
Evaluation of AXI-Interfaces for
Hardware Software Communication

Master Thesis

Submitted in Fulfilment of the

Requirements for the Academic Degree

M.Sc. in Embedded Systems

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Ankit Sharma
Student ID: 425911
Date: 19.12.2018

Supervising tutor: Prof. Dr. W. Hardt
Dipl. Inf. René Schmidt

Abstract

A SoC design approach is implemented for the MERGE project which features
Machine Learning (ML) interface for the hardware design. This setup deals with
detection and localization of impact on a piezo metal composite. Development of
the project is executed on Digilent ZYBO board. ZYBO incorporates Xilinx ZYNQ
architecture. This architecture provides Processing System (PS) and Programmable
Logic (PL) that communicate with each other via AMBA Standard AXI4 Interface.

Communication cost have major influence on the system performance. A opti-
mized hardware software partitioning solution will reduce the communication costs.
Therefore, best fitting interface for the provided design is needed to be evaluated
to trade-off between cost and performance. High performance of AXI Interface will
provide efficient localization of impact, especially for real-time scenario. In the the-
sis, the performance of three different AXI4 interface are evaluated. Evaluation is
performed on the basis of the amount of data transferred and the time taken to
process it.

Evaluation of interfaces are done through implementation of test cases in Xilinx
SDK. Hardware design for AXI4-Interfaces is implemented in Vivado and later tested
on Digilent ZYBO board. To test the performance of interfaces, read and write
operations are initiated by PS on interface design. Each operation is performed for
multiple data lengths. Average execution time is calculated that highlights time
taken to transfer the corresponding input data length.

Through these tests, it is found that AXI4-Stream is the best choice for a
continuous set of data. Preferably, it provides unlimited burst length which is
useful for the current project. Among other two interfaces, AXI4-Full performed
better in terms of execution time as compared to AXI4-Lite.

Keywords: AXI4-Full, AXI4-Lite, AXI4-Stream, Vivado, ZYNQ

2

Contents

Contents . 3

List of Figures . 5

List of Tables . 7

List of Abbreviations . 8

Acknowledgments . 9

1. Introduction . 10
1.1. Motivation . 10
1.2. Structure of the Thesis . 11

2. State of the Art . 12
2.1. Possible Communication Alternatives for FPGA 12

2.1.1. Serial Peripheral Interface . 12
2.1.2. Inter-Integrated Circuit . 13
2.1.3. Controller Area Network . 15
2.1.4. Universal Serial Bus . 17
2.1.5. TIA/EIA Standards . 19

2.2. Outline of SoC Bus Standards . 22
2.2.1. AMBA . 22
2.2.2. CoreConnect . 25
2.2.3. Wishbone . 26
2.2.4. Avalon . 28
2.2.5. Open Core Protocol . 29

2.3. ZYNQ Architecture . 29
2.3.1. Overview . 30
2.3.2. Features . 31
2.3.3. Communication Interfaces . 32

2.4. Basis for Evaluation . 36

3. Concept . 38
3.1. Comparison of SoC Bus Standards 38
3.2. Approach for Evaluation of AXI Interfaces 40

3

CONTENTS

3.3. Evaluation Platform . 41
3.3.1. Hardware . 41
3.3.2. Software . 42

4. Implementation . 45
4.1. Overview of FPGA Implementation 45

4.1.1. MERGE PL FPGA IP . 46
4.2. Hardware and Software Design for Evaluation 52

4.2.1. Hardware Design . 52
4.2.2. Software Design . 61

5. Results and Discussion . 67
5.1. Read Operation . 68
5.2. Write Operation . 70
5.3. Comparison of Results . 74

6. Conclusion and Further Work . 76

Bibliography . 79

Annex A. Optimization level 2 flags . 83

Annex B. AXI4-Full Test Design . 84

Annex C. AXI4-Stream Clocking Wizard Design 85

Annex D. AXI4-Full CDMA Design . 86

4

List of Figures

1.1. Processing chain of Piezo Metal Composite[37] 10
1.2. Block Diagram of the current design 11

2.1. SPI Bus Topologies[3] . 13
2.2. Typical Embedded Microprocessor System with an FPGA[2] 14
2.3. I2C Bus Configuration and Communication Frame[29] 14
2.4. Inverted logic of a CAN bus[12] . 15
2.5. CAN frames[12] . 16
2.6. Relation between Baud rate and CAN bus length[34] 16
2.7. USB bus tiered-star topology[e][9] . 17
2.8. USB Pipe Model[28] . 18
2.9. USB Cable[26] . 18
2.10. TIA/EIA-232-F Electrical Specification[20] 19
2.11. RS-232 connectors[31] . 20
2.12. RS-422 Balanced Voltage Circuit[22] 20
2.13. Comparison of cable length and data rate[23] 21
2.14. RS-485 Balance Voltage Circuit[22] 21
2.15. AMBA-based mobile phone SoC[35] 23
2.16. AMBA Standards[36] . 24
2.17. CoreConnect Bus Architecture[19] . 25
2.18. PLB Address and Data Cycle[18] . 26
2.19. Various Wishbone Interconnection Scheme[27] 27
2.20. Avalon bus based system[5] . 28
2.21. System depicting Wrapped bus and OCP instances[27] 29
2.22. High-Level Block Diagram[51] . 30
2.23. Top View of ZYNQ Architecture[52] 31
2.24. System-Level Address map[43] . 32
2.25. Read and Write Channels[42] . 33
2.26. Two-way VALID/READY Handshake[7] 34
2.27. AXI4-Stream Transfer via Single Channel[41] 35
2.28. Overview of the design[37] . 36
2.29. View of Pre-processing Circuit used in the design[38] 37

3.1. ZYBO ZYNQ-7000 Development Board[13] 41
3.2. ZYBO clocking scheme[13] . 42
3.3. High-Level Design Flow in Vivado[46] 43

5

LIST OF FIGURES

3.4. Software Workflow in SDK[40] . 44

4.1. Block Diagram of Hardware Design 45
4.2. Feature Data Frame . 46
4.3. Block Diagram of MERGE PL Implementation 47
4.4. State Machine Diagram of MERGE PL v0 1 M00 AXIS 48
4.5. Block Diagram of analog2digital Module 49
4.6. State Machine Diagram of MERGE PL v0 1 M00 AXIS 50
4.7. Hardware Design for AXI4-Lite Interface 52
4.8. View of Address Editor . 53
4.9. AXI Protocol Converter IP core . 53
4.10. Hardware Design for AXI4-Full Interface 54
4.11. Customization of Parameters in IP Packager 54
4.12. Interconnect Connection with AXI Data Width Converter IP 55
4.13. Block Diagram of AXI4-Stream Hardware Design 55
4.14. Block Diagram of AXI4-Stream FIFO core[45] 56
4.15. Customization Options for AXI4-Stream Data FIFO 57
4.16. Settings for Read and Write Channel 57
4.17. Connection of DMA Interrupts . 58
4.18. Hardware Design for Frequency Test 59
4.19. Clocking Wizard Architecture[44] . 59
4.20. Clocking Wizard (v5.2) Customization 60
4.21. Hardware Design for AXI4-Stream Interface 66

5.1. Optimization Effect on the Result . 68
5.2. Results for Read Operations . 69
5.3. Comparison of Normalized and Absolute Time for AXI4 Stream . . . 71
5.4. Absolute Execution Time for AXI4-Lite Write Operation 72
5.5. Performance based on PL Frequency 72
5.6. Results for Write Operation . 73

6.1. AXI4-Stream Performance Relative to PL Frequency 77
6.2. AXI4-Full Performance for 64-/128-bit Data Width 78

B.1. AXI4-Full High-Performance Based Design 84

C.1. Clocking Wizard design for AXI4-Stream 85

D.1. AXI CDMA Based Hardware Design 86

6

List of Tables

2.1. AXI4 Feature Availability and IP Replacement[42] 36

3.1. Features of SoC Bus Standards . 39

4.1. Addresses of ADC Channel Registers[49] 50
4.2. Data Structure of timespec . 61
4.3. Timing Functions supported by Linux 62
4.4. Registers for MM2S and S2MM Channel 64

5.1. Configuration for Results . 67
5.2. Comparison of AXI4-Interface Results 74

7

List of Abbreviations

AHB Advanced High-Performance Bus

AMBA Advanced Microcontroller Bus
Architecture

APU Application Processor Unit

APB Advanced Peripheral Bus

ARM Advanced RISC Machine

ASB Advanced System Bus

ASIC Application-Specific Integrated
Circuit

AXI Advanced eXtensible Interface

CAN Controller Area Network

DMA Dynamic Memory Access

FPU Floating Point Unit

I2C Inter-Integrated Circuit

IP Intellectual Property

MMU Memory Management Unit

NoC Network On Chip

OCM On-Chip Memory

OP-AMP Operational Amplifier

PLL Phase Locked Loop

PL Programmable Logic

PS Processing System

ROM Read Only Memory

SDK Software Development Kit

SDIO Secure Digital Input/Output

SoC System on Chip

SPI Serial Peripheral Interface

UART Universal Asynchronous
Receiver Transmitter

USB Universal Serial Bus

8

Acknowledgments

I would like to offer my gratitude towards Chair of Computer Engineering and people
involved in the chair.

First and foremost, I am thankful to Prof. Dr. W. Hardt to provide me an
opportunity to do master thesis in the Professorship of Computer Engineering.

I, sincerely, like to thank my supervisor, Dipl. Inf. René Schmidt, for supporting
me throughout the journey. I am grateful to have him as my supervisor since I
always felt motivated and happy while working under him.

9

1. Introduction

1.1. Motivation

In context of MERGE technologies, “Technology Fusion for Lightweight Structures”
aims to develop a novel touch-based user interface for a piezo metal composite.
Overall concept of the project is illustrated in Figure 1.1.

Piezo foil is glued to a metal sheet with copper electrodes on it (step 3 and 4).
These electrodes are polarized to amplify the resulting voltage from piezo film[37].
Afterwards, composite can be formed to give any required shape. This thesis is
concerned with steps 7 and 8, highlighted in a rectangular box, that are responsible
for detection and localization of impact on the composite.

Figure 1.1.: Processing chain of Piezo Metal Composite[37]

It requires embedded signal processing to process piezo signals and extract appro-
priate features for classifier to accurately localize the point of impact. Since com-
posite is allowed to take multiple form, it is viable to use a Machine Learning (ML)
interface. Classifier’s accuracy depends on the type and amount of training data
used for learning rather than geometry of the composite. Hence, it will eliminate
dependency of the results on mechanical parameters such as changes in propagation
of mechanical waves due to changes in physical shape of the composite[37].

Signal processing has been implemented on FPGA. However, it is not feasible
to run ML part on FPGA, therefore, it demands a hardware/software co-design
approach to run machine learning algorithm on the processor.

10

1. Introduction

Current design as depicted in Figure 1.2 uses Digilent ZYBO (ZYnq BOard) board
because of its inclusion of ARM-based processor with an FPGA on a Zynq System-
on-Chip (SoC). Moreover, for development purpose, for a low-cost it offers flexible
design.

Figure 1.2.: Block Diagram of the current design

As seen from Figure 1.2, Zynq SoC comprise AXI Interface to link Programmable
Logic (PL) and Processing System (PS). AXI Interface provides several configura-
tions that can have impact on the overall speed of the design. In order to provide
a optimized hardware software partitioning solution, the communication costs have
a major influence on the system performance. Therefore, an analysis of the AXI-
Interfaces representing the communication costs is mandatory.

1.2. Structure of the Thesis

Thesis is structured as follows:
Chapter 2, State of the Art, lists some of the communication protocols that are

used in FPGA design. Since work in the thesis is done on SoC, therefore, various
SoC communication standards are discussed. Among these, Zynq architecture is ex-
plained in detail because of its use in the implementation. Lastly, for the evaluation
of AXI Interfaces, current hardware and software designs are mentioned.

Chapter 3, Concept, compares various SoC communication standards to provide
an overview of features supported by such standards. In addition, approach taken
to evaluate AXI-Interfaces and platform used for such purpose are discussed.

Chapter 4, Implementation, details FPGA implementation, provided in the the-
sis, for signal processing and feature extraction. It also explains implemented design,
both hardware and software, for evaluation.

Chapter 5, Results and Discussions, highlights the performance of AXI Inter-
faces and examines their results to find the best fitting interface for given FPGA
implementation and machine learning interface.

Chapter 6, Conclusion and Future Work, summarizes the thesis through its
implemented design and evaluation results. Based on thesis’s conclusion, possible
ideas that can be implemented to improve the design are mentioned.

11

2. State of the Art

2.1. Possible Communication Alternatives for FPGA

There have been several communication protocols where are used in FPGA designs
such as Universal Serial Bus (USB), I2C (Inter-Integrated Circuit), Serial Peripheral
Interface (SPI), etc. In this chapter, some of the widely used communication proto-
cols are discussed. These include: SPI, I2C, CAN, USB, and TIA/EIA standards.
These protocols can be implemented within FPGA design as an IP Core. Some can
be used to communicate with FPGA, for example, SPI.

These communication protocols uses serial communication. Through the discus-
sion, it will be easier to have an outlook of the requirements for each protocols and
complexity involved in using it. Moreover, it will provide an overview about features
of various protocols.

Some of the well known standards which are used for the communication between
FPGA and microprocessor are listed below:

2.1.1. Serial Peripheral Interface

Serial Peripheral Interface (SPI), developed by Motorola, is a synchronous serial bus
that provides full duplex communication between the master and one or more slaves.
It is well suited for communication between integrated circuits for low/medium data
transfer speed with on-board peripherals. SPI bus consists of four wires as depicted
in Figure 2.1. A separate Slave Select (SS) signal is needed for each slave which
adds to extra wiring.

Functions of these four signals is as follows. Master drives the clock signal (SCLK)
for the slaves. To send data from master to slave, MOSI (Master Output Slave
Input) pin is used. For sending data from slave to master, slave uses MISO (Master
Input Slave Output) pin. Master selects appropriate slave with the help of SS (Slave
Select) pin and then sends/receives the data.

When used in full duplex mode, SPI Interface can achieve data rates of upto 1
Mbps. Therefore, it is well suited for low speed communications, for example, for
configuring FPGAs where a microprocessor reads a bitstream file via SPI interface
and sends it to FPGA over slave serial interface.

12

2. State of the Art

Figure 2.1.: SPI Bus Topologies[3]

2.1.2. Inter-Integrated Circuit

Phillips introduced Inter-Integrated Circuit (I2C) protocol in 1982 for serial com-
munication between ICs placed on a same board. I2C protocol, similar to UART
(Univeral Asynchronous Receiver Transmitter), supports two lines for communica-
tion, Serial Clock (SCL) and Serial Data (SDA), which handles multiple masters
and slaves as depicted in Figure 2.3a.

In I2C bus configuration, SCL and SDL lines are connected to positive supply
voltage using a pull-up resistor. Hence, a device on a I2C bus uses an open-drain
approach, i.e., it can only drive a logic 0 (LOW) on a bus.

Master and slave communicate via 7-bit/10-bit address. Master sends address to
slaves in a message frame coupled with control information as shown in Figure 2.3b.
Communication starts and ends with special bits supported by I2C protocol. Each
address is followed by a read/write information and an acknowledgment from the
receiver.

I2C bus comes in various speeds as needed for the application. A unidirectionl
bus supports Ultra Fast-mode with a bit rate up to 5 Mbps whereas a bidirectional
bus supports:[29]

• Standard-mode (0 - 100 kbit/s)

• Fast-mode (0 - 400 kbit/s)

13

2. State of the Art

Figure 2.2.: Typical Embedded Microprocessor System with an FPGA[2]

• Fast-mode Plus (0 - 1 Mbit/s)

• High-speed mode (0 - 3.4 Mbit/s)

I2C protocol is mainly used for low speed communication and control applications
such as in EEPROM (Electrically-Erasable Programmable Read-Only Memory),
ADC (Analog-to-Digital Converter), microcontroller, LCD (Liquid Crystal Display)
controllers [25]. Moreover, the bus is used in various control architectures such as
System Management Bus (SMBus) and Power Management Bus (PMBus)[29].

