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Abstract

Image analysis methods are commonly employed to determine the size and shape of particles. Although commercial and non-
commercial tools enable detection and measurement of grains from images, they do not provide good results in the case of images
acquired during extensive in situ Martian investigations. Within the confines of the Mars Exploration Rover (MER) mission and
the Mars Science Laboratory (MSL) mission thousands of images of sand grains were captured, and hitherto, they are the only
source of ground-truth data on Martian sand particles. Therefore, a new approach is proposed to analyze such images. The semi-
automatic algorithm allows fast detection and measurement of the size and shape of Martian grains from images obtained by the
Microscopic Imager (MI) and the Mars Hand Lens Imager (MAHLI). The method was evaluated on 76 images of terrestrial and
Martian deposits. The results for the terrestrial samples were compared to those from sieve analysis, as well as with ImageJ and
Malvern Morphologi G3 systems. The method provides similar results to those from the other methods. It does not have any

limitation on the size of grains, and permits separation of touching particles.
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Introduction

Aeolian processes play a significant role in shaping the pres-
ent surface of Mars. To obtain information on aeolian trans-
port we need to bring together data about aeolian bedforms
and the materials that they are composed of. Therefore, we
need to measure chemical, mineralogical and physical prop-
erties of Martian deposits. Among physical properties impor-
tant for aeolian transport are the size and the shape of
transported grains. To study mechanisms of aeolian transport
on Mars, it is then very crucial to determine statistical charac-
teristics of deposits, and to investigate correlations between
their various parameters, such as the mean diameter,
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elongation or sorting of grains (Friedman 1967; Moiola and
Weiser 1968; Visher 1969; Borowka 1980).

Terrestrial acolian deposits are mainly studied using sieve
and laser diffraction analysis, but on Mars, such methods can-
not be applied yet. There is, however, another option as vari-
ous Martian sediments are clearly visible in images acquired
during the rovers’ missions. From such images, morphologi-
cal parameters of deposits can be estimated.

The rovers of the MER (Mars Exploration Rover) mission:
Opportunity and Spirit, located in Gusev Crater and Meridiani
Planum, respectively, were equipped with the MI (Microscopic
Imager), a high-resolution camera. A camera of still higher res-
olution, the MAHLI (Mars Hand Lens Imager), was mounted on
the MSL (Mars Science Laboratory) rover, Curiosity, investigat-
ing Gale Crater. These rovers acquired thousands of images in
which individual sand grains can be resolved.

The MI and MAHLI images were taken under very differ-
ent settings from laboratory conditions. An example of an
image obtained in laboratory conditions can be seen in
Fig. lc,d, whereas a detailed image of the Martian surface
is shown in Fig. 1a,b. For both Martian and terrestrial images,
we would like to have a simple tool that enables the study of
sand-sized material. Therefore, this work presents a semi-
automatic method, which allows studying the shape and size
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Fig. 1 Images of deposits. a Dust aggregates from Gusev Crater (sol 79,
image ID: 2M133382890EFF2232P2977M2M1). b Spherules from
Meridiani Planum (sol 19, image ID: 1M129869918EFF0338

of grains from images. It is based on digital image processing
and analysis techniques.

MI and MAHLI images

The MI on both MER rovers operated identically, so that data
processing in these two cases was done in the same way. The
MI images are 1024 x 1024 pixels in size with 31 pm per pixel
at best focus, resulting in around 31 mm frame width
(Herkenhoff et al. 2003). Pixel size of the MAHLI images is
not constant as the camera can focus from 2.1 cm to infinity.
Knowing the distance between the front lens element and the
image target, the physical size of the image can be calculated.
The relationship between pixel size, p (in pm/pixel), and
working distance, w (in cm), is given by the equation
(Minitti et al. 2013):

p =6.9001 + (3.5201 x w).
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P2953M2M1). ¢ Dark sand grains from Grand Falls dune field,
Arizona, US. d Small pebbles from Iceland on fine desert sand

Martian images are corrected (Herkenhoff et al. 2006;
Edgett et al. 2012) using additional calibrating images as flat
field, dark and bias frames. Such processing improves image
quality, however, it does not remove uneven illumination or
background noise. [llumination in a few Martian images var-
ied beyond any satisfactory correction, and it became neces-
sary to crop the images manually. In these cases, the further
processing was done solely to the fragment of the image that
was the most evenly illuminated and represented the greatest
number of grains.

