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Abstract: We study entanglement properties of generic three-qubit pure states. First, we obtain the
distributions of both the coefficients and the only phase in the five-term decomposition of Acín et al.
for an ensemble of random pure states generated by the Haar measure on U(8). Furthermore,
we analyze the probability distributions of two sets of polynomial invariants. One of these sets allows
us to classify three-qubit pure states into four classes. Entanglement in each class is characterized
using the minimal Rényi-Ingarden-Urbanik entropy. Besides, the fidelity of a three-qubit random state
with the closest state in each entanglement class is investigated. We also present a characterization
of these classes in terms of the corresponding entanglement polytope. The entanglement classes
related to stochastic local operations and classical communication (SLOCC) are analyzed as well from
this geometric perspective. The numerical findings suggest some conjectures relating some of those
invariants with entanglement properties to be ground in future analytical work.

Keywords: quantum entanglement; three-qubit random states; entanglement classes; entanglement
polytope; anisotropic invariants

1. Introduction

Entanglement is possibly the most interesting and complex issue in Quantum Mechanics. Due to
this phenomenon it is not possible to describe properties of individual subsystems, even though the
entire system is known to be in a concrete pure quantum state. Quantification of entanglement is
still a challenge for any quantum system consisting of more than two parts [1,2]. The difficulty of the
problem grows quickly with the growing number of subsystems and it becomes intractable in the
asymptotic limit [3]. Several measures of quantum entanglement were proposed [4], but even in the
case of pure states of a multipartite quantum system, it is not possible to identify the single state which
can be called the most entangled, as the degree of entanglement depends on the measure used [5].

On the other hand, entanglement in bipartite systems is already well understood. In the case
of pure states, a key tool in describing entanglement properties is the Schmidt decomposition as
any entanglement measure is a function of the Schmidt coefficients [2]. Dealing with three-party
pure states, the problem becomes more intricate as the corresponding state is represented by a tensor
rather than a matrix, so one cannot rely on the Schmidt decomposition related to the singular value
decomposition of a matrix. Nevertheless, several decompositions for three-qubit states have been
studied in literature [6–8]. More recently, a canonical form for symmetric three-qubit states has been
proposed, showing that in this case the number of entanglement parameters can be reduced from five
to three [9].

Early studies on correlation in composite quantum systems revealed that for three or more parties
there exist quantum states with different forms of entanglement [8], as the states from one entanglement
class cannot be converted by local operations to any states of the other class. As the number of parties
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increases, the number of entanglement classes grows quickly [10]. Since local operations cannot
generate entanglement, one usually assumes that a faithful measure of quantum entanglement should
be invariant under local unitary operations and should not grow under arbitrary local operations.

For a given class of operations there exist invariants which are constant along every orbit of
equivalent states [11,12]. A full set of invariants determines a given orbit of locally equivalent states.
However, such sets of invariants are established only for systems consisting of few parties of a small
dimension including the simplest multipartite case of three-qubit systems [13–15].

An interesting question arises: To what extent single-particle properties can provide information
about the global entanglement [16]? The issue is related to the so-called quantum marginal problem:
Given a set of reduced density matrices one asks whether they might appear as partial trace of a
given state of a composed system [17]. Necessary conditions for such a “compatibility problem”
were provided in [18] for the two-qubit system and then developed by Klyachko [19] for the general
case. These conditions can be expressed as a set of linear inequalities concerning the eigenvalues of
the density matrix corresponding to the entire system and eigenvalues of the reduced matrices.
Interestingly, for multipartite systems the compatibility problem is related to the entanglement
characterization [20]. For instance, eigenvalues of three one-qubit reduced matrices of any three-qubit
pure state belong to the entanglement polytope and some of its parts correspond to certain classes of
quantum entanglement [21].

Not knowing a particular quantum state corresponding to a physical system it is interesting
to ask, what are properties of a typical state? More formally, one defines an ensemble of pure
quantum states induced by the unitary invariant Fubini-Study measure [2] and computes mean
values of various quantities averaging over the unitary group with respect to the Haar measure.
Such random quantum states are physically interesting as they arise during time-evolution of quantum
systems corresponding to classically chaotic systems [22,23] and are relevant for problems of quantum
information processing [24,25].

Research on non-local properties of generic multipartite states has been intensive in recent
years. This includes entanglement in two qudit systems [26–28], pairwise entanglement in
multi-qubit systems [29–31], entropic relations and entanglement [32], correlations and fidelities
in qutrits system [33], a characterization of entanglement through negativities and tangles in
several qubits systems and its relation to the emergence of the bulk geometry [34]. More recently,
genuine entanglement for typical states for a system composed out of three subsystems with d levels
each was studied with help of the geometric measure of entanglement [35], while for generic four-qubit
Alsina analyzed the distribution of the hyperdeterminant [36].

The aim of this work is to extend the analysis of entanglement properties of generic states of
three-qubit systems. We focus our attention on the five-term decomposition of an arbitrary pure
state [15] as it allows one to construct a set of polynomial invariants and to identify the classes of
entanglement. We generated an ensemble of pure quantum states induced by the Haar measure on
the unitary group U(8) corresponding to the system composed of three qubits and investigated the
distribution of various entanglement measures and local invariants.

The paper is organized as follows. In Section 2 we review the five-term decomposition of a
three-qubit stateand study statistical properties of the coefficients in such a representation of a generic
state. In Section 3, we investigate properties of the three qubits invariants, Ik and Jk [15] as well as two
newly discovered anisotropic invariants [37]. We obtain their probability distributions, either exact or
approximate, and compare them with accurate numerical approximations. The fourth section presents
an analysis for the entanglement classes defined in terms of the latter invariants. As a comparative
element, we use the Rényi and the minimal Rényi-Ingarden-Urbanik (RIU) entropies [35] to analyze
possible meanings for such classes. Another measure, the maximum overlap with respect to a selected
entanglement class, allows us to identify for an arbitrary three-qubit state the closest state in each
class resembling it. In Section 5 we discuss a characterization of quantum entanglement through the
corresponding entanglement polytope and we show how entanglement classes can be distinguished
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from a geometrical viewpoint. The last section presents concluding remarks, a list of open questions
with suggestions concerning the future work.

