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Summary: Biological processes are usually defined on timelines that are anchored by specific events. 

For example, cancer growth is typically measured by the change in tumor size from the time of 

oncogenesis. In the absence of such anchoring events, longitudinal assessments of the outcome lose 

their temporal reference. In this paper, we considered the estimation of local change rates in the 

outcomes when the anchoring events are interval-censored. Viewing the subject-specific anchoring 

event times as random variables from an unspecified distribution, we proposed a distribution-free 

estimation method for the local growth rates around the unobserved anchoring events. We expressed 

the rate parameters as stochastic functionals of the anchoring time distribution and showed that under 

mild regularity conditions, consistent and asymptotically normal estimates of the rate parameters could 

be achieved, with a  convergence rate. We conducted a carefully designed simulation study to 

evaluate the finite sample performance of the method. To motivate and illustrate the use of the 

proposed method, we estimated the skeletal growth rates of male and female adolescents, before and 

after the unobserved pubertal growth spurt (PGS) times. This article is protected by copyright. All 

rights reserved 

 

Key words: Empirical process; Interval censoring; Nonparametric maximum likelihood; Pubertal 

growth. 
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Distribution-free Estimation with Interval Censoring 1

1. Introduction

In biomedical research, investigators are often interested in estimating the change rates

of specific outcomes around events of clinical significance. For example, oncologists are

interested in the rates of neoplastic growth following the initial tumorigenesis or subsequent

tumor recurrence (Carter et al., 1989; Fournier et al., 1980; Spratt et al., 1993). Human

growth researchers are interested in rates of skeletal changes before and after pubertal

growth spurt (PGS), the time at which a child’s height increase reaches its maximum velocity

(Tanner and Whitehouse, 1976). In these applications, tumorigenesis/recurrence and PGS

function respectively as the anchoring points of cancer and skeletal growth, while tumor size

and skeletal measurements are the study outcomes of primary interest. In these studies, the

anchoring event plays a critical role in placing the outcome assessments into the observational

timeline of an individual subject. Without knowing the time of the anchoring event time Ti,

all observations Yi from the individual would lose their temporal reference. In pubertal

growth research, unless we know the timing of PGS, it would not be possible to determine

the rates of skeletal changes around PGS.

Short of precisely observed anchoring event time, investigators sometimes are able to

determine the interval that covers Ti, i.e., Ui < Ti 6 Vi. Clinicians, for example, can usually

determine the intervals of tumorigenesis or cancer recurrence with a reasonable accuracy.

Similarly, human growth researchers are often able to specify the age range that contains

the PGS. In these situations, the anchoring events can be viewed as interval-censored. Here

the term “interval censoring” is used to refer to situations where the anchoring events are

not precisely observed. In survival analysis, the same term is used to indicate situations

where the main events are confined to certain intervals (Zhang and Sun, 2010). The problem

that we are studying here is also different from the change-point problems, where the focus

is to determine the times at which changes occur to the outcome Y (Lee, 2010). Herein,
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2 Biometrics, 000 0000

we exclusively focus on the situations where the events anchoring the study timeline are

interval-censored.

An intuitive solution to the problem is to impute Ti. In the human growth literature, various

parametric and nonparametric models are available for the depiction of individual human

growth curves (Gasser et al., 1984; Preece and Baines, 1978). From the fitted subject-specific

curves, it is often possible to impute the PGS time Ti for a given subject, e.g., by maximizing

the first derivative functions of the fitted height curves (Tu et al., 2009). However, from a

population perspective, the anchoring event time Ti is a random quantity that varies from

subject to subject. Imputing or predicting a random quantity accurately and reliably tends

to be a difficult, if not impossible task. More important, many of the imputation methods

lack proper accommodation of the uncertainty associated with the estimate T̂i, and thus

are prone to produce questionable inferences. An alternative approach is to conduct a joint

modeling analysis by assuming a parametric distribution for T (Robinson et al., 2010; van

den Hout et al., 2013). Such assumptions, however, are impossible to verify, and misspecified

distributions could lead to biased estimation.