The resolution of the MI images does generally not allow
distinguishing grains smaller than 0.15 mm. Studying smaller
particles was possible only in some cases. Although the main
aim of this work is to study sand grains, grains larger than
2.0 mm were analyzed also.

Different types of grains can be differentiated in the
Martian images (Geissler et al. 2008). Fine-grained material
composed of dust aggregates of diameters <0.15 mm is pres-
ent in almost all images (Fig. la,b). Spherules or their
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fragments are visible in many images from the Opportunity
rover (Fig. 1b) (Squyres et al. 2004). These grains are gener-
ally a few millimeters in diameter, and they are usually not
touching one another when imaged on the surface. Grains
found in ripple crests and dune fields are smaller than spher-
ules. They are well sorted and densely packed. Individual
grains smaller than 1 mm, but larger than 0.15 mm, are clearly
visible only in a few images.

Methodology
Background

Several different methods in image analysis were proposed to
acquire information on particles from images. An approach in
principle based on sieve analysis is the granulometry method
(Matheron 1967). The method uses a series of morphological
opening or closing operations, and it provides only some in-
formation on the size of grains passing through the given
structuring element. This technique does not allow studying
the shape of grains. To obtain information on morphological
parameters of individual particles, an image segmentation
technique, enabling the detection of grain boundaries, must
be applied (Fu and Mui 1981). This approach often allows
the separation of overlapping or touching grains.

A granulometry technique with opening operations was
employed to the MI images (Lira et al. 2010), yet it resulted
solely in a rough estimation of granulometric curves.

The estimation of shape and size of Martian grains has been
done manually in a number of publications (Weitz et al. 2006;
Jerolmack et al. 2006; Yingst et al. 2008; Sullivan et al. 2008;
Minitti et al. 2013; Yingst et al. 2013). Manual methods, how-
ever, are very time-consuming, tedious, and are not practical
as the number of images steadily increases.

The work of Karunatillake et al. (2014) presents a semi-
automatic method for segmenting the Martian images, espe-
cially those obtained by the MI instrument, using image pro-
cessing techniques. This method is based on two procedures:
binarization and watershed segmentation. The authors study
the foreground (defined in their work as grains position closer
to the imager) and background of an image separately. They
use binarization technique to establish particles in the fore-
ground, yet this technique does not allow separation of touch-
ing grains. If such particles are present in the foreground,
binarization will not give a precise result. Due to the large
number of operations, and the number of necessary parame-
ters that must be established during the segmentation process
the method is also quite complicated.

Therefore, a simple tool dedicated to analyzing Martian
images is presented in this work. It is based on the PADM
(Particle Detection and Measurement) algorithm, which en-
ables fast detection and measurement of individual grains, and

also provides statistical results. The PADM algorithm uses a
set of image processing operations associated with filtering,
segmentation and extraction. The algorithm was originally
implemented into Wolfram Mathematica, but it can be imple-
mented into any other environment, such as IDL or Matlab.
Although it is possible to establish automatic parameters
for each group of Martian images, the accuracy of the results
can be improved significantly with some human assessment.
Therefore, the approach presented here is semi-automatic.

PADM algorithm

The algorithm employs segmentation techniques for object
detection. Hence, in the initial step, it is necessary to deter-
mine the foreground and the background of studied images.

Images of deposits can be divided into four main groups
according to the foreground-background relationship: a)
grains can be brighter than their surroundings and smaller than
the background irregularities (Fig. la), b) grains can be
brighter than their surroundings and larger than the back-
ground irregularities (Fig. 1b), c¢) grains can be darker than
their surroundings and smaller than the background irregular-
ities (Fig. 1c), d) grains can be darker than their surroundings
and larger than the background irregularities (Fig. 1d).

Almost all particles observed in the Martian images are
bright. However, before using the algorithm, we have to de-
cide whether objects we would like to detect are characterized
by higher (Fig. la,b) or lower (Fig. 1c,d) values relative to
their surroundings.

If the grains are smaller than the background irregularities
(Fig. 1a,c), the background can be easily removed, but if grains
are larger or similar to surface irregularities (Fig. 1b,d), then the
background often cannot be subtracted without some reduction
of the foreground. On Earth, even during a field experiment, we
can easily take images of material placed on some plain back-
ground (Fig. 1c), for example on a piece of paper. However,
many Martian sand grains are located on a deep layer of fine
material, which creates non-uniform, noisy background (Fig.
1b). Furthermore, some Martian images do not display a clearly
visible background, but instead contain many touching particles
(Fig. 2). Since the irregularities associated with such a
“background” are similar to the size of particles, this kind of
images should be processed like those with a noisy background.

