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Summary

Panel-count data arise when each study subject is observed only at discrete time points in a 

recurrent event study, and only the numbers of the event of interest between observation time 

points are recorded (Sun and Zhao, 2013). However, sometimes the exact number of events 

between some observation times is unknown and what we know is only whether the event of 

interest has occurred. In this paper, we will refer this type of data to as mixed panel-count data and 

propose a likelihood-based semiparametric regression method for their analysis by using the 

nonhomogeneous Poisson process assumption. However, we establish the asymptotic properties of 

the resulting estimator by employing the empirical process theory and without using the Poisson 

assumption. Also we conduct an extensive simulation study, which suggests that the proposed 

method works well in practice. Finally, the method is applied to a Childhood Cancer Survivor 

Study that motivated this study.
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1. Introduction

Panel-count data arise when a recurrent event is under investigation and each study subject is 

observed only at discrete time points. In this situation, the observed data include only the 

numbers of the occurrences of the event of interest between observation time points, and the 

exact occurrence times of the event are unknown (Sun and Zhao, 2013). The fields that often 

see such data include medical follow-up studies, reliability studies, and social sciences 

(Thall and Lachin, 1988; Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000; Sun and 

Wei, 2000; Sun and Fang, 2003; Wellner and Zhang 2007). In practice, however, sometimes 

we may face another situation, where instead of knowing the number of the events of interest 

between some observation times, one knows only whether or not the event of interest has 

occurred. In other words, we observe the number of occurrences of the event between some 

observation time points, while knowing only if the event has occurred between others. In the 

following, we will refer such data to as mixed panel-count data and it seems that there does 

not exist an established approach for regression analysis of such data, the focus of this paper.

This study was motivated by the Childhood Cancer Survivor Study (CCSS), a long-term 

follow-up study that followed more than 14,000 childhood cancer survivors who were 

diagnosed between 1970 and 1986 and had survived more than 5 years since diagnosis. It 

also follows a random sample of their siblings as a control group. One of the primary 

objectives of the CCSS is to determine the long-term effects, if any, of childhood cancer and 

its treatments on the pregnancy process or pregnancy outcomes. Questionnaires about 

pregnancy were distributed during 1995–1996, 2000–2001, 2002–2003, and 2006–2007. The 

questions asked included: 1. Have you and a partner ever become pregnant (since last 

follow-up)? 2. Including live births, stillbirths, miscarriages, and abortions, how many times 

have you become pregnant or had a woman become pregnant by you? The answer to the first 

question is yes/no, and the answer to the second question is a count. As expected, some 

participants answered all questions, but others answered only the first question or none of 

them. In other words, only mixed panel-count data are available for the pregnancy count or 

process. It is apparent whether a subject provided a yes/no or count answer here can be 

regarded to be independent of the questionnaire timings or observation times, which were 

fixed by the study design, as well as the potential counts.

For the analysis of mixed panel-count data, a naive approach is to ignore the binary part of 

the data and analyze only the available panel-count data. However, this may not be efficient, 

as a part of the information is ignored, and more seriously, the expected cumulative number 

of events at a given observation time would be underestimated. It is easy to see that the 

analysis based only on the binary part of the data would have the same issues. To address 

these issues, we propose a semiparametric maximum likelihood estimation (SPMLE) 

method that uses the proportional mean model (Cheng et al., 2011; Sun and Zhao, 2013; 

Wellner and Zhang, 2007). The proposed method will make use of all available information 

in the observed data; thus, it is expected to be efficient. Note that a similar type of data, also 

arising from panel-count data, is the mixed recurrent-event and panel-count data (Zhu et al., 

2015). For this latter situation, there exist some observation time points between which, 

instead of the number of the events, the exact occurrence times of the event of interest are 

known.
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The remainder of the article is organized as follows. Section 2 will introduce some notation 

and describe the structure of the observed data and the proportional mean model, along with 

the computing procedure for the proposed SPMLE method. Section 3 will establish the 

asymptotic properties of the resulting estimator under some mild regularity conditions. 

