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Abstract

Geometric information processing in the human brain is very different
from that in a computer: it is slow, local, and imprecise. However, hu-
mans are able to manage a huge amount of visual data, can understand
the scenes in front of them, and thus can survive in their daily lives. We
use visual illusions to investigate how the human brain treats geometric
data, and we point out the similarities between the robustness of human
geometric processing and the topology-oriented principle, which we have
proposed for use in the design of robust geometric algorithms for comput-
ers by presenting a new algorithm for straight skeletons.
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1 Introduction

Computational geometry is the field in which geometric algorithms are designed
for computers [5, 7, 17]. Computers are much more precise than human brains,
and hence the main concern is to make these algorithms as efficient as possible
[1]. Indeed, a huge number of very efficient algorithms have been established,
and sometimes these are the most efficient, i.e., optimal, in terms of the order
of the computational time with respect to the problem size. In this sense,
computational geometry is one of the most successful areas of computer science.

However, we note that computational geometry mainly treats well-defined
problems, while in the real world, we encounter many geometric problems that
are not well defined and cannot be solved easily by the current techniques of
computational geometry. Such problems include, for example, image pattern
recognition and scene understanding [3].

The human brain, on the other hand, seems to be able to solve those prob-
lems relatively easily. We receive geometric information about the world around
us in the form of projected images on the retina, and our brains process those
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images and understand the scenes in front of us without any major difficulties.
This ability is surprising when we recall that the computations of the human
brain are slow and imprecise, compared to electronic computers. If we can un-
derstand the way in which human brains perform geometric processing, we may
be able to apply it to the construction of algorithms for ill-defined geometric
problems.

Motivated by this observation, we used visual illusions to study the way in
which the human brain processes geometric data, in order to find an approach
for solving ill-defined problems in computational geometry.

On the other hand, our research group has long been studying an approach to
the design of robust geometric algorithms, which we call the topology-oriented
approach [22, 24, 26]. In this approach we start with the assumption that nu-
merical errors cannot be avoided and moreover the amount of errors is not
bounded a priori, but still we aim at robust geometric algorithms. This task is
ill-conditioned because the correctness of the algorithms cannot be guaranteed
due to numerical errors. However, we can successfully construct stable algo-
rithms by guaranteeing the consistency of topological structures of geometric
objects and thus circumvent failures.

We first applied this idea to an incremental algorithm for ordinary Voronoi
diagrams [25], and then extended to various geometric problems including Voronoi
diagrams for line segments [26] and line arrangements [10] in the plane, and con-
vex hull [15], Voronoi diagram [26] and polyhedra [20] in the three-dimensional
space.

Therefore, we might regard the topology-oriented approach as an example
of human-like robust computation. In this paper we compare human brain
processing with the topology-oriented algorithms and discuss their similarities.

The structure of this paper is as follows. We first observe and discuss three
typical examples of visual illusions, the Zöllner illusion [11], the Ouchi illu-
sion [14], and the impossible motion illusion [21], in Sections 2, 3, and 4, respec-
tively. In Section 5, we construct a new algorithm for robust computation of the
straight skeleton as an example of a geometric problem, and discuss the similar-
ities between the computations in the human brain and the topology-oriented
algorithms. We present our concluding remarks in Section 6.

2 Zöllner Illusion and Overestimation of Acute
Angles

Fig. 1 shows the famous Zöllner illusion; the four long, straight lines are exactly
parallel and horizontal, but they look as if they are alternately slanted in op-
posite directions. This optical illusion is evoked by the shorter lines crossing
the longer lines, and it is usually explained by the overestimation of the acute
angles.

When two lines cross, they generate two acute angles and two obtuse angles.
It is commonly observed that the acute angles are apt to be perceived larger
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Figure 1: Zöllner illusion.

Figure 2: Café Wall illusion.

than they actually are, and the obtuse angles are apt to be perceived smaller.
There are many other illusions explained in the same way, including the Hering
illusion, the Wundt illusion, and the Luckiesh illusion [11].

