vector potential and the energy-
momentum tensor corresponding to the light inside the cavity, and in the second subsection
we calculate the corresponding gravitational field. The calculations are performed in the
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linearized approximation to general relativity (Appendix A) and using the semiclassical
approximation. In the latter, the light field is treated quantum mechanically and the
gravitational field classically, meaning that in the Einstein equations, the expectation
value with respect to a certain quantum state is taken of the energy-momentum tensor.

Describing the Light

The light is contained in a cubic cavity of side length L with one corner in the origin of the
coordinate system. It is assumed to have perfectly reflecting walls, to whom the electric
field of the light is perpendicular and the magnetic field parallel. The electromagnetic
vector potential A satisfies the Maxwell equations

—

OA(z,y,2) =0, (4.1)

where the Lorenz gauge condition VA=0is imposed (we set the electric scalar potential
to zero) and where [ = —0%8252 + V2 and V = (0, 9y,0.). A solution is given by

3 /1
Alz,y,2) = \;%q(t) (2) 0 | cos(kyx)sin(kyy) sin(k.z) , (4.2)
0

where ¢(t) is the time-dependent amplitude, €y is the electric permittivity and k=
(kg, ky, k2) is the wave vector. We assume that the mode in z-direction vanishes, the
mode in y-direction is in the first harmonic and the mode in z-direction is in the mt®
harmonic. Then the vector potential reads

Az,y,z) = \/1570(1(“ <i> ’ 0 | sin (%y) sin (%z) , (4.3)

where we used that the wavelength corresponding to the m'™ harmonic is given by A, =
2L/m and the wave number by k,,, = 27/\,;,. The corresponding electric field is given by
E = —A and the magnetic field by B=VxA. Quantizing them, ¢ and its time-derivative
¢ turn into the quadrature operators ¢ and p respectively,!

. ho. R
q — g= E(aw + CLL) ) (4.4)
q — ﬁ =1 TC(aw - GIJ) ) (4'5)

with the frequency w = (/k2 +k2 = TV1+m? From the electromagnetic field, the

energy-momentum tensor is calculated according to Too = g (EQ + c2§2), Toa = —% [E X E]

and Tab = —¢p (EaEb + CQBaBb) + Tooéab. The light field is chosen to be in the quantum

state which is optimal for a frequency measurement [40],

0), + |Mtot)
|¢0ptimal> = |>w\/|§ntt> s (46)

1'We label operators by hats.
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where nqt is the total number of available photons. In the following, we consider both the
total number of photons nt, and the mode number in z-direction m to be much larger
than one. Further, we assume symmetric operator ordering, which means that products of
annihilation and creation operators aa' and a'a are replaced by (aaf+a'a)/2. Calculating
the expectation values of the energy-momentum tensor with respect to the quantum state
above, it turns out that only the components (Too), (T11), (To2), (T33) and (Th3) are
different from zero.

Gravitational Field

In our description of the light field, we consider the light to be quantized, and determine
its gravitational field. We make the semi-classical approximation of general relativity: We
treat the fields quantum mechanically and the metric classically. In order to have well-
defined Einstein equations, we need to take the expectation value of the energy-momentum
tensor,

R — %gaﬁ = 87G (Tug ) | (4.7)

where R,z is the Ricci tensor. The semiclassical approximation [41, 42] can be used if the
quantum fluctuations of the energy-momentum tensor are small, i.e. Var(T,3) = <Ta2/3> =

(T, ag)Q < <Ta5>2. In the linearized approximation of general relativity (Appendix A), the
energy is assumed to be weak and terms quadratic in the energy-momentum tensor are
neglected. In this case, the above condition for the variance is satisfied and the semi-
classical approximation can be applied. The metric perturbation is thus given by

T =%

ity (Tul@)

hu (%) = — 3z’ AL 4.8
MV( ) A A ‘(1_’," _ f/| ( )

Since the mode number m is assumed to be large, terms containing a sine or cosine

function with m appearing as an argument are strongly oscillating, and thus vanish to a

sufficient approximation when integrating over them. In our case, this means that only

two components of the metric perturbation are different from zero, namely hy and h,,.

4.2 Measurement Precision

The precision of the measurement is limited due to the quantum mechanical nature of the
light; there is always a fundamental quantum mechanical uncertainty. As speed is not a
quantum mechanical observable, the uncertainty in its measurement is not given by the
Heisenberg uncertainty relation. Instead the observer performs measurements? on quan-
tum mechanical observables, and infers the speed o flight from them. The uncertainty
in this procedure is described in the framework of quantum parameter estimation theory,
which offers an expression for the best achievable precision for the estimation of the pa-
rameter ¢, idealized over every possible measurement (Appendix C). The uncertainty dc
turns out to be lower bounded by

. S (4.9)

2In general, quantum measurements are not constrained to observables, but belong to the larger class
of POVM (positive-operator valued measure) measurements.
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where M is the number of measurements the observer performs and Fg the quantum
Fisher information, defined in Appendix C. The observer, when performing the frequency
measurement, will be limited in the precision by this bound. In our case, the relative
minimal uncertainty dccrip is given by

) 1 1
CCRLB N 7 (4.10)
c tntotw V M tc vV M%
where ¢ is the measuring time, w the frequency and A = c/w the wavelength of the

light. From this equation it becomes clear that one way for the observer to lower the
uncertainty in his measurement is to increase the number of photons in the cavity, and
thus the energy. However, when increasing the energy, a systematic error in the setup
of the measurement becomes more and more relevant: The observer does not take into
consideration the gravitational field of the light. This leads to problems when the observer
determines the speed of light in vacuum in the described way, as the observer thinks to be
doing the measurement in flat spacetime, while he is not. When the observer determines
the speed of light by doing a frequency measurement, he will make an error because he
does not take into account the gravitational redshift.® The corresponding relative error in
our case scales as

(4.11)

The systematic error and the quantum mechanical uncertainty are different in nature. By
increasing the number of measurements, the measuring time or the ratio n. /A, the quan-
tum mechanical uncertainty can become arbitrarily small, without affecting the systematic
error. This corresponds to a sharp estimation of the wrong parameter. On the other hand,
increasing the size of the cavity or decreasing the ratio nit/\, the systematic error can
become arbitrarily small. This corresponds to an imprecise (high variance) estimation of
the actual parameter. Saying the measurement to be the most accurate when the system-
atic error and the quantum mechanical uncertainty are of the same order of magnitude,
we adjust the ratio no/A and obtain the scaling for the relative minimal uncertainty

5Cmi“~i2 _hG , (4.12)
c e\ v

as illustrated in Figure 4.1. Again, it can be lowered by increasing the size of the cavity, the
measuring time or the number of measurements. For the measurement time ¢t = LF'/(mc)
(the time in which the intensity of the light in the cavity decreases by a factor 1/e), with
the length L = 1m, the finesse F' = 10* and M = 10° repetitions of the measurement, the
best possible precision scales as d¢pyin/c ~ 10738

3When performing the analysis in more detail, one would need to take into account the gravitational
effects discussed in Chapter 3.
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Figure 4.1: The quantum mechanical uncertainty dcqcrp/c (short-dashed, red) and the
systematic error dcery/c (long-dashed, green) and the sum of both of them de/c (plain, blue)
as a function of the number of photons n. The minimal uncertainty dcpin/c corresponds to
the minimum of dc/c. For the plot we chose the wavelength A = 5-10~7 m, the measuring
time t = L/c, the length of the cavity L = 1 m and the number of measurements M = 10°.
The arrow indicates the optimal number of photons 74p¢, which minimizes the uncertainty.

In an experiment, a coherent state is more easily obtained than the optimal state (4.6).
The coherent state is defined by |teon), = exp (adL — a*dw> |0),, and has the average

excitation number n®" = |a|?. The minimal relative error in this case scales as

1
dCmin hGX 3
c <L05t2M) ’ (4.13)

and for the same parameters as in the previous numerical example and A = 107%m, one
obtains dcpin/c ~ 10739,
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Conclusion and Outlook

Summarized, in projects [C] and [D], we studied the gravitational properties of laser beams,
finding novel features due to an accurate description of the laser beam. We studied some
of them in detail, with the hope that they might be experimentally detected in the future,
when technology becomes more advanced to measure small effects. More specifically, the
novel results are the following: A light ray which co-propagates parallel to the beamline
of the source laser-beam is gravitationally deflected by the latter. This statement is in
contradiction to previous results, which were obtained in the short-wavelength approxima-
tion. In the short-wavelength approximation, the wave-like nature of light is not taken into
account. We conclude from our analysis that the wave-like nature of light is essential when
looking at the gravitational properties of light. Further, there is a gravitational spin-spin
coupling: due to the effect of the spin angular momentum of the source laser-beam on its
gravitational field, the polarization of test light-rays is rotated.

Three next steps for further investigations could be the following: First, in order to improve
the measurability of the effects in an experiment, it would be better to use a laser pulse
rather than a steady laser beam. To do so, our analysis needs to be generalized to laser
pulses. Second, the laser beam we described carries spin angular momentum. We want to
extend our description to laser beams carrying additionally orbital angular momentum.
Third, it would be interesting to study the gravitational interaction of two laser beams
characterized according to our description.

In project [B] we analyzed the frequency spectrum of an optical resonator in a gravitational
field. The effect of the gravitational field on the frequency spectrum consists of a direct
influence of the curvature of spacetime and an indirect influence through the deformation
of the rod, depending on its material properties. As we show in examples, the order of
magnitude of the gravitational effect is big enough such that the effect could possibly be
measured in experiments. Also this article provides results that are useful for further in-
vestigations. In subsequent articles, we provide tools in order to apply quantum metrology
for the analysis of the measurement precision which we want to apply to the resonator
after describing it quantum mechanically, therefore extending the analysis in [B]. In this
way, the statements on the measurability of the gravitational effects should become more
precise, and a link to quantum mechanics would be built. It would also be interesting to
take rotation of the resonator in to account. This requires a description including higher
orders of the eikonal expansion of the light field inside the resonator.

In project [A] we consider relativistic effects in a specific measurement of the speed of
light and analyze the measurement precision using quantum metrology. Understanding
the procedure in a slightly different way, it is equivalent to the question of the minimal
length which is in principle measurable with this setup. While projects [B], [C] and [D]
were done using classical general relativity only, in project [A] we combine arguments from
quantum mechanics with general relativity. This is done in the realm of the semi-classical
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theory of general relativity, where the light field is treated quantum mechanically and the
gravitational field classically. The next step could be to describe the gravitational effects
on the frequency spectrum of the cavity as in project [B], expanding the results of [B] to
three-dimensional deformable cavities. This would improve the precision of the analysis
performed in project [A].

Summarized, this thesis deals with gravitation and light. Since light is both a relativistic
and a quantum object, knowing its characteristics in detail might lead to some hint con-
cerning the matching of gravity and quantum mechanics. Looking for gravitational effects
in quantum mechanics or quantum mechanical effects in general relativity is a possible
approach to tackle the problem, although not necessarily the right one. With our work we
do not address this question, but provide tools and ideas upon which further investigations
could build.
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Appendix A: Linearized Theory of
General Relativity

Assuming that the energy of the Gaussian beam is sufficiently small, we use the linearized
theory of general relativity [43] to describe its gravitational field. Then the metric g,
consists of the metric for flat spacetime 1,43 plus a small perturbation h,g with |hes| < 1,

JoB = Nap + haﬁ . (Al)

Therefore one neglects terms quadratic in the metric perturbation. In this case, one sees
that the inverse of the metric reads ¢g®? = n®? — 5. In this appriximation, the Einstein
equations? R.s — %gaﬁR = 8mGT,p can be simplified to a set of equations linear in the
metric perturbation.

We assume the metric perturbation to obey the Lorenz gauge condition, 0%h.s = 0,
which is equivalent to implying the harmonic gauge condition for the metric perturba-
tion, 0%hap = 0gh%,/2. The conservation of the energy-momentum tensor, n8 0aTpy =0
implies that the continuity equation is satisfied [31, 5]. Taking into account that the
energy-momentum tensor is traceless for the electromagnetic field, the linearized Einstein
equations are found to be [43]

Ohag = —KTag , (A2)

where we define k = 167G /c* and O = —¢720? + 02 + 85 + 02 is the d’Alembertian. This
is a wave equation, which has the retarded solution

. 4G [*® Top (t — |7 —2',2)
haﬁ(t,x)zczl/ &' =2 |7 — 7|

, (A3)

—00

where ¥ = (x,y, z). As the full theory has an invariance under coordinate transformation,
its linearized approximation is invariant under linear coordinate transformations z¢ —
2% = z% + £%, where the metric transforms as hog — Bag = hag — 0a€s — 0p&a (it is
assumed that |0,&g| is of the same order of magnitude as h,g). In order to not violate
the gauge condition, &, has to satisfy [I¢, = 0. Since curvature is described by the second
derivatives of the metric, quantities depending on the curvature are invariant under linear
coordinate transformations. The Riemann curvature tensor in the linear approximation is
given by

1
b6 = o1 (0p0yhsp = 0505hep — 04 Ophss + Ds0phsy) - (Ad)

“R.p is the Ricci tensor and R the Ricci scalar, which are contractions of the Riemann curvature
tensor describing the curvature of spacetime. T,p is the energy-momentum tensor, describing the energy
distribution. The Einstein equations thus relate the curvature of spacetime to the energy distribution.
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In Appendix B2, we present models for light rays in the short-wavelength approximation.
In this case, the only non-zero components of the energy-momentum tensor are T3, T3, and
T... If the radiation is moving at the speed of light, we have T}y = —T1;, = T,,. The metric
is given by ds? = —(1—h)dt?>+ (1+h)dz% — 2hdtdz +dx* +dy?, with h = hy = —hy, = h.,.
In this case, the metric has similarities with the pp-wave metric, which is introduced in
Appendix Bl1.
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Appendix B: Models of Light
Beams in the Short-Wavelength
Approximation

Appendix B1: Plane Wave Metrics - pp-waves

For the different descriptions of light beams, either the linearized theory of general relativ-
ity or the pp-wave solutions to the Einstein equations are used: The linear approximation
of general relativity is applied if one deals with finitely extended energy distributions, as
then the metric perturbation remains small and the linear approximation remains valid.
On the other hand, for infinitely extended sources, the pp-wave solutions are useful, as
they are exact results not restricted to any domain of validity.

Heuristically, pp-wave metrics are obtained from the line element ds? = (M + Py ) dactda”
for electromagnetic radiation in the linearized theory by dropping the assumption that the
energy and thus the metric perturbation is small - therefore promoting the solution to an
exact solution to the Einstein equations [44].

More rigorously, they are obtained as follows [44]: They are defined to describe spacetimes
where there exists a covariantly conserved null vector field, i.e. a vector field Z¢ whose
norm and whose covariant derivative vanish, i.e. Z,Z% = 0 and V,Z” = 0. Changing
from the coordinates {x*} = (t, z, vy, z) to the coordinates {y*} = (u, z,y,v) with u = z—1¢
and v = z + ¢, one finds the line element

gaﬁdyadyﬁ = 2dudv + K (u, yo‘)alu2 + 2By (u, y°)dudy® + gap(u, yc)dyadyb , (B1)

where y®, y°,y¢ € {z,y}. This metric is called a plane wave metric if gy = dap, By = 0
and K (u, y®) = Agy®y®, where Ay, = Agy(u), and thus

gagdyadyﬁ = 2dudv 4+ Agy(w)y*y du? + Sapdy®dy’ . (B2)

Then, the Ricci tensor has the only non-zero component Ry, = —6®Ag,. Accordingly, the
only non-vanishing component of the Einstein equations is

Ry = 81GTyy (B3)

and therefore one finds the relation 6% A, = —871GT, . Changing back from the coordi-
nates {y*} to coordinates {#*} and defining A = Agy%y®, we obtain

gudrtdz” = —(1+ A)dt? + (1 4+ A)dz* — 2Adtdz + Sgpda®da® . (B4)
To show the mentionned similarity to the linearized theory of relativity, we define the

tensor h,, with the only non-vanishing components hog = hzz = —hoz = —A, which
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allows us to write the metric as g,, = 1, + hy. Here however, the expression is exact.
That the exact metric can be written in the same structure as the linearized version is not
surprising, as neither the Ricci tensor nor the Ricci scalar contain any non-linear terms
in the energy-momentum tensor. Therefore the Einstein equations are already linear, and
one expects an analogy to the linearized theory.

For an electromagnetic plane wave, which is given by the vector potential A, = Aeue_ik“,
the only non-vanishing component of the energy-momentum tensor® is Ty, = 6%°0, Aq0y Ap.

Therefore, from §% A, = —87GT,,, it follows that the plane wave metric (B2) reads

gaﬁdyadyﬁ = 2dudv + Adu® + Sqpdy®dy®, A= —81G0yAcduApy®y’ . (B5)

Appendix B2: Models of Light Beams in the Short-Wavenength
Approximation

For most descriptions of the gravitational fields of light beams, the short-wavelength ap-
proximation is used. This means that the beams have a diverging momentum and a
vanishing wavelength. As the beam divergence angle is proportional to the inverse of the
wave number and thus proportional to the wavelength (Section 1.1), also the beam diver-
gence angle vanishes, such that these beams have a cylindrical symmetry. As intuitively
clear by letting the wavelength go to zero, in this approximation the wave-like nature of
the light is not visible. This is confirmed by noticing that the Maxwell equations, whom
electromagnetic waves underlie, are not fulfilled.

We review the most important models of laser beams in the short-wavelength approxima-
tion. Starting by the simplest ones, a single light ray and an infinitely extended plane
wave, we continue with beams whose energy density depends on the distance from the
beamline or falls off abruptly at a finite distance from the beamline, describing a cylinder
of light. In addition to static spacetimes, we also discuss a thin light pulse both in free
space and in a wave guide, and a single photon.

Model 1: infinitely thin, finitely long beam

The gravitational field of light was first studied in 1931 by Tolman, Ehrenfest and Podolsky
[1]. They considered the most simple description of a light beam: a single light ray, this
means an infinitely thin beam, which is emitted at z = a and absorbed at z = b, and
which is assumed to have constant energy per length. The metric is calculated using the
linearized theory of general relativity. Instead of assuming constant energy per length,
the same beam was also described as consisting of electromagnetic plane waves [5]. We
discuss the description of the light beam consisting of plane waves, keeping in mind that
for circular polarization, the energy per length is constant and the result concides with
the one found by Tolman, Ehrenfest and Podolski [1].
The vector potential of a transversally polarized plane electromagnetic wave travelling in
z-direction is given by

At —2) = Ae,e @2 (B6)

where A is the amplitude and the polarization vector is given by €, = (0, €1, €2,0). The field
strength tensor F),,, = Re (9,4, — 0,A,,) has the only non-zero independent components

®The energy-momentum tensor is given by Ty, = F.,F9 — %Fm;F‘”s, with the field strength tensor
F,, = 0,Re(Ay) — 0, (ImA,).
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Fy1 = Fi3 = —iwAere @2) and Fyy = Fhy = —iwAese (%) The energy-momentum
tensor 7}, = Re(F},;)Re(F,7) — 1Re(F,,)Re(F*) is then found to be

-1

o O =

T;w = u(t — Z)M() s M() = (B7)

o O OO
SO O O
= o O

-1

where u is the energy density, the energy per length (sometimes in the literature the energy
per volume is used, and multiplied by a small cross-section). This structure of the energy-
momentum tensor is characteristic for an energy density moving at the speed of light, when
it does not change its shape and is not rotating. Therefore, the matrix My appears in any
model of light beams using the short-wavelength approximation. The energy density for
circular polarization ezirc = %(0, 1,4,0) and for linear polarization egn = %(O, 1,0,0) is
given by u® = A%w?/2 and u'™(t — 2) = A%w?/2 sin? (w(t — z)). As mentionned before,
for circular polarization the energy density for the circular polarization is constant and the
description coincides with the model by Tolman, Ehrenfest and Podolski [1]. The metric
perturbation (A3) in the linearized theory of relativity is found to be

u(t =2 — /22 +y2 + (2 — #)?)
Vet +y?+ (2 — )2

M . (BS)

b (t, 2.y, 2) 4G/ d’

The integral may be solved conveniently by introducing the coordinate £ = z — 2/ +

2 2 _ )2 : - & g .
\/:c +y?+ (2 — 2/)?. Together with d¢ Y — dz', one finds for the metric

perturbation [5]

£) L
hyw (£, 2,1, 2) = 4G/ de ““;5) : (BY)

Inserting the energy density for the circular and the linear polarization leads to

circ —b+ T2 Z — b
bt x,y, 2) = —25%k2G log ( ) My , (B10)

for the circular polarization, and a somewhat longer expression for the linear polarization.5

Model 2: infinitely long beam of an infinite radius and an energy density which
does not depend on the transverse distance to the beamline

A formally simple, but not very realistic model of a light beam is an infinitely extended
plane wave, describing an infinitely long and infinitely wide light beam. For this beam,
there exists an exact solution to the Maxwell equations, the pp-wave metric (Appendix B1).
In [45], the solution is explicitly given for circular and linear polarization of the light. It is
obtained from the plane wave metric for electromagnetic fields (B5) by writing the Einstein
equations in the form §%°A,, = —87GT,, as % (8% + 822) A = 87GT,, .” For the vector
potential for electromagnetic waves A, (t — z) = .Aeue_““(t_z), where A is the amplitude

5See Appendix A in [5].
"Compare Eq. (15) in [45].
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and ¢, the polarization vector and integrating over the transverse directions, one obtains
for circular and linear polarization

AT = ArGAPW? (22 4+ 37) (B11)
A — 47 G A%W? sin? (w(t —2)) (;U2 + y2) . (B12)

where A" and A stand for the function A in the metric (B5) for circular and linear
polarization.

Model 3: infinitely long beam with an infinite radius and an energy density
depending on the transverse distance to the beamline

Making a step towards a more realistic description of the light beam, in [46] the same beam
as in Model 2 is considered, but with an energy density that depends on the radial distance
to the beamline. While in the previous models, the spacetime metric was determined based
on a known energy distribution, here one proceeds in the opposite direction for this model;
for a certain structure of the metric, the energy distribution is analyzed. The metric given
in [46]® is obtained from the plane wave metric (B4) as follows: Changing to cylindrical
coordinates according to x = rcos(¢) and y = rsin(J), one obtains

gudatda’ = —(1+ A)dt* — 2dtdz + (1 — A)dz® + dr® + r*dv? . (B13)
Setting A = 1 and rescaling the ¢- and z-coordinates by t — t/v/2 and z — /22, leads to
gudatde” = —dt* — 2dtdz + dr® 4 r2do? . (B14)

The only non-zero components of the Ricci tensor turn out to be
Roo=—Rpz3 =R3z3=—o0. (B15)

With the Einstein equations Ry = 87G1y, Ry, = 87wGTy, and R,, = 87wGT,,, one identifies
o as the energy density. In [46] it is shown that it may be written as o = Dr€, with
constants C' and D, thus showing that the energy density depends on the transverse
distance to the axis of the beam. However, this scaling with r of the energy density is not
the scaling one has in a typical laser beam, where it decreases by a Gaussian factor with
the distance to the beamline (Section 1.1).

Model 4: infinitely long beam with a finite radius and an energy density not
depending on the transverse distance to the beamline

In 1969, Bonnor described a cylindrical light beam. This beam has constant energy density
within a cylinder around the beamline, whereas outside of the cylinder the energy density
is zero. Again, the Einstein equations for this beam are solved by a plane wave metric.
However, since in this model the light beam is a described as a continuous fluid and not as
an electromagnetic wave, one does not start with the form for electromagnetic plane waves
of Eq. (B5), but with the more general form given in Eq. (B1), where one sets B, = 0 and
Jap = 0ap. The line element then reads

gagdyadyﬁ =2dudv + K (u, y*)du® + Sapdy®dy® . (B16)

8Compare Eq. (4) in [46].
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The cylinder is assumed to have radius a. Choosing both a solution to the Einstein
equations for the interior region of the beam where \/yf + y3 < a and the exterior region
where \/y? + y3 > a and demanding continuity at 7 = a, the following solution is obtained
in (4]

2 2
+ 1
Kext(u,yl,yz) = —8Gmo(u) <Iog <\/ylaiy2> + > ) \/y% + y% > a, (B17)

2

K. 1.2Y = _ A Vi + 93 24,2 < Bl
mt(u,y,y") = me(u) =57, ity <a, (B18)

where m is a parameter and ¢ a function of the coordinate u. Finally, it remains to
identify the energy density of the beam. To do so, one calculates the Ricci tensor, Ry, =
—6%9,0,K (u,y*), and obtains with the Einstein equations the energy-momentum tensor,
Tuuw = 00,0, K (u,y®)/(87G). For the interior and the exterior region of the cylinder, one
finds

TS =0, (B19)
mo(u)

Tint _
uu a’r

(B20)

Altogether, this is a cylindrically symmetric solution, whose energy-momentum tensor
is non-zero within the radius a and vanishes outside of it. Therefore, this solution is
interpreted as a cylindrical beam of light with energy per unit length me(u)/(a?7). As
a consistency check, by taking the radius of the cylinder to be infinite, one recovers the
plane wave metric (B5).

Model 5: single photon

So far we discussed steady laser beams, which is the main interest in [C]. For completeness,
in this and the following two paragraphs, we discuss two other descriptions of light: single
photons and a thin laser pulse.

The gravitational field of a massless point particle,” a single photon, was described both in
the linearized approximation of general relativity [49]!° and as a plane wave solution [50].
In [49] they also find an exact result by boosting the Schwarzschild metric. Their result
coincides with the exterior solution found in [50], where they proceed as follows: Setting
¢(u) = 6(u) in equation (B17) for the solution of the beam of circular cross-section and
locating the entire energy at u = 0 or t = z, one obtains

2 2 1
Koy ?) = — 4nGmé(u) (1og (y“’> n 2) | (B21)
2,2
Kine (u, y', %) = — 277Gm6(u)yla¥ . (B22)

This describes an infinitely thin slice of radius a moving at the speed of light. Considering
only the exterior solution and assuming the radius a to be small, it may be interpreted as

9This particle is moving in flat spacetime. The analogous situation of a single photon in a Schwarzschild
background is analyzed in [47, 48].

10As they explain, the calculation does not work by simply multiplying the energy-momentum tensor
of the one-dimensional beam with a Dirac-Delta function - there is a problem since the source is moving
at the speed of light.
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the description of a photon. If this photon is travelling on the path given by zg = tg, it
is causally connected to the points (t,z,y, 2) that satisfy 22 + y? + (2 — 20)? = (to — )%
This means that its gravitational field reaches a point (t1, 21,1, 21) if to = (3 — 2% —y? —
23)/(2(t1 — z1)). Since one deals with a retarded potential, one has ¢; > to. The case
t1 > tg is equivalent to t1 > z;. In this region, spacetime turns out to be flat. For ¢ = 21,
one finds 1 = y; = 0, which means that the point of evaluation of the metric, the observer,
lies on the path of the photon, as well as t) = —oo, which means that the source of the
gravitational field lies infinitely back in the past. By looking at the Riemann curvature
tensor, it was found that the gravitational field depends only on the energy of the photon
for small distances from the beamline; further away, it is independent of the energy of
the photon. These two observations suggest that the gravitational field arises from the
emission process only, and that there is no gravitational effect due to the propagating
photon.

Model 6: infinitley thin pulse

That propagating light does not have any gravitational influence is supported by studying
a thin laser pulse. From the solution for the infinitely thin beam, one can derive the grav-
itational field of an infinitely thin light pulse. Here we review the calculation performed
in [5]!'. The pulse is assumed to be emitted at z = z,, propagate along the z-axis and be
absorbed at z = z,. The front of the pulse leaves the emitter at time ¢ = 0 and the end
of the pulse at t = L; the pulse has thus the length L. The pulse is described by taking
the energy-momentum tensor for the infinitely thin beam and boxing its support, i.e. by
cutting out a piece of length L of the beam and letting it propagate from z, to z.

The metric perturbation then reads

2 u(t—\/:n2—|—y2+(z—z’)2—z’>
hy =4G / dz My, (B23)
. N R P

where u stands for the energy density corresponding to linear or circular polarization and
the integration boundaries z, and z, will be determined in the following: The boundary of
integration is the intersection of the past light cone of the observer with the world sheet
of the pulse - in order to ensure that the observer is causally connected with the pulse.
The front and the end of the pulse at z = Z; and z = Z, intersect the past light cone of
the observer at the point (¢, z,vy, 2) if

(t—2)*—a2° ¢’

Zp = B24
Zy=z+ 20— 2) , (B24)
_ (t—L—2)%—a2—9?
_ B25
(g (B25)
Respecting the location of emission and absorption, the region of integration is given by
(® ) I—a I+ )
la,z), II,
[zll’ Zb] = [Zaa Zb] y 111 ’ (B26)
[Z4,0], IV,
l[a,b] , V

" Compare also [51].
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The regions I through V are defined by (compare Figure 4.2)
e Region I: There is no causal connection between the observer and the pulse.
e Region II: The observer is causally connected with the emission process.

e Region III: The observer is causally connected with the propagating pulse, but not
with the emission nor the absorption process.

e Region IV: The observer is causally connected to the absorption process.

e Region V: The observer is causally connected with the emission process, the propa-
gation of the pulse, as well as the absorption process.

Figure 4.2: Spacetime diagram showing the different regions of causal connection.

With a substitution, the metric perturbation (A3) can be written in a simple way: Intro-
ducing £ = z — 2/ + /22 + y2 + (2 — 2/)2, one obtains

&(zp) _£_
hy =AG / diMO . (B27)
€(za)

In region III, one has £(z,) = t—z and {(z,) = t—2z— L. Therefore, the metric perturbation
is a function of ¢t — z. In this case, the only non-zero component of the Riemann curvature
tensor is Ry, = —% (0o + 83)2 u(t — z). However, also this component vanishes as (Jp +

O)h(t —x) = 8(?1’@% + 8(?11@ 8(8_;) = 0. Therefore, the curvature is zero in region III,
where neither the emission nor the absorption process have any influence. One may thus
conclude that the propagation of the pulse does not produce a gravitational field. This is
in agreement with the result found in [50] that the propagation of a single photon does

not have any gravitational effect, and has been derived in the way we described in [52].

Model 7: infinitely thin pulse in a wave guide

In the previous sections, the light was propagating in free space and therefore at the speed
of light. In [53] an infinitely thin pulse in a wave guide is studied. The light in the wave
guide travels at the speed v < ¢, slower than the speed of light. In this case, the metric
takes a form which is different to the cases where the light is propagating at the speed of
light.
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In [53] the electric field is assumed to have transverse polarization and is of the form,

By =A%sin (w(vt — 2)) , (B28)
B; =A%vsin (w(vt — 2)) , (B29)
B3 =A?\/1 —v2cos (w(vt — 2)) , (B30)
where A is the amplitude. The pulse is constructed as in the previous section. In the
spacetime region which is causally connected to the propagation of the pulse, but not the

emission nor the absorption process (region III as defined in the previous paragraph), this
leads to the metric perturbation h,, = hM,,, where the function h is given by

h = 2GA%log vt — 2+ /(vt — 2)2 + (1 — v2) (22 + 3?) ’ (B31)
vt —z— L+ /(vt — 2 — L)%+ (1 — v2) (22 + y2)

and the matrix M, is defined by

1 0 0 —wv
0 1—22 0 0

My, = 0 0 0 0 (B32)
—v 0 0 o2

The metric perturbation has thus a different structure for light propagating at the speed
of light and light propagating slower than the speed of light.

Other models

There exist further models which we will not present in detail. We will just mention some
of them. In [54], a plane wave solution carrying angular momentum is presented. An
exact solution for a planar shell of null matter of constant and arbitrary energy density
is found in [55] and [56]. There exist further exact solutions to the Einstein equations
for an infinitely extended circular or elliptical beam whose energy density depends on the
radial distance to the beamline [57], and for the same beam but whose radius varies in
time [58]12. In [59], a solution in the linearized approximation for a beam of a rectangular
cross-section is given.

Appendix B3: The parallel co-propagating test light ray

As already noticed by Tolman, Ehrenfest and Podolski [1], there is an interesting effect
regarding the gravitational interaction of light when the light is described in the short-
wavelength approximation: A light ray propagating parallel to another light ray is not
deflected in the gravitational field of the latter. It is neither deflected if the beam is
described by the plane wave metric. This holds as long as the source beam is propagating
with the speed of light; when it is slower than the speed of light, the parallel propagating
light ray will be deflected [53].

More specifically, the parallel co-propagating test light-ray is defined by the tangent to
its geodesic v (parametrized by o), ¥*(0) = wio(l,0,0, 1 — f), where f is determined by
the null condition g, (0)¥" (o) = 0. It follows that f is of the same order of magnitude

12These solutions have been criticized as they do not satisfy the Maxwell equations
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as the metric perturbation and may be neglected in the following. The originally parallel
test light-ray remains parallel, i.e. is not deflected, if the radial acceleration vanishes. The
acceleration is calculated with the geodesic equation 4# (o) = —I' )\ﬁ”(g)ﬁ/\(g).

For a laser beam in the short-wavelength approximation (such as in the models 1-4), for
which the metric perturbation is proportional to the matrix My, we obtain, using that
the metric is independent of time, that the acceleration in the direction transverse to the
beamline (here in z-direction, for the y-direction the expression is analogous) vanishes,

1
A* = 5835 (het + hoy +2h,) =0 (B33)

For the single photon (Model 5) and the infinitely thin light pulse (Model 6), the acceler-
ation vanishes in the region which is not causally connected to the emission or absorption,
as there the curvature and thus the gravitational field vanishes. For the infinitely thin
pulse moving at velocity v in a wave guide (Model 7), one obtains the following [53]: A
parallel propagating light pulse at velocity v’ has the transverse acceleration

1
A= — §8§h(1 —w')? . (B34)

The light pulse travelling parallel to the source pulse is thus deflected unless both pulses
propagate at the speed of light.
Since coordinate acceleration does not have a proper meaning in general relativity, we

also look at the geodesic deviation equation,'® a* = %@(9) = R'po (7(0))7 (0)3°(0)s (0),
which describes the difference s#(p) between two nearby geodesics v(g) and +/(o), and

where D;Q‘Z” = 4"(0)V, is the covariant derivative along the curve (o), compare Figure 4.3.

Figure 4.3: Ilustration of the geodesic deviation equation: Two nearby geodesics v(o) and
v'(0) are separated by the vector s*(p).

Considering two geodesics which are separated by s* = (0,1, 0, 0), we obtain for the Models
1-4,
1
a’ = Racttac + Raczz;t + 2thzac = 582 (htt + hzz + 2htz) =0 ) (B35)
meaning that the distance in the transverse direction between two nearby geodesics is
constant. We conclude that a test light ray co-propagating parallel to the beamline is not

deflected by the gravitational field of the light beam described by one of the models 1-4.
For the pulse in a wave guide (Model 7), we obtain for the acceleration in z-direction

1 1 1
a® = Ra:ttz + Rzzz:v + 2R$tzas - 56923 (htt + hzz + thz) - 563 (htt + hzz + 2htz) + §8§h$z .
(B36)

13The equation 5% = 0 is not tensorial. Therefore, if 4% = 0 holds in one coordinate system, it does
not necessarily hold in every coordinate system. The second covariant derivative a of the separation vector
in the geodesic deviation equation is a tensor. Therefore, when it vanishes in one coordinate system, it
vanishes in every coordinate system. The geodesic deviation equation can thus be used to decide whether
the parallel light ray is deflected or not.
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Using that the first term vanishes and hg, ~ (1 — v?) leads to
a® ~ (1 —2?), (B37)

showing that the acceleration transverse to the beamline is non-vanishing if and only if
the pulse inducing the gravitational field moves slower than the speed of light.!4:1?

As we explain in Section 1.2, the parallel co-propagating test light-ray is deflected in the
gravitational field of the laser beam. The deflection appears if one describes the laser
beam beyond the short-wavelength approximation.

4The same statement can be shown for light beams propagating slower than the speed of light.

15That a parallel propagating light ray is not deflected is confirmed by the result that a superposition
of two plane wave metrics is again a solution to the Einstein equations [4]. There exist solutions for two
counter-propagating beams, which are not superpositions of two solutions for the two individual beams
[60, 61].
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Appendix C: Quantum Metrology

For a quantum mechanical observable, the quantum mechanical uncertainty is given by
the Heisenberg relation. However, often we are interested to infer the value of a parameter
which does not correspond to an observable. In this case, quantum parameter estima-
tion can be used to determine the fundamental quantum mechanical uncertainty that will
remain when performing an optimal estimation procedure. More precisely, consider a sys-
tem that depends on the parameter §. The state of the system is described by the density
matrix p(f). The value of the parameter 6 is estimated by performing M measurements
on the system to collect the data {x1,x9, ..., x5}, which can be used to make the estimate
Oest (1,2, ...,xpr). The precision of the measurement procedure is determined by how
close the estimated value g is to the actual value . Assuming that there is no system-
atic error and therefore the expectation value of the estimator Oy is equal to the actual
value 6, the precision of the measurement corresponds to the variance of the estimator
fest- A lower bound therefore is given by the Cramér-Rao Lower Bound,
1
Var(fest) > WQ(Q) ) (C1)
which states that the lower bound is inversely proportional to the number of measurements
M and the quantum Fisher information Fiy. This bound can be saturated in the limit
of a large number of repetitions of the measurement. The quantum Fisher information is
a measure for the sensitivity of the quantum state on the parameter: Given a change of
the parameter, if the quantum state changes a lot the quantum Fisher is large, and if it
changes only a little bit the quantum Fisher information is small. In Chapter 4 we use the
quantum Fisher information for pure states |¢)p) depending on the parameter 6, which is
given by
Fq(0) = 4((90v0109t0) — | (volOgba) I7) - (C2)
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Abstract
The speed of light in vacuum, one of the most important and precisely
measured natural constants, is fixed by convention to ¢ = 299792458 m s~ .
Advanced theories predict possible deviations from this universal value,
or even quantum fluctuations of c¢. Combining arguments from quantum
parameter estimation theory and classical general relativity, we here establish
rigorously the existence of lower bounds on the uncertainty to which the
speed of light in vacuum can be determined in a given region of space-time,
subject to several reasonable restrictions. They provide a novel perspective on
the experimental falsifiability of predictions for the quantum fluctuations of
space-time.

Keywords: speed of light, quantum metrology, general relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

It is generally accepted that the speed of light in vacuum c is a universal natural constant,
isotropic, independent of frequency, and independent of the motion of the inertial frame with
respect to which it is measured. These properties have been experimentally demonstrated with
very high precision, e.g. isotropy up to a relative uncertainty of the order of ~10~° [1], and lie
at the basis of special relativity. By 1972, measurements of the speed of light became more pre-
cise than the definition of the meter [2], leading in 1983 to the definition of the speed of light
in vacuum ¢ = 299 792 458 m s—!. But attempts to quantize gravity have led to the concept of
space-time as a fuzzy ‘quantum foam’ on the Planck length lpj = \/hG/c3 ~ 1.62 x 10”3 m
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[3-5] that implies an uncertainty or dispersion of ¢ [6-9]. Experimental data based on gamma-
ray bursts, pulsars, and TeV-flares from active galaxies imply upper bounds on deviations of
c over cosmic distances [10—16]. Quantum fluctuations of ¢ were also proposed due to virtual
fermion-anti-fermion pairs, leading to a scaling of the jitter of the arrival time of light pulses
with propagation distance [17, 18]. Satellite experiments are being planned to verify funda-
mental space-time properties with unprecedented precision, such as the isotropy of ¢ and its
independence from the laboratory frame velocity [1].

Here we establish how precisely ¢ in a given region of space—time may be determined
in principle, i.e. independent of any technical challenges. Our approach is based on the firmly
established quantum parameter estimation theory (q-pet) [19-26] and general relativity (GR)
in semiclassical approximation [27]. Q-pet allows one to obtain a lower bound on the uncer-
tainty with which a parameter # may be estimated that parametrizes a quantum state specified
by a density matrix p(@). The power of g-pet is due to the facts that (i.) the bound is reach-
able in the limit of a large number of measurements, and (ii.) it is optimized over all possible
quantum mechanical measurements (positive operator valued measures, POVM [28]) and all
data-analysis schemes (unbiased estimator functions). This so-called quantum Cramér—Rao
bound (QCRB) [19-22] becomes relevant once all technical noise problems have been solved,
and only the fundamental quantum uncertainties remain. It is the ultimate achievable lower
bound on the uncertainty with which any parameter can be measured. Recently, the g-pet
formalism was applied to the measurement of parameters in relativistic quantum field theory
such as proper times and accelerations, the Unruh effect, gravitation, or the estimation of the
mass of a black hole [29-32]. In the present work we go a step further by examining the back-
action of the quantum probe on the metric of space-time. Taking back-action into account was
proposed before [33—-37] but to the best of our knowledge we combine for the first time mod-
ern g-pet with a precise calculation of the back-action of the probe on the space-time metric.
We show that there is an optimal photon number at which the perturbation of the space-time
metric due to the probe equals the quantum uncertainty of the measurement itself, establishing
thus an ultimate lower bound on the uncertainty with which ¢ can be determined.

2. Quantum parameter estimation

Any direct measurement of the speed of light has to use a light signal. Indirect measurements,
e.g. through measuring the fine-structure constant, the electron charge and Planck’s constant,
may need no light but do not reflect the definition of ¢ as a speed and need an elaborate theor-
etical framework for their interpretation. We consider definitions of ¢ through ¢ = Ax/At (i.e.
runtime measurements of a light pulse) as well as through ¢ = w/k (where w is (27 times)
the frequency and k the wavevector of a monochromatic e.m. wave) as direct measurements,
as these (i.) use a light signal; (ii.) correspond to how c¢ has actually been determined exper-
imentally (in particular the most precise determinations of ¢ to date use ¢ = w/k [2]), and
(iii.) are based on simple three-letter formulas that need no elaborate theoretical framework
for extracting c¢. These two definitions give ¢ the meaning of a propagation speed or phase
speed, respectively. Note that we only need ¢ = w/k at the frequency considered, not over all
frequencies. For wave-lengths comparable to quantum-gravity length scales (assumed to be
of order Planck-length), modifications of this linear dispersion relation have been proposed
(see the discussion on rainbow gravity in section 5.2), but we restrict ourselves to frequencies
where the linear dispersion is well verified experimentally. We emphasize that these defini-
tions of speed are only needed to determine a systematic experimental error due to GR effects.
The quantum-mechanical uncertainty of ¢ obtained from g-pet on the other hand is optimized
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over all possible (POVM) measurements of the light signal and analysis schemees of the data,
including those that measure the propagation distance Ax of a light pulse over a time-interval
At. We therefore do not have to worry about additional uncertainties of measurements of
positions or times.

