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Abstract 

Mothers provide their offspring with symbionts. Maternally transmitted, intracellular 

symbionts must disperse from mother to offspring with other cytoplasmic elements, like 

mitochondria. Here, we investigated how the intracellular symbiont Wolbachia interacts with 

mitochondria during maternal transmission. Mitochondria and Wolbachia may interact 

antagonistically and compete as each population tries to ensure its own evolutionary success. 

Alternatively, mitochondria and Wolbachia may cooperate as both benefit from ensuring the 

fitness of the mother. We characterized the relationship between mitochondria and Wolbachia 

titers in ovaries of D. melanogaster. We found that mitochondria and Wolbachia titers are 

positively correlated in common laboratory genotypes of D. melanogaster. We attempted to 

perturb this covariation through the introduction of Wolbachia variants that colonize at 
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different titers. We also attempted to perturb the covariation through manipulating the female 

reproductive tract to disrupt maternal transmission. Finally, we also attempted to disrupt the 

covariation by knocking down gene expression for two loci involved in mitochondrial 

metabolism: NADH dehydrogenase and a mitochondrial transporter. Overall, we find that 

mitochondria and Wolbachia titers are commonly positively correlated, but this positive 

covariation is disrupted at high titers of Wolbachia. Our results suggest that mitochondria and 

Wolbachia have likely evolved mechanisms to stably coexist, but the competitive dynamics 

change at high Wolbachia titers. We provide future directions to better understand how their 

interaction influences the maintenance of the symbiosis. 

 

Introduction 

In order to ensure faithful transmission, vertically acquired symbionts must find their 

way to the next generation along with both nuclear and cytoplasmic genomes, like 

mitochondria. The cytoplasmic environment within a cell is long thought to be a competitive 

environment, creating conflict between the different resident genomes, particularly between 

maternally inherited, cytoplasmic genomes and the biparentally inherited, nuclear genome 

(Eberhard 1980, Cosmides and Tooby 1981, Greiner et al. 2015). Maternally transmitted, 

cytoplasmic genomes can evolve selfish strategies to circumvent competition within the 

cytoplasm and bias the transmission of their own genomes through increased replication at the 

expense of the host (Cosmides and Tooby 1981, Werren 2011). That said, given that both 

symbiont and mitochondrion rely on the evolutionary success of their hosts, cytoplasmic 

genomes sharing the same host should cooperate to facilitate their combined evolutionary 

success (Charlat et al. 2003, Frank 2003). Therefore, it is unclear if competition or conflict exists 

between mitochondria and intracellular symbionts during maternal transmission. Here, we 

leverage the experimentally tractable model host, Drosophila melanogaster, to investigate the 

interaction between mitochondria and an intracellular symbiont, Wolbachia pipientis.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Wolbachia are intracellular, α-proteobacteria that facultatively infect an estimated 40-

60% of arthropods (Werren et al. 2008), including D. melanogaster. Both mitochondria and 

Wolbachia share the same, free-living ancestor in the α-proteobacteria clade (Wu et al. 2004). 

Wolbachia induce a variety of phenotypes in their hosts. Wolbachia are classically known as 

selfish genetic elements that manipulate host reproduction to maintain their infection in some 

host species (Werren et al. 2008, Werren 2011). However, Wolbachia also confer protection 

against viral pathogens in some host species (Hedges et al. 2008, Teixeira et al. 2008, Hoffmann 

et al. 2015). Many of the phenotypes induced by Wolbachia in Drosophila may depend on 

Wolbachia titer. Wolbachia titer is correlated with protection against virus pathogens (Osborne 

et al. 2012, Chrostek et al. 2013). However, high titers often result in reduced fitness for the host 

in the absence of a pathogen (Chrostek and Teixeira 2015, Martinez et al. 2015) and increased 

expression of cytoplasmic incompatibility leading to more effective reproductive manipulations 

by Wolbachia (Clancy and Hoffmann 1998, Veneti et al. 2004).  

Mitochondria have evolved strategies to ensure their maternal transmission, often 

leading to competitive dynamics between different mitochondrial genotypes. For example, in D. 

melanogaster, mitochondria compete with other mitochondria over access to maternal 

transmission as shown in work with heteroplasmic flies. In heteroplasmic flies, mitochondrial 

genomes that gain a competitive advantage by increasing their replication at higher rates are 

transmitted from mother to offspring, regardless of fitness costs to the fly (Ma et al. 2014, Ma 

and O'Farrell 2016). This suggests that mitochondria respond to changes to its intraspecific, 

competitive environment, and furthermore, suggests that mitochondria might respond to 

challenges from other cytoplasmic elements. It is unclear how Wolbachia infection changes the 

mitochondrial dynamics during maternal transmission. 

The evolutionary success of cytoplasmic genomes is ultimately determined by their 

ability to replicate and disperse from mother to offspring (Cosmides and Tooby 1981, Werren 

2011). Therefore, both mitochondria and Wolbachia must occupy the eventual oocyte to ensure 
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maternal transmission. During maternal transmission, mitochondria and Wolbachia utilize 

similar mechanisms to ensure dispersal from mother to offspring. The cytoskeleton enables the 

establishment of polarity that is crucial for proper development of the oocyte (Verheyen and 

Cooley 1994b), and both mitochondria and Wolbachia use components of the cytoskeleton to 

ensure maternal transmission (Boldogh and Pon 2007, Serbus et al. 2008). Specifically, in flies, 

Wolbachia require host microtubules and both minus and plus-end motors (dynein and kinesin) 

for posterior localization in the mature oocyte, positioning themselves for inclusion in the 

germline of the next generation (Ferree et al. 2005, Serbus and Sullivan 2007). This suggests 

that access to the cytoskeleton is important to ensure maternal transmission, potentially 

creating competition between mitochondria and Wolbachia.  

