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Isolation conditions for five pesticides (metazachlor, tebuconazole, λ-cyhalothrin, chlorpyrifos, and deltamethrin) from rape
oil samples were examined using the dispersive solid-phase graphene extraction technique. To determine the optimal ex-
traction conditions, a number of experimental factors (amount of graphene, amount of salt, type and volume of the desorbing
solvent, desorption time with and without sonication energy, and temperature during desorption) were studied. .e com-
pounds of interest were separated and detected by an HPLC-UV employing a Kinetex XB-C18 column and a mobile phase
consisting of acetonitrile and water flowing in a gradient mode. .e optimized extraction conditions were: the amount of
graphene 15mg, desorbing solvent (acetonitrile) 5mL, time desorption 10min at 40°C, and amount of NaCl 1 g. .e detection
limit for metazachlor, tebuconazole, λ-cyhalothrin, and chlorpyrifos was 62.5 ng·g−1, and for deltamethrin, it was 500 ng·g−1.
.e obtained results lead to the conclusion that graphene may be successfully used for the isolation of the five pesticides
from rape oil. However, their determination at low concentration levels, as they occur in real oil samples, requires the
employment of appropriately highly sensitive analytical methods, as well as a more suitable graphene form (e.g., magnetically
modified graphene).

1. Introduction

Due to the potential toxicity, bioaccumulating properties,
and wide use of pesticides for supporting and intensification
of crops almost all over the world, these substances belong to
the most often controlled ones in the environment and in
food. Every year, many publications devoted to the devel-
opment of new methods for pesticide determination in
various food matrices appear. However, pesticide residue
analysis in high-fat samples is still a challenging analytical
task. Edible oil samples belong to such analytically difficult
matrices. Due to complex matrices, as well as low con-
centrations of pesticide residues, frequently originated from
various classes, these samples are analyzed using such

advanced coupled techniques as LC-MS/MS [1, 2], LC-TOF-
MS [3], UHPLC-MS/MS [4, 5], GC-MS/MS [2, 6], andGC-MS
[7]. .e employment of GC-ECD [8, 9], HPLC/UV [10], or
HPLC/DAD [11] in this analytical area has also been reported.
Generally, in all cases of oil matrix analysis, an appropriate
sample preparation procedure, usually consisting of two or
more stages, was required. In most cases, QuEChERS or
modified QuEChERS-based procedures as the cleanup step
were involved [1–6, 8]. In some cases, these were preceded by
the freezing step for oil precipitation [2, 3, 8, 10]. .e separate
review article concerning recent developments and trends in
the QuEChERS sample preparation approach, including the
analysis of pesticides in various fatty food samples, was also
presented [12].
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Graphene is a carbon nanomaterial which has been
widely used (especially in modi�ed forms) in de-
termination of organic compounds including pesticides,
usually in relatively simple matrices. �ese include envi-
ronmental waters [13–16], fruit juices [17], fruits [18],
vegetables [18–20], and teas [21, 22]. �e potential unique
adsorption properties of graphene resulted mainly from its
large surface area and strong π-π interactions between its
large delocalized electron system and the aromatic rings of
the target molecules [23].

In this work, the main focus was to evaluate the ad-
sorption potential of nonmodi�ed graphene for the isolation
of selected pesticides from various groups (chloroacetamide
herbicides, triazole fungicides, pyrethroids, and organo-
phosphorus pesticides) present in rape oil samples, which
are commonly used for supporting of rape crops. To our best
knowledge, this is the �rst time that graphene has been tried
as the adsorbent for isolation of pesticides from such
a di�cult matrix as edible oil. �e chemical structures of the
studied components are presented in Figure 1.

Dispersive solid-phase extraction (d-SPE) combined
with graphene was selected as the sample treatment method,
and the HPLC-UV technique was used for the separation
and detection of the compounds of interest in the resulting
oil extracts.