To distinguish between a plain and a noisy background, an
initial automatic procedure, called background procedure
(BG) is applied to the algorithm. It is based on calculating
the volume of the studied image, f, after its filtering and bina-
rization. The filtering is done by the top-hat transform
THTR(f) (for brighter grains) or the bottom-hat transform
BHTR(f) (for darker grains) with a structuring element in a
form of a disk of a range R. Then the output image, f, is
binarized with the threshold operator 7}, 5 with the lower
and upper thresholds: « and 3. The threshold operator
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converts the input image f; into a binary image whose pixels

values are either 0 or 1. Next, the volume of the image f; is

computed: Vgrp) = Y. f2(p), where p — the image pixel, D
peD

— the image domain. Finally, the calculated volume is normal-

ized to the volume V of the input image £ Vi) = Varr/V,

where: V= Y f(p), Vaw) is the normalized volume. The
peD

procedure starts from R =1, and ends when it finds the first
minimum of Vi), i.e. when R=M+ 1, for which Vyu,) <

Var+ 1y (where: M=1,2, ..., is much smaller than the size
of grains). The BG procedure returns a logical value, which is
true if the value of the first minimum of Vi, is larger than an
empirically determined critical value for a given set of images.
For the Martian and terrestrial images studied in this work, the
Otsu’s threshold (Otsu 1979) was used, and the background
was treated as noisy when the value of the first minimum of
V) was larger than 0.06.

The PADM algorithm employs three different techniques
of grain detection, as one of them may work better than an-
other with a particular image. These three techniques are
called after their main procedures: binarization, edge detection
and watershed segmentation. For all images with removable
background, all approaches can be used. If the reduction of the
background is not possible but the grains are separated, often
the most efficient technique is the edge detection. In cases
with many touching particles, the marker-controlled segmen-
tation processing sequence (watershed) can be applied.

All these techniques consist of four steps. Each step is
described below and the scheme of the whole algorithm is

Fig. 3 The scheme of the
PADM algorithm
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In the first step (filtering step), the background of an input
image, f, is reduced or removed, and a filtered image g; is gen-
erated. If the BG procedure returns a logical value false, and the
studied grains are brighter than their surroundings, the filtering
employs the top-hat transform (THT x( /). If the grains are darker
than their surroundings the bottom-hat transform (BHTx(f)) is
applied. Both transformations use a structuring element in the
form of a disk of a range R, that is larger than the largest particles.
If the background is noisy (the BG procedure returns a logical
value true), the opening procedure, Yz(f), is employed for ob-
jects whose values are larger than their surroundings or the neg-
ative of closing procedure ¢ (f) is employed for objects whose
values are smaller than their surroundings. Both procedures use a
structuring element in the form of a disk of a range R, similar or
larger than the background irregularities.

In the second step (segmentation step), a segmentation
technique is applied to the filtered image. The segmentation
step is different for each of the techniques and described be-
low in more detail. As an output of this step a segmented
binary image g, is calculated.

The third step (selection step) is related to removing un-
wanted objects from the segmented image. The applied selec-
tion procedures allow removing border particles and
extracting objects that satisfy specific criteria, such as size

Fig. 4 The steps of the binarization technique for a terrestrial sample
(Grand Falls dune field, Arizona, US) with a plain background. a Input
image f. b Filtered image g; = BHT,o(f). ¢ Segmented image g, =

(determined by the image resolution and the diameter of
grains) or circularity (which depends on the studied grains
characteristics), which also leads to reduction of segmentation
artifacts. In this step, the final output image g3, consisting of
detected objects, is generated.

In the final step, the basic statistical analysis of the detected
objects can be easily performed. The diameter, length, width,
circularity and elongation of each particle as well as the parti-
cle size-distribution can be obtained and analyzed.

The binarization approach is the simplest and fastest. The
steps of this technique are shown for two types of material.
The first one is made of small dark grains located on a plain
background (Fig. 4), and the latter of large bright grains locat-
ed on a noisy background (Fig. 5).

In this approach, in the segmentation step, the filtered im-
age, g1, is binarized with the threshold operator 7}, g, and all
potential holes in features are filled (FILL). Thus this step
returns a segmented image g» = FILL[ T}, 5(g1)]. The binari-
zation of studied images works well with Otsu’s clustering
threshold (Otsu 1979).

