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Abstract

Is it always possible to explain random stochastic transitions between states of a finite-dimensional
system as arising from the deterministic quantum evolution of the system? If not, then what is the
minimal amount of randomness required by quantum theory to explain a given stochastic process? Here,
we address this problem by studying possible coherifications of a quantum channel @, i.e., we look for
channels ®° that induce the same classical transitions T, but are ‘more coherent’. To quantify the
coherence of a channel ® we measure the coherence of the corresponding Jamiotkowski state Jo,. We
show that the classical transition matrix T can be coherified to reversible unitary dynamics ifand only if T
is unistochastic. Otherwise the Jamiotkowski state J$ of the optimally coherified channel is mixed, and
the dynamics must necessarily be irreversible. To assess the extent to which an optimal process ®C is
indeterministic we find explicit bounds on the entropy and purity of J$, and relate the latter to the
unitarity of ®¢. We also find optimal coherifications for several classes of channels, including all one-
qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary
channel ® and reduces its rank (the minimal number of required Kraus operators) from d? to d.

1. Introduction

Random processes are ubiquitous in both classical and quantum physics. However, the nature of randomness in
these two regimes differs significantly. On the one hand, classical random evolution is necessarily irreversible. On
the other hand, quantum evolution may be completely deterministic (and thus reversible if no measurement is
performed), but nevertheless lead to random measurement outcomes of observable A by transforming a system
into a coherent superposition of eigenstates of A. When probing the dynamics of the system one can therefore
observe the same random transitions, irrespectively of whether the evolution is coherent or incoherent. The
question then arises: to what extent an observed random transformation can be explained via the underlying
deterministic and coherent process, and how much unavoidable classical randomness must be involved in it?

To formulate this problem more precisely, consider a d-dimensional physical system undergoing some
unknown evolution. In order to characterize it, one first measures the system, finding it in some well-defined
state j, e.g., an eigenstate of observable A. One then allows the system to evolve for time 7 and performs the same
measurement again, this time finding the system in state i. By repeating this procedure many times and
collecting the statistics of measurement outcomes, one can reconstruct the transition matrix T, with entries T;
describing transition probabilities between states j and i. Now, for a truly random classical process, repeating it
(e.g., by letting the system evolve for 27 instead of 7) leads to the evolution described by T %. We illustrate this in
figure 1(a) for an exemplary two-dimensional system. However, in quantum physics, different transitions
(paths) of T can interfere with each other, so that the composition of two processes will generally not be
described by a transition matrix T 2. In particular, the compound process can even become fully deterministic,
leading to the complete disappearance of the observed randomness (see figure 1(b)). Our question can then be
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Figure 1. Classical versus quantum randomness. A two-dimensional system is initially prepared in a state |0) (0|. (a) The random
classical evolution, running between times 0 and 7and mapping between states |0) (0] and |1) (1|, is described by the transition matrix
Twith T;; = 1/2foralli, j. The resulting state of the system at time 7 is maximally mixed, (|0) (0] + [1) (1]) /2. Further evolution
between times 7 and 27 is also described by T, leading to the total evolution being described by T2 and leaving the system in the
maximally mixed state. (b) The quantum evolution between times 0 and 7 is described by a unitary operator Uwith Uj; = —1//2
andU; = 1 / V2 otherwise (hence Uis a normalized 2 x 2 Hadamard matrix). The resulting state of the system at time 7is |+ ) (+|,
with |[+) = (|0) + |1))/~/2. Note that if a measurement were performed at time 7, one would recover transition probabilities Tj;as
in (a). However, if the system evolves further between times 7and 27 according to U, due to interference of the paths, the state of the
system becomes |0) (0|, and thus the total evolution is described by the identity matrix, U? = 1.

rephrased as: what is the optimal coherification of the random process described by a classical transition
matrix T?

A more formal motivation for our studies comes from the resource-theoretic approach to quantum
information. To explain it, let us first consider a simpler and better-known problem: how coherent is a given
quantum state p of a d-dimensional system, and to what extent can it be transformed into a ‘more coherent’
state? Note that we do not refer here to the notion of spin-coherent states, which does not depend on the choice
of basis [1], but rather to a more recent concept of coherence with respect to a given basis [2], distinguished for
instance by the eigenbasis of the system’s Hamiltonian. Any state represented by a density matrix that is diagonal
in the preferred basis is incoherent in that sense, as it corresponds to a statistical mixture of classical states. On
the other hand, a quantum state whose non-diagonal elements, called coherences, do not vanish may lead to non-
classical effects of quantum interference. However, a generic system-environment interaction leads to the
process of decoherence, due to which the off-diagonal entries tend to zero and the state becomes classical.

From the perspective of emerging quantum information technologies, coherence can be treated as a resource
[3] allowing one to perform tasks impossible otherwise. It is then crucial to assess which quantum states are
more valuable, i.e., have more coherence. One is thus confronted with the problem of quantifying coherence [2],
which effectively means ordering the set of quantum states according to their coherence properties. Several
competing measures of coherence of a quantum state were recently discussed in the literature, e.g., the I, norm of
the off-diagonal entries of a density matrix or the relative entropy between a state and its decohered version (for a
comprehensive review see [4] and references therein). Note that the diagonal density matrices, appearing as a
result of the process of decoherence, are situated at the very bottom of this ordering, as they are classical and do
not carry any coherence at all.

The problem of quantifying coherence has been taken a step farther by focusing on cohering power of quantum
channels [5], i.e., studying the degree to which a quantum map can create coherence in an initially incoherent state.
One can analyze the maximal or the average gain of coherence, where the average is taken over a suitable set of
incoherent states. Such an approach is applicable to unitary transformations [6, 7] and to non-unitary operations
[8-10], and in this way quantum channels can be ordered depending on their power to create coherence.

Within this approach, however, quantum states and their coherence are still the central objects of interest.
Here, we take an alternative path and make quantum channels themselves the main focus of our study.
Employing the well known Jamiotkowski—Choi isomorphism [11, 12], i.e., the fact that every quantum channel
® is isomorphic to a bipartite quantum state J [ 13], we propose to apply the measures of coherence to bipartite
states associated with a given channel. This way we can quantitatively investigate the problem posed at the
beginning of this section: how coherent can a given random transformation be? More precisely, for a given
stochastic transition matrix T'we look for the maximally coherent quantum channel ®¢, which under complete
decoherence collapses to T, so that the diagonal parts of both Jamiotkowski states are equal. We first prove thata
channel whose classical action is described by a transition matrix T can be coherified to a reversible unitary
transformation if and only if T'is unistochastic. We then derive general upper and lower bounds on the optimal
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coherification of a channel described by a non-unistochastic T. Finally, we construct optimally coherified maps
for any one-qubit channel and certain classes of channels acting on higher dimensional system:s.

The paper is organized as follows. In section 2 we set the scene by introducing necessary concepts concerning
the coherence and mixedness of quantum states and channels, and formulate the optimal coherification
problem. General limitations for coherifying quantum channels are then derived and analyzed in section 3,
where we also study particular families of maps in detail. In section 4 we discuss physical interpretation of
coherence and purity of a channel, and relate these quantities to unitarity [14] and cohering power [5].
Concluding remarks are presented in the final section 5, while some technical results, predominantly
concerning channels acting on two- and three-dimensional spaces, are relegated to appendices A—D.

2. Setting the scene

2.1. Coherence and mixedness of quantum states
A state of a finite-dimensional quantum system is described by a density operator p acting on a d-dimensional
Hilbert space H, thatis positive, p > 0, and normalized by a trace condition, Tr(p) = 1. The convex set of all
density matrices of size d, denoted by My, has d*> — 1 dimensions and contains the (d — 1)-dimensional
simplex P of normalized probability vectors of length d. By A(p) we will denote the probability vector with
entries given by the eigenvalues of p arranged in a non-increasing order.

Astateis pureif p = p* (equivalentlyif X(p) = [1, 0, ..., 0]), so it can be represented by a one-dimensional
projector, p = |1} (1]; and mixed otherwise. Typical measures used to quantify the degree of mixedness of a
given state [15, 16] include the von Neumann entropy®,

S(p) = =Tr(plogp) = =3_ Ai(p)log Ai(p), (1a)

and purity,
Y(p) = Tr(p?) = D lpsl* = Ap) - A(p). (1b)

if
Note that, since the above measures are directly related to the eigenvalues of p, they are unitarily invariant, and
thus the mixedness of a quantum state is preserved under unitary dynamics.

On the other hand, in order to study coherence of p € M, one first needs to specify a basis with respect to
which the coherence is measured [2]. This basis may be distinguished by the problem under study, e.g., within
quantum thermodynamics one is mainly concerned with superposition of energy eigenstates [17, 18]. Here,
however, we will study the problem in a general quantum information context, and thus we will simply fix an
orthonormal basis {|i) } _,. We say that a state is incoherent, or classical, when it is diagonal in the chosen basis.
Classical states can be alternatively represented by a probability distribution p = diag(p), where diag(p)
denotes a mapping of a density matrix p into a probability vector p € P with p; = p;;. With a slight abuse of the
notation we will also write p € Py if pis diagonal. Before we introduce measures of coherence, let us first define a
completely decohering quantum channel D,

D(p) = pP =Y (il pli)li) (il. )

1

Note that under the action of D any quantum state p undergoes complete decoherence and becomes diagonal in
the preferred basis. Thus, p” and the associated probability distribution p = diag(p) can be considered as the
classical version of a general quantum state p. Notice also that D is a projector onto 7 as p? € Pyand
D(pP) = pP forall p.