2. Materials and Methods

2.1. Preparation of Standard Samples and Graphene
Suspension. �e stock of methanolic solutions of metaza-
chlor, tebuconazole, λ-cyhalothrin, chlorpyrifos, and delta-
methrin (1mg·mL−1) and the internal standard chlorfenvinphos
(1mg·mL−1) were stored in a refrigerator at 4°C. �e
standard solutions were prepared by appropriate dilution
of the stock solutions with methanol. �e graphene
suspension (3mg·mL−1) was prepared by weighing an
appropriate amount of solid graphene and dispersing it in
a suitable amount of deionized water using sonication for
6 h. �e oil samples were prepared by weighing 1 gram of
a commercial, rati�ed rape oil and then spiking it with
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Figure 1: Chemical structures of the studied �ve pesticides with their partition coe�cients (log P). Metazachlor (log P � 2.7) (a);
tebuconazole (log P � 3.7) (b); λ-cyhalothrin (log P � 6.1) (c); chlorpyrifos (log P � 4.95) (d); deltamethrin (log P � 6.2) (e).
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appropriate amounts of standard solutions of the five or
six pesticides and then left for equilibration at room
temperature for one hour.

2.2. Apparatus. For oil sample preparation, the following
laboratory equipment was used: technical balance (Radwag
WPX 250, Poland), vortex TK 35 (Techno-Kartel, Germany),
centrifuge MPW-260R (DHN, Poland), thermoblock TB-
941U (Poland), and sonic bath Vibra Cell (Sonics & Ma-
terials Inc., USA). Chromatographic analyses were per-
formed using the chromatographic system (Merck-Hitachi
LaChrom) consisting of an L-7100 pump and an L-7455 UV
spectrophotometric detector (Darmastadt, Germany) equip-
ped with a Kinetex XB-C18 column (150× 4.6mm, 5µm)
which was supplied by Phenomenex (USA). .e column
temperature was 25°C. Amixture of water (A) and acetonitrile
(B) was used as the mobile phase. .e following optimal
gradient conditions of the mobile phase flow were applied:
0min (70% A and 30% B), 20min (24% A and 76% B), 25min
(0% A and 100% B), and 35min (0% A and 100% B). .e flow
ratewas 1mL·min−1..epesticideswere detected at λ� 220nm.
.e injection volume of standard solutions as well as oil sample
extracts was 40µL.

2.3.General d-SPE (Graphene)Procedure. For initial isolation
of the five pesticides, 4mL of acetonitrile was added with 1 g
pesticide-spiked oil, vortexed (1min), and left to freeze for
minimum2h at−32°C in a horizontal position. An acetonitrile
supernatant was decanted into a clean centrifuge test tube
(7mL) from above the frozen fat layer. .e supernatant was
evaporated to almost dryness, and then, an appropriate
amount of aqueous graphene suspension and solid sodium
chloride (for salting out pesticides) was added. .e whole
content of the test tube was vortexed (1min) and then
centrifuged (10min, 14,000 rpm). Using a Pasteur pipette, the
upper layer was discarded, and 4mL of desorbing solvent
was added to the bottom layer of graphene with the
adsorbed pesticides and vortexed for 1min without pre-
vious sample heating or after increasing the sample
temperature in a thermoblock. Subsequently, the sample
was subjected to sonication for an appropriate time at an
appropriate temperature. .e content was centrifuged
(10min, 14,000 rpm), and the acetonitrile supernatant with
desorbed compounds was successfully transferred into an
Eppendorf tube (2mL) and evaporated to dryness under
nitrogen in a thermoblock at 40°C. .e dried residue was
reconstituted into 200 µL of methanol and was ready for
injection onto the chromatographic column.

3. Results

In order to obtain the best extraction conditions for isolation
of the five studied pesticides from oil samples, several ex-
perimental factors such as the volume of graphene sus-
pension, amount of the salt (NaCl), type and volume of the
desorbing solvent, desorption time with and without ap-
plication of sonication energy, and desorption temperature
were studied..e optimization process was conducted using

the method of one independent variable. .e extraction
recovery (ER) for each pesticide was calculated from the
following equation:

ER(%) �
Ppesticide in sample extract

Ppesticide standard
· f1 · f2 · 100, (1)

where Ppesticide in sample extract is the area of the peak corre-
sponding to the pesticide in a sample extract, Ppesticide standard
is the area of the peak corresponding to the pesticide in
a standard solution, f1 is the ratio of theoretical volume of an
acetonitrile supernatant above the frozen fat layer to volume
of an acetonitrile supernatant taken from above the frozen
fat layer, f2 is the ratio of theoretical volume of an acetonitrile
supernatant after desorption to volume of an acetonitrile
supernatant after desorption, taken for evaporation.

