

doi: 10.17951/a.2018.72.2.37 ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXXII, NO. 2, 2018 SECTIO A 37–40

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

On the existence of connections with a prescribed skew-symmetric Ricci tensor

ABSTRACT. We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.

1. Introduction. All manifolds and maps between manifolds considered in the paper are assumed to be smooth (i.e. of class C^{∞}).

The concept of a linear connection ∇ on a manifold M and its Ricci tensor S can be found in the fundamental monograph [4].

In the present paper, we study the so-called inverse problem.

More detailed, under some assumption on a tensor field r of type (0, 2) on M, we prove the existence of a local solution of the equation

(1) S = r

with unknown linear connection ∇ on M.

In particular, we deduce that any 2-form ω on a manifold M with dim $(M) \ge 2$ is locally the Ricci tensor S of some linear connection ∇ on M.

In the analytic situation, the inverse problem was studied in many papers, e.g. [1, 2, 3, 5]. For example, in [5], using the Cauchy–Kowalevski theorem, the authors found (locally) all analytic linear connections for a prescribed analytic Ricci tensor. In the C^{∞} situation, we can not apply the Cauchy– Kowalevski theorem.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53B05,\ 53C05.$

Key words and phrases. Linear connection, Ricci tensor.

From now on, x^1, \ldots, x^n denote the usual coordinates on \mathbf{R}^n and $\partial_1, \ldots, \partial_n$ denote the usual canonical vector fields on \mathbf{R}^n . Given a map $f : \mathbf{R}^n \to \mathbf{R}$ let $(f)_i := \partial_i(f) = \frac{\partial f}{\partial x^i}$ for $i = 1, \ldots, n$.

2. The main result. The main result of the paper is the following

Theorem 1. Let M be a manifold such that $\dim(M) \geq 2$ and let $x_o \in M$. Let r be a tensor field of type (0,2) on M such that r(X,X) = 0 around x_o for some vector field $X \in \mathcal{X}(M)$ with $X_{x_o} \neq 0$. Then there is a linear connection ∇ on M such that r is the Ricci tensor S of ∇ on some neighborhood of x_o .

Proof. We may assume that $M = \mathbf{R}^n$, $x_o = 0$ and $X = \partial_1$.

Let r be the tensor field of type (0,2) on \mathbb{R}^n and denote $r_{ij} = r(\partial_i, \partial_j)$ for $i, j = 1, \ldots, n$. Then

(2)
$$r_{11} = 0$$

The Ricci tensor S of a linear connection ∇ has the following rather well-known coordinate expression

(3)
$$S(\partial_i, \partial_j) = \sum_{k=1}^n [(\Gamma_{ij}^k)_k - (\Gamma_{kj}^k)_i] + \sum_{k,l=1}^n [\Gamma_{ij}^l \Gamma_{kl}^k - \Gamma_{kj}^l \Gamma_{il}^k], \ i, j = 1, \dots, n,$$

where Γ^i_{ik} are the Christoffel symbols of ∇ , see [4].

It is sufficient to show that under assumption (2), equation (1) has a local solution (defined on some neighborhood of 0) $\nabla = (\Gamma_{bc}^a)$ such that

(4)

$$\Gamma_{bc}^{a} = 0 \text{ for } a = 3, \dots, n, \ b, c = 1, \dots, n, \\
\Gamma_{bc}^{2} = 0 \text{ for } b, c = 2, \dots, n, \\
\Gamma_{b1}^{2} = 0 \text{ for } b = 1, \dots, n, \\
\Gamma_{1b}^{1} = 0 \text{ for } b = 1, \dots, n.$$

In other words, we put $\Gamma_{bc}^a = 0$ for $a, b, c = 1, \ldots, n$ except for Γ_{1j}^2 with $j = 2, \ldots, n$ and Γ_{ij}^1 with $i = 2, \ldots, n$ and $j = 1, \ldots, n$.

Using (4) and the coordinate expression (3), we get

(5)
$$S(\partial_i, \partial_j) = \sum_{k=1}^2 (\Gamma_{ij}^k)_k - \sum_{\substack{k,l \in \{1,2\}\\k \neq 1}} \Gamma_{kj}^l \Gamma_{il}^k = (\Gamma_{ij}^1)_1 + (\Gamma_{ij}^2)_2 - \Gamma_{2j}^1 \Gamma_{i1}^2 - \Gamma_{1j}^2 \Gamma_{i2}^1$$

as $\Gamma_{bc}^a = 0$ if $a = 3, \ldots, n$ and $b, c = 1, \ldots, n$, and $\Gamma_{ac}^a = 0$ if $a, c = 1, \ldots, n$. Then using (5) and (4), we get

$$(6) S(\partial_1, \partial_1) = 0,$$

(7)
$$S(\partial_1, \partial_j) = (\Gamma_{1j}^2)_2 \text{ for } j = 2, \dots, n,$$

(8)
$$S(\partial_i, \partial_1) = (\Gamma^1_{i1})_1 \text{ for } i = 2, \dots, n,$$

(9)
$$S(\partial_i, \partial_j) = (\Gamma^1_{ij})_1 - \Gamma^2_{1j}\Gamma^1_{i2} \text{ for } i, j = 2, \dots, n.$$

More precisely, to obtain (6) we use (5) with (i, j) = (1, 1) and the assumed (in (4)) conditions $\Gamma_{11}^1 = \Gamma_{11}^2 = 0$. To obtain (7), we use (5) with (i, j) = (1, j) and the assumed (in (4)) conditions $\Gamma_{11}^2 = \Gamma_{12}^1 = \Gamma_{1j}^1 = 0$. To obtain (8), we use (5) with (i, j) = (i, 1) and the assumed (in (4)) conditions $\Gamma_{11}^2 = \Gamma_{i1}^2 = 0$. To obtain (9), we use (5) with $i, j = 2, \ldots, n$ and the assumed (in (4)) conditions $\Gamma_{11}^2 = \Gamma_{i1}^2 = \Gamma_{i1}^2 = 0$.