Few studies have characterized the interaction between mitochondria and Wolbachia 

during maternal transmission. First, coexistence and no competition is suggested by differing 

patterns of localization between mitochondria and Wolbachia during oogenesis in D. 

melanogaster observed through fluorescence microscopy (Ferree et al. 2005). Mitochondria 

localize to both poles, while only Wolbachia localize to anterior poles, suggesting they use 

different mechanisms to ensure maternal transmission. Second, in another study, mitochondria 

and Wolbachia genomic copy number was estimated from the number of reads that mapped to 

mitochondria or Wolbachia genomes from female Drosophila simulans, and mitochondria copy 

number was positively correlated with Wolbachia copy number (Signor 2017). The positive 

correlation measured in this study suggests a mutual beneficial coexistence such that hosts that 

are high quality habitats for mitochondria are also good for Wolbachia. However, as mentioned 

above, theory often predicts an antagonistic relationship between mitochondria and Wolbachia, 

which would suggest that the correlation of abundance between mitochondria and Wolbachia 

should be null or negative. Thus, quantifying the interaction between mitochondria and 

Wolbachia is important to understanding how these two cytoplasmic residents coexist during 

maternal transmission.  
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To understand potential interactions between mitochondria and Wolbachia titers during 

maternal transmission, we characterized titers of each cytoplasmic genome in fly ovaries. To do 

this, we performed four experiments: 1) We first characterized the relationship between 

mitochondria and Wolbachia titers in several common laboratory genotypes. Then, we cleared 

Wolbachia infection in flies to determine if Wolbachia limits mitochondria. 2) We manipulated 

the interaction between mitochondria and Wolbachia by using fly lines of the same host 

genotype but with high or low Wolbachia titers determined by Wolbachia genotype. 3) We 

attempted to manipulate the interaction by disrupting the development of the actin 

cytoskeleton in the ovaries. 4) Finally, we disrupted mitochondrial titers by knocking down two 

loci involved in mitochondrial metabolism and transport. Throughout our experimentation, we 

commonly found a positive covariation between mitochondria and Wolbachia titers in wild-type 

flies. The positive covariation between mitochondria and Wolbachia was disrupted for 

Wolbachia genotypes with high Wolbachia titers, but our other disruptions to the cytoskeleton 

or mitochondria did not alter the positive covariation.  

 

Methods 

Fly rearing and general experimental approach 

 We obtained all fly stocks from the Bloomington Drosophila Stock Center (BDSC) and 

Indiana University (see Supp. Table 1 for full genotypes). Standard methods were used for all 

crosses and culturing. Flies were reared on standard Bloomington food and at similar densities. 

All crosses were initiated within 5 days of eclosion so that parents were of a similar age across 

experiments. For all experiments, we sampled mitochondria and Wolbachia titers from ovaries 

dissected from mated females. Ovaries were obtained from female flies aged 3-5 days post 

eclosion. Before dissection, mated female flies were placed on grape juice agar plates for ~48 

hrs with yeast paste to stimulate ovary development (Verheyen and Cooley 1994a, Wong and 

Schedl 2006). All flies were dissected on ice in cold, sterile DEPC-PBST under similar time 
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conditions. We determined mitochondria and Wolbachia titers only in the ovaries, as the female 

reproductive tissue is where maternal transmission occurs.  

We primarily determined mitochondria and Wolbachia titers through quantitative PCR. 

We first extracted nucleic acids (DNA for all lines, both DNA and RNA for TRiP lines in 

Experiment 3) from ovaries from individual flies using a modified Trizol extraction protocol 

(see Supp. Methods for extended details). We acknowledge that measuring mitochondria titers 

may be complicated by the fission-fusion dynamics of mitochondrial replication. However, we 

attempted to control for this by only measuring mitochondria titer in one tissue, the ovary, 

dissected under controlled conditions. RNA and DNA were normalized after quantification to 15 

ng per reaction for quantitative PCR.  

Using quantitative PCR, we amplified three loci to investigate the ecology of maternal 

transmission. First, we determined changes in Wolbachia titer by amplifying Wolbachia surface 

protein, wsp (Forward: CATTGGTGTTGGTGTTGGTG; Reverse: ACCGAAATAACGAGCTCCAG). 

Second, we determined changes in mitochondrial titer by amplifying the mitochondrial genomic 

region adjacent to COI, by using mtDNA primers from (Zhu et al. 2014) (Forward: 

GATTAGCTACTTTACATGGAACTC; Reverse: CTGCTATAATAGCAAATACAGCTC). Third, to 

determine changes in the actin cytoskeleton, we amplified the Drosophila homolog to profilin, 

Chickadee (chic), by using chic primers from (Newton et al. 2015) (Forward: 

TGCACTGCATGAAGACAACA; Reverse: GTTTCTCTACCACGGAAGCG). We only measured chic 

expression in Experiment 3.  

All quantitative PCR was performed independent of a host reference gene using 

standardized calibration curves. Calibration curves were generated using plasmids extracted 

from cloned amplicons to standardize for copy number based on plasmid + PCR insert (see 

Supp. Methods for more detail on procedure). This provided an absolute quantification of gene 

copy numbers present in each ovary sample based on CT values. We performed qPCR reactions 

independent of host reference gene because the knockdowns created in Experiments 3 and 4 
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may also alter the host nuclear reference gene in unpredictable ways that might bias our 

measurement of mitochondria and Wolbachia titers. We used a single-copy host reference gene, 

rpl32, to measure mitochondria and Wolbachia titers in subset of ovaries; we found qualitatively 

similar patterns as the data collected independent of a host reference gene (see Supp. Methods).  