The problem of quantifying the amount of coherence present in a state has been addressed in [2], while an
earlier work [19] was devoted to quantifying quantum superposition. Two particular measures of coherence that
we will focus on in this work are the relative entropy of coherence,

Ce(p) = S(pllpP) = S(p?) — S(p) = S(p) — S(A(p)), (3a)
and the 2-norm of coherence’
Ca(p) = |lp = PPl =v(p) — v(pP) = A(p) - X(p) —p - p. (3b)

® Within this work we will use S(-) to denote both the von Neumann entropy of a density matrix, as well as the Shannon entropy of a
probability distribution.

7 We note that from the resource-theoretic perspective [2] C, does not strictly satisfy all desirable requirements for a coherence measure.
While it is true that under incoherent CPTP maps the 2-norm of coherence is non-increasing, it can increase on average under selective
measurements. However, in our study of coherence of quantum channels, the resource-theoretic constraints have no clear physical meaning,
and thus C, is a completely legitimate measure of coherence.
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M, 1)

Figure 2. Decoherence and coherification of quantum states. (a) For d = 2 apurestate p = |1)) ()| decoheres into the classical state
pP € P, lying on the axis of the Bloch ball. Its coherification, C(p”) gives the entire ring of pure states pC that decohere into p?; (b)
For d = 4 classical states from the probability tetrahedron, p € 7P,, can be coherified into pure states p¢ from the boundary of M.

Itis evident that the measures of coherence are directly related to the measures of mixedness. More precisely, the
relative entropy of coherence is the difference between the entropy of a classical version of a state and the
quantum state itself; and the 2-norm of coherence is the difference between the purity of a quantum state and the
purity of its classical version.

Among the family of states with a fixed spectrum, i.e., belonging to a unitary orbit, the measures of
mixedness are equal, but the measures of coherence vary significantly. The minimal coherence, equal to zero, is
obtained for the diagonal state U " p U, where U'is the unitary matrix containing the eigenvectors of p. The
maximal coherence is achieved by the contradiagonal state [20], p™ = HU"pUH, where H is a Fourier matrix
(or, more generally, a complex Hadamard matrix [21]), which is unitary and has entries with the same modulus,
|Hji> = 1/d. Since all diagonal elements of the contradiagonal state are equal, pi™™ = 1/d, one gets
Ce(p™™) = logd — S(p) and Cy(p™™) = v(p) — 1/d.

On the other hand, among the family of states with a fixed diagonal, i.e., quantum states that under the
action of D decohere to the same classical state, both mixedness and coherence measures vary. However, they
are maximized and minimized by the same states, which can be directly inferred from equations (3a), (30). The
minimum can be obtained by acting with the decohering channel D (that leaves the diagonal unchanged) on any
member of the family, leading to zero coherence. In a similar fashion we can define an optimal coherifying
transformation C (which should not be confused with coherence measures) that maps any member of the family
into a state that maximizes purity (and thus coherence),

C(p) = p© = [¥) (YI, such that diag(p®) = diag(p). (4)

This problem has a simple solution for any mixed state p. Identifying its diagonal elements with components of
aprobability vector p, one can write explicitly a family of optimally coherifying transformations

p — pc: pg — plpj ei(@,-*(;j])’ (5)

where the phases, ¢; € [0, 27), are arbitrary. The mixedness of such coherified states is zero and coherence
achieves its maximal value, C.(p€) = S(p)and C,(p¢) = 1 — p - p.In our work we will also refer to non-
optimal coherification transformations that map a diagonal state into a state with the same diagonal but some
non-zero off-diagonal terms. In figure 2 we illustrate the ideas of decoherence and coherification of quantum
states using low-dimensional examples.

Let us emphasize that equation (4) does not describe a realistic physical process, but rather it provides an
answer to a legitimate question concerning the possible past of an irreversible quantum dynamics. Such a
fictitious coherification can be treated as a kind of a formal inverse of the process of decoherence. More precisely,
for a diagonal state p € Py wehave D(C(p)) = p; and for a pure state 1)) (1)| we have C(D(|¢) (¥])) ~ ) ()],
where the equivalence is up to phase factors of the off-diagonal terms.

Finally, note that coherification can be compared to the known procedure [15, 22] of purification of a
quantum state. Any mixed quantum state can be purified at the expense of increasing the dimension of the
Hilbert space. More precisely, for any state p € M, its purification is given by a pure state [¢yp) € Hy ® Hyof
the extended system, such that its partial trace reads Trp(|145) (¥ap]) = p. The Schmidt vector of |44 5) coincides
with the spectrum of p, e.g., if the state p is maximally mixed, the state |t ) is maximally entangled. Both formal
procedures are not unique and they allow one to find possible preimages of p with respect to non-invertible
physical operations. Namely, purification yields states of an extended system which are transformed into pbya
partial trace; and coherification of a state p provides states of the same size which decay into p” due to
decoherence.
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2.2. Coherence and mixedness of quantum channels

In this work we generalize the notion of coherence and mixedness of quantum states to quantum channels, i.e.,
completely positive trace preserving (CPTP) maps acting on density matrices of order d. We will denote by S,
the set of all quantum channels, also called stochastic maps, acting on M,;. Recall that for any & € S, one can
define the associated Jamiotkowski state [ 11], as the image of the extended map acting on a maximally entangled
state,

Jo = 5@ © 1)) (9, ©)

with |[Q2) = 3 ,|ii) and T denoting the identity channel. Note also that the Jamiotkowski state is proportional to
the dynamical matrix of Choi [12], so that J = ®R/d. Here, with a slight abuse of the notation, ® denotes the
representation of the channel as a matrix of size d°, i.e., a superoperator with entries in the preferred basis given
by ®;.s = Tr(|j) (il @(|k)(1])); and the reshuffling transformation, X, exchanges elements of a matrix in such
away that square blocks of size d after reshaping form rows of length d°, so that Xij )R = X ji—see [13] for
further details. Finally, for every quantum channel there exists a Kraus decomposition [15], or the operator-sum
representation, of the form

() = 3 KK}, @)

where K; are called Kraus operators. Due to trace preserving condition these satisfy >°; K K; = 1, where 1
denotes the identity matrix of size d.
The condition of & € §;isequivalentto[11]

]’1’ 2 0) (Sa)

Tr(Ja) = g (8b)

These conditions imply that diagonal elements (in the preferred basis) of the Jamiotkowski state correspond to
the entries ofa d X d (column-stochastic) transition matrix 7,
.. .. 1

(il Jolif) = ETij’ 9
with Tj; > 0and °; Tj; = 1. The set of stochastic transition matrices of order d will be denoted by 7;. This set of
classical maps has d(d — 1) dimensions and can be embedded inside the set S; of quantum maps with d* — d*
dimensions [16]. Since the diagonal of J¢ (up to a constant 1/d factor) is given by the elements of a transition
matrix T, we will write diag(Jp) = $|T)), where |-)) denotes the (row-wise) vectorization of a matrix,

IT)) = (T ®D|Q), (10)
which can be also written as
|T>> = [Til) ,EZ) cee Tid) TZb EEES) Tdd]T’ (11)

with T denoting a transpose. We also define ((T| by the Hermitian conjugate of the right-hand side of
equation (10).

Before we define the coherence of a quantum channel @, let us first physically interpret the entries of the
corresponding Jamiotkowski state J3. Writing it in the matrix form in the distinguished basis we have the
following block form

D' c? .. ¢4

C.d1 C.d2 bd
with
Ty o .. o} Cf]1 Cli]é Cliil
Di— 52”1 7?2 c%’f,, . Cii = C.zijl CZ’JZ c%"jd ’ (13)
g Ty g od

where c,i’l = (i| ©(lk) (I})|j) and formally T;; = cJ’]’ . We thus see that the diagonal elements of D’ describe how
initial populations (occupations in the preferred basis) affect the final population of a state i; and the off-diagonal
elements of D’ describe how initial coherences affect the final population of a state i. On the other hand, the
diagonal elements of C¥ describe how initial populations affect the final coherence between statesiand j; and the
off-diagonal elements of C? describe how initial coherences affect the final coherence between states i and ;.
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In analogy with the standard completely decohering map, equation (2), we also define a decohering
operation D which acts on any quantum channels ® by bringing its corresponding Jamiotkowski state into the
diagonal form,

O — P Jo =P (14)
Diagonal Jamiotkowski state JZ € M,z represents the classical map T € 7, acting on probability vectors of
size d. The action of P on any state p is first to completely decohere it into p”, and then to transform the
probability vector p = diag(p) into Tp, so that the final state is always classical. Therefore, again with a slight
abuse of the notation, we will write & € 7;and ® ~ Tif ] is diagonal and diag(J) = %lT}).
As every quantum channel is isomorphic to a density matrix on an extended Hilbert space, H; ® Hy, itis
then natural to apply the standard measures of mixedness and coherence to the Jamiotkowski state /¢ and to

characterize in this way the properties of the associated channel. More formally, for any quantum channel &
acting on quantum states of size d one defines the entropy of a channel [23],

S(®) = SUs)s (15a)
and the purity of a channel,
Y(®) = vUs) (15b)
These quantities allow us to introduce
1. entropic coherence of a channel,
1
Ce(q)) = Ce(]q)) = S(ElT») - S(JCD)a (16‘1)
and
2. 2-norm coherence of a channel,
1 1
Co®) s= Colfa) = Ua) — —{(TIT)) = Tr() — — Tr(TT). (16b)

Note that C,(®) can be decomposed into two terms,

Cao®) = CI(P) + C5(D), (17)
with C?(®) measuring coherence coming from diagonal blocks D*and CS(®) from off-diagonal blocks C7, i.e.,
CO@®) = 32l C5@) = 3 I (18)
ikl ipkl
k=1 i=j

We now arrive at the central technical problem analyzed in the current work: coherifying quantum channels.
Note that, given a fixed diagonal, diag(Js) = §| T)), of the Jamiotkowski state J (equivalently: a transition

matrix T specifying the classical action of @, i.e., P = T'), one can always find the corresponding coherified
pure state by simply employing the optimal coherification recipe, equation (5). In general, however, such a pure
state will not satisfy the trace preserving condition, equation (80). More precisely, this condition is equivalent to
>, D' = 1,and thus the choice of the off-diagonal elements of D* (describing the effect of initial coherences on
final populations) is constrained beyond the standard positivity constraint. Hence, for any classical map
represented by a stochastic matrix T'it is legitimate to ask the following question: what is the corresponding
optimally coherified quantum map ®C with the same classical part, such that its coherence is the largest (or its
mixedness is the smallest). In figure 3 we illustrate the ideas of decoherence and coherification of quantum
channels using one-qubit maps as an example.