2. The Canonical Five-Term Decomposition

A three-qubit state in the Hilbert spaceH⊗3 involves eight terms, thus, it can be written as

|ψ〉 = tijk|ijk〉, tijktijk = 1, tijk ∈ C, (1)

where we have used the repeated scripts notation. It is known [15] that through local unitaries,
the number of terms in |ψ〉 can be reduced from eight to five. First, we define the two square matrices
T0 and T1 whose entries are given by (Ti)jk = tijk, with i, j, k = 0, 1. A local unitary transformation
U ⊗ 12 ⊗ 13 acting on the first qubit produces

T′0 = u00T0 + u01T1, T′1 = −u01T0 + u00T1. (2)

The matrix U is taken such that det(T′0) = 0. On the other hand, the transformation 12 ⊗V ⊗W
changes the matrices Ti according to VTiW. We choose V and W so that T′0 can be diagonalized via the
singular value decomposition (SVD). Explicitly, at the end of this procedure we arrive at

T′′0 =

(
λ0 0
0 0

)
, T′′1 =

(
λ̃1 λ̃2

λ̃3 λ̃4

)
. (3)

In addition, the phase of the coefficients λ̃2, λ̃3 and λ̃4 can be absorbed into λ̃1 to yield
the decomposition

|ψ〉 = λ0|000〉+ λ1eiφ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (4)

where λi, φ ∈ R. Besides ∑ λ2
i = 1. According to [15], the only phase φ should be restricted to

0 < φ < π to assure the uniqueness of the decomposition.

Distribution of the Coefficients

We take an ensemble of 106 random states inH⊗3 distributed according to the unitary invariant
measure on the group U(8) and then first reduce them into the five-term representation (4), then we
track each coefficient λk to compute numerically its probability distributions as well as the distribution
of the phase φ. The result is shown in Figure 1 depicting the value of each component λk versus
their relative normalized density on H⊗3. Note that the state (1) depends on 14 real parameters,
say p = (p1, . . . , p14) where each pµ is the real or imaginary part of tijk. The unitary invariance implies
that after the action of the transformation U⊗V⊗W on the state |ψ〉 the distribution of the coefficients
λi’s and the phase φ fulfils P(p) = J ×P(λ), where λ = (λ0, λ1, λ2, λ3, λ4, φ) and J is the Jacobian of
the transformation. The evaluation of this 14× 14 determinant becomes cumbersome and one has
to rely on numerical methods to compute the marginal distributions P(λk) of the coefficients of the
state (4) as well as the phase φ. The data presented in Figure 1b suggest that the phase φ is distributed
uniformly on the entire range, P(φ) = 1/π for φ ∈ [0, π]. As the beta distribution has been used to
model the behavior of random variables limited to finite length intervals in several contexts [24,35,38],
we propose the following distribution Pi(λi) = c λa

i (1− λi)
b, to fit the distributions of the coefficients

λj. The numerical fits are depicted as solid lines in Figure 1a and the values of the best fitting
parameters are reported in Table 1. Results presented suggest that the coefficients λ1, λ2 and λ3 are
distributed according to the same probability distribution. Hence, we conjecture that out of the six
real parameters in Equation (4), only four are required to characterize entanglement in three-qubit
random states, say {λ0, λ1, λ4, φ}. Interestingly, the coefficients λ0 and λ4 are related with the invariant
J4 connected with the three-qubit genuine entanglement (for the definition see subsequent section).



Entropy 2018, 20, 745 4 of 19

As generic three-qubit states are typically strongly entangled [35], this analysis illustrates how each
coefficient λj of a given state is linked with the degree of its entanglement. Note particularly how low
values of λ1, λ2 and λ3 are more representative for entangled states in contrast to λ4, the distribution
of which appears to be balanced. Furthermore, the higher values of the coefficient λ0 correspond to the
states with larger entanglement. This is particularly interesting as in the decomposition of Carteret et al.
this coefficient yields the maximum overlap with the closest separable state [7].

(a) (b)

Figure 1. Probability distribution of the Acín parameters in the state (4): (a) the coefficients λk, k =

0, 1, ..., 4 and (b) the phase φ for a set of 106 three-qubit random states onH⊗3
2 . Solid lines represent the

best numerical fit in all the cases, the parameters of which are listed in Table 1.

Table 1. Best numerical fit parameters of the distributions Pi(λi) = c λa
i (1− λi)

b for i = 0, 1, 2, 3, 4.

i a b c

0 3.74 6.05 1856.85
1 67.76 4.25 1.52
2 68.40 4.27 1.53
3 66.75 4.24 1.52
4 795.16 4.37 3.96

3. Three-Qubits Polynomial Invariants

Local unitary (LU) transformations performed on individual subsystems define orbits of locally
equivalent multipartite states. Local invariants can be understood as coordinates in the space of orbits
of locally equivalent states. Any complete set of local invariants allows one to distinguish between
different orbits of locally equivalent states and thus to describe the degree of quantum entanglement [7].
For pure states of a three-qubit system, the space of orbits has six dimensions and it is possible to find
six algebraically independent invariants [39].

In this section we will analyze the distributions P(Ik) and P(Jk) on H⊗3 for the corresponding
three-qubit invariants (under local operations) Ik [13] and Jk [40], with k = 1, ..., 5. These polynomial
invariants set representative classes on H⊗3 and cannot be directly used as the measures of
genuine entanglement.

Distribution of the Invariants

We first consider the set of five invariants used in [40]

I2 = tr(ρ2
A), I3 = tr(ρ2

B), I4 = tr(ρ2
C),

I′′′5 = tr[(ρA ⊗ ρB)ρAB], I6 = |Hdet(T)|2
(5)
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where ρi stands for the reduced density matrix of the i-th system, ρij is the reduced density matrix
when the partial trace respect the system k is performed while i, j, k is a permutation of A, B, C. The last
invariant is related to the hyperdeterminant Hdet of the tensor coefficients T = (tijk) representing
the state (1).

The invariants are labeled according to the notation used by Sudbery [13]. Note that the squared
norm of the state (1) is in itself a polynomial invariant usually denoted as I1. In Figure 2a–c we show the
probability distribution of the above set of invariants over an ensemble of 106 random states. Moreover,
as for k = 2, 3, 4 the quantity Ik is related with the linear entropy, Sk = 1− Ik, the corresponding
distributions show that the entanglement of each qubit with the other two is the same no matter which
partial trace is performed. On the other hand, the invariants Ik in terms of the coefficients tijk are
written as [13]:

(a) (b)

(c) (d)

Figure 2. (a–c) Probability distribution for the polynomial invariants Ii, i = 1, ..., 5 for a set of 106

three-qubit random states. Solid line in panel (a) stands for the distribution (9), while in panels (b,c)
the best numerical distributions are depicted by green curves. In panel (d) a dispersion plot comparing
I1, I4 and I5 is shown. In addition, each dot has been colored as function of its S1 Rényi entropy [41]
calculated after the five terms reduction.