Various mathematical models have been proposed to explain this overesti-
mation of acute angles. A typical such model is the one by Fremüller et al. [9].
In their theory, the retina, acting as a photo sensor, has finite resolution, and
hence images are blurred, resulting in greater rounding of acute angles than of
obtuse angles. This makes acute angles appear to be greater than the actual
angles.

According to this mathematical model, we can strengthen other types of
slanted-line illusions, such as the Café Wall illusion [11] shown in Fig. 2. In
this figure, in each row, white and black rectangles alternate in the horizontal
direction, and each row is offset from the adjacent rows by half the width of
the rectangles. Although the lines between the rows are straight and horizontal,
they appear to be curved and sloped. This illusion can also be explained by the
Fermüller model [9].

Now, since we know that acute angles will be perceived to be larger than
they are, we can expect that this illusion will become stronger if we distort the
rectangles into parallelopipeds, since this will generate a series of acute angles.
The parallelopiped-based Café Wall pattern is shown in Fig. 3. We can observe
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Figure 3: Stronger version of the Café Wall illusion (Sugihara, 2012).

Figure 4: Ouchi illusion (adopted from [16]).

that the illusion is stronger, as was predicted by the mathematical model.
These observations, together with the mathematical model, tell us that hu-

man visual perception is affected by blurring, even though we feel that we see
the figures accurately. We can summarize this observation in the following way.

Observation 1. The computations in the human brain are imprecise.

3 Ouchi Illusion and Local Motion Detection

The second example we consider is the Ouchi illusion. The picture shown in
Fig. 4 is included in Ouchi’s book [16]. This is a still picture, but the central
circular area seems to drift at random, independently from the surrounding
area. This drift illusion can be explained in the following way.

First, our retina, which is an array of photo sensors, usually has some slight
random motion. A sensor generally decreases its sensitivity if it detects the
same signal for a relatively long period of time. This is also true of the retina.
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Figure 5: Aperture problem.

In order to avoid this decrease in sensitivity, the retina tries to use different
sensors to detect a given signal. This is why the retina moves, and hence, when
we look at a picture, the image moves on the retina.

Secondly, neurons in the brain, particularly the neurons used in the earlier
stages of processing, cover only a small area of the retina. Hence, they process
only the local information. This causes ambiguity in the direction of the detected
motion, in the following sense.

Suppose that, as shown in Fig. 5, a neuron receives visual data in a small
circular area of the retina, and detects displacement of an edge for which both
terminal points are outside the circular area. Then, the neuron can tell that the
edge moves, but cannot tell in which direction. There are many possibilities for
the direction of the motion, as shown by the arrows in Fig. 5. This ambiguity
is called the “aperture problem” [13]. In other words, a neuron can only detect
motion perpendicular to the edge, no matter which direction the edge actually
moves.

On the basis of these two observations, we can explain why the Ouchi illusion
arises. Suppose that the Ouchi pattern moves slightly on the retina. In the
central part of the Ouchi pattern, horizontal edges prevail, and, consequently,
primarily vertical motion will be detected. In the surrounding part, on the other
hand, vertical edges prevail, and, consequently, primarily horizontal motion will
be detected. As the result of this, the central and surrounding parts appear to
move differently. This is a typical way of explaining the Ouchi illusion [8].

One might think that this illusion would become stronger if the elongated
checkerboard patterns were replaced with stripes, because the edge directions
would then be more uniform. However, this is not true. The illusion becomes
weaker if we replace the central part of the Ouchi pattern with horizontal stripes
and the surrounding part with vertical stripes. This can be understood in the
following manner. When a neuron becomes excited, it suppresses the excita-
tion of its neighboring neurons. This is called lateral inhibition. If a moving
edge is long, the excitation of a neuron covering part of the edge will suppress
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Figure 6: Drift illusion “UFO in the evening glow” (Sugihara, 2013).

the excitation of the neurons covering the neighboring parts. In this way, the
excitations of neurons cancel each other, and the illusion becomes weaker.

A straight edge will stimulate only those neurons that detect the direction
perpendicular to that edge. If the edge direction deviates slightly, such as like
a sine curve, it will stimulate more neurons because the edge contains many
directions. We can thus expect that the illusion will become stronger if the
straight edges are replaced with slightly curved edges.