3. Limitations of coherifying quantum channels

In this section we will investigate the limits to which a given quantum channel ® € S;, with a prescribed
classical action ®” = T € Ty, can be coherified into an optimal channel ®€ with minimal entropy or maximal
purity. To characterize potential coherification of a given channel we will simply use both coherence measures
introduced above in equations (16a) and (16b). We thus first define optimally coherified channels according to
both measures,
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Figure 3. Decoherence and coherification of quantum maps. (a) Set 7, of stochastic matrices of size d = 2 embedded inside the
tetrahedron 7, of probability vectors of length d* = 4; (b) optimal coherification of a quantum channel corresponding to a
bistochastic matrix from 3, (and thus unistochastic) yields a unitary transformation: the Jamiotkowski state J is transformed into a
purestate J§ = %l U W U|. Optimal coherification of a quantum channel corresponding to a general stochastic matrix T € 7, yieldsa

non-unitary channel from S, whose Jamiotkowski state J¢ is mixed.

®C := argmax C.(V), (19a)
T PP= P
® := argmax Cy(¥), (19b)
U: YP=9P
which allows us to define
1. entropic coherification,
AC(®) = Co(®%) — Cu(P), (20a)
and
2. 2-norm coherification,
ACH(D) = Cy(P%) — Cy(D). (20b)

We will be particularly interested in the extremal case when the coherified channel is classical, ® ~ T. Then,
since C.(T) = C»(T) = 0, wehave

ACAT) = Ce(d%) = S(ém)) — SUg), (21a)

1
42
Note that, although we introduced two potentially inequivalent coherification procedures, ®% and ®: (with
corresponding Jamiotkowski states 5 and J§2), while deriving general bounds affecting both maximization
processes, we will simply use &€ (and J$).

We now need to point out an important relation linking the classical action of a channel and its Kraus
decomposition. Namely, for a channel ® with a classical action ®” = T, the Kraus decomposition of ®, defined
in equation (7), satisfies

ACHT) = Cy(D%) = (&) — —((TIT)). (21b)

Z Ki o I_<i = T, (22)

1

with o denoting the entry-wise product (also known as Hadamard or Schur product) and K; being the complex
conjugate of K.

The problem of optimal coherification of a channel naturally splits into three cases, corresponding to three
families of transition matrices T presented in figure 4. The biggest family, 7, consists of all stochastic matrices of
size d, i.e., the most general transformations mapping the set of d-dimensional probability vectors into itself.
These are defined by Tj; > 0and 3, Tj; = 1. The second family, B;, is given by the set of bistochastic matrices,
which in addition to being stochastic satisfy 3, Tj; = 1. This additional condition encodes the fact that
bistochastic matrices map the uniform distribution, [1/4, ..., 1/d ], into itself. The third analyzed case
corresponds to unistochastic matrices U, which are such bistochastic matrices T whose entries can be written as
T = | Ulj|2, for some unitary matrix U. Note that this condition, using equation (22), can alternatively be written
as T = U o U.Whilebistochastic matrices form a proper subset of stochastic matrices for alld > 2, the

7
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Stochastic Ty
2T =1

Bistochastic By

2Ty =3,;T;=1

Unistochastic Uy
Tij = |Usj|?

Figure 4. Families of transition matrices. Inclusion graph of three sets of transition matrices T of order d describing the classical
channels. For all three sets one has T;; > 0. Note that U, = B,, while for alarger d a proper inclusion relation holds, s C Bs C 7.

unistochastic matrices form a proper subset of bistochastic matrices only for d > 3, as every bistochastic matrix
of order d = 2 is unistochastic. Interestingly, the exact boundary of the set of unistochastic matrices is known
only for d < 3[24], whilefor d > 3 the set of unistochastic matrices is not convex [25].

3.1. Unistochastic matrices and unitary channels
We start our analysis from the smallest family of unistochastic matrices. We will thus consider optimal
coherification of a channel for which diag(Jp) = %I U o U)). Wessay that a given channel can be completely

coherified if there exists ](g that is pure, has the same diagonal as J and still corresponds to a valid channel. From
equation (6) it is clear that the Jamiotkowski state is pure if and only if the corresponding map & is unitary. This
simple observation can then be formalized as follows:

Proposition 1. A quantum channel ®, with the corresponding Jamiotkowski state Jg, can be completely coherified to
a unitary transformation if and only if its classical action is given by a unistochastic matrix.

Proof. First assume that ® can be completely coherified. This means that there exists a pure state J& with
diag(J$) = diag(Js), and that it corresponds to a valid channel ®¢. However, pure Jamiotkowski states
correspond to unitary channels, so that (comparing equations (6) and (10))

J§ = §|U>><<U| - %(U@ 0)E. 23)

Therefore, the diagonal of J§ (and, by assumption, of J) is given by é| U o U)), which corresponds to a

unistochastic matrix. Conversely, assume that the diagonal of J is described by a unistochastic matrix UoU.
Then one can simply choose J§ to be a pure state given in equation (23).

Notice that every non-trivial classical stochastic dynamics is irreversible. However, if it is described by a
unistochastic matrix T, one can find a reversible (unitary) quantum channel ®¢ whose classical action is given by
T. On the other hand, if the classical dynamics is not unistochastic, it cannot be completely coherified and made
reversible. We will now show such a coherification procedure in action by analyzing some simple examples, and
in the following section we will address the limits to which a general stochastic dynamics can be made reversible.

First, consider a transition matrix given by a permutation matrix IT of size d. A quantum channel ®
corresponding to a diagonal Jamiotkowski state with diag(J3) = %lH} )is a completely decohering channel that

permutes diagonal elements. The vector %|H>> of length d” has d non-zero entries equal to 1,/d, so its Shannon
entropy is equal to log d. However, as I1 is unistochastic, it can be coherified to a unitary transformation
corresponding to the Jamiotkowski state J$ = %(H ® II)R with zero entropy and d(d — 1) off-diagonal entries
equal to 1/d. Thus, the entropic coherification of any classical permutation matrix reads AC.(I) = logd, while
the 2-norm coherification is equal to AC,(IT) = (d — 1) /d. Observe that the optimal coherification of the
classical identity matrix T' = 1 (corresponding to a completely decohering channel D) is indeed the unitary
identity quantum channel 7, represented by a maximally entangled state J; = %lQ) Q.

Let us now move to the other extreme: the uniform van der Waerden matrix W of size d with entries
Wj; = 1/d. A quantum channel ® corresponding to a diagonal Jamiotkowski state with diag (Jo) = %l W))is the
completely depolarizing channel, which sends any state into the maximally mixed state, ®(p) = 1/d. The
vector %|W>> has d? equal entries, so that its entropy is equal to 2 log d. However, as for any dimension d there
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exists a unitary Fourier matrix F with all entries of the same modulus, the uniform bistochastic matrix is
unistochastic, W = F o F.Thus, ® can be completely coherified to a unitary transformation described by a pure
state J$ of zero entropy. As a result, coherification of the uniform matrix (i.e., completely depolarizing channel)
is maximal, with AC.(W) = 2logd and AC,(W) = (d*> — 1) /d>.

Finally, we consider a class of quantum channels of an arbitrary dimension that can be completely coherified:
afamily of Schur product channels [26, 27], defined as

Px: pr— poX. (24)

In the above X is an arbitrary correlation matrix and o, as before, denotes the entry-wise (Schur) product. The
correlation matrix X has ones on the diagonal to assure trace preserving condition, and positivity of X guarantees
complete positivity of the map ®y. The Choi-Jamiotkowski matrix of this channel is given by

Jo = = 32 X3li) (i © 1)l 25)
i,j

As X;; = 1for alli, the classical action of ®x is given by an identity matrix. Using proposition 1 we see that every
Schur product channel can be completely coherified to a single common unitary channel, namely the identity.