All qPCR reactions were performed using an Applied Biosystems StepOne Real-time PCR 

system. For changes in mitochondria and Wolbachia titer, we amplified from DNA and used Fast 

SYBR-Green Master Mix (Applied Biosystems). For changes in chic expression, we performed 

qRT-PCR and amplified from RNA using SensiFast SYBR Hi-ROX One-step RT mix (BioLine). For 

the wMel variant flies, we used the same cycling conditions, but with PowerUp SYBR Green 

Master Mix (Applied Biosystems). The plasmids were re-standardized for copy number to 

provide an absolute quantification of gene copy numbers for this master mix. We used this to 

determine mitochondria and Wolbachia titers only in the wMel variant flies. Cycling conditions 

were as follows: 95ºC for 10 minutes, then 35 cycles of 95ºC for 15 seconds and 60ºC for 1 

minute. All samples were run in triplicate, and samples were rerun if CT values for technical 

replicates had a standard deviation of greater than 0.5. CT values generated were used to 

calculate absolute gene copy numbers, as described above, to determine mitochondria and 

Wolbachia titer. Gene copy numbers were then log2 transformed for normality.  

Additionally, in Experiment 3, we validated our Wolbachia titer measurements using 

both Western blots and fluorescence microscopy (see Supp. Methods for details). These data 

show that our measurement of Wolbachia abundance is qualitatively similar across three 

different techniques. Below, we provide methods for four experiments to determine how 

mitochondria and Wolbachia interact during maternal transmission. We then describe the 

statistical analyses performed for each experiment. All statistical analyses were performed in R 

(R Development Core Team, 2008).  
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Experiment 1: Initial screening of common laboratory genotypes to determine 

mitochondria and Wolbachia association 

We screened three common laboratory genotypes (w1, OreR, w1118) to determine if 

mitochondria and Wolbachia titers were correlated during maternal transmission. For these 

three genotypes, we generated Wolbachia positive and negative lines (i.e. w1+/-). Wolbachia 

negative lines were generated by treating flies for two generations with 0.25 mg/mL 

tetracycline. After each tetracycline treatment, flies were reared with uninfected males of the 

same genotype to repopulate the microbiome. As tetracycline treatment itself might influence 

mitochondrial density (Ikeya et al. 2009), tetracycline-treated flies were reared for >5 

generations on regular food, without antibiotics, before experiments. We dissected ovaries from 

age-matched females, extracted DNA, and performed qPCR to assay mitochondria and 

Wolbachia titers.  

 

Statistical analyses: To determine if mitochondria titers differ between the three 

laboratory genotypes, we used a Kruskal-Wallis test. We compared the mitochondria titer 

between Wolbachia infected and uninfected lines within a genotype  (i.e. w1-Wolbachia positive 

versus w1-Wolbachia negative) using Mann-Whitney U tests. We also compared Wolbachia titer 

between genotypes by Kruskal-Wallis test. To determine if mitochondria and Wolbachia titers 

are positively correlated, we regressed Wolbachia titer by mitochondria titer for each genotype. 

Additionally, to assess the influence of host genotype, Wolbachia infection, and the interaction of 

these factors on mitochondrial number we used a generalized linear model (GLM) to assess 

variation in mitochondria number between lines using fly genotype and Wolbachia presence as 

fixed effects, along with their interaction. The GLM was tested with both a Gaussian and a 

Gamma error distribution. The Gamma error distribution was a better fit for the data, which are 

not normally distributed. We used two additional statistical tests to assess variation in 

mitochondria load using fly genotype and Wolbachia presence as fixed effects, along with their 
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interaction: 1) a standard ANOVA, and 2) a permutational analysis of variance that assumes no 

error distribution (adonis, from the vegan package in R). We performed an ANCOVA to 

determine if slopes of covariation differed between genotypes.  

 

Experiment 2: Examining covariation with different Wolbachia genotypes within the 

same host nuclear genotype 

To alter the interaction Wolbachia and mitochondria in the same host genetic 

background, we utilized a panel of flies that have the same host background but differ only in 

their Wolbachia titer controlled by Wolbachia genotype (wMel variant flies in Supplemental 

Table 1, from Chrostek et al. 2013). Briefly, to create these lines, Chrostek et al. isogenized 

chromosomes 1-3 in the DrosDel w1118 line using balancer chromosomes (Chrostek et al. 2013). 

Here, our goal was to control for nuclear background that might influence the environment 

within the ovaries. We reasoned that if Wolbachia and mitochondria compete, then high 

Wolbachia titers would limit mitochondria more than low Wolbachia titers. If so, we would 

observe differences in the slope of covariation.  

However, because both mitochondria and Wolbachia are maternally transmitted, we 

cannot exclude that when the Wolbachia variants were selected, different mitochondria 

genomes were also selected. Chrostek et al. reported that mitochondria genotype did not 

influence the pathogen blocking phenotype induced by different Wolbachia genotype, but did 

not explore how genetic variation in the mitochondria segregated with different Wolbachia 

genotypes.  
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 As in Experiment 1, we dissected ovaries from age-matched females, extracted DNA, and 

performed qPCR to assay mitochondria and Wolbachia titers.  

 Statistical analyses: We determined if different Wolbachia genotypes had different 

mitochondria titers using a Kruskal-Wallis test. We performed a similar analysis to determine if 

Wolbachia genotypes had different Wolbachia titers.  

Because of small sample sizes, we grouped Wolbachia genotypes by phylogenetic cluster 

,i.e. wMelCSa, wMelCS2a, wMelCS2b into wMelCS), to examine covariation between 

mitochondria and Wolbachia titers, which Chrostek et al. (2013) also do in their original 

analyses. First, because each Wolbachia genotype was introgressed into the same nuclear 

background, we could test if the nuclear genotype maintained the same positive covariation by 

regressing Wolbachia titer by mitochondria titer, irrespective of Wolbachia genotype. Second, 

we examined if the covariation differed between the three different groups of Wolbachia 

genotypes using ANCOVA.  