In this paper, we put forward a distribution-free solution to the problem: We first obtain

a nonparametric maximum likelihood estimator for F̂ , the cumulative distribution function

(CDF) of T . We then embed the estimated CDF F̂ into the least-square estimating equations

for θ, from which we ascertain the estimates θ̂. The final estimators of interest are expressed

as smooth functionals of F̂ . Because the method does not assume a parametric distribution

for the anchoring event time T , it is expected to produce more robust estimates.

This research extends beyond the recent work of Zhang et al. (2016), who developed a

robust nonparametric estimator for monotone regression functions, and showed that their

estimator was consistent. The rate of convergence of their estimator, however, is not suffi-

ciently fast to ensure asymptotic normality. As a result, their method does not lend itself

This article is protected by copyright. All rights reserved
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Distribution-free Estimation with Interval Censoring 3

to large sample inference. Using the empirical process theory (Kosorok, 2008), we showed

that the estimators proposed in this paper were consistent and asymptotically normal. We

provided both theoretical and numerical evidence in support of the claim. For narrative

convenience, we described the estimation in the context of skeletal growth.

2. Distribution-free estimation of local rates

Suppose there are n independent subjects. For the ith subject, i = 1, 2, . . . , n, the anchoring

event time Ti is known to occur in interval (Ui, Vi], i.e., Ui < Ti 6 Vi, where Ui and Vi

come from a sequence of screening times generated by a process independent of Ti. The

outcome of interest Y is assessed at the two end points of the censoring interval, denoted

respectively as YUi
and YVi . For convenience, we write the observed data from the ith subject

as Wi = (Ui, Vi, YUi
, YVi), and we assume that W1,W2, · · · ,Wn form an independent and

identically distributed sample.

The goal of the analysis is to estimate the mean change rates in Y , immediately before

and after the anchoring point T , herein referred to as the local rates. In studies of human

growth, these local rates, collectively, depict the skeletal changes at the time of PGS.

Because the interest is confined to the neighborhood around PGS, we limit the observations

to the skeletal measures at the two ends of the interval. To analyze, we write a simple

piecewise linear regression model with a latent random anchoring event time T
E(YU |T ) = λ+ α(U − T ),

E(YV |T ) = λ+ β(V − T ),

(1)

where λ is the population average value of the response variable Y at time T ; α and β are the

respective mean pre- and post-anchoring event rates of change in Y ; and U and V are random

observation times bracketing T , they are assumed to follow an unspecified joint distribution

H(u, v). Let εU = YU − E(YU |T, U) and εV = YV − E(YV |T, V ) be the random errors that

This article is protected by copyright. All rights reserved
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follow an unknown joint distribution ψ(·, ·). It then follows that E(εU) = E(εV ) = 0. We

also assume
∫
ψ2(εU , εV )dεUdεV <∞.

An implicit assumption is that the local growth rates are adequately depicted by this linear

model. In the human growth application, growth curves are known to be smooth and the

interval that brackets the PGS is relatively tight. An advantage for adopting a linear model

is that both pre and post-anchoring event rates are explicitly specified, as α and β in (1).

More generally, nonlinear functions or functions with higher order terms can be incorpo-

rated in the following structure:
E(YU |T ) = λt · Z +αt ·B(U − T ),

E(YV |T ) = λt · Z + βt ·B(V − T ),

(2)

where Z is a vector of time-invariant covariates, and B(t) =
(
b1(t), · · · , bq(t)

)T
is a vector

of functions satisfying the regularity conditions stated in Section 3.

Despite the relatively simple modeling structure, fitting Models (1) and (2) without know-

ing the anchoring event time T remains a challenge. For convenience, we let θ0 be the true

parameter vector (λ0, α0, β0)
t in Model (1), or more generally (λ0,α0,β0)

t in Model (2).

Let F0 be the true distribution of T . We note that the true parameter (θ0, F0) minimizes

the deterministic functional

M(θ, F ) = EYU ,YV ,U,V

{(
YU − EF,U<T6V YU

)2
+
(
YV − EF,U<T6V YV

)2}
,

where θ = (λ, α, β)t contains parameters in Model (1), F covers all CDFs, and EF,U<T6V (·)

is the conditional expectation given U < T 6 V under distribution F .