Some simulation results are given in Section 4, which indicate that the proposed method 

seems to work well in practical situations. Section 5 will apply the proposed method to the 

CCSS described above, and Section 6 contains some discussions and concluding remarks. 

Technical details are included in the Web Supplementary Materials.

2. Semiparametric Maximum Likelihood Estimation

2.1 Notation

Suppose that ℕ(t) = {N(t) : t ≥ 0} is a univariate counting process. In a standard panel-count 

study, we observe the counting process ℕ(t) at a random number K of random times denoted 

by 0 ≡ TK,0 < TK,1 < ⋯< TK,K. We will assume that the observation process is conditionally 

independent of the counting process ℕ(t) given the time-independent covariate vector Z.

In the following, we will assume that one only observes mixed panel-count data where for 

some observation periods, the number of the occurrences of the event during the period is 

recorded, while for other observation periods, we only know if there exist some occurrences 

of the event over the period. In other words, for the latter situation, the exact count is 

unknown and only a binary outcome (yes or no occurrence) is available. To describe this, 

define r(s, t] as the observation type for any two time points s < t such that r(s, t] = 1 if the 

count of the events during the observation period (s, t], ∆N(s, t] = N(t)−N(s), is recorded and 

r(s, t] = 0 if only a binary outcome is recorded. That is, r(s, t] indicates whether the actual 

event count over the observation period (s, t] is known. Also define the binary outcome D(s, 

t] = (∆N(s, t] > 0) and write TK ≡ (TK,1, ⋯, TK,K), rK = (rK,1, rK,2, ⋯, rK,K), NK = (∆NK,1, 

∆NK,2, ⋯, ∆NK,K), and DK = (DK,1, DK,2, ⋯, DK,K), where rK,j = r(TK,j−1, TK,j], ∆NK,j = 

∆N(TK,j−1, TK,j], and DK,j = D(TK,j−1, TK,j] for j = 1, 2, ⋯, K. As a result, the observation 

for each subject consists of

X = {Z, K, T_K, r_K, r_KN_ K + (1 − r_K)D_K} .

It is apparent that the recording of a binary outcome between two observation times can be 

caused by many reasons and one main reason, as in the CCSS discussed above, is due to the 

design of a study. In the following, we will assume that the observation-type indicator r(s, t] 
is independent of both the underlying event process ℕ(t) and the observation process. Note 

that in addition to the CCSS, this also holds in many other studies. For example, in the Study 

of Osteoporotic Fractures, the participants at the baseline were asked whether they ever had 

a broken or fractured bone and if so, to list every broken bone and age when broken. But in 

the following visits, they were only asked whether they had a broken or fractured bone 

without enough details for the occurrences of fractures. In other words, at the beginning, we 

have the detailed counts of events, but for the subsequent follow-ups, only binary outcomes 

are available.
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2.2 Model, Likelihood, and Estimation

To describe the covariate effect, we will consider the following proportional mean model

Λ(t |Z) = E{N(t) |Z} = Λ0(t)eβTZ (1)

(Lin et al., 2000; Cai and Schaubel, 2004; Wellner and Zhang, 2007; Cheng et al., 2011), 

where β is the regression parameter and Λ0 is a monotone nondecreasing baseline mean 

function. Note that for the likelihood-based analysis of either recurrent-event data or panel-

count data, it is often assumed that conditionally on Z, ℕ(t) is a nonhomogeneous Poisson 

process with the mean function given by (1). But in general, such analysis will still be valid 

even if the Poisson assumption is violated. Actually Wellner and Zhang (2000, 2007) applied 

this working model to the analyses of panel-count data and demonstrated the robustness to 

the Poisson assumption, as long as the proportional mean assumption (1) holds.