 

Experiment 3: Manipulating mitochondria and Wolbachia titers by altering actin 

cytoskeleton  

 To determine a mechanism underlying Wolbachia and mitochondrial associations 

during maternal transmission, we performed crosses to modify the actin cytoskeleton in the 

female reproductive tissue. Previous work suggested that the actin cytoskeleton is used by both 

cytoplasmic entities (Ferree et al. 2005), and we reasoned that knocking down expression in 

specific tissues within the ovary may change the ecological dynamics between mitochondria and 

Wolbachia. To do this, we utilized fly stocks carrying UAS inducible short hairpin silencing 

triggers (TRiP) specific to profilin (BDSC #34523), derived from Ni et al. (2011). In order to 

knock down expression of the Drosophila profilin homolog chickadee, (abbreviated as chic), we 

used three different, tissue-specific drivers. The first tissue-specific driver, maternal triple 
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driver (MTD, BDSC #31777) is expressed uniformly and throughout oogenesis (Petrella et al. 

2007). The second driver, oskar (OSK, BDSC #44241) is expressed during oogenesis under 

control of osk regulatory region involved in cell polarization (Kugler and Lasko 2009). The third 

driver, follicle cell driver (FCD, BDSC #7020) is expressed in the follicle cells at anterior and 

posterior poles of the egg chamber and in the embryonic epidermis (Attrill et al. 2015). We 

confirmed localization of the FCD to the poles of the egg chamber by crossing the FCD line to the 

a UAS:GFP line (Supp. Fig. 1).  

To knockdown gene expression, Wolbachia-infected, homozygous TRiP females were 

crossed to homozygous males from each of the drivers. We also confirmed alterations to the 

cytoskeleton by staining with ActiStain-555 and visualizing at 60X using a Nikon E800 

fluorescence microscope (see Supp. Methods for more detail).  

We assayed chic transcripts, mitochondria and Wolbachia titers in ovaries from age-

matched F1 females using qPCR. We also performed Western blots to confirm the qualitatively 

similar patterns in Wolbachia titer (see Supp. Methods for more detail). Finally, we performed 

fluorescence in situ hybridization (FISH) on TRiP parental females and TRiPxFCD knockdowns 

to further confirm patterns observed in Wolbachia titer (see Supp. Methods for more detail). We 

used the universal bacterial probe EUB388 conjugated to AlexaFluor 488 to detect Wolbachia 

localization during oogenesis as in Newton et al. (2015). While our EUB388 probe can bind to 

other bacteria species, the morphology and localization patterns were consistent with 

Wolbachia infection. We measured fluorescence intensity to quantify changes in Wolbachia 

localization. Briefly, images were taken as a Z-series stack at 1 um intervals at 60X oil objective 

using a Nikon NiE fluorescence microscope. Exposure times were controlled for all images taken 

per stage of oogenesis. Stacks were reconstructed in ImageJ. Metamorph was used to quantify 

fluorescence (see Supp. Methods for more detail). 
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Statistical analyses: For this experiment, we made individual comparison between the 

TRiP parental lines and each knockdown (i.e. TRiP parental versus TRiPxFCD knockdown). With 

the qPCR data, we compared chic transcript abundance, mitochondria titer, and Wolbachia titer 

between TRiP parental and each knockdown using Mann-Whitney U tests. We examined if the 

covariation in slope between mitochondria and Wolbachia titer differed using ANCOVA.  

For the protein data obtained from Western blot, we determined if knockdowns had 

different Wolbachia titers compared to the TRiP parental line based on densitometric measures 

using a Mann-Whitney U test.  

For the localization data obtained from microscopy, we compared pixel intensity scaled 

by area for the germaria, early oogenesis, and mid oogenesis between TRiP parentals and 

TRiPxFCD knockdowns using a Mann-Whitney U test.  

 

Experiment 4: Manipulating mitochondria and Wolbachia by knocking down genes 

associated with only mitochondria function 

 Like in Experiment 3, we used fly lines carrying UAS inducible RNAi to alter the 

ecological interaction between mitochondria and Wolbachia. Here, we specifically knocked 

down genes associated with mitochondria function to reduce mitochondria titer and potentially 

increase Wolbachia titer, like competitive release. Specifically, we utilized fly stocks carrying 

UAS inducible short hairpin silencing triggers (TRiP) specific to NADH dehydrogenase (BDSC 

#36695) and a mitochondrial transporter (BDSC #34720). In order to knock down expression 

of the NADH dehydrogenase and mitochondrial transporter, we crossed these lines to the 

HSP70:GAL4 driver (BDSC #2077). The HSP70:GAL4 driver is known to be leaky in control of 

expression, affecting off-target gene expression (Newton et al., 2015)—so we did not perform a 

heat shock but instead compared flies with or without HSP70:GAL4 in the TRiP background. 
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Ovaries were dissected from age-matched F1 females, and we determined mitochondria and 

Wolbachia titers through qPCR.  

 

 Statistical analyses: We compared titers individually between the parental wild-type 

(without HSP70:GAL4 driver) to the mitochondria transporter and NADH dehydrogenase 

knockdowns separately. We used Mann-Whitney U test to determine if knockdowns differed by 

parental wild-type in mitochondria or Wolbachia titers. We performed ANCOVA to determine if 

the slope of covariation differed in response to each knockdown.  

 

Results 

Wolbachia and mitochondrial titers were correlated in laboratory genotypes 

 To investigate the interaction between cytoplasmic genomes during maternal 

transmission, we first surveyed Wolbachia and mitochondrial titers in the ovaries of three 

common laboratory genotypes, w1, OreR, and w1118, using qPCR. We cleared each line of 

Wolbachia infection, creating six lines. We found that genotypes differed in mitochondrial titer 

(Supp. Fig. 2, Kruskal-Wallis χ2 =12.502, df=5, p=0.002), but lines did not differ significantly 

within a genotype when infected with Wolbachia (Fig 1A, w1+/w1-: Mann-Whitney U=41, 

p=0.9654; OreR+/-: Mann-Whitney U=18, p=1; or w1118+/-: Mann-Whitney U=20, p=0.4286). 