I2 = ti1 j1k1 ti2 j1k1 ti2 j2k2 ti1 j2k2 , I3 = ti1 j1k1 ti1 j2k1 ti2 j2k2 ti2 j1k2 , I4 = ti1 j1k1 ti1 j1k2 ti2 j2k2 ti2 j2k1 ,

I′′′5 = ti1 j1k1 ti1 j2k2 ti2 j2k2 ti2 j3k1 ti3 j3k3 ti3 j1k3

I6 = 4|εi1,j1 εi2 j2 εk1`1 εk2`2 εi3k3 εj3`3 ti1i2i3 tj1 j2 j3 tk1k2k3 t`1`2`3 |2

(6)
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where the convention of summation over repeated indexes is used and εk,` stands for the Levi-Civita
tensor of order two. Since the coefficients can be regarded as a column of a random unitary
matrix, we can compute the average value of each invariant by evaluating integrals of polynomial
functions over the unitary group with respect to unique normalized Haar measure. Using symbolic
integration [42] we obtain 〈Ik〉 = 2/3 for k = 2, 3, 4. This result is consistent with the mean purity
of a single qubit traced out from a 2 × 4 system reported in [43]. Moreover, 〈I′′′5 〉 = 7/15 and
〈I′′′25 〉 = 133/572. In order to compute the mean value of I6, we use the second moment of the
three-tangle τ reported in [35] with the fact τ2 = 16I6 to get 〈I6〉 = 1/110. On the other hand,
to compute the distributions of the invariants P(Ik) for k = 2, 3, 4, we first note that the joint density
of eigenvalues ϑ1 and ϑ2 of a single qubit traced out of a system of a three-qubit system is given in
Equation (6) of [43] with N = 2 and K = 4. This reads

P(ϑ1, ϑ2) = 210 δ(1− ϑ1 − ϑ2)(ϑ1 − ϑ2)
2ϑ2

1ϑ2
2 (7)

where δ stands for the Dirac delta. As each Ik is nothing other than the purity of a single qubit reduced
density matrix, we can compute the probability distribution by performing the following integral

P(Ik) = 210
∫ 1

0

∫ 1

0
dϑ1dϑ2P(ϑ1, ϑ2)δ(Ik − ϑ2

1 − ϑ2
2), (8)

this yields

P(Ik) =
105

2
(1− Ik)

2(2Ik − 1)1/2, 1/2 ≤ Ik ≤ 1, k = 2, 3, 4. (9)

This probability distribution is depicted in Figure 2. In addition, we approximate the distribution
P(I′′′5 ) by the following beta distribution

PF5(I′′′5 ) =
Γ(a + b + 2)

3a+b+14a+1Γ(a + 1)Γ(b + 1)
(1− I′′′5 )a(4I′′′5 − 1)b, (10)

requiring the first two moments of this distribution coincide with the exact two moments of P(I′′′5 )

reported above. We found a = 21, 989/5691 and b = 5554/5691. On the other hand, the distribution of
the square of the three tangle was approximated in [35] by a Beta distribution. Thus, making a variable
change in this result we may approximate P(I6) by

PF6(I6) =
2√
I6

Beta(31/17, 62/17, 4
√

I6), 0 ≤ I6 ≤ 1/16. (11)

As the distributions of the invariants I2, I3 and I4 are the same, we only need three invariants to
characterize the entanglement in the set of three-qubit random states, say (I2, I′′′5 , I6). In Figure 2d we
show a dispersion plot whose three axes correspond to such invariants and their colors correspond
to their S1 Rényi entropy calculated after of the five terms reduction [35] (which will be properly
presented in the next section) in agreement with the side color scale.

We also consider the set of invariants proposed by Acín et al. [15]. These invariants allow to
identify different entanglement classes (which will be discussed in the next section) and can be written
in terms of the six parameters of the five-term decomposition as

J1 = |λ1λ4eiϕ − λ2λ3|2, J2 = µ0µ2, J3 = µ0µ3,

J4 = µ0µ4, J5 = µ0(J1 + µ2µ3 − µ1µ4),
(12)

where µi = λ2
i . For this analysis, the same set of 106 random states was considered but they are now

used to obtain the corresponding values of them through their expressions in terms of the five-term
coefficients [15]. All these invariants can be calculated departing from the set of λi. The outcomes are
shown in the Figures 2 and 3 in their respective ranges. Note in the Figure 3a–c how for J1, J2 and J3
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the distribution is biased on low values of these invariants, denoting a possible relation with higher
entanglement. For the quantity J4, related to the hyperdeterminant, the distribution peaks around of
1

16 , denoting that separability as well as genuine entanglement are absent in the most of states inH⊗3.
A similar feature is observed for J5 but varying sharply for negative and positive values. On the other
hand, the invariants Jk’s can be expressed in terms of the quantities Ik’s [15]

J1 =
1
4
(1 + I2 − I3 − I4 − 2

√
I6), J2 =

1
4
(1− I2 + I3 − I4 − 2

√
I6),

J3 =
1
4
(1− I2 − I3 + I4 − 2

√
I6), J4 =

√
I6,

J5 =
1
4
(3− 3I2 − 3I3 − I4 + 4I5 − 2

√
I6).

Such expressions are useful to compute some averages. For instance, as 〈
√

I5〉 = 〈τ〉/4 it is
immediate to compute 〈J4〉 = 1/12. From the above definitions we can calculate directly 〈Jk〉 = 1/24,
for k = 1, 2, 3 and 〈J5〉 = 1/120. We approximate the probability distributions P(Jk) with k = 1, 2, 3 by
a distribution PFk (Jk) ∼ Ja

k (1− 4Jk)
b, where the parameters in this case are determined numerically to

yield the best fit. In addition, making use of the approximation (11) for the distribution of the invariant
I6. One can obtain the following approximation for the distribution of the variable J4

PF4(J4) = 4Beta(31/17, 62/17; 4J4), 0 ≤ J4 ≤ 1/4 (13)

On the other hand, as the distributions for J1, J2 and J4 are uniform among them, we may
characterize the entanglement using only the invariants J1, J4 and J5. In Figure 3d we depict a scatter
plot using these invariants as coordinates, similarly as in Figure 2d for Ik.