Any light signal can be decomposed in modes of the electromagnetic (e.m.) field which
are the fundamental dynamical objects in quantum optics. Q-pet shows that with m modes the
sensitivity can be improved at most by a factor 1/m [25]. Below we find that with at most n
photons in a single mode the best sensitivity scales as o<l /n; one can thus achieve for given
maximum photon number nm the same sensitivity scaling as ocl /(nm) as with m modes (for
a strict proof see appendix A). In [38] the problems of positioning and clock synchronization
were analyzed. They were reduced to measuring a travel time of a light pulse with constant
¢, which is closely related to measuring ¢ for a known propagation distance. Also there it was
shown that the best uncertainty in the arrival time of the pulse for a squeezed m-mode state
scales as 1/(nm). Furthermore, using the Margolus—Levitin quantum speed limit theorem,
it was argued in [38] that this is the optimal scaling possible for any state. The scaling o
1/a for large average photon number 7 was also obtained for phase estimation with two-
mode squeezed light in [39]. As for relativistic effects, if we are interested in knowing c in a
given space-time region, they cannot be diluted by using several modes in parallel in different
space-regions or sequentially. We can thus restrict ourselves to studying a single mode. For
concreteness, we consider a cubic cavity with edges of length L, and perfectly reflecting walls
or symmetric boundary conditions.

Maxwell’s equations in vacuum with appropriate boundary conditions impose quanti-
zed modes with wave vectors k that are independent of ¢, whereas the frequency w = cl|k|.
Obtaining the best possible precision of ¢ is thus equivalent to the optimal frequency measure-
ment of a harmonic oscillator, for which the quantum Cramér—Rao bound was calculated in
[40]. The smallest dw/w, and hence smallest dc/c for fixed maximum excitation 2n and for
T = wt > 1, is achieved with the optimal state |1op) = (|0) + [21))/v/2. In a single measure-
ment, it leads to a minimal c-uncertainty

oc 1 :
c 2t M

For existing measurements with large n, coherent states are more relevant than the opti-
mal state. A coherent state with amplitude « at time t = 0, |t)con) = |), evolves according to
a(t) = ae™“" [41] and leads to

oc 1 1 1
< 5|(% +n) sinzT—i-nT(T—i—sin(27-))\1/2 T 27yn’ @)

where the last equality is for large 7 = wr and large average photon number n = o2 (72a > 1)
[40].

From these results one is tempted to conclude that dc/c can be made arbitrarily small by
increasing n. However, the energy-momentum tensor increases o< n for n > 1, and will at some
point perturb itself the metric of space-time. We argue that the ultimate sensitivity is reached
when the general relativistic modification of space-time becomes comparable to the minimal
quantum uncertainty of the measurement. This leads to a finite optimal number of photons, and
a finite optimal sensitivity. Increasing the photon number even more will modify space-time
to a point where one cannot speak of light propagation in vacuum anymore. In principle one
may re-calculate from the measured value using GR what the speed of light in vacuum would
be, but this is a counterfactual reasoning and not a direct measurement of c¢. On the other hand,
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reducing the photon number would increase the quantum noise. The situation is very similar to
the optimization of the photon number in LIGO-type gravitational wave interferometers, where
one balances photon-shot noise against radiation pressure noise [42—44]. However, whereas
radiation pressure noise is specific to the measurement instrument, in our case the properties of
space-time itself and thus the very meaning of light propagation in vacuum are affected when
increasing the photon number further, and this effect is unavoidable.

The gravitational effects sought here are well in the regime where Einstein’s field equa-
tions are valid: Firstly, we consider light at wavelengths A and structures of the energy-momen-
tum tensor on scales much larger than the Planck-length (e.g. A\ = 500 nm and a standard
(possibly lossy) cavity of size L = 1 km). Secondly, we consider light fields of very large
intensity and effects linear in the perturbation of the metric, for which the energy-momentum
tensor should be well approximated by its quantum mechanical expectation value [45]. It
is the effect of this average energy-momentum tensor on space-time that we calculate and
compare to the minimal uncertainty of ¢ obtained from g-pet, not the fluctuations of space-
time themselves. The former is established on the solid ground of general relativity, whereas
the latter would require a quantum gravity theory to make reliable predictions. The quantum
fluctuations that we are interested in here are those of light probing the space-time, which are
reliably described by quantum optics. Our results therefore rely only on well-tested theories,
in distinction to predictions of the fluctuations of space-time obtained by various theories of
quantum gravity.

3. Perturbation of metric due to light intensity

The modification of the metric of space-time is found from the weak field limit of the Einstein
field equations, where the metric tensor is given by g, = 1, + hy,, 1.€. the flat Minkowski
metric 7, = diag(—1,1,1,1) (in terms of ct,x,y,z) plus a small perturbation, |i,, | < L
Einstein’s equations yield a wave equation for the trace inverse, /" = b — %n“”naﬁ hga,

_ G
Ort = 167 — T, A3)
C

where the (flat space-time) Lorenz gauge (FLG) condition 2*, = 0 is used; see equa-
tion (18.8b) in [46]. The energy-momentum tensor T#* of the e.m. field reads [46]
1 ; ; 1
T = (o + poH?), T =T" = —(E x H);,
¢
TV = — (eoE:E; + poH:H;) + T5,

“)

where i,j € {1,2,3} = {x,y,z}. We use the q.m. expectation value of T#" as source term
in (3) for the (011) and the (01M) modes (k; = lim/L, I, = 0,1, =1, and [, =1 or [, = M,
respectively; §; = clk|, and V = L3). This ‘semiclassical approximation’ is justified if one is
interested only in effects to first order in £,,, [45]. Using the (011) mode is motivated by the
fact that it has lowest frequency and hence expected lowest GR impact. This will be verified
by comparing to the (01M) mode with large M. For |),p,) With n >> 1, the solution of (3) for
the (01 1) mode reads (£ = mx/L)

v (E) =P /0 /0 dfdC'I(E,m — 11, — Y (o ),
2
p_tm (m) , 5)

s L
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(6)

1(£n<>=ln< Erwr+e )

E—m+ (-7 +n>+

with dimensionless trigonometric functions #* := T+ /(nh§2;/V) of order one inside the
cavity, and zero outside (see appendix B). T% = 0 for the e.m. field [47], hence hf, = 0 and
h = hHv,

The deviations of 4*¥ in (5) from FLG are of second order in 4 and can be neglected [48].
For [theon), h# is the same as for [hyy) plus retarded oscillation on top of it, with an amplitude
of the same order. We therefore restrict the analysis to the time-independent part. For the
(01M) mode, and n, M >> 1, only A% and A3 are non-negligible,

W0 = 1B ~ 4PMm / / dn'd¢’'1(&,m — ', ¢ —¢)sin® 7.
0 0

From the geodesic condition ds* = g,,,,dx**dx” = 0, the local modification of the coordinate
speed of light

1
de(x)/c = fi(hoo + hi1) @)

is obtained for the (011) mode, with similar expressions for dc(y) and
dc(z) (see also figure Bl in appendix B). For the (01M) mode with
n,M > 1, éc(x)/c = bc(y)/c = —%hoo, dc(z)/c =26c(x)/c. One may object that accord-
ing to the equivalence principle one could always find a coordinate system (CS) in which
¢(x) = ¢(y) = ¢(z) = ¢, and that by the definition of ¢ one should go to the free falling CS
for measuring c, where c is always the same. However, one has to distinguish between the
universal constant ¢ entering Lorentz-transformations, and the experimental value cey, of
the propagation speed of light obtained in measurements. The experimental definition of c,
Cexp = Ax/At, where Ax is the distance that a light signal travels in time A¢ implies that
for any finite Ax the measurement is non-local, which precludes transforming the discussed
GR effect away by a local transformation. It is to be expected that this non-local effect can
be made arbitrarily small by moving the two points arbitrarily close to each other. More
importantly, however, the measurement apparatus cannot be free falling in the gravitational
field of the light it contains, as it carries that light with it. A time delay can be measured
with a single clock by passing a short light pulse through a beam splitter (BS), reflecting
it on a mirror and sending it back to the BS. The two passes through the BS trigger start/
stop of the clock by light scattered into detectors adjacent to the BS. The clock measures
its proper time, d7 = \/—goodf. Ax has to be measured independently, i.e. with standard
measurement rods. Hence, Ax corresponds to the ‘proper length’ of the apparatus (dis-
tance between BS and mirror for a runtime experiment or length of the cavity when using
w = ck). ‘Proper length’ (not to be confused with ‘proper distance’) is defined as the length
measured with standard measurement rods in the frame where the object is at rest [49]. We
may assume the measurement rods as well as the measurement apparatus as sufficiently
‘rigid’ (gravitational forces and modification of the e.m. forces that determine the shapes of
these objects much smaller than the e.m. forces that determine their shape and arrangement
[50, 51]), which means that Ax remains unchanged when the light intensity is increased. In
the limit R > L (R = typical radius of curvature of space time), the experimentally found
value cexp(x) = Ax/AT >~ dx/dr = c(x)/+/—goo is then directly related to the coordinate
speed c(x) determined above. This gives dcexp/c = —hyy/2 for the (011) mode, where
Ocexp(X) := Cexp(x) — ¢ can be considered a systematic error in the determination of c.
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Since g-pet was based on the uncertainties dw, we also compare g-pet and GR based
on the GR shift of the cavity resonance frequencies by solving the e.m. wave equa-
tion in the entire cavity with mirrors at 0,x; and symmetric boundary conditions (SBC),
A"(0,y,z) = A" (x1,y,z) (and correspondingly for the other directions). The unperturbed
single modes are plane waves A%(t,x,y,z) = (h/(2weV)) /?(e*C~Da 4+ h.c.), A* = 0 for
p € {0,1,2}, and k := kg = k; > 0. This leads to T** = —hw/(2¢oV){(ae**=) 4 h.c.)?)
for (p,v) € {00,01,10, 11} inside the cavity, and T+ = 0 else or outside. For [¢)op), TH" is
time-independent, and for [t¢on) We once more consider only the time-independent part. Then,
htv (&) = e(&) for (u,v) € {00,01,10,11} and h* = 0 else, where

(&) == V2PM /0 /0 ardC 1 — 1 C — O). ®

The wave equation describing the propagation of light in curved space-time reads VgF®? = 0
(see (22.17a) in [46]), with Fof = gorghv (Av, —Apy). Using FLG for A and h, and by, = 0,
we obtain to first order in €

0=—-A%", + (hi,, — h,‘fﬂH)A“’”, 9)

where indices are pulled up or down by the full metric g#*. Equation (9) is solved exactly by
the original plane wave despite the changed metric, as the e-correction in A% is o< (9, + 0.)?.
This reflects the well-known result that two parallely propagating beams of light do not affect
each other gravitationally [52, 53]. The existence of a mode with unchanged dispersion rela-
tion suggests that judging whether the vacuum may still be considered as such based on the
change of a single mode frequency can be insufficient. In such a case, the change of the
metric can normally still be probed using other modes. In the example above the frequencies
of modes propagating in different directions, e.g. A3 o< exp(ik(x + ct)), are modified locally
by a relative amount of order €(x), as can be shown by solving (9) in eikonal approximation.

To summarize, up to numerical prefactors of order 1, both systematic errors dce, obtained
by measuring length over time or a shift of a cavity resonance, possibly in another mode, scale
as

~ —rknM (10)
C

for n, M > 1. With this, we can now obtain the smallest possible uncertainty with which ¢ can
be determined in a given region of space-time.

4. Minimal uncertainty of speed-of-light measurements

For |1 ), equating (1) and the absolute value of (10) leads with M ~ L/ to an optimal pho-
ton number rnqy ~ (A/Ip1)y/L/(cT), and a minimal

56‘ lp]

© Tl an

independent of frequency: the gain in quantum mechanical sensitivity due to longer dimen-
sionless evolution time for more energetic photons is exactly cancelled by the increased per-
turbation of the metric.

In an experiment, the measurement time is bounded from above by the finite photon-stor-
age time of the photons in the cavity. While obtaining optimal bounds including photon loss
requires mixed state g-pet [54, 55], the sensitivity cannot be better than that obtained from the

6
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pure states from which the state is mixed [56]. For known dissipation and decoherence mech-
anisms one can try to find an adapted optimal state. However, the sensitivity cannot be better
than if one had access to the full system and its environment. For photon loss the environ-
ment can be modelled by additional modes coupled to the central mode by beam-splitter
couplings, and including such ancilla modes cannot improve the estimation of a parameter
of the original system when optimized over all initial states [57, 58], if the ancillas are inde-
pendent of the ¢ we are interested in (which is the case for the modes outside the cavity and
hence outside the space-time region considered). Our g-pet bound calculated for the ideal
situation without photon loss therefore remains valid, but can in general in the presence of
dissipation or decoherence not be reached anymore. For a cavity of length L and finesse F, the
measurement time is bounded by T = LF/(mc). This leads to an optimal number of photons
independent of the length of the cavity, n ~ \/(Ip/F'/?). For numerical estimates we use in
the following a standard situation: visible light with A\ = 500 nm, a finesse F = 10000, and

= 1000 m. The optimal n for the optimal state is then n ~ 10?9, and the minimal uncertainty
Sc/c ~ Ip/(LF/?) ~ 1074

For [thcon), equating (2) and (10) leads to gy ~ (LA?/(13,cT))*/3, and a minimal uncertainty

@ llz)l)‘ i (12)
c L(cT)? '

For a cavity with finesse F, the length of the cavity is again irrelevant for the optimal photon
number, noy ~ (A/Ip1) #/3/F2/3, and dc/c ~ I A1/3 /(LF?/3) . Contrary 10 [thoy)» the mini-
mal uncertainty depends here on the wavelength. In principle, dc/c could therefore be smaller
for [theon) than for 1oy ), but only for wavelengths \ < Ipj/cT /L in lossless cavities, and for
X\ < IpV/F in cavities with finesse F, which are outside the validity of the theory. For the lossy
cavity considered, the optimal coherent state photon number is n ~ 10°* and c/c > 10731,
demonstrating the superiority of [1)qp). We display the various n-scaling regimes and the opti-
mal photon numbers located at the minima of the overall dependence of d¢/c on n in figure 1.

5. Comparison with similar bounds

The minimal uncertainties of ¢ and hence the metric of flat space-time that we have derived
are reminiscent of ideas about the fuzziness of space-time on the Planck scale, their different
physical meaning not withstanding. The minimal uncertainty of §c that we have derived here
translates, in experiments where a length L is measured through L = ¢T, to fluctuations §L of
L. There has been a vast amount of work aiming at demonstrating a minimal length scale in
physics and working out its consequences, see [59] for an excellent review. The majority of
these works has tried to establish smallest uncertainties of positions or length measurements,
but there have also been attempts to find minimal uncertainties of volumes, areas, gravitational
fields, event horizons, and others. Here we focus on previous predictions of minimal uncer-
tainties of lengths or positions. For simplicity we set i = ¢ = 1 in the rest of this section and
neglect factors of order 1, unless otherwise noted.

5.1. Previous thought experiments

Closest to our analysis are previous thought experiments that one way or another use classi-
cal gravity effects to bound quantum uncertainties from below. An illustrative example is the
Heisenberg microscope with gravity [60]. In addition to the familiar Heisenberg microscope,
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Figure 1. Minimal uncertainty dc/c as a function of the number of photons n: The
dashed red/blue line shows the minimal uncertainty obtained from the quantum
Cramér—Rao bound for the optimal and coherent states given in equations (1) and (2),
respectively. The dashed green line corresponds to the unavoidable systematic error
in the measurement of ¢ due to the light’s own gravitational effect. The sum of the
minimal uncertainty given by the quantum Cramér—Rao bound and the systematic
error for the optimal/coherent state is shown by the solid orange/light blue lines. The
optimal number of photons minimizing dc/c for either optimal or coherent states lies
at the minima of the solid orange/light blue lines. Parameters are A = 500 nm, 7 = 1,
L=1kmund M =L/X\.

where attempts to resolve the position of a particle by scattering light from it result in an
unknown momentum kick of order w onto the particle, while limiting the spatial resolution to
roughly the wavelength of the light dxgy ~ 1/w, one also considers the gravitational inter-
action of the photon with the particle. This leads to an acceleration of the particle of at least
Gw /R? if the photon is detected at distance R, and a corresponding displacement between the
photon-particle interaction and the photon detection of order dxgg ~ Gw. Taking the geomet-
ric mean of the two uncertainties gives immediately dx ~ v/G = Ip. Alternatively, we can
take the sum of the two uncertainties and minimize it over w. This gives w ~ 1/ VG = mpy,
the Planck mass, and, up to a factor 2, again dx ~ Ip.

Another popular argument goes back at least to Bronstein in 1936 [61], who, in the context
of investigating how precisely a gravitational field might possibly be measured, came up with
the request that the test particle should not collapse to a black hole. Later, Wigner and Salecker
introduced a similar limitation to length measurements with light pulses [33, 34], where the
clock should not become a black hole. The idea was refined for the measurement of lengths
based on ‘material reference systems’ (MRS) [36], consisting of reference points of size s and
mass M that contain a clock, light-gun and detector, arranged in space. The request that no
event-horizon should form around the reference points beyond s implies M < s/ ll%l.

We can apply the black-hole argument to the Heisenberg-microscope, requesting that the
photon’s event horizon should be at least smaller than the distance R, i.e. w < R/I3. Then
Sxqm 2 13,/R, abound obviously much weaker than the previous one for R >> Ip;. On the other
hand, for the MRS the black-hole criterion leads again to 0L 2 Ip if we assume s ~ L and

argue that the quantum mechanical uncertainty for a material particle scales as 6L 2> +/L/M.

8
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This latter scaling is based on a semi-classical picture [36] with an initial width of a wave-
package leading to a minimal width in momentum space, that is interpreted as particles
spreading out with a corresponding momentum distribution, giving a correspondingly larger
uncertainty for the position measurement at a later time 7. The argument can be made more
rigorous by minimizing the quantum-mechanically calculated expectation value (0x(0)dx(z))
of a particle by minimizing over its mass [62]. One also recognizes in §L > /L/M the stand-
ard quantum limit (SQL), and in particular for M = Nw for a device dominated by the mass
of N photons a scaling with 1/v/N.

5.2. Quantum gravity theories and phenomenological models

For most microscopic theories of quantum gravity it is difficult to extract bounds on mini-
mal uncertainties of lengths. In [59], a generalized uncertainty principle (GUP) of the form
0xVép¥ 2 1 + L,E is given as a prediction of string theory, as well as a space-time uncertainty
0x0T 2, lf, where [ is a (yet unknown) string scale that might be of the order of /pj, and E the

energy with which the string is tested. In [15] it was stated that Lie-algebra non-commuta-
tive space-times with non-commuting position coordinates, [xa,xg] = iR 5%y /mpy, lead to
a 0T of the form 67 ~ L"E™ /mpl,fr "7 where m,n are some model-dependent powers with
1 +m — n > 0. The lowest-order non-trivial case n = m = 1 that gives an energy dependence,
corresponds to 6T ~ LE/mp;. Considering T as the travel time of a particle from source to
detector, §7 implies an uncertainty of the radar length. Combining this §7° with the standard
contribution from the Heisenberg uncertainty principle and minimizing over the energy gives
a minimal length uncertainty that can be written in the form

OL > IS L (13)

with some real value « € [0, 1] [15].

Given the mentioned difficulty to extract predictions of fluctuations of positions or lengths
from microscopic quantum gravity theories, mostly phenomenological GUPs have been used
to generalize lower bounds based on the standard uncertainty principle. It is clear from dimen-
sional grounds that (13) is the generic form of a power law scaling with Ip; if only /p; and L
exist as length scales. Such a form is therefore also obtained in many other phenomenological
theories, notably models that assume fluctuations on the scale of the Planck length and then
ask how these accumulate during the propagation of a light signal. The simplest case are
random walk models, which lead to o = 1/2 [63, 64]; o = 2/3 is known as the holographic
model. If one assumes a fluctuation 4\ of the wavelength X of the light used to measure dis-
tances with v = 1/2, 5\ 2 Ipy(\/Ipy)'/2, the fluctuations of the total length are given in the
random walk model by 6L > SA(L/A)"/2 = Il/*L!/2  i.e. the new length-scale \ drops out.

However, if the fluctuations J\ are added up coherently, i.e. all with the same sign, a much
larger value results,

6L > (IpL)' /(L) X))/, (14)

The choice of model has therefore important implications for the falsifiability of the pre-
dicted minimal fluctuations. E.g. in [65] the coherence of Hubble-space telescope images of
distant galaxies was used to bound possible quantum fluctuations of space-time from below.
No fluctuations were found, but the coherent addition of the fluctuations was subsequently
questioned [66].
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Modified commutation relations lead in general to a generalized uncertainty principle. In as
much as this implies a fluctuating speed of light, Lorentz invariance can be violated, but need
not (see e.g. the model of discrete space-time with modified commutation relations without
violation of Lorentz invariance due to Snyder in 1947 [3]). In the same way, the (determin-
istic) dispersion relation of e.m. waves can be modified; such theories have become known
as ‘rainbow gravity’. This class of theories contains doubly (or deformed) special relativ-
ity (DSR), with a kappa-deformed Poincaré group [67-72]. DSR is based on the idea that
not only the speed of light is independent of the reference-frame, but also the small length-
scale log on which quantum-gravity effects become important, identified typically with the
Planck-length. DSR has recently been elaborated further into ‘relative locality’ [73], a theory
that emphasizes the importance of phase-space and suggests that momentum-space might
be curved, which would imply non-linear conservation laws of energy and momentum, and
a relativity of ‘locality’. Another formulation of DSR considered an energy-dependence of
space-time [74, 67]. Earlier theories also proposed a time-dependent speed of light as solution
to cosmological problems [75, 76].

In [77, 78] it was proposed that a non-linear dispersion relation might arise from averag-
ing a quantum-fluctuating metric over a relevant length scale of a test particle. Considering
a ‘measurement process’ in relativistic rather than quantum terms, it was suggested that the
metric relevant for a measurement process of the momentum p,, of a particle with energy E
is the ‘classical’ metric of GR plus an averaged perturbation of quantum-gravitational origin,
assumed non-vanishing when averaging over the de Broglie wavelength A = 1/E of a deeply
relativistic particle, thus introducing an extra energy-dependence into the (inverse) dispersion
relation p, (E).

In [79] a modified dispersion relation was found in the context of a non-critical-string
approach to quantum gravity. It leads to a minimal total uncertainty of a length measurement
based on the propagation of massless particles

614 Z V nLlPI + lPl’ (15)

where 7 is a dimensionless parameter of order one, and clearly the first term dominates for
L < Ip, giving (13) with aw = 1/2, but o = 1 for L ~ Ip;. Underlying (15) is an assump-
tion about the form of a decoherence-term in the modified quantum Liouville equation that
arises from coupling matter to the degrees of freedom of space-time fluctuations that scales as
E? /mp; with Planck-mass mp; and energy E of a particle. When generalizing this to a scaling

E" [my La dependence
SL > LMt (16)

was predicted, which is again of the form (13).

In [80], it was argued that a finite minimal uncertainty of time measurements is linked to
the perturbative approach to quantization, whereas in a non-perturbative approach in principle
infinite resolution could be achieved, as long as particle energies are not bound from above (as
might happen with a modified dispersion relation). On the other hand, the authors find a finite
minimum resolution both in perturbative and non-perturbative approaches, with a minimum
length uncertainty

5L 2 Ip, (17)

whereas for large background times T

oL 2 \/IpicT, (18)

10
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as in the Wigner—Salecker case [33, 34]. In [64], other estimates of length fluctuations were
discussed, one of them scaling as L 2> (lQGcT)'/ 2, where loc is expected to be log 2 Ipi,
which for L = ¢T is again in line with (13) with o = 1/2.

5.3. Comparison with our bounds

When trying to compare these previously found bounds with ours, the first thing to keep in
mind, is that our bounds are fundamentally for dc/c, not SL/L. This is important as there is no
quantum mechanical operator for the speed of light, hence one cannot apply directly the stan-
dard Heisenberg uncertainty principle. Rather, we resorted to g-pet, which gives generalized
uncertainty relations [22]. Secondly, our bounds are based directly on the light field itself, not
the quantum mechanical uncertainty in the position of a clock, an MRS point, or a test-parti-
cle. We have furthermore the choice of the state of the probe, notably it can be a multi-photon
state, whereas previous derivations typically considered single-particle uncertainty relations,
with a state that saturates Heisenberg’s uncertainty relation. Moreover, since the QCRB is
optimized over all possible measurements of the light field and has a clear interpretation in
terms of the minimal uncertainty of an estimator of c, there are no conceptual issues with the
meaning of the measurement on very small length scales. Questions on how fluctuations at
smaller length-scale add up do not arise. In random-walk models one might wonder why one
should add up fluctuations of the wavelength, as no measurements are made at that length
scale. In the g-pet approach, measurements on the length-scale of the wavelength are included
just as any other measurement of the light field, and the uncertainty is the one of the best pos-
sible estimator of ¢, rather than fluctuations of a measured observable (whose existence at a
very small length scale might be questionable; this issue was indeed recognized as one of the
most important ones in the field, see section 4.2.5 in [59]).

By using a light signal, another length-scale comes into play, namely the wavelength \ of
the light, as well as the propagation time, which in a cavity can be much larger than the length
of the cavity. Depending on the quantum state used, A is still present in the final result for the
lower bound.

If we do translate our bounds for dc/c into a bound for fluctuations of length estimations
0L by assuming 0L = Tdc with fixed T, we see from (11) that for the optimal state we get back
OL 2 Ip for L = ¢ T, i.e. this corresponds to oo = 1 in (13). However, for 7 >> L/c, one can
get uncertainties much smaller than the Planck length, a fact that was not reflected by previous
bounds. This insight results naturally from the use of g-pet, where time appears as a resource
for more precise measurements, in sync with experimentalists’ habit to provide uncertainties
per square root of Hz for fair comparison.

For a coherent state in a lossless cavity, the lower bound of JL implied by (12) reads
SL > BPAV(L2)(c T)?) /3.1 L = ¢ T, this is as (13) for & = 2/3, but with L replaced by .
One might wonder if there is a deeper reason behind the fact that a classical light signal repro-
duces the holographic model concerning the scaling of the smallest /L with /p). Compared to
the coherently added up fluctuations equation (14), this is, in the optical domain, still a much
smaller value for any L larger than about 10~'2 m.

Given their fundamental measurement-based nature, our bounds can serve for judging the
falsifiability of quantum gravity theories and phenomenological models: predictions of fluc-
tuations in a given space-time region that are smaller than those given by our bounds can
never be falsified through direct measurement as a matter of principle (subject to the made
assumptions). While the prefactors depending on L, A\, T for the coherent state matter, as a
rule of thumb, predictions of fluctuations with o > 2/3 could not be measured with light in a

1
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coherent state, as the measurements own smallest possible uncertainty o< llz,l/ Yis larger. Length
uncertainties oc v/IpiL of Wigner—Salecka-type theories as well as the bound in (15) are at
least in principle falsifiable with light in a coherent state. The fluctuations (16) cannot be
measured with light in a coherent state as soon as n > 3, but they would be accessible at least
in principle to ‘quantum enhanced measurements’ using the optimal quantum state of light.
However, it is unlikely that an optimal state of light with a sufficiently large photon number
can ever be built, given the experimental difficulties of producing superpositions of Fock
states with even a few photons. The fluctuations predicted in [17] are well above our bounds
for any cavity of realistic size.

Several works discussed the possibility to measure fluctuations of space-time created on
the Planck-scale with gravitational wave interferometers such as LIGO [37, 64, 8§1]. Bounds
on log were obtained from experimental data from Caltech’s 40 m interferometer [82]. In
[81] it was argued that the stated displacement noise level of that interferometer of order
3-107® m \/1571 in the neighborhood of 450 Hz already rules out length fluctuations of the
interferometer arms of order Ip; per Planck-time interval for the random-walk accumulation
of individual Planck-cell fluctuations to a total uncertainty. References [10-16] attempted to
bound the supposed quantum fluctuations of space-time using the broadening of light pulses
from far-away astronomical sources, but so far the uncertainty in the emission time of the light
pulses as well as other sources of spreading the pulse are too large to say much about quantum
fluctuations of the metric [13].

6. Concluding discussion

Our results imply that one should not think of quantum fluctuations of space-time as existing
independently of the measurement devices that probe them, but rather as something that can
only be defined in conjunction with them. This is in line with the modern theory of quantum
measurement, where the possible measurement results do not only depend on the quantum
system, but also on the quantum probe and its initial quantum state.

Accordingly, we find different lower bounds for dc/c for the optimal state and a coher-
ent state. The former reproduces 6L 2 Ipj when translated to the uncertainty of a length and
assuming a measurement time 7 ~ L/c, whereas the latter is substantially enhanced and still
depends on the wavelength, scaling only as lf,l/ ? Their derivation from standard quantum optics
and GR is similar in nature to those of previous bounds based on Gedanken-experiments
(see section 5.1) within QM and GR, but provides a conceptual advance by the use of g-pet,
which includes the optimization over all possible measurements, and precise calculations
rather than orders of magnitude arguments. Simple scaling arguments can be insufficient, as
the discussions in the literature about how fluctuations on small scales add up on long dis-
tances have shown. Another example: in the Heisenberg microscope including gravity, one
might arrange the particle half way between light source and detector. In that case the accel-
eration due to the gravitational pull will average to zero and it is not clear why the quantum
uncertainty should be bounded from below by a gravitational effect—not to talk about ques-
tions of how the photon is supposed to be localized in space-time, when only its wavelength
is specified. Such questions on how exactly the measurement is done, and whether a different
setup might not avoid the limitations, do not arise in our g-pet approach.

Nevertheless, our bounds are of course subject to several (reasonable) restrictions as well: We
consider direct measurements of the propagation speed or phase speed of an e.m. wave. Note,
however, that the QCRB bounds the uncertainty for any measurement and estimation scheme,
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as long as c is imprinted on the quantum state through the standard time evolution in quantum
optics with (A.1) as hamiltonian. Ambiguities arising from a proper definition of arrival time of the
pulse pertain to the level of different data analysis schemes and are fully covered by the QCRB.

We want to know the value of ¢ in a given region of space-time, and we assume a suf-
ficiently rigid measurement apparatus whose length remains unchanged when the photon
number is increased. Apparatuses with finite rigidity could deform under the influence of the
gravity of the light signal and the modification of Coulomb’s law. For any realistic material
that deformation should be negligible, however, compared to the one due to the light pressure;
this will be examined in more detail in another publication [83]. The gravitative effect of the
elastic energy was already shown in [50] to be smaller than the one of the e.m. field by a factor
¢s/c, where ¢y is the speed of sound in the cavity walls. We rely on the validity of quantum
mechanics (more precisely quantum optics and g-pet) and GR in semiclassical approximation
(i.e. TH" calculated as q.m. expectation value), and the validity of the linear dispersion rela-
tion w = ck for wave-lengths well above the quantum-gravity/Planck length. For finding the
optimal state, we assume a maximum possible photon number in the state. We neglect uncer-
tainties in ¢ due to the expansion of the Universe [51], non—inertial observers, local gravita-
tion potentials e.g. from Earth or a (stochastic) gravitational-wave (GW) background [84],
and quantum fluctuations of the mirror positions. In the quantum foam picture, also the latter
should depend on the way they are measured, but in any case can only lead to reduced preci-
sion. The GW background at optical frequencies is expected to be extremely small, but might
dominate at frequencies around 100-1000 Hz, where a large number of gravitational sources
is expected to exist, see [85]. However, to cavities much shorter than the GW wavelength
(300-3000 km for the above frequencies), the modified metric due to the GW appears as
uniform, and the GW effect can hence in principle be eliminated by a cavity in free fall, in
contrast to the GR effect of the light inside the cavity. More generally, any additional source of
modification of the speed of light may lead to tighter lower bounds on the uncertainty of dc/c
than ours, but will not invalidate them.
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Appendix A. Single mode reduction of g-pet

We here prove that very generally for a given maximum amount of energy the optimal quantum
measurement of ¢ can be reduced to measuring a single mode of fixed frequency put into the
optimal state |¢op) = (|0) + |2n))/+/2. Starting point is the Hamiltonian H for the e.m. field,

decomposed into modes labelled by a mode-index k, consisting of wave-vector k and polar-
ization e. Then

H= Z Py = hczknk, (A1)
k k

with angular frequency wy = ck and k = |k|. The Hamiltonian has the general form H = ¢G
with a Hermitian generator G = h '), kny. It leads in a given state |¢) and propagation over
total time 7 to QFI [22]
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I. = 4AG*T? = 4((G*) — (G)))T". (A.2)

Let G =), ¢i)(i| be the spectral decomposition of G, and |¢) = Z?’Zlci
we assume that |1) (N)) are the states of lowest (largest) energy available. Then
AG? =YV pie? — (XN pier)? with p; = |ci* and S- | p; = 1. The Popoviciu inequal-
ity [86] states AG® < (ey — e1)?/4. Tt is saturated for p; = py = 1/2, p; = 0 else. The
state 1)) = (|1 > +€®|N >)/+/2 with an arbitrary phase ¢ saturates the inequality and
thus maximizes /.. If ey or e is degenerate, only the total probability for the degenerate
energy levels is fixed to 1/2, and arbitrary linear combinations in the degenerate subspace
are allowed. But the value of AG? remains unchanged under such redistributions, and
we may still choose just two non-vanishing probabilities p; = py = 1/2. The derivation
did not make use of the multi-mode structure of the energy eigentstates. Hence, exactly
the same minimal uncertainty of ¢ can be obtained by superposing the ground state of a
single mode with a Fock state of given maximum allowed energy as with an arbitrarily
entangled multi-mode state containing components of up to the same maximum energy.
Setting N = 2n leads to the announced optimal single-mode state.

i), where

Appendix B. Calculation of the metric perturbation

The vector potential of the e.m. field in the cavity in Coulomb gauge A(r,t) = Yq(t)o(r),
where Y is a constant, ¢(#) the time dependent amplitude, and ©v(r) the mode function, with
components

vy = Ne, cos kyx sin kyy sin k.2,

vy = Neysinkyx cos kyysink,z,

v, = Ne_sinkyx sin kyy cos k.z. (B.1)
The polarization vector e = (ey, ey, ;) is normalized to length one, and is orthogonal to the
k-vector k = (ky, ky, k;), where k; = i /L, and I; € Ny, and at most one of three given /; can
be zero. Therefore, there are two polarization directions (transverse modes) for each k vector,

with the exception of cases where one of the /; = 0, where only one polarization is possible.
The request that the modes be orthonormal,

/d3rv1(r) - Oy (I’) = 51’1/ (BZ)

leads to N' = ,/8/V, and we can define the mode-volume V; = V/8. Note that the index
[ stands here for both the discrete k vector and the polarization direction (1,2). Finally, we
choose T = 1/, /¢, such that

A(r,t) = z,: \/1%611@)01(”)’
1

E(r,1)=— z,: ﬁiﬂ(f)vt(r),

H(r,t) =) L0V x ou(r). (B.3)
1

1
fiov/eo !
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After quantization, the amplitudes g1 become the quadrature operators of a harmonic oscillator,

g1 = /%l(&l + &,) D= 1/ h?’ (@ — al) where €; = |k;|c. In the semiclassical approach

the energy-momentum tensor for a single mode with mode function v is given by the quantum
mechanical expectation value [46, 87],

T == (- (@-a")?) v’ + ((@+a")?) (V x 0)*/k*),
= T (@)~ (@) (0 x (7 x o))
T = ? ({(@-a")")om,
_ <(a + zﬁ)2> (V x 0)(V x v)j/kz) + 796, B4

where k2 = k2, and we have used the symmetrized form (gp + p@)/2 of the quantum mechan-
ical operators for the 7% components.

For a (01M) mode, [, = 0,1, = 1,1, = M dictates e = (1,0, 0) as unique possible polariza-
tion. For M = 1, the frequency € = \f27rc/ L, and

v = \/Esin(ﬂ'y/L) sin(mz/L)ey,
Vxo= \/EZ sin(my/L) cos(mz/L)ey
_ \/EZ cos(my/L) sin(wz/L)e;. (B.5)

For [t)op) With n > 1, and neglecting terms of order O(n°) (all other terms are of order n), we
find that for the fundamental (0 1 1) mode the only non-vanishing components of 7#¥ can be
expressed in terms of four functions,

hQ
T — nTZt’W (B.6)

with the dimensionless tensor components °(n,¢) =f(n,¢), "', ¢) =£0.Q),
2(0,¢) = f0.0). B (0,0) = f(n.Q) = f(¢m). 230, ¢) = P21, ¢) = fa(n.¢). and
fi(n,¢) =2 — cos(2n) — cos(2()
H(n,¢) = cos(277) + cos(2¢) — 2 cos(2n) cos(2()
) =

(0. ¢

fa(n. Q) = Sm(2n) sin(2¢), (B.7)

where we write x, y, zinunits of L/7,€ = xw/L,n = yn/L,{ = zw/L,and thus &, n, ¢ € [0, ).
Outside the cavity TH#¥ vanishes. For this state the field equations are solved with a time-
independent metric. The wave equation reduces to the Poisson equation,

(2 4 cos(2¢) 4 2 cos(2¢) cos(2n))

_ G
AR = 167 TH". (B.8)
C

The solution is obtained by integrating the inhomogeneity 7#* over with the Green’s function
of the Poisson equation, i.e.
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Figure B1. Relative change of the local coordinate speed of light in x-direction as
function of dimensionless coordinates 7, at £ = 1.5 in units of P = (4n/7)k with
k= (lp/ L)2 (see equation (B.10)) for the (01 1) mode. The cavity extends from 0 to m
in these units.

BMV —_ 4G Tuy(xl) d3 /

) e—x|
= dn'd¢ 1€, m — ' ¢ — ¢ (o, ¢!
P aracen =~ o), ©9)
where the parameter P is given by
nhG 4/2n Ip 2
=4 = T == . B.10
& \/_7rc3L2 T " <L (B.10)

The integral kernel reads

(B.11)

1<sn<>=1n< Cant¢ )

E-m e rC

Numerical evaluation of the two remaining integrals in equation (B.9) shows that they are of
order one inside the cavity, and decay rapidly outside, as is required by the boundary condi-
tions of a flat metric far from the cavity.

For |tcon), we have to consider the full retarded solution of the wave equation according to

o 4G/ T (t — |x — x'|/c,x")

_ d3 I.
A x— x (B.12)

For example’ the vz cornponent reads ]flyz — Bﬁ;t 4 4nhGQ2 f df/dnldcl sin[2w(1—|x—x"]/c)] sin(2n’) sin(2¢") .

* Jx—x7|
This metric element is thus the solution of |¢)4y) (B.9) plus some retarded oscillation on top
of it, which is of the same order. In the following we will therefore restrict our analysis to the
time-independent part given by |t)op).

16



Class. Quantum Grav. 34 (2017) 175009 D Braun et al

For the (01M) mode, with M > 1, [, =0, ly=1,1;, =M, the general expressions for
THY are more complicated, but for Wopt> with n > 2, and in the limit of M > 1, we have
T = T3 = 4n(hQ/V) sin®n, T"' = —T?* = 4n(hQ/ V) sin® ) cos(2M(). Corrections are of
order 1/M. All other tensor elements of T vanish to order M°. The rapidly oscillating term
cos(2M¢)in T, T?2 leads to a rapid decay of h'! and %2 as function of M. Numerics indicates
that the decay is roughly as 1/M for fixed (&, 7, (), including the factor M that is gained due
to the prefactor €2 oc M for large M. This means that for large n and M, only T% = 733 are
non-negligible, with

B0 =53 ~ PMB(&, 7,¢),

h(€.n.¢) == 4/0 /O dn'd¢’1(¢&m —n',¢ — (') sin’ 7y, (B.13)

where the dimensionless function fz(f ,1,C) is once more of order 1 inside the cavity and falls
off rapidly outside. So using a higher mode has the effect of reducing the perturbation of the
metric essentially to two diagonal elements of the metric tensors, but increases the perturba-
tion by a factor equal to the mode-index M.

In all cases, the amplitude of the space-time perturbation due to the e.m. field in the cavity
scales as

2
o~ <IL"'> nM, (B.14)

proportional to the number of photons 7 in the cavity, the mode index M, and the squared ratio
Ip1/L of Planck length Ip; ~ 1.62 x 1073 m and size L of the cavity. The expression remains
valid for the fundamental mode with M = 1.

‘We note that throughout our analysis we tacitly assume that the photon densities in the cav-
ity are small enough and the cavity sufficiently large, such that we stay well below the critical
(electric) field strength E, = m?c®/(eh) = 1.3 x 10" V. m~!, where m, is the mass of the
electron, beyond which nonlinear corrections to Maxwellian electrodynamics due to polariza-
tion of the quantum vacuum become important [88]. This condition may be translated into
a minimal cavity size L using an energy density O(hicnM /L*) and a critical energy density
O(€E?). We obtain that L > (h3/4el/260_1/4me_10_5/4)(nM)1/4 = (2.1 x 107" m)(nM)"/*
for linear electrodynamics in the cavity to hold. For the two types of cavities considered and
all combinations of . and M, the lower bound on L is satisfied by the cavity sizes considered.

From £,,, we now calculate a local measure of the modification of the coordinate speed of
light defined through the geodesics of the modified metric.

A finite h,,,, leads to a new line element

ds® = —(1 — hoo)*df* + (1 + hy)(dx')? + 2hy3dydz (B.15)

where the metric elements are, for the (01 1) mode,

1 N
hoo = EP(gl +g+8+8)

1 -
hip = 573(81 +8 — 8 — &),

1 N
hy = Ep(gl -0 +8—8)

1 -
hyy = 57>(gl — 8 +8 —8), hi="Pg, (B.16)
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with the definitions, see (B.9),

gf:/ / dndC 1€ — 1 ¢ — ) fil ),
o ) (B.17)
gi:/o /0 dn'd¢’1(&,n—1n'.¢ = O)fi(n'. ¢).

For the (01M) mode we have hoy = h33 with kg given by (B.16) whereas h,,, vanishes for
all other values of p,v. The light ray trajectories are determined through the geodesic condi-
tion ds? = 0. The speed of light in x!-direction (meaning all other dx/ = 0, j # 1, i.e. locally
straight paths along x' = x) is then ¢(x) = ¢+/(1 — hoo) /(1 + h11), and correspondingly for
the other directions. The relative change of the coordinate speed of light in x-direction then
reads, for the (01 1) mode with n > 1,

1 1
de(x)/c = _i(hoo +hy) = ) (g1 + &2).

1 1
de(y)/ec = *i(hoo +hyp) = *E’P(gl + g3)s

1 1
de(z)/c = —E(hoo + h33) = —57)(81 + &3). (B.18)

For the (01M) mode with n, M > 1,

1 PM -
dclx)fe =0deb)/e = —5ho = (g1 + 82+ 83+ &), (B.19)
dc(z)/c = 28¢(x)/c,

where the equalities in terms of the g;, g; are for (o).

In figure B1, we plot the relative change of the coordinate speed of light in x—direction for
the (01 1) mode. We see that up to position dependent functions of order 1 the relative change
of speed of light is given by equation (5) in the main text. Very similar plots are obtained for
other directions.
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Abstract

The effect of gravity and proper acceleration on the frequency spectrum of an optical resonator—both
rigid or deformable—is considered in the framework of general relativity. The optical resonator is
modeled either as a rod of matter connecting two mirrors or as a dielectric rod whose ends function as
mirrors. Explicit expressions for the frequency spectrum are derived for the case that it is only
perturbed slightly and variations are slow enough to avoid any elastic resonances of the rod. For a
deformable resonator, the perturbation of the frequency spectrum depends on the speed of sound in
the rod supporting the mirrors. A connection is found to a relativistic concept of rigidity when the
speed of sound approaches the speed of light. In contrast, the corresponding result for the assumption
of Born rigidity is recovered when the speed of sound becomes infinite. The results presented in this
article can be used as the basis for the description of optical and opto-mechanical systems in a curved
spacetime. We apply our results to the examples of a uniformly accelerating resonator and an optical
resonator in the gravitational field of a small moving sphere. To exemplify the applicability of our
approach beyond the framework of linearized gravity, we consider the fictitious situation of an optical
resonator falling into a black hole.