We assessed variation in mitochondria number between lines using fly genotype and Wolbachia 

presence as fixed effects, along with their interaction. We used a GLM (with both a Gaussian and 

a Gamma error distribution), a standard ANOVA, and a permutational analysis of variance that 

assumes no error distribution. For all models, there was no significant effect of the interaction 

between Wolbachia presence and fly nuclear genotype on mitochondrial load and no significant 

effect of Wolbachia presence on mitochondrial load (Supp. Table 2). However, for all models we 
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found a significant effect of genotype alone on mitochondrial load. Therefore, our analysis 

suggests that host genotype alone influences mitochondrial titers. 

 

 Wolbachia titers differed between the three genotypes, with OreR flies exhibiting highest 

titers (Fig. 1B, Kruskal-Wallis χ2=11.61, df=2, p=0.003); titers for OreR were ~2-fold higher than 

w1 and ~6-fold higher than w1118. Mitochondria and Wolbachia titers tended to be positively 

correlated in both w1 (β=0.24, p=0.003, r2=0.736) and OreR (β=0.1, p=0.059, r2=0.63), but not in 

w1118 (β= -0.2668, p=0.722, r2=0.17). However, the slopes of covariation did not differ among 

genotypes (Fig. 1C, F2,13=1.883, p=0.19), suggesting that the overall trends is for mitochondria 

and Wolbachia titers to be positively correlated.  

 

Wolbachia genotypic difference alters positive covariation with mitochondria 

 Because Wolbachia and mitochondria occupy the cytoplasm and may have 

evolved strategies to bias intracellular resources to ensure their own transmission, we 

speculated that mitochondria and Wolbachia might interact over maternal transmission. If they 

interact, we reasoned they might limit each other to ensure their own spread. To manipulate 

this interaction, we utilized wMel variant flies of the same host genetic background, but differing 

only in their Wolbachia genotypes, which vary in titer (Chrostek et al. 2013). We reasoned if 

Wolbachia and mitochondria compete over maternal transmission, then high titer Wolbachia 

genotypes would have a different slope of covariation with mitochondria than low titer 

Wolbachia genotypes. 

First, we determined that different Wolbachia genotypes infect the host at different 

titers (Fig. 2A, Kruskal-Wallis χ2=16.31, df=6, p=0.01); the wAu and wMelCS variants establish 

high titer infections, while wMel variants establish lower titer infections, as previously 

described in Chrostek et al. (2013) (Fig. 2A). Interestingly, the same pattern was observed for 
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mitochondrial titers (Fig. 2B, Kruskal-Wallis χ2=17.03, df=6 p=0.009). Because each Wolbachia 

genotype infected the same maternal nuclear genotype, we could determine that the host 

genotype maintains positive covariation between mitochondria and Wolbachia titers (individual 

Wolbachia genotypes visualized in Supp. Fig. 3, β=0.85, p<0.001, r2=0.70). While we did not have 

the statistical power to evaluate the differences in slope for each Wolbachia genotype, we found 

no significant difference between Wolbachia strains of the same clade; wMel genotypes 

(wMel2a, wMel2b, wMel3) do not differ in mitochondria titer (Kruskall-Wallis χ2= 3.2967, df=2, 

p=0.19) or Wolbachia titer (Kruskall-Wallis χ2= 4.4967, df=2, p=0.11) and wMelCS genotypes 

(wMelCS2a, wMelCS2b, wMelCSa) do not differ in mitochondria titer (Kruskall-Wallis χ2= 

1.5316, df=2, p=0.46) or Wolbachia titer (Kruskall-Wallis χ2= 1.0038, df=2, p=0.61). Therefore, 

we grouped together Wolbachia genotypes by phylogenetic association, as in Chrostek et al. 

(2013); each of these variants are nearly genetically identical, with only a handful of SNPs 

separating them (Richardson et al., 2012). wMelCS flies had different slope of covariation than 

wAu or wMel (Fig. 2C, F2,33= 5.310, p=0.01). wMelCS flies had higher Wolbachia titers, and the 

slope of covariation between mitochondria and Wolbachia was not significantly different from 

zero (β =0.05, p=0.81, r2=0.003). The loss of covariation between mitochondria and Wolbachia 

in wMelCS suggests that high titer Wolbachia genotypes can alter interactions with 

mitochondria during maternal transmission.  

Attempting to intensify competition through disrupting the actin cytoskeleton in female 

reproductive tract does not disrupt mitochondria-Wolbachia positive covariation 

 To better characterize the interaction underlying the positive covariation between 

mitochondria and Wolbachia during maternal transmission, we manipulated host genetic 

factors using short-hairpin RNAi previously identified as potentially limiting for Wolbachia.  

First, we knocked down the expression of one actin regulatory protein, profilin, in three 

different tissues within the female reproductive tract. We confirmed that the knockdown of 

profilin resulted in different gene expression of the profilin homolog, chickadee, in different 
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tissues the ovaries (Supp. Fig. 4A, Kruskal-Wallis χ2=13.84, df=3 p=0.003). However, only 

TRiPxMTD had significantly reduced gene expression (TRiPxMTD: Mann-Whitney U=28, 

p=0.006). We then examined the ovaries using fluorescent microscopy to determine qualitative 

changes to actin cytoskeleton resulting from the knockdown. TRiP parental and TRiPxFCD lines 

exhibited normal, wild-type actin cytoskeleton, while TRiPxMTD and TRiPxOSK knockdowns 

had severe cytoskeleton deformities (Supp. Fig. 4B-E). By knocking down the expression of 

profilin in these tissues, we altered the actin cytoskeleton. 

We reasoned that if both mitochondria and Wolbachia utilized the actin cytoskeleton, 

then disrupting the actin cytoskeleton would change their titers in the female reproductive 

tract. We did not detect any changes to Wolbachia titers in response to profilin knockdown 

compared to the TRiP parental line through Western blotting (Fig. 3A, Supp. Table 3 for 

statistics) or through qPCR (Fig. 3B, Supp. Table 3 for statistics). Mitochondrial titers were not 

affected in profilin knockdowns compared to TRiP parental lines either (Fig 3C, Supp. Table 3 

for statistics). If profilin were a limiting resource that might influence the covariation between 

mitochondria and Wolbachia titers, then both mitochondria and Wolbachia titers would 

correlate with profilin transcripts. Wolbachia titer was not correlated with profilin transcripts 

(Fig 3D, Supp. Table 4 for statistics), nor was mitochondria titer (Fig. 3E, Supp. Table 4 for 

statistics). This suggests that Wolbachia and mitochondria titers did not respond to our 

manipulation of the actin cytoskeleton in the reproductive tract. These results suggest other 

mechanisms determine the association between Wolbachia and mitochondria in the female 

reproductive tract.  