Based on these observations, we can create patterns that will give a stronger
illusion of drift than does the Ouchi pattern. An example of such a pattern is
shown in Fig. 6.

From this illusion, we get the next observation of the nature of the human
brain.

Observation 2. The basic computations in the human brain are local.

4 Impossible Motion Illusion

Impossible motion is a new type of illusion evoked by a three-dimensional object.
Fig. 7 shows an example of impossible motion called “magnet-like slopes”. Panel
(a) shows an object with four slopes. We initially perceive that the four slopes
each go down in a different direction from the high center. However, if we
place balls on the slopes, they appear to roll uphill toward the high center,
defying gravity, as shown in panel (b). Panel (c) shows another view of the
same situation; here, we can see that the center is the lowest point, and the
balls are just rolling downhill. Thus, the actual motion obeys gravity, but it
appears to be an impossible motion that defies physical laws.

This class of visual illusion comes from the fact that a single picture lacks
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(a) (b) (c)

Figure 7: Impossible motion “Magnet-Like Slopes” (Sugihara, 2009): (a) three-
dimensional object; (b) result of apparently impossible motion; (c) another view
of the object.

depth information, and so the human brain guesses at the most common solid
among infinitely many possibilities that are consistent with what is seen. This
illusion was found as a byproduct of computer vision research [18, 19]; refer
to [19,21] for the details of designing this class of illusion.

A remarkable aspect of this illusion is that even after we understand the
actual shape of the object, as in Fig. 7(c), we incorrectly perceive the shape
when we return to the vantage view point shown in Fig. 7(a). This observation
may be expressed in the following way.

Observation 3. Computations in the human brain persistently retain the
initial interpretation.

5 Robust Geometric Computations Suggested
by the Human Brain

As we have observed, computations in the human brain are imprecise, local, and
persistent. However, in spite of these disadvantages, the human brain still can
robustly and efficiently process visual geometric data in our daily lives. In this
section, we consider how these remarkable characteristics of the human brain
can be used in the design of algorithms for computers.

Geometric algorithms are usually designed on the assumption that numerical
computations will be done precisely, and hence, in particular, that geometric
predicates will always be evaluated correctly. However, this is not true in real
computers, and theoretically correct algorithms sometimes fail when they are
implemented as software. This failure is common when the input is very close
to a degenerate situation.

Let us take the straight skeleton as an example. Let P be a polygon in the
plane. Suppose that from each edge of P , two copies of the edge, we will call
them the sweep lines, start moving in opposite directions away from the edge
and at the same speed, and that they continue to maintain contact with the
neighboring sweep lines at the terminal vertices. Hence, the sweep lines change
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Figure 8: Polygon and its straight skeleton.

their lengths as they move. The motions of the sweep lines terminate at the
points of collision with the other sweep lines. The region swept by a sweep line
is assigned to the corresponding edge. In this way, the plane is partitioned into
the regions swept for each edge and their boundaries. This partitioning, the
boundary structure in particular, is called the straight skeleton of the polygon
P [2]. Fig. 8 shows an example of a polygon (thick lines) and the corresponding
straight skeleton (thin lines). The straight skeleton has applications in many
fields, such as paper folding [6], solid modeling [27], and pop-up cards [23].

The straight skeleton can be defined for a more general structure, a straight-
line graph, and Huber and Held [12] constructed an O(n2 log n) algorithm for
the generalized straight skeleton. For the straight skeleton of a simple poly-
gon, an O(n3/2 log n) algorithm is known [4]. However, these algorithms are
theoretical in the sense that they are designed on the assumption that numer-
ical computation is done precisely. Therefore they are not necessarily valid
in actual computers because of numerical errors. In this paper, we apply the
topology-oriented principle [22,25] which we have developed for designing robust
geometric algorithms, and construct a new algorithm which is robust against
numerical errors and which runs in O(n2 log n) time, and thus show that the
topology-oriented approach is similar to persistent human brain computation.

