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Summary

Panel-count data arise when each study subject is observed only at discrete time points in a
recurrent event study, and only the numbers of the event of interest between observation time
points are recorded (Sun and Zhao, 2013). However, sometimes the exact number of events
between some observation times is unknown and what we know is only whether the event of
interest has occurred. In this paper, we will refer this type of data to as mixed panel-count data and
propose a likelihood-based semiparametric regression method for their analysis by using the
nonhomogeneous Poisson process assumption. However, we establish the asymptotic properties of
the resulting estimator by employing the empirical process theory and without using the Poisson
assumption. Also we conduct an extensive simulation study, which suggests that the proposed
method works well in practice. Finally, the method is applied to a Childhood Cancer Survivor
Study that motivated this study.
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1. Introduction

Panel-count data arise when a recurrent event is under investigation and each study subject is
observed only at discrete time points. In this situation, the observed data include only the
numbers of the occurrences of the event of interest between observation time points, and the
exact occurrence times of the event are unknown (Sun and Zhao, 2013). The fields that often
see such data include medical follow-up studies, reliability studies, and social sciences
(Thall and Lachin, 1988; Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000; Sun and
Wei, 2000; Sun and Fang, 2003; Wellner and Zhang 2007). In practice, however, sometimes
we may face another situation, where instead of knowing the number of the events of interest
between some observation times, one knows only whether or not the event of interest has
occurred. In other words, we observe the number of occurrences of the event between some
observation time points, while knowing only if the event has occurred between others. In the
following, we will refer such data to as mixed panel-count data and it seems that there does
not exist an established approach for regression analysis of such data, the focus of this paper.

This study was motivated by the Childhood Cancer Survivor Study (CCSS), a long-term
follow-up study that followed more than 14,000 childhood cancer survivors who were
diagnosed between 1970 and 1986 and had survived more than 5 years since diagnosis. It
also follows a random sample of their siblings as a control group. One of the primary
objectives of the CCSS is to determine the long-term effects, if any, of childhood cancer and
its treatments on the pregnancy process or pregnancy outcomes. Questionnaires about
pregnancy were distributed during 1995-1996, 2000-2001, 2002-2003, and 2006—-2007. The
questions asked included: 1. Have you and a partner ever become pregnant (since last
follow-up)? 2. Including live births, stillbirths, miscarriages, and abortions, how many times
have you become pregnant or had a woman become pregnant by you? The answer to the first
question is yes/no, and the answer to the second question is a count. As expected, some
participants answered all questions, but others answered only the first question or none of
them. In other words, only mixed panel-count data are available for the pregnancy count or
process. It is apparent whether a subject provided a yes/no or count answer here can be
regarded to be independent of the questionnaire timings or observation times, which were
fixed by the study design, as well as the potential counts.

For the analysis of mixed panel-count data, a naive approach is to ignore the binary part of
the data and analyze only the available panel-count data. However, this may not be efficient,
as a part of the information is ignored, and more seriously, the expected cumulative number
of events at a given observation time would be underestimated. It is easy to see that the
analysis based only on the binary part of the data would have the same issues. To address
these issues, we propose a semiparametric maximum likelihood estimation (SPMLE)
method that uses the proportional mean model (Cheng et al., 2011; Sun and Zhao, 2013;
Wellner and Zhang, 2007). The proposed method will make use of all available information
in the observed data; thus, it is expected to be efficient. Note that a similar type of data, also
arising from panel-count data, is the mixed recurrent-event and panel-count data (Zhu et al.,
2015). For this latter situation, there exist some observation time points between which,
instead of the number of the events, the exact occurrence times of the event of interest are
known.
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The remainder of the article is organized as follows. Section 2 will introduce some notation
and describe the structure of the observed data and the proportional mean model, along with
the computing procedure for the proposed SPMLE method. Section 3 will establish the
asymptotic properties of the resulting estimator under some mild regularity conditions.
Some simulation results are given in Section 4, which indicate that the proposed method
seems to work well in practical situations. Section 5 will apply the proposed method to the
CCSS described above, and Section 6 contains some discussions and concluding remarks.
Technical details are included in the Web Supplementary Materials.