Also note that if we observe ∆N(s, t] over (s, t], then the Poisson distribution of this 

increment is

P(ΔN(s, t] = k |Z) =
{ΔΛ0(s, t]e

β0
TZ

}
K

k! exp{ − ΔΛ0(s, t]e
β0

TZ
},

where ∆Λ0(s, t] = Λ0(t) − Λ0(s). On the other hand, if only the binary outcome D(s, t] is 

observed, then we have

P(D(s, t] = k |Z) = {1 − e
−ΔΛ0(s, t]e

β0
TZ

}

k

{e
−ΔΛ0(s, t]e

β0
TZ

}

1 − k

for k = 0, 1.

Thus under the assumptions above and based on the conditional independence of the 

increments of N, the likelihood for a sample of n independent and identically distributed 

copies of X can be expressed as
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Ln(β, Λ) = ∏
i = 1

n
∏
j = 1

Ki {ΔΛKi, j
e
βTZi}

ΔNKi, j

ΔNKi, j
! e

−ΔΛKi, je
βTZi

rKi, j

× {1 − e
−ΔΛKi, j

e
βTZi

}

DKi, j

{e
−ΔΛKi, j

e
βTZi

}1 − DKi, j

1 − rKi, j

.

It follows that the full log-likelihood function of (β, Λ) is given by

ln(β, Λ) = ∑
i = 1

n
∑

j = 1

Ki

rKi, j
{ΔNKi, j

logΔΛKi, j
+ ΔNKi, j

βTZi − ΔΛKi, j
e
βTZi}

+ (1 − rKi, j
) DKi, j

log{1 − e
−ΔΛKi, je

βTZi

} − (1 − DKi, j
)ΔΛKi, j

e
βTZi ,

where

ΔΛKi, j
= Λ(TKi, j

) − Λ(TKi, j − 1
)

for i = 1, 2, ⋯, n; j = 1, 2, ⋯, Ki.

For estimation of model (1) or (β, Λ), it is natural to use the SPMLE defined as 

(βn, Λn) ≡ arg max(β, Λ) ∈ ℛ × ℱ ln(β, Λ). Here ℛ is a compact subset in the d-dimensional 

Euclidean space Rd and ℱ is a class of monotone nondecreasing functions defined in (0, ∞) 

that are bounded in a finite interval (0, τ] with the difference of the function values at any 

two points t1, t2 separated by s being bounded away from zero. In the next subsection, we 

will present an algorithm that can be used to compute the estimator θn = (βn, Λn).
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2.3 Computation Algorithm

To compute the SPMLE of (β, Λ) defined above, we suggest to employ the following two-

step algorithm in the spirit of profile likelihood. That is, for each fixed value of β, we set 

Λn( ⋅ , β) ≡ arg maxΛ ∈ ℱ ln(β, Λ) and define the profile log-likelihood ln
p(β) ≡ ln(β, Λn( ⋅ , β)). 

Then βn = arg maxβ ∈ ℛ ln
p(β)  and Λn = Λn( ⋅ , βn). Here the estimator Λn is defined to have 

jumps only at the distinct observation time points in the collection of all observation times 

{Ti,j : i = 1, 2, ⋯, n; j = 1, 2, ⋯, Ki}. In summary, the two-step algorithm can be 

implemented by the following doubly iterative algorithm.

1. Choose the initial β(0).

2. For given β(p) (p=0, 1, 2, ⋯), update the estimate of Λ0, Λ(p), by the modified 

iterative convex minorant (MICM) algorithm proposed by Jongbloed (1998) on 

the log-likelihood ln(β(p), Λ).

3. For given Λ(p), update the estimate of β, β(p+1), by optimizing ln(β, Λ(p)) using 

the Newton-Raphson method.

4. Repeat steps 2 and 3 until the following convergence criterion is satisfied:

|
ln(β(p + 1), Λ(p + 1)) − ln(β(p), Λ(p))

ln(β(p), Λ(p))
| ≤ η .

Remark 2.1—The details about the MICM algorithm for computing the MLE with panel-

count data can be found in Wellner and Zhang (2000).