(a) I2C bus configuration using two microcontrollers

(b) Communication frame in I2C data transfer

Figure 2.3.: I2C Bus Configuration and Communication Frame[29]

14

2. State of the Art

2.1.3. Controller Area Network

In 1986 Robert Bosch GmBH, at the Society of Automotive Engineers (SAE) con-
ference, publicly released a serial communication bus, Controller Area Network
(CAN)[10]. Reason behind the development of serial network protocol was to have
an efficient real-time based communication between various electronic devices in
automotive applications.

CAN architecture replaced complex point-to-point wiring harness between various
Electronic Control Units (ECUs) by a two-wire bus. These two wires, CANH and
CANL, are configured in a twisted-pair cable which cancels out electromagnetic
interference. CAN bus provides two logic states: a recessive state and a dominant
state as illustrated in Figure 2.4. A dominant in a bus denotes a differential voltage
between CANH and CANL of 2V (logical HIGH) whereas a recessive signifies a zero
differential voltage.

Figure 2.4.: Inverted logic of a CAN bus[12]

CAN devices (or nodes) access CAN bus through carrier-sense, multiple-access
protocol with collision detection and arbitration on message priority[12]. Prior to
transmission of data, availability of bus is checked by a node. If multiple nodes
transmit data at the same time, then bit-wise arbitration scheme is employed to
resolve the conflict. Arbitration is performed on the value of message identifier stored
in the arbitration field (Figure 2.5). Priority of a message is inversely proportional
to the value of an identifier. So, among multiple frames, a node frame of lowest
identifier wins the arbitration and, therefore, is transmitted on the bus. As depicted
in Figure 2.5, CAN specification provides two different identifiers, 11-bit (standard)
and 29-bit (extended), leading to an increase in the maximum number of nodes
allowed on the bus. Message transfer between CAN devices is controlled by four
frames[8]: a data frame, a remote frame, an error frame, and an overload frame.
A data frame contains 0-8 bytes of data on the bus. Data can be requested from
a specific node through a remote frame which contains no data. An error frame
is transmitted by a node in case of an error in the bus. Overload frames provides
additional delay between data or remote frames.

15

2. State of the Art

Figure 2.5.: CAN frames[12]

fig:canspeed it is seen that CAN bus allows a maximum speed of 1 M bits/s for
a bus length of 40 m. Based on rate of transmission, CAN is divided into three
types[11]

• High Speed CAN (Up to 1 M bits/s)

• Low Speed/Fault-tolerant CAN (Up to 125 K bits/s)

• Single Wire (Up to 83.3 K bits/s)

Figure 2.6.: Relation between Baud rate and CAN bus length[34]

Because of its low cost, robust noise immunity and real-time capabilities, CAN
protocol is utilized in variety of applications apart from automotive. CAN finds its
usage in textile machinery, medical devices, and as production line equipment[11].

16

2. State of the Art

2.1.4. Universal Serial Bus

In 1990s, growing use of personal computer (PC) led to development of various
peripherals such as mouse, keyboard, modem, printer etc. Separate interfaces such
as serial and parallel port were used for the attachment of such peripherals to PC.
From user’s point of view, there was a need to replace different connectors by a
single interface that can allow multiple devices to communicate with each other.
Therefore, in 1994, Universal Serial Bus (USB) standard was developed through
a joint effort of multiple industries: Compaq, IBM, DEC, Microsoft, Nortal, and
NEC[28].

USB architecture consists of a host computer connected to wide range of periph-
erals through a cable bus. Attached peripherals share the bus bandwidth among
them and are allowed to attach or detach while the bus is in operation[9]. These
peripherals are connected to USB host in a tiered-star topology as depicted in Fig-
ure 2.7. USB protocol supports a maximum of 127 devices that can be attached to
a single host controller. USB is a polled bus, that is, only the host controller can
initiate a transfer in the bus.

Figure 2.7.: USB bus tiered-star topology[e][9]

Communication between host controller and USB device is done via pipes (Fig-
ure 2.8). An Endpoint in a USB device is used as a storage for data, which can
be addressable by the host controller. From Figure 2.7, data pipes, as the name
suggests, are unidirectional and carry data. Each USB device have a bidirectional
control pipe to configure device or provide status and control information.

Each transaction in the bus is initiated by the host controller through the token
packet. This packet contains information about the type and direction of trans-
action, the USB device address, and endpoint number[9]. After the token packet,
host can send or receive data packets. USB device transmits a handshake packet to
denote a successful transfer.

17

2. State of the Art

Figure 2.8.: USB Pipe Model[28]

USB Specification provides four data transfer types[9]

• Control Transfers: Used for configuration of the device.

• Bulk Data Transfers: Used to transfer of large amount of data without guar-
antee on transfer speed or latency.

• Interrupt Data Transfers: Used to transfer small amount of data though in
timely manner.

• Isochronous Data Transfers: Used for guaranteed data delivery rate through
assurance of set amount of bus bandwidth and latency.

To carry out data transfers, USB cable uses differential signaling (Figure 2.9. The
clock is encoded with the differential data and uses Non-Return-To-Zero Inverted
(NRZI) scheme[9]. Bit stuffing is employed to maintain synchronization between
sender and receiver, in cases where there are no transitions in the data.

Figure 2.9.: USB Cable[26]

From Figure 2.9 we see that there a two variants of cables used for USB bus
communication. USB 2.0 supports three speeds: High-speed (480 Mbits/s), Full-
speed (12 Mbits/s), and Low-speed (1.5 Mbits/s). USB 3.0 is back compatible with
USB 2.0 devices and, in addition, provides a Superspeed bus that supports transfer
rate of up to 5.0 Gbits/s[2]. A successor to 3.0, USB 3.1 scaled the Superspeed to
10.0 Gbits/s[2].

18

2. State of the Art

Availability of such transfer speeds allow USB to be employed in different ap-
plications than just being a way to connect peripherals to PCs. It enables faster
performance in downloading data or video[26]. USB, as a protocol, is used in non-
traditional application such as industrial automation[2]. Moreover, USB is used a
power source for charging mobile devices.

2.1.5. TIA/EIA Standards

Telecommunication Industry Association/Electronic Industries Association
(TIA/EIA) defined physical layer standards intended for serial communication.
These standards provide electrical and mechanical specification that can be utilized
by a serial protocol.

For example, UART (Universal Asynchronous Receiver Transmitter) hardware is
used in conjunction with these standards to facilitate serial communication. Another
example is Modbus serial protocol used with RS-232 or RS-485 interfaces.

These standards are also referred with a prefix ”RS” (Recommended Standard)
such as RS-232, RS-422, and RS-485.

RS-232 (TIA/EIA-232)

RS-232 is a single-ended, full-duplex, communication interface between a driver
and a receiver in the point-to-point configuration. This interface was introduced
by EIA in 1962 to standardize communication between Data Transmission Equip-
ment (DTE) such as a PC and Data Communication Equipment (DCE) such as a
modem[20].

For communication purpose, RS-232 standard also defined a standard connector,
named DB-25 (Figure 2.11). However, when IBM PC AT was released in 1984, it
featured a 9-pin D type connector which later became common in use as an interface
between data acquisition devices and computer systems.

Figure 2.10.: TIA/EIA-232-F Electrical Specification[20]

Voltage levels used by RS-232 are specified in Figure 2.10. Voltage levels between
±3V are undefined such that effect of noise at receiver’s end is reduced. However,
use of single-ended configuration is prone to common-mode noise. A shift in ground
level at receiver’s end can lead to unbalanced situation. Use of a common ground
signal limits the maximum data throughput.

19

2. State of the Art

Figure 2.11.: RS-232 connectors[31]

RS-232 standard defines a maximum data rate of 20 kbits/s for a maximum cable
length of about 15 to 20 meters[20]. It states that the cable is allowed to have a
maximum capacitance of 2500 pF.

RS-422 (TIA/EIA-422)

RS-422 was introduced to overcome noise issue of RS-232 because of single-ended
interface[23]. RS-422 standard provides electrical specification for employment of
balanced data transmission over long distances.

It is a simplex multidrop standard, that is, on a shared bus only single driver and
multiple receivers (up to 10) can exist. Similar to RS-232, it can also be used in
point-to-point configuration.

Figure 2.12.: RS-422 Balanced Voltage Circuit[22]

An overview of the interface circuit is depicted in Figure 2.12. As per the specifi-
cation, termination impedance is required to reduce reflection caused by mismatch
of characteristic impedance of the line.

RS-422 allows a maximum cable length of 1200 meter, however, it would not
result in maximum data rate as depicted in Figure 2.13. Voltage range for RS-422-
compliant driver lies in the range of ±6V whereas for receiver, it is ±10V with a
threshold level of 200 mV[22].

20

2. State of the Art

Figure 2.13.: Comparison of cable length and data rate[23]

RS-485 (TIA/EIA-485)

In comparison to RS-232 and RS-422, RS-485 is most widely used standard in indus-
try owing to its balanced digital transmission line with an interconnection of multi-
ple transmitters and receivers. RS-485 uses a half-duplex communication scheme in
multi-point configuration as seen inFigure 2.14. It can transmit data over distances
of several kilometers with fewer noise emission.

Figure 2.14.: RS-485 Balance Voltage Circuit[22]

RS-485 specification defines only electrical layer and its electrical specification
is compliant with RS-422 drivers and receivers[22]. RS-485 compliant drivers and
receivers voltage on the lines range from -7 V to 12 V. In contrast to RS-422, it
requires termination impedance at both ends of the cable.

As per the specification, maximum cable length can be 1200 meter and a high
signaling rate of up to 50 Mbits/s is achievable[21]. Variation of data rate with
respect to length of the cable is depicted in Figure 2.13.

Due to its low noise coupling and various other advantages, various standards
committees incorporated RS-485 as the physical layer specification for their com-

21

2. State of the Art

munication standard such as the Profibus standard and Small Computer Systems
Interface (SCSI)[21].

2.2. Outline of SoC Bus Standards

Various computer components such as processor cores, on-chip memory, external
memory interface, Digital Signal Processor (DSP), input/output devices, etc., are
placed on a single chip called System-on-Chip (SoC). Compared to motherboards
such arrangement leads to reduced board space and less power consumption. Owing
to this they mainly find their use in mobile computing devices.

In the thesis, we will look into SoC that integrates FPGA (reconfigurable SoC)
since implementation is performed on such system. In contract to Application-
Specific Integrated Circuit (ASIC), rSoC provides more flexibility with short turn
around time for testing the hardware design and is generally cost-effective. However,
ASICs are aimed to comply with a particular purpose, hence, they acquire less space
than FPGAs and have lesser power requirements.

IP (Intellectual Property) cores for SoC are designed with different interfaces and
communication protocols. SoC needs minimal glue logic to integrate them in a chip
and so it resulted in development of on-chip bus standards[27]. There have been
several interconnect topology to interface various IPs in SoC such as point-to-point,
bus system, crossbar switch, Network-on-Chip (NoC), etc. Among these, Network-
on-Chip provides better design scalability and uses wires efficiently[16]. It makes use
of data packets for communication between devices similar to TCP/IP (Transport
Control Protocol/Internet Protocol) model.

To increase the overall speed of SoC designs, some emerging on-chip interconnect
technologies such as optical interconnects, Radio Frequency (RF) based intercon-
nect, and CNT (Carbon Nanotube) interconnect, are in experimental phase[33].

In this section, we will look into various on-chip bus standards which are flexible
and robust enough to integrate numerous functional units on a single chip. Bus ar-
chitecture is widely accepted integration technique for inter-module communication
in SoC. It is based on traditional address and data buses used in computers to carry
information across the system.

2.2.1. AMBA

A SoC interconnect standard named Advanced Microcontroller Bus Architecture
(AMBA) was introduced by ARM in 1996 to facilitate communication between var-
ious IPs (Intellectual Property)[6]. It employs two layer hierarchical bus topology
to interface SoC components based on their performance requirements.

High performance bus connects processor cores, memories, and other high-
bandwidth components. Low performance bus provides interface to low bandwidth
peripherals such as Ethernet, USB, UART, etc. It is a simple addressing bus with

22

2. State of the Art

latched address and control signals for low-speed peripherals. These buses are ad-
joined by a bridge as illustrated in Figure 2.15.

ARM AMBA system consists of: masters, slaves, bus arbiter, and central de-
coder. Multiple masters can connect to high-bandwidth bus whereas slave peripher-
als communicate with the system using low-bandwidth bus. Bus arbiter implements
arbitration scheme to allow only one master to initiate transfer at the same time.
Decoder provides select signals for peripherals based on address provided by the
master.

Figure 2.15.: AMBA-based mobile phone SoC[35]

The communications between IPs in an AMBA SoC is done in the form of transac-
tions. A transaction, initiated by master, consists of securing the bus, commencing
and completing read/write operation[35].

AMBA Specification version 1.0 released two buses: Advanced System Bus (ASB)
and Advanced Peripheral Bus (APB). Advanced System Bus is used as the main
system bus for high-bandwidth components such as processor, memory, DMA con-
troller, and APB Bridge. APB Bridge acts as a cross-over between ASB and APB
and handles the bus handshake[6]. It supports multiple data bus widths: 8, 16, and
32 bits. APB bus provides a simple addressing with latched address and control
signals. It is suitable for connecting peripherals such as UART, USB, Ethernet,
General purpose input/output ports. It supports data width of 8, 16, 32 bits.

Advanced High-Performance Bus (AHB) was included in second version of AMBA.
Similar to ASB, it provides pipelined operation but also supports burst transfer and
split transactions. Multiple data bus widths allowed in AHB are 32/64/128 bits.
It incorporates access protection scheme to distinguish between privileged and non-
privileged access modes.

In third version (AMBA 3), AMBA added Advanced eXtensible Interface (AXI3)

23

2. State of the Art

which was later updated in fourth version to AXI4. AXI provides a point-to-point
interconnect between master and slave which is advantageous over bus sharing. It
enables higher bandwidth and lower latency in design. AMBA 3 also introduced
Advanced Trace Bus (ATB) and AHB-Lite. ATB is part of CoreSight on-chip debug
which is used for verification of an IP. AHB-Lite is a simplified version of AHB that
allows only one master.

In addition to AXI3, AXI4 introduced two additional interfaces: AXI4-Lite and
AXI4-Stream. AXI4-Lite is used for low-throughput memory mapped interface and
provides powerful interface than APB. AXI4-Stream supports high-speed streaming
of data[42]. AXI4 is discussed in greater detail in Section 2.3.

AMBA Specification version 4 (AMBA 4) released Advanced Coherency Exten-
sion (ACE) which is an extension to AXI4. It provides hardware management of
cache memory across multiple cores. This removes the need of software to main-
tain coherency between caches, thereby, saving processor cycles and bus usage. A
simplified version of ACE, ACE-Lite is introduced to provide one-way coherency for
components that does not have their own cache memory like DMA (Direct Memory
Access). Components with cache memory can also use ACE-Lite protocol when such
cache is to be managed by an appropriate software.

Figure 2.16.: AMBA Standards[36]

In 2013, AMBA 5 released Coherent Hub Interface (CHI) which is a complete
redesign of ACE to incorporate increasing number of coherent clusters. Instead of
using ACE Interconnect, it introduced a packed based layered architecture.

Since its inception, AMBA has been the de facto standard for creating SoCs. It
is used by industries such as NVidia, Qualcomm, Actel, etc[35].