2. Semiparametric Maximum Likelihood Estimation

2.1 Notation

Suppose that Ni() = {M) : t= 0} is a univariate counting process. In a standard panel-count
study, we observe the counting process IN(#) at a random number K of random times denoted
by 0 = Tko < Tk1 << Tk We will assume that the observation process is conditionally
independent of the counting process N(#) given the time-independent covariate vector Z.

In the following, we will assume that one only observes mixed panel-count data where for
some observation periods, the number of the occurrences of the event during the period is
recorded, while for other observation periods, we only know if there exist some occurrences
of the event over the period. In other words, for the latter situation, the exact count is
unknown and only a binary outcome (yes or no occurrence) is available. To describe this,
define /(s, 4 as the observation type for any two time points s < ¢such that 7(s, 4 = 1 if the
count of the events during the observation period (s, §, AMs, f = MH—-M3s), is recorded and
1(s, § = 0 if only a binary outcome is recorded. That is, /(s, § indicates whether the actual
event count over the observation period (s, 4§ is known. Also define the binary outcome (s,
4 =(AMs, 4>0)and write Tx =(Tk1, ", Tkir): Ik = (T2, T2 Tk k) N = (BNk a1,
ANK,Z! HA ANK,K), and QK: (DK,ll DKz, oy DK,K), where f/(,j: /(TK,/‘_]_, TK,/], ANK,/':
AM Tk, Trofl, and Dy j= DT j-1, Trijl for j=1,2, -+, K. As a result, the observation
for each subject consists of

X={ZK, ZK’KK’LKNK-F (1 _LK)I—)K} .

It is apparent that the recording of a binary outcome between two observation times can be
caused by many reasons and one main reason, as in the CCSS discussed above, is due to the
design of a study. In the following, we will assume that the observation-type indicator 7(s, §
is independent of both the underlying event process IN(#) and the observation process. Note
that in addition to the CCSS, this also holds in many other studies. For example, in the Study
of Osteoporotic Fractures, the participants at the baseline were asked whether they ever had
a broken or fractured bone and if so, to list every broken bone and age when broken. But in
the following visits, they were only asked whether they had a broken or fractured bone
without enough details for the occurrences of fractures. In other words, at the beginning, we
have the detailed counts of events, but for the subsequent follow-ups, only binary outcomes
are available.
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2.2 Model, Likelihood, and Estimation

To describe the covariate effect, we will consider the following proportional mean model

A(t1Z) = E{N()1Z} = Ao(t)eﬂTZ 1)

(Lin et al., 2000; Cai and Schaubel, 2004; Wellner and Zhang, 2007; Cheng et al., 2011),
where s the regression parameter and Ag is a monotone nondecreasing baseline mean
function. Note that for the likelihood-based analysis of either recurrent-event data or panel-
count data, it is often assumed that conditionally on Z, NI(#) is a nonhomogeneous Poisson
process with the mean function given by (1). But in general, such analysis will still be valid
even if the Poisson assumption is violated. Actually Wellner and Zhang (2000, 2007) applied
this working model to the analyses of panel-count data and demonstrated the robustness to
the Poisson assumption, as long as the proportional mean assumption (1) holds.

Also note that if we observe AM3s, 4 over (s, 4, then the Poisson distribution of this
increment is

7. K

PnZ
(aAg(s, e O7) sz

P(AN(s, 1] = k1Z) = o exp( — AAy(s.fle O ),

where AAg(s, f| = Ag(D — Ag(s). On the other hand, if only the binary outcome D(s, § is
observed, then we have

k 1-k
T TZ

boZ By
- AAO(S, tle —AAO(S, tle
P(D(s,t] =klZ)={1—e¢ } {e } fork =0,1.