Remark 2.2—One can easily calculate that

∇β
2 ln(β, Λ) = − ∑

i = 1

n
∑

j = 1

Ki
rKi, j

+ (1 − rKi, j
)

DKi, j
eei, j{ei, j − 1 + eei, j}

1 − eei, j
2 + (1 − DKi, j

) ei, j ZiZi
T ,

where ei, j = ΔΛKi, j
exp(βTZi) and eei, j = exp( − ΔΛKi, j

exp(βTZi)). Since

f (y) = y − 1 + e−y > 0 for y > 0,

∇β
2 ln(β, Λ) is a negative definite matrix for any (β, Λ) if Z is not linearly dependent. Also 

based on this fact and the following two inequalities

ln(β(p + 1), Λ(p + 1)) − ln(β(p + 1), Λ(p)) ≥ 0,

and
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ln(β(p + 1), Λ(p)) − ln(β(p), Λ(p)) > 0,

one can easily prove that

ln(β(p + 1), Λ(p + 1)) − ln(β(p), Λ(p)) = ln(β(p + 1), Λ(p + 1)) − ln(β(p + 1), Λ(p)) + ln(β(p + 1), Λ(p)) − ln
(β(p), Λ(p)) > 0

for p = 1, 2, ⋯. This suggests that the log-likelihood increases after each iteration and the 

algorithm behaves similar to an EM-algorithm, which may converge slowly in some 

scenarios. For the case here, however, the algorithm appears to work well and has no 

convergence issue in the numerical experiments below. More comments on this are given 

below.

In the next section, we will establish the asymptotic properties of the proposed estimator 

θn = (βn, Λn) with the proofs provided in the Web Supplementary Materials.

3. Asymptotic Results

In this section, we will establish the asymptotic properties of the estimator θn = (βn, Λn) with 

the proof given in the Web Supplementary Materials. For this, we need to adopt and 

reintroduce some notation and working model assumptions used in Wellner and Zhang 

(2007) to make the presentation of this article self-contained. Denote ℬd and ℬ as the 

collection of Borel sets in Rd and R+, respectively, and let B[0, τ] = {B ∩ [0, τ]: B ∈ ℬ} and 

B[0, τ]
2 = B[0, τ] × B[0, τ]. For any B ∈ B[0,τ] and C ∈ ℬd, define the measure

v(B × C) = ∫C
∑

k = 1

∞
P(K = k |Z = z) ∑

j = 1

k
P(TK, j ∈ B |K = k, Z = z)dH(z),

where H is the distribution function of Z and measure μ as μ(B) = ν(B × Rd). Define the L2-

metric d(θ1, θ2) in the parameter space Θ = ℛ × ℱ as

d(θ1, θ2) = {|β1 − β2|2 + Λ1 − Λ2 L2(μ)
2 }1/2 .

For the asymptotic properties, we also need the following regularity conditions.

C1. The true model parameter θ0 = (β0, Λ0) ∈ ℛ° × ℱ, where ℛ° is the interior of ℛ.

C2. The observation times TK,j, for all j = 1, …, K, K = 1, 2, …, are random 

variables, taking values in the bounded interval [σ, τ] for some σ, τ ∈ (0, ∞) with 

Λ0(σ) > 0, and the measure μ × H on B[0, τ] × ℬd is absolutely continuous with 

respect to ν.
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C3. The true baseline mean function Λ0 satisfies Λ0(τ) ≤ M for some M ∈ (0, ∞).

C4. The support of H, 𝒵 ≡ supp(H), is a bounded set in Rd. (Thus, there exists z0 > 0 

such that P (|Z| ≤ z0) = 1.)

C5. For all a ∈ Rd, a ≠ 0, and c ∈ R, P (aTZ ≠ c) > 0.

C6. For some k0 < ∞, we have P (K ≤ k0) = 1.

C7. For some v0 ∈ (0, ∞), the function Z ↦ E(e
v0ℕ(τ)

|Z) is uniformly bounded for 

Z ∈ 𝒵.

C8. The observation time points are s0−separated: that is, there exists a constant s0 > 

0 such that P(TK,j − TK,j−1 ≥ s0 for all j = 1, …, K) = 1. Furthermore, the measure 

μlutely continuous with respect to Lebesgue measure λ, with a derivative μ̇ satisfying 

μ̇1(t) ≥ c0 > 0 for some positive constant c0.