The edge detection approach can be used to detect separate
grains with well-defined edges. In this work, for simplicity,
the steps of this approach are shown only for the Martian
material (Fig. 6). In the second step of this procedure, the

‘v ®° A - v
c- g

FILL[T10.14,11(g1)]. d Detected particles. The input image fis masked
with the segmented image g,. The image contains 229 grains in the
range of 0.5 to 2.0 mm. Image size is 1914 x 1332 px
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Fig. 5 The steps of the binarization technique for the MI image from operation of (c) results in the segmented image g, = FILL[Towsu(g/)]- €
Meridiani Planum (sol 1148, image ID: 1M230096684EFF81 The extraction step. Border objects were removed automatically. f
0O7P2956M2M1) with a noisy background. a Input image f. b Filtered Detected particles. Four buried particles were removed manually, on the
image g, = ¥s(f). ¢ Binarization of g; by Otsu’s threshold. d Filling basis of human assessment

(4

Fig. 6 The steps of the edge detection technique for the MI image from (c). e The segmented image g5 as a result of erosion and dilation of (d). f
Meridiani Planum (sol 1148). a Input image /. b Opening of f; g = ¥s(f). Detected particles. Four buried particles were removed manually, on the
¢ Edge detection and thinning of gy, THIN[EDy(g1)]. d Filling contours of basis of human assessment
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Canny edge detection (ED) algorithm is applied to the filtered
image g; (Canny 1986), with a filter range R similar to the
grains size. Next, the thinning procedure (THIN) is used to
thin the edges to one-pixel wide, and the computed outlines
are filled. All artificial lines are removed using erosion e and
dilation dz procedures with a square structuring element of a
range R = 1 px. This technique returns the segmented image g,
= 0i[e\[FILL[THINIEDs(g)]1]]]-

The marker-controlled watershed segmentation technique
(Soille 2002; Iwanowski 2009) can be used for touching as well
as separated particles. In the watershed segmentation, the pixel
value in an image is treated in a similar way as the elevation value
in a topographic map, and boundaries between particles are de-
termined in a similar way as boundaries between ridges. The
steps of this approach are also shown only for the Martian ma-
terial (Fig. 7). In the segmentation step, the reduced image, g,

Fig. 7 The steps of the segmentation technique for the MI image from
Meridiani Planum (sol 1148). a Input image /. b Opening of f, g, =
v8(f). ¢ Sharpening of g;, g’1 =SH»(g;). d The SF contours. e
Binarization and filling of g’; (f) Markers MS, shown as dots, with SF

contours. g Segmented image g, with removed border objects. h Detected
particles. Four buried particles were removed manually, on the basis of
human assessment
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can be sharpened (SH) over a radius R, generating an enhanced
image g’y = SHz(g1). In the enhance image, the contours of the
grains can be detected by the Canny edge detection algorithm
and added to the sharpened image to enhance grain boundaries
(Fig. 7c). Next, two parallel processing sequences: gradient fil-
tering and binarization are applied. In the first sequence, gradient
filtering (GF) with a kernel of pixel radius R=1 is performed.
Gradient filtering generates a filtered image corresponding to the
magnitude of the input image gradients. This allows for contours
detection in the image and produces a segmentation function,
SF=GFR[EDp(g’1)+g’1] (Fig. 7d). In the second sequence,
the enhanced image g’; is binarized. Then, all holes in the
binarized image are filled (Fig. 7e). From this image, the distance
transform (D7) is computed. The distance transform on the bi-
nary image connects each pixel with its distance to the nearest
pixel whose value is 0. This output image is submitted to
Gaussian filtering (GS) with a kernel of radius R. If the kernel
radius is larger, the filtered image is smoother. The kernel of
radius R =15 px can be used for medium grains (in relation to
the image resolution). For large grains, R can be up to 25 px, and
for small grains (at the resolution limit) down to 1 px. Next, in the
output image, the markers (MS) of the particles are found using
extended maxima detection (MAX) (see e.g. Soille 2002), MS =
MAX|GSRIDTTFILL[ T p1(g’ D111 (Fig. 7f). A marker is a point
in the image, which indicates that in the given place a particle is
located. The MS are employed to impose the segmentation func-
tion SF. The watershed transformation of the image, WS(g’,), is
done by the Meyer method (Meyer and Beucher 1990) with 8
closest neighbors. Finally, the output is binarized with Otsu’s
threshold, producing the segmented image g = Tjows[WS(g"1)]
(Fig. 7g).

The median diameters of the detected grains as well as the
parameters for all the approaches are presented in the
Appendix in Table 5.

PADM algorithm testing in comparison with other
methods

The PADM algorithm was tested in comparison with other
semi-automated and manual image analyses as well as with
sieve analysis.