Thus under the assumptions above and based on the conditional independence of the
increments of A, the likelihood for a sample of n7independent and identically distributed
copies of X can be expressed as
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K.
AN L]
Y
. /}TZi J ﬂTZi
n i {AAKi je } _AAKi,Je
Lpm= 11 T1 FN e e
i= l] =1 Ki,j
l—rKi )
DKij J
sz " sz
“AA, e ! —AA, e
ij ij
x|{1-e } {e =D
[29)
It follows that the full log-likelihood function of (B, A) is given by
K.
n 1
LBN= Y >
i=1j=1
T 'z,
e .{ANK. ‘logAAK. .+ANK. .[)’ Zi_AAK‘ e }
2y, 2y 2] 2] 2y)
sz,
—AAKi’je TZi
+(1—rK_ _) DK. _log{]—e }—(l—DK_ A)AAK. e N
2% L] L] 2%
where
AN =ATgp )=ATg )
LJ i, j i,j—1

fori=1,2,--,mj=1,2, -, K

For estimation of model (1) or (B, A), it is natural to use the SPMLE defined as
(Bn, Kn) Sarg max ;A e g x L(B.A). Here % is a compact subset in the d~dimensional

Euclidean space #9and & is a class of monotone nondecreasing functions defined in (0, o)
that are bounded in a finite interval (0, z] with the difference of the function values at any
two points #, & separated by sbeing bounded away from zero. In the next subsection, we
will present an algorithm that can be used to compute the estimator 6, = (5, . A, ).
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2.3 Computation Algorithm

To compute the SPMLE of (8, A) defined above, we suggest to employ the following two-
step algorithm in the spirit of profile likelihood. That is, for each fixed value of g, we set

A (- P =argmax, _ & | (8. A) and define the profile log-likelihood i2(8) = i (. A, (- . B).
Then f, = arg maxg ¢ g P(p) and A, = A (-.j,). Here the estimator A _is defined to have

jumps only at the distinct observation time points in the collection of all observation times
{Tij:71=1,2,,mj=1,2,, K} Insummary, the two-step algorithm can be
implemented by the following doubly iterative algorithm.

1. Choose the initial 5©.

2. Forgiven AP (p=0, 1, 2, ---), update the estimate of Ag, AP, by the modified
iterative convex minorant (MICM) algorithm proposed by Jongbloed (1998) on
the log-likelihood /,(8#, A).

3. Forgiven A, update the estimate of 8, A7*1), by optimizing /{8, AP) using
the Newton-Raphson method.

4, Repeat steps 2 and 3 until the following convergence criterion is satisfied:

1 (ﬂ(p+ DA+ 1Dy (ﬂ(p) AP)

I <n.
1 (ﬁ([’) A(P))

Remark 2.1—The details about the MICM algorithm for computing the MLE with panel-
count data can be found in Wellner and Zhang (2000).

Remark 2.2—One can easily calculate that

K.

i, T

1(/3 A) = z Z re +0-rg ) J 5 +( =Dy lle; HZ,Z;.
i=1j=1| Tii i J (1_eei j) Ll "

T T ;
where ¢ ;= AAKi jexp(ﬂ Z)and ee i j = exp(— AAK,- jGXp(ﬂ Z))). Since

f)=y—1+e Y >0fory>0,

Véln([}, A) is a negative definite matrix for any (8, A) if Zis not linearly dependent. Also
based on this fact and the following two inequalities

L PP D APHD) L fp+D AP g

and
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ln(ﬂ(p + 1)’ A(P)) _ ln(ﬁ(p)’ A([’)) >0,

one can easily prove that

L P+ D AP+D_ I N2 I s+ D AP+D) I P+ D APy 1 P+ D AP _ L

(ﬁ(P)’A(P)) >0

for p=1, 2, ---. This suggests that the log-likelihood increases after each iteration and the
algorithm behaves similar to an EM-algorithm, which may converge slowly in some
scenarios. For the case here, however, the algorithm appears to work well and has no
convergence issue in the numerical experiments below. More comments on this are given
below.

In the next section, we will establish the asymptotic properties of the proposed estimator
0,= (B, .A,) with the proofs provided in the Web Supplementary Materials.