Intuitively, one could estimate (θ0, F0) by minimizing the corresponding stochastic func-

tional

Mn(θ, F ) =
n∑
i=1

{(
YUi
− EF,Ui<Ti6ViYUi

)2
+
(
YVi − EF,Ui<Ti6ViYVi

)2}
.

But minimizing Mn(θ, F ) jointly over the entire ranges of θ and F is a computationally

daunting task. To resolve, we take a two-step procedure:

This article is protected by copyright. All rights reserved
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Distribution-free Estimation with Interval Censoring 5

In Step 1, we obtain F̂n, a nonparametric maximum likelihood estimator (NPMLE) of F0

(Groeneboom and Wellner, 1992). By definition, F̂n is the unique solution that maximizes

nonparametric likelihood function

F̂n = arg max
F∈F

n∏
i=1

{
F (Vi)− F (Ui)

}
,

where F is the class of all stepwise CDFs that do not have jumps outside of the set{
U1, · · · , Un, V1, · · · , Vn

}
. Estimated distribution F̂n can be ascertained by using an efficient

numerical algorithm, as described by Zhang and Jamshidian (2004).

In Step 2, we obtain θ̂n = (λ̂n, α̂n, β̂n)t, which is an M-estimator of θ0, by minimizing the

plug-in stochastic objective function

Mn(θ, F̂n) =
n∑
i=1

{(
YUi
− EF̂n,Ui<Ti6Vi

YUi

)2
+
(
YVi − EF̂n,Ui<Ti6Vi

YVi
)2}

,

where EF̂n,Ui,Vi
(·) is the conditional expectation given Ui < Ti 6 Vi, under the estimated

CDF F̂n.

Under Model (2), we have EF̂n,Ui<Ti6Vi
YUi

= λt · Zi + αt · EF̂n,Ui<Ti6Vi
B(Ui − Ti) and

EF̂n,Ui<Ti6Vi
YVi = λt · Zi +αt · EF̂n,Ui<Ti6Vi

B(Vi − Ti). Letting s1 < s2 < · · · < sk be the set

of time points at which F̂n jumps, and letting p̂i = F̂n(si) − F̂n(si−) be the magnitude of

the jump at si, we can calculate the expectation vector EF̂n,Ui<Ti6Vi
B(Ui − Ti) as

EF̂n,Ui<T6Vi
B(Ui − Ti) =

∑
Ui<sj6Vi

p̂jB(Ui − sj)

/ ∑
Ui<sj6Vi

p̂j .

Similarly, the expectation vector EF̂n,Ui<Ti6Vi
B(Vi − Ti) can be calculated.

An immediate benefit of taking the two-step approach is that the parameter estimator θ̂n

has a closed-form solution. Let

X i(F̂n) =

 Zt
i EF̂n,Ui<Ti6Vi

B(Ui − Ti)t 0

Zt
i 0 EF̂n,Ui<Ti6Vi

B(Vi − Ti)t

 , Y i =

 YUi

YVi

 .

The proposed estimator is essentially the least-square estimator θ̂n that minimizes

Mn(θ, F̂n) =
n∑
i=1

{
Y i −X i(F̂n)θ

}t {
Y i −X i(F̂n)θ

}
.

This article is protected by copyright. All rights reserved
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6 Biometrics, 000 0000

It then follows that the minimizer θ̂n has a closed-form solution, given by

θ̂n =
{ n∑

i=1

X i(F̂n)tX i(F̂n)
}−1{ n∑

i=1

X i(F̂n)tY i

}
.

Since θ̂n is a stochastic functional of F̂n, we write it as Qn(F̂n).

3. Asymptotic properties of θ̂n

For inference, we examine the asymptotic behavior of the stochastic functional estimator

θ̂n = Qn(F̂n), which is by definition an M-estimator of the stochastic objective function

Mn(θ; F̂n).

If F0, the true CDF of the anchoring event times is known, the asymptotic properties

of θ̃n = Qn(F0), an M-estimator of Mn(θ;F0), will follow directly from the standard M-

estimation theory for parametric models (Huber, 2011).