3.2. Stochastic matrices and majorization bounds

We now proceed to the analysis of quantum channels whose classical action is given by a general stochastic
matrix T that is not bistochastic (the outer shell of the set 7; presented in figure 4). First, we provide the
majorization upper-bound on the spectrum, A (Jp), of all Jamiotkowski states with a given diagonal
diag(Jp) = %l T)), i.e., on the spectrum of the optimally coherified state J$. This bound allows us to upper-

bound any Schur-convex function of the spectrum A (J$) (like the purity v (J$)) and lower-bound any Schur-
concave function (like entropy S (]g )), and thus to bound C, and C, of the optimally coherified channel. This, in
turn, is equivalent to bounding the entropic and 2-norm coherifications of a given classical channel. Next, we
provide an explicit construction of a particular (non-optimal) coherified Jamiotkowski state ]g 9, which allows us
to lower bound coherence measures for the optimally coherified channel. We then illustrate the application of
our results by finding optimal coherifications of qubit and qutrit channels, and interpreting their action. Finally,
we make a short comment on the coherification of a particular qudit map.

3.2.1. Upper bound for the optimal spectrum
Let us first recall that a probability vector p is said to majorize q, which we denote by p > ¢q,ifand onlyif

k k
Zpil 2 Zqil’ (26)
iz1 iz1

forallk € {1, ..., d}, where p' denotes a probability vector with entries of p arranged in a non-increasing
order. We now state the following theorem, which we prove in appendix A (recall that A (X) denotes the
eigenvalues of X arranged in a non-increasing order):

Theorem 2. Given a positive semi-definite matrix Jp written in blocks, as in equation (12), we have

d
=32 MDY = A, @7)

i=1

where d(d — 1) zeros are appended to each of the vectors X (D?), so that their dimension agrees with that of X (J).

Next, we note that for Jamiotkowski states, due to equation (80), we have 3, D' = 1. This results in the
maximal eigenvalue of each D' to be upper-bounded by 1,as D' < 1. Consider nowad X dstochastic matrix T
that describes the diagonal of the Jamiolkowski state J¢. For every row of T'we write the sum over its columns as
Zj Tj = n; + a;, with n;beingan integer and a; € [0,1). We then define the following set of vectors:

® — .

s(T)=1[1,1,...,1,a;0,...,0]. (28)
n; times

Using theorem 2 and the fact that eigenvalues of D* are upper-bounded by 1 we obtain the following

majorization bound:

1 &
w(T) = 7 > sO(T) = A(Ja). (29)
i=1
Since the above majorization bound holds for all J with a fixed diagonal, in particular it also bounds the
optimally coherified channel, g~ (T) = A(J$). This can then be translated into upper-bounds on entropic
coherence of ®% and 2-norm coherence of ®: [so also, due to equations (21a) and (21b), on entropic and

9
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2-norm coherifications of a classical channel & ~ TJ:
C(D%) < S(%IT») — S(u(T), (30a)
Co(®%) < (1) - w(T) — %TY(TTT)- (30b)

To illustrate the application of the bound, let us consider the following transition matrix:

0.7 0.2 0.6
T=1{01 06 04/, (31

0.2 0.2 0.0

for which the vectors from equation (28) read
sO(T) =[1, 0.5, 0], sP(T)=1[1,0.1,0], s®(T)=1[04,0,0].

The bound, equation (29), tells us then that [0.8, 0.2, 0, ..., 0] > A (Lg).

Let us also notice that the bound becomes trivial for bistochastic matrices, as in this case s®) = [1, 0, ..., 0]
for all i. This, however, was to be expected, as otherwise one could differentiate between unistochastic matrices
and bistochastic matrices that are not unistochastic, a problem that is known to be hard and was solved only for
d < 3[25]. We will come back to this problem in section 3.3.

3.2.2. Lower bound for the optimal spectrum

We will now present a particular (non-optimal) coherification procedure Cy that can be applied to all quantum
channels, irrespectively of their classical action T. The coherence of channel ®“ coherified in such a way can
thus be used as alower-bound on the optimally coherified channel ®¢, i.e., Co(®%) > C.(®%)

and C,(®%) > Cy(d%).

We start by reminding that the constraint not allowing one to completely coherify a channel is the TP
condition, equation (8b), which means that ), Di = 1. One can then choose all D' to be diagonal and try to
coherify the channel only by modifying C ¥ matrices. Note that the eigenvalues of D' are then given by the entries
of T, A\(D') = r, where the vectors r” are defined by the rows of T'arranged in a non-increasing order,

r(i) = [T;la [RXS ’Ed]l (32)

From theorem 2 we thus have that

d
L5 0 Ag 2

i=1

The above majorization bound can be saturated by J<° with the following choice of non-zero elements of C”. For
each block D’ find the maximal diagonal element, 7", and set the off-diagonal elements between them (elements
of C) to the maximal value allowed by the CP condition, i.e., [r{”r]z. Then, repeat the procedure for the nth
largest eigenvalues of D ‘ rn(i), withn € {2, ..., d}. The structure of the resulting Jamiotkowski state ](I(,j 01s
illustrated in figure 5 for d = 3. The spectrum of ](g“ is given by

d
pET) = =500 = AU, (34)

i=1

which is also the optimal spectrum for the Jamiotkowski state with a fixed diagonal, when we additionally assume
no coherence in its diagonal blocks D",

Let us now analyze the action of a channel coherified according to Cy. We first note that a classical channel
® = PP has the following Kraus decomposition:

d
() = Y KiOKL, Ky = JTli) (jl, (35)
i,j

so that the minimal number of Kraus operators is equal to the number of non-zero entries of a stochastic matrix
T (in general d*). On the other hand, we know that, by construction, ]g" is equal to the sum over at most d
projectors, so that the number of the corresponding Kraus operators will be smaller or equal to d. More precisely,
one can obtain ith Kraus operator directly from the T matrix: in every row of T'leave only the ith largest entry,
replace it with its square root, and set all other entries to zero. For example, given the transition matrix from
equation (31), we get

10
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Figure 5. Structure of ]go ford = 3. The non-zero entries of block matrices D’ and C forming ]q,CO are indicated in color. Moreover,
foralliwehave D/ > Dj; > Dj, i.e., different colors correspond to r]f’) with different;.

~v0.7 0 0 0 0.6 0 0.2
Ki=] o o6 o K= 0 V04| Ks=| /01
0

0
V0.2 0 0 v0.2 0 0 0

We thus see that it is always possible to coherify a channel ®, so that the number of Kraus operators (the rank of
the Jamiotkowski state J$) realizing a given classical transformation T (with diag(J§*) = %l T))) decreases from
d* to d. Physically, we can interpret C as replacing d” classical processes (transitions from state i to j) into a
classical mixture over d quantum processes, where each quantum process describes a coherent superposition of
d classical transitions, each to a different final state. We also note that there exist stochastic matrices T for which
one cannot reduce the number of Kraus operators below d. These are given by transitions that move all
populations to a fixed iyth state, i.e., T with all entries in the iyth row equal to one and all other entries being zero.
The D' matrices of the corresponding Jamiotkowski state are all vanishing, except for Do = 1, which cannot be
coherified due to the condition 3°, D' = 1.

Finally, since it is always possible to coherify a channel so that the spectrum of its Jamiotkowski state is given
by 1i*(T'), one gets the following lower-bounds

0 0
0 ol
0

Ce(DC) > S(%lﬂ)) — S(p (1)), (36a)
Co(P%) > p(T) - p(T) —~ %Tr(TTT)- (36b)

For comparison with the upper-bounds presented in the previous section, equations (30a) and (30b), we note
that for the exemplary transition matrix used there, equation (31), we have

p@(T) = [0.5, 0.4, 0.1, 0, ..., 0].

3.2.3. Qubits

Having described the general bounds on possible coherifications of quantum channels acting on arbitrary d-
dimensional spaces, we now want to focus on a particular case of d = 2. The classical action of a general qubit
channelis givenbya2 x 2 transition matrix T described by two real parameters,

. a 1-bl_1|ab
T_[l—a b ]_'[a b]’ 47
with % := 1 — x. We will only focus on the case when a < b, as the results for the case a > b are analogous.
Namely, one only needs to exchange a with b in all expressions, and transform all matrices X by replacing Xy,
with Xj7. The details of the derivations can be found in appendix B.
For a < b, equation (29) tells us that the spectrum of the Jamiotkowski state /3, corresponding to any
channel with classical action specified by T, is bounded in the following way,

p (T) = %[1 tatbb—a 0.0 = A(o). (38)

This bound can be in fact saturated, i.e., there exists ](g such that X ( ]g ) = p~(T). Note that, since the
majorization bound is saturated, both coherification procedures (maximizing entropic and 2-norm coherence)
coincide, and are simply denoted by C. To express the Kraus operators of the corresponding optimally coherified
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Figure 6. Action of the optimally coherified qubit channel. The image of the Bloch sphere under &€ (with classical action described by
a= % and b = %) is represented by the gray ellipsoid. The thick red line represents the action of the classical channel ®7, while
dashed lines show transformations of significant points of the sphere.

channel ®¢, let us first introduce a unitary

U= —— (39)
Vb va

\/a+5

and a decaying channel ¥(-) = L;(-)L, + L,(-)L) with

L= [Jw—b 0], L,= [Jb()—a 0]. (40)

1 [ﬁ —ﬁ])

0 1
Then, ®(-) = K;()K, + K (-)K, with

0

va b 0
KVIZLIUT: 3 2 > KZZLZUT: - b \/ﬁ . (41)
7\,m ﬂqug a+b at+b

Itis straightforward to verify that the classical action of the resulting channel is given by T (using
equation (22)), as well as that the spectrum of the Jamiotkowski state is optimal (by checking that
Tr(K;K") = w; (T)). Let us also explicitly emphasize that the optimally coherified channel is given by the
composition of a unitary process and a decaying channel, ®¢(-) = W[UT(-) U]. As a consequence there exists a
pure state U|1) that is mapped by ®C to a pure state | 1), and therefore the minimum output entropy of ¢ is zero.
We illustrate the action of ® on a Bloch sphere for a particular choice of T'in figure 6.

