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Abstract

Identification of functional modules from biological network is a promising approach to enhance 

the statistical power of genome-wide association study (GWAS) and improve biological 

interpretation for complex diseases. The precise functions of genes are highly relevant to tissue 

context, while a majority of module identification studies are based on tissue-free biological 

networks that lacks phenotypic specificity. In this study, we propose a module identification 

method that maps the GWAS results of an imaging phenotype onto the corresponding tissue-

specific functional interaction network by applying a machine learning framework. Ridge 

regression and support vector machine (SVM) models are constructed to re-prioritize GWAS 

results, followed by exploring hippocampus-relevant modules based on top predictions using 

GWAS top findings. We also propose a GWAS top-neighbor-based module identification approach 

and compare it with Ridge and SVM based approaches. Modules conserving both tissue specificity 

and GWAS discoveries are identified, showing the promise of the proposal method for providing 

insight into the mechanism of complex diseases.
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1. INTRODUCTION

Brain imaging genetics is an emerging field that studies how genetic variation influences 

brain structure and function. Genome-wide association studies (GWAS) have been 

performed to identify genetic markers such as single nucleotide polymorphisms (SNPs) that 

are associated with brain imaging quantitative traits (QTs) [1, 2, 3]. These findings, however, 

have limited power to explain how the identified SNPs interact to influence QTs. Using the 

biological networks and pathways as prior knowledge, integrative analysis have been 
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performed to discover disease-relevant modules enriched by GWAS findings to examine 

collective effects of multiple genes, with the potential to enhance statistical power and help 

biological interpretation [4, 5, 6, 7, 8].

Existing module identification methodologies typically start from assigning GWAS statistics 

onto a user-specified functional interaction network. After that, candidate modules are 

formed across the entire network and assessed for whether to be enriched by the GWAS 

findings. One successful example is the dmGWAS [4], which loads gene-level p-values onto 

the network as node weights, and then applies dense module searching to identify modules 

with locally maximized proportion of significant genes. Another example is the network 

interface miner for multigenic interactions (NIMMI) [5], which scores genes by combining 

p-values with connectivities and then constructs modules from high weighted genes. Protein 

interaction network-based pathway analysis (PINBPA) [9] and its extension iPINBPA [8] 

start from a seed and expand the module by adding neighbors to reach a pre-given statistical 

significance. These strategies are all bottom-up. The power of the bottom-up strategy could 

be limited by multiple comparison correction as it examines a large number of candidate 

modules to identify GWAS enriched ones. Meanwhile the efficiency could also become 

suboptimal when large-scale networks are present.

Most network-based GWAS of quantitative traits are using tissue-free biological networks 

such as human PPI network, without considering tissue specificity. The precise functions of 

genes are highly related to their tissue context, and human diseases result from the 

disordered interplay of tissue-specific processes [10]. Recently, tissue-specific genome-scale 

functional interaction networks have been constructed to capture the changing functional 

roles of genes across tissues. Disease-gene associations have been re-prioritized by 

constructing a support vector machine (SVM) classifier to reorder GWAS results using 

tissue-specific network data as features, named as NetWAS (network-wide association 

study). It has been implemented on hippocampal volume in an Alzheimer’s disease (AD) 

study to re-prioritize GWAS results and demonstrated that tissue-specific networks could 

provide helpful context for understanding complex human diseases [11]. Note that SVM 

classifier employed in NetWAS requires pre-defined threshold to label GWAS results, and 

may lose some valuable information embedded in the continuous z-scores corresponding to 

the GWAS p-values.