The straight skeleton can be interpreted as a roof structure in three-dimensional
space, in the following manner. Suppose that the polygon P is the shape of the
wall seen from above, all parts of the wall have the same height, and we want to
construct a roof structure in which all parts have the same angle of declination.
The straight skeleton of P tells us how to partition the roof into planar plates
so that this is possible. Indeed, to build this roof, the region assigned to an edge
of P should be elevated to a roof plate passing through the edge at the top of
the wall.
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On the basis of this interpretation, we can construct a sweep algorithm for
the straight skeleton. Let π be a horizontal plane that is initially placed on
top of the wall. We let π sweep upward and, in this way, construct the roof
structure inside P step by step from the lower part to the highest point on the
roof. Next, we let π sweep downward and thereby construct the remaining part
of the roof structure outside of P .

This idea can be summarized in the next algorithm, where we concentrate
on the construction of the straight skeleton inside P .

Algorithm 1 (Straight skeleton).
Input: polygon P and angle α between the roof plates and the horizontal plane.
Output: straight skeleton inside P .
Procedure:
1. For each edge e of P , generate the half-plane containing e that is toward the

inside of P , forming angle α with respect to the horizontal plane, and put it
into storage S. (We will call the elements of S the roof plates.)

2. For each vertex v of P , generate the half-line at the intersection of the two
roof plates that are associated with the two edges incident to v, and put it
into storage E. (We will call the elements of E the roof edges.)

3. For each edge e of P , trim the corresponding roof plates in S by the two roof
edges emanating from the two terminal vertices of e.

4. Create empty storage locations E and S.
5. Repeat Steps 5.1, 5.2, and 5.3 until E and S are empty.

5.1 Find a pair (e, s) of a roof edge e and a nonneighboring roof plate s such
that they intersect and the point of intersection is the lowest among all
such pairs.

5.2 Move e from E to E.
5.3 Increment the roof structure around the point of intersection (details of

this procedure will be shown below). If new roof edges are created, add
them to E. If the roof plates in S become completely bounded by roof
edges, move them from S to S.

6. Output the roof structure consisting of the roof edges in E and the roof
plates in S.

�
Intuitively, this algorithm constructs the roof structure below the sweep

plane π step by step as π moves upward. However, an inconsistency may arise
due to numerical errors in the computations. Let P be the regular polygon
shown in Fig. 9(a). In theory, all the roof edges emanating from the vertices
meet at a common point. However, in the real world, we have numerical errors,
and hence it is difficult to identify this common point of intersection. Instead,
the algorithm may find many points of intersection. Suppose that Algorithm 1
first finds the point of intersection of a roof edge and a roof plate as shown in
Fig. 9(b), and next finds another pair, as shown in Fig. 9(c). However, this is
contradictory because the roof edges cross each other, which should not happen
in the roof structure. Therefore, Algorithm 1 is not robust against numerical
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(a) (b) (c)

Figure 9: Inconsistency in the construction of a degenerate straight skeleton:
(a) regular polygon and growing skeleton edges; (b) detection of the first vertex;
(c) detection of the second vertex, which contradicts the first vertex.

(a) (b)

Figure 10: Active edges, forefront cycles, and fixed edges.

errors.
We can modify this algorithm and make it robust by using what we observed

in the previous section about how the brain performs such computation. For
this purpose, we first classify the roof edges into three types.

Let us concentrate on the structure below the sweep plane π. As shown in
Fig. 10(a), the initial roof edges terminate at the points of intersection with
π, and the intersection of the roof plates and π form a cycle represented by
broken lines in this figure. We call the roof edges that terminate at the points
of intersection with π, the active edges, meaning that these edges are still grow-
ing. We call the cycle formed by the intersection of the roof plates and π a
forefront cycle, meaning that it is moving toward the inside of the polygon P .
Furthermore, we call the roof plates at the forefront cycles the active roof plates,
meaning that they are still growing.

Initially, all the roof edges and roof plates are active. After the sweep plane
π has moved to some extent, some of roof edges below π are completed, as
shown by the solid lines in Fig. 10(b). We call these roof edges fixed edges. In
other words, edges in E are active, while edges in E are fixed. Similarly, some
of the roof plates become completely bounded by roof edges. We call those roof
plates fixed roof plates. In other words, roof plates in S are active, while those
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Figure 11: Event type 1: removal of an edge from a forefront cycle.
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Figure 12: Event type 2: partition of a forefront cycle.

in S are fixed.
Once we recognize a forefront cycle, we can identify three types of topological

changes in the roof structure that occur during sweeping, as shown in Figs. 11
to 13.