Finally, let us apply the notion of coherification to contribute to the studies on geometry of the set S, of one-
qubit stochastic maps initiated in [28].

Proposition 3. Coherification of any classical one-qubit stochastic map, specified by a matrix T from equation (37),
yields a channel which is extremal in the set S,.

Proof. In the bistochastic case a = b, we obtain a unitary channel, which is extremal. In other cases, without loss
of generality, we may assume that c = b — a > 0. The products of the Kraus operators from equation (40),
corresponding to a decaying channel, read

1—¢c 0 00 0 0
LJLIZ[ 0 ¢ 1], Lszz[ﬁ o]’ LZ*Ll:[O f] L}Lzz[g 0]. (42)

Now, by direct inspection, we see that the above matrices form a linearly independent set. Thus, invoking the
theorem of Choi [12], the channel described by two Kraus operators L; and L, is extremal. To see that ®€ is
extremal, we note that the additional unitary matrix applied to Kraus operators will not introduce a linear
dependence of the set defined in equation (42).
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3.2.4. Qutrits

We will now illustrate how our results can be applied beyond the simplest qubit scenario, by using them to find
optimally coherified qutrit channels ®€. Again, the coherification procedure C will optimize both considered
coherence measures simultaneously. The classical action of a general qutrit channel is givenbya3 x 3 transition
matrix T described by six real parameters. Here, we will consider three families of such matrices, each
parametrized by three real numbers:

0ab ab 0 ab c
Teqlcobl (00 ¢ Jabe|p (43)
c ao ab ¢ 000

with % := 1 — x. We will refer to the above as cyclic matrices, single-row matrices and double-row matrices,
respectively. For each family of T'we will provide the optimal spectrum of the Jamiotkowski state (which yields
tight bounds on C, and C, via equations (30a), (30b)), as well as the Kraus decomposition of the optimally
coherified channel ®C. The details of the derivations can be found in appendix C.

For cyclic matrices ®€ is given by ®%, i.e., the optimal coherification procedure is given by the one we
defined in section 3.2.2. Introducing

p = max(a, b) + max(c, b) + max(Z, a). (44)

we thus get

o_|E 4 _F 4
A(]&I)) |:3) 3) 0) EEES) 0] ( 5)

The Kraus operators can be obtained by using the procedure described in section 3.2.2, e.g., fora > b, b > ¢
and ¢ > dwe get

0 va 0 0o 0 b
K=|o0o o Vil Kk=|vc 0 o (46)
JE o o 0 Ja o

For single-row transition matrices there are three separate cases depending on parameters a, b and c. If
a + b < 1then the optimal spectrum is given by

AJS) = %[1 +a+b+ ¢ max(@d — b, ¢), min(d@ — b, ¢), 0, ..., 0], (47)

and the Kraus decomposition of the corresponding optimally coherified channel is given by

Ja NI 00 0 0 0 0

K=| 0 O Flr=lo0 ofk-| 2 °o 9 (48)
[t _ [ 00 e Ji—— [Jb——" 0
a+b a+b 0 \/? a a+b a+b

Ifa + b > 1the number of non-zero elements of the optimal spectrum (so also of the Kraus operators) reduces
from three to two. The optimal spectrum is again given by equation (45), but this time with

p=1+max(@+ b, ¢) + c. (49)

Ifé > a + bwethus get A (Lg ) =1[2/3, 1/3, ..., 0], i.e., the optimal spectrum is constant for all parameters
satisfyinga + b > 1 + ¢, and the Kraus operators of the optimal map are given by:

L.. ﬁ,. 0 a_~b~ - b_~d 0
K — Vd+b Vﬁ+b K — a+b a-+
R () 0 | '

0 0 JZ Ja b 0

On the other hand, if ¢ < @ + b then there is a slight change in the Kraus decomposition of the optimal map.
Namely, the last rows of K; and K, in equation (50) are swapped.

For double-row matrices there are again three separate cases depending on the valueof s := a + b + .
These are specifiedby s € [0, 1], s € (1, 2)and s € [2, 3], and the optimal spectra are then given by

(50)

AJS) = %[1 +s51,1—5,0,...,0], (51a)

AUS) = %[2, 1,0, ..., 0], (51b)
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Figure 7. Constraints for channels with bistochastic classical action. (a) Due to the TP condition, the sum of a given off-diagonal element
over all D’ matrices must vanish (here the summed elements are presented in the same color). (b) If the TP condition constrains a
given off-diagonal element (here: two red elements of D") beyond the positivity constraint, then also the values of all off-diagonal
elements sharing a row or column index with it (here: all elements denoted in blue) are constrained beyond the positivity constraint.

AJS) = %[4 1, 5—2,0,...,0], 10)

respectively. Due to the lack of concise expressions, we provide Kraus decompositions of the resulting optimally
coherified channels in appendix C.

3.2.5. Qudits

Finally, we want to make a short comment about a special family of channels in the general d-dimensional case.
Consider a completely contracting channel U, which sends any initial state into a single point, ¥,(p) = o. The
corresponding Jamiotkowski state has a product structure and reads Jg, = 0 ® 1/d [29]. The output state can
be coherified to a pure state 0¢ = [1)) (1| by the standard procedure given in equation (5). Hence the contracting
channel ¥, can be coherified to a channel contracting into a pure state with Jy , = |¢) (4| ® 1/d and zero
output entropy. Note that this coherification procedure increases the entropic coherence of a channel by S(o).
Notice also, that for a mixed state o such a procedure is not optimal, as can be immediately seen by recalling the
result presented in section 3.1, where we showed that ¥ /4 can be completely coherified.

3.3. Bistochastic matrices and polygon constraints
We now proceed to the analysis of quantum channels whose classical action is described by bistochastic matrices
that are not unistochastic (the middle shell of the graph presented in figure 4). On the one hand, due to
proposition 1, we know that these cannot be completely coherified. On the other, our majorization result
derived in section 3.2.1 yields a trivial bound for bistochastic matrices. Moreover, a non-trivial constraint for all
bistochastic matrices could serve as a witness of unistochasticity, and thus it is unlikely that such a concise bound
can be found [25]. Therefore, here we will present an approach that allows one to obtain limitations on possible
coherifications of quantum channels with classical action described by a particular subset of 13;.
We start by noting that due to the TP condition, equation (8b), for every k = [ we have ), Dj; = 0 (see

figure 7(a)). This, via the polygon inequality, implies that

1Dyl < > ID}. (52)

j=i

Recalling that matrices D Tareall positive, we have

Dyl < VDjyDj = T T (53)

Combining the above two equations we arrive at
IDi < >° T T (54)
=i
We thus see that the maximum value of |D,i,| allowed by CP condition is +/ T T, whilst the TP condition restricts
it via equation (54). Therefore, if for some i, k, [ we have

VT Ty > > Tw Ty, (55)
j=i
then |D/j|is constrained beyond the positivity condition and we know that the resulting Jamiotkowski state
cannot be pure, so that the corresponding channel cannot be completely coherified. More precisely, for every 7,
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k, I'such that T;; T;; = 0, we introduce

\/—i . Zj#\l ’I}k Tﬂ

ay = min| ———-, 1}, (56)
T Ta

which describes the maximum fraction of the coherence (between states k and / of a matrix D) that could be

achieved if there was no TP constraint.

Now, whenever oz}'d < 1(i.e., | D}l must be smaller than necessary for complete coherification), other off-
diagonal elements of the Jamiotkowski state Jg also become constrained beyond the positivity condition. Before
we prove this and explain how it restricts the coherification of quantum channels, let us first comment on the
aly < 1condition. First of all, there exist T € B; that are neither unistochastic, nor they satisfy this condition for
any i, k, I. Thus, the presented bounds will, in general, work only for a subset of quantum channels with
bistochastic classical action. However, as for d = 3 a bistochastic matrix is either unistochastic or aj; < 1for
some i, k, [ [25], we will obtain non-trivial bounds for all qutrit channels. Further improvements would require
finding a clearer separation between the sets U, and B,.

We start by showing how a}; < 1canbe used to constrain the purity of the optimally coherified channel.
Note that Sylvester’s criterion states that Jp > 0 implies thatall 3 x 3 submatrices of Jo must have positive
determinant. In particular, it means that for a part of a matrix d - J containing Ty, T;;and any other Tj,,, we have

Tx D a
det[DFf T, b [>0. (57)
a*  b* T;

Since we know that the maximum value of | D} |? is upper-bounded by o, T Ty, the above equation constrains all
off-diagonal elements g, b of J3 sharing a row or column with Ty or T;; (see figure 7(b)). This results in the
following bound on the purity of the optimally coherified Jamiotkowski state ]cg 2 (see appendix D for details):

YUE) S 1= A= Ay, (58)

with
A = %Tik’n‘l(l —aj), A= %(Tik + Ti = B (59)

and
B = \/(Tik — Tp)? + 4o Ty Ty (60)

The purity deficits, A; and A,, add up for every i, k, I for which equation (55) holds (however, care needs to be
taken not to count twice the same terms). We illustrate this bound on the purity of the optimally coherified
channel in figure 8 for an exemplary case of a family of qutrit maps.