3. Asymptotic Results

In this section, we will establish the asymptotic properties of the estimator §n = (ﬁn, Xn) with

the proof given in the Web Supplementary Materials. For this, we need to adopt and
reintroduce some notation and working model assumptions used in Wellner and Zhang

(2007) to make the presentation of this article self-contained. Denote %, and % as the
collection of Borel sets in ”7and R*, respectively, and let By, ={BnI07]: B€ %} and

2 .
Bjo. ;1= Bjo. 1% Byo, 1 Forany B€ Bjp g and C € %, define the measure

00 k
v(BxC):/C > PK=kZ=2 Y P(Ty ;€ BIK =k.Z = 9dH(),
k=1 j=1 ’

where His the distribution function of Zand measure yas (B) = B x RY). Define the L,-
metric o 61, &) in the parameter space © = % x F as

| 1/2
2(/4)

d0,.0y) = 1B, — > + A - A2||i
For the asymptotic properties, we also need the following regularity conditions.

C1. The true model parameter 6, = (5, A,) € %° x F, where %° is the interior of .

C2. The observation times 7k, ; forall j=1, ..., K, K=1, 2, ..., are random
variables, taking values in the bounded interval [, z] for some o, z € (0, ©0) with
Ag(o) >0, and the measure p x Hon By X B, is absolutely continuous with

respect to v.
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C3. The true baseline mean function Aq satisfies Ag(z) < Mfor some M€ (0, co).

C4. The support of H, Z = supp(H), is a bounded set in R%. (Thus, there exists z, > 0
such that P(/Z/< z) = 1.)

C5.Forall a€ R% a#0,and c€ R, P(a’Z#¢) > 0.

C6. For some kg < oo, we have P (K< k) = 1.

. N@) .
C7. For some 1 ¢ (0, ©9), the function Z — E(evo ! 1Z) is uniformly bounded for
ZeZ.

C8. The observation time points are sy—separated: that is, there exists a constant s, >
0such that A7, = T;j-1 = S forall j=1, ..., K) = 1. Furthermore, the measure
utely continuous with respect to Lebesgue measure A, with a derivative z satisfying
Ay 2 ¢y>0 for some positive constant ¢.

C9. The true baseline mean function Ag is differentiable, and the derivative has
positive and finite lower and upper bounds in the observation interval, i.e., there
exists a constant 0 < 7 < oo, such that 1/f, < Ay(1) < f, < co for 1€ O[ T].

C10. For some 7 € (0, 1), a” VanZU, V)a= na’ BZZ" JU, V)aas. for all a€ R,

C11. Forany u, vE€ O[ T] satisfying v — u= &, the observation type indicator /¢, V]
is independent of or non-informative with respect to the underlying counting process.
Moreover there exists 0 < py g, /2o < 1 such that py o < o(u, V) < oo With p(u, V) =
Eru, V.

Note that the conditions C1-C10 are the same as those given in Wellner and Zhang (2007)
for the asymptotic properties of the SPMLE based on panel-count data and they also
provided some justification in view of the applications. The condition C11 is specifically
made for the mixed panel-count data and implies that the chance of observing actual event
counts in any observation interval has a non-zero lower bound. This condition is necessary
for proving the consistency of the baseline mean function estimator.

Theorem 1 (Consistency and Rate of Convergence)—Suppose that the conditions
C1-C6 and C8-C11 hold and the conditional mean function of counting process N(t) is
given by (1). Then, the SPMLE @ = (5,.A,) converges to the true model parameter in

probability in metric d, that is d(én,eo) -, 0. In addition, if the condition C7 holds, we have

1/3 , 5 _
n d(@n, 00) = Op(l).

Theorem 2 (Asymptotic Normality)—Suppose that the regularity conditions C1-C11
and the conditional mean function (1) hold. Then the SPMLE of /?n is asymptotically normal

such as
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ith, = = N[04~ ()

where
A=E §(AA )2 ﬁgZU @NZ - RK.T T, N®2
TUK I 2| & TR0k R R U A |
J:
and
K
®2
B=Eg oz X €@ -RET T | )
K=l i=1
In the above
C.  =EAANKTy . Ty » To +Te 12),
JJ (] J K,j-T K, j-1I"K " K,j )
T
T oz
Prz —Any
PTg T ) W=pTg Ty Jle " e "
vip=—KIo L, : ’ - '
J 0K, j BoZ
—AA .e
1-e 0K, j
T
boZ
e L _BU@e Y DRI Ty )
KTy j—1Tk )= T ’
boZ
EU@e KTy Ty )
Iz D, .
andA.=r, JAN, . —AAye € |+ =rp )| —— K0 _q[aA forj,j =
JT KTk 0K, j K,j T T, !
Po? _—)
AAOK,je »Je

1,2, ..., K, and Z®2 stands for zZT.