In this study, we propose and compare two novel module identification frameworks: (i) a 

machine learning approach that introduces a regression model into NetWAS to take 

continuous z-scores into account (Ridge regression in this paper); and (ii) a GWAS top-

neighbor-based (tnGWAS) searching approach that extracts densely connected modules from 

top GWAS findings. Ridge and tnGWAS both offer a more efficient, top-down strategy to 

identify phenotype-relevant modules, while using slightly different hypotheses: (1) Ridge 

hypothesizes relevant modules are enriched by relatively significant and functionally-

relevant genes; and (2) tnGWAS hypothesizes that relevant modules consist of top GWAS 

findings and their close neighbors. Of note, machine learning methods (e.g., SVM and 

Ridge) provide re-prioritized gene findings, while tnGWAS does not. We demonstrate the 

effectiveness of the proposed frameworks by applying them to a hippocampal imaging 

genetics analysis in the study of AD.
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2. MATERIALS AND METHODS

To demonstrate the implementation of Ridge and tnGWAS on imaging QT-relevant module 

identification, we apply them to hippocampal imaging GWAS in AD. Studies with 

[18F]FDG-PET have demonstrated that AD is associated with reduced use of glucose 

metabolism in hippocampus [12, 13]. We propose to identify imaging QT-relevant modules, 

by integrating a hippocampus-specific functional interaction network and GWAS results of 

hippocampal FDG measures.

2.1. Imaging data, genotyping data and GWAS

Imaging data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(adni.loni.usc.edu). Preprocessed FDG-PET scans were downloaded from LONI 

(adni.loni.usc.edu), and [18F]FDG measurements of hippocampus were extracted based on 

the MarsBaR AAL atlas. Genotype data were also obtained from LONI. 989 non-Hispanic 

Caucasian participants with both FDG and genotype data available were studied. 

Association between the average FDG measure in the hippocampal region at the baseline 

and 5,574,300 SNPs was examined by GWAS using PLINK[14]. To facilitate the subsequent 

network-based analysis, a gene-level p-value was determined as the second smallest p-value 

of all SNPs located in ±20K bp of the gene [15]. A number of 17,881 protein-coding gene p-

values were obtained.

2.2. Hippocampus functional interaction Network

Genome-wide functional interaction networks for specific human tissues and cell types have 

been generated to specialize protein functions and interactions of specific human tissues 

[10]. A hippocampus-specific functional interaction network was downloaded from GIANT 

(http://giant.princeton.edu/). Interactions among 17,881 protein-coding genes was extracted 

after being mapped by the GWAS results.

2.3. Alzheimer’s disease documented genes

A list of 66 documented AD risk genes were collected to evaluate the re-prioritization results 

from three resources: 24 susceptibility genes from a large meta-analysis of AD [3], 15 AD-

relevant genes from the Online Mendelian Inheritance in Man Disease database (OMIM), 

and 40 significant candidates from the AlzGene database (http://www.alzgene.org/).

2.4. Module identification framework

Two top-down module identification approaches were proposed, machine learning based and 

GWAS top-neighbor (tnG-WAS) based. Below we describe their details.

Machine learning based GWAS re-prioritization—Following [10], we trained an 

SVM model using hippocampus-specific network connectivity as features and the 

significance status based on nominal p=0.01 as labels to re-prioritize GWAS results. In 

addition to SVM, we trained a ridge regression (Ridge) model using also the network data as 

features while using z-scores converted from p-values as responses. Different from 

classification which required a pre-defined threshold, regression approaches utilize the 

complete information from the continuous z-scores.
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We trained SVM and Ridge models using interactions between a subset of genes C and all 

genes as features, and the z-scores converted from the gene-level p-values of C as responses 

(positive or negative labels for SVM). To balance the training data, set C was constructed 

from the combination of significant gene set A and one third of randomly selected 

nonsignificant gene set B, where p=0.01 was used as nominal significance. Genes were re-

prioritized according to their predictions (Ridge) or distances from separating hyperplane 

(SVM). Re-prioritized results offered a more flexible way to analyze functional associations 

at different scales.