Alternatively, one can use the fact that off-diagonal terms of D" are constrained beyond the positivity
condition to bound X (D?), and then use theorem 2 to obtain a non-trivial majorization bound on the
eigenvalues of the Jamiolkowski state. In appendix D we show for example that

[1 — i, i, 0,...,0] = X(D?), (61)

with
| ;
w= E(Tik,» + Ty, — Bia) (62)

where k;and J; are indices for which a}'q , is minimized (so that we obtain non-trivial majorization bounds on the
spectraof D', whenever a}; < 1for some kand I). This, in turn, means that

P
[1 = Sk S 0, ...,0] = AUS), (63)

which can be used to obtain bounds on C, and C, via equations (30a), (300). As an example consider a quantum
channel with classical action given by

1 011

2110
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Figure 8. Purity bound. The upper-bound on purity -y of the family of optimally coherified qutrit channels with the classical action
given by a bistochastic transition matrix T = Y23_, ¢,1T’, with 37, ¢, = 1and Il beinga cyclic permutation matrix. Any unistochastic
matrix T' € U can be completely coherified, so thaty = 1.

corresponding to the middle-point between IT and I’ in figure 8. One then gets

ays = afy = aj, = 0, (65)
resultingin 1' = 1/2, so that the spectrum of the optimally coherified Jamiotkowski state is majorized
by[1/2,1/2,0,...,0].

Finally, let us note that, in particular cases, the tools introduced in section 3.2 can also be used to find
limitations on coherifying channels with T € B;. As an example consider the family of qutrit channels described
by cyclic matrices (first entry of equation (43)) with a = b = &.The matrix Tis then bistochastic and the
spectrum of the optimally coherified Jamiotkowski state is given by [a, 1 — a, 0, ..., 0] (fora > 1/2)or
[4,1 —4,0,...,0](fora < 1/2). This shows that the majorization bound, equation (63), applied to the
channel with T'specified by equation (64) is tight.

4. Physical interpretation

We started this paper asking about the extent to which a given random transformation can be explained via the
underlying deterministic and coherent process. Now, being equipped with formal bounds limiting possible
coherifications of quantum channels, we will try to address this initial question. We will also provide
interpretation of the purity of a channel by relating it to the notions of unitarity and average output purity.
Finally, we will comment on the links and differences between our approach to the study of coherence of
quantum channels, and the ones existing in the literature.

Let us start by recalling that the evolution of a pure quantum state |¢/) under the action of a channel @,
described by

Q(|¥) (¥1) = - Kilg) (¥1 K, (66)
i
can be interpreted as an incoherent (probabilistic) mixture of different pure state transformations,
) — —L_KJ) with probability g, 67)
Vi
where
q; = Tr(Kily) (¥] KD), (68)

and we refer to the canonical Kraus form in which all Kraus operators K; are mutually orthogonal, as they are
obtained by reshaping eigenvectors of the Choi—Jamiotkowski matrix. Each independent path, described by K;
and being chosen with probability g;, describes a coherent evolution, as it preserves the ability of a state to
interfere (it maps a pure state to a pure state). Thus, the probability distribution over different paths, ¢, can be
seen as describing the incoherent randomness associated with ®. Note, however, that the probability of evolving
alonga given path depends on the initial state of the system |1)). In order to achieve a state-independent
statement characterizing a given quantum channel ®, one can then focus on the average probability of choosing
a given path. Introducing the average over (Haar distributed) pure states,

(Yo = fdw(-), (69)
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we see that the probability describing which path is chosen is on average”
(@) = Tr(Ki (1Y) (Y1) K) = Tr(KK]) = X\i(Jo), (70)

where A (Jp) denotes, as usual, the eigenvalues of the Jamiotkowski state Jg corresponding to ®.

We thus see that the incoherent randomness of the evolution coming from the random choice of different
paths is (on average) described by the spectrum of Jg. The extent to which a quantum channel with a given
classical action T can be coherified tells us how coherent the underlying evolution, leading to transitions
described by T, can be. On one extreme, we have unistochastic transitions that can be completely coherified and,
therefore, explained by a single deterministic path (unitary dynamics). On the other hand, the majorization
upper-bounds on A (J3) that we derived in section 3, yield lower-bounds on the randomness of path distribution
of the underlying process necessary to induce classical transformation T. Moreover, our majorization lower-
bound provides a particular coherent explanation of every classical process T (decreasing the randomness of
path distribution) and, in particular, shows that all transitions T can be explained with at most d paths.

Let us now focus on a particular measure describing the randomness of the path distribution, namely on the
purity of a channel v(®). One could be tempted to think that the bigger (®) is, the purer the average output
purity,

(o) = (Y (@(Y) (¥]))y» (71)

will be. Although the two notions are related, as we will shortly see, they are not in direct correspondence. As an
illustrative example consider two quantum channels,

() =UEUT with U= %Z k) (1], (72a)
@) = I (0] with ) = —= 50, (72b)

with classical action given by the van der Waerden matrix T = W with flat entries Wj; = 1/d, which maps every
probability distribution to a uniform one. Both channels have the same average output purity equal to one; but
for areversible ®; we have y(®;) = 1, while for an irreversible ®, we get v ($;) = 1/d. This suggests that the
purity of a channel is somehow related to reversibility of the process, which leads us to the concept of unitarity. It
was originally introduced in [14] to measure the departure of a channel from the unitary dynamics, and for
trace-preserving channels is defined by:

d 1
oo o) .
w(@:=——| o) = (2 (73)
We note in the passing that one can also relate unitarity to the variance of the random variable X = ®(|y) (¥|):
u(®) = Tr((X?)y — (X)3) = Tr(Vary(X)). (74)

For our exemplary channels we see that u(®;) = 1and u($,) = 0, in accordance with the purity of the channel
and capturing the fact that a completely irreversible process is as far as possible from a unitary transformation.
We will now formally relate y(®), (7;) and u(®). The authors of [14] showed that

Pl o))

which, using the definition of unitarity, directly leads to the general expression for the average output purity
derived by Cappellini [30],

u(®) =

d [ 1
= ——|v(®) + v(® (— ) )] 76
(o) = = [ 7@ + (@5 (76)
We thus see that both average output purity and unitarity are proportional to the purity of a channel corrected by
aterm describing the purity of the transformed maximally mixed state. Moreover, for large d, u(®) actually
approaches v(®). Now, by noting that the minimal value of purity for a d-dimensional system is 1 /d, we obtain
the following inequalities”:

d? 1
P) < ) — — |,
u(®) < o 1[7( ) dZ] (77a)

8 . . . . .
We note that the average here could actually be taken over all states, pure and mixed. However, in order to be consistent with the averaging
process used in the definition of unitarity, we restrict the average to pure states only.

Note that by restricting to unital channels these inequalities actually become equalities.
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d 1
> —|v(@) + —| 77b
(7o) d+1[7( ) d] (77b)
Using our majorization and purity upper-bounds we can thus upper-bound the optimal unitarity of a channel
with a given classical action T. On the other hand, using the majorization lower-bound, we can lower-bound the
average output purity of such an optimal channel. The above bounds can actually be tightened by noting that

2
()= (EE) - s[5
d d 45
Let us also mention that the optimally coherified qubit channel ®¢, with Kraus operators specified by

equation (41), not only maximizes purity, but also minimizes the output purity for the maximally mixed state (as
it saturates the bound in equation (78)). Therefore, it maximizes unitarity among all qubit channels with the
same classical action.

Finally, we would like to relate the work presented here to studies on cohering power P[5] and coherence
generating power P [7, 8] of quantum channels. These notions were introduced within the framework of
resource theory of coherence [2] and measure the ability of a channel to transform initially incoherent state to a
coherent one. More formally they are defined by

P(®) = maxCy(P(p)), (79a)
peEP
P(®) = (Co(D(p)))p, (79b)

where P denotes the set of incoherent states (p € P ifand onlyif (i| p|j) = 0fori = j), ()p denotes the
average over all incoherent states, and C, is any measure of coherence for states, e.g., the relative entropy of
coherence C.. Since both definitions involve only the action of ® on incoherent states, we see that the only
relevant parameters (defining the values of Pand P) are given by the diagonals of D’ and C¥, which are not
constrained by the TP condition. Hence, given a fixed classical action T of ® (so fixed diagonals of D), we can
choose the diagonals of C? to be maximal possible (constrained only by complete positivity condition, Jg > 0):

Ch = JTuTx, (80)

and set all other matrix elements of Jg to zero. This way we will obtain a channel that maximizes both Pand P
among all channels with a fixed classical action T. The action of such an optimal map is given by

D) = DD =D, (Gl 1) (Wl (81)

]

with
) = > JTili)- (82)

We note that the above channels that maximize Pand P for a fixed T do not coincide with optimally coherified
channels studied in this work. The reason for this is that the latter optimization depends on all coherence terms,
whereas the former one only on the ones lying on the diagonal of C”. This emphasizes the main difference
between our channel-oriented approach (when one focuses on the properties of the channel itself, specifically
how close it is to a unitary evolution) and the state-oriented approach used in the studies of cohering power and
coherence generating power (when one focuses on the properties of the output states for a restricted set of input
states).