Remark 3.2

It is worth emphasizing again that the nonhomogeneous Poisson process is just the working
model to derive the “likelihood” of the observed mixed panel-count data. The validity of the
asymptotic results stated above does not require the underlying counting process to be the

Poisson process. It is also straightforward to verify that when N(t) is indeed a Poisson

T
2 PpZ

process, Cjj(Z) =0forj#j’ and C; (Z) = (AN, )%e

UJ.(Z), whichresultinB=Ain
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Theorem 2. This means that the SPMLE of /?n is semiparametrically efficient under the

Poisson process. In addition, for a special case p(Tk j-1, Tkj) =1 forall j=1,2, - K ie,
only panel-count data are observed, Theorem 2 is exactly the first part of Theorem 3.3 of
Wellner and Zhang (2007). In other words, the estimator defined above can be viewed as the
natural generalization of that given in Wellner and Zhang (2007) for panel-count data.

Note that although the asymptotic normality can be established as above, it is difficult to
estimate the corresponding standard error empirically based on the sample. For this, we
suggest to adopt the nonparametric bootstrap method with 100 resamplings, whose validity
is warranted by the established asymptotic normality.

4. Simulation Results

We conducted extensive simulation studies to evaluate the finite sample performance of the
proposed estimation procedure under different situations. In the study, for the th subject, 7=
1, 2, ---, n, we assumed that the covariate Z is three-dimensional and consists of a uniform
variable over (0, 1), a standard normal variable, and a Bernoulli variable with 0.5 success
probability. For the underlying counting process, we considered two cases. One is that N;(4)

was assumed to be a Poisson process with the conditional mean function given by
T
pZ. . . . . .
A(t1Z) =2te . The other is that the counting process was a mixed Poisson process with

Ty

. . sz . . .
intensity (21 + a))e !, where a is a random effect on the intensity. Here we set a ¢ {-0.4,

0, 0.4} with probabilities 0.25, 0.5, and 0.25, respectively, so that the mean function of the
counting process given the covariates still satisfies model (1).

The number of observations K;was sampled randomly from the set {1, 2, 3, 4, 5, 6} with
equal probabilities. Given Kj; the observation time points 7, |, -+, T, Were taken to be
v [t

ordered values generated from the uniform distribution over (1, 10) and rounded to the
second decimal point to allow ties in observation times. Within each observation period

Tk Ty 1forj=1,-, K, we generated the observation type indicator r jfrom the
Lj-1 "0 P
Bernoulli distribution with the probability of success p, where p was chosen to give the

appropriate proportion of records in counts. If . =L then the event count over the
o

interval (Tx Tg 1, ANy, was assumed to be known and recorded. Otherwise, it was
ij-1 Vi i, j
assumed that only the binary outcome, D, = (AN, > 0), was recorded. The percentage
L] LJ

of count-type observations, p, was set to be 0.1, 0.2, 0.5, 0.8, 0.9, or 0.95, and the true value
of Bp= (Br, B2, P3)" was taken to be (0, 0, 0) or (-1, 0.5, 1.5). The results given below are
based on the sample sizes of 100 and 200 with 1000 replications.

Tables 1 and 2 present the results on estimation of regression parameters obtained with the
underlying recurrent event process being the Poisson process and n= 100 and 7= 200,
respectively. The results corresponding to the mixed Poisson process are given in Table 3
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with 7= 100 and the results with 7= 200 are similar and thus omitted to save the space. In
the tables, we include the average of the estimated g (EST), the average of the estimated
asymptotic standard errors (ASE), the sampled standard error (SSE), and the 95% coverage
probability (CP). Note that for the variance estimation, as mentioned above, we adopt the
bootstrap procedure. The results suggest that the proposed estimator seems to be unbiased
and the ASEs are close to the SSEs. Also the 95% confidence interval based on the
asymptotic normal distribution seems to have the right CP and the ratios of SSEs between 7
=100 and ~= 200 are all close to /2, indicating that the normal approximation to the
distribution of the proposed estimate seems to work properly. In addition, as expected, when
the percentage of count-type records increased, the standard error of the estimates decreased
because the counts provided more information than did the binary outcomes regarding the
counting process. Moreover, the results in Table 2 suggest that the proposed SPMLE method
is robust against the Poisson process assumption, though the estimated standard errors in the
mixed Poisson scenario were larger than those in the Poisson scenario as expected. Note that
in the study here and also the application below, we used 8= 0 as the initial value in the
algorithm. We did try different initial values and the algorithm seems always to converge and
work well.