To demonstrate the performance of re-prioritization, we accessed the mean interactions and 

the area under receiver-operator characteristic (ROC) curve (AUC) of re-prioritized genes 

from Ridge and SVM with original GWAS using 66 documented AD candidates as gold 

standard positives.

tnGWAS—Starting from a set of significant GWAS findings, tnGWAS includes their 

immediate neighbors in the result. tnGWAS hypothesizes that QT-relevant functional 

modules consist of top GWAS findings and their close neighbors. We extracted the 

interaction matrix containing connectivity measures between significant GWAS findings and 

all the genes, and identified genes highly interacted with ≥1 significant gene. In the 

experiment, we applied gene p-value ≤1e-7 to select significant GWAS findings, and 

interaction weight ≥0.3 to define strong connectivity. This yielded 4 significant genes and 

120 highly interacted neighbors. In practice, we can include more top predictions and take 

more GWAS top neighbors to obtain larger scale candidate modules.

Identification of GWAS enriched modules—Machine learning based approaches were 

designed to yield top gene findings not only enriched by GWAS results but also densely 

connected; while tnGWAS was to identify top GWAS findings together with their immediate 

neighbors. For module identification, both frameworks offered a list of candidates for us to 

detect GWAS-enriched modules. We clustered top genes from above to firstly identify 

candidate modules. Since one gene could perform functions in multiple pathways, we 

employed the Link Clustering algorithm [16] on top genes to detect communities as clusters 

of links instead of nodes. The resulting candidate modules could be overlapping. Top GWAS 

findings were used to assess the enrichment of candidate module, while significantly 

enriched ones were identified as phenotype-relevant modules.

Different from previous bottom-up methods, these top-down strategies examine only a small 

number of candidate modules that are both highly connected and GWAS enriched, and thus 

can potentially help increase the statistical power.

Functional annotation—To assess the functional relevance of identified modules, we 

tested their over-representation on specific neurobiological functions and signalling 

pathways. We analyzed functional annotation using KEGG pathways and Gene Ontology 

Biological Process (GO-BP).
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3. RESULTS

3.1. GWAS of hippocampal QT

GWAS was performed to examine the association between SNPs and the hippocampal FDG 

measure. Four SNPs were identified as significant using p≤5E-7 (see Fig. 1 for the 

Manhattan plot), including two within APOE, one within TOMM40 and one within APOC1. 

After mapping the SNPs to 17,881 protein coding regions, four genes were identified to be 

significant: APOC1, APOE, PVRL2 and TOMM40.

3.2. Machine learning based re-prioritization

As mentioned earlier, top predictions from machine learning based re-prioritization would 

conserve both dense functional interaction and strong phenotype-relevance. Since tnGWAS 

did not assign ranks to top neighbors, we compared the top predictions from Ridge and 

SVM with original GWAS to assess their re-prioritization performances. Mean statistics of 

functional interactions and AUC were assessed on different scales of top predictions and 

shown in Fig. 2.

From Fig. 2(A), both Ridge and SVM yielded much stronger connectivity than GWAS. 

Dense interactions among top predictions demonstrated the advantage of network-based 

integration. From Fig. 2(B), Ridge and SVM gained higher AUC than original GWAS, 

indicating the AD-relevance of top predictions by these new approaches. These support the 

idea that strong relationships exist between gene and phenotype, and that functionally-

relevant genes are more likely to be interacted [17, 18, 19]. Ridge performed better than 

SVM in both evaluations, suggesting the value of the continuous z-scores over the 

significance status.

3.3. Hippocampus-relevant top predictions

We compared the functional connectivity of top findings among two machine learning-based 

methods, tnGWAS, and original GWAS. For a fair comparison, we focused on top 124 

findings, since 124 is the number of top findings from tnGWAS (see section 2.4). Fig. 3 

showed the heatmaps of connectivity and interaction networks using different thresholds 

where genes were colored by their original GWAS ranks.