When F0 is unknown, as in the current setting, we first note that its NPMLE F̂n converges

to F0 at a rate of n
1
3 (Groeneboom and Wellner, 1992). In such a situation, development

of the asymptotic properties of θ̂n = Qn(F̂n), the M-estimator for Mn(θ, F̂n), is technically

more challenging with the use of empirical process theory (Kosorok, 2007).

In this current research, we do not have directly observed T , nor do we know its distribution

F0. We do, however, assume that the boundaries of the censoring interval (U, V ] can be

reliably identified. In the context of the pubertal growth application, U and V are the visit

times that flank the peak growth interval, which can be identified by comparing the rates

of height increase between all consecutive visits. So technically this is a scenario of case-K

censoring, as described by Geskus and Groeneboom (1995, 1999). As the authors observed in

their 1999 report, the only times that are relevant to the estimation of F0 are the ones that

immediately bracket the anchoring event time T . Therefore, we focus on the case-2 situation,

regardless of how the bracketing interval is identified.

This article is protected by copyright. All rights reserved
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Distribution-free Estimation with Interval Censoring 7

With the censoring intervals identified, we lay out the regularity conditions that are

necessary for the asymptotic properties of θ̂n:

C1: The sequence of screening times are jointly independent of the true event time T . The

boundaries U and V of the censoring interval (U, V ] are the adjacent screening times

that bracket T .

C2: There exist constants τ1 < τ2 < ∞ such that the support of the density function fT of

the anchoring event time T is contained in [τ1, τ2]. The support of F0, the CDF of T , is

included in the union of the supports of the CDFs of U and V .

C3: There exists a constant c such that the probability P
[
F0(V )− F0(U) > c

]
= 1.

C4: The sum of density functions of U and V , fU + fV , is strictly positive over [τ1, τ2].

C5: The joint density function of (U, T, V ) is twice differentiable over [τ1, τ2]. In particular,

fU and fV are differentiable and uniformly bounded over [τ1, τ2].

C6: The density function fT is twice differentiable over [τ1, τ2].

C7: Each component function bi(t) of B(t) =
(
b1(t), · · · , bq(t)

)T
is twice differentiable over

[τ1 − τ2, 0], twice differentiable over [0, τ2 − τ1], and bi(0) = 0, for 1 6 i 6 p.

Theorem 1: Under Conditions C1-C7, the functional estimator θ̂n = Qn(F̂n) for the

parameters in Model (1) is consistent and asymptotically normally distributed with a conver-

gence rate of n
1
2 , i.e.,

√
n(θ̂n − θ0)

D−→ N(0,Σ), where θ0 = (λ0, α0, β0)
t is the true value

of the parameter vector and

Σ =
[
E
{
X(F0)

⊗2}]−1E [[{Φ(U, V ) +X(F0)
tA
}t]⊗2] [

E
{
X(F0)

⊗2}]−1 ,
where Φ(U, V ) =

(
0, φ1(U, V ), φ2(U, V )

)t
,

X(F0) =

 Zt EF0,U<T6VB(U − T )t 0

Zt 0 EF0,U<T6VB(V − T )t


This article is protected by copyright. All rights reserved
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8 Biometrics, 000 0000

A =

 αt0

{
B(U − T )− EF0,U<T6VB(U − T )

}
+ εU

βt0

{
B(V − T )− EF0,U<T6VB(V − T )

}
+ εV


and we denote M tM as M⊗2 for any matrix M . Functions φ1 and φ2 are the unique

solutions to the following integral equations, respectively.∫
U<T6V

φ1(U, V )dH(U, V )

=
∫

U<T6V

B(U−T )
{
F0(V )−F0(U)

}
−
∫ V
U B(U−s)dF0(s){

F0(V )−F0(U)
}2 · EF0,U<s6V YUdH(U, V |T ),

∫
U<T6V

φ2(U, V )dH(U, V )

=
∫

U<T6V

B(V−T )
{
F0(V )−F0(U)

}
−
∫ V
U B(V−s)dF0(s){

F0(V )−F0(U)
}2 · EF0,U<s6V YV dH(U, V |T ),

where H(U, V |T ) is the measure associated with the conditional joint distribution of U and

V , given U < T 6 V .

A few remarks are in order for the proof and the regularity conditions:

Remark 1 Essential details of the proof for the theorem are presented in Web Appendix A.