As mentioned above, a naive approach for analyzing mixed panel-count data is to ignore the
binary part of the data and analyze only the available panel-count data. To compare the
proposed method to this, in the simulation studies, we also obtained the results by using the
naive approach based on the method given in Wellner and Zhang (2007) for panel-count data
and include those results in Tables 1 — 3. One can clearly see that the naive estimation of the
regression parameters still seems to be unbiased as expected. This is reasonable because S
represents the time-invariant effect of the covariates on the process; thus it does not require
the data from the whole process to provide the essential information for the inference. On
the other hand, it is apparent that the estimate is much less efficient than that given by the
proposed method as discussed above. Also as expected, the efficiency loss compared to the
proposed method becomes more manifested when p decreases from 0.95 to 0.1.

To further compare the naive approach and the proposed method, we obtained and plotted
the estimates of the baseline cumulative mean functions given by both methods for the
Poisson scenario in Figure 1. One can see that the estimates given by the proposed method
seem to be unbiased under all different scenarios of missing count probability, but the naive
estimates seem to underestimate the cumulative mean functions. The lower the percentage of
count-type records, the bigger the deviation. The downward bias is anticipated because the
total number of counts for a given length of observation times in each subject used for panel-
count data model is potentially smaller than the actual number. Also the discrepancy became
larger when the proportion of binary outcome increased. This is true for the mixed Poisson
scenario too, which is not presented here. In other words, these results suggest that one
should apply the proposed method instead of the naive approach to analyze mixed panel-
count data.

Note that in the proposed method, it has been assumed that the observation type indicators

ki follow the same distribution and are independent of other processes. To follow a
»
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suggestion of a reviewer, we performed additional simulation studies to investigate the
proposed estimation procedure when the r ;s may depend on covariates. Table 4 presents
S

some results on estimation of regression parameters obtained when there existed one
covariate Z; following the Bernoulli distribution with the success probability of 0.5 and the
other set-ups being the same as in Tables 1 — 3. Here we set p=0.1, 0.4, or 0.7 for the
subjects with Z;= 0 and 0.3, 0.6, or 0.9 otherwise, and on the average, pis still equal to 0.2,
0.5, or 0.8. One can see from the table that they seem to give the similar conclusions to
Tables 1 — 3 and suggest that the proposed method is still valid for the situation where the
observation type is related but still conditionally independent of the underlying counting
process given the covariates.

5. An Application

In this section, we apply the proposed method to analyze the CCSS data described in Section
1. As mentioned above, the CCSS follows over 14,000 childhood cancer survivors and a
random sample of about 4000 healthy siblings as a control group. In the following, we will
focus on a subgroup of 1801 women who were at least 25 years old in 1996; 611 participants
are leukemia survivors, and 1190 participants are healthy controls. Since they are subgroups
of CCSS, these leukemia survivors and siblings are no longer paired. In fact, among 1801
participants, only 66 pairs of survivors and siblings are from the same family, so we consider
them as two independent groups here. For the analysis, define X; = 1 if the #h subject is a
leukemia survivor and X; = 0 otherwise. Both leukemia survivor and healthy control groups
have an average of around 3 observations per subject. In total, there are 5494 records. For
the question,“Have you and a partner ever become pregnant since last follow up?” 1930
records indicated “yes”(35%), with 549 records from leukemia survivors and 1381 records
from healthy controls. Among the 1930 records with answer “yes” to the first question, 85
did not provide an answer to the second question, “Including live births, stillbirths,
miscarriages, and abortions, how many times have you become pregnant?” As a result, the
count of events in that record is missing, and we have only mixed panel-count data.