C9. The true baseline mean function Λ0 is differentiable, and the derivative has 

positive and finite lower and upper bounds in the observation interval, i.e., there 

exists a constant 0 < f0 < ∞, such that 1/ f 0 ≤ Λ0′ (t) ≤ f 0 < ∞ for t ∈ O[T ].

C10. For some η ∈ (0, 1), aT Var(Z|U, V)a ≥ ηaT E(ZZT |U, V)a a.s. for all a ∈ Rd.

C11. For any u, v ∈ O[T ] satisfying v − u ≥ s0, the observation type indicator r(u, v] 

is independent of or non-informative with respect to the underlying counting process. 

Moreover there exists 0 < p1,0, p2,0 ≤ 1 such that p1,0 ≤ p(u, v) ≤ p2,0 with p(u, v) = 

Er(u, v].

Remark 3.1

Note that the conditions C1–C10 are the same as those given in Wellner and Zhang (2007) 

for the asymptotic properties of the SPMLE based on panel-count data and they also 

provided some justification in view of the applications. The condition C11 is specifically 

made for the mixed panel-count data and implies that the chance of observing actual event 

counts in any observation interval has a non-zero lower bound. This condition is necessary 

for proving the consistency of the baseline mean function estimator.

Theorem 1 (Consistency and Rate of Convergence)—Suppose that the conditions 

C1–C6 and C8–C11 hold and the conditional mean function of counting process ℕ(t) is 

given by (1). Then, the SPMLE θn = (βn, Λn) converges to the true model parameter in 

probability in metric d, that is d(θn, θ0) p 0. In addition, if the condition C7 holds, we have

n1/3d(θn, θ0) = Op(1) .

Theorem 2 (Asymptotic Normality)—Suppose that the regularity conditions C1–C11 

and the conditional mean function (1) hold. Then the SPMLE of βn is asymptotically normal 

such as
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n(βn − β0) d N 0, A−1B A−1 T ,

where

A = E(K, T_K, Z) ∑
j = 1

K
(ΔΛ0K, j)

2e
β0

TZ
U j(Z)[Z − R(K, TK, j − 1, TK, j)]

⊗ 2 ,

and

B = E(K, T_K, Z) ∑
j, j′ = 1

K
C j, j′(Z) Z − R(K, TK, j − 1, TK, j)

⊗ 2 .

In the above

C j, j′ = E(A jA j′ |K, TK, j − 1, TK, j′ − 1, TK, j, TK, j′, Z),

U j(Z) =
p(TK, j − 1, TK, j)

ΔΛ0K, j
+

[1 − p(TK, j − 1, TK, j)]e
β0

TZ
e
−ΔΛ0K, je

β0
Tz

1 − e
−ΔΛ0K, je

β0
TZ

,

R(K, TK, j − 1, TK, j) =
E(U j(Z)e

β0
TZ

Z |K, TK, j − 1, TK, j)

E(U j(Z)e
β0

TZ
|K, TK, j − 1, TK, j)

,

and A j = rK, j ΔNK, j − ΔΛ0K, je
β0

TZ
+ (1 − rK, j)

DK, j

1 − e
−ΔΛ0K, je

β0
TZ

− 1 ΔΛ
0K, je

β0
TZ

, for j, j′ = 

1, 2, …, K, and Z⊗2 stands for ZZT.

Remark 3.2

It is worth emphasizing again that the nonhomogeneous Poisson process is just the working 

model to derive the “likelihood” of the observed mixed panel-count data. The validity of the 

asymptotic results stated above does not require the underlying counting process to be the 

Poisson process. It is also straightforward to verify that when N(t) is indeed a Poisson 

process, Cj,j′(Z) = 0 for j ≠ j′ and C j, j(Z) = (ΔΛ0K, j)
2e

β0
TZ

U j(Z), which result in B = A in 
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Theorem 2. This means that the SPMLE of βn is semiparametrically efficient under the 

Poisson process. In addition, for a special case p(TK,j−1, TK,j) ≡ 1 for all j = 1, 2, ⋯, k, i.e., 

only panel-count data are observed, Theorem 2 is exactly the first part of Theorem 3.3 of 

Wellner and Zhang (2007). In other words, the estimator defined above can be viewed as the 

natural generalization of that given in Wellner and Zhang (2007) for panel-count data.