24

2. State of the Art

2.2.2. CoreConnect

IBM released on-chip bus standard named CoreConnect for interconnecting cores
and enabling reuse of logical units in SoC through hierarchical bus system. It is
composed of three buses for interconnecting cores, peripherals, and custom logic:

• Processor Local Bus (PLB)

• On-Chip Peripheral Bus (OPB)

• Data Control Register Bus (DCR)

Figure 2.17 illustrates the use of these buses in the architecture. PLB provides
high-bandwidth and low latency with support for 16-, 32-, and 64-bits data trans-
fers, extensible to 256-bits. PLB is intended to connect components that needs
high throughput such as processor cores, DMA controllers, memories, etc. It is
fully synchronous central arbitrated bus that supports up to 16 masters and unre-
stricted number of slaves. Both master and slave that are attached to PLB have
separate bus for address, read data and write data. Hence, concurrent read and
write transfers maximizes the bus utilization. Moreover, it features burst transfers,
split transaction, and address pipelining which enhances bus throughput.

Figure 2.17.: CoreConnect Bus Architecture[19]

OPB reduces capacitive loading on PLB by providing independent support to low
speed peripherals such as serial/parallel ports, USB, General purpose input/output
ports, etc[c]. It uses separate 32-bit data and address bus. OPB features fully syn-
chronous operation, burst transfers, single-cycle data transfers, multiple masters,
and dynamic bus sizing. OPS supports multiple master devices through implemen-
tation of distributed multiplexer for both the address and data bus[19].

25

2. State of the Art

From Figure 2.17 it can be seen that communication between PLB and OPB is
done through bridges. PLB masters use PLB to OPB bridge to write data to slave
peripherals or use OPB to PLB bridge to read data from master peripherals.

DCR is a low performance, fully synchronous bus to provide status and configu-
ration data across the system. It consists of 10-bit address bus and 32-bit data bus.
Read or write transfer on the bus need minimum two cycles. Similar to OPB, it
off-loads PLB from lower performance transfers by providing a daisy-chained con-
nection between processor core master and other SoC devices acting as slaves. It
makes use of ring topology which is implemented as distributed multiplexer across
the chip. Such connection of SoC devices minimizes silicon usage[1].

Bus transaction is started by PLB which consists of address and data cycles as
shown in Figure 2.18. Master requests for the bus by driving address and transfer
qualifier signals. When PLB Arbiter grants bus to the master, these signals are
passed to the requested slave in the transfer phase. Address cycle terminates when
slave latches these signals in the address acknowledge phase.

Figure 2.18.: PLB Address and Data Cycle[18]

Similarly master writes or reads data to/from slave in data cycle. Each data beat
in data cycle consists: transfer phase where master drives write data or read data
bus and data acknowledge phase which denotes end of the data cycle for the final
beat of line transfer[1]. Maximum throughput occurs when data transfer and data
acknowledge phases are concurrent.

CoreConnect finds its use in PowerPC400 family, for example, PowerPC 440 in-
corporates CoreConnect bus standard to interface components inside a PowerPC.

2.2.3. Wishbone

Silicore Corporation released an on-chip interconnect architecture named Wishbone
bus which is supported by OpenCores, an organization that provides open source
IP cores. Main objective for development of Wishbone bus was to have a com-
mon interface between IP Cores so as to enhance portability and reliability of the
system[32].

Wishbone is a general purpose interface which provides set of signals and bus
cycles for a single level bus. To connect IP Cores to bus, it defines two types of
interfaces, namely, Master and Slave. IP cores that acts as master can initiate bus
cycles whereas the ones which receive bus cycles are classified as Slave interfaces.

26

2. State of the Art

Major feature of Wishbone is the inclusion of possible interconnection architecture
between Master and Slave interfaces as illustrated in Figure 2.19. These include:
Point-to-Point, Data flow, Shared bus, and Crossbar switch.

Figure 2.19.: Various Wishbone Interconnection Scheme[27]

Point-to-Point is the simplest of all interconnection scheme and falls short for SoC
design where multiple masters have to be interfaced with multiple slaves.

Data flow architecture exhibits parallelism where each IP Core has both Master
and Slave interface to provide the movement of data from core to core. This results
in pipelining similar to the use Fetch-Execute-Write functional blocks in computer
systems. Dataflow topology can find its in DSP algorithms where linear systolic
array architecture is implemented[32].

Shared bus architecture interconnects multiple master and slaves through a shared
bus. It needs bus arbiter and decoder logic to allow only one master to use the bus
at a time. Compared to other architectures, it uses fewer logic gates and routing
resources to interconnect SoC components which makes it relatively compact[32].

Crossbar switch is valuable when multi core SoC is used since it can speed up
data transfer rate by utilizing multiple cores concurrently. Thereby, compared to
shared bus architecture, it is faster but incorporates more interconnection logic and
routing resources[32]. Moreover, use of a cross-bar interconnect system results in
limited scalibility because of the use of centralized arbiter to control the bus[32].

Each Wishbone interface have set of signals which supports three types of bus
cycles[32]

• Single Read/Write: Only single data transfer at a time.

• Block Read/Write: Multiple single read/write cycles.

27

2. State of the Art

• Read-Modify-Write: Allows multiple masters to share common slave by using
semaphore bit.

Wishbone supports multiple data widths: 8, 16, 32, or 64 bits and address bus
width from 1 to 64 bits.

2.2.4. Avalon

Altera Corporation, acquired by Intel, released Avalon bus architecture for System-
on-a-programmable-chip (SPOC). Avalon makes use of multiplexers to drive the sig-
nals to appropriate peripheral. Hence, output of peripherals switch between HIGH
and LOW without existing in a high impedance state. Signals and timings are de-
fined in the architecture to allow master and slave components to communicate with
each other[5].

From Figure 2.20 we see that Avalon features data-path multiplexing and multiple
master. Masters and slaves interact with each other without the intervention of bus.
However, arbitration is needed when multiple masters access the same slave. Arbi-
tration technique used in Avalon bus is called slave-side (distributed) arbitration.
This proves advantageous for this architecture since it enables multiple masters to
perform transactions concurrently when same slave is not accessed during the same
bus cycle[[32]].

Figure 2.20.: Avalon bus based system[5]

Avalon bus stores logic and routing resources inside a Programmable Logic Device
(PLD). It provides separate dedicated lines for address, data, and control. Therefore,
there is no need of address or data decoder. Dynamic bus sizing is automatically
implemented by Avalon bus. Avalon bus provides support for data width from 8 bits

28

2. State of the Art

up to 1024 bits[[24]]. High-bandwidth peripherals can use data streaming capability
of Avalon bus.

2.2.5. Open Core Protocol

Accellera introduced Open Core Protocol (OCP) which defines a high performance
and configurable interface for connecting IP Cores[a]. It is bus-independent, there-
fore, IP design with OCP interface can be reused. Its configurable interface enables
IP core to use subsets of configuration features provided by OCP, thereby, optimizing
die area.

From Figure 2.21 we see that OCP provides a point-to-point interface between IP
cores and bus wrappers. In OCP system, master presents commands to slave and
slave responds by accepting data from master or providing data to it.

Figure 2.21.: System depicting Wrapped bus and OCP instances[27]

Some features of OCP interfaces are[4]: Fully synchronous, configurable address
and data width, pipelined transfers, optional burst transfers, concurrent transfers
via threads, allows master or slave to control transfer rate.

OCP includes signals such as data flow, control, verification, and test, needed for
IP core’s communication[4]. Moreover, apart from basic OCP used for interoper-
ability, it provides multiple extensions[30] Simple Extension, Sideband Extension,
and Complex Extension. Simple and Complex Extension support burst transfers.
Complex Extension provides concurrency support for threads. Sideband Extension
utilizes core specific user defined signals. Moreover, it supports JTAG (Joint Test
Action Group), structured test environments, and clock control.

2.3. ZYNQ Architecture

In the thesis, evaluation of the design is performed on Z-7010 which is from the
family of Xilinx ZYNQ-7000 SoC architecture. Next sections will give details about
the architecture and list its features.

29

2. State of the Art

2.3.1. Overview

Xilinx ZYNQ-7000 SoC includes a Processing System (PS) and a Programmable
Logic (PL) as displayed in Figure 2.23. PS consists of various functional blocks such
as I/O peripherals, external memory interfaces, internal memory, and interconnect.
Communication between PS and PL is performed through high-bandwidth AMBA
AXI Interfaces.

Figure 2.22.: High-Level Block Diagram[51]

This architecture scheme enables ZYNQ to utilize re-configurable functionality
with PS ASIC design. PL can be used to run data-intensive task that supports
parallelism whereas PS can be allowed to handle sequential process. This results in
overall high throughput.

High bandwidth connectivity, with the help of AMBA Standard AXI4 Interfaces,
is provided between PS and PL and also within PS to allow functional units to
communicate efficiently.

Hardware design is loaded into PL fabric only after PS is configured. As the system
starts, a hard coded boot ROM is executed (Boot Stage-0) which then allows PS to
load First Stage Boot Loader (FSBL) from On-Chip Memory (OCM). Afterwards,
second-stage bootloader can be used to load the kernel to DDR memory. Later, if
needed, a bitstream file can be used to program the PL fabric.

Zynq-7000 family PL uses Xilinx 7 Series FPGAs such as Zynq device Z-7010, used
in the thesis, contains Artix-7 FPGA. The clock to PL can originate from external
clock pin or from PS. PS uses three PLLs (Phase-Locked Loop) and provides four
input clocks to PL. Synchronization of clocks between PS and PL is managed by
the architecture.

30

2. State of the Art

Zynq-7000 SoC devices are used in variety of fields such as Industrial motor con-
trol, Automotive and Medical diagnostics[52].

2.3.2. Features

Functional units integrated into ZYNQ-7000 are displayed in Figure 2.23. It com-
priseis of Processing System (PS) and Programmable Logic (PL).

Figure 2.23.: Top View of ZYNQ Architecture[52]

Processing System consists of Application Processor Unit (APU) that embeds dual
core ARM-Cortex A9 processor which comes with 32 KB Level-1 cache memory. It
also provides Floating Point Unit (FPU) to facilitate floating operations needed in
applications such as DSP. NEON Engine is featured to support Single Instruction
Multiple Data (SIMD) instructions to improve the system performance through
data parallelism. Other componenets in APU are DMA Controller and Memory
Management Unit (MMU). Automatic cache coherency between processor cores is
implicit in the processor design[43].

Central interconnect links APU to multiple peripherals. It is based on ARM
NIC301 (Network Interface Configuration) design and uses 64-bit AXI Interface[52].

For debugging and tracing the software design, PS includes CoreSight controller.
PS communicates to PL through two AXI based 32-bit General Purpose ports.

31

2. State of the Art

Different grade of ports are provided in the PL to communicate with the functional
units in PS. Two 32-bit General Purpose ports are provided which are suitable for
transfer of small amount of data such as control signals. There are two master and
two slave GP ports. Four 64-bit High Performance ports which provides fast access
to OCM and DDR memory. One Accelerator Coherency Port (ACP) is featured to
access Snoop Control Unit (SCU) in APU. This enables PL to use OCM and Level-2
cache.

For processing Analog Mixed Signal(AMS), XADC (Xilinx Analog-to-Digital Con-
verter) module is included in PL. It provides a dual 12-bit, 1 Mega sample per second
ADC which is capable of accessing 17 external analog input channels[49].

Both PS and PL peripherals are mapped to System memory as shown in Fig-
ure 2.24. For unmapped peripherals in PS, Zynq features EMIO (Extended Multi-
plexed I/O) interface that allows these peripherals to use PL pins.

Figure 2.24.: System-Level Address map[43]

2.3.3. Communication Interfaces

Zynq-7000 family uses ARM AMBA4 AXI Interfaces for its architecture. AXI In-
terface implements point-to-point protocol between a AXI master interface and a
AXI slave interface. AMBA4 lists three AXI interfaces as:

• AXI4 Memory Mapped Interfaces:

32

2. State of the Art

– AXI4-Full Memory Mapped Interface

– AXI4-Lite Memory Mapped Interface

• AXI4-Stream Interface

Each AXI interface defines a protocol that differs from each other in terms of
performance and functionality. Depending on the application, a developer can select
the suitable AXI protocol. This increases the flexibility of the design.

AXI4-Memory Mapped Interfaces

AXI4 Memory Mapped Interfaces use multiple channels to provide read/write access
between the master and slave via AXI Interconnect. These channels are indepen-
dent of each other and carry address, control, and data signals as illustrated in
Figure 2.25.

Figure 2.25.: Read and Write Channels[42]

Each channel makes use of two-way VALID/READY handshake mechanism be-
fore transmitting address/control or data signals. In Figure 2.26, information is
transmitted only when both VALID and READY signals are HIGH.

Dependencies can exist between channel handshake signals which can lead to a
deadlock condition. Therefore, AMBA AXI Protocol Specification[7] details depen-
dency rules to be observed while implementing a design.

33

2. State of the Art

Figure 2.26.: Two-way VALID/READY Handshake[7]

Due to separate address and data channels for read/write, data transfer can be
concurrent and bidirectional[42]. These channels are used in two types of memory
mapped interfaces:

AXI4-Full Interface

AXI4-Full implements a burst-based, point-to-point protocol which provides various
options to achieve high data throughput. AXI Master initiates a data transaction by
putting first address of the burst transaction on the address channel. Based on burst
parameters (size and length), slave is required to calculate the following transaction
addresses. Burst size indicates the width of a data beat whereas burst length states
the number of beats in a burst.

Some of the key features are mentioned as follows[7]. Burst length of 1 to 256
beats is supported for incremental bursts and 1 to 16 beats for wrap bursts. Variable
data widths, ranging from 32-bits to 256-bits, is supported. Data can be upsized or
downsized as required.

Multiple outstanding addresses can be issued. Transactions such as out-of-order
and unaligned transfers are applicable which provides better overall throughput.
Security features are also added for the interface such as read and write access
protection. To increase performance, it has an option for addition of register slices
in pipeline stages.

AXI4-Lite Interface

AXI4-Lite protocol is similar to AXI4-Full, however, it does not support burst trans-
fers. In other words, it supports only a burst length of 1. It is mainly used to
transmit control signals since they require only few clock cycles.

PS uses AXI-Lite protocol to configure an IP (Intellectual Property) through
mapping it to the system address. For instance, if General Purpose (GP) AXI Port
0 is used to interface the IP, then address space for Port 0 will be used.

It supports a fixed data width : 32-bit or 64-bit. However, Xilinx IP supports
only 32-bit wide data bus[43].

34

2. State of the Art

AXI4-Stream Interface

AXI4-Stream protocol defines a unidirectional flow of data from AXI master to AXI
Slave without addresses (Figure 2.27. Instead of using addresses, it uses TID and
TDEST signals to specify source and destination respectively[41]. It is mailny used
for data-intensive applications where large amount of data has to be processed in
the same manner such as in image processing, video streaming, etc.

Figure 2.27.: AXI4-Stream Transfer via Single Channel[41]

AXI4-Stream protocols provides three byte types: Data byte, Position byte, and
Null byte. Data byte contains data whereas Position byte acts as a placeholder in a
data stream. Null byte neither contains data nor position information. According
to [7], TKEEP signal is asserted to indicate a Position byte whereas for Null byte
it is deasserted. TKEEP signal allows current byte to be kept/discarded from the
stream.

Zynq-7000 provides four 32/64-bit AXI High-Performance (HP) ports which is
mainly used to read/write OCM and DDR memory via AXI4-Stream protocol.

Some of the features provided by protocol[43]:

• Unlimited burst length.

• Sparse, continuous, aligned and unaligned streams.

• Transfer split, merge, interleave, upsize or downsize.

• Only ordered transfers allowed.

To layout a summary of AXI4 Interfaces, key differences in Table 2.1 are high-
lighted.