Another interesting invariant is the one obtained by Kempe [44]

I5 = 3tr(ρA ⊗ ρB)ρAB − trρ3
A − trρ3

B = ti1 j1k1 ti2 j2k2 ti3 j3k3 ti1 j2k3 ti2 j3k1 ti3 j1k2 , (14)

which distinguishes locally indistinguishable states. In terms of the Acín parameters, it reads

I5 = 1− 3λ2
4 − 3λ2

3 + 3λ4
3 + 3λ4

4 + 3λ2
1λ2

3 + 6λ2
3λ2

4 (15)

+
(

λ2
1

(
3− 6λ2

3

)
− 3

(
λ2

3 − 1
) (

2λ2
3 + 2λ2

4 − 1
))

λ2
2

+6λ1λ3λ4

(
λ2

1 + λ2
2 + λ2

3 + λ2
4

)
λ2 cos φ +

(
3− 6λ2

3

)
λ4

2.

Note that the form (14) of the Kempe Invariant I5 is manifestly permutation symmetric.
Although this quantity cannot be considered as a legitimate measure of entanglement, Osterloh has
pointed out [45] that different values of I5 allow to distinguish between different local orbits of three
qubit pure states. Integrating Equation (14) using symbolic integration on the Haar measure, we found
that 〈I5〉 = 2/5 and 〈I2

5 〉 = 499/2860. In Figure 4a, we show the probability distribution of the
invariant I5, which can be approximated by the distribution

PFI5
(κ) =

9a+1Γ(a + b + 2)
7a+b+1Γ(a + 1)Γ(b + 1)

(1− κ)a(9κ − 2)b, 2/9 ≤ κ ≤ 1 (16)

where a = 90/23 and b = 283/621 are settled by the condition that the first two moments of PFI5
(I5)

correspond with the first two moments of P(I5) provided above. We remark that sextic invariant I′′′5
can be written in terms of the Kempe invariant and the quadratic and quartic invariants [13].

Recently, an alternative set of invariants characterizing a three-qubit pure state |ψ〉 was proposed
by Cheng and Hall [37]. To define them, consider a two-qubit reduced density matrix ρkl =
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Trm|ψklm〉〈ψklm| where indices k, l, m denote three subsystems A, B, C and m 6= k, l. Any such a
matrix of order four can be written in its Bloch representation,

ρkl =
1
4

(
1k ⊗ 1l + K ·~σk ⊗ 1l + 1k ⊗ L ·~σl +

3

∑
i,j=1

Tk,l
i,j σk

i ⊗ σl
j

)
(17)

where~σk = (σk
1 , σk

2 , σk
3 ), while K and L denote the Bloch vectors for parts k and l respectively. Entries of

the correlation matrices of the reduced states read Tk,l
n,m = 〈σk

n ⊗ σl
m〉 = Tr(σk

n ⊗ σl
mρkl), while the

superscripts denote two out of three subsystems A, B, C as required to determine a two-qubit partial

trace. Let skl
j denote the eigenvalues of the symmetric matrix Skl = Tkl

(
Tkl
)†

and the average value

read, skl
iso = (skl

1 + skl
2 + skl

3 )/3. The invariants are constructed in terms of the pairwise anisotropic
strengths δsAB

j , δsAC
j and δsBC

j with j = 1, 2, 3 which read δskl
j = skl

j − skl
iso, with k, l = A, B, C. It was

shown [37] that the pairwise anisotropic strengths fulfil the relations

(a) (b)

(c) (d)

Figure 3. (a–c) Probability distribution for the polynomial invariants Ji, i = 1, ..., 5 for a set of 106

three-qubit random states. In all graphics the numerical best fit distribution is depicted as the green
line. In Figure (d) we show a dispersion plot comparing J1, J4 and J5. In addition, each dot has been
colored as a function of its S1 Rényi entropy [41] calculated after the five term reduction in agreement
with the side color scale.

δsj = δsAB
j = δsAC

j = δsBC
j , j = 1, 2, 3 (18)

and they are also invariant under local transformations as well as any permutation of the parties.
Hence, the anisotropic strength and the anisotropic volume can be defined as
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s2
ani = ∑

i
(δsi)

2, Vani = ∏
j

δsi. (19)

Note that for a given three-qubit pure state |ψ〉 the above invariants can be related with parameters
entering the five-term form (4) —see Supplementary Material in [37].

In Figure 4b–d we show the probability distributions of the pairwise anisotropic strengths as well
as the probability distribution of the invariants sani and Vani for an ensemble of 106 three-qubit random
states. We approximate numerically the distribution of the quantities δs1, δs2 and sani by respective
beta distributions:

PF(δs1) = c1(a1 − δs1)
β1(δs1 − a2)

β2 , PF(δs2) = c2(a3 − δs2)
β3(a4 + δs2)

β4 ,

PF(sani) = c3(a5 − sani)
β5 sβ6

ani,
(20)

while the positive part of the distribution of V can be approximated by an exponential distribution,

PF(Vani) = c4e−bVani . (21)

The fitting parameters read ci = (472.7, 1299, 135.6, 54.9) for i = 1, . . . , 4; aj =

(0.66, 0.01, 0.11, 0.33, 0.72) for j = 1, . . . , 5; βi = (2.5, 2.04, 1.88, 1.92, 2.26, 1.63) for i = 1, . . . , 6 and
b ≈ 61.6. Interestingly, the distribution of the negative quantity δs3 displays a singular peak, while
the distribution of Vani attains its maximum at anisotropic volume close to zero and exhibits an
exponential decay.

(a) (b)

(c) (d)

Figure 4. Probability distribution of: (a) the Kempe invariant I5 (the green line stands for the probability
distribution (16)). (b) The pairwise anisotropic strengths δsj with j = 1, 2, 3. (c) The invariant sani and
(d) The invariant Vani. Solid lines in all cases correspond to the best numerical fit.

4. Three-Qubits Entanglement Classes

A state classification has been presented in [15] based on the minimal number of product states
in (4). Acín et al. reported some entanglement classes which are presented in Table 2. The conditions
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for such class states are expressed in terms of the invariants Jk. Thus, in this section we consider
the invariant classes introduced there, departing from the coefficients of the five-term representation
in H⊗3. These classes barely describe some families around some characteristic states in this space.
The first aim is to analyze how those classes represent the entanglement of each state included there,
mainly based on the entanglement distribution knowledge on H⊗3 [35]. Note that in some classes
the direct imposition of the conditions on the invariants leaves some product states that differ from
those reported by Acín, that is to say, to obtain such product states an additional LU transformation is
required. Such cases are remarked with ? in Table 2.