Remark 3.3

Note that although the asymptotic normality can be established as above, it is difficult to 

estimate the corresponding standard error empirically based on the sample. For this, we 

suggest to adopt the nonparametric bootstrap method with 100 resamplings, whose validity 

is warranted by the established asymptotic normality.

4. Simulation Results

We conducted extensive simulation studies to evaluate the finite sample performance of the 

proposed estimation procedure under different situations. In the study, for the ith subject, i = 

1, 2, ⋯, n, we assumed that the covariate Zi is three-dimensional and consists of a uniform 

variable over (0, 1), a standard normal variable, and a Bernoulli variable with 0.5 success 

probability. For the underlying counting process, we considered two cases. One is that ℕi(t) 
was assumed to be a Poisson process with the conditional mean function given by 

Λ(t |Zi) = 2te
βTZi. The other is that the counting process was a mixed Poisson process with 

intensity (2t + αi)e
βTZi, where α is a random effect on the intensity. Here we set αi ∈ {−0.4, 

0, 0.4} with probabilities 0.25, 0.5, and 0.25, respectively, so that the mean function of the 

counting process given the covariates still satisfies model (1).

The number of observations Ki was sampled randomly from the set {1, 2, 3, 4, 5, 6} with 

equal probabilities. Given Ki, the observation time points TKi, 1, ⋯, TKi, Ki
 were taken to be 

ordered values generated from the uniform distribution over (1, 10) and rounded to the 

second decimal point to allow ties in observation times. Within each observation period 

(TKi, j − 1
, TKi, j

] for j = 1, ⋯, Ki, we generated the observation type indicator rKi, j from the 

Bernoulli distribution with the probability of success p, where p was chosen to give the 

appropriate proportion of records in counts. If rKi, j = 1, then the event count over the 

interval (TKi, j − 1
, TKi, j

], ΔNKi, j
, was assumed to be known and recorded. Otherwise, it was 

assumed that only the binary outcome, DKi, j
= (ΔNKi, j

> 0), was recorded. The percentage 

of count-type observations, p, was set to be 0.1, 0.2, 0.5, 0.8, 0.9, or 0.95, and the true value 

of β0 = (β1, β2, β3)T was taken to be (0, 0, 0) or (−1, 0.5, 1.5). The results given below are 

based on the sample sizes of 100 and 200 with 1000 replications.

Tables 1 and 2 present the results on estimation of regression parameters obtained with the 

underlying recurrent event process being the Poisson process and n = 100 and n = 200, 

respectively. The results corresponding to the mixed Poisson process are given in Table 3 
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with n = 100 and the results with n = 200 are similar and thus omitted to save the space. In 

the tables, we include the average of the estimated β (EST), the average of the estimated 

asymptotic standard errors (ASE), the sampled standard error (SSE), and the 95% coverage 

probability (CP). Note that for the variance estimation, as mentioned above, we adopt the 

bootstrap procedure. The results suggest that the proposed estimator seems to be unbiased 

and the ASEs are close to the SSEs. Also the 95% confidence interval based on the 

asymptotic normal distribution seems to have the right CP and the ratios of SSEs between n 
= 100 and n = 200 are all close to 2, indicating that the normal approximation to the 

distribution of the proposed estimate seems to work properly. In addition, as expected, when 

the percentage of count-type records increased, the standard error of the estimates decreased 

because the counts provided more information than did the binary outcomes regarding the 

counting process. Moreover, the results in Table 2 suggest that the proposed SPMLE method 

is robust against the Poisson process assumption, though the estimated standard errors in the 

mixed Poisson scenario were larger than those in the Poisson scenario as expected. Note that 

in the study here and also the application below, we used β = 0 as the initial value in the 

algorithm. We did try different initial values and the algorithm seems always to converge and 

work well.