1. Introduction

In general relativity (GR), as coordinates have no physical meaning, there is no unique concept for the length of a
matter system. Some notion of length can be covariantly defined using geometrical quantities or properties of
matter. The ambiguity in the notion of length poses a problem for high accuracy metrological experiments,
where gravitational fields or acceleration have a significant role to play. For example, the frequency spectrum of a
resonator depends on its dimensions and hence knowledge of the precise values of these dimensions is of utmost
importance. Cases in which the effects of gravitational fields and acceleration must be considered include those
in which the gravitational field is to be measured, such as in proposals for the measurement of gravitational
waves with electromagnetic cavity resonators [ 1-7] or other extended matter systems [8—14], tests of GR[15, 16]
or the expansion of the universe [ 17, 18]. Other situations are those in which the metrological system is
significantly accelerated [19-21]. A fundamental limit for the precision of a light cavity resonator as a
metrological system can even be imposed by the gravitational field of the light inside the cavity [22].

The two most important concepts of length are the proper distance and the radar distance. The proper
distance is a geometrical quantity usually associated with the length of a rod that is rigid in the sense of that given
by Born [23]. The radar distance is the optical length that can be measured by sending light back and forth
between two mirrors and taking the time between the two events as a measure of distance. It is this radar length
that gives the resonance frequency spectrum of an optical resonator for large enough wave numbers. However,
the resonators that are part of the metrological systems described in [1-22] are confined by solid matter systems,
and therefore, the notion of proper length plays also a role.

© 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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In section 2, we start our considerations by modeling a one-dimensional resonator as a set of two end
mirrors connected by a rod of matter. If this rod is assumed to be rigid, the resonator is called a rigid optical
resonator. In section 3, we show that the resonance frequencies of an optical resonator are given by its radar
length. The general results derived in sections 2 and 3 are applied in the following sections.

Since proper length and radar length are generally different, it turns out that the resonance frequencies of a
Born rigid optical resonator change if the resonator is accelerated or is exposed to tidal forces. Furthermore, the
frequency of a mode is dependent on the reference time, which, in turn, is dependent on the position of the
resonator in spacetime. Taking all this into consideration leads to an expression for the resonance frequencies of
aresonator that is dependent on acceleration and curvature. This is presented in section 4.

A realistic rod cannot truly be Born rigid; depending on its stiffness and mass density, it will be affected by the
gravitational field and its internal interactions have to obey the laws of relativistic causality. In section 5, we
derive expressions for the dependence of the resonance frequencies on the deformation of the rod and show that
the change in resonance frequencies depends only on the speed of sound in the material of the rod. In this article,
we restrict our considerations to cases where acceleration and tidal forces experienced by the optical resonator
vary slowly. This way, we can neglect elastic resonances of rod. At the end of section 5, we compare the change of
the resonance frequencies due to deformations of the rod to the change of the resonance frequencies due to the
relativistic effects presented in section 4. Additionally, we discuss the notion of a causal rigid resonator which is
based on the definition of a causal rigid rod as one composed of a material in which the speed of sound is
equivalent to the speed of light.

The optical resonator can also be filled with a dielectric, or equivalently, the rod that sets the length of the
resonator can be a dielectric material and the mirrors can be its ends. The case of homogeneous isotropic
dielectric is discussed in section 6, and it is shown that the relative frequency shifts are independent of the
refractive index of the dielectric material. In section 7, we consider the case of a uniformly accelerated resonator,
in section 8 we consider the case of a resonator that falls into a black hole and in section 9, we consider the
example of an optical resonator in the gravitational field of an oscillating massive sphere. In section 10 we give a
summary and conclusions.

In this article, we assume that all effects on the optical resonator can be described as small perturbations. In
section 5, we present a certain coordinate system x*! valid in a region around the world line of the resonator’s center
of mass in which the spacetime metric takes the form g, .- = 15 + I, where 1 = diag(—1, 1, 1, 1)is
the Minkowski metric and Ay is a perturbation. hiyzr is considered to be small in the sense that || < 1 for
all M, V.

2. Arigid one-dimensional resonator in a curved spacetime

In GR, the gravitational field is represented by the spacetime metric g,,,, on a smooth four-dimensional manifold
M. We assume the metric to have signature (—1, 1, 1, 1). Then, for every vector v*"ata point p in M, the metric
delivers anumber g (v, v) = S vFv¥, which is either positive, zero or negative. These cases are called,
respectively, space-like, light like and time-like. For all space-like vectors v*, the square root of the positive
number g(v, v) is called the length of this vector. A curve s(g) parameterized by ¢ € [, b] in the spacetime M that
has tangents s’ (¢) := ds*(s) /ds that are always space-like is called a space-like curve. The geometrical distance
along this curve is the quantity L,(s) = J; " d J&.,5""s'"”, whichis called the proper distance. To define a
frequency we need to know how to measure time. A time measurement in GR is defined only with respect to an
observer world line. An observer world line is a curve v (¢) whose tangents 5/ (¢) = dy(¢)/dg are always time-
like. The time measured along the observer world line 7y (o) between the parameter values o; and g, is

T, (01 02) = fg TZ do./— 80 VY This is the temporal counterpart to the proper distance, and it is called the

proper time. Additionally, at every point of a world line (o), there is a corresponding set of spatial vectors v
called the spatial slice in the tangent vector space at (o) with respect to (o), which is defined by the
condition §# (o) Vg, (v(0)) = 0.

In GR, there exist different notions of rigidity as it turns out to be less than straightforward to formulate this
basic concept of Newtonian mechanics in a relativistic way. Early attempts to understand rigidity in the
framework of electrodynamics date back to before Einstein’s formulation of the special theory of relativity
[24-28]. These approaches turned out to be inconsistent with Lorentz symmetry, which then led to the
formulation of a Lorentz invariant differential geometric definition of rigidity in [23] by Max Born after special
relativity was established. Formulated in a modern way, it is the condition of constant distance between every
two infinitesimally separated segments of a rigid body. Here, the measure of distance is the infinitesimal proper
distance between the two world lines measured in the spatial slice defined by any of the two world lines. This
concept of rigidity is denoted as Born rigidity in literature. A short time after the publication by Born in 1909, it
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Figure 1. The world lines () of the segments of the rod are assumed to form a family of curves which give rise to the rod’s world
sheet. The curve parameter o, which is not necessarily equivalent to their proper time, is the parameter for a family of space-like curves
5o(s) that represent the rod. We assume that the curves s,(<) are space-like geodesics and cross the world lines of each segment
orthogonally.

was found by Herglotz [29] and Néther [30] that Born rigidity is too restrictive. In particular, they found that,
with the exception of the singular case of uniform rotation, the motion of a Born rigid body is completely defined
by the trajectory of one of its points. Subsequently, there were attempts to give a less restrictive definition of a
rigid body which include the concept of quasi-rigidity in GR, a condition on the multipole-moments of a body
[31,32], and the model of a rigid body as a body in which the speed of sound is equal to the speed of light [33].
Here, we will use, as our starting point, a definition of a rigid rod that is Born rigid, and we will undertake a
perturbative analysis for small length scales, small accelerations, small velocities and small gravitational fields. In
this article, we will show that two types of effects are found; those due to spacetime properties alone and those
due to small deformations of the rod which correspond to small deviations from Born rigidity. Since all effects
can be considered to be small, we remain in the linear regime, where the different effects can be assumed to be
independent.

Let us assume that we have a rod of very small diameter in comparison to its length, i.e., it is effectively one-
dimensional. We assume that the world lines of the segments of the rod form a family of curves (o)
parameterized by ¢ which we assume to be in the interval ¢ € [g, b]. The end points of the rod are v,(0) and ().
The spacetime surface F(g, §) = (o) can be called the world sheet of the rod. See figure 1. for each curve, the
curve parameter g is chosen so that the curves s, (<) = F (g, <) are space-like geodesics in the sense of the auto-
parallel condition Vy/ () 5;, (¢) = 0 with respect to the Levi-Cevita connection Vof the metric g given as
Ve = £985¢ + Ff%,fﬁg 7 for any two vectors £ and ¢, where

« 1 «
=58 7058, + 0,85, — 0hgs,) M

are the Christoffel symbols. Note that we do not assume that the world lines of the segments of the rod be
geodesics. The segments move under the interior forces of the rod. We also do not assume that g is the proper
time of all the segments. Later we will assume that there is a single segment that has g as its proper time.

For every point of the world sheet F(g, ¢) of the rod, we assume that the tangent 5; (¢) lies in the spatial slice
defined by the tangent to the local segment’s world line 5, (2), i.e. (4. (2), s{’, (s)) = 0. Later, we will find that,

due to the condition that the curves s,(<) be geodesics, the condition g (5. (o), sg, (¢)) = 0is fulfilled up to the
second order in the proper length of the rod divided by alength scale [, which is associated with local curvature
and acceleration. We say that the rod is rigid if the proper distance between every two points on the curve s,(c) is
independent of the parameter p. To further elucidate the meaning of the concept of a rigid rod that we use here,
we explain its relation to the concept of a rigid rod that may be familiar from special relativity in appendix A.

There are two possibilities to construct a rigid resonator from the rigid rod defined above. One option is that
the rod itself is the resonator: for example, it could be a resonator for electromagnetic waves in different spectral
ranges or a resonator for the many different quasiparticles inside and on the surface of a solid matter system such
as phonons, plasmons and polaritons, to mention just a few, all of which may resonate between the ends of the
rigid rod. The second option is to create a cavity resonator by attaching two mirrors at the end points of the rod
such that the light is reflected between the mirrors. In practice, this would be achieved by maximizing the quality
factor of the resonator. We denote such resonators as rigid resonators. The second option is the focus of this
article, and it is illustrated in figure 2. The first option for a homogeneous isotropic dielectric is discussed in
section 6.

A realistic matter system can only be rigid for negligible tidal forces and accelerations. We will discuss our
model for a deformable resonator affected by tidal forces and acceleration in section 5. In section 3, we will
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location
center of of frequenc,
the cavity q 4
measurement
mirror A olL,/2 l mirror B
0
! 7 )
Ly

(1- ﬁ)LP/Q support

Figure 2. [llustration of our model of an optical resonator consisting of two mirrors that are attached to the ends of a rod. We assume
that the resonator is moved along a trajectory (o) by a support which is attached at a distance (1 — (3)L,/2 from mirror A. Since
proper time depends on the position in the gravitational field so does the measured frequency of a resonator mode. We assume the
frequency to be measured at a distance o L,/2 from the center of the resonator towards mirror B.

derive an expression for the resonance frequency spectrum of a resonator, rigid or deformable, under the
condition that the timescale for light propagation between the mirrors is much smaller than the timescale on
which the rigid resonator length is changing.

3. Resonance frequencies

In this section, we will derive an expression for the resonance frequencies of the resonator described above. As we
are dealing with an extended object in GR, the obtained resonance frequencies are ambiguous as we will see in the
following: first, every mode k existing in the resonator evolves with a certain phase v, this is a covariant quantity.
In order to extract a frequency wy from the phase, we require a time T such that we can express the phase as

Y = wiT. As stated in section 2, such a time measurement is defined only with respect to an observer and the

time measured by the observer along the curve () is the proper time T, (21, 02) = f do./— 8 YY"

Through the family of curves associated with the rigid rod, we can define a family of observers along the curves
Yd0) = 5,(5). We see that every point in the resonator corresponds to a different observer and, therefore, we
cannot give a proper time to the whole resonator, therefore the frequencies of the modes must depend on the
point in the resonator where they are observed.

First, we will consider the case of an optical resonator, discussing other cases at the end of the section. The
resonance frequencies can be obtained from the evolution of the phase 1/ of a resonator mode. This can be
found by explicitly solving Maxwell’s equations in the curved spacetime under consideration. However, we can
achieve the same result much faster by implementing the short wavelength expansion or geometric optical limit.
The purpose of the following calculation is to prove the expression in equation (5), which gives the resonance
frequencies in terms of the radar distance between the two ends of the resonator. Some readers may want to
jump to equation (5) directly.

In the short wavelength expansion, the electromagnetic field strength tensor for a freely propagating,
monochromatic light wave is given as [34]

Eu(x) = Re(e A5 Z@ W<x>( ) ) ©)

where the complex valued second rank tensors ¢, ,,.(x) give the slowly varying amplitudes, A is the wavelength,
ais the length scale of the slow changes of the properties of the light field and the real function S(x) is the eikonal
function which describes the rapidly varying phase. In particular, « is the smallest of the length scales given by
the waist of the resonator mode, the acceleration of the cavity and the spacetime curvature. This statement will
get its full meaning in section 5, where the effects of the motion of the resonator and the spacetime curvature on
the proper length of the resonator are considered explicitly by using a particular set of coordinates called the
proper detector frame. We assume that A < avand A < L,. We will only consider linear polarization in the
following. We find that the results for the change of the frequency spectrum do not depend on the polarization.
Therefore, the results also apply to circular and elliptic polarized fields as those can be obtained as superpositions
of linearly polarized fields.

The raised gradient of the eikonal function 2 "(x) = g0, S (x) is the normal vector field to the wave fronts
defined by S(x). Applying the Maxwell equations to the eikonal expansion in equation (2), we find in leading
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ya(e1) =& (1)

Figure 3. The resonance frequencies of a resonator can be derived in the geometric optical limit by considering light bouncing back
and forth between the two mirrors of the optical resonator.

order that é "(x) mustbea light like vector field, i.e. % "(x) % " (x) 8w (x) = 0[35]°. Additionally, the light like

condition implies that the integral curves of the tangents £ (x) are light like geodesics. In other words, there
exist curves £(¢) that have the tangents % "(€(5)): the light rays of geometric optics. Furthermore, the light like
property implies £" (x) 0,S(x) = 0, which means that the phase %S (x) is constant along the light rays. We will
use these properties of the eikonal function and its gradient to derive the frequency spectrum of the optical
resonator in the following.

Inside a resonator, we create standing waves. Hence, we must assume that, for the resonator, there are
stationary solutions of Maxwell’s equations that fulfill the boundary conditions at the mirrors. This assumption
is valid if we assume that coordinates exist in a small region containing the resonator such that the positions of
the mirrors and the metric change only very slightly in the time span that light needs to propagate between the
mirrors. Assuming that linearly polarized standing cavity mode solutions exist, we consider the superposition of
two counter-propagating linearly polarized light waves F,7 (x) = F, (x) + le (x), where F,, (x) and le (x)
are as in equation (2) with the eikonal functions S"(x) and S'(x), respectively. Fllw
propagating to the left (negative direction) and F), (x) represents the wave propagating to the right (positive
direction). We obtain

F,rfys(x) — Re (ei(/\ys'(x) i ¢; W(x)(i)” . ei%sl(x) i ¢i W(x)(i)n} 3)
n=0 ’ @ n=0 ’ a

(x) represents the wave

We defined a rigid cavity by assuming that there are two mirrors attached to the ends of a rigid rod. We
consider the gravitational attraction of the two mirrors, all atoms in the rigid rod and the light itself to be
negligible. We assume in the following that the mirrors are so close to the ends and so tightly attached that we can
identify their world lines with those of the end points of the rod, i.e. v4(9) = v,(0) and ys(0) = (o). Starting at
0 = o, with the mirror at y,(0;), we can define a curve £'(¢) with ¢ € [¢;, &;] such that £(¢;) = 7, (¢1) and
£ (s2) = 73 (02) for some g, and df““(g)/dg = é”“ (€(s)) = g"0,S"(£()) (see figure 3 for an illustration).
Since all tangents of £'(c) are light like, this is a light like curve and can be interpreted as the path of a massless
point particle, a single photon, from mirror A to mirror B. At mirror B, the photon is reflected and the tangent of
its path becomes g9, 5" (75(02))- We can define a curve § (o) withg € [, ¢3] such that &(q) = 7 (02) and

€1(3) = (03 for some gsand deh#(c) /ds = & (£(s)) = g, S'(£(c)). Thisis the lightlike curve
representing the path of the photon back to the mirror A. At mirror A, the photon is again reflected and the
tangent becomes g9, 5" (7, (¢3))-

Then, a condition can be formulated that is necessary to fulfill the boundary conditions at each of the
mirrors: the phases of the left propagating and the right propagating parts of F;;7 (7, (¢)) and F,;7 (3 (2)) have
to match by a multiple of 27. In appendix B, the derivation of this condition is given. Since the phase is constant
along the geodesics {"and £ ! we find that the change of the eikonal function at the position of the mirror must
have been %68,\ = %(S (14 (93)) — S(,(21))) = 2mm where m € Z. An observer at mirror A can measure this
phase and associate it with a frequency and a change in proper time as %68,\ = wr T, (o1, 03). The proper time
difference T,(0;, 03) is proportional to the radar length Ry = ¢T,(0, 03)/2 of the resonator measured at
0o = (03 + 01)/2byan observer traveling with mirror A. Therefore, we find that the frequencies of the modes
of the resonator measured by an observer along the world line of mirror A are given as

chm
WA,n - RA ) (4)
where we assume n > 0, i.e. we consider only positive frequencies. A similar analysis can be made for mirror B,
whichleadsto wg ,, = %. Accordingly, for any other observer inside the cavity, we obtain

> For any matter field in the eikonal approximation, the gradient of the eikonal function has to fulfill the characteristic equations which
derive from the highest derivative part of the matter field equations. In the case of Maxwells electrodynamics, the characteristic equations are
simply given by the light cone condition. For more details about this analysis see [34, 36, 37].
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Wopy = —, )

where R, is obtained by following a light like geodesic from the observer to one of the mirrors, after reflection, to
the second mirror and, after the second reflection, back to the observer. It is clear that this is an approximate
value; the notion of frequency means the rate of repetition of a signal. For this notion to make sense, it has to be
constant at least for a few repetition cycles. Hence, the observer measuring the frequency has to move slowly in
comparison to the time that a light pulse needs to propagate between the mirrors R, /c.

There is another way to understand equation (5): electrodynamics in a Lorentzian spacetime can be
interpreted as electrodynamics in a non-dispersive, bi-anisotropic, impedance matched medium using the
Plebanski constitutive equations [38]

, ) 1.
D' = &eE; + :GljijHk, (6)

B = popH; — —cwiEy, )

where we define the spatial co-vector as w; := g, /¢% and the permittivity and permeability matrices
el = i := — [|detg] g¥/g,,. Maxwell’s equations in the curved spacetime g,,,, take the form of Maxwell’s
equations in this effective dielectric medium in flat spacetime. Note that the spatial co-vector w;, which mixes the
electric and magnetic field components, is defined by the spacetime mixing components of the metric. If the
metric is orthogonal in the chosen set of coordinates, w; vanishes and we are left with a normal anisotropic
medium.

Let us assume that the coordinate system was chosen such that the coordinate time ¢ coincides with the
proper time at mirror A and that zis the coordinate along the light ray. In this case, we find that the radar length
of the resonator measured by an observer at mirror A can be written as

c c [ % (dz )}
Ra=—(t, — ) = — dt' = =1 d
A 2(2 )] A szu (dt) z

z, ¢ z
= f —dz = nzdz, (8)
Zq Vph z

a

where v, = dz/dtis the coordinate dependent phase velocity of the light and n, = ¢/v, can be understood as
an effective index of refraction. Equation (8) shows that the radar length can be understood as the optical path
length measured by a ray sent from mirror A to mirror B. Hence, equation (5) is the condition that the
frequencies measured at mirror A must be multiples of the speed of light divided by the optical path length.

At the end of this section, we would like to discuss the effect of higher order terms in the eikonal expansion.
We derived the frequency spectrum (4) and (5) from a necessary condition for the existence of linearly polarized
standing wave solutions of the electromagnetic field in the resonator. This is the condition at the leading order in
the eikonal expansion. Terms in the eikonal expansion of higher order may be complex functions in general, this
canlead to additional phase shifts at the boundaries which, in turn, can lead to frequency shifts. Such additional
frequency shifts can be either considered as systematical errors that limit the predictive power of our approach or
have to be evaluated independently to be subtracted from the result of the measurement. One particular source
of additional frequency shifts is rotation of the resonator about an axis orthogonal to its optical axis. For
earthbound experiments, such rotation will be induced by the rotation of the Earth, for example, which can be
measured independently and taken into account explicitly. The effect of rotation may be calculated by taking
higher orders of the eikonal expansion into account or using other methods of electrodynamics such as the
paraxial wave equation. Here we assume that the optical resonator is non-rotating and we restrict our
considerations to the expression for the frequency spectrum given in equation (5). In the next section, we will
look at its application.

4. Born rigid optical resonators

In this section, we will derive the resonance frequencies of a Born rigid resonator in terms of its constant proper
length. For this purpose, we choose to work in a particular coordinate system which we will introduce in the
following.

Along the world line of an observer y(7), an orthonormal, co-rotating tetrad ¢/, (1) (M € {0, 1, 2, 3},all
calligraphic capital letters will run from 0 to 3 in the following) can be defined where ¢}) = 5/ (7) is the tangent
to the world line of the observer, €7 (1) (J € {1,2, 3}, all capital non-calligraphic letters will run from 1 to 3 in
the following) are space-like, €'y ,(7) €y (T)gW (y(1)) = ny N and ny N = diag(—1, 1, 1, 1). There also

exists a corresponding co-tetrad /" with 7" ¢/, = . The proper distance along the space-like geodesics
t ponding co-tetrad & with e7' ¢/, = &)!. The proper dist long the space-like geod

6
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timelike curve 7(7' )

spatial
plane at y(7)

Figure 4. The proper detector frame can be defined along any time-like curve +y. The time coordinate is the proper time 7 measured
along the curve. The spatial coordinates at a proper time 7 are constructed from the proper distances along space-like geodesics that
originate at (7). The point with coordinates (c7o, x, y, z) is found by following the spatial geodesic with tangent x“¢/ a proper
distance (x2 + y2 + z2)!/2 from ().

extending from (7) in the spatial directions generated from ¢4 (7) and the proper time 7 along the world line of
the observer generate a coordinate system that is associated with the observer (see figure 4). This coordinate
system only exists in the vicinity of the observer’s world line, as it can only here be ensured that the spatial hyper-
planes generated by ¢/ (7) at different 7 do not intersect. In these coordinates, the spacetime metric seen by a
non-rotating observer can be given simply in terms of: the Riemann curvature tensor along y(7) given as
Runice (1) = €54() €3 (M) (1) € 1(1) 8, (7 (1) R 357 (7)) where

R%5 = 0, 'G5 — 05T, + 5,1 — T'5, TG 9)

and the non-gravitational acceleration with respect to alocal freely falling frame, represented by the spatial
vector a/ = €L at, where a* = (V;4)".

This coordinate system is called Fermi normal coordinates for a freely falling, non-rotational observer (a = 0)
[39] or the proper detector frame if proper acceleration occurs [9, 40]. The proper detector frame of a non-rotating

observer is accurate for proper distances [40]

2 1 R/\/l
c [R™ arpgl } (10)

|x] < lyar = min{—, ,
la/| " [RMppol'/2 " |RM \po el

In the following, we will assume that the length of the resonator L, is small in comparison to the scale [,,,. We
consider (1) to be the world line of the point at which the rod that holds the resonator is supported. We assume
that this point is somewhere inside the resonator. If it is not attached to any device, we assume that the center of
acceleration is the rod’s center of mass. We also assume that the resonator is not rotating in the frame of the
observer. We orient the spatial geodesic representing the rigid rod along the z-direction at y(7), i.e.

s/ (¢) = (0, 0, 0, 1). By construction of the proper detector frame, the geodesics s,(s) run along the z-coordinate.
Then, we consider two cases; for the first case we assume that

_1 < min{c—z} (11)
|R0z02|1/2 |ﬂ]| ’

and we take curvature into consideration. For the second case, we neglect curvature. In the following, we treat the
first case directly and the second case can be obtained by setting the contributions of curvature to zero in the
equations for the relative frequency shift. In particular, in both cases, we are allowed to consider only first order
contributions of the proper acceleration. With this assumption, we can consider the metric in the proper detector
frame as a linearly perturbed flat spacetime metric. We define the metric perturbation k. := gf/t N — M- For
example, in the gravitational field of the Earth, the inverse of the square root of the spatial curvature in the direction
away from the center of the Earth is of the order of 10'" m, while the length scale given by ¢ over the gravitational
acceleration is of the order of 10'® m. Therefore, the condition (11) is fulfilled by four orders of magnitude for the
acceleration.

Neglecting quadratic terms in the acceleration, we obtain for the following components of the spacetime
metric in the proper detector frame of a non-rotating observer [40] (as above, Latin indices are used for the
spatial components with respect to the tetrads and spatial indices are raised and lowered with the spatial metric

7
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61] = dlag(l, 1, 1))
p 2 ] IJ
ZoolcT, X) = —| 1 + ?a](T)x + Rorop (T)Xx'x
P 2 KL
gO](CT’ X) ~ —EROK[L(T)X X
1
gIl])(CT, X) ~ 61] — ERH(]L(T)XKXL. (12)

Since we assumed s/ (s) = (0, 0, 0, 1) and by construction of the proper detector frame, the proper length of
the geodesics s (¢)is L, = b — a, where the spatial positions of the mirrors are (0, 0, b) and (0,0, a) with b > 0
and a < 0. Then, we find from equation (12) that g0 (c7, 0, 0, z) &~ 0 forall Tand zalong the resonator.
Furthermore, by construction, all segments of the rod remain at fixed coordinate positions along the z-axis
and we find that 5 (oM = ((gol:))’l/2 0, 0, 0). Since s’ () = (0, 0, 0, 1), we obtain gLN"yg(g)M N =
(gol;)*l/ ngZ (ct(0), 0, 0, z()). From equation (12) and one of the symmetries of the Riemann tensor
Runice = — Rk follows that the condition gMN . (oM [,N (¢) = 0, which we assumed in our definition
of arigid resonator in section 2, is approximately fulfilled for a small proper length of the resonator®.

To obtain the frequency of the rigid resonator measured by an observer at x using equation (5), we have to
calculate the corresponding radar distance between the mirrors. The radar distance is obtained from the
trajectories &, (¢) of light like particles bouncing back and forth between the mirrors as described in section 3 and
illustrated in figure 3. In section 3, we already assumed that acceleration and curvature only change very slowly
with 7. Under this assumption, we can replace acceleration and curvature in equation (12) by their values at 7.
The trajectories £ (¢) have to fulfill the null condition gf/l./\/ (€Q)é M )¢ N (¢t) = 0and the geodesic equation

that governs the motion of test particles EA () = —F?C(f (1)) 58 (L)%C (¢).Infirst order in hf,w, one finds for
the Christoffel symbols

1
T = EUAR(thgR + Ochgr — Orhic), (13)

which shows that the Christoffel symbols are of the same order as hf,l/\/' . Then, to first order in hf,l/\/' ,the
trajectories are given by E’f () =c(o++ ¢ 0,0, ¢0) + §i’l (1), where ¢ 1 are constants and the functions
52(1) are of the same order as h N . With Ryvice = —Ruyzk, we find that gzi ~ land goi = zO
&, (¢),and we obtain that SE(L) ~ chiy(cto,+ 0, 0, +c)and 5;0) ~ +chd(cto 1, 0, 0, ct) /2 solve the light
cone condition and the geodesic equation. The difference in coordinate time 7 between sending and receiving
the light pulse is given as

~ 0along

ot = fq’b Ef(b)db + fL‘a éf(L)dL, (14)

where ¢, , and ¢ j are the parameter values at which the ray intersects with the world lines of mirror A and
mirror B, respectively. A transformation of the integration variable to z.+ = £% (¢)leads to

fh £, "(1(z) do. + @& (u(z) *(u(zo ) 4y (15)
5 C(L(z) b &z ))
5 a §0.
%fb c+§+z(2+/c)dz +f e+ 8 z /o) i 16
a ¢+ 6+(z+/c) b —c+ 6 (—z_/c)
which reduces to
b P
nf s Hmc)
b
~ 2]; dzi(l — %(%aZ(TO)Z:t + ROZQZ(T())ZZZE))
~ ELP(I G0 BL, — M@ﬁz 1L ) (17)
c 2c? 24

where we defined 3 := 2b/L, — 1anduseda = (8 — 1)L,/2. Under the assumption of slowly changing
acceleration and curvature, the coordinate time 6 7 needed for a round trip of a light pulse inside the resonator is
independent of the point on the z-axis where it was sent from and received at, as long as it is sent and received at
the same point. Therefore, we can calculate the radar length of the resonator measured at a given position

Here small proper length means that the proper detector frame metric (12) is still a valid approximation to the actual spacetime metric.

8
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29 = (0 + P)L,/2 along the z-axis inside the resonator (¢ € [—1,1])as

c
Ry 2% =g (7, 0, 0, 20) Z67

[ + 2 (CTO) oL, + —ROZ;'Z(TO) (302 + 6003 — 1)L§]. (18)

Equation (18) was calculated for a given time 7, to make our assumption of slow changes of acceleration and
curvature explicit. Of course, we are free to choose the value of 7. Therefore, we can replace 7 in equation (18)
with 7. Then, the relative change of the resonance frequencies measured at z, = (0 + ()L,/2 is givenas

z
Opo = = 1~ —%ULP R°Z2°72(T)(3 24 608 — 1L, (19)
where @, is the nth resonance frequency of the resonator for vanishing acceleration and curvature.

We find that the only linear contribution of the acceleration a” to the resonance frequency spectrum in
equation (19) is via a position-dependent red shift. It vanishes for o = 0, which corresponds to a frequency
measurement in the center of the resonator. The term 36” corresponds to a pure red shift with respect to the
center of the cavity. The term 630 is due to the displacement of the resonator’s support from its center. In order
to move the support along the trajectory v(7), while keeping the proper length of the resonator constant, the
acceleration aZ,,(7) = a%(7) + ¢?Ro.0,(T) BL / 2 must be applied to the center of mass of the resonator’. Based
on these considerations, we can rewrite equation (19) as

aim(T) ROZOZ (T)
Ouw,o R — oL, —
2¢2 24
However, a realistic rod can never be rigid. In the next section, we will consider the first order deviations from
the rigid rod by taking the deformation of the rod due to small inertial and gravitational forces into account.

(3o — 1L, (20)

5. Deformable optical resonators

In the proper detector frame, every segment of the rod has a world line with constant spatial components. The
acceleration of a segment of the rod atx = (c7, 0, 0, ), in comparison to a freely falling test particle initially at
rest at the same position as that segment, can be derived from the geodesic equation

A (Trest) = — D25 (Yrest) Frex (Trest) st x (Trest)» 1)

where, in first order in the metric perturbation the tangent for a test particle at rest is
Frestx = (€(— g00 x))"172, 0, 0, 0) with (— g00 @) V2 & 1+ hiy(r, 0,0, 2) /2 The dot means the derivative
with respect to the curve parameter . In first order in 1}y, the Christoffel symbols are given by equation (13)
and are proportional to the metric perturbation. Therefore, expanding equation (21) in first order in the metric
perturbation, we find ’yrest N —c2I4d!. Since ch/dTrest = ~ 1+ hl(r,0,0,z) /2, we obtain
ap ~ —c2T), for the proper and tidal accelerations.
We consider the effect of ap on the resonator’s end mirrors and the resulting deformation of the rod to be
negligible in comparison to the direct effect of ap on the rod. Then, we obtain the inertial and tidal forces on the
rod by multiplication of ap with the mass density p. These forces give rise to stresses within the rod, represented
by the stress tensor og;. For static forces and forces that change very slowly, the stresses are related to the strain
via Hooke’s law as

.0
/yrest,x

&y = (Cil)I]KL OKL> (22)

where C~!is the inverse of the stiffness tensor for the material the rod is composed of. From the strain, we can
calculate the deformation of the rod by integration along the length of the rod from its center of mass. Since the
change of diameter of the rod and its deformations in the x—y-plane are not of interest for us, we can restrict our
considerations to £,,, £,,and €,,,. We assume a constant cross section A of the rod, and we assume that the
diameter of the rod is much smaller than its length. The contribution of €, and ¢, on the length of the rod are of
second order in the metric perturbation and can be neglected (see appendix C) if

a5 o, > max (L) ([af ey |)? /el W, Lo (1ah o )2 /2 w;) (23)

where af .. and a}, . are the maxima of proper acceleration in the x-direction and y-direction, respectively,
w,and w are the diameters of the rod in the x-direction and y-direction, respectively, and a} ,, is the largest of

This result can be directly obtained by considering the differential acceleration between the support and the center of the cavity by use of
the geodesic deviation equation.
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the values given by (3]a*(7)|) and ((33% + 1)L,c?|Roz0.(7)|/6), where () denotes the averaging over the
observation time (see appendix C for the derivation). With these considerations, the tidal accelerations in the
proper detector frame in the transversal direction can be neglected if the following conditions hold

a;,av 2 max{wx <|R0x0x|> <|R0y0y|> }> (24)

Additionally, we assume that the various contributions to the transversal tidal acceleration do not oscillate on
resonance with any elastic mode of the rod that is not already on resonance with the oscillations of the
longitudinal acceleration and the longitudinal tidal acceleration. In most situations of interest, it should be easy
to fulfill these conditions by choosing an appropriate orientation of the resonator and appropriate values for w,
and w,. In particular, the conditions are fulfilled for the examples given in sections 7-9.

Under the above conditions, the only non-zero component of the stress tensor of interest for us is 0, and its
relation to the strain is given as

1
€2z = ?Uzz- (25)

where Yis the Young’s modulus of the rod material. If we assume a constant mass density, the force along the rod
in the positive z-direction can be obtained as

b 2
Fi(r,2) = f dz/pA ap(z!, 7) ~ —pA(b — z)(az(r) + %(b + Z)ROZQZ(T)). (26)

where we made use of aj(z, 7) ~ —c?I'%(z, T) = —(@%(T) + Ry, (T)z). For the force along the rod in the
negative z-direction, we find

2
FX(7,2) =~ —pA(z — a)(az(T) + %(Z + a)R0zoz(T))- (27)

Since the support of the resonator is inside the resonator, we obtain the total deformation of the resonator by
integrating the strains ¢, = F /Aand ¢, = F? /A on the two sides of the resonator fromz = 0to the ends,
respectively. The effective change of the proper length is

f dz €+(Z/) + f dz's(z)) = 72_2 ( ;(Z)ﬁ . ROzl()z(T) (362 + 1L ) (28)

where ¢, = /Y /p is the speed of sound in the rod material. The acceleration induces a contraction of one side of
the resonator and an expansion of the other. Therefore, the acceleration amounts to a change of the proper
length, proportional to the displacement 3 L,,/2 of the support with respect to the center of the resonator. The
change of the proper length proportional to R,o,(7) can be split into two terms. The term proportional to Iia
corresponds to the acceleration aZ,(7y) = a*(79) + c*Ro0.(T)GL » / 2 of the center of mass of the resonator that
we discussed at the end of section 4. For a freely falling resonator (5 = 0 = a*(7)), only the second term in the
brackets remains.

From equations (19) and (28), we find for the relative change of the resonance frequencies of the deformable
resonator

6L ? R 20z
b2 = (5ts + 28004 6o )
a? 2
2(CT)( B~ ) R"Zz‘zm (2%(362 +1) — 302 — 600 + 1)L§. (29)

Note that the deformation of the resonator changes the coordinate position of every point inside the resonator”.
This leads to a change in the trajectory of a light pulse within the resonator, and the whole calculation we made in
section 4 would be changed. However, this change would only amount to a change of the resonance frequencies
in second order in the metric perturbation and we can neglect it.

Again, we can write the relative shift of the resonance frequencies in a neater way using the center of mass
acceleration as

ax(T)cm C2 ROZOZ(T) 2
bpo ~ ——| =0 —0|L, + —— +1—30 L. 30
’ 2¢? (Cszﬁ ) P 24 cS P 0

As expected, we would obtain the result in equation (20) for the Born rigid rod from equation (30) if the speed of
sound in the material was infinite. This coincides with the observation that a Born rigid rod violates causality, as

8 Any deformation of the rod also leads to a change of density and the speed of sound in the rod which, in turn, leads to a modulation of the
deformation of the rod. We consider this effect to be negligible here. In particular, it corresponds to a nonlinear correction of Hook’s law.
Therefore, the result in equation (29) can be considered accurate as long as Hook’s law can be applied. As the deformations considered are
supposed to be small, Hook’s law should hold with a very good accuracy.

10
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Figure 5. In the case of a dielectric optical resonator, we consider the rod itself to be the resonator.

its segments would need to interact with an infinite speed. A more realistic definition of a rigid rod was given in
[33] asarod in which the speed of sound is equivalent to the speed of light. In appendix D, we show that the
approach of [33] leads to the same expression of the change of the length of the rigid rod as our equation (28).
The relative shift of the resonance frequencies for such a causal rigid rod is found from equation (30) in the limit
¢ — cas

b e EDem g gy 4 Rosa® (g o)LL 31)
2c? 8

In particular, we find that the contribution of curvature to the relative frequency shift vanishes if the frequency is

measured at one of the mirrors corresponding to o = £1.

However, the speed of sound ¢, in every realistic material is always much smaller than the speed of light: for
example the speed of sound in aluminum is of the order 5 x 10’ m s~ '. To date, the material with the highest
ratio of Young’s modulus and density Y /p = ¢Zis carbyne, with a value of the order of 10° m* s> [41], which
would correspond to a speed of sound of the order of 3 x 10* m s~ . Therefore, we find that the effect of the
deformation of matter is by far the most dominant and the rod is far from rigid (may it be Born rigid or causal
rigid) in all realistic situations. However, the relativistic effect of gravitational red shift gives a fundamental limit
on the definition of the frequency spectrum of an optical resonator as a property of the resonator alone; when
resonance frequencies of an optical resonator are to be specified with a precision of the order of this relativistic
effect, the position of the frequency measurement has to specified.

Finally, we want to point out that the ratio of Young’s modulus and density is called the specific modulus. In
this sense, ¢ can be thought of as the specific modulus of spacetime. It is interesting to note that this value is off
by a factor 4 from the value 4¢” given for the specific modulus of spacetime in [42].

6. Deformable dielectric optical resonators

Up to this point, we have only discussed the case of an empty cavity resonator. Now, let us assume that the rod
itselfis the optical resonator. In particular, we assume that it consists of an isotropic homogeneous dielectric
medium (see figure 5). In [43], it was shown that light rays in an isotropic dielectric follow light like geodesics
with respect to the dielectric metric tensor (see also [34, 44])

2
P, diel P Cdiel
gM/\lfe =&uv — ( CIZE — l]uMuN, (32)

where ¢}y = (e1)”'is the speed of light inside the medium and u™ = g? MV, is the normalized tangent

vector to the world line associated with the local segments of the dielectric. In our case, these are the segments of
the resonator, and therefore, uM(z) = (1 + h(ﬁ) /2,0,0,0)and ur(2) =~ (=1 + héf) /2, h(ﬁ, h(fz, h(ﬁ). From
equation (32), we obtain the metric

2
. Ccy: 2
go%dlel(CT, X) & ——d‘;l (1 += aj(1)x) + Ro[()](T)XIX])
c c

. 2 CZ.
gol;’dlel(CT, X) ~ 3 :lzelROK]L(T)XKXL
. 1
gﬁ’d‘el(cr, X) ~ & — gR]K]L(T)XKXL. (33)

Now, all of the considerations made for the empty resonator above can also be made for a resonator composed of
an isotropic, homogeneous dielectric by using the metric gﬁ’li‘;l for the propagation of the phase fronts given by
the eikonal function. Hence, we obtain the resonance frequencies in an isotropic homogeneous dielectric by
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multiplying the result for the empty resonator with cg;e;/c. This factor cancels in the relative frequency
perturbation so that

63}{2}— = 6w,o- (34)

A similar metric as in (32) has been shown to arise for particles or quasiparticles in other matter systems, e.g. for
electrons in graphene [45]. Our analysis may also apply to these situations.

7. Example: uniform acceleration

To illustrate the applicability of our results, we will consider some examples in the following. A particularly
straightforward example is the situation of a non-rotating resonator that is uniformly accelerated along the
optical axis. From the equivalence principle follows that this situation is similar to the situation of an optical
resonator kept vertically at a fixed position in the gravitational field of a massive object like the Earth. However,
since we are considering an extended object, the curvature of the gravitational field would also enter the
frequency spectrum of the resonator as in equation (30). Hence, the effect of uniform acceleration and a
gravitational field do only coincide if the effect of curvature can be neglected. For uniform acceleration, we find

L
B A (ﬁz - %)a L (35)

C; c 2

For 3 = %1, alength of the resonator of L, ~ 2 cm, an acceleration of the order of 10 ms 2, which is similar to
the gravitational acceleration of the Earth, and a speed of sound in the rod of the order of 10° ms~! (similar to the
speed of sound in aluminum), we obtain a relative frequency shift of the order of 10~”. This frequency shift is
given only by the first term in equation (35) as the second term is smaller by about 11 orders of magnitude. Since
the first term is due to the deformation of the resonator it is a Newtonian effect.