Briefly, the proof is completed in two steps. First, we show that
√
n(θ̃n−θ0) is asymptotically

normal, where θ̃n = Qn(F0) is the M-estimator of Mn(θ;F0), i.e., the parameter estimate

when the true distribution F0 is known. Then, we examine the difference
√
n(θ̂n − θ̃n) =

√
n(θ̂n − θ0) −

√
n(θ̃n − θ0), which is by definition

√
n
{
Qn(F̂n)−Qn(F0)

}
. Using the

empirical process theory, we show that this quantity times E
{
X(F0)

⊗2
}

is asymptotically

equivalent to
√
n
{
K(F̂n) − K(F0)

}
, where K is an appropriately defined deterministic

smooth functional. Using the general result from Geskus and Groeneboom (1999), we show

that
√
n
{
K(F̂n)−K(F0)

}
has an asymptotic linear expansion. Combining the above steps,

we establish the consistency and the asymptotic normality of θ̂n.

Remark 2: C1-C3 are the general regularity conditions needed to ensure consistency and

convergence rate of F̂n (Groeneboom and Wellner, 1992). Conditions C4-C6 are distributional

This article is protected by copyright. All rights reserved
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Distribution-free Estimation with Interval Censoring 9

requirements for the observation and anchoring event times. These conditions are needed for

studying the asymptotic properties of the class of functionals of F̂n (Geskus and Groeneboom

1999), and thus helping in the derivation of the asymptotic normality of θ̂n. In most of the

interval-censored data situations, these conditions are fairly mild and they pose no extra

restrictions on the application. C7 is a regularity condition for B(t). We require bi(0) = 0 to

ensure that the function does not include another intercept term for the purpose of model

identifiability, because the design matrix Z already has values 1 in its first column for the

intercept.

Remark 3: Given its complicated structure, direct evaluation of the variance matrix Σ is

difficult. Since the asymptotic normality is established and θ̂n is relatively easy to compute,

it is usually more convenient to use a resampling method to estimate Σ. Here we estimate

Σ by using a nonparametric bootstrap method. Specifically, for a data set containing n

subjects, we draw bootstrap resamples containing n subjects from the original sample with

equal weight and with replacement. We obtain a prespecified number (b = 1, . . . , B) of

resamples independently, from which we then calculate B estimates θ̂
(b)

n , b = 1, . . . , B. We

use the sample variance matrix of these estimates θ̂
(b)

n , b = 1, . . . , B, to approximate Σ; such

a variance estimate is known to be consistent (Efron and Tibshirani, 1994).

4. Simulation study

To evaluate the operating characteristics of the proposed method, we conducted two sets of

simulation studies.

4.1 Data generation and simulation setup

We designed the simulation to mimic the data generation process in the pubertal growth

study: We first generated the “true” anchoring event times from a Weibull distribution,

Ti ∼Weibull(80, 12). This distribution has a mean of 12 ·Γ(1+1/80) = 11.9, which resembles

This article is protected by copyright. All rights reserved
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the pubertal growth spurt ages in girls between 11 and 12 years. We then simulated a series

of visit times from an independent process; we considered two different visit frequencies, once

every year or once every other year. The visit times were generated from Uniform(j, j + 1)

or Uniform(2j, 2j + 2), j = 0, 1, · · · , which respectively represented narrower and wider

assessment intervals. From the generated visit times, we identified the two visits immediately

before and after the anchoring event time Ti and use them as the boundaries of the censoring

interval. In other words, Ui and Vi are the adjacent points selected from the series of the

simulated assessment times that bracket the true anchoring event time Ti, i.e., Ui < Ti 6 Vi.

We then simulated the growth outcomes from the prespecified piece-wise linear model:

YUi
= λ+ α · (Ui − Ti) + εUi

, YVi = λ+ β · (Vi − Ti) + εVi ,

where (εUi
, εVi)

t were simulated from the bivariate normal distribution N (µ,Ω), with

µ =

 0

0

 , Ω =

 5 4

4 5

 .

The true model parameters were chosen to be λ = 50, α = 5 and β = 8. We considered

four different sample sizes, n = 100, 200, 400 and 800. For a given sample size, we conducted

a Monte-Carlo simulation with 1000 replicates.