Table 2. Acín entanglement classes introduced in [15]. Besides ∆J ≡ (J4 + J5)2 − 4(J1 + J4)(J2 + J4)(J3 + J4).
Basis elements marked with ? are not directly obtained, instead they have additional relabellings.
Besides, the fourth column shows the identification of each class with subsets of the entanglement
polytope. The point G stands for (1/2, 1/2, 1/2). Details are presented in Section 5.

Class Conditions States Entanglement Polytope

1 Ji = 0 |000〉 point O = (0, 0, 0)

2a All Ji = 0 apart from J1 |000〉, |011〉? lines OA, OB and OC

2b All Ji = 0 apart from J4 |000〉, |111〉 line OG

3a J1 J2 + J1 J3 + J2 J3 =√
J1 J2 J3 = J5/2, J4 = 0

|000〉, |101〉, |110〉 42OAB,42OAC,42OBC,42 ABC

3b J1 = J2 = J5 = 0 |000〉, |110〉, |111〉 42 ABG,42 ACG,42BCG

4a J4 = 0,
√

J1 J2 J3 = J5/2 |000〉, |100〉, |101〉, |110〉 43OABC

4b J2 = J5 = 0 |000〉, |100〉, |110〉, |111〉

4c J1 J4 + J1 J2 + J1 J3 + J2 J3 =√
J1 J2 J3 = J5/2

|000〉, |101〉, |110〉, |111〉

4d ∆J = 0,
√

J1 J2 J3 = |J5|/2 |000〉, |010〉, |100〉, |111〉?

4.1. The Minimal Decomposition Entropy

We characterize the entanglement degree of the classes in Table 2 using the minimal
Rényi-Ingarden-Urbanik (RIU) entropy, also known as minimal decomposition entropy [35]. For the
state (1) this is defined as

SRIU
q (ψ) := min

Uloc
Sq [p(Uloc|ψ〉)] , (22)

where p(·) stands for the probability vector related to the state (1) and the minimum is taken on all local
transformations Uloc = U1 ⊗U2 ⊗U3. Note that Sq is the q-order Rényi entropy [41]. Depending on
the parameter q the quantity (22) provides information about the state [35]. Thus, for

• q = 0: The decomposition entropy is related to the tensor rank of the state |ψ〉. As a direct
consequence of the decomposition (4) we have SRIU

0 (ψ) ≤ 5.
• q = 1: The minimal decomposition entropy SRIU

1 (|ψ〉) determines the minimal information gained
by the environment after performing a projective von-Neumann measurement of the pure state
|ψ〉〈ψ| in an arbitrary product basis [46].

• q→ ∞: In such a limiting case, the minimal RIU entropy is associated with the maximal overlap
with the closest separable state Λmax = max |〈ψ|χsep〉|2. Indeed, it can be shown that SRIU

∞ (|ψ〉) =
− log λmax. See [35] for details.

A direct computation shows that for a state in class 1, the minimal RIU entropy vanishes regardless
of the value of the parameter q. The corresponding calculation for the other entanglement classes is
presented below.
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4.1.1. Classes 2

A direct calculation shows that the decomposition of states in class 2b is optimal. That is to say,
if the state is given by

|ϕ2b〉 = cos α|000〉+ sin α|111〉, 0 < α < π/2, (23)

the minimal decomposition entropy reads

SRIU
1 (ϕ2b) = − cos2 α ln(cos2 α)− sin2 α ln(sin2 α). (24)

Our numeric calculations indicate that for the class 2a, the Acín decomposition is optimal as well.
The states with the largest minimal decomposition entropy in each class are

|ϕmax
2a 〉 =

1√
2
|000〉+ 1√

2
|111〉, |ϕmax

2b 〉 =
1√
2
|100〉+ 1√

2
|111〉, (25)

note the reported basis for class 2b in Table 2 is different due to additional changes commonly reported
in the literature. A simple calculation shows the LU equivalence of the two local basis. Note that the
state |ϕmax

2b 〉 is bi-separable and it attains the same minimal decomposition entropy as the GHZ state.

4.1.2. Classes 3

Any state belonging to class 3a can be parametrized as

|ϕ3a〉 = sin θ1 sin θ2|000〉+ sin θ1 cos θ2|101〉+ cos θ1|110〉, 0 < θ1, θ2 < π/2 (26)

note such state is LU-equivalent to the symmetric state

|ϕ̃3a〉 = sin θ1 sin θ2|100〉+ sin θ1 cos θ2|001〉+ cos θ1|010〉, (27)

hence, the minimal RIU entropy can be computed using the method described in [35] for symmetric
states. In particular, if cos θ1 = 1/

√
3 and sin θ2 = 1/

√
2 we obtain the well-known W-state for which

SRIU
1 (W) = ln 3, which is the largest value of SRIU

1 for this class.
On the other hand, a state in class 3b can be written as

|ϕ3b〉 = sin θ1 sin θ2|000〉+ sin θ1 cos θ2|110〉+ cos θ1|111〉, 0 < θ1, θ2 < π/2. (28)

No state in class 3b has greater SRIU
1 than the W-state. For a general state in these classes, the minimal

decomposition entropy as a function of parameters θ1 and θ2 is depicted in Figure 5. Note that regions of
maximal SRIU

1 entropy are around the values θ1, θ2 for the maximal entropy for such states.