For the case § = 0 the first term in (35) vanishes. What remains is a purely relativistic effect, the gravitational
red shift, due to a difference in proper time between the center of the resonator and every other point along the
optical axis. Setting the parameter o to —1 and +1 means that the frequency is measured at the mirror A and
mirror B, respectively. We find a relative frequency shift of the order of 710718, The measurement of such a
small frequency shift seems to be experimentally challenging but may be feasible with state of the art technology.
For example, currently, optical clocks reach a relative precision of 10~ '® over an integration time of 1 s [46, 47].
Of course, higher frequency shifts can be reached with longer cavities and larger accelerations. In particular, the
effect of gravitational red shift was already measured on the length scale of about 33 cm [48]. As argued above,
the effect of gravitational red shift gives a limit on the validity of the concept of the frequency spectrum as a
property of the optical resonator itself. For the parameters of the example above, we find that a reference for the
frequency measurement has to be given when the frequency spectrum is to be specified with a relative precision
of 10 "%,

8. Example: plunge into a black hole

We consider the results derived in this article as a basis for optomechanics in relativity and gravity which implies
their application to experiments in laboratories on the surface of the Earth or in space. However, our approach is
not limited to spacetimes that only bear weak gravitational effects. It is the spacetime metric seen by the optical
resonator in its proper detector frame that has to be a linearized metric. This is ensured by the condition

Lyar > L. Toillustrate the applicability of our results to spacetimes with strong gravitational effects, we consider
the situation of a non-rotating resonator that falls into a non-rotating black hole (see figure 6). To this end, we
consider the Schwarzschild metric in spherical Schwarzschild coordinates (ct, 1, ¥, ¢)

g= diag(—f(r), L, r2, 12 sinz(ﬂ)), (36)
f@)

wheref(r) = 1 — rg/rand rgis the Schwarzschild radius. We assume that the support of the resonator falls

radially fromr = Rinto the center of the black holeat ¢ = 0 and ¥ = 7/2. The corresponding trajectory is

givenin [49] as

r(0) = Rcos’(0/2), (37)
1/2
(o) = f(?) (o + sin o), (38)
S

parameterized by p. We see thatr = 0 for ¢ = 7, which means that the singularity at the center of the black hole
is reached in finite proper time 7 = 7R>/2/2cr} /2, The tangent to the world line of the falling support of the
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Figure 6. Artistic representation of the optical resonator plunging radially into a black hole.

resonator is

A= c \/f(R) _\/E sin o 0. 0
fr@) NRl+coso

where o = o(7) is implicitly given by equation (38), 4! can be obtained directly from equations (37) and (38) and
49 can be found from the normalization condition VY8, (r(0)) = —c?. Then, the time line can be found as

v = (ct(1), r(0o(7)), 7/2,0), where ct (1) = j(; T ar 4%(o (1")). An orthonormal tetrad that is parallel transported
along the time-like geodesic yis given as

(39)

~/l, _ . [
€ — 'Y/I/Ca

glu:(_ [raned o),
R f(r(o)
&'=1(0,0,r(0)1, 00 and
&'=1(0,0,0, (o). (40)
All other orthonormal tetrads can be obtained by orthogonal transformations in three-dimensions on the spatial
part of the tetrad (40). Due to the spherical symmetry of the spacetime and the radial trajectory of the resonator

atd¥ = w/2and ¢ = 0, we can restrict our considerations to rotations in the ¢{'~¢4 -plane. Then, we define the
rotated frame

- B M i g
€y =€), €] =COSQ & + sy &,
&'=¢e' and €§=

cosp &' — sinp &', (41)
where the angle ¢ € [0, 7/2] gives the orientation of the resonator in the ¢{'—¢4 -plane. From the tetrad (41), we
obtain the proper detector frame. The z-direction is defined by ¢4 and we find from equation (29) that

2
By ™ ’3022072(7)(2%(352 +1) — 302 — 608 + 1)L§,
C

S
where no proper acceleration appears since the resonator is assumed to be freely falling. The curvature tensor
component Ry (7) is explicitly given as

Roz0-(17) = 65 613/ 65 ng/wpa(r(g)))

— costo | LB )ZR- ; 42
cos™ @ (f(f’(g)) aror (1(0))s (42)
n sin ¢ ( f(R)sec*(0/2)

4tan*(o/2
Z | o) Ra¢oo(r(g))+%%Rmu(g))}

(43)
Here, we used that Ry, = 0 for the Schwarzschild metric. The expressions for the other curvature tensor
components appearing in equation (42) at?) = 7/2 are given as
T T
Rorir(r) = ==, Ragap(r) = f ()=
r 2r
T
and  Ryg(r) = — f(r)*lz—i. (44)
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Figure 7. The frequency shift of a vertically oriented optical resonator falling into a black hole is plotted over the normalized proper
time measured at the center of the resonator.

We obtain

(1 + 3cos(2p))rs
ar (o)’

and we find that the specification of the angle of orientation of the rod ¢ gives rise to a numerical factor which
vanishes onlyat ¢ = arccos(—1/3) /2. Hence, for ¢ = arccos(—1/3) /2, the frequency shift is proportional to
the frequency shift at ¢ = 0, which corresponds to vertical orientation. For a vertically oriented causal rigid
resonator supported at its center, we find the relative frequency shift at its center is given by

Rozo0, (T) = (45)

T’SL;
8r(0)*

The time evolution of this frequency shift is plotted in figure 7. We see that the frequency shift in equation (46)
stays finite until r = Oisreached at o(7) = . In particular, there is no effect due to the crossing of the event
horizon at rs. As stated at the beginning of this section, our approach is accurate only for Iy, > L,. From
equation (45), we find that I,,, = /7 (9)?/rs for ¢ = 0. The stellar black hole has a Schwarzschild radius of the
order of 10> m. For an optical resonator of alength of the order of 10> m, this implies that that our approach
breaks down when a radius of the order of 1 m is reached which is far beyond the event horizon at r = rs.

The effect of the event horizon can be seen by considering a situation in which the measured frequency is
imprinted on a signal at the center of the resonator and sent out radially to an observer that stays at constant
coordinater = R > rg. This observer receives a signal with frequency

_ [few 75 sing(r(®) ) cnm
() [ (\/f(R) +\/; Hcow(m))) @) 1+ Baotr ), 47)

Bno(T) ~ — (46)

where r(f) and 7(¢) are given implicitly by the time line (7). The first factor on the right-hand side of

equation (47) corresponds to the gravitational red shift and the second factor to the Doppler shift due to the
relative velocity between the emitter and the receiver. The red shift factor f (r(9)"/? vanishes when the resonator
passes the event horizon and becomes imaginary.

The above result can be applied as well to an optical resonator falling towards the Earth. For a distance from
the center of the Earth of the same order as its radius, we find that the relative frequency shift in equation (46) is
of the order of 10’ for an optical resonator of 2 cm length. This relativistic effect is mostly gravitational red
shift due to curvature. It is far from being observable with state of the art technology. However, it gives a
fundamental limit of the validity of the concept of frequency spectrum as a property of the optical resonator
without any reference as discussed above.

9. Example: an oscillating mass

As a third example, we consider the situation of a non-rotating resonator in the gravitational field of an
oscillating solid sphere of massive matter. The result could be used to consider the possibility of detecting the
gravitational field of a small sphere of dense material, like gold or tungsten (see figure 8). This situation is similar
to the one considered in [50, 51], where the resonator is a second massive sphere on a support with restoring
force. Here we will restrict ourselves to the derivation of the resonance frequency spectrum and an evaluation of
its relative change for certain realistic experimental parameters. Also, we assume that the solid sphere is the only
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2
resonator
T

Figure 8. llustration (not to scale) of the resonator placed in front of a gold sphere that oscillates by a lever with frequency §2/27. The
gravitational field of the sphere induces a change of the resonance frequencies of the resonator.

source of a gravitational field affecting the optical resonator. To model an earthbound experiment, the
gravitational field of the Earth would have to be taken into account as well. To derive our model of the
gravitational field of a massive sphere, we start from the Schwarzschild metric, which is given as

, (43)

S O =
S = O
— o O

in isotropic Cartesian coordinates (X° = cf, X, 7, Z), where rs :== 2GM /c? is the Schwarzschild radius of the
source massand R = (82 + 72 + 2%)//2. To first order in rs/R, the difference of (48) from the Minkowski
metric diag(—1, 1, 1, 1) has only four non-zero components, namely kg = h S =h %7 =hi = % Letus
assume that the sphere moves much more slowly than the speed of light and that we are close enough to the
sphere so that all changes of the gravitational field can be considered to be instantaneous. With this, we can
model the metric perturbation for the moving sphere by replacing Rby R(f) := (£ — ~},( N+ F — Y& ))?
4+ (Z — 'yfv[(f N)HI/2 where o4, (£) is the trajectory of the source mass. The resulting metric perturbation
becomes

h

S

—pM M M S _ M 49
xx $%% zz R(f) (49)

M
h,, = 0for u = v. (50)

We assume that the support of the resonator is at rest in the isotropic coordinates on the Z axis in the negative Z
direction. To be completely accurate, we would need to fix the proper distance between the support of the
resonator and the average position of the sphere, as this corresponds to the assumption that the distance is fixed
by another matter system. Furthermore, in every realistic situation, the proper distance would change as the
matter system is affected by the gravitational field of the sphere and the gravitational force experienced by the
resonator. However, any small error in the position of the resonator will be negligible, as it corresponds to a
small change of the acceleration and curvature that we already assumed to be small. From equation (13), we find
thatan acceleration a®(1) = (Vs ¥(7))? & ¢*['g, ~ —c’rs /2R (7)? along the Z-axis is necessary to keep the
resonator at a fixed position Z; < 0 on the Z-axis, i.e. v(7) = (7, 0, 0, Z,). For the linearly perturbed metric,
the curvature tensor is given as

1
R~ En&ﬂ(agawhgj — 9pOsh) — 0,0,hl + O50,hk)). (51)

We assume that the resonator is fixed along the Z-axis. From the equation (51), we obtain the curvature
component Rg;5:(7) = —r5/R(T)>.

To construct the proper detector frame, we need to fix the tetrad corresponding to the observer at the
support of the cavity. Since we assume that the support stays at rest in the coordinates (£, X, 7, Z), we have
el = ((gﬁs@)‘l/ 2,0, 0, 0). We define the three spatial vectors of the tetrad f‘f with] = 1,J] = 2and]J = 3such
that they point in the X-direction, y-direction and Z-direction, respectively. Therefore, we find
el = (0, (g5)7/%, 0, 0), €5 = (0, 0, (g;y)fl/{ 0)and €4 = (0, 0, 0, (g5,)"'/%). We conclude that the
transformation to the proper detector frame is a linearized coordinate transformation. A linearized coordinate
transformation leaves the curvature tensor invariant and we obtain Ro,,(7) = —r5/R(7)%. Furthermore,
a*(t) = g,al (1) ~ a?(7) to first order in the metric perturbation.

Let us assume that the motion of the sphere can be described as R(7) = Ry + Ry sin 27, where Ry is the
average distance between the sphere and the position of the support of the resonator, § Ry is the amplitude of the
sphere’s oscillation and 27§2 its frequency. If we assume that 6R, is much smaller than R, the proper
acceleration and the curvature can be written as
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2
a’ (1) ~ —C—ri(l — 26Rq sin(Q27 + Lp)), (52)
2R 0
Roz0.(7) = r—i(l _ 3R sin(Qr + ga)). (53)
R; Ry

The first terms in (52) and (53) are constant, and we can calculate their effect on the frequency spectrum using
equation (29). The resulting time dependent resonance frequencies are given by equation (29) as

s s 0

2 2
B A —%[[C—zﬁ - 0) + (2%(352 +1) — 302 — 660 + 1)6%’]. (54)
C

Let us assume that the sphere is of gold or tungsten, that the mass of the sphere is 100 g (corresponding to a
radius of the order of r,, ~ 1 cm), which corresponds to a Schwarzschild radius of the order of 107% m, the
amplitude of the oscillations 6R is of the order 1 mm, while the length of the resonator and R ,;,,, the minimal
distance between the resonator and the sphere, are of the order of 1 cm. Then, we find that Ry = rgpp, + 6
Ry 4 Rpmin + Ly(1 + (3)/2 takes values between 2 and 3 cm. This results in values for acceleration and spacetime
curvature of the order of 1071 ms~2and 10 *> m ™2, respectively. We mentioned above that the speed of sound
inarod of aluminum is about 5 x 10> ms~'. Therefore, the relative change of the resonance frequencies of a
resonator with its length fixed by an aluminum rod, in the gravitational field of the moving mass, yields
8, ~ F10~ ¥ for 8 = +1, where the acceleration is dominant, and &, ~ 10~!° for 3 = 0, where only the
curvature contributes. The relativistic effects in equation (54) are ten orders of magnitude smaller. Hence, to
detect them, the whole experimental setup would need to be under control with this precision.

For oscillation frequencies 2 far below any elastic resonances of the resonator rod, we can also derive the
effect of the sinusoidally modulated terms in (52) and (53) with equation (29). We find

L,6R 2 2 L
6%, ~ %Sin(QT + w)((%ﬁ - o) + [22—2(352 +1) — 302 — 660 + 1)%} (55)

0 s s 0

For the parameters used above, we find for 3 = =1 an amplitude of the frequency oscillations of the order of
10~". The temporal modulation of the frequency shift may be an advantage in experimental situation as it may
be used to increase sensitivity. As for the example of uniform acceleration, the values for the frequency shifts that
we found for this setup seem to be challenging but not out of reach of state of the art experimental techniques.
Oscillations of the source mass on resonance with the elastic modes of the resonator rod may be used to increase
the effect on the frequency spectrum significantly. However, the consideration of this situation is beyond the
framework developed in this article. It will be treated in a future article.

10. Conclusions and outlook

We derived an expression for the resonance frequencies of an optical resonator moving in a weak gravitational
field in a relativistic setup. Firstly, we considered a Born rigid resonator, which we assumed to be constructed
from a Born rigid rod. Secondly, we considered a deformable resonator, where we assumed the rod to consist of a
realistic material with finite Young’s modulus. In this context, we discussed the concept of a causal rigid rod.
Besides gravitational effects, the expressions that we derived take proper acceleration of the resonator into
account. As well as empty optical resonators, we considered optical resonators filled with a homogeneous
dielectric material.

Our investigation revealed three fundamentally different effects. One is a simple gravitational red shift: the
resonator is an extended object and time runs differently at different points inside the resonator. Therefore, the
resonance frequencies of the resonator are not a global property of the resonator, but depend also on the position
inside the resonator at which it is measured. The second effect is due to the difference between proper length and
radar length, which leads to a shift of the resonance frequencies in the presence of non-zero curvature and
acceleration even for a Born rigid resonator. The third effect is the deformation of the resonator due to curvature
and acceleration, when the resonator is deformable. The deformation of the resonator is governed by only one
parameter, the speed of sound ¢ in the rod. It turns out that the effects of deformations are larger than the
relativistic effects, red shift and difference between proper length and radar length, by a factor ¢?/c2. A causal
rigid rod can be considered to be one with the speed of sound equivalent to the speed of light, overcoming the
problems of Born rigidity [33]. We gave an expression for the resonance frequency spectrum of a causal rigid rod
in equation (31). Since the largest speed of sound in any material is still many orders smaller than the speed of
light, the deformations of realistic materials will dominate over the relativistic effects significantly. Therefore, a
very high degree of control over the material parameters would be necessary to observe the relativistic effects.
However, the relativistic effect of gravitational red shift can be seen as posing a fundamental limit on the validity
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of the concept of the frequency spectrum as a property of the optical resonator alone; when resonance
frequencies are to be specified with a precision of the order of the gravitational red shift, the position of
frequency measurement has to be specified additionally.

The results derived in this article can be applied to general spacetime geometries if acceleration and tidal
forces in the proper detector frame of the resonator are small enough. This includes freely falling resonators in
strong gravitational fields like a black hole beyond the Schwarzschild radius or a uniformly accelerated cavity
which we gave as examples in this article. As a third example calculation, we considered the gravitational effect of
an oscillating tungsten or gold sphere on the resonance frequencies of an optical resonator in section 9. This
situation is similar to the one considered in [50, 51], where the resonator is a second massive sphere on a support
with a restoring force.

Note that our results can be applied to oscillating gravitational fields like that due to the oscillating source
mass as long as the oscillation frequency is much smaller than the elastic resonances of the rod that constitutes
the optical resonator. In the particular situation of an aluminum rod of a few centimeters and an oscillating
source mass of a few gram, this is a very good approximation as the elastic modes of the rod have frequencies of
the order of 100 kHz, which is hard to achieve with a source mass of this size. However, for longer resonators,
smaller source masses or other oscillating gravitational fields like gravitational waves, elastic resonance may be
achieved which can amplify the effect on the frequency spectrum significantly. A gravitational wave is a
particular example of a situation in which the acceleration vanishes and only an oscillating curvature remains’.
Since we already identified the deformation effects of a realistic rod as the dominant effect, the effect of
oscillating curvature on the rod can be treated similar to the effect of a gravitational wave on the antenna of a
resonant mass detector (see for example [9] and chapter 37 of [49] as a reference for the latter). A detailed
description for a resonantly driven optical resonator as a follow up of this article will be given in a future
publication.

The precision of metrological experiments with resonators depends strongly on the knowledge of the
resonance frequencies of these resonators. On the one hand, the effects of acceleration and curvature on the
resonance frequencies can be seen as an experimental systematic error which has to be taken into account. On
the other hand, these effects can be used to measure a proper acceleration or spacetime curvature. In such
experimental situations, the model we used will certainly not be fully valid and the effects have to be calculated
for the precise apparatus that is used. However, the results of this article can serve as a basis for investigations of
the accessibility of spacetime parameters and parameters of states of motion in the more advanced framework of
quantum metrology [16].

In our analysis, the only non-Newtonian effects are the relativistic red shift and time dilation and the
difference between radar length and proper length. However, the formalism employed here contains further
relativistic effects (see table I of [40]) such as the Sagnac effect and magnetic type gravitational effects such as
frame dragging, which induces the Lens—Thirring effect in gyroscopes. It would be interesting to include these
effects in a more detailed analysis. One way could be an extension to three-dimensional optical resonator
geometries and the inclusion of the polarization of the light field.

In the future, it would be desirable to have a description beyond the restrictions to small accelerations and
curvatures. For that purpose, a fully relativistic description of elasticity has to be used such as those presented in
[32, 33, 52]. For significant variations of the curvature on the length scale of the wavelength of the resonator
modes, it would be necessary to abandon the eikonal approximation and to derive the resonance frequencies
directly from solutions of the Maxwell equations in a curved spacetime. This is the case if the effect of the
gravitational field of the light inside the resonator is to be considered in full generality [22]. Furthermore, the
effect of rotation of the resonator has to be considered in the future. This can be done by considering higher
orders of the eikonal expansion or using methods of electrodynamics like the paraxial approximation.
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Appendix A. Relation to the concept of a rigid rod in special relativity

In special relativity, the proper length of a rod is given as the coordinate distance between its end points, calculated
in the coordinate system defined by the rest frame of the rod. Here, we call L,(s,) the proper length of the rod and
describe it in the following. By definition, for every g, and every point s, (o) of the space-like curve s, (<)
representing the rod, there is a space-like tangent s l’,o (So) = ds,, (<) / dg]q,. For every point of the curve s, (<)
representing the rod, there is an associated vector in the tangent space T, (,) M via the inverse of the exponential
map, where the exponential map is given as eXP (¢ L, oM — M and expsyo(gﬂ)((g — go)s; (50)) = S4,(5).In
particular, the two end points of the rod s, (@) and s, (b) are associated with the vectors (o — a)s l’,o (o) and

b — <o)s ;0 (So)- Since s, () is a space-like geodesic (in the sense of the auto-parallel property), the proper distance
from s,,(o) to s,,(a) and s, (b) is equivalent to the norm of — (5o — a)sé ,(so)and (b — go)s; , (S0), respectively,
with respect to the metric g, at s, (). Hence, for every point s, () on the rod, there is a representation of the
rod as a straightline ¢s ;0 (o) in the tangent space to this point and the sum of the proper distances in both
directions of the rod is equivalent to the length of the line given as (b — a) 80 (s[',0 (<o), s zl)o (o). We can find
coordinates such that (gsﬁ0 ) = T This s called alocal Lorentz frameat s, (so). In the local Lorentz frame, the
coordinate distance (in tangent space) between the end points of the line gs;O (o) is equivalent to its length

b — a) 82,0 (sél,0 (<o), 5;0 (S0))- In special relativity, the spacetime and the tangent space to every point can be

identified since spacetime is flat. Then, the length of the line representing the rod in tangent space is also the proper
length of the rod. Therefore, we can identify L(s,) as the generalization of the proper length of arigid rod in GR.

Appendix B. Boundary conditions

In the following, we will will apply Maxwell’s equations to the eikonal expansion in equation (2) along the same
linesas in [35]. We will write V(¥ = ¢, , for the covariant derivative. In the following, we will apply the Lorenz
gauge condition and Maxwell’s equations to the eikonal expansion in equation (2). Maxwell’s equations in
vacuum imply that [35]

F,;w;)\;/\ + (RU;LE/U - R”VF;‘LO') + Raﬂ;wFaﬁ =0, (B1)
where R, is the Ricci tensor. We have

«

. oo N n
F/n/;)\ = Re (elis(x) Z(i%(ﬁn”ul’f/\ + (bn,py;/\)( A) ] and (BZ)
n=0

, 25 a) PP 2 - AY
Ful/;/\))\ = gM Re (e ’\S(X) Z(_(X) d)n,/wf/\ffr + lx(gbn,/wg)\;(r + 2¢n,/w;/\£0) + ¢n,/u/;)\(r)( ) ) (B3)

n=0 «

Inleading order, we find the null condition gA(’g )\ éa = 0. By taking the covariant derivative of the null condition
and taking into account that ¢ = 0,8(x), wefind

0 = (g)\gé/\ga)w = 2’%0%0;# = Zégs(x);au = zgaép;o (B4)

which means that the integral curves of the vector field £” are light like geodesics. These are the light rays of
geometrical optics. In the next to leading order, we find

AN AN
0= ¢O,/u/§;)\ + 2¢0,/u/;/\£ . (BS)
We define the scalar

bg = (gwgﬁéfbo,aﬂ (/5)&»,,5)1/2, (B6)
and the polarization tensor fy ., = ¢0,,,,/ $o. We find that

g-)\fO,;U/;)\ = 2/\((@750)71(250,#1/;/\ - (¢0)72¢0,;w¢0;/\) (B7)
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A _ 1 _ ) * *
:f ((¢0) 1¢0,/w;)\ - E(¢0) 3¢0,/wga 'gd{" (¢O,M3;A¢O,’yﬁ + ¢0,a/3;/\¢0>”/5)) (B8)

:(¢0)71¢0,W;/\g/\ + %(450)71(150,#1/% :\)\ =0 (B9)

This means that the zeroth order polarization tensor is parallel transported along the light rays. Furthermore, for
. o . N z 2\

linear polarization, we can write f; w = exp(ipy) fo. w where ¢ and f, A€ real. From fW; 1§ = 0,wefind
that ¢, /\g * = 0. Therefore, the phase of the zeroth order amplitude function does not change along the light ray.
In particular, we can assume that ¢, ,,,, is real everywhere as we can set the initial conditions accordingly.

With these considerations, we can investigate the boundary conditions at the mirrors. To express the boundary
conditions in a covariant form, we define the frames of the mirrors in the following. The tangents 4, (¢ )" and
4 (0)" of the world lines of the mirrors define a spacetime split; the spatial slice at the mirror () = A, Bis defined
as the set of vectors *? # such that & r® "4 (0)” = 0 (nosummation of 7). Inside these spatial slices, we can
define three orthonormal vectors eg-’)”’ such that the vector €{"* is orthogonal to the mirror and the normal vectors
€ and ¢"* are tangential to the mirror'’. Furthermore, we choose €”* to be directed in the polarization
di?ection of the right propagating light field at the mirror (i). Together with (" = Yy (@) / ;) (@)1, the vectors
e(]’) H(J€{1,2,3}) form an orthonormal tetrad. Using the tetrads, the components of the field strength tensor in the
frame of the mirror are given as F/(\’/; o) = 6(/3(“ e(ji}”FW 1y (@))- Then, the boundary conditions atthe mir.rors
are that the electric field is perpendicular and the magnetic field parallel to the mirrors, i.e. F{)(¢) = 0 = F{) (o)
and F (o) = 0.

The tetrads were defined such that the polarization direction of the light field is in the direction of ¢{"*. We
define ¢fq”)0’ 1/ o) = 68)" e ¢;/ L (@) which are non-zero and we find the boundary conditions

; Qg 2\ AY gl 2 G A
0= Féll)reS(g) _ Re[el>\5 @ (9)) Zgb(nl))orl(g)(_) + ey S0l Zd)(nl’)oll(g)(_) ) (B10)
n=0 « n=0 «
From the lowest order in A/, we find that
HERNIN . RN .
0 = Re ('35 0O 60 () + 550 60 (o)), (B11)

Above, we found that the zeroth order amplitude tensors are real. Then, the boundary condition (B11) can only
be fulfilled forall oif ¢f , (0) = ¢fwl(g) and %Sf(%-)(g)) = %Sl('y(,-)(g)) + 27mmy;, where m;, € Z.

Appendix C. Deformations of a rod

For isotropic media, the stiffness tensor depends only on the Young’s modulus Y, the shear modulus G and the
Poisson ratio v. We have

1
Exx = ?(Uxx - V(Jyy + 022)), (C1)
1
Eyy = ?(Uyy — V(0 + 03)), (C2)
1
€2z = ?(Uzz - V(axx + Uyy))) (CS)
1 ..

Since the change of thickness of the rod holding the resonator and its deformations in the x—y-plane are not of
interest for us, we can restrict our considerations to €,, €, and €,,,. The elements of the strain tensor €,,and €,
lead to a deformation of the curve s() in the x and y-direction, respectively. Since the corresponding forces are
always transversal to the line elements of the rod, they only bend the rod and do not change its proper length. In
the proper detector frame, the proper length of the part of the rod in the positive z-direction of the support is
approximately given as

10 . D . .
We only need the latter to be defined up to rotations around ¢"* in the spatial slice.

19



10P Publishing New J. Phys. 20 (2018) 053046 D Riitzel etal

1+ 0

Ly~ [ (92 + (672 + o)

(A+P)Ly/2—6b 1x\2 17\2
~f ! d21+1(s)+(5—) , (C5)
2 S,Z S/Z

where 6 bis the shift of the z-coordinate of the position of mirror B. For the analysis of the transversal
deformations, let us assume that the rod has a rectangular cross section with side lengths w, and w,. Furthermore,
let us consider the extreme case of 3 = 1. An expression for the transversal deformation of such a rod can be
found, for example, in equation (2.2) [53]. For the x-direction, we find

d?s* P L, — 2)*
o 6yapmaXPT, (C6)

X

where a} .. is the maximal acceleration in x-direction experienced by a part of the rod. With s’ = ds/d¢ = 0 at
z = 0, we obtain that

3
§/x dS zp L, — Ly — z)?

AP max

$7 dz Y w2

(C7)

A similar expression can be found for s’ ¥ /s’ 2. With equation (C5), we obtain the approximate upper bounds for

the change of the z-position of the mirror B
X 2 y 2
a a
( Pn;ax) + ( Prnzax ] . (CS)
Wy w,

Then, the new position of mirror B is approximately (s*(L,), s”(L,), L, — 6b), where we get

ob <

N | o
o)
"’»l*wh\l

3L% a% 3L% @
(L) < —22max and o(L,) < 2 2ma (C9)
22 w? 2¢; w,

by integration equation (C7) and the corresponding expression for the y-direction. Since 6b, s*(L,) and s” (L,)
are already of second and first order in the metric perturbation, respectively, the change of the round trip time

can be calculated as
Tr L@, — 607 + 52 + 92 — 1) (C10)
c
2
1L (@ e ) aj)
~___P max 4 max . Cl11
3cc! ( w? wy2 (10

Let us define aj, ,, as the larger of the values of (8]a*(7)|) and ((36% + 1)L,c?|Ro;0,(7)|/6), where () denotes the
averaging over the interaction time. Comparison of equation (C8) with equation (28) shows that the effect of the
transversal bending on the length of the rod can be neglected in comparison to the effect of the longitudinal
deformations if

a5 o > max (L) ([af )2 /el W, Lo (1ah oy )2 /2w ) (C12)

In the gravitational field of a small massive sphere of 100 g of the example in section 9,an observer at rest experiences
an acceleration of the order of 10'* ms™>. So we assume a5 ,, = 10~'° ms~2, (|a} ;.. |) < 107 ms~2and
(|2} a1} < 1071 ms—2"", Let us consider an aluminum rod where ¢, = 5 x 10°ms~ . Forarod of length 1 cm, we
findthat L, /w; < 10°and L, /w, < 10°is sufﬁaent to fulfill the conditions in equation (C12). Let us consider the
situation for accelerations of the order of 10 ms ™ as they are experienced in the gravitational field of the Earth. So we
assume @ ,, = 10 ms2, (|a} . |) < 10 ms~2and (|a} ., [) < 10 ms~2. For an aluminum rod of length 10 cm,
the conditions in equation (C12) are fulfilled for Lp /W < 10and L,/ wy 10. For larger accelerations, the
orientation has to be chosen such that aj ., < aj,, andap . < ap,, tofulfill the conditions and still use a rod.
Now, let us consider the longitudinal deformation. From aj, &~ —c2T, ~ ¢?0;hqo, we obtain the inertial and
tidal forces on the rod by multiplication with the mass density p. Since hy, contains terms that are independent of
zand terms that are proportional to zand 27, we can write the acceleration as

11 . . e ,
We consider the massive sphere as the only source of a gravitational field here. In an earthbound laboratory, the effect of the Earth’s
gravitational field has to be taken into account as well.
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(C13)

ap(7, x, y, z) = ap(7, x, ¥, 0) + zdiaf)(T, X ¥ 2)
Z z=0

Let us assume that the rod has a constant cross section A and a constant mass density. Then, the sum of inertial
forces and gravitational force along the rod acting on a segment of the rod at z > 0 can be approximated as

b
Fi(r,2)~ f dz’Ap aj(7, 0, 0, z')
z

~ (b — 2)Ap aj(7, 0, 0, 0) + %(b2 — zz)Apdiafp(T, 0, 0, z) (C14)
z

z=0

where, by considering the acceleration only atx = 0 = y, we neglected terms proportional to the width of the
rod. For the force along the rod acting on a segment of the rod atz < 0, we find

FZ(1,2) = (z — a)Ap a5(7, 0, 0, 0) + l(z2 — az)Apiaf)(T, 0, 0, 2) (C15)
2 dZ 2=0
Due to the support, this corresponds to the stresses
Fi (T,
oE(r, 2) = i#. (C16)

The differential force in the x-direction acting on a one-dimensional segment of the rod with coordinates x, y
and zinduced by all one-dimensional segments with the same z-coordinate, the same y-coordinate and x’ > x
can be written as

W /2
dFi(7, x, y, 2) = dzjv dx'w, pap(T, %', y, 2).
X
Furthermore, we find

X
dF*(t, x, y, 2) = dzf dx'w, pap(T, x', y, 2)
—we/2

for the differential force induced by all one-dimensional segments with the same z-coordinate, the same y-
coordinateand x’ < x. Since the metric (12) contains constant, linear and quadratic terms in the spatial
coordinate and a}, ~ —c?TY),, we conclude that daj(, x, y, z) /dx cannot depend on y in first order in the
metric perturbation, and we find that the acceleration in the x-direction can be written as

d
(T, X 3, 2) = &(T, 0, 3, 2) + x=-a(7, %, 0, 2)x-0- (C17)
The first term corresponds to an acceleration that all segments feel in the same way. Therefore, it does not lead to
astress. Hence, the stress on a segment of the rod at zbecomes
wy d

ok (T, 2) = ?"p—a’f)(r, x, 0, z)

dx

x=0

An equivalent expression can be derived for the stress 7,,. The length change of the rod is given as

b 0
5LP(T):J; dz'el (1, 2') + f dz’e (7, 2')

b 0 b

_ % j; d2'at(r, 2') + % f dzlo(r, 2) — % f dz’ (0 (7, 2') + 0,y(7> 2)) (C18)
‘We obtain that
b 0
% fo d2'at (T, 2y + % f dzlo(r, 2') (C19)
:ﬁ l(bz — az)afa(T, 0, 0> 0) + l(173 - a3)ia§(7—’ O> 0’ Z) (CZO)
vl2 3 dz L

p 1 z 1 2 2 d z
_Pr (280,857, 0,0, 0) + —(332 + DI2-Zai(r, 0, 0, . c21
Y p(zﬁ paP(T ) + 12( 87+ 1) deaP(T z) . ( )

Since the highest polynomial order of terms in the metric perturbation in the coordinates is 2,

ia’,ﬁ(T, %, 0, z)|y=¢ can only contain terms that are independent of zand terms that are linear in z. Hence, we
find

b
% f dz' (0w (7 2) + 0,(7, 2), (C22)
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2 2
vp. | wg d wy d
~—L,| =—aj(7, x,0,0,0 + ——aj(r,0,5,0 . C23
YPSdXP( )X:0 dep( )/)FO (C23)

Therefore, the effect of acceleration and curvature on the proper length via 0. and 0, is suppressed by a factor
vw; /L, and vw, /L, respectively, in comparison to the effect via .. For most materials 7 < 1and we can

assume that wy /L, < 1. Therefore, if 3aj(, 0, 0, 0) or 33> + DL, %af;(r, 0, 0, z)|,—¢/6 is of the same order
or larger than w; %aﬁ(ﬂ x, 0, 0)x=o/4 and w, %a{;(r, 0, y, 0)],—0/4 and if the oscillations of the transversal
stresses are not on resonant with any elastic mode of the rod that the longitudinal stresses are not on resonance

with, we can neglect the effect of the transversal stresses and we can restrict our considerations to o, and ;.
Then, we can write the conditions as

af’,av > max {Wx <|R0x0x|> <|R0y0y|> (C24)

Appendix D. The causal deformable rod from relativistic elasticity

In [33], a covariant formulation of the relativistic elastic rod was given. In this section, we show that the
definitions of [33] lead to our result equation (31) for the causal rigid rod when applied to the metric in
equation (12) in the proper detector frame.

The author of [33] formulates the theory of one-dimensional relativistic elastic bodies by considering a
motion of a one-dimensional continuum movinginal + 1-dimensional spacetime. Our arguments from
sections 2, 4 and 5 lead exactly to such a situation. The rod is dragged along the world line of its support or its
center of mass is assumed to move along a geodesic. All accelerations of the rod segments are encoded in the
metric in the proper detector frame given by equation (12). Furthermore, our rod is assumed to lie along a spatial
geodesic and we neglect all transversal accelerations. What remains is only gravitational effects along the rod
encoded by the metric corresponding to the line element

s2= —(1 — h{y(r, 2))dr? + dz% (D1)

Due to our assumption that acceleration and curvature only change very slowly, we find that this situation
corresponds to equation (22) of [33]. The coordinate transformation in equation (23) of [33], Z = f (z) with

f(z) = foz dz'(1 — hE)'/?leadsto
s2a —(1 — hgy(r, f7H@)(AT2 + d22) &~ (1 — hgo(T, 2)(—d7? + d2?). (D2)

in first order in the metric perturbation since f~!(£) = Z in zeroth order in the metric perturbation. The rigid
rod of [33] has constant coordinate length in the coordinates (7, Z), which are called conformal coordinates
because the line element differs from the that of Minkowski space only by a conformal factor e2¢?), where in our
case, €2?@ = (1 — hdy(r, Z)). This rigid rod can be called a causal rigid rod because the speed of sound in the
rod material is equivalent to the speed of light. In contrast, a Born rigid rod would correspond to an infinite
speed of sound.

The square root of the conformal factor is the stretch constant of [33]. We obtain the proper length of the
causal rigid rod by integrating the stretch constant from one end of the rod to the other. However, we have to
note that the stretch factor also contains boundary conditions of the rod; every point at which ¢ (Z) vanishes
corresponds to a free end of the rod. Therefore, we cannot just use the expression for h, that we used in
section 5. We have to consider the two sides of our rod separately, and in each situation, add a constant to h,,
such that the free end is ata or b. Adding a constant to the metric does not change any dynamics and we are free
to do such an operation. We define

his(r, 2) = h& (1, 2) — h&(r, a) and (D3)
hé (1, 2) = hiy(T, 2) — hy(T, b). (D4)
The proper length becomes

Lpff dz (1 — hi(r, z))1/2+f dy (1 — hi(r, 2))/2

b
~ f (1 + —(z —a)+ RoZoZ(z 2)) + f (1 + —(Z - b+ ROZOZ( bz)) (05)
0 2

and we reproduce the result of equation (28) for ¢, = c.
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Abstract

Light carries energy, and therefore, it is the source of a gravitational field. The
gravitational field of a beam of light in the short wavelength approximation
has been studied by several authors. In this article, we consider light of
finite wavelengths by describing a laser beam as a solution of Maxwell’s
equations and taking diffraction into account. Then, novel features of the
gravitational field of a laser beam become apparent, such as frame-dragging
due to its spin angular momentum and the deflection of parallel co-propagating
test beams that overlap with the source beam. Even though the effects are too
small to be detected with current technology, they are of conceptual interest,
revealing the gravitational properties of light.

Keywords: linearized gravity, general relativity, laser beam, paraxial beam,
Maxwell’s equations, diffraction

(Some figures may appear in colour only in the online journal)

1. Introduction

The gravitational field of a light beam has first been studied by Tolman, Ehrenfest and Podolski
in 1931 [36], who described the light beam as a one-dimensional (1D) ‘pencil of light’. Later,
a description for the gravitational field of a cylindrical beam of light of a finite radius has been
presented by Bonnor [4]. In this description, light has been modeled as a continuous fluid
moving at the speed of light. A central feature of these two models is the lack of diffraction;

Original content from this work may be used under the terms of the Creative
BY Commons Attribution 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.
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the beams do not diverge. This corresponds to the short wavelength limit where all wavelike
properties of light are neglected. Further studies of the gravitational field of light that share
this feature include the investigation of two co-directed parallel cylindrical light beams of
finite radius [3, 24], spinning non-divergent light beams [23], non-divergent light beams in the
framework of gravito-electrodynamics [13], and the gravitational field of a point like particle
moving with the speed of light [1, 38].

In contrast, the wavelike properties of light have been taken into account in [37], where
the gravitational field of a plane electromagnetic wave has been investigated. An approach to
take finite wavelengths into account for the case of a laser pulse has been given in [26, 28],
where, however, diffraction has been neglected. In this article we describe the laser beam as
a solution to Maxwell’s equations. This is done perturbatively by an expansion in the beam
divergence, which is considered to be small. The zeroth order of the expansion corresponds to
the paraxial approximation and coincides with the result of [4]. In the first order in the beam
divergence, frame-dragging due to the spin angular momentum of circularly polarized beams
occurs. In the fourth order in the divergence angle, a parallel co-propagating test beam of light
overlapping with the source laser beam is found to be deflected by the gravitational field of
the laser beam.

The properties of light are inherent in modern physics. They were used to derive special
and general relativity and they are often the basis for new approaches to spacetime theories.
Furthermore, the gravitational field of laser beams is a phenomenon on the interface of general
relativity and quantum mechanics as laser beams can be brought into non-classical states. For
the progress of modern physics it is of great importance to study such phenomena, as they may
give some insight into quantum gravity. Hence, it is necessary to study the gravitational prop-
erties of laser light in sufficient detail. In this article one of the most fundamental features of
laser light, its wave properties, is taken into account for the first time. Therefore, even though
the effects we present in this article are very small and not measurable with current technol-
ogy, they are of general interest for the physics community.

We would like to point out that, if detection of the gravitational field of light may be feas-
able at some point in the future, it is very likely that strongly focussed laser beams will be
involved in the corresponding experiments. However, due to the wavelike nature of light,
there is a fixed relation between a laser beam’s divergence angle and the width of its focus.
This feature limits the experimental possibilities further. This has to be taken into account to
obtain the sensitivity that would be necessary to detect the gravitational field of light at some
point in the future. Therefore, future advanced detection schemes that may be promising to
detect the gravitational field of light have to be assessed using the detailed description given
in this article. Hence, this article is of importance to future considerations of the possibilities
to detect the gravitational field of light.

We proceed as follows: in section 2, we describe a focused laser beam as a solution to
Maxwell’s equations. This is done perturbatively, as an expansion in the small beam divergence
angle 6. Furthermore, we derive the energy—momentum tensor for a circularly polarized laser
beam. In section 3, we introduce the framework of linearized gravity. The equations determin-
ing the metric perturbation and solutions with Green’s functions are given in section 4. Then
we discuss the specific effects appearing in the different orders of the expansion in 6 of the
gravitational field: in section 5, we discuss the zeroth order, which corresponds to the paraxial
approximation. Frame-dragging happens in the first order of the metric perturbation and is
explained in section 6. The deflection of a co-propagating parallel light ray in the gravitational
field of the laser beam is shown in section 7. Some conclusions are given in section 8.
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Throughout the article, we use the following notation: for spacetime coordinates we
use greek indices, like x®, and for spatial coordinates we use latin indices, like x*. For the
Minkowski metric, we choose the convention 7,3 = diag(—1,1,1,1).

2. Describing the laser beam

In this section we describe the laser beam as a Gaussian beam, a perturbative solution to
Maxwell’s equations. The solution is expanded in the beam divergence, which is assumed to
be small. Finding a solution for the vector potential, we calculate the energy—momentum ten-
sor, which will be used in the next section to determine the spacetime metric.

2.1. The field strength tensor

The laser beam is a monochromatic plane wave whose intensity distribution in the directions
perpendicular to the direction of propagation decreases with a Gaussian factor. It is a perturba-
tive solution of Maxwell’s equations: an expansion in the beam divergence, the opening angle
of the beam, which is assumed to be small. This solution is obtained by making the ansatz that
the vector potential is a plane wave enveloped by a function depending on the spatial position.

More specifically, the vector potential of the Gaussian beam is obtained as follows: it has
to satisfy Maxwell’s equations in form of the wave equations,

OA.(t,x,y,2) =0, (D)
where 0 = 1*#0,0s = — 582 + 02 + 02 + 92 is the d’ Alembert operator and we choose
the Lorenz gauge condition 70,45 = 0. For convenience, we work in the dimensionless
coordinates 7 = %, &= Wio, x = £, ( = £, where wy is the beam waist. Writing {x} for the

B wo wo

coordinates {ct, x, y, 7} and {x®} for the coordinates {T, £, x, ¢}, we obtain for the Minkowski
metric

dx® dx? ) ..
Naf = qua 3.5 s = Wo diag (L1 1.1). @)
The vector potential transforms as Az = %ZA&. We make the ansatz that the vector potential
is monochromatic and can be written as

Aa(T,6,%C) = Avga (&, x, 0C)el 7€), 3)

where 0 = 2/(wok) is the divergence angle of the beam, k is the wave vector and A is the
amplitude. The vector envelope function vg is assumed to depend on ¢ only through the com-
bination #¢. With the ansatz (3), we obtain the Helmholtz equation for the envelope function

(07 + 05 + 0205 + 4i0p¢ ) va (&, X, 0C) = 0. 4)

We consider 6 to be small, which implies that the envelope function changes much more
slowly in z-direction than in x-direction or in y-direction. Then, we make the ansatz that v
can be written as a power series of 0]

va(& X 00) = Y 0" (€ X, 00), 5)

n=0

3 An expansion in orders of 62 has been presented by Davis [12]. Here, we consider the general expansion to allow
for helicity eigenstates later on.
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where vgl ) are the coefficients in the power series. The Helmholtz equation (4) leads to the

differential equations

(0% + 02 + 4idc) 03 (€, x. 60C) = 0, (6)
(0% + 02 + 4idpc) v (€, %, 6¢) = 0, @)
(02 + 2 + 4idc) 02 (€, %, 0C) = —3 08P (€, x. 6¢), for n > 1. 8)

Note, that this set of equations couples components of v5 of odd n to other components of
odd n and components with even n to other components of even n. Therefore, we obtain two
independent hierarchies of components of v5. We will couple odd and even components later
when we introduce helicity.

Equation (6) is known as the paraxial Helmholtz equation. It can be interpreted as a
Schrédinger equation in two spatial dimensions with m/i = 2 when 6( is seen as a time vari-
able, i.e.