Both heatmaps and networks demonstrate much denser interactions yielded by Ridge, SVM 

and tnGWAS than original GWAS. tnGWAS, due to the inclusion of immediate neighbors, 

gains the densest interaction. Top predictions from Ridge and SVM are also densely 

connected. In addition, they contain more top GWAS findings than tnGWAS (i.e., more 

nodes were colored by top GWAS findings). These observations reflect the different 

hypotheses behind the two strategies described earlier. Machine learning approaches seem to 

perform better as a whole as they integrate GWAS results and the tissue-specific network in 

a better fashion.

3.4. Hippocampus-relevant modules

We focus on top 124 predictions from Ridge given its top performance among four 

approaches. We preprocessed the functional connectivity network among these 124 genes to 
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keep interactions with weights ≥0.2, and performed link clustering on this network. 21 

modules were identified as candidates after removing those with < 10 genes. Six out of 21 

were significantly enriched by top 50 GWAS findings; see Table 1. Functional annotation 

was applied to further examine functional relevance of identified modules. Fig. 4 shows (A) 

the KEGG pathway and (B) GO-BP enrichment results. All modules except Module 03 have 

significantly enriched pathways, some of which are related to neurodegenerative diseases 

(e.g., signal transduction like calcium signaling pathway had shown abnormality in many 

neurodegenerative disorders like AD [20]). Fig. 4(B) shows GO-BP terms that are 

significantly enriched by more than 2 modules. We could also find a large number of BP 

terms related to neurological system process (e.g., cognition), behavior (e.g., learning or 

memory), neurological system process (e.g., neuromuscular process), all of which had direct 

or indirect relationships with neurodegenerative diseases.

4. DISCUSSIONS AND CONCLUSIONS

We have proposed two top-down module identification frameworks: machine learning based 

and tnGWAS. Both approaches integrate tissue specific functional interaction network with 

GWAS data to identify phenotype-relevant modules. Different from previous network-based 

module identification strategies, we start our search from the whole network to extract 

GWAS-relevant and highly interacted ones. Machine learning based approaches re-prioritize 

GWAS results, which can facilitate various relevant analyses. Subsequent enrichment 

assessment considers both tissue and GWAS specificities of the identified modules. Possible 

future directions include: (1) extending tnGWAS to re-rank identified top-neighbors using 

their GWAS statistics and interactions; and (2) applications to other tissues and omics data.

Acknowledgments

This research was supported by NIH R01 LM011360, R01 EB022574, U01 AG024904, RC2 AG036535, R01 
AG19771, P30 AG10133, UL1 TR001108, R01 AG 042437, R01 AG046171, and R00 LM011384; DOD 
W81XWH-14-2-0151, W81XWH-13-1-0259, and W81XWH-12-2-0012; NCAA 14132004; and CTSI SPARC 
Program at Indiana University, and by NIH R01 LM011360, R01 LM009012, and R01 LM010098 at University of 
Pennsylvania. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design 
and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/
ADNI Acknowledgement List.pdf

References

1. Saykin AJ, Shen L, et al. Genetic studies of quantitative mci and ad phenotypes in adni: Progress, 
opportunities, and plans. Alzheimers Dement. 2015; 11(7):792–814. [PubMed: 26194313] 

2. Shen L, Thompson PM, et al. Genetic analysis of quantitative phenotypes in ad and mci: imaging, 
cognition and biomarkers. Brain Imaging Behav. 2014; 8(2):183–207. [PubMed: 24092460] 

3. Lambert JC, Ibrahim-Verbaas CA, et al. Meta-analysis of 74,046 individuals identifies 11 new 
susceptibility loci for alzheimer’s disease. Nature Genetics. 2013; 45(12):1452–U206. [PubMed: 
24162737] 

4. Jia PL, Zheng SY, et al. dmgwas: dense module searching for genome-wide association studies in 
protein-protein interaction networks. Bioinformatics. 2011; 27(1):95–102. [PubMed: 21045073] 