For standardizing the extraction procedure, the aceto-
nitrile supernatant volumes were taken to be the same, that is,
3.5mL of the supernatant from above the frozen fat layer and
4mL of the supernatant after the desorption process. .us,
values of the coefficients f1 and f2 are equaled to 1.14 and 1.25,
respectively. As the optimization criterion (OC), the maxi-
mum average recovery rate for the five pesticides was adopted:

OC �
1
5

·∑
n�5

i�1
ERi � maximum, (2)

where i is the pesticide number and n � 5 is the number of
the studied pesticides.

3.1. Effect of Graphene Suspension Volume. Graphene was
used as an adsorbent for the five pesticides. .is nano-
structured material seems to be an excellent adsorbent due to
its huge surface area, as well as the hexagonal arrays of carbon
atoms that are suitable for strong interactions with organic
molecules, especially those possessing aromatic rings in-
cluding the pesticides. .e very large delocalized π-electron
system enables the formation of strong π-π stacking in-
teractions with aromatic rings [23].

To reduce errors when adding graphene to samples and
to make the operation easy, graphene was prepared in the
form of aqueous suspension. .e amount of graphene was
optimized at the five volume levels of the graphene sus-
pension: 3, 4, 5, 6, and 7mL. .e remaining conditions such
as the mass of NaCl (2 g), type and volume of the desorbing
solvent (4mL), sonication, desorption time (10min), and
temperature (ambient) during the desorption process were
left constant. From this optimization step, the extraction
results are shown in Table 1.

.e maximal average value of extraction recovery for the
five compounds was obtained for 5mL of aqueous graphene
suspension, and this volume was used for further study.

3.2. Effect of Desorbing Solvent Type. Four different solvents
such as acetonitrile, acetone, ethyl acetate, and a mixture of
n-hexane and dichloromethane (2 :1, v/v) were tested as the
desorbing agents for the studied pesticides from graphene.
.e choice of the tested solvents was based on their
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polar/hydrophobic properties. .e hydrophobicity of the
solvents along with their elution strength in relation to
the studied pesticides, adsorbed on graphene, increases in
the following sequence: acetone, acetonitrile, ethyl acetate,
and a mixture of n-hexane and dichloromethane (2 1, v/v).
.e remaining conditions of the volume of the graphene
suspension (5mL), amount of NaCl (2 g), volume of the
desorbing solvent (4mL), sonication, desorption time
(10min), and temperature (ambient) during desorption were
left constant. Considering the ease of experimental opera-
tions (very good separation of the organic supernatant and
the graphene phase), the best solvent appeared to be ethyl
acetate. .e maximal extraction recovery for all of the
pesticides was achieved with acetonitrile. .erefore, aceto-
nitrile was selected as the desorbing solvent for further
optimization process. .e effect of the type of the used
solvent is shown in Table 2.

3.3. Effect of Desorbing Solvent Volume. .e effect of the five
different volumes of acetonitrile (3, 4, 5, 6, and 7mL) as

the desorbing solvent on the extraction results of the five
pesticides was examined. .e remaining conditions of the
volume of the graphene suspension (5mL), amount of NaCl
(2 g), type of the desorbing solvent (acetonitrile), soni-
cation, desorption time (10min), and temperature (am-
bient) during desorption were left constant. .e highest
extraction recovery for all the analytes was obtained using
5mL of acetonitrile, and this volume was used in further
experiments. .e effect of this parameter is shown in
Table 3.