1
090 (6. 60) = 7 Baavg (6. x.60). ©)

where Ayy = 8§ + 6>2< is the two dimensional Laplace operator. A solution of equation (9) has
to spread similar to the wave packet of a massive particle in quantum mechanics. Here, the
spreading of the wave packet corresponds to the divergence of the beam. The solution of equa-
tion (9) that we are interested in is a Gaussian wave packet. Furthermore, we want the wave
packet to be centered on the optical axis and to be rotationally symmetric about the optical
axis. With these conditions, we obtain for the lowest order

o (6.x.0¢) = e vo (€. x. 0C). (10)
where the function vy is given by
00(€. 1, 0C) = p(6)e OO, (1)

and where p = /&2 + X2, eg)) is the constant polarization co-vector and p(6¢) = 1/(1 + i6¢)
relates the spread of the Gaussian wave packet and the divergence angle of the beam.
Equation (10) represents the Gaussian beam in lowest order in the divergence angle 6. A
graphic representation can be found in figure 1. The first order solution fulfills the same par-
axial Helmholtz equation as the zeroth order solution. Therefore, we set

0l (6, %, 0¢) = €S vo(€, . 60). (12)

The equations for the higher order terms in equation (8) correspond to Schrodinger equa-
tions with an additional term proportional to the solution of the equation two orders lower,
which has the effect of a source term,

. n 1 n 1 —
0908 (€3 06) = =3 Dol (6. 00) — 70508 (E.:x.0¢). forn > 1. (13)

Finally, we have to specify the polarization co-vectors €5 and the terms in the expansion of
the envelope function of even n. We will do so for a Gaussian beam of circular polarization in
the following. First, note that the components of the vector potential are not independent; the
Lorenz gauge condition we imposed leads to
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Figure 1. Schematic illustration of the Gaussian beam, the beam waist wy, the
Rayleigh length zz and the beam divergence . More specifically, the figure illustrates
the scalar envelope function vy of the vector potential of the Gaussian beam in a plane
that contains the optical axis (represented by the dashed horizontal line). Due to the
rotational symmetry of the envelope function about the optical axis, the vertical axis can
be any direction transversal to the optical axis. The thick curved lines mark the distance
w(¢) = 1/|p(0¢)| from the optical axis at which the absolute value of the envelope
function reaches 1/e times its maximum.

A, = gﬁfAT = % (O¢A¢ + OpAc + 00pcAc) - 19

With this identity, A, can be eliminated from the space-time components of the field strength
tensor Fs3 = 0aAz — OAs as
2i 10 e
Fra = —Far = =5 Aa — 50" 0:05Ac, (15)
where 0% is the Kronecker delta. As the vector potential, the field strength tensor can be
expanded as

= woEo 20—
F77 = Zan f77(§9X79C)ele(< T)’ (16)
af af
n=0 \/5

where Ey = v/2.A/(wof) and a direct relation between Ug’ )and fgg can be established, which
is given in appendix A.

2.1.1. Circularly polarized beams. In the last step, we have to specify the polarization of the
beam that we want to consider. In this article, we will focus on circularly polarized beams. We

define a circularly polarized beam as a helicity state which is an eigenstate of the generator of

the duality transformations F/ 5 =Fapcosg++Fs5sing, where xF,5 = 51/—det(n)e, BWgFWS

is the Hodge dual of F;55 and €535 is the completely anti-symmetric Levi-Civita symbol with
€0123 = — 1. The invariance of Maxwell’s equations under these duality transformations and
the corresponding conservation laws were worked out in [8]. The generator of the duality trans-
formation Dy = exp(ipA) : Fs5 — FIdB isA:Fap > —i % Fggsince xx Fyz = —Fgp.
The vector potentials of well-defined helicity are eigenstates of A with eigenvalues A = +1.
There are two options to obtain these eigenstates. One option is to start with a helicity eigen-
state of zeroth order in 6, construct the corresponding higher order terms of the expansion of
the envelope function of even n with equation (13), obtain the odd terms in the expansion of
the envelope function with the Lorenz gauge condition in equation (14), calculate the field
strength tensor and project it with (1 + AA)/2. This option is presented in appendix C.
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In the main text of this article, we follow the second option, where a vector potential is
constructed order by order by taking into account the condition (1 — AA)F 2 5= 0 and the
expansion in equation (16) in each order separately. This construction is presented in appendix
A. Starting from vg)) = eg))vo, where eéo) =wo(1,—Xi,0)/v/2 and a € {£, x, ¢}, and taking
the solutions of even orders from [30] into account, we obtain

02(0) — 6(%0)00’ (17)
A1) (1 iwopt ~

v = —€e —= (& —iXx) o, 18
A2 _ B (1o 4 a0

Va ) (1 P ) Ua s (19)
A3 H Al

va()=1(4+up2—uzp4)va(), (20)
O 2 4 36, L ag8) A0

0. = (6 =3utpt — 2w + Zputp® | v, 2n

16 2
where 6‘%1) =wo(0,0,1). The corresponding vector potential is given as A} = Ei:o 0"

Avg(") (& x. 0¢ )ei%(f —7), where the component A? is given through the Lorenz gauge condi-
tion in equation (14). Linearly polarized Gaussian beams are obtained as linear combinations
of helicity eigenstates; for example, AS := (AL +A3)/V/2 is the vector potential of a laser
beam that is linearly polarized in the ¢-direction. Note that all terms of higher than leading

order in equation (17) decay faster than va’\ O for 08¢ — oo. Hence, vz =~ v}l\ O gor large 6C.

2.2. Three distinct scenarios

The beam divergence 6, which is assumed to be small, is related to the wave vector k, the beam
waist wy and the Rayleigh length zz through

22
wol  zg6?
The beam waist wy describes the width of the beam at its focal point, i.e. at { = 0, and the
Rayleigh length is the distance from the focal point along the direction of propagation such

that the cross section of the beam is doubled, as illustrated in figure 1. There are basically three
scenarios for which the condition that € is small is satisfied:

(22)

1. k = constant: if the wave vector k is kept constant, the beam waist wy and the Rayleigh
length zg have to be large, and zz > wy has to hold. Keeping the wave vector constant
is the characteristic feature of a plane wave. If the beam is very long, its gravitational
field may be compared to that of infinitely extended plane waves, which are described by
particular pp-wave metrics®.

2. wp = constant: keeping the beam waist wy fixed, the wave vector k and the Rayleigh
length zz have to be large, and in addition we find zg > % This situation describes an
almost parallel beam of a given waist. If the beam is very long and the beam waist is

#See chapter 35 in [9].
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considered to be small, such that it is approximately a cylinder of light, its gravitational
field may be compared to the solution found by Bonnor [4] for an infinitely long cylinder
of light.

3. zg = constant: keeping the Rayleigh length fixed, the wave vector k has to be large and
the beam waist wy has to be small. This case corresponds to a very thin and almost parallel
beam along the z-axis, whose energy-density is accordingly high. The corresponding
gravitational field is the solution given by Tolman, Ehrenfest and Podolski [36].

In the following, we will keep the beam waist w, constant.

2.3. The energy-momentum tensor

To derive the gravitational field of the laser beam, we have to derive its energy—momentum
tensor first. Let us define the real part of Fgj5 as Re(F) 5. In terms of Re(F)4 3, El}e energy—
momentum tensor is defined as T;5 = c2eo(Re(F)@URe(F)Ba — %nagRe(F)‘nge(F)gﬁ).
Therefore, the energy—momentum tensor can be decomposed into the real term

r 0250 o % 1 gﬁ *
the complex term
c C2€0 5 1 55
(T a5 = e (Fa Fgs — 4naBF6pF5p> , (24)

and its complex conjugate (7°)* 5- The term (T¢)p is highly oscillating with i({ —7)/6
while these oscillations cancel in (7") 5. For eigenstates of the helicity operator with eigen-
value A = =1, the highly oscillating terms in (7¢)5 5 and its complex conjugate vanish and it
remains 755 = (Ts - Therefore, the highly oscillating parts of the energy-momentum ten-
sor can be interpreted as a result of the interference of contributions of different helicity in the
field strength that come into play for linear or elliptical polarization. In the following, we will
only consider circular polarization.

The components of the energy—momentum tensor are directly related to the energy density

&, the Poynting vector S* and the Maxwell stress tensor 03 of the electromagnetic field,

&> —Sé‘/c -8%/c —Sé/c

A A X A
T — ng/c 011 J12 013 (25)
aB = | _ox A by by .
SX/C 012 ) 023
5\ A hy hy
_Sg/c 013 023 033

For the field strength tensor F’ 2 5= adA% - agAg of a circularly polarized laser beam, which
we specified in section 2.1.1, the energy density, the Poynting vector and the stress tensor
components are given in appendix B.

The power transmitted in the direction of propagation is given by P = foh do fooo dp pSe.
In the leading order in the expansion in §, we obtain Py = mceoEaw3 /2, where Ej is the ampl-

itude of the electric field in the leading order at the beamline. We may then express the ampl-

itude in terms of the power as Ey = ng °W2 . For a power of Py ~ 10> W and a beam waist
0

of wo ~ 1073 m, the amplitude is Ey ~ 102 Vm
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As the field strength tensor, the energy—momentum tensor can be expanded in orders of 6

as Tg 5= Yo Q”t(’;(ﬁ—"). Then, the gravitational field of the laser beam can be calculated for each
order and effects of different orders can be identified. We will present this analysis up to fourth
order in @ in the following sections.

3. Linearized gravity

Assuming that the energy of the laser beam is sufficiently small, we use the linearized theory
of general relativity® to describe its gravitational field. In appendix D, we make a rough esti-
mation to show that this is reasonable. The metric g,z consists of the metric for flat spacetime
7o Plus a small perturbation hqg with |hag| < 1,

8aB = Nap + hag. (26)

Therefore one neglects terms quadratic in the metric perturbation. In this case, one sees that
the inverse of the metric reads g*? = n®# — h®#. The Einstein equations can be simplified to
a set of linear equations in the metric perturbation. As the full general relativity has an invari-
ance under coordinate transformation, its linearized approximation is invariant under linear
coordinate transformations x® — X = x® 4 £%, where the metric perturbation transforms
as hog — ilag = hop — 0uép — 3ﬁfa.6 Since curvature is described by the second deriva-
tives of the metric, quantities depending on the curvature are invariant under linear coordinate
transformations.

To derive the linearized version of the Einstein equations, we assume the Lorenz gauge condi-
tion, 0%hap5 = 0pha™ /2. The energy—momentum tensor has to be conserved, nc‘5 0aTsy =0,
which implies that the continuity equation is satisfied [21, 26]. The remaining gauge freedom
is given by linear coordinate transformations &, that satisfy [, = 0. Taking into account that
the trace of the energy—momentum tensor 7, is identically zero for the electromagnetic field,
we obtain the linearized Einstein equations’

DhaB = *ETaﬁa (27)

where k = 167G/c* and G is Newton’s constant.

In general relativity, coordinates have no physical meaning. Since the values of the comp-
onents of the metric tensor depend on the choice of coordinates, we cannot extract physical
information directly from them. Therefore, we have to investigate effects on test particles to
learn about the gravitational field. The motion of test particles is governed by the geodesic
equation

Pyt el

— Trvegq, ’ 28
de? YP dp do (28)
where, in linearized gravity, the Christoffel symbols are given as
1
F’ij = _ph° (&,hgp + Ophgy — aghl,p) . (29)

2

A more direct way to analyse gravitational effects is through the spread and the contraction
of the trajectories of test particles. This way, the test particles serve as each others reference.

5 See chapter 18 in [9].
®1t is assumed that |9,&g] is of the same order of magnitude as A,
7 See equation (18.8b) in [9].
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v'(0)

Figure 2. Schematic illustration of the geodesic deviation equation: two nearby
geodesics v(p) and v/ (o) are seperated by the vector s#(p).

The relative acceleration between two infinitesimally close geodesics (o) and /(o) param-
eterized by p is given by the geodesic deviation equation
D*st

at = @ = Rupaa(’)’)’.yp’.)’osaa (30)

where s is the separation vector between the geodesics, D/dp = 4#V , is the covariant deriva-

tive along the geodesic y(o) and R* ;. is the Riemann curvature tensor. This is illustrated in
figure 2. In the linearized theory, the pulled down Riemann curvature tensor is given by

1
Ra,@76 = 5 (8/367@5@ — 8]365h7a — &Yaahﬁ(; + a;aahM) . 31D

Since the metric perturbation transforms as iag — hag = hag — Oals — Og€a, we find that
R p~s 1s invariant under a linearized coordinate transformation.

4. The metric of the laser beam

Solving equation (27) for the energy—momentum tensor (25) with emitter and absorber® at
general positions can be quite cumbersome. In the following, we will consider two different
limiting situations instead; we consider the case of the distance between emitter and absorber
of the laser beam being very large and very small.

In the first situation, we can neglect the rapid change of the field strength at the emitter and
the absorber of the laser beam. Then we can take into account that 7, 5 is changing slowly in

¢. In particular, we have Té\ 5= Tg 5(5 , X> 0¢). Therefore, we can expand the metric perturba-
tion similar to equation (5) as

5(6x.00) = Z "W (€, x. 0C), (32)

and the linearized Einstein equations (27) lead to the differential equations
Azdhgg)) = —HW% 221(30), (33)
Do) = —rnf 225, (34)

81n this article, emitter and absorber always refers to the emitter and the absorber of the source laser beam for the
case of a finitely extended beam. The emitter can be associated with the laser resonator and the active material and
the absorber can be imagined as a beam dump.
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Amhgf nwéA“ @Kh’la forn > 1. (35)

( )

The solutions h” 5" of equations (33)—(35) can be given by using the free space Green’s func-

tion for the P01ss0n equation in two dimensions as

R €)== [ dgaog (€~ €7 + (x = 1)) Q€' N 00) (36)

where Q" is the source term on the right hand side of equations (33)—(35), respectively.
The form of the solutions in equation (36) was fixed by an additional condition that we did
not discuss yet; we want the components of the Riemann curvature tensor to vanish at infinite
distance from the beamline. As stated in section 3, the Riemann curvature tensor governs the
spread and the contraction of the trajectories of test particles. This means, if the Riemann ten-
sor vanishes, parallel geodesics stay parallel and there is no physical effect as the only refer-
ence for a test particle in linearized gravity can be another test particle. We can assume that
there is no gravitational effect for infinite spatial distances from the beamline. Therefore, we
assume that the Riemann curvature tensor R ,;, vanishes for p — oco. The full discussion of
the curvature condition and its implications are given in appendix F. Additionally, appendix
F contains expressions for the components of the metric perturbation up to third order in 6.

As we did before for the vector potential, the field strength tensor, the energy—momentum
tensor and the metric perturbation, we expand the Christoffel symbols and the Riemann tensor
in orders of 0,

(M35 (&, x,00) = Za" MM)E (& X 60), (37)

and

R 55(6,x,0¢) = Ze” (€. 00), (38)

respectively. With equations (31), (29) and (32), we can derive direct relations between the
terms of the expansions r,( ,) and (v ’\("))gﬁ and terms in the expansion of the metric pertur-
bation ha(ﬁ ) They are glven 1n appendix E.

4.1. Small distance between emitter and absorber

In the second situation, where we assume a short distance between emitter and absorber of the
laser beam, the rapid change of the field strength at emitter and absorber of the laser beam can-
not be neglected. Then, we solve the Einstein equations (27) by use of their retarded solution

o T (7= VE= O+ (= X2 T €~ O%€.X-6C)
WX = — [ deldy'de -2 .
et =y /—oo fhvi VE=EP+ =X+ (=)

(39)
Furthermore, we can set ¢ < 1 and we can expand the function e~ 1#(%¢ I’ appearing in the
energy—momentum tensor in 6 before the integration, which simplifies the calculations signifi-

cantly’. Expressions for hg 2 up to second order in 0 for the case of small distances between
emitter and absorber of the laser beam can be found in appendix H.

9 Due to the Gaussian profile of the beam, large values of p do not contribute significantly and (6¢)"p* can be
considered as small for all n > 1.

10
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In the following, we discuss the metric perturbation in different orders in 6 and present its
physical effects. As already the effects in the leading order of our expansion are too small to
be measurable with current technology [26], this will also be the case for the effects in the
higher orders. However, the effects are of conceptual interest, as they illustrate the gravita-
tional properties of light.

5. Zeroth/leading order

The metric in the leading order corresponds to the full metric at @ = 0, and thus to the metric
for the laser beam in the paraxial approximation. Then, the components of the Poynting vec-
tor transversal to the beamline vanish and the only non-zero component of the Maxwell stress

tensor is C’éc' Furthermore, UZ\C =& = —Sé/c, which leads to
1 0 0 -1
A0 _ o] O 0 0 0 | L0
T = = EOMO _ (40)
ap £ 0O 0 0 O € ap
-1 0 0 1

where £ = eqwZEZ|vo|> = 2Py|vo|?/ (7). Therefore, the metric perturbation is found as
A(0) _ 7(0) 540
RO = 1Oum, @)
where, for the case that the emitter and absorber of the laser beam are far away from each
other, we find from equation (36)

0 — #%%Po (Lpo o o ooy
== <2El( 2|uf*p?) log(p)), (42)
where Ei(x) is the exponential integral function. The solution (42) can be compared with the
exact solution derived by Bonnor for an infinitely extended beam of a light-like medium with-
out divergence. The derivation of the metric for a Gaussian profile of the energy density of
the medium is given in appendix G. Bonnor’s solution is split into an interior and an exterior
solution that are matched at a finite transversal radius a. If the beam is infinitely extended in
the transverse direction, we are left with an interior solution only which reads

Ew2 P, 1_.
EB = Taj — ?Oc <log(p) - EEI (—2p2)> MgB. (43)

For § = 0, we have (6¢) = 1, and the solution in equation (41) coincides with (43).

5.1. Small distance between emitter and absorber of the laser beam

For the case when the emitter and absorber of the laser beam are close to each other, we have
to take the second approach described in section 4. With §¢ < 1, the retarded potential (39)
in leading order in 6 becomes

2P, : [ - — ()2 +p ”
1(0) — KWo Oe—2p / dp/ p/ log (5 C + (ﬁ C) + 14 ) JO (14pp/) e—zp , (44)
0

2me a—C+/la=0)2+p?

1
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where Jj is the Bessel function of the first kind. For small beam waists, wy < 1, the solution
for the laser beam (44) approaches the solution for the infinitely thin beam (45), as shown in
appendix I. We obtain

O Py (B VB
wo—0 2ne Oé—C—i—\/m .

Thus, in the paraxial approximation, we may say that the solution for the laser beam approaches
the solution for the infinitely thin beam of constant energy per length of [36] as the beam waist
goes to zero. Note that the limit wy — 0 can only be considered for the leading order of the
laser beam here. This is because # = 0 implies that the condition ¢ < 1 can be satisfied for
all wy. In contrast, for any non-vanishing 6, the conditions wy — 0 and 6z/wy = 6¢ < 1 imply
z— 0.

In figure 3, the function 19 and its derivatives are illustrated for the three cases of the
infinitely long Gaussian beam, the Gaussian beam with short distance between emitter and
absorber of the laser beam with a Gaussian profile, and the infinitely thin beam.

(45)

5.2. Acceleration of a test particle at rest

Let us consider the acceleration a massive test particle would experience if it was initially at
rest at given p and (. Then, the initial normalized tangent to its worldline ~y(7), where 7 is the
proper time, is given as ¥ = cwy ' (1 + w9 /(2u3), 0,0, 0), where the dot refers to the deriva-
tive with respect to proper time. From the geodesic equation (28) and the form of the metric
in zeroth order, we find

c? (0) ¢ c? (0)
VP~ — 0,1 and 4% ~ — 01" 46
Plots of 0,/ © and Ocl () for the three different cases above are given in figure 3. As a numerical
example for the long beam, for the power Py ~ 10'> W, the beam waist wy ~ 1073 m, a parti-
cle at rest at the location z = O and r = /x2 + y2 = wy is accelerated by 5" ~ —10718 ms=2.10
This is of the same order of magnitude as for the infinitely thin beam [26].

5.3. Curvature

For the leading order, we can find the components of the curvature tensor using equation (E.2)
in appendix E and equation (41). The only non-zero independent components of the Riemann
curvature tensor for the metric perturbation given in equations (42) and (44) and the limit of
an infinitely thin beam in equation (45) are

© _p0 _ o0 _ 1.0
Rrizj = Riigg = —Rrigy = =500, @7

For the case of a far extended beam neglecting emitter and absorber of the laser beam that was
given in equation (42), we obtain

10 Here and in the following numerical examples, in order to express the acceleration in the coordinates {ct, x,y, z},
the Leibnitz rule has been applied and it has been used that the difference between proper time and coordinate time
is proportional to the metric perturbation.
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Figure 3. These plots show the value of the leading order of the metric perturbation
IO (part a, d) and its first derivatives (part b, c, e, f) for the Gaussian beam with infinite
distance between (plain, blue), the Gaussian beam with short distance between emitter
and absorber of the laser beam (dashed, red), and the infinitely thin beam (dotted,
purple) in units of kPyw3/(27c). In the second and the third cases, the distance between
laser beam’s emitter and absorber is chosen to be 6. In the first row, the functions are
plotted for ¢ = 1 and in the second row for p = 1/2. The second row does not contain
plots for the case of large distances between emitter and absorber of the laser beam as
there is no dependence of I” on (in that case. We find that the values for ¥’ and its first
derivatives are usually larger for the infinitely thin beam than for the other two cases.
This is due to the divergence at the beamline for the case of the infinitely thin beam. In
the other two cases, the gravitational field is spread out as the sources are. In (b), we
see that the absolute value of the first p-derivative of /) reaches a maximum at a finite
distance from the beamline. Note that 0,/ () js proportional to the acceleration that a
test particle experiences if it is initially at rest at a given distance p to the beamline. We
see that acceleration is always directed towards the beamline. It is larger in the case of
an infinite distance between emitter and absorber of the laser beam than in the case of
a finite distance, which we can attribute to the larger extension of the source (and thus
the larger amount of energy) in the former than in the latter. In (e), which shows plots
for the cases of finite distance between laser beam’s emitter and absorber, we see that
0pl (©) still is the largest at the center between emitter and absorber of the laser beam
and decays quickly once their positions at { = +3 are passed. 9¢/ ) is proportional to
the acceleration in the (-direction. As expected it vanishes for infinite distance between
emitter and absorber of the laser beam. In (f), we see that the acceleration is directed
towards the center between the laser beam’s emitter and absorber and its absolute values
reaches its maximum at ( = —3 and { = 3, the (-coordinates of emitter and absorber of
the laser beam respectively.

kwZPy || o2
R(rog)rg — g?gg _ _R(rog)gg _ 40 o | l ((52 ) - (4£2p2 re- XZ) e 2lulp ) , (48)
T p

RO _pO  _ _pO wwiPo |ul* ((52_ 24 (4 22 g2y 2) eleu\2p2> (49)

XX T RO T TN T 4 pt X X P X ,

2 2

0 _p0 _ _pO _ _kwoPo |p"€x 2\ 2|l

Reerx = Regox = ~Reeex = =500 — 4 (1 —(1+2p%)e 2l ) : (50

13



Class. Quantum Grav. 35 (2018) 195007 F Schneiter et al

5.4. Comparison to the infinitely thin beam

In the paraxial approximation (i.e. for # = 0) and for small beam waists, the Riemann curva-
ture tensor of the infinitely long laser beam approaches the Riemann curvature tensor of the
infinitely thin beam, as does the metric. It is also interesting to compare the curvature for the
infinitely thin beam with that for the full solution given in [4] by Bonnor. The analysis can
be found in appendix G for a beam with a Gaussian profile cut off at a radius a. The corre-
sponding solution splits into an interior solution and an exterior solution. For a — oo, we
obtain the solution in equation (43) that we compared with our leading order metric perturba-
tion already. In appendix G, we give the components of the curvature tensor in the exterior
region (r > a) in equation (G.8). We show that it coincides with the components of the curva-
ture tensor of an infinitely thin beam. In particular, the curvature is independent of the radial
dependence of the beam intensity; only the total power of the beam is important.

6. First order and frame dragging

The metric perturbation for large distances between emitter and absorber of the laser beam in
first order in 6 is determined by the first order of the energy—momentum tensor, ?2%1), which
has the only independent non-zero components

o) = =012 = =5 = —£001u (96 + M),
(D
- A(1
o) = gD = —20 = Ae©g|uf2(€ — MOCx).

Note that ¢ = 6C is the coordinate that is considered for the asymptotic expansion in equa-
tions (6)—(8). Therefore, Sé\(l) and S;\c(]) are indeed of first order in # regarding the expan-

sion (5).
From equation (34), we obtain for the metric perturbation in first order in 0

0 PO PO
0 A()
Wy = I§<1> ’ ’ _I§<1> ’ (52)
: n 0 0o -

A1 A(1
0 _If() _IX() 0

where

2
ay _ 1 0 _ _ KPowg(0CE+AX) (1 ajups
12 = 2(0C0¢ + 20,1 e (1 e ) . (53)

1 KPoW3(AE — 0Cx) EPTIERe
A1) — _— _ 0) — > 0% _ e 2ulp
Y= 4()\85 6¢o\)1 S (1 e ) . (54

For small 6¢, the terms proportional to #¢ can be neglected in (53) such that we find
O A
Ig( ) = Zaxl“’) and I}V = —2851(0). (55)

It is interesting to note that our solution coincides with the exact solution of Einstein’s equa-
tions presented in [S] by Bonnor for a rotating null fluid. In particular, we can identify our

functions in the metric with those of [5] as o = 013" /v/2, B = 912(])/\/5 and A = I, Our
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Figure 4. Considering ¢ < 1, the first two plots show the function Igl) for an infinite
distance between emitter and absorber of the laser beam (plain, blue) and a short
distance between laser beam’s emitter and absorber (dashed, red) as a function of &
for ( = 0.1and x = 0 (plot (a)) and as a function of (at £ = 1/2 and x = 1 (plot (b)).
The functions are plotted in units of kw3Py/(2mc). In (b) there is no plot for the case
of infinite distance between emitter and absorber of the laser beam as the result does
not depend on 6¢. Plot (c) shows the deflection in the x-direction a light test particle
would experience if it would move radially outwards in the &-direction at y = O for an
infinite distance between emitter and absorber of the laser beam (plain, blue) and a short
distance between laser beam’s emitter and absorber (dashed, red). This effect is induced
by frame dragging. We see that the effect changes sign for the case of a short distance
between the laser beam’s emitter and absorber.

equation (34) corresponds to the equations (2.16) and (2.17) in [5]. Similar expressions for the
metric of a circularly polarized light beam are presented in [15].

6.1. Small distance between emitter and absorber of the laser beam

For small distances between emitter and absorber of the laser beam, we find directly equa-
tion (55), where 1) has to be taken from equation (44). In figure 4, the function / 2‘ M s illus-

trated as a function of ¢ and ( for x = 1. The plots for 1;2(1) would look similar when plotted
as a function of x and ( for £ = 1.

6.2. Curvature

It was shown in [5] that the rotation of the null fluid leads to frame dragging. This has been
shown to be the case as well in [34] for a laser beam of light with angular momentum. Here,
we obtain the frame dragging effect in the curvature tensor components. The only non-zero
components of first order (see equation (E.2)) are

Ay _ 1 A _ g M)

rg = 59 (%hc,; Och s ) ’

NOJ.. A A

T = 50 (&th; — Ogh; )

NON.. A

D) = =300, G6)
where j # k. For small ¢, we can neglect rj/\r(gli and we find

2 2
A1) yEWo o) _ A A1) _ \EWo ) A
Fecex = A5 S8 = TTerg, and e = AEXET = e 57)
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Figure 5. Schematic illustration of the frame dragging effect: a massive particle moving
radially outwards from the beamline (here in {-direction) is accelerated in the transverse

direction (here in y-direction).
Al Al
The non-zero curvature components rgr(g)x and rx(mZ&
which can be seen most straight forward in the framework of gravitomagnetism [22]; they can
be interpreted as gravitomagnetic fields that govern the motion of test particles in a gravita-

tional Lorentz force law.

lead to the precession of gyroscopes,

6.3. Deflection of test particles

The frame dragging effect can be studied alternatively using the geodesic equation (28) and
the expressions for the Christoffel symbols in equation (E.1). Let us consider a test particle
moving radially outwards with velocity v. We will only consider terms linear in v in the fol-
lowing. Then, the initial tangent 4(0) = cw, ! (1 —f,v/c,0, 0) to the test particle’s world line
~(7) at v(0) = (0,£,0,0) and f(v,&,x,0¢) is chosen such that 4(7) fulfills the condition
2ar(Y(7))¥*(F)4” (7) = —c* at 7 = 0, where again 7 is the proper time and the dot repre-
sentes the derivative with respect to it. In first order in the metric perturbation, we find that

5X(0 Oh) = 9eh)) = X0 0= |2l
F%(0) = i ( 3 TX) v 27T Iul (58)

We see that massive test particles do not propagate radially. Their trajectories are transversally
bent, where the sign of the bending depends on the polarization of the laser beam. This is the
effect of frame dragging. For v ~ 10ms=!, Py ~ 101> W, 0 ~ 1073, wy ~ 1073 m, z =0 and
x = wy, the acceleration is of the order of magnitude d*7*(0)/d® ~ +£10~2° ms~2

The effect in equation (58) decreases exponentially with the distance to the beamline. The
same is true for the curvature components in equation (57). The effect is due to the spin angu-
lar momentum due to the helicity of the beam. In contrast, in [34], frame dragging effects for
p > 1 have been shown to arise from the orbital angular momentum of optical vortices. In
figure 5, the above deflection is illustrated. It is interesting to note that, by direct calculation
from the expressions for the metric perturbation up to third order in 6 in appendix F, we find
forp>1

0 0
Rapos ~ <1 + 2)Rg;w (59)
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Figure 6. Schematic illustration of the source laser beam and the parallel co-propagating
test ray of light: we look at the deflection of the test ray of light due to the gravitational
field of the laser beam.

up to third order in . All other terms decay exponentially with p?. Therefore, far away from
the beam and up to third order in 6, there are no effects beyond those that already exist in
zeroth order. All additional effects appear only where the energy distribution of the source
beam is non-vanishing; they are effects of a local gravitational coupling between the source
and test particles. In the next section, we will discuss another such effect in fourth order in 6,
the deflection of parallel co-propagating test rays.

7. Fourth order—the deflection of parallel co-propagating test rays

As discussed in [36] for a finitely long and infinitely thin light beam, a test ray propagating
parallel to it is not deflected. It has also been shown [4] that the superposition of two exact
solutions of the Einstein equations for pp-waves travelling in the same direction is again a
solution, confirming the result of the linearized theory. In our description, there are two more
important characteristics of the laser beam playing an important role, both of them coming
from the wave-like nature of light: first, the laser beam is diverging. Second, in [14], it was
argued that light in a laser beam does not move with the speed of light along the beamline, but
with a slightly smaller velocity. The origin of the effect is the superposition of plane waves
with different wave vectors, which leads to a reduced effective propagation speed. This was
confirmed experimentally in [11]. In [14], the difference between the speed of light and the
group velocity of light in a laser beam was found to be'! §vp = ¢ — vy = ¢/(kK*w}) = c0*/4.
It has been shown by Scully that two parallel co-propagating thin beams in a wave-guide,
since they are propagating slower than the speed of light, do gravitationally interact with each
other [32]. Therefore one may wonder whether the source laser beam deflects an originally
parallel co-propagating test ray. We will investigate this question in the following. The setup
is illustrated in figure 6.

A parallel co-propagating test light ray is described by the light-like tangent vector
A% = Wy 1c(1,0, 0,1 — f), where fis determined by the null-condition and found to be of the
same order of magnitude as the metric perturbation, and therefore does not contribute in the

1n [14], a different definition of the beam waist is used (see equation (28) of [14]) such that w = wy / V2 in equa-
tion (40) of [14].
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following, and again the curve is parametrized with proper time and the dot stands for the
derivative with respect to it. With the geodesic equation, we obtain

Ho— —Pwy [FJ +2r 4T } (60)

= —Pwy 0t [ 59 (h(“) +2n%) + (?) + Do (hg.) + hg))] . ©61)

From the expression for the components of the energy—momentum tensor in appendix B and
equation (35), we find

2
Ang (h<4) + o 4 h<4>> — WP 6 se-luls (62)
2mc
which is solved by equation (36) as
2 2 2
WY+ 20 4 = T (Ei (=2l p?) —21log(p) - (% + |u|2p2> e 2l ) (63)
e

The components of the metric perturbation in third order in 6 which appear in the second term
in equation (61) can be found in appendix F. We obtain for j € {&, x}, assuming that ¢ < 1,

= ckPy ¥ (

W7o (1 Ay a—20
= 5mg e ) “

For large distances from the beamline (p > 1) and j € {x, y}, the acceleration becomes

ckPy 4 X
327rw%0 P2’ ©5)

5 —

which is an apparent repulsion. This is due to the second term in equation (61). If we had con-
sidered only the first term in equation (61), we would have obtained the same absolute accel-
eration as in equation (65), but with the opposite sign. Hence, the first term in equation (61)
induces an attraction and the second term a repulsion.

However, coordinate acceleration does not have any physical meaning in general relativ-
ity. Therefore, we have to investigate the geodesic deviation to learn about the meaning of
the coordinate acceleration (65). With the separation vector s® = (0, 1,0,0) and the tangent
S Wy 1 ¢(1,0,0,1 — f), we obtain for the acceleration of the separation vector in ¢-direction
from equation (30)

204 (92 (1) + 202 + 1) = 20c00c (WS + 1Y) + )
(66)

With the expressions for the combinations of the metric perturbation given above and in
appendix F, we obtain in the case of 0¢ < 1

S)
™

4

& _ I{CP()Q _zpz 2 > 2
as = — e 474+ 3) — 6£7), 67

Tomw2© | (€ +3) —68%) (67)

which vanishes far from the beamline. Therefore, we found that the deflection in equation (64)

is a coordinate effect. More precisely, the geodesic deviation in equation (66) can be split into

two parts. The first part is the {-derivative of the coordinate acceleration 4/ in equation (64).

The second part is the second 6(-derivative of hézc) which corresponds to the change of the
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2
72>%

v<c

Figure 7. A massive cylinder moving at the speed v < ¢ and a parallel co-propagating
test light beam: we investigate the gravitational deflection of the test beam due to the
gravitational field of the cylinder.

definition of length in the ¢-direction. The contributions of the two parts to the geodesic devia-
tion cancel for large distances from the beamline. As a numerical example, for Py ~ 1015 W,
6~ 1073, wy ~ 1073 m, x = wy and y =0, one has a* ~ —1073" ms~2. Notice that this is
the relative acceleration of two test light rays. The interesting point is that it is non-zero.

71. Comparison to the boosted infinitely long massive cylinder

The reduced propagation speed argued for in [14] suggests that the result in equation (64) may
be compared to the deflection of a parallel test ray by a cylindrically symmetric mass distribu-
tion moving with v = ¢ — dvy along the cylinder axis (see figure 7). That is the content of this
subsection.

The exterior gravitational field of a cylindrically symmetric mass distribution of rest of
mass per unit length m (dimensionless units) is described by the Levi-Civita metric [18],

ds? — —p4mc2dt2 + p8m2—4m (dp2 + dzz) + P2p2_4mdq§2, (68)

in the cylindrical coordinates (ct, p, ¢, z), where p = 1/x? + y? and we set P = 1. The param-
eter m can be considered to be a dimensionless quantity representing the mass or energy per
unit length for 0 < m < % [6]. Now, we let the cylinder move in positive (-direction with
normalized velocity 8 = v/c, and thus make the coordinate transformation

ct — y(ct — Bz),

7= y(z — Bet), (69)

where v = (1 — 82)~/? and 8 = v/c. The line density of energy m is a quotient of an energy
scale € and a length scale L. The energy seen by an observer in the rest frame is &' = &. Due
to Lorentz contraction, the length scale seen in the rest frame becomes L' = L/~. Therefore,
the line density of energy seen in the rest frame becomes m’ = «?m. Then, the metric becomes

—4._ 2 —4_72

ds* = +* (—P‘Wzm( +870 " _4”_2“") d? —29°8 (—,047_2'“' +p0m _47_2'“') cdrdz

—4 2

+ 72 (_52p4'y*2m/ + ps'y m —47’2m’) d2 + ps'y*“m’tmy”m’dpz + P2p274'y’2m’d¢2.
(70)
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Transforming to cylindrical coordinates according to p = \/x* + y* and dp = # (xdx + ydy),
as well as d¢ = ﬁ (—ydx + xdy), and assuming v ~>m’ to be small and expanding the terms
-2/
p7 ™ as p™ = 1 + v 2m’ log(p) and neglecting quadratic terms in y~>m’, we obtain
ds? = — (1 + (1 + p*)4m’ log(p)) c*df* + 168mlog(p)cdrdz + (1 — (1 + 5*)4m’ log(p)) dz*
+ (1= (1= p%)4m’log(p)) (dx* + dy*). (71)

This metric can be decomposed into the Minkowski metric plus the small perturbation

1+ 0 0 -28
0 1—p? 0 0
-2 0 0 1+ B2

We can identify the line density of energy with that of a beam of light as m’c*/G = Py /c.
Then, the metric 1,5 + hap coincides with the metric of an infinitely long beam of light with
constant energy density Po/(m(wo/2)?c) confined to a cross section of m(wg/2)? for 8 = 1
given in [4], up to constants.

From the metric (72), we find that the parallel test ray with tangent 4* = ¢(1,0,0,1) is
deflected in x-direction according to

4GPy X
S 2t 12
Assuming 1 — 3 = dv/c = 6% /4, we find that the result in equation (73) differs from equa-

tion (65) by its sign and a factor 1/2. Considering the geodesic deviation with the separation
vector s* = (0, 1,0, 0), we obtain

7= (1-8)% (73)

1
a = Eaf (hy + 2hy, + h..), (74)

and, inserting the expressions for the metric,

_ 4GPy X2 — y2
T3 (x2 +y2)2

ax

(1-p)% (75)
In contrast, for the gravitational field of the focused laser beam, we did not find a deflection
for large distances. From this result, we see that the gravitational field of light in a Gaussian
beam does not simply behave as massive matter moving with the velocity derived in [14]
along the beamline. The reason is that the divergence of the laser beam does not only lead to
a reduced group velocity, but also to a change of the metric along the beamline. This leads to
the appearance of the second and third term in equation (66), which cancel the effect of the
first term for large distances from the beamline. In particular, we mentioned above that the first
term in equation (61) induces an attraction with the same absolute value as the acceleration in
equation (64). Accordingly, if we had considered the first term in equation (61) only, we would
have obtained an expression that would coincide with that for the geodesic deviation induced
by the boosted rod given in equation (75) up to a factor 2. Therefore, we can conclude that
the additional effects due to the divergence of the light beam cancel the attraction due to the
reduced propagation speed of the light in the beam.

20



Class. Quantum Grav. 35 (2018) 195007 F Schneiter et al

8. Conclusion

We analyzed the gravitational field of a focused laser beam, describing the laser beam as a
solution to Maxwell’s equations. We calculated the five leading orders of the metric perturba-
tion expanded in the divergence angle 0 of the beam explicitly and discussed the difference
to the solutions when the laser beam is treated in the paraxial approximation. Already in the
paraxial approximation, the gravitational field of a laser beam turns out to be too small to
be detected with current technology [26]. This is also the case for the effects we describe.
However, they are of conceptual interest as they reveal the gravitational properties of light,
and with the progress of technology, they may possibly be measurable in future experiments.

For small values of the beam waist and for § = 0, which corresponds to the paraxial
approximation in our case, our solution for the laser beam corresponds to the solution for the
infinitely thin beam [36]. If in addition we consider the laser beam to be infinitely long, we
recover the solution for an infinitely long cylinder [4].

In first order in the divergence angle, we found frame dragging due to spin angular momen-
tum of the circular polarized laser beam. This is similar to the result of [34] for beams with
orbital angular momentum. In contrast to frame dragging induced by orbital angular momen-
tum, the effect we find decays exponentially with the distance squared from the beamline
divided by the beam waist parameter wy. This property coincides with the decay of the energy
density of the beam. Hence, frame dragging due to the spin angular momentum of the beam
is proportional to the local energy density of the beam. During the peer reviewing process
for the publication of this article, the article [35] by Strohaber appeared on the Arxiv preprint
server. In the article, frame dragging due to intrinsic angular momentum including spin of
light beams is derived and discussed.

The statement of [36] by Tolman e al that a non-divergent light beam does not deflect grav-
itationally a co-directed parallel light beam has been recovered in different contexts: two co-
directed parallel cylindrical light beams of finite radius [3, 4, 24], spinning non-divergent light
beams [23], non-divergent light beams in the framework of gravito-electrodynamics [13], par-
allel co-propagating light-like test particles in the gravitational field of a 1D light pulse [26].
In fourth order in the divergence angle, we found a deflection of parallel co-propagating test
beams. This shows that the result of [36] and [4] only holds up to the third order in the diver-
gence angle. This could have been expected from the fact that the group velocity of light in a
Gaussian beam along the beamline is not the speed of light [11, 14]. However, the deflection
of parallel co-propagating light beams by light in a focused source laser beam decays like the
distribution of energy of the source beam with the distance from the beamline. This means
that the effect does not persist outside of the distribution of energy given by the source laser
beam like the frame dragging effect due to spin angular momentum. This is in contrast to the
deflection that one obtains from a rod of matter boosted to a speed close to the speed of light.
Therefore, we conclude that focused light does not simply behave like massive matter moving
with the reduced velocity identified in [26, 34]. This is due to the divergence of the laser beam
along the beamline which leads to additional contributions to the metric perturbations which
do not appear in the case of the boosted rod. These additional contributions cancel the effect
induced by the reduced propagation speed of light in the focused beam.

9. Outlook

As an extension of the research presented in this article, it would be interesting to study the
gravitational interaction of two parallel co-propagating focused laser beams in the description
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presented here. The result could be compared to the corresponding results presented in [3, 4,
241]. In particular, it would be interesting to see if there exists a contribution to the gravitational
interaction of the two beams that does not decay exponentially with the square of the distance
between the beamlines of the beams.

It would be interesting to know if the solutions to Maxwell’s equations developed in this
article can be used as a basis for a quantum field theoretical description of the gravitational
interaction of two laser beams in the framework of perturbative quantum gravity (PQG). Then,
the effect of localization on light-light interactions could be considered for light with quantum
properties. For example, in [25, 27] it is shown that the differential cross section for gravi-
tational photon scattering can be amplified or suppressed when the scattering photons are in
specific polarization entangled states initially. It would be interesting to see how this effect
depends on the distance between the beams. Furthermore, in [7], the effect of entanglement in
the position of a source of a gravitational field was investigated in the framework of semiclas-
sical gravity. Similar questions could be considered in the framework of PQG using focused
laser beams in spatial superposition states or with squeezed light as sources.

Another step from the results presented in this article into a different direction could be the
consideration of a pulse of light in a focused laser mode. The framework used in this article
would need to be extended to envelope functions that depend on time and the position along
the beamline. Approaches for the description of such beams are given for example in [2, 19,
31, 39]. An expression for the gravitational field of a focused laser pulse could be used to
have a closer look at the implications of focusing for possible experiments trying to detect the
gravitational field of light. In particular, the pulsed beams would produce a pulsed gravita-
tional signal that could be detected with resonator systems like small scale gravitational wave
detectors (for example [16, 29, 33]) or quantum optomechanical systems.

The gravitational field of a focused laser pulse could be used as well to check the results
of [26] where the laser pulse is modeled as a 1D rod of light with an energy density that is
modulated as that of a plane wave. In particular, for the model used in [26], all gravitational
effects are induced by the emission and the absorption of the light pulse alone; there is no
gravitational effect related to the propagation of the pulse. This situation may change once
divergence of the beam is taken into account.