(a) (b)

Figure 5. (a) The minimal decomposition entropy level curves as function of the parameters θ1 and θ2

for a state in class 3a; (b) Same as (a) for a state in class 3b.
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4.1.3. Classes 4

A general state in each one of the classes 4 can be written as

|ϕ4a〉 = β1|000〉+ eiϕβ2|100〉+ β3|101〉+ β4|110〉 (29)

|ϕ4b〉 = β1|000〉+ eiϕβ2|100〉+ β3|110〉+ β4|111〉 (30)

|ϕ4c〉 = β1|000〉+ β2|101〉+ β3|110〉+ β4|111〉 (31)

|ϕ4d〉 = β1|000〉+ β2|010〉+ β3|100〉+ β4|111〉 (32)

where β1 = sin θ1 sin θ2 sin θ3, β2 = sin θ1 sin θ2 cos θ3, β3 = sin θ1 cos θ2 and β4 = cos θ1. As for
class 2b, the basis elements for class 4d reported in Table 2 are not those directly obtained from (4).
Class 4d corresponds to the real class (with all components real, thus eiϕ = ±1) which allows for
the performance of an additional reduction to only four terms. As in the previous case, we get
the surfaces of minimal decomposition entropy in terms of parameters θ1, θ2 and θ3 in the Figure 6.
Those figures exhibit for each class the behavior for the entropy. There, the frontiers of the regions
shown θ1, θ2, θ3 = 0, π/2 correspond to separable states. In addition, our numerical calculations show
that the minimal decomposition entropy is independent of the phase φ. We also numerically found
that the the largest SRIU

1 (ψmax
4a ) = 1.213 is attained for a state in class 4a with θ1 = 3π/10, θ2 = 4π/15

and θ3 = 23π/60. Note that this value is smaller than the one reported earlier [35] as the maximal for
a random state with five components.

(a) (b)

(c) (d)

Figure 6. Surfaces of equal entanglement for classes 4 measured with respect the minimal
decomposition entropy as function of the parameters θ1, θ2 and θ3 defining each class. Different
panels correspond to a state in: (a) Class 4a; (b) Class 4b; (c) Class 4c; (d) Class 4d.
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4.2. The Maximum Overlap with an Entanglement Class

Given an ensemble of random states, a natural question arises: how many states of such ensemble
belong to a particular Acín entanglement class? To tackle this question, observe first that numeric
calculations imply 〈SRIU

0 (ψ)〉 = log 5. Hence a generic three-qubit state has five non trivial components
in the decomposition (4). As each class has at most four components, we rather consider the
following quantity

Λi(β) = max
|ϕ〉,Ulocal

{|〈ϕ|U†
local|β〉|

2 : |ϕ〉 ∈ Class i}, (33)

where i = {1, 2a, 2b, 3a, 3b, 4a, 4b, 4c, 4d} and Ulocal = U1 ⊗ U2 ⊗ U3. Such quantity provides an
information, how much a given state |β〉 on H⊗3 differs from the closest state |ϕ〉 in the Acín
entanglement class i [15]. Note that the quantity Λi can be interpreted as the maximal fidelity of
a given state |β〉 with respect to the closest state belonging to the class i. In particular, if i = 1 the
results are consistent with SRIU

∞ (β) (see [35]) as this yields the maximum overlap with the closest
separable state.

By taking a set of 105 random states in H⊗3, we get their projection Λi on each Acín class,
tracking their hyperdeterminant Hdet(|ϕ〉), which is clearly invariant under local transformations.
Then we perform a numerical optimization on the three parameters depicting a local transformation
on each qubit (nine in total) together with the necessary coefficients depicting an arbitrary state in each
class [15]. Finally, we also track the hyperdeterminant of such a state, Hdet(|β〉). With this information,
we construct the corresponding distribution ρ(Λi) of each projection i (33).

Numerical results are shown jointly in Figure 7. First, the line plot shows the value of ρ(Λi)

on the left axis versus the value of projection Λi on the horizontal axis. Superposed, a dispersion
plot of the entire set of states being analyzed is shown in color. Each dot represents a random
state located vertically on their projection value Λi and horizontally in its hyperdeterminant value
Hdet(|β〉), which remains invariant under the local optimization procedure. Additionally, each dot
is colored in agreement with the hyperdeterminant of the best class element |ϕ〉 obtained in the
optimization. Colors are assigned from red for separable states to green for maximal genuine
entanglement. This structure of the plot allows one to compare the closeness between |β〉 and |ϕ〉 in
terms of genuine entanglement. Note the graph corresponding to class 4d has been omitted because it
is equivalent to that of class 4c: All coefficients in the class are real, then by exchanging 0 and 1 in all
qubits and swapping the qubits 1 and 3 we get the same state with local operations. Thus, the maximal
overlap and the hyperdeterminant statistics do not change.

Note particularly how in the Figure 7a the closest class states have Hdet(|ϕ〉) = 0 for some
random states which have Hdet(|β〉) near from the highest value 1

4 maintaining a closer distance
Λ4a ≈ 1. The opposite phenomenon is also observed in Figure 7b,c,e,g where some class states with
Hdet(|ϕ〉) ≈ 1

4 (in green) are close to some random states with lower Hdet(|β〉) values. On the other
hand, in Reference [24] the distribution of the fidelity between two random states has been computed
analytically. However, in our case the problem becomes more complicated due to the optimization of
the fidelity over all local unitaries.
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Figure 7. Dispersion graphs showing Hdet(|β〉) versus the maximum overlap Λi, colored from red
(separable) to green (maximal genuine entanglement). Each panel correspond to one of the Acín classes
(see Table 2) as follows: (a) Class 4a; (b) Class 4b; (c) Class 4c; (d) Class 3a; (e) Class 3b; (f) Class 2a;
(g) Class 2b; (h) Class 1. Besides, probability distributions of the maximum overlap (33) are shown in
the inset of each plot (vertical scale on the left). We have taken an ensemble of 105 three-qubit random
states. Graphs of classes 4c and 4d are equivalent so this last was omitted (see details in the core text).

5. The Entanglement Polytope of Three Qubits

Let λmin
k denote the smallest eigenvalue of the reduced density matrix of the subsystem of three

qubits, where k = A, B, C. The following set of compatibility conditions

λmin
A ≤ λmin

B + λmin
C , λmin

B ≤ λmin
A + λmin

C , λmin
C ≤ λmin

A + λmin
B . (34)

Form particular examples of polygon inequalities obtained by Higuchi et al. for systems of several
qubits [17]. The smaller eigenvalue of a one-qubit system is not larger then 1/2 so that 0 ≤ λmin

k ≤ 1/2.
Inequalities (34) determine jointly a convex polytope in the three-space (λmin

A , λmin
B , λmin

C ). Its five
vertices represent distinguished three-qubit states: Fully separable states are identified by the point
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SEP = (0, 0, 0) whereas points A = (1/2, 1/2, 0), B = (1/2, 0, 1/2) and C = (0, 1/2, 1/2) stand for
bi-separable states. The GHZ-state is located at GHZ = (1/2, 1/2, 1/2). The convex hull of these
points is known as the Kirwan polytope [21,47,48]. In addition, the identification of a state belonging
to an entanglement classes reported in [20] is summarized in Table 2.