For the analysis, we first ignore the binary part of the data (the 85 records). In this case, the
averaged pregnancy counts are 1.60 and 2.31 for the leukemia survivor and healthy control
groups, respectively. By applying the method given in Wellner and Zhang (2007), as in the
simulation study, the estimate of the regression parameter is —0.365 with the estimated
standard error being 0.058. However, we know that true averages should be higher than 1.60
and 2.31 in the two groups because there should be at least 1 pregnancy per record in the 85
records. By applying the proposed estimation procedure, we obtained the estimate of —0.356
with the estimated standard error being 0.042. The p-values from both methods are less than
0.0001 for testing no pregnancy process difference between the leukemia survivor and
healthy control groups, suggesting that the leukemia survivors had significantly lower
pregnancy rates than the healthy controls. However, the standard error from using panel-
count data alone is larger than that from using mixed panel-count data, which indicates an
efficiency loss. Figure 2 provides the estimates of the expected cumulative number of
pregnancies for leukemia survivors and healthy controls, respectively. As seen from the
simulation studies, the estimated expected cumulative number of pregnancies when the
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binary part of the data is ignored, is slightly lower than that when all available data are used.
However, the underestimation is minor in this case because the binary data comprise only
4.4% of the total recorded data.

6. Discussion and Concluding Remarks

This article considered regression analysis of mixed panel-count data. Such data arise when
the numbers of events are known during some follow-up periods while during other follow-
up periods, only binary outcomes are known (e.g., whether the events of interest have
occurred since the last follow-up). As discussed above, mixed panel-count data can occur in
many fields. Although much literature exists for panel-count data, little work has been done
for the type of data considered here. For this problem, the SPMLE method based on the
working model of the Poisson process was developed, and the asymptotic properties of the
proposed estimator were established. Also, the numerical results suggest that the proposed
method works well in finite samples, even if the Poisson assumption does not hold. It is
worth to stress that the proposed method has advantages in making semiparametric inference
on the underlying counting process because the existing SPMLE method for panel-count
data can be less efficient in making inferences for regression parameters for mixed panel-
count data. More seriously, it could cause misleading results in the estimation of the
expected cumulative number of events.

There are several directions for future research. One is that as discussed above, in the
preceding sections, we have focused on the situation where the observation type indicators
rij’s follow the same distribution and are independent of the underlying counting process
and the observation process. As shown in Section 4, one can relax the assumption to allow
the ry j’s to depend on covariates or the two processes through covariates. However, in
practice, there may exist situations where they are still correlated even given covariates and
it would be useful to generalize the proposed method to the situation. Sun et al. (2007)
discussed a similar situation and showed that ignoring the dependence could lead to biased
results. On the other hand, it does not seem to be straightforward to incorporate the potential
correlation in the methodology development and it can be very technically challenging.

In addition to the mixed panel-count data discussed above, other types of mixed panel-count
data may exist and one is that panel-count data may be presented as panel-ordinal data. For
example, a question on hospitalization could still be, “How many different times were you in
a hospital at least overnight?”, but multiple-choice items such as “A. 0; B. 1-2 times; C. 3-5
times; D. >5 times” would be provided to participants to avoid recall bias. It is easy to see
that this type of data has more information than just panel-binary data but less information
than panel-count data and could be mixed with them as well. The proposed method could be
conceptually applied to this type of mixed panel-ordinal data. In addition, panel-count data
can also be mixed with recurrent-event data, as mentioned above. For the CCSS study, the
hospitalization data contain panel-binary data, panel-count data, and recurrent-event data.
The pregnancy data in the CCSS have some recurrent-event data as well. Among the four
types of data, recurrent-event data contain the most information, followed by panel-count
data, panel-ordinal data, and panel-binary data. It would be very useful and instructive to
develop a general method that allows the analysis of mixed data of any of the four types.
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Fig. 1.

The averages of the maximum likelihood estimates of the baseline mean function under
different scenarios from the proposed method and from the method that uses only the panel-
count data.
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Estimated cumulative average numbers of pregnancies
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