For each simulated data set, we performed four different analyses. First, we fitted the

model with the proposed two-step procedure. Second, we fitted the model with a midpoint

imputation for the unobserved Ti, i.e., imputing Ti with the midpoint of the interval (Ui, Vi],

and then estimated the parameters using the ordinary least-squares method. Mid-point

imputation is a naive method but it is a commonly used technique in analytical practice

(Shankar et al., 2005). The third method we tested was a model assuming the true anchoring

event times F0 follows a normal distribution with unknown mean µ and variance σ2. The

parameters (λ, α, β;µ, σ2) were jointly estimated as described by van den Hout et al., (2013).

Finally, we fitted the model assuming the true anchoring event time distribution F0 was

This article is protected by copyright. All rights reserved
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Distribution-free Estimation with Interval Censoring 11

known, i.e., we used F0 instead of F̂n in Step 2 to obtain parameter estimates. The final

scenario, of course, is not realistic for our application; we simply used it to establish a

benchmark to investigate the efficiency loss due to the estimation of F0. The estimated

standard errors for these four methods were obtained by using the previously described

bootstrap method, based on B = 50 resamples.

For 1000 replicates of samples of size n, we reported the percentages of average estimation

bias, Monte-Carlo standard deviations, average bootstrap standard errors, and the empirical

coverage probabilities of the 95% Wald confidence intervals based on the asymptotical

normality described in Theorem 1.

4.2 Simulation results

We summarized simulation results for parameter estimates for all methods in a tabular form.

Results for wider and narrower assessment intervals are presented in Tables 1 and 2.

[Table 1 about here.]

[Table 2 about here.]

Tables 1 and 2 showed that the estimation bias in the proposed method was virtually

ignorable, even at the moderate sample size of n = 100. The average bootstrap standard

errors were all close to the corresponding Monte-Carlo standard deviations. In addition, the

coverage probabilities of the 95% Wald confidence intervals approached the nominal level of

0.95 as the sample size increased. In summary, the simulation has provided strong numerical

evidence in support of the asymptotic normality theory developed in Section 3.

In comparison, the estimation bias in the midpoint imputation method was much larger.

The magnitude of the bias did not reduce with an increasing sample size. Both the Monte-

Carlo standard deviations and bootstrap standard errors of the midpoint imputation were

also markedly larger than those in the proposed method. The 95% Wald confidence intervals

This article is protected by copyright. All rights reserved
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from the midpoint imputation method actually had decreasing coverage probabilities when

the sample size increased. In comparison with the normal models, (van den Hout et al, 2013)

the proposed method tended to produce estimates with smaller bias and variance estimates,

due to its increased robustness. As one would expect, parameter estimation performed best

in the hypothetical situation of known F0.

It is important to note that the variance estimates from the proposed method were only

slightly larger than those obtained under F0. To empirically evaluate the relative efficiency, we

calculated the ratio of the Monte-Carlo standard deviations and average bootstrap standard

errors in the proposed model over those of known F0; see Table 3. All ratios were generally

close to 1, especially for the local change rates α and β, the main parameters of interesting,

suggesting no significant efficiency loss.

[Table 3 about here.]

In summary, the simulation study provides strong empirical evidence in support of a good

finite sample performance of the proposed method.

5. Analysis of skeletal growth data

For illustration, we analyzed the pubertal growth data from 360 children. The original data

came from an observational study of somatic growth and blood pressure development. The

study protocol was described elsewhere (Tu et al., 2009, 2014). In the current analysis, we

aimed at determining the rates of skeletal growth in height, upper body length (i.e., height

in sitting position), shoulder length, elbow, wrist, and knee diameters, and to compare the

rates between male and female participants, immediately before and after the subject-specific

PGS.

Although the exact PGS time for an individual was not observable, the investigators were

able to determine the assessment times that flanked the unobserved PGS (Shankar et al.,
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Distribution-free Estimation with Interval Censoring 13

2005), which we referred to as the peak growth periods. The current analysis included a total

of 169 girls and 191 boys. The age range from the youngest and the oldest assessment times

was between 9.005 and 16.930 years, thus ensuring the coverage of PGS in all participants.