Comparison with other automated image analyses

Firstly, the PADM algorithm was tested on generated binary
images representing various samples of particles. The same
images were also analyzed using I/mageJ, and Malvern
Morphologi G3 system.

Next, to compare results for terrestrial samples, the
PADM method was used along with the image analysis
provided by the Malvern Morphologi G3 system. The
Malvern Morphologi G3 system was used because it is
more precise than ImageJ. For this study, three types of
sands were employed. The first sample, HE, was com-
posed of fine-grained beach basalt sand from a beach near
Héradssandur, Iceland. The second, GF, was acquired
from the Grand Falls dune field, located ca. 70 km NE
of Flagstaff, Arizona, USA. The Grand Falls dune field
deposit consists of fine to medium-grained quartz sand,
and medium- to coarse-grained basalt sand (Hayward
et al. 2010). The last sample, BD, was composed of fine-
grained quartz sand, and it was collected from a dune field
site called the Bledow Desert, located ca. 60 km NW of
Krakow, Poland.

The Morphologi G3 system uses a semi-automated im-
age analysis technique and provides particle size and shape
information. The most important components of the device
are the optical unit, digital camera, sample dispersion unit,
and software. Using the system, one can receive high qual-
ity images of a studied sample along with its statistical
analysis. Before analyzing, the samples were dispersed
using a pulse of compressed air. For all sands, the same
Standard Operating Procedure (SOP) and a 2.5x objective
were used.

To compare the obtained results with the PADM algorithm,
the images of the entire samples captured by the Morphologi
G3 camera were input into the algorithm.

Comparison with sieve analysis

To compare the results from the PADM algorithm with sieve
analysis, three terrestrial samples were studied. The first two
samples GF, and BD were the same as used in the previous
comparison. The third sample, SO, consisted of coarse-

Table 1 The statistical results for

an image containing 280 identical Number of grains Mean D [px] Standard Mean circularity
circular objects obtained by PADM, deviation [px]
ImageJ and Morphologi G3
PADM (binarization) 265 18.77 0.17 0.98
PADM (edge detection) 280 18.90 0.13 1.00
PADM (watershed) 263 18.84 0.14 0.97
Imagel] 266 18.74 0.17 0.95
Morphologi G3 264 18.89 0.17 0.99
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Table 2 Comparison of statistical
results obtained by PADM Sample  Method Number of Mean D Median D Standard deviation Mean
(binarization) and Morphologi G3 grains [mm] [mm] [mm] circularity
from the same images of the
terrestrial samples GF PADM 605 0.23 0.16 0.22 0.81
Morphologi 555 0.22 0.16 0.18 0.84
HE PADM 578 0.33 0.32 0.10 0.88
Morphologi 572 0.34 0.33 0.09 0.87
BD PADM 747 0.22 0.19 0.10 0.90
Morphologi 654 0.23 0.20 0.10 0.90

grained basalt sand from So6lheimajokull glacier moraine,
Iceland. Sieve analysis was performed with Fritsch sieves
from 0.5 mm to 4.0 mm. Sieving was conducted with mechan-
ical shakers and hand shaking. The number of grains as well as
the weight of each sample was established before and after
employing sieve analysis. The number of grains was mea-
sured manually.

After sieve analysis, the images of all three samples
were taken. All the images were captured with a Fuji
FinePix S2995 camera. To test the algorithm efficiently,
the images were taken in various conditions. Two kinds
of lighting were applied: top light and back light. For dark
grains, in order to reduce shadows, the back light was pre-
ferred, but it was not always possible, especially with im-
ages containing touching particles. In all cases, the images
were to some extent unevenly illuminated. In many cases,
grains were separated manually before processing, so that
there were no touching particles in the images. To establish
the size of grains, a ruler was used. The camera was leveled
properly before taking each image.

Analysis of Ml and MAHLI images

Finally, the PADM algorithm was evaluated with images tak-
en by the Mars rovers. The statistical results from the PADM
algorithm were also compared with the results obtained pre-
viously by manual methods with regard to some of the MI
images of Meridiani Planum sediments (Weitz et al. 20006).

Results

Using the PADM algorithm, 76 terrestrial and Martian images
were studied using all the approaches discussed above. The
grain diameter, D, was defined as the diameter of a disk that
has the same area (the equivalent disk). The circularity was
calculated as: 4wA/P?, where: A is the area of a particle, and P
is the perimeter of a particle. Length, L, was assumed as the
major axis of the best-fit ellipse (computed from moment in-
variants), and width, W, as the minor axis of the best-fit ellipse.
Elongation was computed as 1 — W/L, and aspect ratio as W/L.