Then, by (2), (4) and (6)–(9), the equation (1) with unknown ∇ satisfying (4) is equivalent to the system of systems of differential equations

(10)
$$(\Gamma_{1j}^2)_2 = r_{1j} \text{ for } j = 2, \dots, n,$$

(11)
$$(\Gamma_{i1}^1)_1 = r_{i1} \text{ for } i = 2, \dots, n,$$

(12)
$$(\Gamma_{ij}^1)_1 = \Gamma_{1j}^2 \Gamma_{i2}^1 + r_{ij} \text{ for } i, j = 2, \dots, n$$

It remains to observe that the system (10)–(12) has a solution of class C^{∞} . We see that the solution of (10) is

$$\Gamma_{1j}^2(x) = \int_0^{x^2} r_{1j}(x^1, t, x^3, \dots, x^n) dt + a_j(x^1, x^3, \dots, x^n)$$

for j = 2, ..., n, and that the solution of (11) is

$$\Gamma_{i1}^{1}(x) = \int_{0}^{x^{1}} r_{i1}(t, x^{2}, \dots, x^{n}) dt + b_{i}(x^{2}, \dots, x^{n})$$

for i = 2, ..., n, where a_j , b_i are arbitrary maps in n - 1 variables.

Substituting the obtained Γ_{1j}^2 into (12), we get the system of ordinary first order differential equations with parameters x^2, \ldots, x^n .

Such obtained system (12) has a solution of class C^{∞} according to the well-known theory of differential equations. We can even solve it explicitly as follows.

Each of the equations

$$(\Gamma_{i2}^1)_1 = \Gamma_{12}^2 \Gamma_{i2}^1 + r_{i2}$$
 for $i = 2, \dots, n$

(from the system (12)) is linear non-homogeneous with parameters. Solving them separately (using the well-known method), we obtain

$$\Gamma_{i2}^{1}(x^{1},...,x^{n})$$

$$= \left(\int_{0}^{x^{1}} r_{i2}(t,x^{2},...,x^{n}) e^{-\int_{0}^{t} \Gamma_{12}^{2}(\tau,x^{2},...,x^{n})d\tau} dt + c_{i2}(x^{2},...,x^{n}) \right)$$

$$\times e^{\int_{0}^{x^{1}} \Gamma_{12}^{2}(t,x^{2},...,x^{n})dt}$$

for i = 2, ..., n, where c_{i2} are arbitrary maps in n - 1 variables. Then the

other equations of (12) (with Γ_{i2}^1 as above) have solutions given by

$$\Gamma^{1}_{ij}(x^{1}, \dots, x^{n})$$

$$= \int_{0}^{x^{1}} (\Gamma^{2}_{1j}(t, x^{2}, \dots, x^{n}) \Gamma^{1}_{i2}(t, x^{2}, \dots, x^{n}) + r_{ij}(t, x^{2}, \dots, x^{n})) dt$$

$$+ d_{ij}(x^{2}, \dots, x^{n}),$$

where d_{ij} are arbitrary maps in n-1 variables.

The proof of Theorem 1 is now complete.

We have the following interesting corollary of Theorem 1.

Corollary 1. Let M be a manifold such that $\dim(M) \ge 2$ and let $x_o \in M$. Let ω be a 2-form on M. Then there is a linear connection ∇ on M such that ω is the Ricci tensor S of ∇ on some neighborhood of x_o .

Proof. For any vector field X (in particular with $X_{x_o} \neq 0$) we have $\omega(X, X) = 0$. Then we apply Theorem 1 with ω playing the role of r. \Box

References

- Dušek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion?, Publ. Math. Debrecen 88 (3-4) (2016), 511-516.
- [2] Gasqui, J., Connexions à courbure de Ricci donnée, Math. Z. 168 (2) (1979), 167–179.
- [3] Gasqui, J., Sur la courbure de Ricci d'une connexion linéaire, C. R. Acad. Sci. Paris Sér A–B 281 (11) (1975), 389–391.
- [4] Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, J. Wiley-Interscience, New York, 1963.
- [5] Opozda, B., Mikulski, W. M., The Cauchy-Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2) (2018), 528–536.

Jan Kurek	Włodzimierz M. Mikulski
Institute of Mathematics	Institute of Mathematics
Maria Curie-Skłodowska University	Jagiellonian University
pl. M. Curie-Skłodowskiej 1	ul. S. Łojasiewicza 6
20-031 Lublin	30-348 Cracow
Poland	Poland
e-mail: kurek@hektor.umcs.lublin.pl	e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received October 3, 2018