35

2. State of the Art

Interface Features IP Replacement
◦ Memory mapped address/data interface PLBv3.4/v4.6,

AXI4 ◦ Data burst support OPB, NPI,
XCL

◦ Memory based address/data interface PLBv4.6,
AXI4-Lite ◦ Single data cycle only DCR,

DRP
Local Link,

AXI4-Stream ◦ Data-only burst DSP, TRN,
FSL

Table 2.1.: AXI4 Feature Availability and IP Replacement[42]

2.4. Basis for Evaluation

In the thesis, for the evaluation of AXI Interfaces, hardware and software designs
are provided.

These designs are implemented on Digilent ZYBO board. ZYBO integrates Zynq
Z-7010 SoC device and various peripherals such as Ethernet, USB, SD (Secure
Digital) card interface, on-board memories, etc. Please refer to section 3.3 for an
overview of the board.

High level view of the design is illustrated in Figure 2.28. It is detailed as
follows[[37], [38]]:

Figure 2.28.: Overview of the design[37]

An electronic circuit is used to pre-process piezo voltage levels before passing it
for sampling. This circuit is illustrated in Figure 2.29. It uses a series of Operational
Amplifiers (op-amp) to provide useful voltage for XADC module to sample.

36

2. State of the Art

First op-amp acts as a buffer to isolate input source from the output so that
loading affect on the source are reduced and, in addition, maintains the output
voltage level. Second op-amp shifts the input voltage by adding a reference voltage
for ADCs with non-symmetric input range. Third op-amp acts as an inverting
amplifier to boost the voltage level so that it can be easily sampled. Lastly, fourth
op-amp is used to keep the voltage within the limits of ADC input range.

Figure 2.29.: View of Pre-processing Circuit used in the design[38]

Piezo Integeration Interface board makes use of Zynq architecture. It uses PL to
sample data via XADC module, then filter unwanted information using a threshold
function, and, hence, extract features in terms of voltage-time values. Given FPGA
implementation for PL is detailed in section 4.1.

Extracted features are passed to machine learning interface, which is running on
PS, to detect and localize the impact.

In summary, basis for the master thesis is ZYBO evaluation board with a given
FPGA implementation and a machine learning interface description.

37

3. Concept

3.1. Comparison of SoC Bus Standards

In section 2.2, various on-chip bus standards were introduced. These includes: ARM
AMBA, IBM CoreConnect, Altera Avalon, OpenCores Wishbone, and Accellera
Open Core Protocol (OCP). These bus standards are summarized in Table 3.1 in
addition with several other standards that are not discussed in the thesis. An
overview of comparison between standards, presented in section 2.2, is remarked
below.

All standards, except for Avalon, have an open architecture. Avalon has partially
open its architecture to public[32]. Among these, only Wishbone is truly freely,
provided by OpenCores for public use. Other standards require registration or
license agreement. OCP is openly licensed.

All the bus standards implement a synchronous bus system, that is, each commu-
nication in the bus is with reference to the bus clock.

Both AMBA and CoreConnect use hierarchical bus architecture, though differ-
ence lies in the number of layers. AMBA employs two bus layer: high-performance
and low-performance bus, whereas CoreConnect utilizes three bus layer topology:
PLB, OPB, and DRC. DRC bus uses ring topology for sharing status and control
information. Therefore, CoreConnect makes usage two different topology schemes.
Avalon and OCP incorporates similar architecture, point-to-point topology. Wish-
bone provides multiple choices: Point-to-Point, Ring type, Crossbar network, or
Shared bus. It takes a single level bus approach and so does not support for hierar-
chical buses. For support for multiple buses, two separate Wishbone interfaces can
be created: one for high speed, low latency and other for low speed components[27].

Single level bus approach severely limits the bus bandwidth because of increased
load on the bus. For this reason, hierarchical bus offers better throughput due to
division of high-bandwidth and low-bandwidth components on separate bus lines.
Major disadvantage with shared bus system is that it limits design scalability and
delay in sharing resources between SoC components[27].

AMBA and Wishbone offers flexibility in arbitration; they do not define any ar-
bitration scheme. It is up to the user to utilize arbitration method according to
the application’s needs. CoreConnect uses static priority in a programmed fashion.
Avalon connects masters and slaves in a point-to-point manner, making no use of
bus for the transaction. Therefore, they use slave-side arbitration scheme in case
multiple masters intend to access the same slave. OCP does not make use of arbi-
tration. AMBA and CoreConnect have similar data transfer schemes: handshaking,

38

3. Concept

Table 3.1.: Features of SoC Bus Standards[27]. Exceptions:1* Data lines shared, control lines point-to-point ring;
2* Palmbus uses handshaking, Mbus does not; 3* Application specific, arbiter can be designed regarding
to the application requirements; 4* Programmable priority fairness; 5* Two level arbitration, first level
TDMA, second level static priority; 6* Two level arbitration, first TDMA, second round-robin token
passing; 7* Application specific except for APB which requires no arbitration; 8* For AHB and ASB bus
width is 32, 64, 128 or 256 byte, for APB 8, 16 or 32 byte; 9* For PLB bus width is 32, 64, 128 or 256
byte, for OPB 8, 16 or 32 byte and for DCR 32 byte; 10* For PLB and OPB bus width is 32 byte, and
for DCR 10 byte; 11* User defined operating frequency; 12* Operating frequency depending on PLB
width; 13* Slave side arbitration; 14* System of buses, Palmbus and Mbus, both are point-to-point.

39

3. Concept

pipelining, split, and burst transfers. Wishbone supports handshaking and burst
transfers. It can support pipelining if the architecture utilizes data flow intercon-
nection scheme. Avalon makes no use of handshaking or split transactions since
transfers take place without the intervention of bus. It employs pipelined and burst
transfers. OCP does not support split transfers, however, it is the only one among
others that provides broadcast transfers.

Among these, Wishbone is the only standard that offers read-modify-write trans-
fer.

In conclusion, CoreConnect has similar feature set as AMBA. Compared to
AMBA, Wishbone provides simpler design and better flexibility. However, Wish-
bone allows maximum data width of 64 bits whereas AMBA can provide data width
of up to 256 bits. As mentioned in section 3.2, one of the evaluation criteria is the
amount of data transferred between FPGA and processor. Hence, it is useful to
have support for higher data widths. In terms of operating frequency, AMBA and
Wishbone provide flexibility to user whereas CoreConnect’s frequeny is limited to
Processor Local Bus (PLB) width.

3.2. Approach for Evaluation of AXI Interfaces

The goal of the master thesis is to analyze best fitting AXI Interface for the given
hardware and software design. AXI4 Interfaces have to be evaluated with different
configurations resulting in quantification of best fitting AXI4 Interface. Hence, to
satisfy such needs, an approach is outlined as follows.

1. Understanding of given FPGA implementation to derive the changes needed
in the design to incorporate best-fitting interface.

2. Analysis of three different AXI4 Interfaces:

2.1. Hardware design for three AXI4 Interfaces

2.2. Implementation of several test cases to evaluate performance of each AXI4
Interface hardware design.

3. Based on test results, conclusion derived about the efficient usage of each AXI4
protocol.

Criteria for evaluation of the interfaces includes:

• Amount of data (input length) transferred between PS and PL

• Processing time for read/write operations

• PL Frequency

• Various interface configuration such as AXI4-Full provides different data
widths and several burst configuration

40

3. Concept

The influence of PL frequency on the performance of read/write operation is to be
included in the results. Moreover, AXI4-Full protocol provides several configuration
for data widths and burst transfer. Performance of AXI4-Full Interface is to be
evaluated with these configurations.

3.3. Evaluation Platform

3.3.1. Hardware

Digilent ZYBO board

Digilent provides development platform for SoC (Figure 3.1) that features Xilinx
Zynq Z-7010 All Programmable System-on-Chip (APSoC) architecture. Zynq ar-
chitecure is discussed in section 2.3.

Figure 3.1.: ZYBO ZYNQ-7000 Development Board[13]

High-level view of the architecture can be seen in Figure 2.23. Some of the main
features offered by ZYBO are listed as follows[13]:

• 650 MHz dual-core ARM Cortex-A9 processor

• Xilinx Artix-7 FPGA Programmable Logic

• 512 MB DDR3 memory

Functionality for On-board JTAG programming is featured by the board. It also
includes dual analog/digital Pmod (Peripheral Module) interface. Four channels of

41

3. Concept

this interface are used in the MERGE project to connect ADC signals from piezo
electrodes placed on the metal sheet. Various other interfaces are also supplied such
as 1G Ethernet, USB 2.0, SPI, UART, CAN, I2C, SDIO, HDMI, etc.

ZYBO supports three different boot modes: microSD, Quad-SPI (QSPI) Flash,
and JTAG. In the thesis, Linux based OS is used which is stored in microSD. ZYBO
is configured to load Linux kernel from SD card into RAM via JP5 jumper[13].

Figure 3.2 highlights clock usage for PS and PL. ZYBO provides 50 MHz clock
to PS. This allows processor to run at maximum frequency of 650 MHz and DDR3
memory controller at maximum of 525 MHz[13]. PS incorporates four PLLs (Phase-
Locked Loop) depicted as FCLK CLK[0:3]. They provide reference clocks to PL. In
addition, 125 MHz clock from Ethernet module provides an external clock input to
PL.

Figure 3.2.: ZYBO clocking scheme[13]

ZYBO provides four pairs for analog input channels. In the given FPGA imple-
mentation, XADC module in PL reads piezo voltages through these analog channels.

3.3.2. Software

For SoC devices with FPGA, Xilinx offers Vivado Design Suite and Xilinx Software
Development Kit (SDK). These tools have simplified embedded system design by
providing a user-friendly interface, debug support, and verification of design.

In the thesis, Vivado v2015.4.2 is used to design hardware for different AXI4-
Interfaces. To test the hardware design, several test cases were implemented in C
using SDK.

Vivado

Xilinx provides Vivado IDE (Integerated Design Environment) as a graphical user
interface for the Vivado Design Suit. It eases embedded hardware designing by
providing several built-in IP blocks such as Zynq Processing System, AXI Intercon-
nect, AXI DMA, AXI4-Stream Data FIFO, etc. User simply has to drag-and-drop
IP blocks and interconnect them graphically.

42

3. Concept

Design flow for Vivado is depicted in Figure 3.3. IP Catalog lists options to add IP
to the design. Vivado offers interaction at different design stages: Register-Transfer-
Level (RTL) elaboration, synthesis, and implementation[46]. In contrast to Xilinx
ISE (Integerated Synthesis Environment), Vivado incorporates built-in simulation
techniques.

Figure 3.3.: High-Level Design Flow in Vivado[46]

In Programming and Debug stage, Vivado generates a bitstream file that encodes
information of implemented hardware design as binary data. PS loads this file to
program the PL.

SDK

Xilinx SDK is based on Eclipse open standard. It provides a design environment for
building embedded applications to run on PS. Some of the feautres offered by SDK
are mentioned as follows[40]:

It provides a GNU-based compiler toolchain with various build configuration for
the application. Most importantly, it features a rich set of C/C++ development
environment.

SDK offers automatic Makefile generation. Multiple debugging options are avail-
able for embedded targets. It also have an option for FPGA and Flash programming.
For Xilinx built-in IP cores, it supplies driver support with documentation and ex-
ample codes.

Design flow in Xilinx SDK is represented in Figure 3.4. Software application source
and header files are compiled using gcc/g++ compiler. It generates an object code
file which represents the application in binary form.

43

3. Concept

Required system libraries for the application is provided by software platform.
These libraries and object code is linked together via linker script. Finally, an
Executable and Linkable Format (ELF) file is generated. This ELF file is transferred
to the board so that PS can execute the software application.

Figure 3.4.: Software Workflow in SDK[40]

44

4. Implementation

4.1. Overview of FPGA Implementation

Top-level view of the provided hardware design is illustrated in Figure 4.1. In this
design, MERGE PL IP is the given implemented design for PL. It performs analog
to digital conversion (ADC) of signals obtained from piezo composite. With this
digital data, appropriate features are extracted for the machine learning interface.

To achieve real-time detection of impact on a piezo metal composite, it requires a
frequent delivery of feature data from PL. Unlike memory-mapped interfaces, AXI4-
Stream protocol does not require address information for the transaction. This
reduces the amount of address/control signals needed for the transfer and enables
unlimited burst length. Therefore, the current design makes use of AXI4-Stream
interface to transmit features from MERGE PL IP to PS via AXI DMA controller.

Figure 4.1.: Block Diagram of Hardware Design

ZYNQ7 PS IP provides configuration settings for clock, I/O pins, DDR memory,
interrupts between PS and PL, etc. This IP provides High-Performance port (HP0)
which is required to allow high throughput datapath between MERGE PL master
and DDR slave. This port features FIFO buffers to increase performance of data
flow. To communicate directly with AXI DMA IP, PS use a low-performance General
Purpose (GP) port 0. It is suitable for transmitting control signals as highlighted
in Figure 4.1.

45

4. Implementation

AXI DMA IP is used to provide support for MERGE PL IP to communicate with
DDR memory. For communication, it offers two channels: MM2S (Memory-Mapped
to Stream), for reading data from memory, and S2MM (Stream to Memory-Mapped),
for writing data to the memory. For the two channels, it supplies various configura-
tions such as flexible address/data width and burst size alternatives.

To make necessary changes in the provided design so that best fitting AXI4-
Interface can be incorporated, it requires an understanding of the MERGE PL IP.
Overview of its hardware implementation is given as follows.

4.1.1. MERGE PL FPGA IP

This IP is responsible for signal processing of four analog input channels and ex-
traction of appropriate features, from the sampled values, for the machine learning
interface. Hierarchical layout of the design is represented in Figure 4.3.

Input signals necessary for the design consists of: clock which is provided by PS
and reset that is obtained from Processor System Reset IP. This IP is responsible
for generating synchronous reset for interconnects and peripherals.

Other input signals used to provide functionality for MERGE PL are analog differ-
ential and AXI4-Stream interface signals. These analog voltage levels are extracted
from piezo sensors which are placed on a metal sheet. These voltage levels acts as an
input for ADC. tReady signal is needed by master to know if slave is ready for the
current transaction. AXI4-Stream uses this signal to facilitate two-way handshake
mechanism as was shown in Figure 2.26.

If tReady signal is HIGH, then master can initiate the transaction by driving an
output signal,tValid, to HIGH. Other output signals used in the IP are AXI4-Stream
based signals: tData, tlast and tStrb.

tData carries 32-bit feature data shown in Figure 4.2. tlast signal indicates the
last data transfer in the stream. tStrb signal provides option for selecting valid data
lines in the stream. For example, if for a 32-bit channel, data to be transferred is
less than 32-bits, then tStrb signifies appropriate byte lanes (4 byte lanes for 32-bits)
to use that carry necessary information. In the provided design, all byte lanes are
high for 32-bit feature data.

As shown in Figure 4.2, feature data includes information about current analog
channel and feature value associated to it. Time Channel stores the feature value
obtained from corresponding analog channel. Time ID is used as an identifier to
correlate the stored value with correct analog channel.

Figure 4.2.: Feature Data Frame

46

4. Implementation

From Figure 4.3, we see that the design makes use of three main modules:
MERGE PL v0 1, MERGE PL v0 1 M00 AXIS, and analog2digital.

analog2digital module converts analog voltage level to digital value and uses sub-
modules to extract suitable amount of features. As shown in Figure 4.3, it contains
three sub-modules: moving average, Sliding window sum integerator, and timed-
iff extractor. moving average calculates the average value of sampled data stored
in FIFO (First-In-First-Out) and passes it to Sliding window sum integerator. Slid-
ing window sum integerator add these values and store them in a FIFO to account
for previous voltage levels. timediff extractor extracts sufficient amount of features
from the values provided by Sliding window sum integerator.