Fig. 8 Cumulative size 100 BT E == e —v e e ==
distribution curves of the - %.4';'
terrestrial samples: GF, HE, and b L
BD, obtained by PADM
(binarization), and Morphologi 80 .
G3 system (MORPH)
X 60-
o
=
k) 1 =
E . —=— GF PADM
3 7 —e— GF MORPH
i —a— HE PADM
—e— HE MORPH
20 - —u— BD PADM
—e— BD MORPH
o T T T
0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8
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Table 3 Comparison of statistical

Number of grains

Mean width [mm] Standard deviation [mm]

results obtained by PADM Sample Method
(binarization) and sieve analysis
for the terrestrial samples SO PADM 763
Sieve
GF PADM 933
Sieve
BD PADM 758
Sieve

1.34 0.61
1.28 0.59
1.24 0.53
1.19 0.52
0.89 0.31
0.89 0.29

Comparison with ImageJ and Morphologi G3 system

The statistical results of a grayscale image representing gen-
erated circular particles of almost the same size in comparison
with the ImageJ and Morphologi G3 are presented in Table 1.

The comparisons of the morphological parameters and cu-
mulative size frequency distributions for the images of the
terrestrial samples computed by Morphologi G3 system and
PADM algorithm are presented in Table 2 and Fig. 8. Only
grains larger than 0.1 mm and smaller than 1.8 mm in diameter
were analyzed. As difference between the results obtained
from the different PADM techniques was not larger than 5%
for the studied samples, and Morphologi G3 system uses the
binarization technique, only results from the PADM binariza-
tion approach are shown.

The Morphologi G3 system has some limitations. Firstly,
using a 2.5% objective, the system cannot measures particles
larger than 1 mm. The second important limitation is a small
field of view of the microscope. In the case of coarse-grained
samples, many images are required to obtain a sufficient

number of grains. Also, the method does not distinguish
touching particles, so that it is crucial to apply precise disper-
sion before analyzing. In all samples, the PADM algorithm
detected more grains than Morphologi G3, and it also detected
larger and smaller particles at the same time.

Comparison with sieve analysis

Despite many differences, sieve analysis and image analy-
sis can be compared (Fernlund 1998). An example of a
comparison between these two methods for the terrestrial
samples is presented in Table 3 and Fig. 9. In both cases,
the statistical parameters were obtained using Folk and
Ward definitions (Folk and Ward 1957). In those analyses,
only grains larger than 0.5 mm were studied and the results
were used only for methodological purposes and are not
representative for the studied sediments. As all the PADM
techniques produce similar results, solely those from the
binarization approach are shown.

Fig. 9 Cumulative size 100 = =
distribution curves of the
terrestrial samples: SO, GF, and 1
BD, obtained by PADM
(binarization), and sieve analysis 80
g 60
o
=
Z“ -
g 40 —a— SO SIEVE
3 e SO PADM
i —a— GF SIEVE
e GF PADM
20 1 —ns— BD SIEVE
| e BD PADM
0 T T T T T T T
0,5 0,7 1 1,4 2 2,8 4
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Fig. 10 Detection of bright streak grains from Meridiani Planum (sol 53,
image ID: 1M132896293EFFO06ASP2956M2M1) using different
approaches. a Input image f. b Detected particles BIN. ¢ Detected

As it can be seen, basalt sands are more difficult to study
using sieve analysis than quartz sands since they are charac-
terized by low roundness and fragile structure. To indicate this
difficulty we can describe a grain by the best-fit ellipsoid with
three parameters:  is the major axis, b is the intermediate axis,
and c is the minor axis. In sieve analysis, the shape of a studied
grain has a great impact on the result. It can be shown that a
grain passing through a square opening of the size d has the

intermediate axis b in between d and dv/2, and this value

Fig. 11 Detection of spherules and their fragments from Meridiani
Planum (sol 19) using the edge detection and the watershed. a Input
image /. b Detected particles ED. ¢ Detected particles WS. The largest
grain, in the lower left corner, was detected with a structuring element of a

,G
]