We hypothesized that if Wolbachia and mitochondria compete over the actin 

cytoskeleton to disperse, we would create stronger competition by limiting profilin through the 

knockdowns. If either Wolbachia or mitochondria were more strongly limited than the other by 

profilin, then the positive covariation in titers would be disrupted. However, we find that 

Wolbachia titers were still positively correlated with mitochondrial titers (Fig. 3F, Supp. Table 4 
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for statistics). Interestingly, the slope of positive covariation only significantly differed between 

TRiP and TRiPxOSK knockdowns (F1,8=6.464, p=0.034).  

Because we observed the trend for slight increases in Wolbachia titer when we reduced 

profilin expression within ovaries, we utilized fluorescence microscopy to confirm patterns 

observed by qPCR and Western blots. First, we examined if the disruption of the actin 

cytoskeleton altered Wolbachia localization during oogenesis, comparing the TRiP parental line 

and the TRiPxFCD knockdown. We focused on the TRiPxFCD knockdown because it did not 

suffer the severe defects of morphology observed when we used the other drivers (Supp. Fig 4) 

and therefore we would not conflate the aberrant oogenesis defects with Wolbachia localization 

anomalies. We used FISH targeting the 16S rRNA gene of Wolbachia and examined the ovaries 

by confocal microscopy to find qualitative differences in localization (Supp. Fig 5). In the TRiP 

parental line, Wolbachia are distributed homogenously in the germaria and at mid-oogenesis 

(Supp. Fig. 5A-C). In contrast, in the TRiPxFCD knockdown, beginning in the germaria, 

Wolbachia are clustered in micro colonies within the host tissue and not homogenously 

distributed through the ovariole in early oogenesis (Supp. Fig. 5D-F). We also examined 

Wolbachia localization in a small number of both TRiPxMTD (Supp. Fig. 6) and TRiPxOSK (Supp. 

Fig. 7) knockdowns, and found qualitatively similar clustering in micro colonies. These 

qualitative observations suggest that even the subtle knockdown of profilin results in 

alterations to Wolbachia localization at the beginning of oogenesis.  

We then quantified changes in localization using fluorescence microscopy comparing 

the TRiPxFCD knockdown to the TRiP parental line. We found increased Wolbachia, based on 

fluorescence intensity, within the germarium of the TRiPxFCD progeny (Fig. 4A, Mann-Whitney 

U=213, p<0.001); fluorescence intensity was 1.5-fold higher in TRiPxFCD germaria. The 

increase in Wolbachia we observed was maintained through early oogenesis (approximately 

stage 3, Fig. 4B, Mann-Whitney U=281, p=0.039). However, during mid-oogenesis, at 

approximately stage 6, Wolbachia levels do not differ between TRiPxFCD knockdown and the 
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TRiP parental line (Fig. 4C, Mann-Whitney U=264, p=0.258). These findings suggest that 

Wolbachia responds to altered actin cytoskeleton through changes in localization during 

maternal transmission, but, combined with qPCR data, likely does not change the ecological 

interaction with mitochondria.  

Knockdown of mitochondrial titers did not affect Wolbachia titers 

To create an environment to potentially release Wolbachia from competition with 

mitochondria, we knocked down two genes that influence mitochondrial metabolism—a 

mitochondrial transporter and NADH dehydrogenase. We hypothesized that if mitochondria 

and Wolbachia compete during oogenesis, reducing mitochondria titer should result in an 

increase in Wolbachia titer, like competitive release. Mitochondria titers were significantly 

reduced in the two knockdowns compared to the parental wild type (Fig. 5A). Mitochondria 

titers in the mitochondria transporter knockdown were reduced by 86% (Mann-Whitney U=0, 

p<0.001), and by 71% for the NADH dehydrogenase knockdown (Mann-Whitney U=1, p<0.001). 

However, Wolbachia titers were not significantly affected (Fig. 5B). Wolbachia titers in the 

mitochondria transporter knockdown tended to increase (Mann-Whitney U=62, p=0.055) and 

were not significantly different in the NADH dehydrogenase knockdown (Mann-Whitney U=57, 

p=0.15). The knockdowns did not alter the positive slope of covariation between mitochondria 

and Wolbachia titers (Fig. 5C). Because mitochondria titers were reduced, the intercepts 

changed, but slope did not for either mitochondria transporter knockdown (F1,14=1.540, p=0.23) 

or for the NADH dehydrogenase knockdown (F1,14=0.239, p=0.632).  

Discussion 

 Intracellular symbionts and mitochondria have similar evolutionary interests: to 

disperse from mother to offspring. We sought to determine how mitochondria and the 

intracellular symbiont, Wolbachia, interact during maternal transmission. We found that 

mitochondria and Wolbachia titers commonly positively covary across different laboratory 

Drosophila genotypes and different Wolbachia genotypes in the ovaries (Fig. 1D, Fig. 2C, Fig. 3F, 
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Fig. 5C). We disrupted the positive covariation in genotypes of Wolbachia that have high titer 

(Fig. 2C). When we perturbed the actin cytoskeleton, we only altered the slope of covariation in 

one knockdown, TRiPxOSK, but slopes were always positive (Fig. 3C). When we reduced 

mitochondria titer through RNAi, we saw a trend for slight increases in Wolbachia titers, but no 

change in the slope of covaration (Fig. 4C). Our results suggest that generally mitochondria and 

Wolbachia titers are positively correlated, but the positive covariation can be disrupted when 

Wolbachia titers are high.  