Figure 4.3.: Block Diagram of MERGE PL Implementation

This extracted data is passed to MERGE PL v0 1 M00 AXIS module which puts
the data on the stream. MERGE PL v0 1 is the top module that bundles the
functionality and provides an interface for input/output signals. Sub-modules of
MERGE PL v0 1 are discussed in detail as follows.

MERGE PL v0 1 M00 AXIS

This module passes analog differential signals to analog2digital. In addition, it is re-
sponsible for reading feature extracted data from timediff extractor in analog2digital
module and passing it to DMA via AXI4-Stream interface. A sketch of state machine
used for this purpose is depicted in Figure 4.4.

Flow of the state machine is discussed as follows:

1. State machine starts in the idle state (ST IDLE) and remains in this state
until a valid feature data is received from timediff extractor. A HIGH state of
time valid depicted in Figure 4.4 represents a valid data. save data is used as

47

4. Implementation

Figure 4.4.: State Machine Diagram. Statement above the arrow denotes a condition. State-

ments below the arrow denotes statement executed if corresponding condition sat-

isfies.

a flag to store this data into a register. In such condition, control of the state
machine is transferred to ST WAIT for READY state.

2. Control remains in ST WAIT for READY state until slave indicates that it is
ready to accept data. Slave drives M AXIS TREADY signal HIGH for data
acceptance and thus control is passed to ST Send Data state.

3. In ST Send Data state, master drives a valid signal (axis tvalid) HIGH,
thereby, puts data on the stream. As the data is transferred to stream, control
is passed to ST Check Rest state which checks for two conditions: amount of
data left to be transferred and ready signal from slave. If there is data left
to be transferred and slave is ready to accept it, then control is given back
to ST Send Data state. inc rptr is used as a flag to increment rptr which
keeps a count of the number of data on the stream. In total, four analog
channels are used in the design. Therefore, four 32-bit data values have to
be transferred to slave. OutputWords shown in Figure 4.4 stores the number
of analog channels. When all data values are transferred, inc rptr increments
rptr to a value greater than OutputWords. This results in transfer of control
to ST Wait for New state.

4. In this state, control checks for time valid signal to know if data is invalid.
As the time valid switches to LOW, rptr is set to zero by rst rptr flag. Thus,
the control is transferred back to ST IDLE state where it waits for next set of
feature data.

When TREADY signal is HIGH, data is sent across the AXI4-Stream interface
until data from all analog channels is transmitted. OutputWords stores the number

48

4. Implementation

of analog input channels used. time valid signal is driven by timediff extractor to
indicate the availability of feature data.

Analog2digital

This is the core module that converts analog differential signals from piezo sensors
to a corresponding digital value. As shown in Figure 4.5, it receives these analog
signals from four analog channels (06, 07, 14, and 15) provided in ZYBO.

Whenever there is an impact on a metal sheet, a mechanical wave travels across
the material. Piezo sensors near to the source of wave register a higher voltage level.
Whereas, at the same time, sensors far from the point of impact will have a lower or
different voltage level. Therefore, timediff extractor makes use of such time/voltage
correspondence to locate the point of impact[38].

Sampled voltage levels are passed through moving average and Slid-
ing window sum integerator modules. Former module acts as threshold for forward-
ing voltage levels that are relevant for the detection of impact[38]. This helps in
filtering of unnecessary information.

Sliding window sum integerator records the previous average voltage levels to no-
tice when voltage levels starts to rise[38]. FIFO (First-In-First-Out) generator shown
in the Figure 4.5 is used to hold required amount of data for calculating average and
integration of values for timediff extractor.

These steps are highlighted in Figure 4.5.

Figure 4.5.: Block Diagram of analog2digital Module

Four analog channels (06, 07, 14, 15) requires its own moving average and slid-
ing sum integrator. XADC provides two ADCs (ADC A and ADC B) to enable
simultaneous sampling mode[49]. ADC channel 6 and 14 utilize ADC A and ADC
B respectively. Similarly, ADC A for channel 7 and ADC B for channel 15. These
ADC channels are assigned specific addresses through which XADC module selects
them. In the following Table 4.1, value of ADC addresses are listed.

49

4. Implementation

ADC Channel Memory Address
06 0x16 (22d)
07 0x17 (23d)
14 0x1E (30d)
15 0x1F (31d)

Table 4.1.: Addresses of ADC Channel Registers[49]

Usage of XADC module is highlighted using a state machine in Figure 4.6. The
flow of the state diagram is discussed below:

Figure 4.6.: State Machine Diagram. Statement above the arrow denotes a condition. State-

ments below the arrow denotes statement executed if corresponding condition sat-

isfies.

1. As the system resets, state machine begins from ST INIT state. Control passes
to ST WAIT state. In ST WAIT state, control is passed to ST IDLE state
when wait for init is LOW. wait for init and wait cnt set signals are used to
provide initialization time for XADC.

50

4. Implementation

2. ST IDLE is the main state responsible for polling XADC module. xadc addr in
stores an address of ADC channel and xadc den in signals that current ADC
channel can be read if the signal is HIGH. ADDR ADC (6/7/14/15) are con-
stant value which stores the addresses of ADC channel registers previously
mentioned in Table 4.1. USE CH6 is a boolean constant that specifies if ADC
channel 06 is to be used for conversion or skipped.

2.1. If USE CH6 is TRUE and selected channel address is 22d (ADC 06),
then xadc addr in stores the address of ADC channel 6. It is enabled to
be read for voltage level by xadc den in. Additionally, control is trans-
ferred to ST WAITFOR ADC6 state. In this state, xadc addr in value
is held to ADC 06 address. Whenever XADC samples a analog value, it
drives xadc drdy out output HIGH. When sampled value for ADC 06 is
available, then it is passed to moving average 00 module (Figure 4.5) via
enable signal (avg ch en(0)). Simultaneously, the control is passed to
ST REQUEST ADC14 state.

In ST REQUEST ADC14 state machine requests for sampled value of
ADC 14 by giving appropriate address and setting read address enable
signal. Then the control is passed to ST WAITFOR ADC14 where con-
troller waits for the sampled value. As soon as xadc drdy out is HIGH,
digital value of ADC 14 is passed to moving average 02 module. And thus
the control is transferred back to ST IDLE where state machine waits for
next ADC channel to process.

2.2. If USE CH6 is FALSE and selected ADC channel is 22d, then it directly
requests for sample value of ADC 14 by assigning appropriate address to
xadc addr in and enabling the read address signal. Same as above, after
the sampled value is available, control is passed to ST IDLE state.

2.3. If sampled value of channel 23d (ADC 07) is required, then control is
passed to ST WAITFOR ADC7 state. xadc addr in holds the address of
channel 23d (ADDR ADC 07). As soon as sampled value is obtained,
moving average 01 receives the value.

Access is transferred to next state (ST REQUEST ADC15) where sam-
pled value of ADC 15 is requested by providing appropriate address. Af-
terwards, ST WAITFOR ADC15 state holds the address of ADC 15 and
receives the sampled value. Like other channels, digital value is passed
to moving average 03 and the control is given back to ST IDLE.

2.4. If no ADC channel has to be processed, then ST IDLE provides control
to ST INIT.

51

4. Implementation

4.2. Hardware and Software Design for Evaluation

Hardware is implemented in Vivado tool which enables synthesis and generation of
bitstream for hardware designs. As mentioned in section 3.3, it provides necessary
framework to facilitate the design by including pre-built IP components. Software is
implemented in Xilinx SDK that provides an Integrated Development Environment
(IDE) with built-in features for compilation and configuration of the implemented
code.

To evaluate the performance of different AXI4-Interfaces, implementation of hard-
ware and software done in the thesis are discussed in the following sections.

4.2.1. Hardware Design

AXI4-Lite Interface

Figure 4.7 depicts implemented design for AXI4-Lite Interface. Slave lite 300ip (Lite
IP) is custom AXI4-Lite IP that will be evaluated for its performance. Such custom
is created using ’Create and Package IP’ feature provided by Vivado. User can select
the interface type and various other configuration such as: mode of interface (mas-
ter/slave), data width, memory size, and number of registers. ’Create and Package
IP’ produces an AXI protocol design in HDL (Hardware Description Language) such
that custom IP can be used directly for basic transactions.

Figure 4.7.: Hardware Design for AXI4-Lite Interface

Lite IP features 300 slave registers, each of size 32-bits. These registers acts as
memory interface for Lite IP to allow PS to perform read/write operation on them.
These slave registers are mapped into address space provided for GP0. Vivado pro-
vides user an option for filling addresses for IPs in PL via address editor. Figure 4.8
highlights the address (0x43C0 0000) of Lite IP used in the design. Address can be
manipulated to a value that supprots GP0 address space.

52

4. Implementation

Figure 2.24 in chapter 3 provides a memory layout for ZYNQ7 PS. Therefore, PS
uses respective mapped address for slave register to do read/write operation on it.

Figure 4.8.: View of Address Editor

Clock and reset signals are common for all IPs in PL. PL clock is provided by
PS shown in ZYNQ7 PS IP as FCLK CLK0. Reset signals for peripherals and
interconnect are produced by Processor System Rest IP. This IP is responsible
for generating synchronous resets. It is seen from Figure 4.7 that resets are in
sync with slowest sync clk (connected to FCLK CLK0). PS resets this IP using
FCLK RESET0 N.

Data flow between PS and Lite IP is enabled by AXI Interconnect. AXI In-
terconnect features several options for communication interface such as: multiple
master/slave interfaces, data FIFO, and register slices[48]. It allows mixture of AXI
master and slave devices to communicate with each other with different interfaces
or data widths.

Each AXI Inteconnect makes use of AXI Crossbar. AXI Crossbar is an IP core
used to connect similar memory-mapped masters and slaves. GP0 supports AXI3
protocol whereas Slave lite 300ip interface uses AXI4 protocol. Therefore, in the
current design, interconnect makes use of AXI Protocol Converter shown in Fig-
ure 4.9. This IP core provides feature for interfacing different AXI based memory-
mapped protocol.

Figure 4.9.: AXI Protocol Converter IP core

In Figure 4.9, S AXI is connected to GP0 master and M AXI is interfaced to
the slave interface (S00 AXI of Lite IP. It requires clock and reset signals for both
master and slave to perform appropriate conversion without loss of transfer data.

Data, which is transferred between PS and Lite IP, consists of 32-bit integer
value. For write operation, this value is written to a slave register. Similarly, for
read operation, an integer value present in a slave register is passed to software
design running on PS.

53

4. Implementation

AXI4-Full Interface

For evaluation of AXI4-Full, the hardware design used in the thesis is depicted in
Figure 4.10. In the design, Slave full1024bytes ip (Full IP) is concerned IP which
provides testing for AXI4-Full interface.

Figure 4.10.: Hardware Design for AXI4-Full Interface

Full IP provides 1024 bytes of memory interface for read/write operations by PS.
Memory size is set while creating AXI Full custom IP in ’Create and Package IP’
tool. In the tool, Vivado provides various memory sizes listed as: 64, 128, 256, and
1024. Similar to Lite IP, Full IP uses 32-bit data width. It provides an address
width of 10-bit for accessing 1024 bytes of memory.

Vivado provides a feature to customize parameters of AXI4 custom IP after it
has been created through Create and Package’ tool. For example, customization
parameters for Full IP is shown in Figure 4.11 where it presents various parameters
for AXI4-Full interface.

Figure 4.11.: Customization of Parameters in IP Packager

For instance, to check the performance of Full IP based on different data width
configuration, customization parameter C S00 AXI DATA WIDTH can be changed
to respective value. However, if slave uses data width wider than supported by the
port in PS, then Vivado uses data width converter IP in the design (Figure 4.12).

54

4. Implementation

Interconnect features AXI data width converter IP core for connecting AXI master
and slave having a wider or narrower data width[48].

Figure 4.12.: Interconnect Connection with AXI Data Width Converter IP

Full IP is connected to PS via interconnect which, as mentioned before, provides
necessary protocol conversion for AXI3 and AXI4 as depicted in Figure 4.12. For
Full IP, memory address for Full IP is set to 0x7AA00000 in address editor. PS uses
this address to communicate with 1024 bytes of memory.

Similar to Lite IP, Full IP uses a 32-bit integer data which is to be transferred
across slave memory. Apart from Full IP, other components added to design serves
the same purpose. ZYNQ7 PS uses GP0 port to communicate with Full IP via
interconnect. It provides PL clock (FCLK CLK0) to Processor System Reset IP.
This IP uses this clock to supply synchronous reset signals for the design.

AXI4-Stream Interface

To test the performance of AXI4-Stream Interface, a block design for the hardware
is shown in Figure 4.13.

Figure 4.13.: Block Diagram of AXI4-Stream Hardware Design

For a complete view of the hardware, Figure 4.21 is illustrated near the end of this
section. The block diagram represents main components used for the flow of data

55

4. Implementation

for AXI Stream interface. It also highlights placement of appropriate components
in PS and PL.

To give a general outlook of the data flow, two AXI DMAs are included for
read and write operation respectively. AXI4-Stream Data FIFO IP provides buffer
feature for the stream data. For read or write operation, DMA provides a set of
signals for read (MM2S) and write channel(S2MM). These set of signals provide
data flow between memory-mapped and stream interface.

For instance, from Figure 4.13 we see that, for MM2S channel, AXI MM2S signal
carries data over memory-mapped interface and AXIS MM2S signal transfers data
over stream interface.

As seen in Figure 4.13, ARM processor uses AXI4-Lite interface to send/receive
control information from DDR memory controller and two DMAs. Overview of some
of the main components used in the design are discussed below.

Figure 4.14.: Block Diagram of AXI4-Stream FIFO core[45]

AXI4-Stream Data FIFO IP, provided by Vivado, features communication be-
tween memory-mapped and stream interfaces. This IP provides read or write of
data packets across a device without the complexity of AXI4-Stream signals[45].
Major components used by this IP are shown in Figure 4.14.

Block diagram represents AXI4/AXI4-Lite interface components to provide com-
munication between them and AXI4-Stream interface. FIFO buffers are installed
separately for read and transmit data. Signals:TxC, TxD, RxD, shown in Figure 4.14
provides support for data flow between memory-mapped to an AXI4-Stream inter-
face connected to other IP, such as the AXI Ethernet core[45].

From the block diagram of provided hardware design (Figure 4.1), AXI DMA is
used to transfer stream data from MERGE PL to PS. So, to test the performance
of stream data between PL-PS via AXI DMA, in place of MERGE PL, a buffer is
needed. Such that it can store data when PS requests to write data to the stream

56

4. Implementation

via AXI DMA. Similarly, it can provide correct data to PS when requested to read
data off the stream.

Therefore, to test the performance of AXI4-Stream interface over AXI DMA Con-
troller, AXI4-Stream Data FIFO IP is used as a storage device in Figure 4.13.

Figure 4.15.: Customization Options for AXI4-Stream Data FIFO

AXI Stream Data FIFO IP incorporated in the hardware design (Figure 4.21) uses
a FIFO depth of 4096. This IP provides range of FIFO depth from 16 to 32768. It
also offers customization of several other parameters as depicted in Figure 4.15. It
shows the IP settings used for the hardware design. Currently, AXI4-Stream signal
properties are set to auto mode but can be customized according to the requirement.

As mentioned before in section 4.1, AXI DMA provides set of configurable options
for both read and write channels. Configuration used in the hardware design are
highlighted in Figure 4.16. Both channels supports maximum burst size of 256 and
stream data width of 32-bits. DMA IP provides configuration for memory mapped
data width from 32 to 1024 bits. In Figure 4.13, 32-bits is used.

Figure 4.16.: Settings for Read and Write Channel

As seen from Figure 4.21, these DMA controllers are connected to High-
Performance Port 0 (HP0) via AXI Interconnect. HP0 provides high-bandwidth

57

4. Implementation

connection of DMA to DDR memory controller. These ports are also called AFI
(AXI FIFO Interface) since each interface includes two FIFO buffers for read and
write data stream[52].