3.4. Effect of Sonication Energy and Desorption Time. For
desorbing the five pesticides from graphene, 5mL of ace-
tonitrile was added to the graphene phase (with the adsorbed
analytes) at the bottom of a tube and vortexed for 1min and
then subjected to sonication energy for 5 and 10 minutes.
Additionally, in a separate experiment, the graphene phase
was vortexed (1min) without applying sonication energy.
.e rest of the experimental conditions (volume of graphene
suspension (5mL) and ambient temperature during

Table 1: Effect of the graphene amount on extraction efficacy of the five pesticides from rape oil samples.

Pesticide
Extraction recovery (%), n � 3

9mg of graphene 12mg of graphene 15mg of graphene 18mg of graphene 21mg of graphene
Metazachlor 11± 3 64± 7 68 ± 5 26± 5 14± 5
Tebuconazole 38± 8 72± 5 77 ± 5 44± 7 29± 7
λ-Cyhalothrin 56± 7 52± 6 60 ± 5 38± 11 17± 8
Chlorpyrifos 12± 7 63± 9 66 ± 7 49± 7 23± 6
Deltamethrin 13± 5 63± 11 68 ± 9 18± 4 14± 5
OC1 26.0± 20.3 63.0± 7.1 67.0 ± 6.2 35.1± 12.62 19.4± 6.52
1Value of the optimization criterion; 2statistically significant from the highest result.

Table 2: Effect of the desorbing solvent type on extraction efficacy of the five pesticides from rape oil samples.

Pesticide
Extraction recovery (%), n � 3

Acetonitrile Acetone Ethyl acetate Dichloromethane/hexane (1 : 2,v/v)
Metazachlor 68 ± 6 33± 5 61± 8 43± 6
Tebuconazole 74 ± 7 22± 5 25± 5 34± 8
λ-Cyhalothrin 60 ± 6 20± 4 50± 6 42± 6
Chlorpyrifos 66 ± 6 42± 3 8± 7 63± 6
Deltamethrin 66 ± 5 21± 3 39± 5 34± 5
OC1 66.7 ± 5.0 27.7± 9.52 36.9± 20.82 43.5± 11.82
1Value of the optimization criterion; 2statistically significant from the highest result.

Table 3: Effect of the desorbing solvent volume on extraction efficacy of the five pesticides from rape oil samples.

Pesticide
Extraction recovery (%), n � 3

3mL of acetonitrile 4mL of acetonitrile 5mL of acetonitrile 6mL of acetonitrile 7mL of acetonitrile
Metazachlor 18± 4 54± 6 68 ± 6 29± 8 15± 3
Tebuconazole 38± 5 70± 5 76 ± 5 48± 6 29± 5
λ-Cyhalothrin 34± 6 54± 7 65 ± 5 32± 9 16± 5
Chlorpyrifos 22± 6 61± 10 69 ± 8 51± 5 25± 7
Deltamethrin 16± 4 60± 5 67 ± 6 21± 8 12± 5
OC1 25.9± 9.82 59.8± 6.7 69.2 ± 4.2 36.2± 12.92 19.7± 7.1
1Value of the optimization criterion; 2statistically significant from the highest result.
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desorption) were kept constant. A desorption process of
10min gave the greatest extraction recovery. .e effects of
these experiments on extraction results are given in Table 4.

3.5. Effect of the Salt Added. In all the above experiments,
before introduction of the graphene suspension to an oil
sample, 2 g of NaCl was added for salting out of the pes-
ticides. In this optimization step, the extraction efficacy of
the analytes was studied by decreasing the amount of salt
added to 1 g or performing the sample preparation pro-
cedure without addition of NaCl. .e rest of the experi-
mental parameters (volume of graphene suspension (5mL),
acetonitrile volume (5mL), sonication (10min), and am-
bient temperature during desorption) were kept constant.
.e results are given in Table 5.

3.6. Effect of DesorptionTemperature. .e final experimental
factor studied was the temperature of the pesticide

desorption process from graphene. In the first step, the
graphene phase (with the adsorbed pesticides) was heated
with 5mL of acetonitrile in a thermoblock to a temperature
of 40°C; in the second step, the content of the tube was
subjected to sonication for 10min, maintaining the tem-
perature at 40°C. .e rest of the experimental parameters
(volume of graphene suspension (5mL), acetonitrile volume
(5mL), and sonication (10min)) were kept constant. .e
effect of increasing the desorption temperature and how it
considerably improves extraction efficiency are shown in
Table 6.