 To our knowledge, no other study has demonstrated this positive covariation between 

mitochondria and Wolbachia titer in the ovaries of D. melanogaster or other arthropods. We 

believe that we accurately measured the covariation between mitochondria and Wolbachia 

titers. We quantified genome copy number of mitochondria and Wolbachia for titer in the 

ovaries using qPCR, and found qualitatively similar patterns through Western blots (Fig. 3A), 

and microscopy for the TRiP and TRiPxFCD lines (Fig. 4). Additionally, we do not believe that 

this positive covariation is an artifact of differences in DNA quantity across samples because we 

normalized by DNA quantity after RNAse treatment. Additionally, we quantified mitochondria 

and Wolbachia titers relative to a host reference gene, rpl32, in a subset of ovaries from the TRiP 

knockdown experiment. We still observed the positive correlation between mitochondria and 

Wolbachia titers in the ovaries (Supp. Fig. 8).  

 Our goal was to characterize the nature of the interaction between mitochondria 

and Wolbachia during maternal transmission. If they compete with each other, we expected 

several outcomes. First, if Wolbachia were limiting mitochondria populations, we would see 

higher mitochondria titers in ovaries from uninfected flies. We did not detect any statistically 

significant differences in mitochondria titer between infected and uninfected ovaries (Fig. 1A-

B). Other studies also found no effect of clearing Wolbachia infection on mitochondria titer in D. 

melanogaster ovaries (Touret et al. 2014) or in whole Leptopilina parasitoid wasps (Mouton et 

al. 2009). Second, we reasoned that if we reduce mitochondria populations that limit Wolbachia, 
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we would expect to see an increase in Wolbachia populations. We did not detect any significant 

increase in Wolbachia titer when we knocked down genes associated with mitochondria despite 

a reduction in mitochondria titer (Fig. 5). While there was a trend for increases in Wolbachia 

titer for the mitochondria transporter knockdown, the effect size was small. Interestingly, we 

observed differences across fly genotypes with regards to Wolbachia and mitochondrial titer. 

Wolbachia and mitochondrial titers were significantly different between fly genotypes, with 

titers varying by 2 and 6 fold for Wolbachia (Fig. 1). Although we did not identify the host genes 

responsible for the difference in titer, a recent study in the Nasonia system suggests a single 

locus may regulate symbiont titers, named Wolbachia density suppressor (Wds) (Funkhouser-

Jones et al., 2018). No homolog for Wds is found in the Drosophila genome but it is possible that 

a single locus, or a few loci, may also explain differences in we observe across the genotypes 

investigated here. Future work should identify whether the same locus that regulates Wolbachia 

also influences mitochondrial titers. 

We used loci previously identified in a genome-wide RNAi screen of Drosophila cell lines 

infected with Wolbachia (White et al. 2017). White et al. also performed validations in 

Drosophila using the same two knockdowns we used—however, in their study, only Wolbachia 

titers were measured, not mitochondria. Importantly, White et al. observed different effects—

when NADH dehydrogenase was knocked down, Wolbachia titers increased. When 

mitochondrial transporter was knocked down, Wolbachia titers decreased. However, we 

observed no significant reductions in Wolbachia titers for either gene (Fig. 5). White et al. 

quantified Wolbachia titers using propidium iodide staining and microscopy, rather than with 

quantitative PCR like we did here, which may explain the differences in the response of 

Wolbachia titer to mitochondria knockdowns in our study. 

 Both of the genes knocked down in mitochondria are associated with mitochondrial 

metabolism. Mitochondria generate energy that is used by other organelles in the cell; we 

hypothesized that Wolbachia would rely on energy generated from mitochondria, and changes 
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in the transport of ATP from mitochondrion to the cytoplasm would change Wolbachia titers, as 

suggested by White et al. (2017). Because we did not detect changes in Wolbachia titer in 

response to the likely reduction in ATP transport to the cytoplasm, Wolbachia may require little 

energy from the mitochondria or manipulates the host in some way to ensure its own 

persistence. Wolbachia may be more limited by other kinds of resources, as other studies have 

identified changes in Wolbachia titer in response to macronutrients derived from exposure to 

different diets (Caragata et al. 2014, Ponton et al. 2015, Serbus et al. 2015). However, while 

differential resource limitation may explain niche partitioning here, the environmental niche 

that may differentiate Wolbachia and mitochondria remains unknown.   

Our experiments to manipulate the actin cytoskeleton were designed to test if 

mitochondria and Wolbachia demonstrated niche partitioning over access to the actin 

cytoskeleton. If mitochondria and Wolbachia require access to the actin cytoskeleton to ensure 

localization to the oocyte, then reducing the amount of actin in certain tissues would result in 

decreases in mitochondria and Wolbachia titers because both rely on the actin cytoskeleton to 

reach the developing oocyte (Boldogh and Pon 2007, Serbus et al. 2008, Newton et al. 2015). 

Previously, we showed that when profilin is present in a hemizygous condition, Wolbachia 

suffers significant defects in colonization of the ovaries and subsequently, reductions in 

transmission (Newton et al. 2015, Newton and Sheehan 2015). Our manipulations did not 

succeed in significantly changed titers of either mitochondria or Wolbachia (Fig. 3B-C).  

However, when we knocked down oskar in the TRiPxOSK line, we changed the slope of 

covariation between mitochondria and Wolbachia titers. We reasoned that if the ecological 

interactions change, then we would see changes in the slope of covariation between 

mitochondria and Wolbachia titers. Indeed, for the TRiPxOSK knockdown, the slope is steeper 

than the TRiP parental lines, i.e. Wolbachia titer increases more per mitochondria increase. 

oskar is implicated in maintaining polarity during oogenesis (Kugler and Lasko 2009). oskar 

interacts with components of the cytoskeleton that leads to polar localization of the 
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mitochondria necessary for maternal transmission (Cox and Spradling 2003). oskar also 

interacts with a complex suite of mRNAs to ensure polarization, such as gurken (Kugler and 

Lasko 2009). Manipulating gurken altered polarization patterns, leading to increases in 

Wolbachia titer (Serbus et al. 2011). From our data, the steeper slope of covariation may suggest 

that the TRiPxOSK knockdown has increased the proliferation of Wolbachia relative to 

mitochondria. While we did not examine in detail localization in the TRiPxOSK knockdown or 

interactions with gurken or other genes involved in ensuring polar localization, future work 

would be necessary to understand how altered localization between mitochondria and 

Wolbachia may alter their ecological interaction.  