Figure 1 shows the peak growth intervals for the study children. The doted vertical lines rep-

resent the estimated median PGS times for girls and boys. Given the skeletal measurements

at the endpoints of these intervals, we used the proposed method to estimate the change

rates in these outcomes before and after the unobserved PGS.

[Figure 1 about here.]

The skeletal measures of interest, including height, upper body length, shoulder length,

elbow, wrist and knee diameters of the participants in the peak growth intervals are shown

in Figure 2, stratified by sex. The figure clearly showed that significant changes occurred

simultaneously in all skeletal dimensions during the peak growth period.

[Figure 2 about here.]

As proposed, we used the NPMLE of the unknown CDF to depict the PGS time distribution

in male and female children, as shown in Figure 3. From the NPMLE of the CDFs, we

estimated the median ages of PGS to be 11.05 years for girls, and 12.74 years for boys.

[Figure 3 about here.]

We fitted a simple piece-wise model E(YU) = λ+α · (U −T ) and E(YV ) = λ+ β · (V −T )

separately for boys and girls, where YU and YV were the observed values of the skeletal

variables, including height, upper body length, shoulder length, and elbow, wrist, and knee

diameters, measured at the two endpoints of (U, V ], respectively. As previously stated, we

limited the current analysis to the estimation of skeletal change rates around PGS, so we

did not consider inclusion of data that were outside the peak growth interval; the measures
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collected at more remote time points were not informative of the local behaviors that we

tried to depict.

The functional estimates of the pre and post-PGS skeletal growth in the six measures,

stratified by sex, are presented graphically in Figure 4.

[Figure 4 about here.]

Inference on the post-PGS growth rate changes from the pre-PGS period can be made

based on the asymptotic results of Theorem 1. Depending the specific need of testing, one

could express hypotheses in the form of a linear contrast etθ, and then test H0 : etθ = 0.

This two-sided test statistic, therefore, takes the form n(etΣ̂ne)−1
(
etθ̂n

)2
, where θ̂n is the

parameter estimate and Σ̂n is the bootstrap estimate of the asymptotic variance. The test

statistic followed a χ2-distribution with 1 degree of freedom asymptotically according to

Theorem 1. For example, setting e = (0,−1, 1)t, one could compare the pre-PGS rate α with

the post-PGS rate β of a specified outcome.

Similarly, one could make inference on the difference of the post-PGS growth rates between

boys and girls by testing hypothesis H0 : et(θ1 − θ2) = 0. The corresponding test statistic

can be derived from the standard independent two-sample test given by{
n−11

(
etΣ̂1,n1e

)
+ n−12

(
etΣ̂2,n2e

)}−1 {
et
(
θ̂1,n1 − θ̂2,n2

)}2

with e = (0, 0, 1)t, where θ̂1,n1 and θ̂2,n2 are the parameter estimates, and Σ̂1,n1 and Σ̂2,n2

are the bootstrap estimates of the asymptotic variances for the respective groups. Again, the

test statistic follows a χ2-distribution with 1 degree of freedom asymptotically.

This analysis represented the first attempt in quantifying the skeletal growth rates in boys

and girls around the time of the PGS (See Figure 4). The analysis clearly showed that boys

and girls experienced different rates of skeletal growth around the PGS. Three important

observations emerged from the analysis: (1) Skeletal growth continued at the PGS in both

sexes, as shown by the strictly positive growth rates in all variables. (2) In comparison with
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Distribution-free Estimation with Interval Censoring 15

girls, boys had greater values in point estimates of the skeletal measures at the time of PGS

(all p values less than 0.01). Interestingly, sex differences showed not only in the length of

the bones but also in the thickness of the bones, in both pre and post-PGS periods. For

example, in the post-PGS period, boy’s elbow diameter increased at a rate of 0.57cm/year,

significantly greater than girl’s 0.28cm/year (p = 0.03). During the same period, boy’s wrist

diameter increased at a rate of 0.43cm/year, significantly greater than girl’s 0.21cm/year

(p = 0.01). (3) Boy’s post-PGS growth rates were generally greater than their pre-PGS

rates. The growth rate of upper-body length in boys increased from 2.64cm/year in the pre-

PGS period to 5.68cm/year in the post-PGS period, a net increase of 3.04cm/year (p = 0.02),

comparing to a slight decrease in girls from 4.02cm/year pre-PGS to 3.87cm/year post-PGS

(p = 0.88). The same was true for the bone thickness. For example, the wrist diameter growth

rate in boys increased from 0.17cm/year pre-PGS to 0.43cm/year post-PGS (p = 0.04).