5. Conclusions

Any classical state of size d, represented by a diagonal density matrix p = pP, can be coherified to a pure state p¢
with maximal coherence, which is transformed back into p by decoherence (see figure 2). In a similar way, one
can try to coherify a quantum operation ® represented by the corresponding Jamiotkowski state J. However,
due to the trace preserving condition, the problem of coherifying a quantum channel has a much richer
structure.

In this work we posed a general question: how to coherify a given classical map, represented by a stochastic
transition matrix T, in an optimal way? Physically, this can be understood as looking for the most coherent
(deterministic) underlying quantum evolution that can explain the observed random transformation T.
Mathematically, among all quantum channels that decohere to T we looked for the one whose Jamiotkowski
state has maximal coherence (as measured by entropic and 2-norm coherence). We demonstrated that the
complete coherification to a (reversible) unitary channel is possible if and only if T'is unistochastic, as
schematically visualized in figure 3. To capture the limitations of possible coherifications of non-unistochastic
maps we derived explicit bounds for the purity and entropy of the optimally coherified channel. Furthermore,
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we provided an explicit coherification procedure that allows one to lower-bound the coherence of the optimal
channel, and solved the optimal coherification problem for several classes of channels, including all one-qubit
channels.

Studying possible coherifications of quantum channels can also shed some light on the structure and
geometry of the set S; of quantum operations [28]. For d = 2 the set of pure quantum states (the Bloch sphere)
can be obtained by coherifying the set P, of one-bit classical states. Analogously, the square 7, of classical
stochastic matrices forms a skeleton of the larger set S, of one-qubit quantum operations. Any unistochastic
matrix B € B, = U, can be coherified into a quantum unitary transformation, corresponding to a pure
Jamiotkowski state | g . Furthermore, we have demonstrated that any classical transition matrix T' € 7, can be
coherified to an optimal quantum channel, corresponding to a mixed state <, that is an extremal point of S,.
One would then like to check under what conditions a similar statement holds for higher dimensions, i.e., when
the optimally coherified channels are extremal and have vanishing minimum output entropy.

Besides this problem concerning the geometry of Sy, there are also other open questions that we would like
to conclude this paper with. One could ask whether the optimally coherified channels are unique up to a unitary
equivalence, i.e., can one find two channels whose Jamiolkowski states are not connected via unitary, and which
maximize a given coherence measure among all Jamiotkowski states with a fixed diagonal? Furthermore, the
expressions that lower- and upper-bound possible coherifications can definitely be improved, especially for
bistochastic matrices. In this special case, exploring the boundary between unistochastic and bistochastic maps
could be beneficial. Moreover, one might pursue a statistical approach and ask a question concerning a possible
degree of coherification of a random stochastic matrix, or a generic quantum channel [31]. Last but not least, it
would be very interesting to establish a closer connection between coherification approach to quantum
channels, pursued in this work and based on the coherence of the corresponding Jamiotkowski states, with the
earlier notion of the coherence power, related to the increase of coherence of selected quantum states by the
action of a channel [5, 6, 8].

Note: Shortly after our work appeared on arXiv, another preprint studying the coherence of quantum
channels was posted there [32].
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Appendix A. Proof of theorem 2
We will make use of the following known results (see lemma 3.4 of [33] and equation (2.5) of [34]):

Lemma 4. For every positive semi-definite matrix written in blocks we have the following decomposition
A X|_[A 0] 0 07+
[ 5] = ol oo s B v

for some unitary operators U and V.

Lemma 5. For A (A) denoting the vector of eigenvalues of A arranged in a decreasing order we have
A(A) + A(B) = A(A + B). (A2)

We are now ready to present the proof of theorem 2.

Proof. First, using lemma 4 iteratively one gets:
D'0 .. 0 0 0 ..0 00 .. 0
dge=Ul 0 0= Olufa g0 D Oyt gg? Y o (A3)
00 .0 00 .0 00 .. D
Then, using unitary invariance of the spectrum, the fact that A; = Ajand A, = A} induces
A+ A = A + b, and iteratively applying lemma 5 one arrives at equation (27). O
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Appendix B. Coherifying qubit channels

Before we proceed to deriving the results presented in the main text, let us first recall the following fact. Given
two channels, ¢, and ®,, whose Jamiolkowski states, J3 and Jp,, are connected via alocal unitary acting on the
second subsystem, J3, = (1 ® U)Js, (1 ® U)', their Kraus decomposition satisfies

®i() = 2 KOK,  ®a() = 3D KUTOUKY. (B1)

Now, using the block structure of the Jamiotkowski state, equation (12), and taking into account the TP
condition, >_, D' = 1, for a general qubit channel, we get:

1 Dl C12 a ¢
Jo = E[Cll 1- Dl]’ bi= [c* E]’ (52)

Consider a unitary U diagonalizing D', i.e., UD'U" = diag(\;, ). Now, the same unitary will obviouslyalso
diagonalize 1 — D'. Therefore,a4 x 4 unitary V = 1 ® U diagonalizes the D’ blocks of the Jamiotkowski state
Jo:

Ve V= kY > (B3)

where blank spaces mean arbitrary entries, 0 < A; < land A + A, = a + b.
For a < bwe may obtain the optimally coherified state J§ (with the spectrum saturating the bound given by
o~ (T) from equation (38)) in the following way. We choose \y = a + b (resultingin A, = 0), and set the off-

diagonal element between )\, and X, = 1 to the maximal value allowed by positivity, i.e., ya + b.Asaresult,
VJ§ VT becomes a projector on two orthogonal pure states, which in turn means that the corresponding map is
given by the decaying Kraus operators Ly, L, from equation (40). Since V = 1 ® U, we can use equation (B1), to
find the Kraus of decomposition of ®€ given by L; U. Finally, Uis defined by UD'U* = diag(a + b, 0), which
is exactly the unitary given in equation (39) (note that, since Uis real, we have UT = UT)

Similarly, for @ > b we may choose A\; = 1 (resultingin A, = a—b), and set the off-diagonal element
between \;and \, = @ + b to the maximal value allowed by positivity, i.e., /@ + b. As described in the main
text, this then leads to the same results asin a < b case, just with aand b exchanged, as well aswith all2 x 2
matrices X transformed by replacing Xy, with Xj;.

Appendix C. Coherifyng qutrit channels

C.1. Cyclic matrices
The general form of D' matrices is as follows:

c 0 g 0
ST T
y* 0 0 0

Clearly, in order to satisfy the TP condition, >, D! = 1,weneed x = y = z = 0. Hence, the Jamiolkowski state
Jo can be recast in the following form (note that columns and rows number 1, 5 and 9, composed only of zeros,
have been removed):

N

0
a

oS O O
RO
S ™

x*

SO =

[0 0 x % x5 x4

0 b n »n s un

1x1*y1* c 0 x5 x4
ST = O I A (D

xgk y3* x5* )'5* c 0

xp oyl kg oy 0 a

Now, using theorem 2, we get:

Hope = 31103 = 1 0, 0] = A, (©2)
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where
1 = max(a, b) + max(c, b) + max(c, ). (C3)

Moreover, one can construct optimally coherified matrix J§ such that A(J§) = Hop- To do this one simply
needs to group together the maximal/minimal terms of each 2 x 2 matrix and set the corresponding off-
diagonal terms to the maximal values allowed by the positivity constraint. For example,ifa > b,b > cand
¢ > a,one chooses

X = aE, X3 = \/?) )/5 - \/%)
)’1:\/%, }/4:\/%> XGZ\/%,

and sets the rest of off-diagonal terms to zero. Note that this is exactly the construction introduced in section 3.2.2
and illustrated in figure 5.

C.2. Single-row matrices
The general form of D' matrices is as follows:

/

a x 0 000 a xy
Dl: x*bO) DZZOOO)DSZ X/* l; zZ |
0 00 00 ¢ S e
Clearly, in order to satisfy the TP condition weneed X’ = —xandy = z = 0. We now note thata3 x 3 unitary
matrix U diagonalizing D',
Un Up 0 AN OO
U= Uz] U22 0l UDlUJr =10 )\2 0 (C4)
0 0 1 0 0O

also diagonalizes D? (by keeping it unchanged) and D’. Therefore,a9 x 9 unitary V = 1 ® U diagonalizes the
D'blocks of the Jamiotkowski state J:

N OO
0 X O
0 00
000
VisVi== 000 , (C5)
00 ¢
N OO
0 X\ O
| 0 0 ¢]

where blank spaces mean arbitrary entriesand \; + A\, = a + b.
Without loss of generality let us assume that Ay > A;. Then, using theorem 2, we get ;e () > A(Jp) with

pt () given by
%[)\1 + max():z, E) + ¢ A2 + med(xly 5‘2) E)) min(S\la E)a 0; LX) 0])

where med denotes the second largest element of the set. Note also that, for fixed a, b, ¢, the vector g (\) isjusta
function of Ay, since A\, = a + b — A;. Now, maximizing \; maximizes both uf and ﬂf + ,uﬁ (recall that
,u]l + ,uﬁ + H% is constantand equal to 1), and so p1(x) > p(y) for x > y.Inorder to find the optimal
(optimal meaning that for all A; we have Hrope = H (A1) we thus need to maximize ;. Recalling that we have two
constraints, 0 < N < a + band \; < 1, wearrive at two cases.