®

® D@y e &

particles ED. d Detected particles WS. In all approaches unwanted
objects were removed only automatically

mainly depends on the minor axis c. If ¢ is similar to b, we
have the first extreme. If it is much smaller than b, we have the
second extreme. As a result, we can assume that sieve analysis
provides only some approximation of the intermediate axis of
a grain, and it can, to some extent, be compared only to the
width of the grain, W. Moreover, sieve analysis is destructive
for fragile grains. The basalt sands in the samples GF and SO
were characterized by sharp edges and were vulnerable for
abrasion. After sieve analysis, in both cases destruction of

PN 2

7]
o €

?
e

o

range R = 12 px, all the other grains with a structuring element of a range

R=9. In both sequences, unwanted objects such as small or border

particles were removed automatically whereas objects such as partially
buried grains, were removed manually
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Fig. 12 Detection 0of 458 particles
from Meridiani Planum (sol 368)
using the watershed sequence
with the same parameters as in

Fig. 10. a Input image f. b LT b & y @ 30 . @:"'\»
Detected particles. Unwanted e e “.L»‘;;i:\' “? gm L]
objects were removed only : : Chdi ke

automatically

larger grains was clearly visible. In case of GF, ca. 5% wt of
the material was abraded. Also, in those cases during sieving
many larger grains blocked openings, so that smaller grains
were less likely to pass through a sieve. Therefore, the sieving
process took more time than in the case of the BD sample.
Next, sieve analysis normally gives the mass of material, not
the number of grains. If we would like to establish which
particles are the most frequently transported, then we will
ask which class is the most numerous and not the most mas-
sive. These two parameters may not be related to the same
class, especially as we have grains of various origins in the
sample. In the case of GF sample, the most massive was class
0.7-1.0 mm, and the most numerous 0.5-0.7 mm. Finally,
sieve analysis does not allow determining the shape of grains.

2D image analysis methods also have some shortcomings.
The first one is associated with the number of grains that are
analyzed. In sieve analysis, tens of thousands of grains are
studied. In an image analysis, rather thousands or hundreds

Fig. 13 The detection of small bright particles in the MI image from
Meridiani Planum (sol 165, image ID: 1M142830062EFF3221
P2976M2M1) using the binarization sequence. a Input image f. b

@ Springer

& LI X T

A

o LS &
9, 0 e o

L0

of grains. However, the significant tests indicated that the
obtained mean width is valid for all studied terrestrial samples
with a statistical significance level of 0.05. Also, this method
does not provide information on the minor axis, c.

Analysis of Ml and MAHLI images

Using the PADM algorithm, 43 images taken by the Mars
rovers: Spirit, Opportunity, and Curiosity, were analyzed.
Particles truncated by an image or partly buried were omitted
as their size and shape cannot be fully determined. Examples
of detection are presented for six types of material: bright
streak deposit (Fig. 10), spherules (Fig. 11), ripple crest sand
(Fig. 12), fragments of larger grains (Fig. 13), dust aggregates
(Fig. 14), and dune sand (Fig. 15). The first four images were
taken in Meridiani Planum, the fifth in Gusev Crater, and the
last one in Gale Crater. A comparison between the PADM
results and those from a manual method for the presented

b

Detected particles. 17 bright grains in the range of diameter from 0.30
to 1.30 mm were identified. A few unwanted objects, such as partially
buried particles and a bright spot, were deleted manually
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Fig. 14 Detection of 344 dust aggregates from Gusev Crater (sol 79) by PADM (binarization). The largest grain is ca. 0.30 mm in diameter. The arrows

indicate unwanted objects that were removed manually

samples of Meridiani Planum deposits are shown in Table 4.
All the parameters used in the analyses with the PADM algo-
rithm are presented in Appendix Table 5.

The errors of the method can be divided into two groups.
The first group is associated with inaccuracies in the detection,
e.g. undetected grains, badly segmented (e.g. over- or under-
segmented) images. These errors can be reduced by manual
correction to some extent. The detection inaccuracy can also
be associated with non-grain features that are present in some
of the images. For example, in the image from Spirit rover
acquired on sol 79 (Fig. 14), there are some bright linear

structures and one bright spot, which are detected by the al-
gorithm. However, in such situations the manual correction is
related to ca. 1% of the detected objects. Also for images
containing numerous grains, the detection inaccuracy does
not significantly influence the result, so that manual correction
is not necessary (Fig. 10). The second group is related to a
systematic error of the given technique. This error must be
taken into consideration in any statistical analysis.