The first type of event is that the sweep plane π hits a point of intersection
between a roof edge e and a roof plate s that is on a roof plate adjacent to s, as
shown in Fig. 11. In this case, two active edges become fixed, and the forefront
cycle becomes shorter by one.

The second type of event is that the sweep plane π has a point of intersection
between a roof edge e and a roof plate s that is not on a plate that is adjacent
to the side plate of e, as shown in Fig. 12. In this case, the forefront cycle is
partitioned into two, the active e edge becomes fixed, and two new active edges
are generated.

The third type of event is that a forefront cycle of length 3 disappears, as
shown in Fig. 13. In this case three active edges become fixed, three roof plates
become completely bounded by fixed edges, and no new edges are generated.

On the basis of these observations, we can make Algorithm 1 robust by

Figure 13: Event type 3: disappearance of a forefront cycle of length 3.
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modifying Step 5 in the following way.

Algorithm 2 (Robust construction of straight skeleton).
Step 5 of Algorithm 1 is replaced with the following step, and the remainder

is the same as Algorithm 1.
5’. Repeat the following until E and S are empty.

5.1’ Find a pair (e, s) of an active roof edge e and a nonneighboring roof
plate s incident to the same forefront cycle, such that their intersection
is the lowest.

5.2’ If the event is of type 1, move e and its neighboring edge from E to E,
generate a new active edge, and reconnect the forefront cycle, as shown
in Fig. 11. Move from S to S the roof plate that has become fixed.

5.3’ If the event is of type 2, move e from E to E, generate two new active
edges, and partition the forefront cycle into two, as shown in Fig. 12.

5.4’ If the event is of type 3, move the three edges (including e) from E to E,
and change the associated three active edges to fixed edges, as shown in
Fig. 13. Move from S to S the three roof plates that have become fixed.
�

Note that this algorithm does not encounter the topological inconsistency
shown in Fig. 9. Indeed, at the initial stage (Fig. 9(a)), a forefront cycle of
length 7 is generated, and in the first event shown in Fig. 9(b), which is a type-
2 event, the forefront cycle is partitioned into two forefront cycles of length 4.
Hence, the situation shown in Fig. 9(c) does not arise because the associated
roof edge and the roof plate are incident to different forefront cycles, and hence
this pair is not included in the event candidates in Algorithm 2.

In Algorithm 2 , we restrict the event search to each forefront cycle. In this
search, we cannot necessarily find the correct event (i.e., the lowest intersection)
because of numerical errors. However, whatever pair of a roof edge and a roof
plate is chosen as the next event, no topological inconsistency will arise because
the chosen pair will be of type 1, 2, or 3, and thus the topological change of the
forefront cycle will be well defined.

In other words, the basic structure of Algorithm 2 allows the topological
change of the graph structure of the forefront cycles, and numerical computa-
tions are used only to choose the most promising pair of a roof edge and a roof
plate. Once this pair is chosen, the algorithm persists in the belief that it gives
the lowest intersection and changes the forefront cycles by Steps 5.2’, 5.3’, or
5.4’ of Algorithm 2, depending on the type of the event. Thus we obtain the
following theorem.

Theorem 1. Algorithm 2 terminates in finite time and produces a planar
graph as output, no matter whether the pair (e, s) chosen in Step 5.1’ gives the
true lowest intersection or not.