Interestingly, we found that genotypes of Wolbachia with high Wolbachia titers 

disrupted the positive covariation with mitochondria, suggesting that their ecological 

interaction is altered (Fig. 2C). We reasoned that when positive covariation occurs, this suggests 

that both mitochondria and Wolbachia are both benefiting from inhabiting the environment, 

such that larger populations of both cytoplasmic entities are supported. However, for the high 

titer wMelCS strains, the positive covariation no longer exists, suggesting that large populations 

of Wolbachia likely increase resource limitation within the cytoplasm, changing the intracellular 

environment, altering the interaction between mitochondria and Wolbachia.  

Our findings of positive covariation between mitochondria and Wolbachia titers, except 

at high titers of Wolbachia, suggest some interdependence where Wolbachia modify the ovarian 

environment in a way that also benefits mitochondria indirectly. However, at high Wolbachia 

titers, the environment is no longer modified to benefit both. Wolbachia commonly alters the 

host cellular environment in the female reproductive tract of Drosophila (Fast et al. 2011, 

Serbus et al. 2011, Christensen et al. 2016, Sheehan et al. 2016, Rice et al. 2017). These 

alterations should ensure that Wolbachia can replicate and proliferate, but should also ensure 

that the female reproductive tract successfully produces female offspring. Mitochondria may 

also benefit from these modifications. As mentioned previously, in a genome-wide RNAi screen 
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of Drosophila cell lines infected with Wolbachia, knockdown of several other genes involved in 

mitochondrial function also resulted in changes to Wolbachia titers (White et al. 2017). In White 

et al., the responsiveness of Wolbachia to changes in the gene expression of mitochondria could 

suggest interdependence, though White et al. did not measure mitochondria response. 

Mitochondria respond to different microenvironments within the female reproductive tract, and 

these different microenvironments can favor the replication of different mitochondrial genomes 

in D. melanogaster (Ma et al. 2014). Future work should investigate if Wolbachia modifications 

of the female reproductive tract may also provide benefits to mitochondria replication and 

transmission. 

Finally, mechanisms that maintain ecological coexistence may explain the positive 

covariation between mitochondria and Wolbachia titers. First, mitochondria and Wolbachia may 

not interact directly during maternal transmission, as their joint goal is successful maternal 

transmission (Charlat et al. 2003). To facilitate their joint evolutionary success, mitochondria 

and Wolbachia may coexist, not interacting directly with each other. To stably coexist, both must 

limit their own populations more than they limit each other (Chase and Leibold 2003). 

Coexistence suggests both mitochondria and Wolbachia have evolved strategies to minimize 

competition and direct interactions between each other, limiting their interaction and 

partitioning the niche of maternal transmission. Our data support the scenario of limited 

interaction, as we show no difference in mitochondria titer between infected and uninfected 

Wolbachia lines (Fig. 1A-B). Coexistence is also suggested from mitochondria knockdowns. 

Wolbachia titers did not change in response to decreased mitochondria titers (Fig. 5A-B), and 

this is suggestive of niche partitioning over metabolic products in the cytoplasm. However, high 

titer Wolbachia genotypes have altered the cytoplasmic environment that might disrupt stable 

coexistence. wMelCS genotypes disrupt the positive slope of covariation, likely shifting to more 

competitive and antagonistic interactions with mitochondria.  
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Ultimately, though, the host nuclear genotype ensures a positive covariation between 

mitochondria and Wolbachia (Fig. 2C, Supp. Fig. 3). The maintenance of positive covariation is 

likely in the evolutionary interest of the nuclear genome to ensure stable coexistence between 

the cytoplasmic residents. Interestingly, high titer Wolbachia strains often reduce host longevity 

in the absence of pathogen pressure, suggesting evolutionary instability (Chrostek and Teixeira 

2015, Martinez et al. 2015). While we did not examine longevity in this study, the interaction 

between mitochondria and Wolbachia may explain some of the fitness costs. Indeed, in the 

original description of high titer strain wMelPop, which phylogenetically clusters with wMelCS 

strains (Chrostek et al. 2013), mitochondria were observed to deteriorate as Wolbachia 

densities increased through electron microscopy (Min and Benzer 1997). From an evolutionary 

perspective, if high Wolbachia titers result in shortened lifespan, then strong selection may exist 

for the nuclear genome to maintain Wolbachia titers that ensure positive covariation with 

mitochondria titers. Future studies investigated the natural standing variation in wild flies or 

other arthropods infected with Wolbachia would provide critical insights to the evolutionary 

pressures that shape mitochondria-Wolbachia interactions.  

In conclusion, we find mitochondria and Wolbachia titers are positively correlated 

during maternal transmission in D. melanogaster. This may suggest coexistence through limiting 

their interaction and potential mutual benefits to each other. However, the interaction changes 

in the context of high Wolbachia titers, disrupting the positive covariation and potentially 

intensifying competition. The biology of mitochondria and Wolbachia is likely intricately 

intertwined within the cell, and their interactions remain underexplored (Correa and Ballard 

2016). Furthermore, many other intracellular symbionts induce phenotypes like Wolbachia 

(Engelstädter and Hurst 2009), and these interactions within the cytoplasm likely influence the 

evolutionary trajectory of the host (Rand et al. 2004). The interaction between mitochondria 

and intracellular symbionts may provide better understanding of how the evolution of 

cooperation or selfishness influences the maintenance of maternally transmitted symbioses. 
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