As mentioned above, a naive approach for analyzing mixed panel-count data is to ignore the 

binary part of the data and analyze only the available panel-count data. To compare the 

proposed method to this, in the simulation studies, we also obtained the results by using the 

naive approach based on the method given in Wellner and Zhang (2007) for panel-count data 

and include those results in Tables 1 – 3. One can clearly see that the naive estimation of the 

regression parameters still seems to be unbiased as expected. This is reasonable because β 
represents the time-invariant effect of the covariates on the process; thus it does not require 

the data from the whole process to provide the essential information for the inference. On 

the other hand, it is apparent that the estimate is much less efficient than that given by the 

proposed method as discussed above. Also as expected, the efficiency loss compared to the 

proposed method becomes more manifested when p decreases from 0.95 to 0.1.

To further compare the naive approach and the proposed method, we obtained and plotted 

the estimates of the baseline cumulative mean functions given by both methods for the 

Poisson scenario in Figure 1. One can see that the estimates given by the proposed method 

seem to be unbiased under all different scenarios of missing count probability, but the naive 

estimates seem to underestimate the cumulative mean functions. The lower the percentage of 

count-type records, the bigger the deviation. The downward bias is anticipated because the 

total number of counts for a given length of observation times in each subject used for panel-

count data model is potentially smaller than the actual number. Also the discrepancy became 

larger when the proportion of binary outcome increased. This is true for the mixed Poisson 

scenario too, which is not presented here. In other words, these results suggest that one 

should apply the proposed method instead of the naive approach to analyze mixed panel-

count data.

Note that in the proposed method, it has been assumed that the observation type indicators 

rKi, j’s follow the same distribution and are independent of other processes. To follow a 
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suggestion of a reviewer, we performed additional simulation studies to investigate the 

proposed estimation procedure when the rKi, j’s may depend on covariates. Table 4 presents 

some results on estimation of regression parameters obtained when there existed one 

covariate Zi following the Bernoulli distribution with the success probability of 0.5 and the 

other set-ups being the same as in Tables 1 – 3. Here we set p =0.1, 0.4, or 0.7 for the 

subjects with Zi = 0 and 0.3, 0.6, or 0.9 otherwise, and on the average, p is still equal to 0.2, 

0.5, or 0.8. One can see from the table that they seem to give the similar conclusions to 

Tables 1 – 3 and suggest that the proposed method is still valid for the situation where the 

observation type is related but still conditionally independent of the underlying counting 

process given the covariates.

5. An Application

In this section, we apply the proposed method to analyze the CCSS data described in Section 

1. As mentioned above, the CCSS follows over 14,000 childhood cancer survivors and a 

random sample of about 4000 healthy siblings as a control group. In the following, we will 

focus on a subgroup of 1801 women who were at least 25 years old in 1996; 611 participants 

are leukemia survivors, and 1190 participants are healthy controls. Since they are subgroups 

of CCSS, these leukemia survivors and siblings are no longer paired. In fact, among 1801 

participants, only 66 pairs of survivors and siblings are from the same family, so we consider 

them as two independent groups here. For the analysis, define Xi = 1 if the ith subject is a 

leukemia survivor and Xi = 0 otherwise. Both leukemia survivor and healthy control groups 

have an average of around 3 observations per subject. In total, there are 5494 records. For 

the question,“Have you and a partner ever become pregnant since last follow up?” 1930 

records indicated “yes”(35%), with 549 records from leukemia survivors and 1381 records 

from healthy controls. Among the 1930 records with answer “yes” to the first question, 85 

did not provide an answer to the second question, “Including live births, stillbirths, 

miscarriages, and abortions, how many times have you become pregnant?” As a result, the 

count of events in that record is missing, and we have only mixed panel-count data.