The binarization technique detects often smaller number of
grains for a given image than the watershed but larger than the
edge detection approach. The systematic error of this technique

Fig. 15 Detection of more than 3000 bright sand grains from Gale Crater
(sol 1242, image ID: 1242MH0005740000403709R00_D14761) by
PADM (watershed). a Input image f. b Detected particles. The largest
grain is ca. 0.58 mm in diameter. Only bright grains were studied, as it

was difficult to distinguish dark particles from holes (shadows) among
grains. The right side of the image is out of focus, and the result for this
part of the image is therefore affected. Unwanted objects were removed
only automatically
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Table4 Comparison between result from the manual method (Weitz et al. 2006) and the PADM algorithm for three Martian samples from Meridiani

Planum (BIN — binarization, ED — edge detection, WS — watershed)

Sample Method Number of grains Mean L [mm] Median L [mm] Mean aspect ratio Mean circularity
sol 53 (Fig. 10) BIN 237 0.99 0.85 0.80 0.88
ED 203 0.94 0.86 0.86 0.92
WS 435 0.93 0.87 0.83 0.86
Manual 263 0.97 0.89 0.88 0.95
sol 19 (Fig. 11) ED 47 1.86 1.48 0.80 0.89
WS 57 1.83 1.46 0.78 0.85
Manual 51 1.76 1.46 0.77 0.90
sol 368 (Fig. 12) WS 458 1.27 1.19 0.77 0.79
Manual 246 1.34 1.28 0.81 0.92

is related to the value of the threshold, and it is less than 5% in
the grain size determination. In cases of images with some
touching grains, the mean values (but usually not the median
values) of the grain size can be overestimated, as some grains
may not be separated (Fig. 10b). For images with a noisy back-
ground, the error associated with the shape determination can
occur, and in such cases the mean circularity is often
underestimated (Table 4). From all the presented approaches
only binarization technique, due to its simplicity, works fine
with low-resolution images (in which the size of the studied
particles is only slightly above the image resolution).

The detection accuracy (the ratio of well detected grains to all
detected grains) in the edge detection case is greater than in the
binarization case. Yet, the number of grains detected by the edge
detection approach is often smaller, as this technique detects
only grains with well-distinguished edges. The statistical error
of this technique depends on the size of the Gaussian kernel, and
it is less than 4%. In addition, the edge detection procedure tends
to shift the center of the contours towards the grain exterior. This
leads to systematic error that is ca. 2% in the grain size. This
approach is especially good for measuring the shape of grains.

The marker-controlled segmentation accuracy depends
mainly on the precision of the markers determination. This
approach detects the largest percent of grains. Yet, the detec-
tion accuracy is smaller than that obtained from the edge de-
tection technique. The statistical error of this procedure is up
to ca. 7% in the grain size. In cases of overlapping or touching
grains, the contours are more difficult to determine using the
watershed approach, and their circularity value is often
underestimated (Table 4).

The accuracy of the fitting of the grain contours (as com-
pared with the manual assessment) for the studied set of 43
Martian images with the best-fit procedure of the PADM al-
gorithm ranges from 85% to 100%, with the average ca. 94%.
(For two images the accuracy was not determined due to high
number of small grains). Yet, the inaccuracies with contours’
fitting only slightly influence the statistical results of the size
of the grains. Therefore, the detection accuracy does not

@ Springer

influence the statistical analysis of the grain diameter more
than the systematic error of the method.

Conclusions

The PADM algorithm in comparison to the algorithm present-
ed in the work of Karunatillake et al. (2014) is much simpler.
Using PADM we can employ three different techniques of
segmentation, and it is not necessary to study the foreground
separately. The number of parameters in the PADM algorithm
is also lower. As the PADM algorithm is very fast, it is not
necessary to convert color images to grayscale images, and
information in all channels is available.

The PADM algorithm can be used with a graphical user
interface (GUI). The GUI was prepared with the Wolfram
Mathematica Manipulate module. For similar images, the au-
tomated mode of the PADM algorithm (in which all the nec-
essary parameters are set) can be employed. Using the GUI,
the automated analysis of an image whose size is similar to the
size of the MI image takes ca. 3 s with a typical laptop. This
analysis includes the image segmentation, the computation of
the number of grains, the median and the mean diameter, and
plotting granulometry curves. The semi-automated analysis,
in which the user must adjust the parameters, takes from a few
seconds to a few minutes — depending on the image, segmen-
tation technique, and the expecting precision of the results.

The developed semi-automatic method allows fast
granulometric analysis of various deposits. It provides similar
results to sieve analysis or those obtained by manual methods.
Furthermore, it allows studying the shape of grains, does not
have any limitation on the size of grains, and permits the sepa-
ration of touching particles. The systematic error of the method
does not exceed 7% in the grain size.
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