3.7. EvaluationofLinearityRangeandLimit ofDetectionof the
d-SPE (Graphene)-HPLC/UV Method. At the optimized
extraction conditions, the linearity range and detection limit
for each pesticide were determined.

Representative chromatograms are presented in Figure 2,
Calibration curves were designed on the basis of analyses

of oil samples containingmixtures of the five pesticides at the

Table 4: Effect of the sonication energy and desorption time on extraction efficacy of the five pesticides from rape oil samples.

Pesticide
Extraction recovery (%), n � 3

10 minutes subjected to sonication 5 minutes subjected to sonication Without sonication energy
Metazachlor 68 ± 8 24± 4 37± 9
Tebuconazole 74 ± 7 9± 4 43± 6
λ-Cyhalothrin 60 ± 7 24± 7 32± 6
Chlorpyrifos 66 ± 6 42± 8 63± 7
Deltamethrin 66 ± 7 9± 5 10± 5
OC1 67.0 ± 4.8 21.8± 3.72 37.0± 19.12
1Value of the optimization criterion; 2statistically significant from the highest result.

Table 5: Effect of the NaCl amount on extraction efficacy of the five pesticides from rape oil samples.

Pesticide
Extraction recovery (%), n � 3

2 g NaCl 1 g NaCl Without addition of NaCl
Metazachlor 68± 5 69 ± 6 22± 6
Tebuconazole 74± 8 73 ± 8 19± 4
λ-Cyhalothrin 60± 7 63 ± 4 9± 5
Chlorpyrifos 66± 7 70 ± 9 24± 5
Deltamethrin 66± 7 68 ± 7 20± 5
OC1 66.8± 5.5 68.5 ± 4.2 19.0± 6.52
1Value of the optimization criterion; 2statistically significant from the highest result.

Table 6: Effect of the desorption temperature on extraction efficacy of the five pesticides from rape oil samples.

Pesticide
Extraction recovery (%), n � 3

At ambient temperature At increased temperature (40°C)
Metazachlor 69± 10 81 ± 5
Tebuconazole 74± 8 84 ± 7
λ-Cyhalothrin 63± 5 59 ± 5
Chlorpyrifos 70± 6 83 ± 5
Deltamethrin 68± 7 98 ± 8
OC1 56.0± 3.82 80.9 ± 13.0
1Value of the optimization criterion; 2statistically significant from the highest result.
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six concentrations (62.5, 125, 250, 500, 1000, and 2000ng·g−1)
and the internal standard (chlorfenvinphos, 1 µg·mL−1). A
linearity range 62.5–2000 ng·g−1 was achieved for meta-
zachlor, tebuconazole, λ-cyhalothrin, and chlorpyrifos
with determination coe�cients (r2) 0.998, 0.991, 0.999, and
0.993, respectively. For deltamethrin, the linearity range
was 500–2000 ng·g−1 with r2 � 0.999. �e detection limit
was determined by estimation of the minimum concen-
tration as equivalent to three times the background noise
signal. �e detection limit for metazachlor, tebuconazole,
λ-cyhalothrin, and chlorpyrifos was 62.5 ng·g−1, and for
deltamethrin, it was 500 ng·g−1.

4. Discussion

�e potential adsorption properties of simple nonmodi�ed
graphene for the �ve pesticides (metazachlor, tebuconazole,
λ-cyhalothrin, chlorpyrifos, and deltamethrin) analyzed
from a rape oil matrix were explored. �e fat content from
the matrix was removed at two stages: (1) precipitation with
acetonitrile and freezing at −32°C and (2) adsorption on the
graphene surface (a smaller amount of oil left in the ace-
tonitrile phase). �e pesticides were adsorbed on graphene
because of its high speci�c surface area, as well as through
noncovalent interactions, especially the π-π stacking in-
teraction with the aromatic rings of the studied compounds,
and the hydrophobic e¡ect.