Each DMA controller is assigned an address in system memory. In address ed-
itor, read dma and write dma are assigned to memory address of 0x40410000 and
0x40400000 respectively.

Advantage of using DMA is that it keeps the processor free by overlooking read-
/write access to DDR memory. So, processor can do other task while the data flow
is being managed by DMA. Hence, DMA needs to inform PS as soon as the data
transfer is complete. Figure 4.17 highlights connection of mm2s introut for read
channel and s2mm introut for write channel to ZYNQ7 PS.

Figure 4.17.: Connection of DMA Interrupts

Vivado provides Concat IP core to combine multiple signals on a different bus
into a single bus. In Figure 4.17, it combines two interrupt signals into a single bus
of size 2-bits (dout[2].

ZYNQ7 PS provides selection of 16-bit shared PL-PS interrupt port. Since, in
this case, PS needs to receive interrupt from two PL components, IRQ F2P of size
2 bits is used in the design (Figure 4.17).

Frequency Test Design

Performance evaluation of AXI4 memory-mapped interface with respect to PL fre-
quency is tested in the thesis. Figure 4.18 illustrates the hardware design used
for evaluating the impact of frequency on AXI4-Lite slave IP. In the design, all
components, except clocking wizard, have been discussed in the preceding sections.
Clocking wizard version 5.2 IP is used to provide different PL frequencies.

Xilinx provides Clocking Wizard IP to help users fulfill clock requirements in the
design. Figure 4.19 illustrates the clocking network architecture used by the wizard.
It consists of: input and output clocks, buffers, clocking primitive, and optional
feedback for phase alignment.

58

4. Implementation

Figure 4.18.: Hardware Design for Frequency Test

Clocking wizard allows up to two clock inputs and seven clock outputs. It features
optional buffers for both input and output clock path. Wizard uses clocking prim-
itive such as Mixed-Mode Clock Manager (MMCM) or Phase-Locked Loop (PLL)
to generate a custom HDL code for clock circuits[44]. These clocking circuits can
be used to fulfill user’s requirement in terms of output clock frequency, phase shift,
and duty cycle.

ZYBO incorporates Artix-7 series FPGA which features both MMCM and
PLL[50]. PLL provides analog clock management with precise frequency genera-
tion. Multiple frequencies of different values can be generated at the same time.
However, PLL is unable to provide dynamic and fine phase shifting as featured by
DCM (Digital Clock Manager). So, this led to mixed mode of phase shifting (dig-
ital) and PLL (analog) to be named as MMCM. MMCM features multiple clock
outputs with required phase and frequency in relation to input clock frequency. It
also provide options for configurable buffers.

Figure 4.19.: Clocking Wizard Architecture[44]

From Figure 4.18 we see that inputs to the clocking wizard are: clk in1 and
reset signal. textitclk in1 is the PL frequency, FCLK CLK0, provided by PS. Clocking
wizard use this frequency as a reference for desired frequency.

Outputs of the clocking wizard are: textitclk out1 and locked signal. textit-
clk out1 is the desired frequency requested for PL. Phase and duty cycle can also
be changed as per requirement to have preferred output. In Figure 4.18 we see that

59

4. Implementation

(a)

(b)

Figure 4.20.: Clocking Wizard (v5.2) Customization

textitclk out1 is input for Processor System Reset (PSR), Lite IP, clock for GP0,
and AXI Interconnect.

Since PSR provides synchronous resets to interconnect and peripherals in PL,
therefore, it is needed to be synchronous with clock which is input to PL. GP0
allows PS to perform read/write operation on Lite IP, therefore, port should run at
the same clock as Lite IP. Similarly, interconnect is required to provide link between
GP0 and Lite IP so same clock frequency is applied to it.

It is possible that textitclk out1 take some time to stabilize to desired output,
therefore, locked signal is used for this purpose. When the clock output becomes
valid, then locked signal is asserted. In the design (Figure 4.18), textitlocked is
connected to dcm locked input of PSR. It is connected to dcm locked because it will
keep the logic in PL in reset mode until the textitclk out1 is steady.

60

4. Implementation

Vivado provides customization of clocking wizard as shown in Figure 4.20. As
seen in Figure 4.20a, primitive for Figure 4.19 can be selected as MMCM or PLL.
Various clock features such as synthesis of frequency, phase alignment for desired
clock, dynamic reconfiguration, etc., are highlighted.

Output clocks can be dynamically reconfigured from PS via two interface options:
AXI4-Lite and DRP. It also offers settings to minimize jitter in the output clock.
From Figure 4.20b, we see that maximum seven clock outputs can be used. Each
output clock can be requested for desired frequency, phase and duty cycle. For
instance, in Figure 4.20, 100 MHz clock is provided as input to wizard and requested
clock output is half of the input clock.

4.2.2. Software Design

For the evaluation of discussed hardware designs, test cases were implemented in C.
Each AXI4 interface is tested for read and write operation initiated by PS. Testing is
done in terms of time taken to complete the operation for a given input data length.
Elapsed time is normalized with respect to corresponding data length. Values of
(data length, normalized time) pair are written into a text file for visualization.

For measurement of elapsed time, the GNU (GNU’s Not Unix) library declares
two data types in time.h header file listed as:struct timepsec and struct timeval [14].
Time measurement for timeval are not as precise as timespec since it measures
time in resolution of 1µs. Time resolution provided by timepsec is in nanoseconds.
Therefore, in the thesis, struct timepsec data type is used for the measurement.

Members of the timespec structure are shown in Table 4.2. It offers two struct
members: time t and tv nsec. time t stores the elapsed time in seconds whereas
tv nsec stores the time in nanoseconds.

Data Type Identifier Comment
time t tv sec seconds
long tv nsec nanoseconds

Table 4.2.: Data Structure of timespec

Linux provides several timing functions as illustrated in Table 4.3. We see that
gettimeofday and time returns wall-clock time. Wall-clock time returns the current
time. It does not return the exact CPU time taken for the process. In the thesis,
elapsed time is to be measured for read/write process, therefore, wall-clock time is
not suitable for this purpose.

clock function provides process time, however, its resolution is precise to maximum
1µs. Similarly, getrusage also uses time resolution of 1µs. For better accuracy,
clock gettime provides high resolution of 1ns. It provides options for measuring
thread or process time.

61

4. Implementation

Time Function Resolution Return Value
Wall-clock time

gettimeofday 1µs Timezone

time 1s Wall-clock time
clock 1µs Process time

getrusage 1µs Separate process and system time
Wall-clock time

clock gettime 1ns Process CPU time
Thread-specific CPU time

Table 4.3.: Timing Functions supported by Linux

Apart from the measurement of execution time in relation to data length, effect
of PL frequency on execution time is also tested. In the following sections, software
design for each AXI4 interface are discussed.

AXI4-Memory Mapped Interfaces

Psuedocode of algorithm for testing performance of AXI4-Full and AXI4-Lite is
depicted in algorithm 1.

Inputs to the function are: slaveAddress, slaveLength, and clkAvgTime. slaveAd-
dress represents AXI slave IP address which is assigned in Vivado address editor.
slaveLength corresponds to the number of slave registers in AXI4-Lite slave IP or
the size of memory in AXI4-Full slave IP. clkAvgTime specifies average time taken
solely by clock gettime. Output of the function is a text file that contains values of
normalized time in relation to input data length.

MAX DATA LENGTH corresponds to maximum number of data allowed to per-
form operations on AXI slave IP. Operations performed on slave IP are highlighted
inside a while loop (line 6 to 12). This loop iterates through each slave register to
read or write appropriate value. Index of the slaveAddress are used in modulo of
the slaveLength. This is done to keep slaveAddress index within the boundary of
registers provided for slave IP. This loop is measured for its execution time to com-
plete the specified number of operations. varStartTime and varStopTime signifies
the time of the start and end of the operations respectively.

arrMeanTime array stores the normalized values of execution time for each var-
Length. As seen in line 17, varLength steps in multiples of 10 for each while loop
(line 4 to 18). clkAvgTime is subtracted from the calculated execution time so that
time taken solely by the read/write operation is considered.

For measurement of single AXI slave register/memory, varLength is discarded
from the equation (line 14). After all operations for maximum data length are
performed, results of arrMeanTime are written to a text file, outputData. Later,
this file is used to visualize data through graphs.

Performance of AXI4 memory mapped interfaces is also evaluated in relation to
PL frequency. Linux based system features Common Clock Framework (CCF) to

62

4. Implementation

Algorithm 1: Read/Write Performance Test for AXI4 Memory-Mapped

Interface

1 function axiMemoryMappedTest

Input : slaveAddress, slaveLength, and clkAvgT ime

Output: outputData.txt

2 arrLength← 0

3 while varLength <= MAX DATA LENGTH do

4 varStartT ime← Start Timer

5 while index < varLength do

6 if Read Operation then

7 varRead← slaveAddress(index%slaveLength)

8 else if Write Operation then

9 slaveAddress(index%slaveLength)← varWrite

10 index← index+ 1

11 end

12 varStopT ime← Stop Timer

13 arrMeanT ime(arrLength)←
((varStopT ime− varStartT ime)− clkAvgT ime)/varLength

14 index← 0

15 arrLength← arrLength+ 1

16 varLength← varLength ∗ 10

17 end

18 outputData.txt← stores Normalized Time vs. Data Length values

control clocks of the peripherals of SoC design[39]. algorithm 2 illustrates commands
used in the system to achieve variable PL frequency in PS. It uses ’devcfg’ device
driver API to manipulate PL clock frequency (FCLK0).

From algorithm 2, varFreq denotes the required PL frequency. system() is a library
function for Linux that provides execution of a specified shell command. Line 2 will
create a ’fclk
fclk0’ folder with more handles on controlling fclk0[39]. Line 3 enables the use of
FCLK0 device. As seen in line 4, to change PL frequency, set rate is provided the
value of varFreq.

Using these system commands, execution time of write operations are measured
for respective PL frequency. Range of the frequency used in the test design varies
from 0 to 100 MHz.

63

4. Implementation

Algorithm 2: Frequency Test for AXI4 Memory-Mapped Interfaces

1 function FrequencyTest

Input: varFreq

2 system(”echo′fclk0′ >

/sys/devices/soc0/amba/f8007000.devcfg/fclk export”)

3 system(”echo′1′ >

/sys/devices/soc0/amba/f8007000.devcfg/fclk/fclk0/enable”)

4 command← ”echo′varFreq′ >

/sys/devices/soc0/amba/f8007000.devcfg/fclk/fclk0/set rate”)

5 system(command)

AXI4-Stream Interface

Testing of AXI4-Stream Interface is done using algorithm highlighted in algorithm 3.
Input ot the functions are: dmareadLite, dmaWriteLite, and clkAvgTime. dmaread-
Lite and dmaWriteLite specifies AXI4-Lite address for read and write DMA respec-
tively (Figure 4.21). These addresses provides PS to send/receive control informa-
tion from these DMAs. It significance of the output is same as discussed in above
section.

Line 3 provides access to physical memory of the system so that operations can
be performed on it. While loop (line 4 to 17) implements the time measurement
of operation for AXI4-Stream. In order to give an overview of the algorithm, write
operation is only illustrated.

Before timing the operation, AXI DMA requires configuration setup such as re-
set, halt, and details of source and destination address. It features registers to
provide such configurations. Registers are displayed in Table 4.4 with their relative
addresses.

MM2S Channel S2MM Channel
CONTROL REGISTER (0x00) CONTROL REGISTER (0x30)

STATUS REGISTER (0x04) STATUS REGISTER (0x34)
START ADDRESS DESTINATION ADDRESS
REGISTER (0x18) REGISTER (0x48)

LENGTH REGISTER (0x28) LENGTH REGISTER (0x58)

Table 4.4.: Registers for MM2S and S2MM Channel

After configuration, read and write channels are started such that transfer oper-
ation can be performed. S2MM (write) channel depicts flow of data from AXI4-
Stream slave IP to DDR memory. MM2S (read) channel allows slave IP to read
data from source address in DDR memory.

Operation starts as soon as PS informs about the data transfer length to DMA
(line 8 and 10). PS uses LENGTH REGISTER to write the transfer length. After

64

4. Implementation

the completion of operation, DMA generates an interrupt to inform PS of the update.
Thereby, synchronization of DMA is needed to perform interrupt handling so that
DMA is operational for next set of transfer. PS reads the STATUS REGISTER to
read the value of interrupt. In line 9 and 12, varStartTime refers to the beginning of
the write operation. varStopTime registers the time when synchronization of write
DMA is completed.

Algorithm 3: Write Performance Test for AXI4 Stream Interface

1 function axiStreamTest

Input : dmaReadLite, dmaWriteLite, clkAvgT ime

Output: outputData.txt

2 arrLength← 0

3 Open /dev/mem which represents whole physical memory

4 while varLength <= MAX DATA LENGTH do

5 Reset and Halt configuration for both read and write DMA

6 Store source and destination address of DDR memory

7 Start S2MM and MM2S channels

8 Enable Read Transaction (MM2S)

9 varStartT ime← Start Timer

10 Enable Write Transaction (S2MM)

11 S2MM channel synchronization

12 varStopT ime← Stop Timer

13 MM2S channel synchronization

14 arrMeanT ime(arrLength)←
((varStopT ime− varStartT ime)− clkAvgT ime)/varLength

15 arrLength← arrLength+ 1

16 varLength← varLength ∗ 2

17 end

18 outputData.txt← storesNormalizedT imevs.DataLengthvalues

Data length is tested for variation in multiples of 2 and 10. In the current design
(algorithm 3), data length steps in multiples of 2. When execution time for every
data length is measured, then the result stored in arrMeanTime array is written to
outputData.txt.

For read operation, time measurement is done in two steps. First, elapsed time
(t1) is calculated for both read and write operation. In the second step, time taken
to perform write operation (t2) is subtracted from the elapsed time (t1− t2).

For different data lengths, values of elapsed times are stored in a file to easily
visualize and compare the data for evaluation.

65

4. Implementation

Figure 4.21.: Hardware Design for AXI4-Stream Interface

66

5. Results and Discussion

As mentioned in the previous chapter, each interface is evaluated for read and write
operation. Results of the tests are visualized and later shown in graphs. Some
configurations were set to build an executable namely ELF (Executable and Linkable
Format) file. This file is transferred over SSH from PC to Linux OS running on
PS. Configuration used for generating ELF file and other necessary settings for the
results are mentioned in Table 5.1.

Configuration Value
Build type Release version

Time resolution 1 ns
Transfer data width 32-bit

PL frequency 66 MHz
Optimization level 2 (-O2)

Table 5.1.: Configuration for Results

For the test results, a release build type is used for the generation of ELF file.
Results shown to have no significant effect between release and build type. So,
release version is preferred to remove any additional debug information from the
compiled code.

Xilinx SDK uese GCC (GNU Compiler Collection) for compilation of C code.
It provides different optimization levels, from 0 to 3[17], which can have impact
on the design perforamnce. In the thesis, optimization level 2 is used. This level,
similar to level 1, does not increase the size of executable code. In addition, it
supports instruction scheduling. Optimization level 3 is mostly not recommended
over 2 since level 3 affects speed-space trade-offs, thereby, probability of increasing
the executable code size[17].

In the following subsections, for each AXI4 Interface, results are displayed with
and without optimization. For AXI4-Lite IP, 300 slave registers are used for the
evaluation. Similarly, for testing, AXI4-Full IP includes 1024 bytes of memory.
AXI4-Stream IP deals with the physical memory.

In Figure 5.2 and Figure 5.6, performance of interfaces are calculated in terms of
average execution time (Y-axis) with respect to input data length (X-axis).