For the analysis, we first ignore the binary part of the data (the 85 records). In this case, the 

averaged pregnancy counts are 1.60 and 2.31 for the leukemia survivor and healthy control 

groups, respectively. By applying the method given in Wellner and Zhang (2007), as in the 

simulation study, the estimate of the regression parameter is −0.365 with the estimated 

standard error being 0.058. However, we know that true averages should be higher than 1.60 

and 2.31 in the two groups because there should be at least 1 pregnancy per record in the 85 

records. By applying the proposed estimation procedure, we obtained the estimate of −0.356 

with the estimated standard error being 0.042. The p-values from both methods are less than 

0.0001 for testing no pregnancy process difference between the leukemia survivor and 

healthy control groups, suggesting that the leukemia survivors had significantly lower 

pregnancy rates than the healthy controls. However, the standard error from using panel-

count data alone is larger than that from using mixed panel-count data, which indicates an 

efficiency loss. Figure 2 provides the estimates of the expected cumulative number of 

pregnancies for leukemia survivors and healthy controls, respectively. As seen from the 

simulation studies, the estimated expected cumulative number of pregnancies when the 
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binary part of the data is ignored, is slightly lower than that when all available data are used. 

However, the underestimation is minor in this case because the binary data comprise only 

4.4% of the total recorded data.

6. Discussion and Concluding Remarks

This article considered regression analysis of mixed panel-count data. Such data arise when 

the numbers of events are known during some follow-up periods while during other follow-

up periods, only binary outcomes are known (e.g., whether the events of interest have 

occurred since the last follow-up). As discussed above, mixed panel-count data can occur in 

many fields. Although much literature exists for panel-count data, little work has been done 

for the type of data considered here. For this problem, the SPMLE method based on the 

working model of the Poisson process was developed, and the asymptotic properties of the 

proposed estimator were established. Also, the numerical results suggest that the proposed 

method works well in finite samples, even if the Poisson assumption does not hold. It is 

worth to stress that the proposed method has advantages in making semiparametric inference 

on the underlying counting process because the existing SPMLE method for panel-count 

data can be less efficient in making inferences for regression parameters for mixed panel-

count data. More seriously, it could cause misleading results in the estimation of the 

expected cumulative number of events.

There are several directions for future research. One is that as discussed above, in the 

preceding sections, we have focused on the situation where the observation type indicators 

rK,j’s follow the same distribution and are independent of the underlying counting process 

and the observation process. As shown in Section 4, one can relax the assumption to allow 

the rK,j’s to depend on covariates or the two processes through covariates. However, in 

practice, there may exist situations where they are still correlated even given covariates and 

it would be useful to generalize the proposed method to the situation. Sun et al. (2007) 

discussed a similar situation and showed that ignoring the dependence could lead to biased 

results. On the other hand, it does not seem to be straightforward to incorporate the potential 

correlation in the methodology development and it can be very technically challenging.

In addition to the mixed panel-count data discussed above, other types of mixed panel-count 

data may exist and one is that panel-count data may be presented as panel-ordinal data. For 

example, a question on hospitalization could still be, “How many different times were you in 

a hospital at least overnight?”, but multiple-choice items such as “A. 0; B. 1–2 times; C. 3–5 

times; D. >5 times” would be provided to participants to avoid recall bias. It is easy to see 

that this type of data has more information than just panel-binary data but less information 

than panel-count data and could be mixed with them as well. The proposed method could be 

conceptually applied to this type of mixed panel-ordinal data. In addition, panel-count data 

can also be mixed with recurrent-event data, as mentioned above. For the CCSS study, the 

hospitalization data contain panel-binary data, panel-count data, and recurrent-event data. 

The pregnancy data in the CCSS have some recurrent-event data as well. Among the four 

types of data, recurrent-event data contain the most information, followed by panel-count 

data, panel-ordinal data, and panel-binary data. It would be very useful and instructive to 

develop a general method that allows the analysis of mixed data of any of the four types.
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Fig. 1. 
The averages of the maximum likelihood estimates of the baseline mean function under 

different scenarios from the proposed method and from the method that uses only the panel-

count data.
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Fig. 2. 
Estimated cumulative average numbers of pregnancies
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