It could be worthwhile to see whether a similar solution for the gravitational field of a
focused laser beam as we derived in this article could be derived considering the full coupled
set of the Einstein—-Maxwell equations. The resulting metric could be compared to the one in
[20] and it could be investigated if the results of [20] about the effective gravitating mass and
angular momentum can be reproduced when divergence of the beam is taken into account. It
would also be interesting to consider the gravitational field of the electromagnetic field dis-
tribution used in this article to model a focused laser beam in dynamical spacetime theories
with spacetime torsion like Einstein—Cartan-theory and the Poincaré-gauge-theory of gravity
[17]. In particular, we found that frame dragging due to the spin angular momentum of light is
proportional to the local energy density of the beam. This is similar to the effect of spin angu-
lar momentum on test particles or fields via spacetime torsion as torsion is not a propagating
degree of freedom in Einstein—Cartan-theory and Poincaré-gauge-theory.
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Appendix A. Vector potential of a circularly polarized laser beam

From the expansion of the field strength FQB =>0,0" W°E“f’\(")(§, Xs eg)ei%@*ﬂ, where
Ey = V/2A/wf, and the Lorenz gauge condition
i0 i0
A= E&AT = 3 (65145 + 0, Ay + 9894144) , (A.1)

A(n)

we obtain a direct relation between vy’ and ff\ (n) (where A refers to the polarization state) as

f)\(n) av)\(n 1)Jra v (n—1) +23 zJA(n 2)

n—3) n— A(n—4
58‘94 (8505( + (9XU§\(( 3) —|— (99404( )) , (A.2)
fo/}(n) zlvk(n) + a;vénfl) _ %&] (85222("72) + 8xv;\<("_2) + 36402_\("*3)) ,
(A.3)
A(n) . A(n) A(n—1) A(n—2)
];—.C = —21’0]—. + &ij — 694*’0]—. , (A4)
A n— A(n—1
£ = 0g0}r=V — 9,07V, (A.5)
Since the vector potential fulfills the wave equation (1), we have that L1F; 5 = 0. In particular,
(02 + 02 + 4idac) 122 (€, X, 0¢) = 0, (A.6)
(0% + 02 + 4iduc) £ (€ X, 6C) = 0, (A7)

(02 + 02 + 4idc) £15(6. X, 0) = =03 S P (6, x.00), forn> 1. (A8)

The components of the Hodge dual of the field strength tensor are given as

*fo/\c(n):_ﬁ);c(n) ’ *f)\(n) f)?C(n) ’ *0>;<(n) :fﬁ/\C(n)’ (A.9)
fx(n R an) — /™ and < fA fM"), (A.10)

and we obtain that a helicity eigenstate has to fulfill the conditions

0 =for” +idx o = f — AL

= —i\ (35020171) _ (9XU§ n— 1)) + agvg(n—l) + axvi(nfl) + 289C02\(n—2)

A(n)

i _ _
— 5(994 ((95)201 3 + 8Xv;(”*3) + 89402(" 4)) , (A.11)

f>\(n) +iA *f)\(n) f)\(n) )\f/\(n)
. An n—I1 A(n—2 n— A(n—3
— —2i0}® 4 g0V - Eag (90" + 0,032 + Byt

—ix (20 + 0,02 — Gy} ) (A.12)
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A(n) A(n)

0=1 (n)+1)\*f fOX”)+ IV
:—210 ™ 19, p” ) ,5 (3 N 2)+8 U)\(n 2 | 9y Z)A(n 3))

i (<2000 + 002 — Dy ) (A.13)

0= +inn i =" =" = =id (" + ") A
0=£1" +ins ) = 20 i = (=), aas)

0=+ = 27 +ing® =i (R —). e

where the last three conditions are fulfilled if the first three conditions are fulfilled. The
remaining conditions can be rewritten as

0= (9 +iA0y) (207 = A0} ) + 2050

- Eaeg (002" + 0,02 + By} ), (A.17)

0:72i<02(") X0l ) (9 — A0y ) 0"

i A(n—2 ne . e i A(n—3
— 585 (8505( ) + 3X?J;>( 2)) + 1)\59(:0))2( 2 Eagaggvc(n )
(A.18)
0= =2i (0} — X)) + (9 — iAd ) o'
A ANn—2 - A(n—2) An—3
- 50, (9602 + 0,030?) — 9y —fa Do},
The sum and the difference of equations (A.18) and (A.19) lead to

(A.19)

0= i (2 =) 20 =001 — £ @6 ~i20,) (260} + Dy

n— . n— i . n—
— D¢ (02< 2 _ ixo) 2)) -3 (0 —iND )aggUA( Y, (A.20)

and
i 3 A(n—2 n— A(n—2 . n—
0= =3 (9 +Ady) (902" + 0,032 + 0 (0" + X0} )
— % (85 +iA0 )894”())\(" 3
_ i ; A(n—2) A(n— i A(n=2) | . —
=5 (O +1A0y) (850 + 0,0 2’) + 7 (% + ) (v5 + o) 2))
+ 50 (27 + i) - 2 L o +1)\8X)89<v)‘(" Y
= —i (De + 170y ) (vg<ﬂ—2> - i)\v;\(("*z))
i . A(n— i A(n— . n—
— 5 (0 +100) oo} + 103, (2279 +ixoy0=9), (A21)
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respectively. For the leading/zeroth order envelope function, we find from equation (A.20)
that vg\(o) = i)\v;(o). For the first order envelope function, we obtain from equation (A.17) the
condition

0= (2 +120,) (22 — X)),
which is fulfilled for vg\(o) = i/\v;(o). Furthermore from equation (A.20), we find the condition
0=-2i (vg‘(l) - iAvi“)) + (9 — M3 ) 0. (A22)
For the second order, we obtain from equation (A.17)
0= (@ +20y) () = 2V + 2050
_ _%Azdvg(o) + 2000,

which is always fulfilled since 02\(0) fulfills equation (6). Additionally from equation (A.20)
and with vg\(o) = i)\vi(o), we find the condition

0= —2i (0 =) + (9 — 10 ) o) — 1 (9 —iADy) (A + D) 03
— 2 (vg@) . iAz;;@)) + (9 — M0y o + % (0 —iAdy)2 02O, (A23)

Assuming 02‘(2) = i)\vg\é(z), we find that the first term in the condition vanishes and we can

solve for Uél) as

A .
o) = —7 (0 =09 0. (A.24)

The condition in equation (A.21) is automatically fulfilled in second order due to
02‘(2) = i)\vi(z). For the third order, we find from equation (A.17)

A, A .
0 = pcv} " + 200c (9 — 10 0}, (A.25)
which is just the #¢-derivative of equation (A.24). From equation (A.20) follows that

0=—4i (}0 — X} ) +2(9 — A0 ol = 2 (3 — irdy) (Bev;" + O} D)

i
2
. i .
— 89( (Ug(l) — 1)\0;(1)) — E (85 — 1)\8)() ngvé(o),

= —4i (R0 = D) 420 — M) o - 2 (3 —irdy) (9e0;") + 0,03,

i
2 (A.26)
where we used equation (A.22). The last condition of third order comes from equation (A.21)
as

0= —— (9 + 170y’ (Ug“) - iAv;U)) - % (0 +iADy) Dpcv} "

i

4
1 i

= 5 (0 +120) A} = 2 (9 +i00y) 900}, (A27)
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which is fulfilled since equation (9) has to hold. In fourth order, we find from (A.17)
0= (0 +120,) (0?7 = X0} @) + 2050}
i AL A0
_ 589(: (agvg( ) + axvi(l) + 89(%( ))

_ i 1 A(1) A1) A2)
=— Ay (EUC + 3 (8505 + ax’()x ) + 239CU<

i
- E@eg (8502(1) + va;(l) + aegvé‘(o))

= — % (Azdvéz) + 4i89{02(2) + 8§<02(0))

1

8

which is satisfied due to equations (7) and (8). From equation (A.20), we obtain in fourth order

(A2 (65112(1) + axv;“)) + 4idp; (afvg(” + axv;<1>)) . (A28

0=—4i (vg“) - iAv;“)) +2(9 — M0y oY — % (B — My <8§vg(2) + axv;@))
A . i . A
= Onc (06 = R ) = 5 (0 ~ 00, ducey . (A.29)

4) (@)

Assuming 02 = i)\vf‘((“) and taking into account vé\ = i/\v;(z), which we assumed before,

we obtain
i i . i .
0=2(9 Ao = 3 (9 — 10y (902 + 0,03 ~ 3 (9 —irdy) dac? V. (A30)
With equation (A.24), we obtain that
3 A . i
o) = =5 (0 —ixdy) (v;@) + 4aa<v§<°>> : (A31)

Again with equation (A.24), we can check that the higher order Helmholtz equation (8) is
fulfilled by v?) given in (A.31). The last condition that we have to check is the fourth order
condition in equation (A.21), which becomes

0= =7 (O +rdy)* (0¥ — i)
i ) i .
— 5 (9 +irdy) dcv} "V + 205 (vg“’) + m;;@)) , (A32)
which may be written as, using 02(2) = i)\viu) and vg(o) = i)\vf‘((o) s
i A
0= _% (e +iXdy) pep” — 3053, (A.33)

and is fulfilled due to equations (A.24) and (6). We conclude that a vector potential for a circu-
larly polarized laser beam up to fourth order in the divergence angle 6 is given by equations (6)—

(8), equations (A.24) and (A.31) and the additional sufficient conditions 02(2") = i)\v;(z") and
02‘(2") =0forn e {0,1,1} and 02(2"“) =0= 02(2"“) forn € {0,1}.

Starting from Ug)) = €50y, where €5 = wy(0, 1, — A, 0)/\@ and the solutions of even

orders that can be found in [30],

Ug)) (5’ X 9() = 61(5?) Uo(ﬁ, X QC), (A.34)
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0
o (600 = M3 (1= Jut002s* ) o 6 0,00) (A39)

1(6¢)?

o8 (6.x.00) = = ¢

(6 = 3u(00)*p" = 2(0)° + %u(ecr‘pg) o) (6600, (A36)

where vy (&, x, 0¢) = u(6¢ )e’“(“)pz. This leads to the expressions for the odd orders

i 7]

o (€ x.00) = —W (€ —7) 00(6, x. 60). (A3
0

o (€, x.6¢) = @ (4+ u(00)0* — p(80)*") oV (€.x.0¢).  (A39)

Appendix B. Poynting vector, Maxwell stress tensor and energy

For the vector potential of a circularly polarized laser beam given by equation (17), the energy
density, the Poynting vector and the stress tensor components are given as

IRCA

A e(0) |N\292 204 2 2,2
=80 11+ = {1+ |l 2 = (@ul” =307 | + ¢

(-3+2mPa- 7+

LAl — 0P — S0P 4 20l (8 + 5207 + 90" — 48P + )0 + 32|m1“,o8)] ,
B.1)

Se =E0g|p? [(945 +2x)

02
= 7 O =202 = p)0CE +2(1 = p)Ax + (6C€ + M) (4 + 39 — 4ul*p) |ul*p?) } .
(B.2)

$2 == AEV8E (6 - 60w

2
-~ % (& —2|u[*2(1 = p*)E — (2 — PP)OCAX + (€ — OCAX) (4 + 3p* — 4|p*p?) | ul*p?) }
(B.3)

1
$¢ =& = €0 Oplul)?

0 2
1+ (%) (4 — 30"+ (8+6p" — 8p2|u2)p2|u2)] : (B.4)

92
e = EOul0cE + 201666 + 30 + 5 (= e+ 3luPoe + ww

Pl (<220 — 21— 3)OCE + M) + (3 — 4l?) P LuP(0CE + ) )} (B.5)

92
oy = EVO|ul* (€ — 0¢Ax) [(5 —00X) + ( — &+ 3P (€ = 0CAY)

+ P2l (=26 = 2(1 = 3|uP)(€ — 0CAX) + (3 — 4lul?) p2luP(E — 6AY)) )} (B.6)
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92

oy =EON? | {(045 AN =€) — (ec (6lul® = 1) (62 = x%) +46(InP - 2))xéx

#202(306 (2P = 1) e (€= x2) + 2 (6l* = 6+ 1) A

+ @l = 3) Al 06 + 00 - ) )| B.7)
oo =S¢ — 5(0)%3(9@ + 20l (B.8)
7 = 1260 (€ a0l (B.9)
=220l |1+ (M) (147 4 s ve - 8p2|u|2>p2|u|2)} B0

where £ = eqw2E2|vo|> = 2Po|vo|?/(Tc).

Appendix C. The projected solution

Following the second option to construct the field strength tensor for a circularly polarized beam
described in section 2.1, we start from the zeroth order envelope function vg)) = eg)) 09, where
eg)) =(0,1,—Ai,0)wp/ V2. We define cylindrical coordinates (p, @, ¢) such that £ = pcos ¢
and x = psin ¢. Then, the components of the field strength tensor of the helicity eigenfunc-

tion Fg’gro =1+ )\A)FQB/Z become

T T . i 9 ’ '
F:_"Ep o _ —i/\FZ\;f o _ —IW(Z)EOUO 7= |1 4 (%) (2 42N _ Hﬂz)
P 4 i ) 1
() (srseme e b)) e
. Oup\ |
FNP® = —IAFYP™ = —AwgEgoo'# ) |1+ (%) e —ue)
0 4 ] ) 1
() (e )] e

Fi"(pro = fi/\F;"gpm = —w3Eyy ei%(C*T)Qupeq)“zb

Oup\? 2
1+ (7) (3—pup)| . (C.3)

Since AF;5 = —ix Fsp, the projection (1 + AA)/2 is equivalent to adding the dual field of
F 5 3. In the approach of complex source points presented in [10], adding the dual corresponds
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to adding a magnetic dipole to the electric dipole that would create Fg 3. In contrast to [10], we
add the dual with a phase shift of —7/2 to add —i x F; and not just *F@B.12

C.1. Poynting vector, Maxwell stress tensor and energy

For the field strength tensor F' ggm of a circularly polarized laser beam given in equation (C.1),

the energy density, the Poynting vector and the stress tensor components are given as

2
e =0 |14 P (o e — 30— )
(QPWW 4 2 A 2002 4 2 . 2 aN\2,20,, 2
+e (961l = T2Aul* +5 = 207 ul” (2(32[f* — 36|l +8) — (4]uf* = 3)%0|u])) |,
(C.4)
2
52 = €001 [ (066 + ) + P (6l 20066 + (6l — A — (@i — 3)(6ce + Ax)ﬂzulz)} ,
2
82 = A0 {(s —x0c) + P (6l — 3)¢ — (6luP — 2)700x — @luP ~ 3)(¢ - /\9§X)P2|#2)] ,
2
82 =8>+ 300l |1+ (“9) 2 (2l o+ - 3) (1 pﬂﬂ))] , (C5)
ate = EVO|u*(6¢¢ + Ax) [(945 +Ax) (C.6)
0 2
+% ((8lpf* = 3)0CE + (Blul* — 5)Ax — (4lul*> — 3)(6¢E + Ax)p*|ul) } (C.7)

oy = EDO (€ = 0¢x) {(5 — A6CY)
2
i+ D (g1 — 3)6 8 - $pci— (@ = 3E - 2000 uP) | €9)

ot = EVN |l [(9@: FAOY — ) — 36 (<6<Ax = )(BCE + M) (4l — 3)7*|ul*

14002 — D]l — 400l — Dl + Aex (18] — 16 +3) )} ©9)

0 2
o = =5 - 5“’)%9(9@‘5 + 20l (C.10)
0 2
e = -5 + 0 elrD) p|2“|) B(& — M) |l (C.11)

12 Note that this symmetrization of the field strength tensor done in [10] is also performed in [12] without giving
reference to a magnetic dipole moment.
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9 2
o= =00l |1+ () 2@UP 4 Gl -3 (- AW | cn

where £ = 2ggw2E2|vo|*.

Appendix D. Validity of the linear approximation of general relativity

In the linearized version of general relativity, we decompose the metric into the Minkowski
metric plus a perturbation, which is assumed to be small, equation (26). In this section,
we make a rough calculation (just considering orders of magnitude) to verify that the lin-
ear approximation is justified, i.e. that it is possible to neglect terms quadratic in the metric
perturbation.

From the Einstein equations it follows that the second derivative of the metric perturbation
is proportional to SZTTG times the energy—momentum tensor,

&h

8nG

When considering spatial components (the other components can be considered to be of the
same order of magnitude), we integrate to obtain an area A on the right hand side,

811G
h~ 2T, (D.2)
c
Identifying TAc as the Power P, we obtain
h~ —=P. (D.3)
c
In our calculation, we wrote the metric perturbation in the form (where we write ¢ for all
expressions of order O(6°)

h~ e+ 0+ 60%. (D.4)

The linearized theory is valid if one can neglect terms of the order O(h?), i.e. if h? < h.In our
case, this condition translates to € < 62. From the above equations, we see that e ~ 8?—SGP The
condition then becomes
881G
—P <0 (D.5)
c

For a power of the order of magnitude P ~ 10'> W, we thus have to require 6 > 1078, If we
consider 6 to be equal to zero, the condition becomes €% < €, which is also satisfied.

Appendix E. Expansion of Christoffel symbols and curvature tensor

With the equations (29) and (32), we can derive a direct relation between the terms of the

expansions (’Y)‘("))%;Y and hig') We obtain for i,7,k € {£,x}
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(PO)7e = (PD)E, = 5 dechz ™, (P05 = st (™ + o™ = duchy V),
O = yoncktl ™, (RO = 5k (9407 - an ).

(v )\(n)) o= *aegh’\(" 1) (VM"));Z _ 72‘14% (0 RO + 0 h)\(n 1))

(v A(n))JCC 2vlv &h«">+ 1.9, h)\(n n, (,y)\(n))g — _%%( ih}(n) +&§hign) ’

(Y :_f&hw) 2‘11 o h;T(n n, (PO, = o (@hjén)iaih%(n))’

e :_7)6?’1” : ('y“”)@;—%wg(ayfc — " + 03" ‘>)
(v A(n>) &héé'l), (,y,\(n))lgj ﬁ(& (n)+(,%h%(n) &h3<"))

(E.1)
where h’i > =0 if n < 0. With the equations (31) and (32), we can derive a direct relation
between the terms of the expansions r,( ,)- and K, (") . With j,k € {£, x}, we obtain

20 = 00 — 4 (0 + 2

Texex = A(n) 7l&8 /\(n—l)

An) 1 g A(n—1) é(n—l) _1g (ap M _ /\7(n) /0{0 - 27 ’

gk = 200¢ (%k Ot ) &(&h Ol ) " = 1o (&h“’” s h*-(”‘l))
Aln) 1 A(n—1) 2 )\(n 2) (n 1) A(n) ]OC’( 2 Ok ’
P20 = 1 (ducorm ") ~ 03 —oncop " + g0u")). 20— 135 (3000 — ane)
Al 1y &h/\(n) B &h)\(n) ¢ock — 290¢ ¢ ok ’
joik — 2% ) ok ) rA(n) _ 1y hk(n 2)

An) _ 1&&;[ (n) €0¢0 2% "o

Tioko = ~29%%M00 (E.2)

Appendix F. Metric perturbation for large distances between emitter and
absorber of the laser beam up to third order in the divergence angle

As stated in section 4, solutions of equations (33)—(35) can be given by equation (36).
However, the Green’s function of the Poisson equation in two dimensions is only specified up

to a constant which for our degenerate equation (33) in three dimensions becomes a function
of 6C. This leads to an additional term h, n)reSt(GC ) that we have to specify by a further condi-

tion. Here, we use the physical condltlon that the Riemann curvature tensor has to vanish at
an infinite distance from the beamline to ensure that no physical effects are induced by the
gravitational field of the laser beam at infinity. We find

LG (6 X 00) = W3 (€. 00) + "™ (60), ED

where h/\(") (&, x,0¢) is given in equation (36). Since the Riemann curvature tensor is linear in

) and a term induced by h)‘(")“"St

the metrlc perturbation, it consists of a term induced by A, (
The term induced by h,(" *(8¢) does not depend on the distance to the beamline. Let us
assume that the term in the curvature tensor induced by the first term in equation (31) van-
ishes for p — oco. Then, the term in the curvature tensor induced by hA(" reSt(GC ) has to vanish
everywhere for the curvature to vanish for p — oo. Therefore, h’\(" re“(@( ) cannot contribute

to the curvature tensor and can be set to zero in equation (F.1). It turns out that the contribution
of the first term in equation (F.1) to the curvature tensor vanishes at infinity, indeed, up to the

fourth order in 6, as we will show in the following. Therefore, we assume A’ ")mt(GC )=
in this article. In the following, we give expressions for h_ (") (&,x,0¢) up to th1rd order in 0.
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In zeroth order, we have (see section 5 for comparison)

1 0 0 -1
2
A _ woPo (Lp o) 0 oy 0 00 0
-1 0 0 1
In first order, we have
0 —(0C€+ ) (A—0Cx) 0
h)\(’l) _ HPOW% (1 _ efz\p,\zpz> 7(94.5 + AX) 0 0 (9<€ + AX)
af  8mep? (A& = 6¢x) 0 0 —(A& = 6¢x)
0 (0¢E+Ax)  —(A§—0¢x) 0
(E.3)

In second order, we find for the only non-vanishing independent components of the metric
perturbation

I{WZP() . _ 2 2
= (4E1 (=2|ul*p*) — 8log(p) — (5 — (4 — 6p7)|u|* — 8| pu|*)e ¥ ) . (E4)

h)\(z) _ KW%PO

_ - 2 2\ (A ER2 2 Q21 14\ a—2lplP0? E5
2 = 00 (2Ei (<20uPp?) — 4log(p) — (3~ (4= 657) > = 8p2l)e ), (ES)

2

A2) _ _ EwePo 21,12 2014\ A—2|ul2p?

W) = — 1-(4-6 -8 we, F.6
o e (= (4 =609l =8p%|ul") e (F.6)
A(2) HW%PO

— 4 25 2.2 4 2 2 2 2 2 2
e = W(ﬂ |ulEi (=2[ul*p?) — 20*|ul* log(p) + (€2 = X?) — 2(€* — X* — 26¢0&x) |

+ (€ = X) +2E = X = 20006 = 20°) |l + 407 (€ — X7 — 2000 |nl*) e“'zpz) ,

(E.7)
A(Z):L%PO 4‘ ‘in(72| |2 2)72 4‘ ‘ZIOg( )7(527 2)+2(£27 2*20()\5 )‘ ‘2
T 3mpfupe \ HEP) = 2o Il Togte X X X)lu
= (( = x) + 28 = X2 = 20008 — 2003l + 40%(€2 = xF = 2000 ul*) 72 ),
(E.8)
2
A woPo 2 ya—2luPe (L R
hey™ = 1670 [u2c (1 (14 p|ul*)e )( Ex + 6 + 0AE = )|uP) . (F9)

In third order, we obtain the only non-vanishing independent components

2
@?=—£ﬁ$0wa+um+(—M%maawoﬂw@+ummz
— 202 (=2 4 3p7)(0CE + x|l + 8p* (6CE + Ax)lulﬁ) e‘Z“'2P2>, (F.10)
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2
e ((49<x -3 + ( — (40G€ +3Ax) — 20*(36Cx — 22|’

=207 (=24 3p7)(0¢x = AE)|ul* + 8p*(0Cx — /\x)ul6> 6‘2"'2”2>, E1D

0 = ;;x)o ((20@*5 +Ay) + ( — (20C€ + AX) — 207 (20C€ + AX) |l

—207(=2+ 3p7)(0CE + M) ul* + 85" (6CE + AX)|M|6> 6_2'“'2’)2>, (F.12)

A3) _ HP()W(%
X 327cp?

((29Cx - X6) + ( — (268 + W) = 272 (26Cx = 2O\l
— 20%(=2+3p7) (00X = AE)lnl* + 80" (0Cx — Ax)uP) ez'“'Z'*) : =19

Now, with the expressions for the terms in the expansion of the curvature tensor given in
appendix E, we can show that the contribution of h)‘(" (&, x, 6¢) to the curvature vanishes for

p — o00. From equation (F.1), we obtain that
¥

A _ K P A(n) ,
oy =~ [ e s O 00, 1)

where ¥ € {&, x}. From the expressions in appendix B, we see that all terms in the energy—
momentum tensor decay like exp(—2]| /r|2 p?) for p — oo. From the expressions above, we ﬁnd

AQ) decays at least as p—2

that this is true for %Ch © and agch as well. Furthermore %Ch
for p — oo. Hence, for n < 4 we find that the sources Q (n) (the terms on the right hand side
of the differential equations in equatlons (33)-(35)) are falhng off at least as p~2 for p — oo.
Therefore, the first derivatives of h (5 X, 6¢) in the directions £ and x will go to zero for
p — oo for n < 4. From the expresswns above, we find that 8§<h)‘(" ? and agghA(" 2
decay like exp(—2|u|*p?) for p — oo for n < 4. Therefore, we find that the contribution of
/\(") (&, x,0¢) to the curvature vanishes for p — oo and n < 4. Hence, the term h)‘(")ml(ﬁé )

can be set to zero as argued above.

Appendix G. An exact solution for the infinitely long laser beam
with boundary in the paraxial approximation

An exact solution for the infinitely long laser beam in the paraxial approximation, i.e. for
6 = 0, is constructed as follows: we make the ansatz of a plane wave metric [4],

ds? = wp (—d7? + d& + dn? + d¢?) + K (dr — d¢)’, (G.1)
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in the dimensionless coordinates (7, &, x, () = (ct,x,y, z)/wo. The radius of the beam is sup-
posed to be a, such that the energy density o is given by QW% =T, =T¢e = —T;¢ within
this radius, and vanishes outside of it. Then the function K = K (&, n) in the interior region, for
p < a, and in the exterior region, for a < p, is determined by

1
2 2 2
owy = _ng(ag + 0;) Kints
e
0=- KW} (65 + an)Kext, (G2)

For the laser beam for 6 = 0, the energy density is given by ow2 = £(0) = %6*292. Writing
equation (G.2) in cylindrical coordinates, we obtain

1 2KPyw3
7(9,, (p apKim) = - " LWO e—2p2’
P

mc
1

— Kext) = 0.

Integrating twice over p leads to

KPow2 .
Kin(p) = = ~PEi (=20%) + Cilog(p) + Co,
Kexi(p) = D1log(p) + D2, (G4)

. . 2 3 . . .
where Ei(x) = v + log(|x|) +iarg(x) +x + % + g + ... is the exponential integral. For the
metric to be finite at r = 0, we set C; = —kEgw3/(2mc), and for the interior solution to match
the exterior solution at r = a, i.e. to be continuous and differentiable, we choose D, = 0 and

Gy = kPowj(2mc) ! (e*2“2 log(a) — %Ei(fZaz)), s.t. the final solution reads

_ HP()W% 1_. ’ Y 1_. ’
Kin = e <log(p) 2El( 2p7) —e log(a) + 2El( 2a7) |,
P, 2
Koy = — =210 (1 — e_2“2> log(p). (G.5)
27c

If the beam is infinitely extended in the transverse direction, we are left with an interior solu-
tion only which reads

Pow? 1
K(p) = =5 =0 (log<p> ~ SEi (—2pz)> : (G6)

The metric may be written as the Minkowski metric plus a small perturbation
hyu = K(p)Mo, s.t. the only non-vanishing independent components of the Riemann curva-

ture tensor R-i;j = R¢icj = —Rricj = 7%6@1((,0) (fori,j € {&,n}) are given by
KP()W% i
4me  p*

int

e -
Ri¢re = Rigce = —Rygee = —

((52 _ 772) _ (452/)2 n 52 o 772) e*ZPZ) ’

Rt _ pint  _ _pint ’fPOw(z) i 2 2 A2 ? — €2 2\ —2p°
morn = Benen = TRenen = 7 7 (=) + (4P =€+ ) e ,
T P
i i i KPow?
Rty = Ritey = —Rit, = =5 %’Z (1= +2p2e7>), G7)
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in the interior region and

2 ¢2 2
ext  __ pext ext ”P0W05*77 —24*
Rrere = Reece = —Reece = =~ = (1 —e ™ ) :
2 ¢2 2
ext __ pext _ ext _ K:POWO E —n —24%
Ronrn = Renen = —Roney = 4drc ot (1 ¢ ) ’
2
ext __ pext _ ext _ K’POWO 577 —24%
Rrern = Résen = Recen = =570 57 (1 —e ) , (G.8)

in the exterior region. We see that the result for the exterior region corresponds to the Riemann
curvature tensor for the infinitely thin beam plus a contribution proportional to e ~2¢, which
vanishes in the limit as a — 0. The factor

1 27 a
Po = EWCEOE(%W%(l . 6_2“2) _ CEOE(%W(Z)/ d¢/ dp pe—2p2 (G.9)
0 0

is the total power in the circular region with radius a that contains the source of the
gravitation field seen in the exterior region. Therefore, expressing the curvature in the
exterior region through the total power Py, we obtain the same result as for the infinitely
thin beam. This coincides with the result from Newtonian gravity that the gravitational
field outside of a spherical symmetric source distribution does not depend on the radial
dependence of its density.

Appendix H. Metric perturbation for small distances between emitter
and absorber of the laser beam

In this appendix we provide the calculations for the metric perturbation for the case of a small
distance between the emitter and absorber of the laser beam up to the second order in more
detail. In the beginning we calculate the integrals we would need to calculate if the mirrors at
¢ = a and ¢ = 8 were not curved. In a next step we will include the correction for the case
when they are curved. The beam is assumed to be emitted at the location of the wavefront
for which ¢ = « on the (-axis, propagate along the (-axis and be absorbed at the location of
the wavefront for which ¢ = 8 on the (-axis. The mirrors at the emission and absorption are
curved such that the phase along them is constant. The phase of the Gaussian beam (without
the term including the time) is given by
0¢p? 2
o(p.C) = T+ 00 + 56 (H.1)
For the (-coordinate of the mirror at the emission at ( = «, which we call (,, setting
¢(0,a) = ¢(p,{a(p)), and for the (g-coordinate of the mirror at the absorption, setting

©(0,8) = ¢(p. (s(p)), we obtain
2
(fa(P) =« (1 — 92p2) ,

2
Cs(p) =8 <1 - 92p2> : (H.2)
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We start by calculating two integrals that will be useful in the following. The first one is

0o %) B 1 2,
I, = ¢’ [ dx' [ d¢ —2ETXT), H.3
/_oo ’5/_00 X/a ¢ ¢(§—§')2+(x—x’)2+(c—<’)ze 1

Introducing for any quantity u a shifted quantity u” by u "’ = u’ — u, and changing to cylindri-
cal coordinates (£”,x", (") = (p” cos(¢"), p”’ sin(¢"), 7""), we obtain

2T
" " —2(p"?4p*—2pp" cos(¢” —))
I n [;// dC / d¢ / / //2,4»4‘//2e :

(H4)

Using the Bessel function of the first kind, Jo(ix) = L [ dge* (), leads to

) o0 / /12 .
T, =2me 2 / dp” p" log 6 s il o (idpp) e ’
0 -+ /(a C + 0"
(H.5)

The second integral we calculate is the same as before but with a factor ¢’ in the nominator,

¢ C2(674x?)
T, = d d d .
"= / o[ e[ o N e o

In the same way as before, we obtain

"2

oo
T, = (T, +2me / dp’ o’ (Wz (8P = /0" + (o ) Jo(idpp")e 2
° (H.7)
Every other integral we need to solve to calculate the metric perturbation can be expressed
through derivatives of these integrals, using the following identities (and equivalently for 7, if
there is an additional factor ¢’ in the numerator):

B 0o 00 ’
7 / / £ —2(6”74x?)
d d d
/a C/,oo 5/,00 Y e e N (R

8" 0o 0o
- / d("/ df" dXN £N—+§e*2(§”+£)2+(x”+x)z - ,lagza
K 5”2 + X//2 + 4//2 4

PN | 1
d d d —2ATHx ):7<1+782) T,
/ of e[ o JE—or +(x R Tc-0r a7

1

¢’ / d¢’ / dx e 27X ( 9+ a + 3) Z,.
/ ViE—¢7 +<x NP F(C-0) 16 ‘

(H.8)
Including the correction of the boundaries of the integral due to the curvature of the mirrors,

we obtain for the first integral

1 12 12
Ta = d d 3*2(5 +x'7)
g / 5/ X/m VEEFH NPT
VG HE P TP ey
+ '

(H.9)

36



Class. Quantum Grav. 35 (2018) 195007 F Schneiter et al

Inserting (s(p’) = B (1 - %2(5’2 + X'z))and Calp) =a ( - %(5’2 +x’ )) and expanding
to the second order of 6 leads to

Ty =T, + 0701, (H.10)
where we defined

¢ 2 —o0 —o0

8 . o
<\/(B P E T 0 Ve PR E -9 (- x)2> - WD

Changing the coordinates as done previously and using equation (H.8), we obtain

1 1
02, = —3 (1 + Z(ag +8§)>

27
/ d¢” /00 dp” p” A _ o e*Z(PHZJrPZ*QPP” COS(¢7¢”))
0 0 VB=0P+p7 Vla=0r+p7

™ 1 —2p? 71 &) « s 1 —2p""?
-5 (@) (e e <\/(ﬁ<)2+p”2 ) ¢<a<)2+p”2>10(l4pp < )

(H.12)

where we express again the integration over the angle through the Bessel function of the first
kind. Adjusting the boundaries in the second integral, we obtain

Cﬁ(P) C/ ” ”
Ty = de’ d —2(e74x7)
’ / / X /am Vi(E- E’)2+(x—x’)2+(<—4’)2e

(\/(5 — €2+ (x — X+ (Calp) — ) — \/(£ &P+ (x =X+ (Calp) — C)z) :
(H.13)

Since the integral Zg only appears in the second order of the metric perturbation, it is enough
to expand it to the first order in 6,

Ty =T, + O(0). (H.14)

The metric perturbation, which is given by integrating over the retarded energy—momentum
tensor divided by the distance from the observer to the source point,

s

&0 Taﬂ ~VE=E7+ (=P (=P N.C)
. =4 d d
& G/ 5/ X/ NS L
(H.15)

37



Class. Quantum Grav. 35 (2018) 195007 F Schneiter et al

is then found to be, expressed in terms of the integrals calculated above,

0 -9 % O
2P 1 -0y 0 0 0
s = 00 T My + A0+ X X 7
a8 = gz \TMOTN e 0 0 —ae
0 9 0
e(lhi-L(Lerays2@ra)3)+ 1+t @)+ Lo .M
+0 (5116 (g e +0) +3 (% +0) +3) + g ( 1+ 7 (% +0) + 7690, Mo
0 8 & 0 0 0 0 0
0 0 0 =0 | 1/0 1+ 402 —10:0y 0
o 0 0 —o |7"T4lo —too, 1+18F 0
0 -8 -0 0 0 0 0 0
1 00 -4
0 00 0 H.16
Ia+f<2+7(8§+8f())1a o 00 o0 > ( )
-1 00 o0

Appendix I. The infinitely thin beam as the limit of small beam waists
in the laser beam

For 6 = 0, the condition 6¢ < 1, which is equivalent to 0z < wy, is satisfied also for small
beam waists, more specifically for wy < ly,;, where the length scale [, is defined by
lyar = min {x, y}. In this case, only the zeroth order of the solution for the laser beam is non-
zero, and one recovers the solution of the infinitely thin beam: equation (44) written in the
coordinates (x, y, z) reads (as can be seen from the expression for Z, in appendix H)

V/Z-H/Z
1© —KPO/ dz/ dx'dy’ ! e . %
2me x—x) TO—Y)?+(z—2)7 .
Applying twice the saddle point approximation in the form
e 27
i N — —Nf(x0)
i [ _drgloe aim e g o)y [Ny 12)

where xg is a stationnary point of f, we obtain

P b— b—2z)>+r
lim 1© = Jim 22070 log ik Vb . (1.3)
wo—0 wo—0 e a—z7+ (a _ Z)2 + }"2

For small enough wy, we thus have approximately

I(O):HWOPQ log b—z++\/(b—z2)>+r? L4)
2me a—z+/(a—22+r2)’ '

and, written again in dimensionless coordinates,

I(O):KW%POI (ﬂ C++/(B )
e P \a— ¢t /o <

(1.5)
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Erratum: The gravitational field of a laser beam beyond the short wavelength
approximation

Fabienne Schneiter,’ * Dennis Ritzel,> and Daniel Braun'

! Eberhard-Karls-Universitit Tibingen, Institut fiir Theoretische Physik, 72076 Tibingen, Germany
2 University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria

The paper contains a number of errors, most of them typos and most of them in the appendix, which we herewith
correct. The main results and conclusions presented in the paper are unchanged.

e Fig. 1: The angle 6 is defined as only half the angle shown. The beam waist wy is defined as the radius, not the
diameter, of the laser beam.

e Eq. (14): The index o should be replaced by x.

e Section 2.1.1: The sentence “The vector potentials of well-defined helicity (...)” should read “The field tensors
corresponding to the vector potentials of well-defined helicity (...)”.

e Eq. (18): The factor wy should be removed.

e Section 2.1.1, at the end: The sentence “Note that all terms of higher than leading order in equation (17) decay
(...)” should be replaced by “Note that all contributions to v, except the leading order decay (...)”.

e Eq. (36): The right hand side (rhs) has to be multiplied by —x~!, and the phrase after the equation should
read “the Q*(™ are the right hand sides of Egs. (33), (34) and (35) for n = 0,1 or n > 1, respectively, and the
tM") are defined through the expansion TEZ\E(& X 00) =>7", G"fgg)(f, X, 0¢).”

e Eq. (39): The rhs has to be multiplied by w?.

e Eq. (44): The rhs has to be multiplied by 2.

e Eq. (45): The rhs has to be multiplied by 1/2.

Fig. 3 has to be updated:
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e Fig. 4 has to be updated:

b) c)
0.00 0.00 —
Lo -0.05 | -0.05 \ ; ‘32 & 000
A i
S8 “o10 SIS \ ! <>
L <l -010 \ ! — -0.05
~  -0.15 = \ / = /
= T \ S 0101/
~" o020 ~" -0.15 . <
o 1 2 3 4 5 4 -2 0 2 4 Z o 1 2 3 4 5
3 ¢ ¢

e Eq. (47): The expansion coefficients of the Riemann curvature tensor should be denoted by a small letter r, and
the indices ¢ and j should have bars.

e Eq. (48), (49) and (50): The factor |u|? is at the wrong position. Furthermore, the expansion coefficients of the
curvature tensor should be denoted by a small . The equations should read

2
0 0 0 kwoFy 1 Coul2?
Tig)rg = rég)gg = _Tig)gg == 4720 P ((52 —x7) = (4P + € = x?)e 2ul®e ) ) (1)
2
0 0 kwiFPy 1 22
o = = e = e o1 (€ =X+ (AP = €32 ) (2)
2

0 0 0 RW PO €X _ 2 2

TS’E)TX = TEE)CX = _TSE)CX == 27(;0 h (1 — (14 2[ul*p*)e 2lel"e > . (3)

e Eq. (51): 52(1) and Sf(‘(l) have to be multiplied by 1/c.

e Eq. (64): The term p* has to be multiplied by 2.

Eq. (68), the reference [6] in the following paragraph: It should be “Bonnor et al, Interpreting the Levi-Civita
vacuum metric, Classical and Quantum Gravity 9 (1992) 2065-2068”.

e Eq. (71): m has to be replaced by m’, and in the sentence before, the rhs of the equation for dp has to be
multiplied by p.

e Eq. (72), the second sentence after the equation: wp/2 has to be replaced by wy.
e Eq. (73): The rhs has to be multiplied by p~!= (22 4 y2)" 2.

e Eq.(74) and (75) and the sentence before should read “(...) s* = dL(0,1,0,0), where dL is an infinitesi-

mal length, we obtain a” = 02%83 (C%htt + %htz + hzz), and, inserting the expressions for the metric, a® =

AGPydL  x*—y?
A e (L= A%

e Appendix A: The coordinate-indices “0” should be replaced by “77.
e Eq. (A.28): The upper index A of 02(2) is missing in the first term in the fifth line.

e Eq. (B.1): There was a wrong sign in front of one of the terms. It should read

292 294
8)\ — 5(0) l:l + |/j,|2 (1 + |‘u|2(2 _ (4|U|2 _ 3)p2)02> + |:UJ|

_3224_2_4
o (3o

+4lul* (4 = p® = 5p")p” + 2|ul°(8 + 529 + 9p")p" — 48|ul*(2 + p?)p° + 32lu|1°ps>} : (4)

e Egs. (B.2), (B.3) and (B.4): The left hand side has to be multiplied by 1/c. In Egs. (B.2) and (B.3), there are
brackets missing. These two equations should read

S2 2 2 2 2 2 2 2 2\ (2 2
75 — £ {(9§§+/\X) _ %(AX_Q‘/_” ((2_p )OCE + 2(1 — p)Ax + (6CE + M) (4 + 3p” — 4ul* ") |ul?p ))}(5)

S>\ 2
% a0l (6 - 00n0 - & (€= 2 (201 - 106 = 2= A0 + (€~ 004 + 3 = a2 el )



e Eq. (B.7): There was a bracket too much. It should read

2

o (ec (6u* — 1) (&2 = x°) +403|ul® — 2)Aéx

oo = £V |uf* [(945 + A0 O €)=

+2p° (394 (2lpf® = 1) [l (€2 = X*) +2 (6] — 6]l + 1) Aex + (4lul® — 3) p° |1l (0CE + Ax) (0Ax — 5)) )} :

e Egs. (B.8) and (B.9): Sg\ and S} have to be multiplied by 1/c
e Eq. (C.5): The right hand sides of the equations for S, S;‘ and Sg‘ have to be multiplied by —c.

e Eq. (C.8): Two factors were interchanged. It should read

2
o = E00%ul* (6~ 200 [ (€~ Mcn) + P (812 — 5)e — (8l — 3300k — (4l — 3)(€ — M0 Iul?) | 7)

Egs. (C.10) and (C.11): There was a wrong sign, a factor ¢ missing, and an index £ that should be replaced by
X. They should read

0 2 2] 2
ot = 82 /e~ €O  gtace s alu? a0 =83/e+ PN g acjup (®)

Eq. (D.4) should read h ~ €+ fe + 6% + 03¢ + 0*¢. Accordingly, the sentence in the paragraph below should be
changed to “In our case, this condition translates to e < 0*.”

Eq. (D.5) should read 87GP/c® < 6*. Then, the sentence below should be changed to “For a power of the order
of magnitude P ~ 10'® W, we thus have to require 8 > 10710.”

Appendix E, first line and the sentence after Eq. (E.1): The indices of the metric perturbation should have bars.
The metric perturbation should have a superscript “A(n)” instead of “n”.

Eq. (E.2): The indices “0” should be replaced by “7” and the third equation in the left column should read

Ay 1 A(n—1) 42 L A(n—2) CA(—1) o L AN)
’"54154*5(39@6}‘54 — OpchZy " + OocOihie " — 050k hee ) , (9)

Eq. (F.7) and Eq. (F.8): There are two factors 2 missing in each of them and there is a wrong sign in Eq. (F.8).
They should read

A2y KwiPo

@ RWoLo o 4y 2p o2 2y g 42 22y o2 22 990y 2
ce 32ﬂ.p4|’u|2c(PH| i (—2[ul?p?) — 4p* |u|* log(p) + (7 — x*) — 2(6% — x CAEX) |l

(= (€% = X%) 4+ 2067 — X% — 20006x — 20°€%) |l + 49%(€% — X% — 2000E) | ul*) e“zf"‘> . (10)
o o _muhh B (=20 0%) — 40" |1l log(p) — (€2 — x°) +2(&7 — x* — 20CAEX) |l
XX 327rp4|,u|20 p ,U/ N/ p p ll’ gp X X X M

— (=€ = x®) +2(62 = x® —2000Ex + 207X [ul® + 4% (€2 — x* — 20¢0x€) |ul*) 6_2'”'2”2> . (11)

e Eq. (F.9): There is a factor two missing in front of the term p?|u|?.

e Egs. (F.11) and (F.13): In each of them there is a wrong sign and x’s have to be replaced/interchanged with
&’s in a few terms. The equations should read

2
A(3) _ Kk Powg
TX — T Sa__ o

32mop? <<4e<x =338 + ( — (40¢x — 3X) — 2p° (300x — 2X9) |l
~2p% (=2 + 3p°)(6Cx — AO)lnl" + 80" (9 — A&W) > : (12)

pAG) K Powg
x 32mcp?