For memory mapped interfaces, input data length varies from 1 to 10ˆ8 32-bit
samples where reading are taken in multiples of 10. For stream interface, input data
length varies from 1 to 10ˆ6 data samples. In addition, results for frequency test
are displayed in autoreffreqlite. These results are relevant to AXI4-Lite salve IP.

67

5. Results and Discussion

In each displayed graph, first sample value is shown to take significant time com-
pared to other values. This might be due to the initial phase required to setup PS
and PL for appropriate read/write transaction.

Performance of the three interfaces for read and write operation are detailed as
follows.

5.1. Read Operation

Figure 5.2 represents results for read operation on AXI4 interfaces. As mentioned
before, X-axis refers to amount of data used in the read operation. Y-axis denotes
average time taken to perform read operation for a given data set.

Figure 5.2a represents read operation on AXI4-Lite slave IP. Time is measured
for reading from multiple slave registers. From Figure 5.2a it is evident that after
10,000 data samples, average execution time for not optimized code stabilizes to
210ns. For PL frequency of 66 MHz, it requires 13∼14cc (clock cycles) to read at
least 10,000 32-bit data samples over AXI4 Lite interface.

Optimized code in Figure 5.2a seems to have no effect on the time with refer-
ence to data length. This is visualized in Figure 5.1 which compares the effect of
optimization for a single read operation.

Figure 5.1.: Optimization Effect on the Result

In Figure 5.1, absolute values of execution time are represented. Code without
optimization indicates a linear change in execution time as the data increases.

68

5. Results and Discussion

(a)

(b)

(c)

(d)

(e)

Figure 5.2.: Results for Read Operations

69

5. Results and Discussion

However, optimized code results in almost no significant change in time with
respect to data length. This behavior is identical for all single read/write operations
and also for memory mapped multiple read operation.

Reason for such behavior is attributed to the optimization flags used by -O2. To
recognize the flags for such response, results were obtained for AXI4-Lite interface
with -O1. Outcome of using level 1 featured similar graph pattern as not optimized
code in Figure 5.2a. After 10ˆ5 data samples, it resulted a stable value of 2.310175ns.
This outcome reduced the sample space for possible optimization flags solely related
to -O2. According to [17], -O2 utilizes all optimization flags supported by -O1 and,
additionally, incorporates flags for instruction scheduling. For more details, these
additional flags are listed in Appendix A.

In Figure 5.2b, time measurements are registered for reading from multiple ad-
dresses of 1024 bytes of slave memory. We see that AXI4 Full interface without
optimization results in stable value of 150ns (9∼10cc). Behavior for optimized code
is similar as discussed before, time is shown to be independent of the data length.
Therefore, the graph declines as the data length increases.

For AXI4-Stream (Figure 5.2c), normalized time significantly decreases as the
input data length increases. To read data off the stream, optimized code performs
better in comparison to code without optimization. After 1000 data samples, both
codes shown no change in the time value. This is because of the AXI4-Stream Data
FIFO buffer length set to 4096 values. In next section, result for AXI4-Stream are
shown for write operation so that it does not exceed the FIFO buffer length.

Single read from memory/register is also depicted in Figure 5.2d and Figure 5.2e.
In Figure 5.2d, AXI4-Lite requires average time of 180ns (11∼12cc) while the opti-
mized code shows constant change in time with reference to data samples. For code
without optimization (Figure 5.2e), AXI4-Full results in 140ns (9∼10cc).

From the results seen in Figure 5.2, we see that, for both single and multiple
read, AXI4-Full performs faster (by 2cc) in comparison to AXI4-Lite. However,
optimized code for single read operation provides faster execution time for AXI4-
Lite than AXI4-Full.

From Figure 5.2b, for multiple and single read operation, AXI4-Full performs
faster compared to AXI4-Lite (for not optimized code). Full is 2cc faster than Lite
for single read operation whereas 4cc faster for multiple read operation.

For not optimized code, in Figure 5.2c, we see that for 1000 data samples stream
interface is the fastest compared to memory mapped interface. Stream results in
19.4182 ns whereas Full and Lite takes 150 ns and 210 ns respectively. The amount
of difference in execution time is significant.

5.2. Write Operation

Results for write operations are depicted in Figure 5.6. From Figure 5.6a, we see
graph for AXI lite write operation performed on multiple slave registers. Optimized
code has a better execution of 180ns (11∼12cc) compared to not optimized code

70

5. Results and Discussion

which stabilizes at 240ns ((15∼16cc). Code without optimization is 33.33% slower
than the optimized code.

In Figure 5.6b, write operations are executed on multiple addresses of slave mem-
ory. It highlights same behavior as above in the case that optimization makes the
execution time 33% faster than its counterpart. Optimized code runs at 170ns
(11∼12cc) whereas the counterpart stabilizes at 130ns (8∼9cc).

Figure 5.3.: Comparison of Normalized and Absolute Time for AXI4 Stream

In Figure 5.6c, in both the cases, the time values are significantly low as the data
increases. That is, it is too fast for large data samples which is not the normal
behavior. As mentioned in section 5.1, this can be due to FIFO depth of size 4096.
Such that after 1K samples, mean time remains the same as data length increases in
multiples of 10 from 1K. So, large values will not be stored in FIFO buffer, thereby,
consisting of the same amount of data.

So a maximum data length of 4K is tested for data step in multiples of 2. Results
for this test are shown in Figure 5.3. ’Number of Times’ in Figure 5.3 refers to data
length. Testing is implemented for AXI4-Stream multiple write operation. Results
for both configuration of optimization are displayed. In addition to normalized time,
absolute time is also calculated and displayed. This was done to check if the values
are constant after certain data length.

From outlook, both optimized and not optimized code show similar behavior.
We see that, for optimized code, absolute time reduces after 1K and then becomes
constant. For the not optimized, time after 1K is constant and then a slight reduction
in time. So we see that absolute time should increase after 1K similar to the linear
behavior of absolute values for single read operation (Figure 5.1).

From Figure 5.6d we see that for write operation to a single slave register, AXI4
Lite provides best execution time of 210ns (13∼14cc). Optimized code shows similar
behavior as discussed before for read operation. From Figure 5.4 we see that, except

71

5. Results and Discussion

for two data samples, absolute time is almost constant. AXI4-Lite shows same char-
acteristics as Figure 5.2d. Optimized code uses similar amount of execution time for
both single slave register for read/write operation. However, without optimization,
write operation takes 1 extra clock cycle for read operation.

Figure 5.4.: Absolute Execution Time for AXI4-Lite Write Operation

Same behavior for optimized code in Figure 5.6e is depicted. To write to a single
slave address, code without optimization provides stable time of 160ns (10∼11cc).

In overall, we see that, for both cases of optimization, AXI4-Full performs faster
for both multiple address and single address write operation. For multiple write op-
eration, Full IP is faster by 4cc when code is not optimized. And when optimized, it
is faster by 3cc. Both AXI4-Lite (Figure 5.6a) and AXI4-Full (Figure 5.6b) provides
optimized code which is 33.33% faster than the counterpart.

In Figure 5.6c, optimized code runs reasonable slower than the not optimized code.
For write operation, optimized code takes slightly more time than not optimized
code. This is not the case for read operation. Also it can be seen that writing is
faster than reading the stream, for both with and without optimization.

Figure 5.5.: Performance based on PL Frequency

Time taken by stream interface for 1000 data samples (Figure 5.3) is around
16ns. This is significantly faster than optimized code for memory mapped interfaces
(Figure 5.6a and Figure 5.6b). It seems AXI4-Stream interface has advantage for
burst operations owing to its protocol framework without the use of addresses and
few control signals.

72

5. Results and Discussion

(a)

(b)

(c)

(d)

(e)

Figure 5.6.: Results for Write Operation

73

5. Results and Discussion

In addition, time for multiple write operations is evaluated with reference to
change in frequency. Behavior of both AXI4-Lite and AXI4-Full interface are tested
for different PL input frequency. Evaluation is done with 10ˆ8 data samples.

Results are highlighted in Figure 5.5. It is seen that execution time shows inverse
relationship with PL frequency. As the frequency increases, mean time to write data
to slave register/memory decreases.

5.3. Comparison of Results

Results of interfaces discussed in the previous section are summarized here in Ta-
ble 5.2.

AXI4-LITE AXI4-Full AXI4-Stream
Max.
Data

Length
Optimized

Not
Optimized

Max.
Data

Length
Optimized

Not
Optimized

Max.
Data

Length
Optimized

Not
Optimized

Read Operation 10ˆ8

Independent of
input length

(slight change
in mean time

with input length)

210ns
(13∼14cc)

10ˆ8

Independent of
input length

(slight change
in mean time

with input length)

150ns
(9∼10cc)

10ˆ6

Completion
Time inversely
proportional to

input length
(17ns for 1000
data samples)

Completion
Time inversely
proportional to

input length
(19ns for 1000
data samples)

Write Operation 10ˆ8
180ns

(11 - 12cc)
240ns

(15∼16cc)
10ˆ8

130ns
(8∼9cc)

170ns
(11∼12cc)

10ˆ6
5.284ns for
1000 data
samples

2.458 for
1000 data
samples

Single Read Operation 10ˆ6

Independent of
input length

(slight change in mean time
with input length)

180ns
(11∼12cc)

10ˆ6

Independent of
input length,
slightly slower

than AXI4-Lite

140ns
(9∼10cc)

- - -

Single Write Operation 10ˆ6

Independent of
input length

(slight change
in mean time

with input length)

210ns
(13∼14cc)

10ˆ6

Independent of
input length,
slightly slower

than AXI4-Lite

160ns
(10∼11cc)

- - -

Table 5.2.: Comparison of AXI4-Interface Results

In the Table 5.2, ’Read Operation’ and ’Write Operation’ denotes multiple read-
/write operation on slave register/memory. ’Single Read Operation’ and ’Single
Write operation’ signifies read/write to a single slave register/memory. Performance
of these operation are evaluated with reference to the amount of data involved in the
operation. Best execution time for these operations are highlighted for comparison.

We see that optimized code for all interfaces, except for multiple write operation,
results in only slight change in time with respect to data length. So, from given
results, code without optimization is compared to evaluate the fitting interface for
the thesis.

For read and write operation, it is seen that AXI4-Full performs better in all
cases as compared to AXI4-Lite. It is faster by 4cc for read and write operation.
For single read and write operation, it is efficient by 2cc and 3cc respectively.

Results for AXI4-Stream are displayed for 1000 samples. As mentioned in the
previous section, Stream offers the best execution time compared to memory mapped
interfaces. For instance, for 1000 samples, it offers time for not optimized code
of 19ns wheres AXI4-Full offers 150ns. We see that the difference between time
execution is significant.

74

5. Results and Discussion

However, for write operation, code without optimization gives better performance
for 1000 data samples. Also it is seen that execution time is unrealistically fast for
large number of data. Therefore, stream test is done for 1024 data samples with
data steps in multiples of 2. Result is displayed in Figure 5.3. From the graphs of
optimized and without optimized, it is seen that normalized time comes out to be
similar. That is, there is hardly an impact of optimization for write operation.

As previously mentioned, absolute time after 1k samples becomes constant or
decrease. Ideally, the time should increase. Reason for this behavior might be
related to AXI DataMover IP which is already included in AXI DMA. DataMover
features an internal FIFO to store the data with the same frequency as DDR memory.
This FIFO, by default, uses the same clock as the memory mapped data to function
synchronously. It can also be used as asynchronous FIFO to be clocked differently
than memory mapped interface[47].

So it might be possible that DDR access this internal buffer at much faster clock-
domain for DDR, which results in the decrease of absolute time. This is still a
hypothesis which is yet to be tested.

75

6. Conclusion and Further Work

Conclusion

Three different AXI4-Interfaces have been evaluated for its performance in terms
of processing time and input data length. To perform the evaluation, an FPGA
implementation for the hardware was provided and a machine learning interface.

A SoC hardware board, ZYBO, was used to do the time measurements. Hardware
for the time measurement is designed in Vivado and tested on ZYNQ. Testing is
done by test cases implemented in Xilinx SDK. Hence, three hardware designs were
implemented as listed: AXI4-Lite, AXI4-Full, and AXI4-Stream. These designs
were tested for read and write operation.

Multiple read/write operations were performed on: 300 slave registers for Lite,
1024 bytes of memory for Full, and 4k Data FIFO for Stream. Single read/write
operations were performed on memory-mapped interfaces. Dependence of execution
time on PL frequency is also tested for memory-mapped interfaces. To highlight
such dependence, testing was done for multiple write operations.

From the discussed results, it can be said that, for memory-mapped interfaces,
AXI4-Full is a fitting interface due to its efficient execution time. It performed better
than AXI4-Lite for both read and write operation. When AXI4-Full is compared
to AXI4-Stream, then Stream appears to be superior because of significant faster
execution time. It shows to be a fitting choice for the provided hardware given that
feature data from PL to PS is to be transferred in burst.

However, reason for the reduction of execution time for AXI4-Stream is still un-
known. Possible hypothesis is AXI DataMover which acts as an internal buffer for
AXI DMA, might buffer transfer data as soon as termination flag is set. Also, by
default, this buffer runs synchronously with DDR faster clock-domain. This might
lead to decrease in execution time.

In conclusion, based on the needs of the MERGE project, AXI4-Stream turns out
to be opt-choice for continuous burst data transfer. Also because of the usage of
High-Performance data bus, it shows better results than memory-mapped interfaces.
Memory-mapped interface was provided by General Purpose port which features a
low performance bus. Due to this reason, an AXI4-Full IP (Figure B.1) was designed
to communicate with High-Performance bus and incorporate burst mode. However,
this IP is not tested in the thesis but might be slower compared to DMA transfer
speed.

Therefore, for real-time scenario where continuous unlimited burst is a need,
AXI4-Stream is the viable option. When it comes to memory-mapped interface,

76

6. Conclusion and Further Work

AXI4-Full offers better performance compared to AXI4-Lite. It supports burst con-
figuration but with a limit of 256 beats per burst.

Further Work

As mentioned in the conclusion, performance test for an AXI4-Full design in ap-
pendix B is to be undertaken. Reason for this is the use of High-Performance Port
(HP0) which provides FIFO buffer support and higher data width compared to GP0.

In the result section, frequency tests for AXI4-Full and AXI4-Lite are discussed.
Figure 6.1 highlights performance of AXI4-Stream with respect to frequency. Time
calculation is done for 100 data samples read from DDR memory.

Figure 6.1.: AXI4-Stream Performance Relative to PL Frequency

The outcome is not as expected. With increase in frequency, there is only a
slight change in the execution time. Normally, execution time should decrease as
the number of clock cycles, provided for the same task, increases. Therefore, reason
for this behavior are still needed to be found.

Also, as mentioned before in conclusion, the hypothesis proposed for the decrease
of execution time for AXI4-Stream has to be tested.

In the thesis, AXI4-Full is not tested for its different data width and burst con-
figuration. However, it is discussed in Figure 4.12 in section 4.2. For AXI4-Full,
64-bit and 128-bit data widths were tested. However, it resulted in increase of av-
erage execution time compared to time needed for 32-bit data width. As seen from
Figure 6.2, for 64-/128-bit data width it takes 160ns to do multiple write operation
for the optimized code. Whereas, in result section, Figure 5.6b provides 130ns of
execution time.

Possible reasoning for such result is the inclusion of AXI Data Width Converter
IP in AXI Interconnect which provides connection between GP0 and AXI4-Full
slave IP(autoreffig:fulldata). Since GP0 supports 32-bit, therefore, because of the
conversion process there is an increased time in processing higher data width.

77

6. Conclusion and Further Work

Figure 6.2.: AXI4-Full Performance for 64-/128-bit Data Width

One possible solution would be to use AXI CDMA to perform different data width
and burst configuration. A proposed hardware design is provided in appendix D. It
provides selection for data width from 32 to 1024 bits and burst size from 2 to 256.