Proof. Once a pair (e, s) is chosen in Step 5.1’, the associated event is of
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type 1, type 2, or type 3, and hence the planar graph consisting of the original
polygon edges, active edges, fixed edges, forefront cycle edge, and their terminal
vertices is changed by Steps 5.2’, 5.3’, or 5.4’, all of which maintain planarity.
Thus, it suffices to show the finiteness of the procedure. Assume that the input
polygon P has n edges. Initially, the total number of edges on the forefront
cycle is n. This number decreases by one in a type 1 event and by three in a
type 3 event. In a type 2 event, the total number of edges on the forefront cycles
increases by one, but both of the forefront cycles generated by the partition are
smaller by at least two than the forefront cycle before the partition. Hence,
Step 5.3’ is repeated only a finite number of times, and thus the total number
of the forefront cycles eventually vanishes. �

Theorem 2. Algorithm 2 runs in O(n2 log n) time for an n-gon P .

Proof. Steps 1, 2, and 3 are carried out in time O(n), and Step 4 is carried
out in time O(1). Step 5’ can be performed in the following manner. Initially
there are n active edges and n active roof plates. Hence there are n(n−2) pairs
of roof edges and nonneighboring roof plates. We store them in a heap with
the y-coordinates of the points of intersection as the keys [1]. We can construct
the heap in O(n2 log n) time. Deletion of the lowest pair (e, s) from the heap
in Step 5.1’ requires O(logn) time. In Steps 5.2’ and 5.3’, new active edges are
generated. As soon as a new active edge e is generated, we compute the point of
intersection with each of the nonneighboring roof plates on the same forefront
cycle, and add the pair (e, s) to the heap. Adding a pair to the heap requires
O(log n) time. Because there are O(n) roof plates on the same forefront cycle,
we can add all the pairs with e to the heap in O(n log n) time. Hence, Steps
5.2’ and 5.3’ can be completed in O(n log n) time. Step 5.4’ can be completed in
O(1) time. Note that the straight skeleton is a planar graph with n connected
regions (corresponding to the n edges of the input polygon) embedded in the
plane, and the degree of any vertex is at least three. Hence, the total number of
vertices, edges, and connected regions is of O(n). This means that Steps 5.1 to
5.4 are repeated O(n) times. Therefore, Algorithm 2 runs in O(n2 log n) time.
�

Fig. 14 shows an example of a straight skeleton. The input polygon in this
figure has 300 vertices. This polygon was generated by inserting a number of
vertices into the edges of a 16-gon and then perturbing their locations with small
random numbers. This polygon is not degenerate, and hence the construction
of the straight skeleton is not difficult.

Fig. 15 shows the output of our algorithm for a regular 30-gon. This is
highly degenerate because, if there are no numerical errors, all 30 of the roof
edges will meet at the center. In this experiment, the coordinates of the vertices
were represented by single-precision floating-point numbers, and the numeri-
cal computations were performed in single-precision floating-point arithmetic.
Our algorithm was able to compute the straight skeleton, as shown in Fig. 15(a).
However, if we expand the central part by 105, we get the diagram in Fig. 15(b),
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Figure 14: Straight skeleton constructed by Algorithm 2.

where we can see many vertices instead of a single vertex. This kind of distur-
bance is not surprising; we note that the algorithm gave a topologically consis-
tent output even though the polygon was highly degenerate.

This algorithm is similar to the computations in the human brain in the
sense that both are persistent once a decision has been made, regardless of its
accuracy. In this way, both are able to achieve robustness against imprecise
numerical computations.

The strategy we followed for designing Algorithm 2 can be considered to
be a topology-oriented approach, which we have proposed as a basic principle
for designing robust geometric algorithms [22, 25]. Indeed, in this approach,
the basic part of the algorithm is described in only topological terms, and the
numerical data are used only for selecting the most promising branch of the
processing. Thus we can say that the idea behind simulating the persistency of
the human brain is very similar to the topological approach for robust geometric
algorithms.

6 Concluding Remarks

We observed how the human brain processed computations by looking at three
visual illusions: the Zöllner illusion, the Ouchi illusion, and the impossible mo-
tion illusion, and we then composed a new algorithm for computing straight
skeletons. Based on our observations, we pointed out that designing algorithms
based on how the human brain computes is very similar to the topology-oriented
approach, which we have developed for a long time. Thus, the topology-oriented
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(a) (b)

Figure 15: Degenerate straight skeleton: (a) straight skeleton; (b) close-up
diagram of the central part.

approach can be used if we want to mimic the processing of the human brain.
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