<(29CX — A8+ ( — (20X — A&) — 2p*(20¢x — M) ul®

—2p% (=24 3p%)(0Cx — A)|ul* + 8p" (0Cx — /\£)|u6>6_2“2”2> : (13)



e Eq. (F.14): The rhs has to be multiplied by 2/x.

e Appendix G: The coordinate “n” should be called “x”.

e Eq. (G.4), two lines after, 3 in the constant C; should be replaced by Py.
e Eq. (G.9): Py should read FP§.

e Eq. (H.1): Expanded up to second order in 6, the phase should read

2 s
#(p, () = 0C (p* = 1) + ZC+sgn(Q)5 - (14)
The sentence before Eq. (H.1) should read “The phase of the electric field of the Gaussian beam (...)”.

e Eq. (H.4), the sentence before: It should read ”Introducing for any coordinate u € {&, x,(} a shifted coordinate
u” by u” = u' —u, and changing to cylindrical coordinates (£, x”, (") = (p” cos(¢"), p”’ sin(¢"), 2”), we obtain,
witho"=a—-Cand 8" =08-(.

e Eq. (H.7): After the equation, we should insert “The third integral we define is” and the equation

00 Jo%) B C/Q —2(¢"2 4y
I.= d¢’ dy | d¢’ X7 15
/_oo 5/_00 X/a N ey e oy e 1)

Accordingly, the sentence in parenthesis before Eq. (H.8) should read “(and correspondingly for Z;, or Z..)”.

Eq. (H.9): In the second line, the integral [~ dy’ should be replaced by — [~ dy’.

Eq. (H.12): The factors (1 + i(&‘g + 8%)) should be replaced by (2 + i(@g + 5%))
e Eq. (H.14), sentence before the equation: “first order” should read “lowest order”.

e Eq. (H.15): The rhs has to be multiplied by ¢=4.

e Eq. (H.16): There are a few typos and terms missing in the equation. It should read

1 00 —1 0 y =0 0
2
r kwEPo 0 00 O Mo 0o o0 -8
has =S Tl o oo o |Ta -0 o o o |* (16)
100 1 0 —dy 9 0
1 00 -1
6 1,0 2 1,0 2 2 2 212 0 00 O
+T <2(8§+8X)L+ 1—1(85+6X)—@(85+8X) To + 467, 000 0
-1 00 1
2 00 -1 0 9 0y O 0 0 0 0
1,0 .2 0 00 0 d 0 0 -0 0 1+10; —10:0, 0
+<1+§(a€ +8X)>Ia 0 0 0 0 + ax 0 0 *ax Ib+ 0 _iagax 1+i8§2 0 Ia
-100 O 0 —0: =0y O 0 0 0 0

e Eq. (I.1): The rhs has to be multiplied by 7.

e Eq. (I.3), (I.4) and (I.5): The rhs of the equations have to be multiplied by 1/2.
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We investigate the rotation of the polarization of a light ray propagating in the gravitational field
of a circularly polarized laser beam. The rotation consists of a reciprocal part due to gravitational
optical activity, and a non-reciprocal part due to the gravitational Faraday effect. We discuss how
to distinguish the two effects: Letting light propagate back and forth between two mirrors, the
rotation due to gravitational optical activity cancels while the rotation due to the gravitational
Faraday effect accumulates. In contrast, the rotation due to both effects accumulates in a ring
cavity and a situation can be created in which gravitational optical activity dominates. Such setups
amplify the effects by up to five orders of magnitude, which however is not enough to make them
measurable with state of the art technology. The effects are of conceptual interest as they reveal
gravitational spin-spin coupling in the realm of classical general relativity, a phenomenon which

occurs in perturbative quantum gravity.

I. INTRODUCTION

The gravitational field of a light beam was first studied
in 1931 by Tolman, Ehrenfest and Podolski [1], who de-
scribed the laser beam in the simplest way, namely as a
single light ray of constant energy density and without
polarization. Since then, various models for light beams
have been considered, such as in [2—4], all of them having
in common that the short-wavelength approximation is
used. This means that the light is either described as a
thin pencil or as a continuous fluid moving at the speed of
light and without any wave-like properties. Recently, we
studied the gravitational field of a laser beam beyond the
short-wavelength approximation [5]: The laser beam is
modeled as a solution of Maxwell’s equations, and there-
fore, has wave-like properties. In this case, there ap-
pear gravitational effects of light that were not visible in
the previous models, such as frame-dragging due to the
light’s spin angular-momentum, the deflection of a paral-
lel propagating test ray, and the rotation of polarization
of test rays. The latter is the subject of this article.
Effects of gravitational rotation of polarization were first
described in 1957 independently by Skrotsky [6] and
by Balazs [7]. In 1960, Plebanski found a coordinate-
invariant expression for the change of the polarization for
a light ray coming from flat spacetime, passing through a
weak gravitational field, and going to flat spacetime again
[8]. The gravitational rotation of polarization has been
studied for several systems: for moving objects, moving
gravitational lenses [9-11] and other astrophysical situa-
tions [12, 13], in the context of gravitational waves [14],
for rotating rings [15], for ring lasers [16] and for linearly
polarized lasers in a waveguide [17]. It was also treated
more formally in [18-20].

Rotation of polarization is well-known from classical op-
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T dennis.raetzel @physik.hu-berlin.de

tics, when light rays pass through certain media (see
e.g.[21]). For this, the medium needs broken inversion
symmetry, a property certain materials have naturally.
Such media with “natural optical activity” lead to differ-
ent phase velocities of right- and left-circularly polarized
light. The effect is “reciprocal”, i.e. when the light ray is
reflected back through the medium, the rotation of polar-
ization is undone. In contrast hereto is the Faraday effect,
which can be created even in isotropic media by applying
a magnetic field. Here, the rotation is “non-reciprocal”,
i.e. the polarization keeps rotating in the same direction
relative to the original frame when the light propagates
back along the path. In this article, we consider the ro-
tation of the polarization vector of test rays in the grav-
itational field of a circularly polarized laser beam in free
space. It turns out that the rotation of polarization con-
tains both a reciprocal and a non-reciprocal part. The
former can hence be interpreted as gravitational optical
activity and the latter as a gravitational Faraday effect,
also called Skrotsky effect.

The laser beam is described as a perturbative solution
to Maxwell’s equations, an expansion in the beam di-
vergence angle 6, which is assumed to be smaller than
one radian. The description of the laser beam and its
gravitational field is given in detail in [5] and summa-
rized below. We look at the rotation of the polarization
of test rays which are parallel co-propagating, parallel
counter-propagating, or propagating transversally to the
beamline of the source laser-beam, and consider a cavity
where the rotation of the polarization vector accumulates
after each roundtrip. We thus propose a measurement
scheme which may possibly be realized in a laboratory
in the future, when the sensitivity in experiments has
improved accordingly.

The description of the gravitational field of a laser beam
is reviewed in section II, and the calculation of the ro-
tation of light polarization in curved spacetime in sec-
tion III. In section IV, we calculate the Faraday effect for
test rays. As already mentioned, only the non-reciprocal



part of the rotation which is not due to the deflection can
be associated with the Faraday effect, which is discussed
in section V. Considering a cavity in a certain arrange-
ment, the rotation angles acquired after each roundtrip
of the light inside the cavity sum up. This is the subject
of section VI, where we look at a one-dimensional cavity
and a ring cavity and discuss the possible measurement
precision of the rotation angle. We give a conclusion and
an outlook in section VII.

To keep track of the orders of magnitude, we introduce
dimensionless coordinates by dividing them by the beam
waist wg as 7 = ct/wo, & = x/wy, X = y/wo and
¢ = z/wy, where c is the speed of light. Greek indices like
z® refer to dimensionless spacetime coordinates and latin
indices like z® refer to dimensionless spatial coordinates.
For the spacetime metric, we choose the sign convention
(—,+,+,+), such that the Minkowski metric 7 in the di-
mensionless coordinates reads n = widiag(—1,1,1,1). In
the numerical examples and plots, we use the following
values: the beam waist wo = 107%m, the beam diver-
gence § = 0.3rad (this determines the wavelength, which
is given by mfwg ~ 1 um), the polarization A = 1, and
the power of the source laser-beam, which is directed in
the positive z-direction, Py = 10! W.

II. THE GRAVITATIONAL FIELD OF A LASER
BEAM BEYOND THE SHORT WAVELENGTH
APPROXIMATION

In this section, we summarize the description of the laser
beam and its gravitational field presented in [5]. A laser
beam is accurately described by a Gaussian beam. The
Gaussian beam is a monochromatic electromagnetic, al-
most plane wave whose intensity distribution decays with
a Gaussian factor with the distance to the beamline. It
is obtained as a perturbative solution of Maxwell’s equa-
tions, namely an expansion in the beam divergence 0,
the opening angle of the beam, which is assumed to be
smaller than one radian. The electromagnetic four-vector
potential describing the Gaussian beam is obtained by
a plane wave multiplied by an envelope function that
is assumed to vary slowly in the direction of propaga-
tion, in agreement with the property that the diver-
gence of the beam is small. Corresponding to these fea-
tures, one makes the ansatz for the four-vector potential
Aa(1,6,%,C) = Ava (€, x,00)e8 ¢~ where A is the am-
plitude and v, the envelope function.! The exponential
factor describes a plane wave propagating in (-direction
with wave number k = 2/(0wyg), where wy is the beam
waist at its focal point. The laser beam propagates in
positive (-direction such that its beamline concides with
the (-axis. The beam is illustrated in figure 1.

1 More precisely, the complex-valued vector potential A we con-
sider is the analytical signal of the real-valued physical vector
potential, which is obtained by taking the real part of A.

Figure 1. Schematic illustration of the laser beam propa-
gating in the positive (-direction: The beam divergence 6
describes the opening angle of the laser beam and is assumed
to be a small parameter (smaller than 1rad), and the beam
waist wo is a measure for the radius of the laser beam at its
focal point. The intensity of the laser beam decreases with a
Gaussian factor with the distance from the beamline.

Like the four-vector potential for any radiation, A, sat-
isfies the Maxwell equations, which, in vacuum, are given
by the wave equations

(07 + 0 + 07 + 02) Au(r,6,x, Q) =0, (1)

where the Lorenz-gauge condition is chosen. Since the
envelope function varies slowly in the direction of prop-
agation, the wave equations (1) reduce to a Helmholtz
equation for each component of the envelope function,

(0F + 02 + 0205 + 4iwodgc) val& x,00) =0.  (2)

This Helmholtz equation is solved by writing the enve-
lope function as a power series in the small parameter
f. One obtains an equation for each order of the expan-
sion of the envelope function, with a source term con-
sisting of the solution for a lower order, where even and
odd orders do not mix. The beam is assumed to have
left- or right-handed circular polarization, which we la-
bel by A = +1.2 We define this to be the case if its
field strength, defined as Fog = 0,Ap — 0gAa, is an
eigenfunction with eigenvalue +1 of the generator of the
duality transformation of the electromagnetic field given
by Fap — fieagw;FV‘s/Z where €436 is the completely
anti-symmetric tensor with €y123 = —1. Our definition of
helicity is based on the invariance of Maxwell’s equations
under the duality transformation and the conservation of
the difference between photon numbers of right- and left-
polarized photons shown in [22] (see also [23-26]). For
0 = 0, this leads to the usual expressions for the field
strength of a circularly polarized laser beam.

It turns out that the energy-momentum tensor, which
one may expect to be oscillating at the frequency of the
laser beam, does not contain any oscillating terms when

2 The vector potential describing the laser beam thus depends on
the parameter A, and so do its energy-momentum tensor, the
induced metric perturbation and the effects we calculate in the
following sections. Therefore, these quantities can be thought
of as being labelled by an index A, which we suppress in the
following, except for appendix A, where we write the index A
explicitly.



circular polarization is assumed. The energy-momentum
tensor reads (see appendix A for the explicit expressions)

7= Cpe(pop _ L, poops 3
aB = e\ Lo Ba*??aﬁ sp | - (3)

The power series expansion of the envelope function in-
duces a power series expansion of the energy-momentum
tensor and the expansion coefficients are identified as dif-
ferent order terms of T3 in 6.

Since the energy density of a laser beam is small com-
pared to the one of ordinary matter, one may expect its
gravitational field to be weak. The spacetime metric de-
scribing the gravitational field is thus assumed to consist
of the metric for flat spacetime 1,43 plus a small pertur-
bation h,g. Terms quadratic in the metric perturbation
are neglected; this is the linearized theory of general rel-
ativity. In this case, the Einstein field equations reduce
to wave equations for the metric perturbation [27]
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where G is Newton’s constant and where the Lorenz-
gauge has been chosen. Like the envelope function and
the energy-momentum tensor, the metric perturbation is
expanded in the beam divergence,

o0

hap(€,x:.00) =Y 0"A) (€, x.6¢) . (5)

n=0

For a laser beam extending from minus to plus spatial in-
finity, the wave equations (4) result in a two-dimensional

Poisson equation for each hgn), with a source term con-
sisting of a term of the energy-momentum tensor of the
same order and a term proportional to hg;m, where even
and odd orders do not mix. Details and the solutions for
the zeroth, the first and the third order, which are rele-
vant for our purposes, are given in appendix A.

For a finitely extended source beam, the solution of (4)
with time-independent energy-momentum tensor of the
source laser-beam can be calculated using the Green’s
function of the three-dimensional Poisson equation,

4 2 T N !
Cus / agayag T EGC) g
c |2 — 2|

where & = (£, x, () and & = (¢, x/,{’). The solution (6)
is discussed in detail in [5].

hap =

III. ROTATION OF POLARIZATION IN A
WEAKLY CURVED SPACETIME

In this section, we explain the expression presented in
[8] for the rotation angle that the polarization vector of
a test ray acquires when propagating in a gravitational
field.

For a light ray propagating through a gravitational field
and starting and ending at spatial infinity, the rotation

angle of polarization within a plane perpendicular to
the propagation direction (in the following called ray-
transverse plane) is given by equation (5.33) in [8]. For
our set of coordinates, it takes the form

1 o0
= / dr tgeabcabhca (7'7 01 + Tto)tg , (7)
2’LU0 —o0

where €4 is the Levi-Civita symbol in three dimensions
with €103 = 1, t& = 4%(70) is the initial tangent to the
curve describing the light ray parametrized by the di-
mensionless parameter 7, and the line o, + 7ty with
01 = (&0, X0,0) constant is equivalent to the spatial part
of the ray v including terms up to linear order in the met-
ric perturbation. Therefore, the evaluation of the metric
perturbation along the line o, + 7tg instead of « the ac-
tual, possibly deflected trajectory of a light ray in the
gravitational field of the source is justified as the correc-
tion would be of higher order in the metric perturbation.

The sign of the rotation angle A is chosen such that the
positive sign refers to right-handedness (handedness of
rotation as inferred from equation (5.20) of [8]). Equation
(7) was obtained using the formal analogy of Maxwell’s
equations in a dielectric medium and Maxwell’s equations
in a gravitational field and using geometric ray optics for
vectors. It is shown in [8] that the expression in equation
(7) is invariant under coordinate transformations that
approach the identity at spatial infinity. For equation
(7) to be valid, the metric perturbation and all its first
derivatives have to vanish at least as p~! for j — oo,

where p = /&2 + x2 + (2.

For a light ray that is not deflected by the gravitational
field, i.e. that does not change its direction of propaga-
tion, the ray-transverse plane is the same everywhere far
away from the laser beam, where spacetime is flat. How-
ever, when the light ray is deflected, this plane is tilted
after passing the gravitational field with respect to the
one before entering the gravitational field. Therefore,
the rotation of the polarization vector within the ray-
transverse plane given in equation (7) is superimposed
with a change of the polarization vector é& due to the
deflection of the light ray. The latter consists of a rotation
plus a deformation which depend on the initial polariza-
tion vector .3 It does not contribute to the gravitational
Faraday effect or the optical activity. An experimental-
ist who wants to measure these effect would thus have
to correct for the deflection effects. The change of the
polarization vector is illustrated in figure 2.

3 See section 6 in [8].
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Figure 2. Change of the initial polarization vector & of a
light ray ~: The initial polarization vector & in the initial
ray-transverse plane (represented by the solid circle on the
left and the dashed circle on the right) is rotated by the angle
A into Ra& (dashed arrow on the right) due to the gravita-
tional field, where Ra is the corresponding rotation matrix.
Additionally, the deflection of the laser beam tilts the ray-
transverse plane into its final orientation (solid circle on the
right) such that it stays orthogonal to the tangent of the de-
flected laser beam. The tilt leads to an additional change 6@
of the polarization vector &. The rotation by the angle A
consists of a reciprocal part due to the gravitational optical
activity and a non-reciprocal part due to the gravitational
Faraday effect.

Another approach how to describe the rotation of po-
larization is described in appendix B. It agrees with the
results presented in this section.

For a linearly polarized test ray, the interpretation of
the rotation of the polarization vector is clear: For ex-
ample, for a test light-ray propagating in (-direction,
the polarization vector describing linear polarization
in ¢-direction, € = (1,0,0), is rotated into Ra€: =
(cos(A),sin(A),0), where Ra stands for the matrix ro-
tating by the angle A about the (-axis. For a cir-
cularly polarized test ray with helicity Aest = +1
and with the corresponding polarization vector €y,.., =
(1, = Atest?,0)/v/2, one obtains Ra&y,.., = eMtestBey, .
This means that the circularly polarized test ray acquires
the phase AiestA. In general, for an elliptically polarized
test light ray, the acquired phases of the circular compo-
nents lead to a rotation of the major axis of the ellipse
by an angle A.

IV. ROTATION OF POLARIZATION IN THE
GRAVITATIONAL FIELD OF A LASER BEAM

In this section, we investigate the rotation of the polariza-
tion vector of a test ray passing through the gravitational
field of a source laser-beam according to equation (7).

We consider different orientations of the test ray with re-
spect to the source beam: parallel co-propagating, par-
allel counter-propagating, and transversal test rays. We
find that the effect depends strongly on the orientation
of the test ray. In particular, we obtain that the order of

the metric expansion* that causes the rotation of polar-
ization depends on the orientation of the test ray.

The source laser-beam is assumed to propagate along the
(-axis, to be emitted at ( = « and absorbed at ( =
8. The parallel co-propagating test ray is emitted at
¢ = A and absorbed at ¢ = B and the parallel counter-
propagating test ray is emitted at ( = B and absorbed at
¢ = A. The test ray that is oriented transversally to the
beamline of the source laser-beam is emitted at £ = A
and absorbed at £ = B or vice versa.

In subsection IV A we focus on an ideal situation of in-
finitely long test rays. The source laser-beam is con-
sidered to be either finitely or infinitely extended. In
subsection IV B we look at finitely long test rays and a
finitely extended source laser-beam, and we discuss the
the long-range behavior of the rotation of polarization of
the test rays. In subsection IV C, we discuss the gravita-
tional coupling between the spin of the source laser-beam
and the spin of the test ray.

A. Infinitely extended test ray

For the infinitely extended test rays, the conditions for
the application of equation (7) are immediately seen to
be fulfilled for the finitely extended source beam, as the
metric perturbation and all its first derivatives vanish at
least as p—! for j — oo. This follows directly from the
Green’s function which is proportional to 1/p in three
dimensions.

For the parallel test rays, for an infinitely extended source
beam and an infinitely extended test ray it will always be
understood that the emitter and absorber of the test ray
are sent to infinity more rapidly than those of the source-
beam, i.e. |A],|B| > |af,|8] — oo, such that also here
the test ray indeed begins and ends in flat spacetime. For
the transversal test rays, for an infinitely extended source
beam and infinitely extended test rays, it is assumed that
|A| and |B| approach infinity fast enough for them to be
in flat spacetime.

Besides the strict validity of equation (7), the infinite
test-ray has also the advantage to lead to relatively sim-
ple analytical expressions for the rotation angles.

1. Parallel test rays

We start by looking at the rotation of the polarization
vector of test rays which are parallel co-propagating or
counter-propagating with respect to the source laser-
beam as illustrated in figure 3.

4 Generally, with the order of the metric expansion, we refer to the
order in #. Any higher order terms of the metric perturbation
itself are neglected in the linearized theory of general relativity.
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Figure 3. Schematic illustration of the rotation of the polar-
ization vector & (here it originally has only a component in
&-direction) of a parallel co-propagating test ray with tangent
4+ in the gravitational field of the laser beam.

The parallel co- and counter-propagating test rays are as-
sumed to have a distance p = /&2 + x2 from the beam-
line, and to travel from {( = —oo to ( = oo and from
¢ = o0 to ( = —o0, respectively. They are considered to
have transversal polarization described by the polariza-
tion vector w* = (0711J5,u1><7 0). The initial tangents to
their worldlines are given by 44 (70) = (1,0, 0, +(1— %)),
where the ”+” corresponds to the co-propagating test ray
and the ”—" to the counter-propagating test ray. The
parameter f* ensures that 44 satisfies the null con-
dition. It is proportional to the metric perturbation,
which means that it does not contribute in equation
(7) and can be neglected in the following calculations.
Since the integration in equation (7) is along the line
01 + 7to = (€0, X0, £7), we can change the integration
variable from 7 to ( when neglecting terms quadratic in
the metric perturbation. Then, for the parallel propagat-
ing test rays we obtain (see equation (D1))

1 (o]
Ai:_mﬁ/;jKG&W&ihﬁ%*%m%th»‘
(8)

Notice that the metric perturbation contains a factor w3,
such that Ay is dimensionless. For the co-propagating
test ray, the contribution coming from the first order of
the metric perturbation cancels, and one obtains in lead-
ing order (the third order in 0)

GPy0° [P e
B0 [T de P+ 2l o)

where |u|> = (1 + (6¢)*)7'. Note that ¢ in (9)
parametrizes the source beam (i.e. corresponds to ¢’ in
(6)). The derivation of (9) (see appendix E for details)
uses an asymptotic expansion in 1/B, i.e. assumes that
B > ||, 0|, as well as a finite cut-off py of the energy
density in radial direction that is then sent to infinity.
The expression with py kept finite is given by (E15). For
an infinitely extended source beam, we can then simply
evaluate the limit @« — —oo and  — oo.  An alter-
native derivation that starts from an infinitely extended
source beam and an infinitely extended test ray is given
in appendix D.

A+:)\

The integrand in (9) decreases as a Gaussian with the
distance to the beamline. The Gaussian factor is the
same as the one that appears as a global factor in the
energy-momentum tensor of the source beam (see [5] or
appendix A), which implies that significant contributions
to A, for the infinitely extended test ray are only accu-
mulated in regions where the energy distribution of the
source beam does not vanish. In addition, (E15) shows
that there is no effect outside of a finite beam when a
cut-off of the energy-momentum distribution is consid-
ered.

The sign of the rotation angle in equation (9) depends
on A, which specifies the handedness of the light in the
source laser-beam. The dependence of the rotation angle
Ay on the distance to the beamline is illustrated in the
upper graph of figure 4.

For the counter-propagating test ray, we obtain in leading
order (the first order in 6)

Py [P 2 2
A_:—/\8Gc50 / d¢ || 2e= 2Rl (10)

for the finitely extended source beam and the infinitely
extended test ray. Equation (10) is derived with the same
limiting procedures as (9). Its version with finite radial
cut-off of T}, is given in (E8). The integrand in equa-
tion (10) decreases in the same way as the one in equa-
tion (9) with the same Gaussian factor with the distance
to the beamline that can be found as a global factor in
the energy-momentum tensor of the laser beam. We find
that there are no significant contributions to the rota-
tion angle A_ outside of the energy distribution for an
infinitely extended test ray (see equation (E8)) when in-
troducing a cut-off of the energy-momentum distribution
in transversal direction. The dependence of the rotation
angle A_ on the distance to the beamline is illustrated in
the lower graph in figure 4. The two orders of magnitude
larger values for A_ compared to those for A, arise due
to the factor 62/8 present in the expression for A} but
not in the one for A_ (compare equations (9) and (10)).
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Figure 4. The absolute value of the polarization rotation
angle Ay (upper graph) for a parallel co-propagating light
ray and A_ (lower graph) for a parallel counter-propagating
light ray as a function of the transversal distance p from the
beamline. The blue (dashed-dotted) line gives the rotation
angle for the infinitely extended source beam and test ray.
The green (unbroken) line gives the rotation angle for a source
beam with emitter and absorber at { = —200 and ¢ = 200, re-
spectively, and infinitely extended test ray. The red (dashed)
line gives the numerical values for the same extensions of the
test beam and a finitely extended test light-ray with emit-
ter (absorber) and absorber (emitter) at ( = A = —600 and
¢ = B = 600, respectively, for the co-propagating (counter-
propagating) beam. For the parameters given in the introduc-
tion, the factor 8GPy/c” is of the order 107", The plots show
good agreement between our results for finitely and infinitely
extended beams close to the beamline.

2. Transversally propagating test rays

The transversally propagating test ray is described by the
initial tangent 4+ = (1,4(1— £%),0,0). Due to the same
argument as before, we do not have to take into account
the parameter f*. For the rotation angle of the polariza-
tion vector, we obtain for the infinitely extended source
beam and infinitely extended test ray (see appendix D
for the detailed derivation) including terms up to first
order
A g L [T o, 0 [~ (1)
tt = + 2u)8/ood€athC + Tw% - d§ 8Xh€<

47TGPO
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Let us denote the first term in equation (11) as AE(Q

and the second term as Aii). Then, we find that AE? =
%@CAE?. One might think that the symmetry of the

beam geometry implies that AE(Q should vanish at ( =0
as the term is independent of the helicity of the source
beam. However, the symmetry is broken due to the di-
rection of propagation of the source laser-beam. This can
also be seen from the fact that only the 7(-component of
the metric perturbation contributes to the effect, which
would vanish for a massive medium at rest (see for ex-
ample the Levi-Civita metric for an infinitely extended
rod of matter [28]). The effect is similar to the deflec-
tion of a transversally propagating test ray, which is both
deflected radially towards the laser beam as well as in (-
direction [1]. To illustrate the (-dependence of AE?, a
numerical evaluation and a comparison to results for a
finitely extended source beam (see the following subsec-
tion) are given in figure 5.
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Figure 5. First order contribution (corresponding to the
leading order effect of gravitational optical activity) to the
rotation angle A,+ for the polarization vector of an transver-
sally propagating test ray with A = +1: The blue, continu-
ous line corresponds to the infinitely extended source beam,
and the red, dashed line corresponds to the finitely extended
source beam, emitted at &« = —200 and absorbed at 5 = 200.
The test ray runs from £ = A = —600 to £ = B = 600 at
x = 10. We find that the results for the infinitely extended
source beam and test ray can be used to describe the effect
in the case of the finitely extended source beam and test ray
to some approximation for (-positions that are in between
emitter and absorber, but far from them. It can be seen that
the rotation decreases fast at the ends of the finitely extended
source beam.

The first and the second term in equation (11) are fun-
damentally different in their dependence on the variable
X, which can be interpreted as the impact parameter of
the scattering of the test light-ray with respect to the
source beam. Agi) is proportional to the same Gaus-
sian function of x that appears as a global factor in the
energy-momentum tensor of the source beam for £ = 0,
which means that it vanishes if there is no overlap of the
source beam and the test ray in the same way as in the
case of Ay and A_ above. Instead, the first term in
equation (11) vanishes at x = 0 and saturates for large



values of x at a finite value, see figure 6 for plots showing
numerical values for the first term in (11) and for the
finitely extended source beam.
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Figure 6. The rotation angle A, (zeroth and first or-
der) for the polarization vector of an transversally propagat-
ing test ray: The blue, plain line corresponds to the infinitely
extended source beam, and the red, dashed line corresponds
to the finitely extended source beam, emitted at a = —200
and absorbed at § = 200. For the finitely extended source
beam, the test ray is emitted at £ = A = —600 and absorbed
at £ = B = 600. In the first plot, |A,+| is given as a function
of the coordinate ¢ along the beamline for x = 10. For the
parameters given in the introduction, the factor 8GPy/c® is
of the order 10737, We find that the results for the infinitely
extended beam approximate those for the finitely extended
beam for (-positions in between emitter and absorber that
are far from emitter and absorber. It can be seen that |A,+|
decays quickly outside of the range of the finitely extended
source beam and test ray in contrast to |A,+| for the infinitely
extended ones that always overlap. In both cases, the maxi-
mal effect is obtained close to ¢ = 0. In the second plot, the
angle A,+ is given as a function of x at ( = 0. For large val-
ues of y, it reaches a constant value for the infinitely extended
source beam and test ray (undashed, blue) and decreases for
the finitely extended source beam and test ray (dashed, red).
A dependence on x as 1/x? is found for larger values of x
using a multipole expansion presented in appendix F.

Up to numerical factors of order 1, the prefactors in equa-
tions (9), (10), and (11) can be interpreted as the ratio
of the power P, of the source laser-beam to the Planck
power E, /t, = E2/h, where E, = \/hc® /G is the Planck
energy, which explains the smallness of the effect.

B. Finite vs. infinite source beams and test rays
and the long range behavior

For potential future experiments, finitely extended test-
rays are relevant. It may even not be possible to realize
extensions of the test ray much larger than that of the
source beam or one may need to know details about the
decay of the effect for large distances from the beamline.
It should then be kept in mind that (7) holds for test rays
that begin and end in flat spacetime. This is a condition
which can be fulfilled only approximatively for a finitely
extended test-ray. Furthermore, only under this condi-
tion has the rotation of the polarization a clear physical,
coordinate-invariant meaning. To give a physical mean-
ing to the rotation angle for a finitely extended test-ray, a
physical reference system may be considered that extends
from emitter to absorber. To this end, matter properties
of the reference system like its density and stiffness have
to be taken into account to obtain a reliable result. This
is very similar to the considerations we made in [29] for
the frequency shift of an optical resonator in a curved
spacetime. We do not follow such an approach in this
article.

Here we rather focus on the question under which con-
ditions equation (7), when integrated over a finitely ex-
tended test ray, leads to results comparable to those of
the infinitely extended test-ray. We will find that suf-
ficiently close to the beamline the results from the fi-
nite integration can be very close to those of an infinite
test-ray, which suggests that the latter, rigorous results
with clear physical meaning, also remain valid for ex-
periments using a finitely extended test-ray close to the
source beam. The situation is quite different, however,
in the far field, where results from the finite source beam
and the infinitely extended one, both evaluated using (7),
can differ siginificantly. This can be shown with a multi-
pole expansion based on equation (6) or by numerically
evaluating equation (6). The basic expressions for the
numerics are given in appendix C and the multipole ex-
pansion is performed in apendix F. Here we briefly dis-
cuss both approaches and the main results.

The numerical values for the rotation angle for finitely
extended test rays and source beams presented in fig-
ure 4 are obtained from equations (C6) and (C7). The
derivative in equation (7) acting on the metric perturba-
tion is shifted to the energy-momentum tensor by pulling
it into the integral, using the symmetry of the function
|# — Z’| to replace the derivative for an un-primed co-
ordinate by a derivative for a primed coordinate and
partial integration. The resulting expressions are eval-
uated using Python and the scypy.integrate.quad and
scypy.integrate.romberg methods. The results for the
finitely extended beam and those for the infinitely ex-
tended beam are very similar close to the beamline, see
figure 4. The region in the &-y-plane containing most
of the energy of the source beam can be defined by a
drop of its intensity by a factor e2, which implies a ra-

dius w(¢) = /1 + (6¢)? of that region. In standard no-



tions w(() is called the width of the beam as a realistic
beam is never infinitely extended in the transversal direc-
tion and is usually considered to extend only on length
scales of the order of w(¢). Equations (9) and (10) imply
that there is only a significant rotation angle accumu-
lated along an infinitely extended test ray if the latter
overlaps with the region bounded by the source beam’s
width, as the integrands in equations (9) and (10) are
proportional to the same Gaussian function that can be
found as a global factor in the energy-momentum ten-
sor of the source beam. In the following, we will call
this situation an overlap of the test light ray and the
source beam. That A_ and A, are only non-zero for
an overlap of test ray and source beam is confirmed by
equations (E15) and (E8), where a cut-off of the source
beam’s energy-momentum distribution is considered. For
0¢ > 1, we find that w({) = 6¢. Therefore, a test ray
at p > 1 overlaps with the source beam only in regions
where |6¢| > p. For the infinitely extended source beam
and test ray, there is always an overlap, but it does not
need to be the case if at least one of the two beams has
finite length.

Note that for large values of 6(, the energy-density of
the source laser-beam is proportional to (#¢)~2 (while
transversally it decreases as a Gaussian with the distance
to the beamline). The same is true for the integrands in
equations (9) and (10). Therefore, AL in equations (9)
and (10) are approximately proportional to 1/(6¢) evalu-
ated at the boundaries of the regions where test ray and
source beam overlap. For the infinitely extended beams,
this implies that the rotation angles in equations (9) and
(10) are approximately proportional to 1/p for large p.
The proportionality of A_ and Ay to 1/p holds as well
for finitely extended source beams if p < —fa or p < 0.
For larger values of p, there is no overlap of test ray and
source beam (this is illustrated in figure 7 and figure 8).
Then, A_ and A, decay proportional to e~ /p? and
6_2”2, respectively, where ¥ = 2/(6a)? for a > —f3 or
¥ = 2/(0B)? for B > —a, as shown in equation (E11)
and equation (E17), respectively.

Figure 7. Illustration of the overlap of the test ray with the
source laser-beam: A test ray may overlap with the source
laser-beam only if the latter is long enough. In the illustra-
tion, the path of the test ray is labelled by v and starts and
ends at A and B respectively for the short source laser-beam
(starting and ending at o and 3 respectively) or at A" and B’
for the long source laser-beam (starting and ending at o’ and
B’ respectively).
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Figure 8. The function —d_ (the integrand in equation (10))
for the polarization vector of the parallel counter-propagating
light ray is plotted as a function of the coordinate along the
beamline ¢ for a distance from the beamline p = 10. The
blue (unbroken) line gives the rotation angle for the infinitely
extended source beam and test ray as in equation (10). The
red (dashed) line gives the numerical values for a finitely ex-
tended source beam with emitter and absorber at o« = —200
and B8 = 200, respectively, based on (6). It can be seen
that 6_ decays quickly outside of the range of the finitely
extended beam in contrast to d_ for the infinitely extended
source beam, which continues to decay like 1/¢? for large ¢
just as the source beam’s energy density. The region left of
the steep descent around ¢ ~ —70 and the region right of the
steep ascent around ¢ ~ 70 correspond to the overlap regions
of source beam and test light-ray. In the case of an infinitely
extended source beam, these regions are infinitely extended.
In the case of a finitely extended source beam, the overlap
regions end at the end of the source beam as can be seen with
the steep ascent close to ( = —200 and the steep descent close
to ¢ = 200 for the red (dashed) curve.

The behavior for large distances from the beamline and
finitely extended test rays can be analysed with a mul-
tipole expansion, assuming that the source term in the
form of the derivatives of the energy-stress tensor can
be effectively cut-off at w(¢). This is presented in ap-
pendix F. One finds that for AL the lowest contributing
moment is a quadrupole leading to a 1/p3 decay for fi-
nite B = —A. At the same time, the prefactor of these
terms decay as 1/B? for B > p. Higher multipoles lead
to an even faster decay, both with p and B. Hence, in the
case of a finitely extended source beam and an infinitely
extended test ray that does not overlap with the source
beam, one expects to recover the fast decay of Ay with
p obtained in equations (9) and (10). However, a resum-
mation of the multipole expansion would be needed to
find out its functional form. This is beyond the scope
of the present investigation. Nevertheless, the analysis
makes clear that Ay sensed by a finitely extended test
ray in the far-field regime is not captured accurately by
the results from the idealized infinitely extended test ray
for the cases considered.

For the transversal test ray, the y-dependence of A+ for
x > 1 changes drastically for the finitely extended source
beam compared to the infinitely extended one. In partic-
ular, the result that the first term in equation (11) does



not vanish for large distances from the beamline turns out
to be an effect of the infinite extension of source beam
and test ray. Alternatively, this can also be seen as fol-

lows: As AE(Q is of zeroth order, it remains present when
describing the laser beam in the paraxial approximation,
in which the gravitational field of an infinitely extended
source beam has the form hgg = hgs = —hgo o In(p) (see
[3, 30] and consider an infinite pulse length or see [2], con-
sider an energy distribution localized to the beamline,
and subtract the Minkowski metric from the resulting
spacetime metric). From equation (7) and for a transver-
sal infinitely extended test ray, we immediately obtain a
rotation angle proportional to the first term in equation
(11). On the other hand, the solution for the gravita-
tional field for a finitely extended source beam can be
found in [1]. In appendix G, using this solution and
an infinitely extended test ray, we obtain the radial de-
pendence of the rotation angle as 1/x, and for a finitely
extended test ray, we find that the rotation angle is pro-
portional to 1/x? for large x. This is corroborated by the
multipole expansion, where we find a monopole contribu-
tion responsible for the 1/x? behavior to zeroth order in @
for x > B. As function of B = —A it saturates for large
B (i.e. B > x) and gives a /x behavior, see appendix F.
Since AEB = %QGXASP, we find that Ai? decays as 1/x?
for finitely extended source beams and test rays and as
1/x? for finitely extended source beams and infinitely ex-
tended test rays. The corresponding multipole expansion
is given in appendix F.

C. Rotation of polarization and gravitational
spin-spin coupling

The rotation angles A4 as well as the first order contri-
bution to A;+ are proportional to the helicity A of the
source laser-beam. As explained in the end of section III,
the rotation angle is equivalent to a phase for circularly
polarized test light rays, which is given by —A¢est A. This
phase contains the product of the helicities of the source
laser-beam and the test ray, Aiest- Therefore, the phase
depends on the relative helicity of the two beams. This
is gravitational spin-spin coupling.

We can consider the source beam as its own test beam,
Atess = A, such that st Ay = C4 where Cp > 0 is
a function that increases monotonously with the end of
the source beam at ¢ = 8 (see (9)). Since C enters as
a phase Exp(iCy ), it can be combined with the global
plane wave factor at the end of the beam ( = S as
Exp(i®) where ® = 2(8—7)/0+C,. This leads to the lo-
cally modified wave number k = 93® = (24 093C) /0
at ¢ = 8. Effectively, this leads to the interpretation of
a locally modified dispersion relation and an effectively
reduced speed of light. This self-interaction effect is pro-
portional to the intensity of the electromagnetic field. It
is reminiscent of the apparent modification of the speed
of light found in [31] based on the eikonal approxima-
tion of the solution of the relativistic wave equation of a

light-beam in its own gravitational field.

V. FARADAY EFFECT AND OPTICAL
ACTIVITY

The electromagnetic Faraday effect is a non-reciprocal
phenomenon. Non-reciprocity means that the effect does
not cancel when the test ray propagates back and forth
along the same path. We investigate this feature for its
gravitational analogue.

The rotation angle given in equation (7) is defined with
respect to the propagation direction. Therefore, the ab-
solute rotation accumulated on the way back and forth
through spacetime seen by an external reference system
at the starting point of the test ray’s trajectory at spatial
infinity is given by the difference between the rotation an-
gle acquired on the outbound trip and the one acquired
on the way back. For a tangent vector tf with ¢J = 1
and t§ = dog, with m € {£,x,(} and d = +1 for out-
bound and d = —1 for back propagation, we obtain from
equation (7) the rotation angle

(o]
_ 2% / A7 empedy(hom + dhor) ,  (12)
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and therefore, the Faraday rotation becomes
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We find that the gravitational Faraday effect is given by
the spacetime-mixing component of the metric perturba-
tion h.r. In contrast, the first term in (12) containing a
purely spatial component of the metric perturbation does
not depend on the propagation direction and cancels on
the way back and forth. This is the gravitational optical
activity.
For the rotation due to the gravitational Faraday effect
after one roundtrip for the parallel test ray, we obtain
from equation (8) to leading order

AT —A A

0 [~ (1) 1
- —ﬁ/mdg(axm5 —0en)) . (14)

o J_
Adding the rotations due to the transversal back and
forth propagation leads to (the explicit expression is iden-
tical to twice the positive contribution of the first term
in equation (11)),
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which means that the effect is of zeroth order. The con-
tribution of gravitational optical activity is given as (to
leading order and for one direction of propagation)
Ay +A_
2
o [~ (1) (1)
- _2108/ ac(ochly - 0ehl))  (16)

— 00

Op _
A+7—



for the parallel test rays, and
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for the transversal test rays.

From the vanishing of A in first order in the metric per-
turbation, we deduce that the first order contributions of
optical activity and the Faraday effect to the polarization
rotation accumulated along a parallel co-propagating test
ray have the same absolute value and cancel each other.
In contrast, the two contributions add for the counter-
propagating test ray. This situation can be compared to
the result of Tolman et al. [1], which states that a test ray
is not deflected in the gravitational field of a source light-
beam if it is parallel co-propagating, while it is deflected
if it is parallel counter-propagating. It is the motion of
the source of gravity that breaks the symmetry; its mo-
tion with the speed of light leads to the extreme case of
equal absolute values of the two effects.

VI. TEST RAYS IN CAVITIES

In a one-dimensional cavity containing light that prop-
agates back and forth, the effect associated with grav-
itational optical activity cancels while the gravitational
Faraday effect adds up. In a ring cavity or an optical
fiber coiled around the beamline, the full polarization
rotation is accumulated and the gravitational Faraday
effect represents the leading order effect. For the case
of a transversally oriented ring cavity, a situation can be
created in which the Faraday effect vanishes and only the
gravitational optical activity accumulates.

A. Parallel linear cavity

We consider a cavity consisting of two mirrors between
which the light propagates back and forth, with the axis
of the cavity oriented parallel to the beamline and at a
distance p from the beamline. The setup is illustrated in
figure 9.

Figure 9. Schematic illustration of the parallel cavity in the
gravitational field of the laser beam: The source laser-beam
starts at @ and ends at 8. The test ray propagates on the
worldline v between the mirrors A and B of the cavity. The
Faraday effect adds up after each roundtrip, while the rotation
associated with gravitational optical activity vanishes.
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Up to third order in @, the light travels undeflected from
¢ = A to ¢ = B and picks up a small deflection of zeroth
order in # when travelling from ( = B to ( = A. The
deflection vanishes when the light ray propagates at the
center of the source beam, at p = 0. In this case only
the angle due to the Faraday effect accumulates. For
one back and forth propagation, it is given by equation
(14). Letting the light propagate during the time 7 =
LF/(mc), where F is the finesse of the cavity, the total
angle of rotation is given by Acay,1— = AL _F/(27). For
a cavity of finesse F' = 10° [32] and the parameters given
in the introduction, the rotation angle is of the order
of magnitude Agay, 41— ~ +1073?rad. For a cavity at
distance p > 0 from the center of the laser beam, the
effect is smaller, and one has to take into consideration
the deflection when the test ray is counter-propagating
to the source laser-beam.