78

Bibliography

[1] The Coreconnect Bus Architecture, http://www.scarpaz.com/2100-papers/
SystemOnChip/ibm_core_connect_whitepaper.pdf

[2] Universal Serial Bus 3.2 Specification, 1st edn. (Septem-
ber 2017), https://www.usb.org/document-library/

usb-32-specification-released-september-22-2017-and-ecns

[3] (January 2018), https://projects-raspberry.com/introduction-i%C2%

B2c-spi-protocols/

[4] Accellera: Open Core Protocol Specification (2013), http://www.accellera.
org/downloads/standards/ocp

[5] Altera: Avalon Bus Specification (July 2002), http://coen.boisestate.edu/
clarenceplanting/files/2011/09/avalon_bus_spec.pdf

[6] ARM: AMBA Specification 2.0 (May 1999), http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ihi0011a/index.html

[7] ARM: AMBA AXI and ACE Protocol Specification (Decem-
ber 2017), https://developer.arm.com/docs/ihi0022/latest/

amba-axi-and-ace-protocol-specification-axi3-axi4-axi5-ace-and-ace5

[8] Bosch: CAN Specification 2.0 (1991), http://esd.cs.ucr.edu/webres/

can20.pdf

[9] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips: Uni-
versal Serial Bus Specification, 2nd edn. (april 2000), http://sdphca.ucsd.
edu/Lab_Equip_Manuals/usb_20.pdf

[10] Cook, J., Freudenberg, J.: Controller Area Network (CAN)
(2008), https://www.ethz.ch/content/dam/ethz/special-interest/

mavt/dynamic-systems-n-control/idsc-dam/Lectures/

Embedded-Control-Systems/OtherNotes/CAN_notes.pdf

[11] Corporation, N.I.: Controller Area Network (CAN) tutorial, http://

download.ni.com/pub/devzone/tut/can_tutorial.pdf

[12] Corrigan, S.: Introduction to the Controller Area Network (CAN) (May 2016),
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf

79

http://www.scarpaz.com/2100-papers/SystemOnChip/ibm_core_connect_whitepaper.pdf
http://www.scarpaz.com/2100-papers/SystemOnChip/ibm_core_connect_whitepaper.pdf
https://www.usb.org/document-library/usb-32-specification-released-september-22-2017-and-ecns
https://www.usb.org/document-library/usb-32-specification-released-september-22-2017-and-ecns
https://projects-raspberry.com/introduction-i%C2%B2c-spi-protocols/
https://projects-raspberry.com/introduction-i%C2%B2c-spi-protocols/
http://www.accellera.org/downloads/standards/ocp
http://www.accellera.org/downloads/standards/ocp
http://coen.boisestate.edu/clarenceplanting/files/2011/09/avalon_bus_spec.pdf
http://coen.boisestate.edu/clarenceplanting/files/2011/09/avalon_bus_spec.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0011a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0011a/index.html
https://developer.arm.com/docs/ihi0022/latest/amba-axi-and-ace-protocol-specification-axi3-axi4-axi5-ace-and-ace5
https://developer.arm.com/docs/ihi0022/latest/amba-axi-and-ace-protocol-specification-axi3-axi4-axi5-ace-and-ace5
http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
http://sdphca.ucsd.edu/Lab_Equip_Manuals/usb_20.pdf
http://sdphca.ucsd.edu/Lab_Equip_Manuals/usb_20.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/OtherNotes/CAN_notes.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/OtherNotes/CAN_notes.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/OtherNotes/CAN_notes.pdf
http://download.ni.com/pub/devzone/tut/can_tutorial.pdf
http://download.ni.com/pub/devzone/tut/can_tutorial.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf

BIBLIOGRAPHY

[13] Digilent: ZYBO FPGA Board Reference Manual (February 2017), https:

//reference.digilentinc.com/_media/reference/programmable-logic/

zybo/zybo_rm.pdf

[14] Free Software Foundation, I.: http://www.gnu.org/software/libc/manual/

html_node/Elapsed-Time.html

[15] Free Software Foundation, I.: Online, https://gcc.gnu.org/onlinedocs/

gcc/Optimize-Options.html

[16] Gaur, M.S., Laxmi, V., Zwolinski, M., Kumar, M., Gupta, N., Ashish: Network-
on-Chip: Current issues and challenges. In: Proc. 19th Int. Symp. VLSI Design
and Test. pp. 1–3 (June 2015)

[17] Gough, B.J., Stallman, R.M.: An Introduction to GCC: For the GNU Compilers
GCC and G++. Network Theory Ltd., 2nd edn. (March 2004)

[18] IBM: 32-bit Processor Local Bus: Architecure Specification (May 2001),
https://ptolemy.berkeley.edu/projects/embedded/mescal/forum/7/

coreconnect_32bit.pdf

[19] IBM: On-Chip Peripheral Bus Architecture Specifications (2001),
http://www.cs.columbia.edu/~sedwards/classes/2005/emsys-summer/

opb_ibm_spec.pdf

[20] Instruments, T.: Interface Circuits for TIA/EIA-232-F (September 2002),
http://www.ti.com/lit/an/slla037a/slla037a.pdf

[21] Instruments, T.: Interface Circuits for TIA/EIA-485 (RS-485). Tech.
Rep. SLLA036D (August 2008), http://www.ti.com/lit/an/slla036d/

slla036d.pdf

[22] Instruments, T.: RS-422 and RS-485 Standards Overview and System Config-
urations (May 2010), http://www.ti.com/lit/an/slla070d/slla070d.pdf

[23] Instruments, T.: AN-1031 TIA/EIA-422-B Overview (April 2013), http://

www.ti.com/lit/an/snla044b/snla044b.pdf

[24] Intel: Avalon Interface Specifications (September 2018), https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/manual/

mnl_avalon_spec.pdf

[25] Irazabal, J.M., Blozis, S.: AN10216-01 I2C Manual. Philips Semiconductors
(March 2003), https://www.nxp.com/docs/en/application-note/AN10216.
pdf

[26] L-com: What is USB?, https://www.l-com.com/multimedia/tips/tip_

what_is_usb.pdf

80

https://reference.digilentinc.com/_media/reference/programmable-logic/zybo/zybo_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/zybo/zybo_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/zybo/zybo_rm.pdf
http://www.gnu.org/software/libc/manual/html_node/Elapsed-Time.html
http://www.gnu.org/software/libc/manual/html_node/Elapsed-Time.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://ptolemy.berkeley.edu/projects/embedded/mescal/forum/7/coreconnect_32bit.pdf
https://ptolemy.berkeley.edu/projects/embedded/mescal/forum/7/coreconnect_32bit.pdf
http://www.cs.columbia.edu/~sedwards/classes/2005/emsys-summer/opb_ibm_spec.pdf
http://www.cs.columbia.edu/~sedwards/classes/2005/emsys-summer/opb_ibm_spec.pdf
http://www.ti.com/lit/an/slla037a/slla037a.pdf
http://www.ti.com/lit/an/slla036d/slla036d.pdf
http://www.ti.com/lit/an/slla036d/slla036d.pdf
http://www.ti.com/lit/an/slla070d/slla070d.pdf
http://www.ti.com/lit/an/snla044b/snla044b.pdf
http://www.ti.com/lit/an/snla044b/snla044b.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.nxp.com/docs/en/application-note/AN10216.pdf
https://www.nxp.com/docs/en/application-note/AN10216.pdf
https://www.l-com.com/multimedia/tips/tip_what_is_usb.pdf
https://www.l-com.com/multimedia/tips/tip_what_is_usb.pdf

BIBLIOGRAPHY

[27] Miti, M., Stojcev, M.: An Overview of On-Chip Buses. ResearchGate (Jan-
uary 2006), https://www.researchgate.net/publication/237587431_An_

Overview_of_On-Chip_Buses

[28] Murphy, R.: USB 101: An Introduction to Universal Serial Bus 2.0. Tech. rep.,
Cypress (April 2017), http://www.cypress.com/file/134171/download

[29] NXP Semiconductors: I2C Bus Specification and User Manual, 6th edn. (April
2014), https://www.nxp.com/docs/en/user-guide/UM10204.pdf

[30] OCP: Open Core Protocol, https://www.accellera.org/images/

community/ocp/datasheets/OCP_30_Datasheet.pdf

[31] Omega: The RS-232 Standard, https://www.omega.de/techref/pdf/

RS-232.pdf

[32] OpenCores: Wishbone B4: WISHBONE System-on-Chip (SoC)Interconnection
Architecture for Portable IP Cores (2010), https://cdn.opencores.org/

downloads/wbspec_b4.pdf

[33] Pasricha, S., Dutt, N.: On-Chip Communication Architectures: System on
Chip Interconnect. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2008)

[34] Siemens: Controller Area Network (October 1998), http://ecee.colorado.
edu/~mcclurel/CANPRES.pdf

[35] Sinha, R., Roop, P., Basu, S.: The AMBA SOC Platform. In: Correct-by-
Construction Approaches for SoC Design. Springer (January 2014), http://

dx.doi.org/10.1007/978-1-4614-7864-5_2

[36] Stevens, A.: Introduction to AMBA 4 ACE and big.LITTLE Pro-
cessing Technology (July 2013), https://www.arm.com/files/pdf/

CacheCoherencyWhitepaper_6June2011.pdf

[37] Ullmann, F., Hardt, W., Zhmud, V.: Machine learning algorithms for impact
localization on formed piezo metal composites. In: 2017 International Siberian
Conference on Control and Communications (SIBCON). pp. 1–5 (June 2017)

[38] Ullmann, F., Hardt, W.: Towards Impact Detection and Localization on a Piezo
Metal Composite (July 2016)

[39] Wiki, X.: Online, https://xilinx-wiki.atlassian.net/wiki/spaces/A/

pages/18841795/Controlling+FCLKs+in+Linux

[40] Xilinx: Software Development Kit. Online, https://www.xilinx.com/

support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html

81

https://www.researchgate.net/publication/237587431_An_Overview_of_On-Chip_Buses
https://www.researchgate.net/publication/237587431_An_Overview_of_On-Chip_Buses
http://www.cypress.com/file/134171/download
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.accellera.org/images/community/ocp/datasheets/OCP_30_Datasheet.pdf
https://www.accellera.org/images/community/ocp/datasheets/OCP_30_Datasheet.pdf
https://www.omega.de/techref/pdf/RS-232.pdf
https://www.omega.de/techref/pdf/RS-232.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf
http://ecee.colorado.edu/~mcclurel/CANPRES.pdf
http://ecee.colorado.edu/~mcclurel/CANPRES.pdf
http://dx.doi.org/10.1007/978-1-4614-7864-5_2
http://dx.doi.org/10.1007/978-1-4614-7864-5_2
https://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf
https://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841795/Controlling+FCLKs+in+Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841795/Controlling+FCLKs+in+Linux
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html

BIBLIOGRAPHY

[41] Xilinx: AMBA 4 AXI4-Stream Protocol Specification, 1st edn. (March
2010), http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.ihi0051a/index.html

[42] Xilinx: AXI Reference Guide, 13th edn. (March 2011), https:

//www.xilinx.com/support/documentation/ip_documentation/ug761_

axi_reference_guide.pdf

[43] Xilinx: Zynq Architecture (2012), http://www.ioe.nchu.edu.tw/Pic/

CourseItem/4468_20_Zynq_Architecture.pdf

[44] Xilinx: Clocking Wizard v5.2 (Novemeber 2015), https://www.

xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_

2/pg065-clk-wiz.pdf

[45] Xilinx: AXI4-Stream FIFO v4.1 (April 2016), https://www.xilinx.

com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/

pg080-axi-fifo-mm-s.pdf

[46] Xilinx: Vivado Design Suite User Guide Implementation (April
2016), https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2016_1/ug904-vivado-implementation.pdf

[47] Xilinx: (April 2017), https://www.xilinx.com/support/documentation/

ip_documentation/axi_datamover/v5_1/pg022_axi_datamover.pdf

[48] Xilinx: AXI Interconnect v2.1 (December 2017), https://www.xilinx.

com/support/documentation/ip_documentation/axi_interconnect/v2_1/

pg059-axi-interconnect.pdf

[49] Xilinx: 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS
Analog-to-Digital Converter (July 2018), https://www.xilinx.com/support/
documentation/user_guides/ug480_7Series_XADC.pdf

[50] Xilinx: 7 series fpgas data sheet: Overview (February 2018),
https://www.xilinx.com/support/documentation/data_sheets/ds180_

7Series_Overview.pdf

[51] Xilinx: ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC
(June 2018), https://www.xilinx.com/support/documentation/boards_

and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf

[52] Xilinx: Zynq-7000 SoC Technical Reference Manual (July 2018),
https://www.xilinx.com/support/documentation/user_guides/

ug585-Zynq-7000-TRM.pdf

82

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.ioe.nchu.edu.tw/Pic/CourseItem/4468_20_Zynq_Architecture.pdf
http://www.ioe.nchu.edu.tw/Pic/CourseItem/4468_20_Zynq_Architecture.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_2/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_2/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_2/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_datamover/v5_1/pg022_axi_datamover.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_datamover/v5_1/pg022_axi_datamover.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

A. Optimization level 2 flags

Below is the list of optimization flags used by -O2 and are not supported in -O1[15]

-falign-functions -falign-jumps
-falign-labels -falign-loops
-fcaller-saves
-fcode-hoisting
-fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations
-fgcse -fgcse-lm
-fhoist-adjacent-loads
-finline-small-functions
-findirect-inlining
-fipa-bit-cp -fipa-cp -fipa-icf
-fipa-ra -fipa-sra -fipa-vrp
-fisolate-erroneous-paths-dereference
-flra-remat
-foptimize-sibling-calls
-foptimize-strlen
-fpartial-inlining
-fpeephole2
-freorder-blocks-algorithm=stc
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop
-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fstore-merging
-fstrict-aliasing
-fthread-jumps
-ftree-builtin-call-dce
-ftree-pre
-ftree-switch-conversion -ftree-tail-merge
-ftree-vrp

83

B. AXI4-Full Test Design

Figure B.1.: AXI4-Full High-Performance Based Design

84

C. AXI4-Stream Clocking Wizard
Design

Figure C.1.: Clocking Wizard design for AXI4-Stream

85

D. AXI4-Full CDMA Design

Figure D.1.: AXI CDMA Based Hardware Design

86

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Structure of the Thesis

	2 State of the Art
	2.1 Possible Communication Alternatives for FPGA
	2.1.1 Serial Peripheral Interface
	2.1.2 Inter-Integrated Circuit
	2.1.3 Controller Area Network
	2.1.4 Universal Serial Bus
	2.1.5 TIA/EIA Standards

	2.2 Outline of SoC Bus Standards
	2.2.1 AMBA
	2.2.2 CoreConnect
	2.2.3 Wishbone
	2.2.4 Avalon
	2.2.5 Open Core Protocol

	2.3 ZYNQ Architecture
	2.3.1 Overview
	2.3.2 Features
	2.3.3 Communication Interfaces

	2.4 Basis for Evaluation

	3 Concept
	3.1 Comparison of SoC Bus Standards
	3.2 Approach for Evaluation of AXI Interfaces
	3.3 Evaluation Platform
	3.3.1 Hardware
	3.3.2 Software

	4 Implementation
	4.1 Overview of FPGA Implementation
	4.1.1 MERGE_PL FPGA IP

	4.2 Hardware and Software Design for Evaluation
	4.2.1 Hardware Design
	4.2.2 Software Design

	5 Results and Discussion
	5.1 Read Operation
	5.2 Write Operation
	5.3 Comparison of Results

	6 Conclusion and Further Work
	Bibliography
	Annex A Optimization level 2 flags
	Annex B AXI4-Full Test Design
	Annex C AXI4-Stream Clocking Wizard Design
	Annex D AXI4-Full CDMA Design