5. Akula N, Baranova A, et al. A network-based approach to prioritize results from genome-wide 
association studies. Plos One. 2011; 6(9)

Yao et al. Page 6

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/wp-content/uploads/howtoapply/ADNIAcknowledgementList.pdf
http://adni.loni.usc.edu/wp-content/uploads/howtoapply/ADNIAcknowledgementList.pdf


6. Hirschhorn JN. Genomewide association studies–illuminating biologic pathways. N Engl J Med. 
2009; 360(17):1699–701. [PubMed: 19369661] 

7. Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012; 8:565. [PubMed: 
22252388] 

8. Wang LL, Matsushita T, et al. Pinbpa: Cytoscape app for network analysis of gwas data. 
Bioinformatics. 2015; 31(2):262–264. [PubMed: 25260698] 

9. Baranzini SE, Galwey NW, et al. Pathway and network-based analysis of genome-wide association 
studies in multiple sclerosis. Human Molecular Genetics. 2009; 18(11):2078–2090. [PubMed: 
19286671] 

10. Greene CS, Krishnan A, et al. Understanding multicellular function and disease with human tissue-
specific networks. Nat Genet. 2015; 47(6):569–76. [PubMed: 25915600] 

11. Song A, Yan J, et al. Network-based analysis of genetic variants associated with hippocampal 
volume in alzheimer’s disease: a study of adni cohorts. BioData Min. 2016; 9:3. [PubMed: 
26788126] 

12. Ishii K, Soma T, et al. Comparison of regional brain volume and glucose metabolism between 
patients with mild dementia with lewy bodies and those with mild alzheimer’s disease. Journal of 
Nuclear Medicine. 2007; 48(5):704–711. [PubMed: 17475957] 

13. Mosconi L, Tsui WH, et al. Multicenter standardized f-18-fdg pet diagnosis of mild cognitive 
impairment, alzheimer’s disease, and other dementias. J of Nuclear Medicine. 2008; 49(3):390–
398.

14. Purcell S, Neale B, et al. Plink: a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007; 81(3):559–75. [PubMed: 17701901] 

15. Nam D, Kim J, et al. Gsa-snp: a general approach for gene set analysis of polymorphisms. Nucleic 
Acids Res. 2010; 38:W749–54. [PubMed: 20501604] 

16. Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. 
Nature. 2010; 466(7307):761–U11. [PubMed: 20562860] 

17. Pattin KA, Moore JH. Exploiting the proteome to improve the genome-wide genetic analysis of 
epistasis in common human diseases. Human Genetics. 2008; 124(1):19–29. [PubMed: 18551320] 

18. Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nature Reviews 
Genetics. 2009; 10(6):392–404.

19. Emily M, Mailund T, et al. Using biological networks to search for interacting loci in genome-wide 
association studies. European Journal of Human Genetics. 2009; 17(10):1231–1240. [PubMed: 
19277065] 

20. Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med. 2009; 15(3):
89–100. [PubMed: 19230774] 

Yao et al. Page 7

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Manhattan plot. Blue and red lines correspond to the p-values of 5e-5 and 5e-7 respectively.
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Fig. 2. 
Performance evaluation of re-prioritized results. (A) Mean of interactions among top 

predictions. (B) ROC curves.
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Fig. 3. 
Comparison of top 124 findings from Ridge, SVM, tnGWAS and original GWAS. Heatmaps 

show the complete interaction matrix of top predictions. Circular networks show interactions 

after filtering weak connections. Nodes in circular network are colored based on their ranks 

in GWAS result.
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Fig. 4. 
Functional annotation of modules from Ridge.
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Table 1

Details of the identified modules from Ridge.

Ridge Module ID # of genes GWAS Enrichment p-value (corrected)

Hippocampus

Module 01 21 2.68E-03

Module 02 89 4.84E-04

Module 03 26 7.85E-05

Module 04 11 4.21E-02

Module 05 22 3.10E-03

Module 06 11 4.21E-02
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