Fora + b < 1the maximal (and thus optimal) value of \; isa + b, which also resultsin A\, = 0. The
optimal bounding vector is then given by

Hrope = %[1 4+a+ b+ ¢ max(@ — b, ¢), min(a — b, ¢), 0, ..., 0]. (C6)

Moreover, one can construct the Jamiotkowski state Lg that saturates this optimal bound, i.e., A ( ](g ) = Hopy-
This can be achieved, again, by setting the adequate off-diagonal terms in equation (C5) to the maximal possible
value allowed by the positivity condition. More precisely, we group A; = a + b, cand X, = 1together, leaving
the remaining two terms, \; = @ — band ¢, ungrouped. As aresult, VJ$ V' becomes a projector on three
orthogonal pure states, which in turn means that the corresponding map is given by the following Kraus
operators:
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(e}
DN
|OO
o
o O O

Finally, using equation (B1) we conclude that the Kraus operators corresponding to the optimally coherified
channel (with Jamiolkowski state J$ ) are given by K; UT with K;as above and U defined by equation (C4) with
A =a+ band A\, = 0,i.e,

va b 0
Vb —va o | (C7)
0 +a-+b

1
Ja+b

Fora + b > 1the maximal (and thus optimal) value of A is 1, which also resultsin A\, = a — b.The
optimal bounding vector is then given by

1 ~
Hope = g[u, 3—1,0,...,0], p=1+ max(da+ b,?) + c. (C8)

Thebound g, = A(Js) can be saturated in a usual way—by proper grouping of diagonal elements and setting

the corresponding off-diagonal elements to the maximal value allowed by the positivity condition. If ¢ > d + b
then we group together \; = 1,cand & with A\, = a — band X, = 4 + b forming the other group; otherwise
we group together \;, cand \,, with A, and ¢ forming the other group. In the former case the resulting Kraus
operators of the optimally coherified channel read

0 Na—b 0
U, K=|o 0 o(UT,

0
Je
NG 0 Ja+b o

0
0
0

and in the latter case they read

10 0 0 Na—b 0

K=|0 0 Velul, K=|o o o [U

0 ya+b 0 0o o
with Uin both cases defined by equation (C4) with A; = land A, = a — b,ie.,

| Vo @ 0
U= ——|7 - o | (C9)
i+ b _
0 0 +a+b

C.3. Double-row matrices
The general form of D matrices is as follows:

a x y ia —x —y
D' = x* b z ,DZZ —x* l; —z ,DSZO.
Ytz c oz @

Wenow note thata3 x 3 unitary matrix U diagonalizing D',

Ui U Us AN O O
U=|Uy Uy Uysl|, UDWUT=[0 X\ 0] (C10)
Usi Usy Uss 0 0 X

also diagonalizes D?and D’ (by keeping it unchanged). Therefore,a9 x 9 unitary V = 1 ® U diagonalizes the
D’ blocks of the Jamiotkowski state J:
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AN O O
0 X O
0 0 X;
.1 A E) 0

(=i
o O O
S O O

where blank spaces mean arbitrary entriesand \; + A\, + A3 = a + b + ¢. Toshorten the notation we
defines:=a + b + c.

Without loss of generality we may assume A\, > Ay > )3, sothat N < X < ;. Then, using theorem 2, we have

B, As) = g[)\l + X LA+ A, 0,0, 0] = AUs). (C12)
Now, we observe that i (x, y) > p(x’, y’) for x > x’and y < y’. We thus aim at maximizing the largest
eigenvalue of D' while minimizing its smallest eigenvalue. Again, noting that we are constrained by 0 < \; < s
and \; < 1wearrive at three distinct cases dependent on the value of s.

For s < 1the maximal (and thus optimal) value of A, is s, which also results in A, = A; = 0. The optimal
bounding vector is then given by

1
Hopt:g[l +s1,1—5,0,...,0]. (C13)

The above optimal spectrum can be realized by the Jamiotkowski state J§ by simply setting in equation (C11) the
off-diagonal terms between A\; = sand X = 1(or Xs = Dto~/s. Recalling the relation between the Kraus
operators corresponding to Jamiotkowski states connected via a local unitary, equation (B1), we find that the
Kraus decomposition of the optimally coherified channel is given by:

Js 00 000 0 00
K=|o 1 0[U, Kk=|0oo0 1|U", Ks=|J1—5s 0 o|U".
0 00 000 0 00
with Ubeing a unitary such that
| Ja X X
U=—|Jb x x) (C14)
NG
Jo X X

and x denotingarbitrary entries as long as U stays unitary, e.g.,

\/7 \/: V (a+b)s
U= \/j be
s V (a+b)s
F

_a+b

[(a+ b)s

Also note that the position of 1 in matrices describing K; and K, can be exchanged.
For s > 2 the optimal valuesare \; = A, = land A\; = s — 2. The optimal bounding vector is then given by
“optzé[zl_s’ 1,s—2,0,...,0], (CIS)

which can be achieved by the coherified Jamiotkowski state in an analogous way to the first case. This leads to the
following decomposition of ®C into the set of Kraus operators,

1o 0 010 00 s—2
K=o 0 V3—s|U, 00 0|U, Ks=|0 o 0 u',
00 0 000 00 0
with Ubeing a unitary such that
I Ja
U= % x b} (C16)

XX\/?
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and x denoting arbitrary entries as long as U stays unitary, e.g.,

B ac b a
@@+b)3—s) a+b 3—s

U= bk a_ b (C17)
@G+hHG—s) i+ b 3_s
a+b 0 ¢

| J@a+He-9 3-s

Again, we note that the position of 1 in matrices describing K; and K, can be exchanged.
Finally, for 1 < s < 2the optimal valuesare \; = 1, A; = s — 1and A; = 0. The optimal bounding vector
is then given by

1
Hopt = g[2, 1,0, ...,0]. C18)

The above spectrum can be achieved by the optimally coherified Jamiolkowski state J$ by setting the off-
diagonal terms in equation (C11) appropriately. More precisely, one chooses the term between A, = 1and

\; = 1tobe 1,and the termbetween \, = s — land \; = 2 — stobe /(s — 1)(2 — s).The resulting Kraus
operators are given by

100 0 Vs—1
Ki=|00 1|U, K=y y2=5 olU (C19)
000 o o0 o0

[

with

\/ b a(a — b) ac

ai+b @+b)s—1) @+b)is—1)

U=1|_ a b(a — b) be (CZO)
i+b @+bs—1 @+b)is—1)

c a—b
0 s—1 o s—1

ifa +b > land

ac a(@—b) \/ b
(a+b)2—ys) (a+b)2—ys) a+b

U= be b(a—b) _ a (CZI)
(a+b)2—ys) (a+b)2—ys) a+b
a—"b é
o 2—s 2—s 0

ifa+ b < 1.

Appendix D. Polygon constraints

First, we derive the expression for the purity bound, equation (58). The expression for A}, equation (59), comes
directly from the fact that |Dj|* < o, Ty Tjj. To obtain A,, equation (59), let us start by parametrizing the matrix
from equation (57),1.e.,the 3 x 3 submatrix of /g, in the following way

Tix XNTxTy yTixTim
1
A= —| xJTiT; T; 2| TiTip | (D1)
7 kLt 1 11
YTk Tim 2 TaTim T;
with 0 < x, ¥, z < 1. Wethenhave det A > 0 ifand only if
1+ 2xyz — x> —y* — 22 > 0. (D2)

Now, our aim is to upper-bound the squared moduli of the off-diagonal terms of A (for fixed T), given the above
constraint and the fact that x < a};l for some a}'d < 1. First, assume that x is fixed, so that effectively we want to
find the maximum of Ty y* + Tjz%(in fact, the optimal choice is to maximize x, i.e., set x = ak)). Itis
straightforward to check that it is achieved at the boundary of the constraint, i.e., when equation (D2) becomes
an equality. One can then solve for y, substitute it to Ty y> + T;z2, and find the maximum of the resulting
expression over z. Thisleads to the following bound on the off-diagonal terms of A:
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T ;
A2 + |Axs* < ﬁ(Tik + Ty + Bi)» (D3)

with 3%, defined in equation (60). As in order to achieve unit purity one needs
|Aisl 4 |Ass* = T(Tix + Tip) /d?, the above bound leads to the following deficit of purity:

‘ Tim ;
b= 2]7(Tik + Ti — Bi)- (D4)

Finally, the above deficit adds up for every choice of T}, not equal to Ty or Tj (i.e., for all off-diagonal elements
sharing row or column with T or Ty in figure 7(b)), so that using »°; ﬂ;j = d, we finally arrive at equation (59).
We now proceed to the proof of the majorization bound, equation (61). Note that, using lemma 4 from

appendix A, we can rewrite D’ (up to permutations) as

; A X A0 00
Di=| " = i T, D
[XT B] o|& o]+ v]§ §]v (D3)
with
T; Vo TiT;
A= ‘zk ki Lik Lil ’ (D6)
VauTiTi Ty
and U, Vbeing unitary. The eigenvalues of A are given by
1 i i
A = E[Tik + Ti + B> Tic + Ti = By 0, .., 01, (D7)
whereas the largest eigenvalue of B is constrained by
A(B) < Tr(B) = Tr(D") — Ty — Ty =1 — Ty — Tip, (D8)

where we used the fact that T'is bistochastic. Thus, using lemma 5 and choosing k = k; and I = [; minimizing
o), we arrive at equation (61).

Note that the above construction can be easily generalized to cases where for a given D there are many pairs
(k,J) for which a}; < 1.Instead ofa2 x 2 matrix A, one simply chooses it to contain all off-diagonal elements of
D' that are constrained beyond the positivity condition, finds its eigenvalues, and obtains a tighter bound using
lemma 5 again.
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