�e optimized d-SPE (graphene) extraction conditions
for the �ve compounds present in rape oil samples were as
follows: amount of graphene (15mg), type of the desorbing

solvent (acetonitrile), volume of the desorbing solvent
(5mL), desorption time using sonication energy (10min),
desorption temperature (40°C), and amount of salt (1 g NaCl).
Under the optimized conditions, the following extraction
recoveries for the examined pesticides were achieved: meta-
zachlor (81%), tebuconazole (84%), λ-cyhalothrin (59%),
chlorpyrifos (83%), and deltamethrin (98%). �is is the �rst
application of graphene-based materials in the analysis of
pesticides in oil samples. �ere are relatively a small number
of reports of carbon nanomaterials being used to extract
pesticides from other less-complicated matrices including
metazachlor from surface waters [24]; tebuconazole from
environmental water [25], vegetable [20], and tea [22]
samples; λ-cyhalothrin and deltamethrin from fruit [26] and
vegetable [26, 27] samples; and chlorpyrifos from envi-
ronmental water [14] and tea samples [22]. Depending on
the kind of the pesticide or/and pesticide concentration and
type of a matrix, the extraction recoveries of the pesticides of
interest ranged from 79.0 to ca. 100%. �e pesticides were
separated and detected using the RP chromatographic
system, which was adopted from literature [11] with slight
modi�cations due to the tested pesticides. �e detection
limits of the �ve pesticides determined by the d-SPE
(graphene)-HPLC/UV method were not quite satisfactory
because some of them were above maximum residue levels
(MRL; measured in rapeseeds [28]) for deltamethrin
(MRL� 0.07mg·kg−1), metazachlor (MRL� 0.06mg·kg−1),
and chlorpyrifos (MRL� 0.05mg·kg−1). For λ-cyhalothrin
(MRL� 0.2mg·kg−1) and tebuconazole (MRL� 0.5mg·kg−1),
the developed method may be used as the so-called “cuto¡”
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Figure 2: Chromatograms of the extract of the blank rape oil sample (a), �ve standard pesticides (1 µg/1ml of methanol) (b), and the extract
of the rape oil sample, spiked with the �ve standard pesticides (c) (concentration (62.5 ng/g) equal to LOQ). 1: metazachlor; 2: tebuconazole;
3: λ-cyhalothrin; 4: chlorpyrifos; 5: deltamethrin.
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method allowing to separate “good” samples from “bad” oil
samples. However, in our investigations, HPLC-UV, which
is a relatively not highly sensitive technique, was primarily
used as the detection tool for estimating the adsorption
potential of graphene for the studied pesticides present in
the oil matrix. In the abovementioned works, the detection
limits achieved were considerably lower (single nanogram or
less), but in the vast majority cases (with the exceptions of
[25] and [27] where 300mL of the aqueous sample was
analyzed by HPLC-UV and a 10 g portion of the homoge-
nized plant sample was assayed by GC-ECD, resp.), highly
sensitive detection methods like mass spectroscopy (MS) or
tandem mass (MS-MS) spectroscopy were used.

5. Conclusion

In most cases of pesticide analysis involving graphene as an
adsorbent, magnetic solid-phase extraction (MSPE) was
applied where magnetically modified graphene composites
as adsorbents were used. Only few works reported the
employment of nonmodified graphene alone or in combi-
nation with other sorbents (in the modified QuEChERS
method) using dispersive solid-phase extraction. .is is the
first time when graphene in its nonmodified form, using
d-SPE, was studied as the adsorbent for the pesticides from
four different groups present in such analytically difficult
matrices as edible oil. Graphene may be successfully exploited
in the preparation of edible oil samples for determination of
pesticides from various groups. However, some improvements
should be introduced in such analyses. For example, a more
sensitive analytical method (e.g., GC-MS or LC-MS) may be
used. Additionally, a more suitable modified graphene form,
for example, magnetically modified graphene, which will
prevent the nanomaterial aggregation, increase its disper-
sion in solvents, and improve its adsorption properties,
would better enable separation of graphene from the isolated
analytes in the supernatant using an external magnet.
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