Consider now an ensemble of three-qubit random states. For such states, the probability
distribution of the minimal eigenvalue of a single-particle reduced density matrix fulfils P(λmin) =

P(λmin
A ) = P(λmin

B ) = P(λmin
C ). Using the following relation between the two eigenvalues ϑ1 and ϑ2 of

a single qubit reduced density matrix

λmin = min(ϑ1, ϑ2) =
1
2
(ϑ1 + ϑ2)−

1
2
|ϑ1 − ϑ2|,

we can compute the probability distribution of the minimal eigenvalue λmin as

P(λmin) =
∫ 1

0

∫ 1

0
dϑ1dϑ2P(ϑ1, ϑ2)δ[λmin − (ϑ1 + ϑ2)/2 + |ϑ1 − ϑ2|/2)], (35)

where P(ϑ1, ϑ2) is the joint density (7) and δ stands for the Dirac delta function. Performing the
integral, we obtain

P(λmin) = 420[λmin(2λmin − 1)(1− λmin)]
2, 0 ≤ λmin ≤ 1/2. (36)

This distribution is depicted in Figure 8. Besides, a direct calculation yields the average value
〈λmin〉 = 29/128. In general, the k-the moment of λmin reads

〈λk
min〉 =

105
2k

[
Γ(k + 3)
Γ(k + 6)

− Γ(k + 4)
Γ(k + 7)

+
Γ(k + 5)

4Γ(k + 8)

]
. (37)

Note that a given pure state can be identified with a point in the entanglement polytope.
Its coordinates are (λmin

A , λmin
B , λmin

C ). This is shown in Figure 8b for an ensemble of 106 three-qubit
random states colored according to their joint probability distribution in the polytope. To compute
such probability distribution, the space containing the whole polytope [0, 1

2 ]
×3 was divided into 803

cubic cells. Then, we state the statistics of random states falling in each cell to get the probability
density of those states (by volume unity). Note that the closer the points are to the faces, the lower the
value of the distribution. In Figure 8c we depict a transverse cut by the plane containing the vertices
S, C and GHZ to depict the distribution of the inner points. This shows that random states are more
concentrated near the line joining the vertices SEP and GHZ, which corresponds to class 2a.

On the other hand, two quantum pure states attain the same amount of entanglement if they
belong to the same class, that is to say if there is a finite probability of success that they can be converted
into each other using stochastic local operations and classical communication, referred to as SLOCC
by its acronyms. For the case of three qubits, there exist two SLOCC classes of entanglement: the one
containing the GHZ state, which exhibits genuine entanglement and the W class [8].These classes can
be distinguished from the entanglement polytope. Numerical calculation shows that around 6% of
the states are placed in the upper polytope, so that they belong to the GHZ SLOCC class [21]. As the
invariant I6 discriminates between such classes in panel Figure 8d we show the ensemble of random
states colored with respect to this invariant. For states placed near the bi-separable faces I6 goes to
zero, whereas the states landing in the GHZ simplex are characterized by a positive value of this
invariant. An equivalent approach can be done dealing with the maximum eigenvalues of the reduced
single qubit density matrices. For such a case, the joint probability distribution is known [49] and
hence the fraction of random states in the GHZ pyramid was computed in Reference [50] yielding
13/216 ≈ 6.02% which is consistent with our numerical calculation.



Entropy 2018, 20, 745 16 of 19Entropy 2018, xx, x 16 of 19

(a) (b)

(c) (d)

Figure 8. (a) Probability distribution of the minimal eigenvalue of a single qubit reduced system (36). (b) An
ensemble 106 of three-qubit random states depicted in the entanglement polytope. The color scale stands for the
joint probability distribution. (c) Detail of (b): A transversal section by the plane which contains the points S, C
and GHZ. (d) The ensemble of three qubit random states labeled by colour settled according to the value of the
invariant I6.

6. Conclusions and Future Work

We studied various quantities describing a three-qubit pure quantum state and analyzed their
probability distributions obtained for an ensemble of random pure states generated by the unitary
invariant Haar measure. In particular, we investigated the distribution of the six parameters
determining the five-terms decomposition (4) of a three-qubit state. The phase of the complex
coefficient occurs to be uniformly distributed. The distributions of the amplitudes λ0 and λ4 differ
from the distribution describing the remaining three coefficients. Interestingly, these two coefficients
can be related with the degree of entanglement as the invariant J4 depends only on them. In addition,
we have also analyzed the probability distributions of two sets of polynomial invariants. The invariants
I1, I2 and I3 follow the same distribution. Thus, out of the five independent invariants, only three are
necessary to characterize entanglement in three-qubit states. This fact is consistent with the second
set of invariants reported by Acín et al. as the distributions of the invariants J1, J2 and J3 do coincide.
For each invariant its mean value was computed using symbolic integration with respect to the
unitary invariant Haar measure. Moreover, we have also obtained the probability distribution of the
anisotropic strength sani and the anisotropic volume Vani introduced recently in [37]. These invariants
are useful in the study of strong monogamy relations, geometric discord and fidelity of remote state

Figure 8. (a) Probability distribution of the minimal eigenvalue of a single qubit reduced system (36).
(b) An ensemble 106 of three-qubit random states depicted in the entanglement polytope. The color
scale stands for the joint probability distribution. (c) Detail of (b): A transversal section by the plane
which contains the points S, C and GHZ. (d) The ensemble of three qubit random states labeled by
colour settled according to the value of the invariant I6.

6. Conclusions and Future Work

We studied various quantities describing a three-qubit pure quantum state and analyzed their
probability distributions obtained for an ensemble of random pure states generated by the unitary
invariant Haar measure. In particular, we investigated the distribution of the six parameters
determining the five-terms decomposition (4) of a three-qubit state. The phase of the complex
coefficient occurs to be uniformly distributed. The distributions of the amplitudes λ0 and λ4 differ
from the distribution describing the remaining three coefficients. Interestingly, these two coefficients
can be related with the degree of entanglement as the invariant J4 depends only on them. In addition,
we have also analyzed the probability distributions of two sets of polynomial invariants. The invariants
I1, I2 and I3 follow the same distribution. Thus, out of the five independent invariants, only three are
necessary to characterize entanglement in three-qubit states. This fact is consistent with the second
set of invariants reported by Acín et al. as the distributions of the invariants J1, J2 and J3 do coincide.
For each invariant its mean value was computed using symbolic integration with respect to the
unitary invariant Haar measure. Moreover, we have also obtained the probability distribution of the
anisotropic strength sani and the anisotropic volume Vani introduced recently in [37]. These invariants
are useful in the study of strong monogamy relations, geometric discord and fidelity of remote state
preparation and studies of violation of the Bell inequality. In this last context, one could ask for
the probability that one of the three pairs violates a Bell inequality. However, these results will be
reported elsewhere.
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On the other hand, the set of invariants {Jk} allows us to identify certain entanglement
classes, whose entanglement was described through the minimal decomposition entropy. Moreover,
highly entangled states with respect to this measure were identified in each class. Our results imply
that the more terms in the decomposition (4) of a three-qubit state, the larger its degree of entanglement
measured by the minimal decomposition entropy.