B. Transversal linear cavity

Rotating the parallel cavity by ninety degrees, we obtain
a transversal cavity, as illustrated in figure 10. Anal-
ogously to the parallel cavity, one finds that the total
angle of rotation is given by A,y ¢+¢- = Aert,F/(Q?T).
For a finesse of F' ~ 105 and the parameters given in the
introduction, it is of the order +10732 rad.

Figure 10. Schematic illustration of the transversal cavity in
the gravitational field of the laser beam: The test ray prop-
agates along the worldine v, marked as a red line, and is
reflected at the mirrors A and B. The source laser-beam is
emitted at { = a and absorbed at ( = 8. The Faraday effect
adds up after each roundtrip, while the rotation associated
with gravitational optical activity vanishes.

C. Ring cavity

In order to measure the polarization rotation including
the contribution due to optical activity for the transversal
light ray, we consider a ring cavity: The light propagates
from A at (§,x,¢) = (—00,x1,0), to B at (§,x,() =
(OOaXhO)a to C at (€7X5C) = (007X270)a where X1 and
X2 have opposite sign, to D at (£, x,() = (—o0, x2,0)
and back to A. The oo can be replaced by distances
from the beamline much larger than 3. The polarization
rotation accumulated when propagating from A to B and
from C to D add up. The setup is illustrated in figure 11.



Figure 11. Schematic illustration of the ring cavity setup:
The test ray propagates along the path v and is reflected at
the mirrors A, B, C and D. The source laser-beam is emitted
at ( = a and absorbed at ¢ = . A similar situation can be
created with a test ray in a wave guide that is wound many
times around the source beam.

The rotation of polarization after one roundtrip is given
by twice the expression in equation (11) for x; ~ 1
and 2 ~ —1. For x1 > B, x2 > —f and o = —f, we
have shown that the effect decays as 3/x? in appendix F.
As the first term in equation (11) corresponding to the
gravitational Faraday effect is of zeroth order in 0, it does
not depend on the beam waist for the fixed wavelength
given by wwy. This means that the beam has to be long,
but it does not need to be focused. Again for a finesse of
F = 10% and the parameters given in the introduction,
the rotation is of the order of magnitude A+ F/(27) ~
10732 rad.

For x; = 0 and x2 = —oo or at least —y2 very large,
we find that the polarization rotation due to the Fara-
day effect vanishes (see also equation (E22)) and the ro-
tation due to gravitational optical activity remains (see
also equation (E23)). Then, the accumulated effect is by
one order smaller than that due to the Faraday effect at
X1 =xz2>1

A ring cavity can also be used to amplify the rotation
angle of the polarization the parallel co-propagating test
ray acquires: Since it is not deflected, one can let the
light ray pass through the gravitational field N times
just in the direction of propagation of the source beam,
such that the effect is amplified by a factor V.

D. Measurement precision of the rotation angle

The rotation angle A is experimentally inferred by mea-
suring the additional phase difference that the right- and
left-circularly polarized components of the test ray ac-
quire when propagating in the gravitational field as ex-
plained in the end of section III. The measurement pre-
cision of the phase ® = — A5t A is restricted by the shot
noise. Using classical light, the minimal uncertainty in
a phase estimation cannot exceed the shot noise limit,
which is of the order of magnitude 6@ ~ ﬁ, where n
is the number of photons of the light inside the cavity and
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M the number of measurements [33]. For a cavity res-
onator driven by a laser with frequency w/(27) and power
Py, we find a number of photons n = Py, Ty, /(Aw), where
Ty is the average time a photon spends in the resonator.
Therefore, the number of measurements that can be per-
formed with n photons in an experimental time Ti is
given as M = Tiot/Tay, giving nM = Py Tior/(hw),
which is the total number of photons passing the cav-
ity in time T}ot.

The measurement precision becomes thus better by in-
creasing the power of the driving laser and lowering
its frequency. For cw-laser beams with power Py, =
100 kW [34],5 for a wavelength of approximately 500 nm
and a total experimental time of about two weeks, i.e.
Tiot ~ 10%s, the minimal standard deviation is given by
8¢ ~ 10~ rad. Its order of magnitude does not change
when using a squeezed (single mode coherent) state with
the currently maximal squeezing of 15dB [36]° and ana-
lyzing the uncertainty with the corresponding quantum
Cramér-Rao bound [37].

The Cramér-Rao bound is a tight bound on the uncer-
tainty of an unbiased phase-estimation that can in prin-
ciple be achieved in a highly idealized situation, where
all other noise sources such as thermal noise, electronic
noise, seismic noise etc. are neglected. The sensitivity
can be increased by using more than one mode, but with-
out entangling the modes or creating other non-classical
states no gain in sensitivity at fixed total energy is pos-
sible [38].

For a more practical benchmark of current state-of-the-
art measurement precision, consider the LIGO observa-
tory. It obtains a sensitivity for length changes of their
arms of the order of 1072°m (strains of the order of
10723 (Hz)~"/2 on an arm length of the order of 10°m
[39]), which corresponds to a phase sensitivity of the or-
der of 107! rad at about 1000 nm wavelength. Another
obstacle is that the source-laser power of 10'° W that we
considered here can so far only be reached in very short
pulses, which means that an extension of our analysis to

5 Of course the power of the driving laser cannot be unlimited as
the cavity mirrors have to withstand the heating due to scattered
light. The finesse F' ~ 108 leads to a circulating power in the
cavity of the order of 10'© W, which leads to a necessary size of
the beam at the mirrors of the order of 1m [35]. Assuming the
transversal setup described in section VI, the waist of the test
ray has to be smaller than the waist of the source beam and the
divergence angle of the test ray must be smaller than one radian
to ensure a complete overlap of the focal regions of the source
beam and the test ray. We assumed a waist of the source beam of
the order of 10~6 m, which implies a maximum waist of the test
ray of the same order. Furthermore, the divergence angle of the
test ray below one radian implies that the distance between the
mirrors of the test ray has to be of the order of several meters.
The situation for the longitudinal cavity turns out to be even
more challenging. However, the given parameters serve as an
upper limit of what would be possible in the near future.

Note that this degree of squeezing has only been reached for
much a smaller beam power of the order of mW, which would
actually lead to a decrease in the sensitivity.

(=]



pulsed source beams will be required when one day sub-
stantially larger powers and more sensitive measurements
might become available. We conclude that the angles due
to the gravitational Faraday effect of the order of mag-
nitude A ~ 10732 rad cannot be measured with current
and near-future technology.

VII. SUMMARY, CONCLUSION AND
OUTLOOK

We analyzed the rotation of polarization for a test ray
propagating in the gravitational field of a laser beam.
We distinguished the non-reciprocal contribution to the
rotation due to the gravitational Faraday effect from the
reciprocal contribution associated with the gravitational
optical activity. As the rotation angle is equivalent to a
phase for circularly polarized test rays, the precision of
the measurement of the effect investigated in this article
is limited by the shot-noise limit when using classical
light. With this analysis we found that the rotation of
polarization of a test ray induced by the gravitational
field of a circularly polarized source laser-beam is too
small to be measured with state-of-the-art technology.
The effects are of fundamental interest, however.

For an infinitely extended (or at least very long) test ray
propagating parallel to the source beam, we found that
the local rotation picked up by the polarization vector
of the test ray is proportional to the energy density of
the source beam. In that case, we concluded that ef-
fects are only present for an overlap of the test ray and
the source beam’s region of highest intensity bounded by
its width. Using the approximation of an infinitely ex-
tended source beam, such an overlap is always present
for parallel propagating test rays and we find a decay
of the integrated rotation angle with the inverse of the
distance to the beamline of the source beam. In the re-
alistic situation of a finitely extended source beam, this
dependence on the distance remains approximately valid
as long as there is a significant overlap. However, for
the finitely extended source beam, there is no overlap
for distances from the beamline larger than the exten-
sion of the beamline multiplied by the divergence angle
of the source beam. Above that limit, we find that the
polarization rotation picked up by a parallel propagating
infinitely extended test ray decreases as a Gaussian with
the distance to the beamline of the source beam. For a
finitely extended test ray far from the beamline of the
source beam, we find that the effects decay with the in-
verse of the third power of the distance using a multipole
expansion. However, a finitely extended test ray begins
and ends in regions with non-vanishing gravitational ef-
fect of the source beam. Hence, the interpretation of the
rotation angle is not straight forward. To overcome this
problem, a physical reference system could be considered
that extends or is moved from the beginning to the end
of the test ray.

For transversally propagating test rays, the situation is
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different: The leading order effect decreases with the in-
verse of the distance from an finitely extended source
beam for an infinitely extended test ray and with the in-
verse square for a finitely extended test ray. Therefore,
of the effects investigated in this article, the rotation of
polarization of a transversal test ray should be the easi-
est to detect, while we reiterate that a detection will not
be possible in the near future. It is interesting to note
that the effect remains there also in the geometric optical
limit and is independent of the source beam’s helicity.
Only the gravitational Faraday effect contributes to the
leading order effect for the transversal test ray. The grav-
itational optical activity induces the next to leading order
term, and it decays one order more strongly with y than
the gravitational Faraday effect.

It has been shown that for light passing through or be-
ing emitted from a rotating spherical body [6, 7] or a
rotating spherical shell [12], one obtains a rotation of the
polarization proportional to the inverse of the square of
the distance to the rotating object. On the other hand,
when the light ray is only passing by these objects or
any stationary object, there is no rotation of polariza-
tion [40, 41]. However, if these objects are in motion,
it has been shown that the polarization is rotated (for a
moving point mass [42], for gravitational lenses [10, 41],
for a moving Schwarzschild object [9], for moving stars
[8]). As the laser beam, although its spacetime metric is
stationary, consists of an energy-distribution in motion,
our results agree with the literature in the sense that the
rotation of polarization is non-vanishing.

As another interesting fundamental insight, we found
that to first order in the divergence angle @, the polar-
ization vector of a parallel counter-propagating test ray
rotates, while this is not the case for a co-propagating
test ray. We argue that this asymmetry is due to the
propagation of the source laser-beam. This is similar to
the deflection of a parallel test ray by the gravitational
field of a laser beam which is non-zero for a counter-
propagating ray and vanishes for a co-propagating ray
[1].

The gravitational field of the laser beam depends on its
polarization. This is in agreement with the gravitational
field of a polarized infinitely thin laser beam or pulse de-
rived in [3] and the gravitational field of a polarized elec-
tromagnetic plane wave presented in [43]. However, the
gravitational field in the models [3, 43] does not depend
on the direction of linear polarization and neither on the
helicity of light in the case of circular polarization. This is
in contrast to gravitational photon-photon scattering in
perturbative quantum gravity discussed in [44]. In [5], we
showed that the gravitational field of a laser beam con-
sidered as a proper perturbative solution of Maxwell’s
equations beyond the short wavelength approximation
does depend on the helicity of the laser beam. In the
present article, we showed that, accordingly, the polar-
izations of two light beams couple gravitationally; two
circularly polarized light beams inflict on each other a
phase shift depending on the relation between their he-



licity. This is gravitational spin-spin coupling of light
(see [45] for a general review on gravitational spin-spin
coupling).

Together with frame-dragging and the deflection of a par-
allel co-propagating test ray discussed in [5], the gravi-
tational Faraday effect and gravitational optical activity
are only visible when the source is treated beyond geo-
metric ray optics. It can be expected that angular orbital
momentum of light would contribute to the effects men-
tioned above (see [4] for an investigation of the gravita-
tional field of light beams with orbital angular momen-
tum).
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Appendix A: Metric perturbation (from [5])

In this appendix, we give the explicit expressions for
the metric perturbation as derived in [5]. The metric
perturbation is obtained from the electromagnetic field
of a circularly polarized laser beam given in [5], which
is determined by the vector potential A,(7,&,x,() =
Ava(f,x,eg)ei%(g_ﬂ, where A is the amplitude, v, =
> 070 ™ is the envelop function, whose spatial com-
ponents, a € {&, x,(}, are given up to third order in 6
by

MO = e(o)vo (A1)
A1) = () ey A2
v ? Vo ,
a €a 2\[ (5 X) 0 ( )
NI SR S A PION A3
U 5 ( 2u p ) (A3)
0@ =B (44 wp® — 2t 0} (A4)

where p = 1/(1 + i6¢), the function v is given by

UO(&? X79C)

and €V = wo(1, =i, 0)/v/2, el = wg(0,0,1) and A =
+1 refers to the helicity. Since we work in the Lorenz
gauge, the 7-component of the vector potential is given
as

= pe e (A5)

= %87—147— = g (85145 + 0, Ay + 9394_/4(;) . (AG)

The leading order is thus the usual expression for the elec-
tromagnetic field of the Gaussian beam in the paraxial
approximation. The higher orders are corrections to the
paraxial approximation. The corresponding components
of the energy-momentum tensor are given as T, = &,

13

T;; = —Sj/c and Ty, = oj; for j,k € {£ x,(}. For
the vector potential of a circularly polarized laser beam
given by equation (A1), the energy density £, the Poynt-
ing vector S and the stress tensor components ;i up to
third order in @ are given as

er=¢0 [1 (A7)

|22

L8 (1t P2 - - 3>p2>p2)] ,

52/c = £O0uP [(ecg ) (A8)

62 2
vy Ax = 2|l ( (2

HOCE+ M)+ 36— A ) )|

— p*)0CE +2(1 — p*)Ax

SX /e =

X

CAEOY P [(5 e (A9)

92

=0 (6= 2P (20 e - 2= oom

+(€ = 0CAxY)(4+3p — 4|M|2P2)|M|2P2>)] :

53 /e =€~ 5€0 (6pl))? (A10)
Ugg 0)92lu| (6C€ + Ax)? (A11)
oy = EQO?|ul* (€ — 0CAX)? (A12)
2y = EQN? | (06 + M) (0CAx — §) (A13)

03
ogc = 58 /c = EO (O + M)l p? (A14)
93
R = 53/e+ AV L(E =0l (AL5)
ot = = (bplu))? (A16)

where |p|? = 1/(1 + (0¢)?) and £©) = gquwiEZ|vo|?> =
2P |u*Exp(=2|pf*p?)/ (mc).

1. Field equations

The linearized Einstein equations take the form

Noah)) = —kwd ) (A17)
Agah)y) = Otggﬂ , (A18)
Azdh)\(n) — KW} ;\Xgl) aegh“" ? for n > 1(A19)
where tfln) are the coefficients of the power series ex-

pansion of the energy-momentum tensor in orders of 6,

i.e. Ta@ = Z Q"t(")
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2. Zeroth order

o DO RO g

The metric perturbation in the leading (zeroth) order of J 0 M
. . . . . A1) 13 A
the expansion in the beam divergence is given by [5] hip = AW 0 0 po o (A22)
X —Ix
o - - o
her = hee = —hee =100 (A20)
where the functions [ 2‘(1) and I;z(l) given by
where the function 7(9) is given by 1
R = 7 (00 +20y) 1
SGPyw? (1 2GPywd (0CE + A _
10 = SER (i (c2u) - oslp)) . (a2) = 2R (1o ) (a2
c
1
LW =~ (A0 — 00, 1
here Ei(z) = — [* dt £~ is th tial integral.
where Ei(x) f7$ + is the exponential integra _ 2GPyw?(AE — 6CX) s N
= 1—ce . (A29)
cp
4. Third order
3. First order
The only non-zero components of the metric perturbation
The metric perturbation in the first order of the expan- in the third order of the expansion in the beam divergence
sion in the beam divergence is given by [5] are given by
GPyw?
ne = - 205;‘;0 ((49C£+3/\X) - (— (46C€ + 3Ax) — 207 (30CE + 2M0) ||
— 2p%(=2 +3p?)(0¢€ + M) ul* + 8p" (6 + Ax)lul6> e2'“'2p"’> : (A25)
GP()’LU2
W= - Sen ((40<x — 306 + < — (46Cx = 3XE) — 2p% (30Cx — 228)
_ 2 2
= 2p(=2+3p")(00x — A& Inl* + 8p™ (BCx — A§>|u|6> e 2le ) ; (A26)
GPyw?
R ((2945 +Ax) + ( — (26C€ + AX) — 29°(26¢€ + A |ul?
2cp
=207 (=24 30) (0CE + M) ul* + 80" (0G€ + Ax>|u|6> 'l) : (A27)
A3 GPowd
e =5z o ((29Cx —26) + ( — (20Cx — X&) — 20°(20Cx — A |f?
= 20%(=2+3p7)(00x — A)ul* +8p" (6Cx — A&W) e2'“'zp2> : (A28)
[
Appendix B: Another approach to determine the transported through the gravitational field, again start-
rotation of polarization (as described in [11]) ing and ending in flat spacetime. The angle of rotation

Another result for the rotation of the polarization was
obtained in [11], where the polarization vector is parallel



in the af-plane is given by

oo
Aup :/ d7 47T, 986 , (B1)
—00

where 7 is the parameter parametrizing the geodesic ~.
It is obtained as follows: The polarization vector w® is
parallel transported if

A 0aw” + 4w T, =0. (B2)

Integrating along the geodesic «y, the change of polariza-
tion is given by

Sw” :/ AT 4% 0qw? = —/ dr ¥*w’T7 . (B3)
From the change of polarization, the angle of rotation in
the plane (7 is obtained by writing

(w+dw)? = (g’yﬁ + Awﬁ)wﬂ , (B4)

which has the form of an infinitesimal rotation. The ro-
tation angle is given by (B1). This result is coordinate-
invariant if the metric perturbation vanishes far away
from the source of the gravitational field. This is not
the case for the laser beam. However, in some cases the
result can be applied, as we will explain. Also, (B1)
describes a four-dimensional rotation. If the test light-
ray is deflected by the laser beam (as for the parallel
counter-propagating and the transversal light ray), one
has to be careful when applying this formula, as the ray-
transversal plane tilts when the light ray is deflected. In
our case, the formula can be applied. Indeed, it leads to
the same results as we obtain with equation (7): For the
parallel co- and parallel conter-propagating light rays,
one obtains (to third and first order in the expansion in
0, respectively)

Ay =- 29;8 /_ Z d(6¢) (ax (hg?g + h&?)
— ¢ (B2 + 1)) = anch)) (B5)
Ay =- 2303 [ 0; d(6¢) <6X (n& =)
_ (hgg - hggg) ) . (B6)
The last term of the integrand in the above equation for
Agx vanishes when integrating from ( = —oo to { = oo,

as in our case hgy(00) = hegy(—00). Therefore, we see
that AgX = A4 and Al = A_. The same is the case for

the transversally propagating light rays: We find (up to
the first order in the expansion in )

A A (0) (1) 1)

At = o d¢ (8XhTC — 00,heY) +00eh )
0J—o0 (B?)

Xt L[~ 0) (1) 1)

AL = W/ dg( — O — 00, h) —00ch(}) ) .
0J—o0 (B8)

15

As h?g (€ = 00) = h{(€ = —00), we obtain AL, = Ay
and AE; =N,

Appendix C: Derivation for finitely extended source
and test beams

Starting from the solution in equation (6) for the lin-
earized Einstein equations, we find with equation (8),
using the identity 895@@ = —&Ca/ﬁ, and partial
integration (the energy-momentum tensor vanishes at in-
finity)

2G (B

Ay=-" [ d / de’dx’'d¢’
c A —0o0

(6 (aX/ (tglc) - tfg) — De (t;lg + t%?))
+0* (0 (1 £ 452) = 00 (K2 £42))) . (C1)

The energy-momentum tensor of the finitely extended
beam is given by multiplying the expressions in appendix
A for the infinitely extended beam with the Heaviside
functions ©(¢ — a(p)) and O(B(p) — (), where a(p) and
B(p) describe the (-coordinate of the source beam’s emit-
ter and absorber, respectively. This truncation of the
energy-momentum tensor leads to a violation of the con-
tinuity equation of general relativity, which in our case
means neglecting recoil on emitter and absorber. This
corresponds to energy and momentum being inserted into
the system and dissipated from it, respectively, and can
lead to apparent effects close to emitter and absorber that
may not be present in practice. The best approximation
of reality by our model of the finitely extended beam will
be achieved for points far from emitter and absorber but
close to the beamline (see also [46] for a detailed analysis
of a similar situation).

When the surfaces of emitter and absorber are consid-
ered to match the phase fronts of the beam, they are
curved and, therefore, depend on p. This dependence

is of second order in 6. The derivatives in equation
(C1) lead to Dirac delta functions o/(p)d(¢ — a(p)) and
B'(p)d(B(p)—C), and hence to evaluation of the integrand
at the surfaces of emitter and absorber, respectively, in-
tegrated over the transversal directions. For each term in
equation (C1), this contributes even higher order terms.
In the following, we restrict our considerations to the
leading order only (to first order for A_ and to third or-
der for Ay). Therefore, the contributions of the curved
surfaces of emitter and absorber can be neglected and we
set a and /3 to be constants. From the expressions given
in appendix A for the energy-momentum tensor, one sees
that t&) = —t(TlE) and t;lg = —tglx). The derivatives ap-
pearing in the expression for A4 of the first order terms
are given by

1

|7 — 7|

2 — 2 2
ot = TCOW|4( — 4x|ul* (¢ + Ax) + )\)e 2ule” (C2)

2 _ 2 2
Ot = Tco‘“ﬁ( — el (B0x = 29 — A)e A (03)



and the derivatives of the third order terms are found to
be

_ 2 2
9x(t§3) t(S)) szl e 2|pl?p ()\
( 4|IL|2 2/02)X(0C§+)\X))7 (C4)
PO 6 2 —2|,u.|2p2
= —— - A
mlu\ pe (

+(=4lul +2/p")E0¢x ~ A9)) . (CB)

(3) (3)
ag (tXC + tTX)

Considering only the leading order terms in 6, we obtain
for the rotation angles of the parallel co- and the parallel
counter-propagating test rays

A= _835]302%9 " agay /B d¢'K (¢, X', ¢)
(A1 = 2p(¢)Pp?)e 2O (o)

a =S ™ e [ accie v o)
(¢ (1 = (¢ [2p?)e 2O ()

where [;1(¢')]? = 1/(1 + (6¢')?) and

B-C+ (P + (B~ C/)2)1/2>

A—C’+(p”2—|—(A—C’)2)1/2 ’
(C8)

K, x'.¢)= log(

with p = /(€ = €)? + (x — X)2.

For the transversal test ray, we find along the same lines
(neglecting again the effect of the curved surfaces of emit-
ter and absorber as they are at least of second order in
6), using equation (DS),

Apy == df/ A dC ﬂ,|
Dy (itTC +oty) . (C9)

From the expressions for the energy-momentum tensor
in appendix A, we find that the derivatives in the above
equation are given by

8P,
01 = P10 et (C10)
2P0
Onted = 2 |u (AL~ 4lul*x)
2 2
f4(9<£x|u| 2)e2lul"e (C11)

which leads to the rotation angle for the transversal test

ray
8GPy 1 [™ P
Ay = 050%/_ dg'dx’/ 'K (¢, X', (')
(¢ (£ 4x + A1 = (¢ )

—40C'E'X |n(¢')[2) ) 2O

(C12)
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where the function K; is given by

Kt(ﬁlaX/,C/)
= log (B—f/—i—(X//2_|_(C_</)2+(B_€/ 2 1/2>
A—+ X"+ (=) +A-))/2 )"
(C13)

where " = x' — x.
For the numerical analysis, we transform the found ex-
pressions for the rotation angles into the cylindrical coor-

dinates (o', ¢/, (") with ¢ = arccos(¢’/p') or (p”,¢",(’)
with p” = /€2 + X2 and ¢" = arccos(¢'/p").

Appendix D: Derivation for infinitely extended
source and test beams

For the parallel test rays, we obtain from equation (7)
and to 1 = Y4 (79) = (1,0,0, (1 — fF))

Ay = / AT ty€abcOphea (0L + Tto)tE (D1)
2w0
1 o0
- / A7 €cbey (hee (€, %7) £ her (€, v, £7))
wy J—
1
= 5w ) dC ( w(Pec £ her) = O (hye £ hw)) :

The rotation angle for the parallel counter-propagating
test ray is thus given by (considering the leading order

only)
sug | (0 (0 -2)

0 (h2 - n)) -

From the expressions for the metric perturbation in ap-

pendix A, we see that h(lc) —thg), h;lc) = —h(Tlx). For
the derlvatlveb in the above expression, we find

A_ =—

(D2)

8GPyw?
= SN e (D)

(€)) 1
Oxhgl — Ochy

which leads to the rotation angle for the parallel counter-
propagating test ray

8GP0 [ 2 2
A==\ c5° / d¢ |pfPe 2H " (D4)
Along the same lines, we find in leading order
03 ] 3 3
A+:—ﬁ/ ac (o (nE +1t2)
(3)
_ (h +h§‘;3)) . (D5)



From the expressions for the metric perturbation in ap-
pendix A, one finds for the derivatives in the above ex-
pression

Oy (h + 1Y) = 0 (nE) + )
=—A

ZGPQU%
—— |yl

1,122
PP (1207 pP)e 200" (D6)

Then, the rotation angle for the parallel co-propagating
light ray is given by

GPo

o0 2 2
By A [ dc P+ 20 ) o)

For the transversal test ray, we obtain from equation (7)
and v+ = (1,£1,0,0)

1 o0
Ati :ﬁ / dT tgﬁabcabhca (Ta oL + Tt0>tg

0 J—c0

1 o0
+ m [00 d¢ (8XhTC — eagghTX)

1 o0
+ Sl / d€ (Oyhec — 00pchey) (DY)
0 J—oo

Considering the terms up to first order in 6, it is given
by

A = dga hey .

(D9)

ii/ de 9,hY) + 0

2w3 2w, 2

From the expressions for the metric perturbation in ap-
pendix A, we obtain for the derivatives appearing in the
above expression

(0) 8GP0U)O X —92| ]2 p2
o) = C5 > 5 (1— ezl (D10)
Oxhty =~ Z(egaxag + AP O (D11)

The first term in equation (D11) leads to an integration
over a derivative, which vanishes,

oo E=00
/ de 9,01 = 9, 1" =0.

E=—00

(D12)

Then, we obtain for the rotation angle for the transversal
test ray

Atj: =4

47TGPO
= orf (\@Iulx)
)\2\/ 2’/TGP09 |#|6_2|M|2X2 .

= (D13)
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Appendix E: Derivation for finitely extended source
beams and infinitely extended test rays

For an infinitely extended test ray and a finitely extended
source beam, we obtain

B oo
A= —§a Jim / d¢ / dg'dy'd¢’
B—oo J_p —00
1 !/ / ! !/ / !
g (tee (€X' O) — el 1. )
2G . B o el gt
+Fa£ggnm13dc[md§ dx'd¢

e (hel€ ) = i (€1 0)

4 B ) po(¢") ., 2m ,
= _Tax/ d¢ / dp' p /0 do
Jim Kp(€,xC 00, O (0,0, C)
4G0 po(¢") 2m
78 d ! d /! d /
+ &/ C/ pp | 0
lim Kp(&x,6,0, 0, ) (0,9, C), (EL)

where cylindrical coordinates p’ = /&2 4+ x/2 and ¢' =
arctan(y’/¢’) are used and the function Kp is given by

Kp(&,x,¢ 0, ¢',()
B ey
= log _B_C,+(p,,2+(B+C/)2)1/2

). @)

where "2 (5’ £+ (X —x)* = p*+p* —2p'pcos(¢—
@), and po(¢’) = po/|p(¢’)| is the finite transversal ex-
tension of the beam that is related to the width of emit-
ter and absorber and pg is a constant. For /B < 1,
—a/B <« 1 and po(¢)/B < 1 for all ' € [a, ], we
obtain

Kp(p',¢'.¢)

B — C //2 + BQ(
B —

¢/B)?
IOg 1/2 +B2( +C//B)2)1/2>

§2 +p”2/(2B( C’/B))>

~ log

”2/ 2B(1+('/B))

1+C/B 4B?
g - )

10g< ay -

In order to evaluate the expression for A_, one needs to
take derivatives of the function Kg. One finds

B2 B2
0y log (4/)/,2) tgg — D¢ log <4W> tgjg (B4)

2P ’ ’
= 20 pe 0 (3l 9y 4600 ) og (7).




Therefore, one finds for the following expression appear-
ing in the expression for A_|

po(¢ 27
Gy / dp’ p’/ d¢/ lim Kp(p,¢, Qo
-9 pomd’ ' %daj’ lim Kg(p, o, ¢t
3 0 P P o Boso B\p, ) x<
)
= 250 /”0 dpf ple 2
e 0
27
/ d¢' ()\plap/ +9g’a¢/) log (p"2) . (E5)
0

The term containing the ¢’'-derivative vanishes under the
integral. With

2
00, / dg'log (0" + p* — 2pp cos(¢' — ¢))
0

log (p’z) for p<yp

=2mp'0,
? log (pg) for p>p
B 1 for p<p | _ /
—in{ g PS0 =mel-p). (o)
we obtain
2P\ po(¢’) 27
e A (E7)
e 0 0

e—zlu'\’zp&p/apl log (,0”2)
2P\ po(¢")
=== |u’|2/ dp' O(p' — p)dye I
0

C
2P o [ g e < ()
c 0 2 p>po(C’)

_ 6*2|M'|2P(2)(C/)) )

‘2 /2

= 20200 (') — ) (e

J

+0(08 — P/Po)( (

For py — oo, we obtain

p V2

V2p V2p
(erfe(oﬂ>+ rfc (9 |>>, (E10)

where erfc is the complementary error function. For p >
05 and p > —fa, using the asymptotic expansion of the

A =—

O(—0a — p/po) (i\rf (—) —erf(xfpo)> —e 203(-
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Finally, we obtain for the rotation of polarization for the
parallel counter-propagating test ray

A =—

Pyo [P
A8Gc5° / ¢’ (E)

2 2
O (po — |1 |p) |2 (720" — =25

which leads to equation (10) for pg — oco. We see that
A _ vanishes if there is no overlap with the beam, i.e. if
p > po(a) and p > po(B). For large p, there is only an
overlap for large ¢’ for which po({’) & ppf¢’ and |p/| =
|6¢'|~!. Evaluating the integral, we find

i)

fﬁ) o (m)) i (;ﬂ—mm. (B9)

(

complementary error function, we obtain

A~ —/\2GP(2)€ <ﬁe‘2<ﬂ/9‘*)2 + |a|e‘2<ﬁ/"“>2> . (E11)

cSp

For A., it follows from equation (C1) that in leading
order (third order in ), the rotation of polarization for



the parallel co-propagating light ray is given by

AL = 72Ga lim d<

C4 B~>oo

(E12)
| Z d€'dy'dc’ ﬁ (tec + tre)
+¥a€ lim / s
/ i’
:—265493@(/& dC’/OPO(C)dp/p/

/ d¢/ lim Kp(p,¢/,() ( ¢ +t§?)

2G€36€/ /I)U(C) , /

/ d¢! lim Kp(p,¢',¢) (¢ +42) .

0

_ —o/| ( C+t7'X)

The relevant combination of derivatives of the function
Kp with the approximation given in equation (E3) is
given by

(E13)

B /(3) 4 43)
Oy log (4/)”2) ( +t )
B 3
— 0 log( ,,2> ( t! )+t(3))

2 72

P
_ 7?2““6 12211 °p ()\p’ap/ + 0§’6¢/> log (,0”2) .

Again, the term containing the derivative with respect to
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¢’ vanishes under the integration over ¢’ and we obtain

PoA po(¢) 2m
_7|NI|6/ dpl /3/ d(bl
e 0 0

12 12
672|u |“p p/ap/ log (,0//2)

<"

= PLAWV!/W dp' ©(p' — p)p e 210"

¢ 0
_ A LR et 020, B p < ()

c 0 tp>po(¢’)

Py po(¢) 2 12
_ —?|M/|4@(PO(C/) _p) 2/ dp/p/6—2|ﬂ| P

p
+(p2e*2|u'\2p2 _ po(g’)262u’2po(4')2)]

P\ 1 po(¢") oy, 12 12

= DA rpec) o [ 3| e
p

e e po(C’)QeQV"FPO“'V)]

P )\ ol 12,2
= =21 PO (¢) = p) (1 + 20w )2 e
—<1 20 Ppo ()2 Pl (E14)

Finally, the rotation of polarization for the parallel co-
propagating light ray is given by

3 B
A+:)\GP09 / ac
c [e%
O(p0 — |||/ ((1 -+ 21y [Pp?)e 201

—(1+ 2,03)6‘2"3) :

(E15)

which leads to equation (9) for pg — co. In this case, we
find that

a=-L(1-0,)a(van

(E16)

o=1

Again, we find that Ay vanishes if there is no overlap
with the beam, i.e. if p > po(a) and p > po(5). For
po — 00, p>> 0F and p > —0Oa, we find

GPy63 1 1\ s
A, = \—9 — (p/08)
T <ﬁ<p2+(9ﬂ)2>e

o) 2002
a<p2 + (0a)2>e

GPO (1 _, 2 1 2
~ N9 | 2 —2(p/08) e 2p/0a) E17
2¢5 (ﬂe + |Oz| € ( )

For A+ for a finitely extended source beam and an in-
finitely extended test ray we obtain, considering only the



leading order contribution,

1
iﬁ

=3 / ¢ / de'ay’
a p<po(¢’)

. o (0)
Blgnoo 3XKt,B(§ X< )th )

Al = d§8 h'%

(E18)
J

Kt,B(f X C

~) 1+ (2 (- /(B
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where the function K; g is given by

Kt,B(f/aX/aC/)
. (B—£’+(x”2+(C—C’)2+(B
S\SB— g+ (P (07

(E19)
_€/>2)1/2 )
B

and where ¥’ = x’ — x. For B > 1, we obtain

~o)”

B-¢ +
~ log

~) (1 (2 (- OB =€)

2 /

B¢+
= log 172
(B &+ B+£’)(1+ (24 (C= CP)(B +€7)

“B-¢+(B+E)(1+ 2+ (- )/ B+¢))

log

%

R

%

0g

(B+£’ AB?
(reem)

With the derivative of K; p with respect to x,

4B?
Oy log (

B X=X

Borrc-op P

we obtain for the zeroth order of the rotation of polar-
ization of the transversal test ray

AGP, ([?
Ag@:;i; / dc¢’ / a¢'dy’  (E22)
e a <po(¢’)

X — X
X"+ (¢ —¢')?

|MI|2672“”/‘21)12

Note that for x = 0, the integrand is anti-symmetric in
x’ and AU s ) vanishes. For the first order contribution, we

find
4GP,
AlY = GC 0 / dc’ / de'dy’
a p<po(¢’)

X (x = x')
X=X+ (C=¢

_ 2 72
E /| fe 2T (E23)

For x = 0, the integrand is symmetric in x’ and Aii)
does not vanish.

(X" + (€= ¢)*)/ 2B —E’)))
”2+ (€=¢)%)/2(B+¢£)

-/

(E20)
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Appendix F: Multipole expansion of the far field for
finitely extended source and test beams

For the finitely extended source beam, one can get ana-
lytical approximations of A in the far field. For simplicity
we assume here that the source beam extends from —f
to B, and the probe beam from —B to B. The maximal
radial extension of the source beam, reached at (' = &3,
is then given by p’ = #3/+/2. This is the maximum scale
on which all components of the energy-stress tensor and
its derivatives fall off like a Gaussian (for smaller values
of |¢’| the decay is even faster). Far field means then
that the probe beam should be a distance p > 03/v/2
from the source beam when passing parallel to the source
beam. A much shorter distance of order p ~ 1 suffices
for the transversal beam passing at the beam waist for
being in the far field regime.

From egs.(6,8) we obtain, after shifting derivatives to the
prime-coordinates and partial integration,

2G [P |

[0 (Tee (7 >iTTg< )
= 0 (T (#') + Tr (@)

For the partial integration we assume once more that
we are in the far-field, so that boundary terms are

(F1)



exponentially suppressed through the Gaussian factor
exp(—2|u|?p?). The source term relevant for A_ is given
to first order in 6 by (see Appendix A, egs.(A22)

e SN =
1Py [ax’ (Tee(2') — Tre (7))

~0e/ (T (&) = Tri(@))]

2T %2 - 2p%)
- (1_,_92(/2)3 : ( )

S_(p',¢) =

Manifestly, S_ enjoys azimuthal symmetry It is then

useful to expand the function 1/|% — Z’| as (see e.g. [47]
p. 93)
1 = rl
7 = Z T Py(cos ) Py(cosd) (F3)

=0

where P, are the Legendre-polynomials, r- (rs) is the
smaller (larger) of |x| and |Z'|, and ¢ (') the angle be-
tween the z-axis and Z (7). For calculating the far field,

we can set everywhere r~ = r = |Z| and ro =1’ = |7|.
This leads to
Z Al (F4)

mcpoe Q‘” ¢

where the multipoles Q(_l) are given by
w_ [ [
Q, :/ dC’/ p/dpl (p/2 + C/Q)l/Q
-8 0
C/

)S- (0, <), (F5)

x Py(

and we have used that in cylinder coordinates ¥ =
arccos(C/+/p? + ¢?), and correspondingly for . The
multipoles and their contributions to A_ can be calcu-
lated analytically. All odd multipoles vanish, and so do
the monopole and dipole contribution (I = 0,1, respec-
tively). A_ is then dominated by the quadropole contri-
bution [ = 2. The correction due to higher order mul-
tipoles I = 4,6, ... decays quickly with [. We therefore
limit ourselves to listing the results for [ = 2,4,6. Note
that the direct dependence on ¢’ of 1/|# — &’| (rather
than on ¢ as for the rest of the integrand) brings about
additional 6 dependence. Neglecting these higher order
terms, we find

Q(_Q):@7 (F6)
QW = ”( 34457 | (F7)
0 — 35}‘(15—4062—#1654) (FS)
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and, with Q = 8\G P, /c?,
Q3 B

2 _
Al = 7(32 + p2)3/27 (F9)
_ 2 3_ 2
A(_4) _ QB(—3+4p%) (2B 3Bp?) ’ (F10)
16 (32 _|_p2)7/2
A®) _ QB(15 — 405% + 165)
- 256
4_ 2,2 4
(8B* —40B%p” + 15p*) ' (F11)

(BQ + p2)11/2

For A,, the lowest contributing terms are from the
derivatives of the third order of the metric. The expres-
sion for S_ is replaced by S, given by

S+, ¢) = gz [ (Tec@) + Toe (@)
0 (Tyo(F') + Tox (7)) (F12)
e 2T A (1= (1 + 0°¢))

(1+62¢2)3

Also here the monopole contribution (I = 0) and all con-
tributions with odd [, in particular the dipole contribu-
tion (I = 1) vanish. The lowest order non-vanishing con-
tributions are

\G?
(+2) _ _516 7 (F13)
G2
(+4) _ 564 (9 — 862, (F14)
Q) — 3P 5 a0 4 86Y),  (F15)
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to be substituted into the expression corresponding to
(F5), i.e

Ay = iA(ﬁ

(F16)

B 16GP09 QY PR
- Z p _|_§2 Y(i+1)/2 ( /p2+§2)'

This leads to

@ Q62 Bp
A+ - _T(BQ +p2)3/2 ) (F17)
AD _ Q0%(—9 + 832) (—2B> + 3Bp?) (F18)

+ = 128 (B2—|-,02)7/2 ’
A 002BB(15 — 3082 + 83%)

o 512

B* —40B?p? + 15p*
(8 0B%p* + 15p") (F19)

(B2_|_p2)11/2 ’

where we recall that €2 contains already one factor 6.
So both Ay fall off as 1/p® in the far-field due to the
quadrupole contribution. For fixed p, § that contribution
decays as 1/B for large B, i.e. B > p. This can be traced



back to the integral over ¢ in and would not be the case
for the monopole contribution.

For A,+ we start with the lowest, zeroth order in 6. It
is then useful to keep the derivatives of the energy-stress
tensor outside the calculation of the multipoles, as oth-
erwise the cylindrical symmetry gets spoiled. We find

A0 _ 8G P, Bd P = Pl(\/p§+<2) 0)()
EoF e L e
(F20)

(l) / dC/ d,o ! l2+<—/2)l/2 ( p/f+<l2)

(F21)

- 1+9§c'7 .

1T 924'2

Also here, all the odd-power multipoles (I = 1,3,5,...)
vanish due to the fact that the Legendre-polynomials of
odd order are odd, whereas the rest of the integrand in

i(i)(l) is even in ¢’. The three lowest non-vanishing mul-
tipoles read

QOO _ g (F22)

QY™ = 5(3 — 487, (F23)
0)(4) _ 1 2 4

QY =1558(15 — 405° +165") . (F24)

The corresponding contributions to A+ at ¢ = 0 are

Bp

OION
A = +0 T (F25)
2 2
AQ@ _ _ .BBB-46%)(28 +3x%) (F26)
t 24x3 (B2 + x2)3/2
. 2 4
Ag(i)( y jiQBﬁ(lE) 408% + 165%)
640x°(B? + x?)5/?
(8B* + 20B2x? + 15x"), (F27)

where Q = 8GPy/c®. We see that now there is a
contribution from the monopole that leads to a decay
as 1/x? with the minimal distance x from the beamline
when evaluated at ¢ = 0 and in the limit of y > B. The
next (quadrupole) term contributes a 1/x* decay. In the
limit of B — oo at fixed x, the monopole contribution
converges to a 3/x? behavior.

For the first order term in A,+, the contribution to the
Faraday effect, we obtain with the expressions for the
energy-momentum tensor given in appendix A, using the

22

symmetry of |Z—&#'| and performing a partial integration,
2G0
Al = 2o / de / de' dx’d( wtél(
GPy0
0, Dy / de Oe / de'dy’
me? —B —00

! 12
/ a¢'— S e e

Z—2'|1 +92§’2
We neglect the second term as it is of higher order in 6.
For the first term, we find from the multipole expansion

of AE? for (=0

—a Al —

(F28)

o _ _A g BB(B? +2x%)
Ati 4 QX2(BQ +X2)3/2 ’ (F29)
ADE@ _ Mg BBEB-457)
¥ MO PP\ TR
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47 128y5(B2 + x2)7/2
(8BS + 28B*\? + 35B%x* + 18x°) .(F31)

In a real experiment, it should be kept in mind that the
gravitational effects from emitter and absorber and the
power-supplies feeding them, as well as heat-radiation
from the absorber may lead to effects that mask the ro-
tation of the polarization of the source beam itself in the
far field, if their dipole- or monopole-contributions do not
vanish. If one wishes to evaluate these effects, a careful
modelling of the entire setup will be necessary.

Appendix G: The infinitely thin beam

The metric perturbation induced by an infinitely thin
beam of light that extends along the (-axis from —/ to 8
is given by the only non-zero components h,, = —h,¢ =
h¢e = h, where h is given as [1]

, _ AGPug | < B—C+ (PP + (B0 )
e B\ P+ B+

G1)
Therefore, we find with equation (7) at ¢ = 0 and for
large x

A~ [ deon®
tiwim 7B§XT<

P, B
SR <Ci R — (G2)
< xvB*+x?

where we considered a test ray extending from —B to B,
and

~ 1L 8GPy B
Ati'\‘i CSOX7

(G3)

for the infinitely extended test ray.
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