The numerical outcomes provide us with several insights about possible meanings of the
entanglement invariants. First, there is an apparent underlying statistical equivalence between
coefficients λ1, λ2 and λ3 (and their low values suggest a closer position of the states respecting
genuine entanglement states in terms of the RIU entropy statistics for the overall 3-qubits random
states). The same aspects seems true for I2, I3, I4 and J1, J2, J3 invariants. Together, larger values for λ0

and low values for I′′′5 and J4 seem related with the presence of genuine entanglement (this affirmation
is based on the fact that larger values of RIU entropy are statistically more common for the overall
3-qubit random states).

Other outcomes relative to the type a in the Acín classes exhibit separable states. There,
the growing number of the class (1, 2, ..., 4) reflects the inclusion of most of the random states for
three qubits (see Figure 7a,d,f,h). In this sense, the use of RIU entropy as an exemplary measure of
quantum entanglement allows us to provide a classification of three qubit states and to describe their
hierarchy. The invariants with respect to local transformations are useful to identify certain types
of entangled structures in the entire system. As shown in Figure 7, the states displaying genuine
entanglement appear closer from other states in the classes with no genuine entanglement. Although
smooth measures of entanglement depend on the state in a continuous way, a small variation of a state
can lead to a considerable change of its entanglement. This feature was observed in larger systems [51].
In such a scenario, the current analysis in the quest of understanding the hierarchy of entanglement,
could set directions to transform states from maximally entangled into separable ones. By using
the SU(2) decomposition procedure, [52] has been clear about the existence of basic U(1)× SU(2)
operations among entangled pairs, showing how the entanglement phenomena can be generated in
a structured way form basic operations then transiting from separable to genuine entangled states.
This suggests that programmed local operations combined with entangling operations between two
previous entangled pairs can be realized in order to connect such state types. Thus, basic separable
states could be transformed into maximal entangled states as |GHZ〉 and |W〉 only with a series of
such operations. In a more ambitious task, those single types of operations could suggest they could
be responsible for the transit from certain classes to others among the hierarchies of entanglement.
In such a process, the track in the change of the invariants values could provide a strong road-map for
such transit.

Finally, we have analyzed the probability distribution of the maximal fidelity of a random state
with respect to the closest representative of each entanglement class. The highest maximal fidelity
is obtained for classes 4a–d listed in Table 2. This can be seen from the fact that the distributions
of five coefficients in the decomposition (4) are highly non-trivial, as these quantities carry some
information concerning the degree of entanglement. Our study comprises several ways to analyze
the entanglement in a three-qubit system showing the fact that entanglement can be characterized
from different approaches, each one providing different aspects of non-locality. Therefore, we hope the
results of this work will shed some light on the matter.
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27. Cappellini, V.; Sommers, H.-J.; Życzkowski, K. Distribution of G concurrence of random pure states.

Phys. Rev. A 2006, 74, 062322. [CrossRef]
28. Kumar, S.; Pandey, A. Entanglement in random pure states: Spectral density and average von Neumann

entropy. J. Phys. A 2011, 44, 445301. [CrossRef]

http://dx.doi.org/10.1016/j.jcss.2004.06.003
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1088/1742-6596/698/1/012003
http://dx.doi.org/10.1016/S0375-9601(00)00480-1
http://dx.doi.org/10.1063/1.1319516
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.96.062310
http://dx.doi.org/10.1103/PhysRevA.65.052112
http://dx.doi.org/10.1088/1464-4266/3/4/305
http://dx.doi.org/10.1103/PhysRevA.58.1833
http://dx.doi.org/10.1088/0305-4470/34/3/323
http://dx.doi.org/10.1063/1.4858336
http://dx.doi.org/10.1088/0305-4470/34/35/301
http://dx.doi.org/10.1088/1751-8113/46/5/055304
http://dx.doi.org/10.1103/PhysRevLett.90.107902
http://www.ncbi.nlm.nih.gov/pubmed/12689035
http://dx.doi.org/10.1103/PhysRevA.70.042309
http://dx.doi.org/10.1126/science.1232957
http://www.ncbi.nlm.nih.gov/pubmed/23744943
http://dx.doi.org/10.1088/0305-4470/21/22/006
http://dx.doi.org/10.1103/PhysRevA.71.032313
http://dx.doi.org/10.1103/PhysRevA.80.042309
http://dx.doi.org/10.1103/PhysRevA.66.062310
http://dx.doi.org/10.1103/PhysRevA.74.062322
http://dx.doi.org/10.1088/1751-8113/44/44/445301


Entropy 2018, 20, 745 19 of 19

29. Vivo, P.; Pato, M.P.; Oshanin, G. Random pure states: Quantifying bipartite entanglement beyond the linear
statistics. Phys. Rev. E 2016, 93, 052106. [CrossRef] [PubMed]

30. Kendon, V.; Nemoto, V.K.; Munro, W. Typical entanglement in multiple-qubit systems. J. Mod. Opt.
2002, 49, 1709–1716. [CrossRef]

31. Facchi, P.; Florio, G.; Pascazio, S. Probability-density-function characterization of multipartite entanglement.
Phys. Rev. A 2006, 74, 042331. [CrossRef]

32. Korzekwa, K.; Lostaglio, M.; Jennings, D.; Rudolph, T. Quantum and classical entropic uncertainty relations.
Phys. Rev. A 2014, 89, 042122. [CrossRef]

33. Fannes, M. Multi-state correlations and fidelities. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1260021. [CrossRef]
34. Rangamani, M.; Rota, M. Entanglement structures in qubit systems. J. Phys. A 2015, 48, 385301. [CrossRef]
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