When we considered all of six skeletal outcomes, the analysis provided a clear picture of

the emergence of sexual dimorphism in human skeletal development. Although girls start

puberty and reach their peak height growth velocity nearly two years earlier than boys, at

the time of PGS, boys exceeded girls in all skeletal measures including both bone lengths

and bone thickness. Importantly, boy’s greater post-PGS growth rates in different body parts

set the stage for a stronger and more sustained growth that ultimately led to their bigger

average body size.

The findings, however, also raised intriguing questions about the regulation of such coordi-

nated patterns of growth. One might speculate, for example, that sex differences around the

PGS could be the result of a surging influence of androgenic hormones such as testosterone.

In the absence of direct evidence, we note the simultaneous emergence of accelerated bone

growth and male sexual characteristics right after PGS appears to give credence to such

a speculation. Of course, variations in the timing, as well as in the duration of pubertal
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growth, may suggest the existence of multiple operators, including hormonal (Rose et al.,

1991), nutritional (Whiting et al., 2004), and genetic (Tu et al., 2015) influences on the rapid

skeletal development in puberty.

For a comparison purpose, we also fitted the piece-wise linear model using midpoint

imputation and normally distributed PGS time, as discussed in Section 4. The parameter

estimates and standard errors of these two models and our proposed model were summarized

in the following table. The standard errors for the three models were obtained using the same

200 bootstrap samples.

[Table 4 about here.]

Table 4 showed that midpoint imputation did not generate reasonable estimates. For

instance, negative growth rates should not happen near the PGS. The model based on

parametric normal distribution also yielded unexpected estimates. In boys, for example, the

parametric model produced a drastically lower post-PGS height growth rate, as compared

to the pre-PGS rate. Such an estimate is inconsistent with the general knowledge that boys

maintain vigorous height growth after the PGS, till they approach their adult heights. An

important point that should not be lost in discussion is that the validity of parametric

analysis always depends on the correct specification of the underlying distribution, which in

the current application is difficult to verify.

6. Discussion

Estimation of local change rates around unobserved anchoring events is a frequently encoun-

tered issue in scientific investigation. Appropriate analytical methodology, however, has not

been forthcoming. Considering the essential roles that anchoring events play in the analysis,

it is surprising that this issue has not received more attention in the existing literature.

How the unobserved anchoring points influence analysis and how they should be handled
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Distribution-free Estimation with Interval Censoring 17

in practice are questions that remain unsettled. Although ad hoc methods abound, careful

methodological development and rigorous theoretical justification are virtually nonexistent.

To the best of our knowledge, this is the first rigorous study of these issues.

By framing the question in the context of least squares models, we sought to estimate

model parameters without resorting to imputing the subject-specific anchoring times or

imposing parametric distributions for the unobserved events. We demonstrated that by using

an estimated anchoring event time distribution, one could completely sidestep the imputation

and parametric formulation to achieve valid estimation and inference. We showed that the

resultant functional estimators are in possession of the desired convergence rate of
√
n and

asymptotic normal distribution.

Importantly, the method makes no parametric assumptions for the anchoring event time

and the error terms. As long as the model is correctly specified and the regularity conditions

are met, the parameter estimators will be consistent and asymptotically normally distributed,

so large sample inference could proceed without difficulty. Our simulation study confirmed

the performance of the method in finite sample situations. The magnitudes of the biases,

for example, were almost negligible in comparison with the magnitudes of the actual effects.

The coverage probabilities of the confidence intervals were also close to the nominal level.

In practice, applying the method requires reliable identification of the intervals within

which the anchoring events reside. As we have demonstrated in the simulation study, good

estimation and inference performance can be achieved as long as the censoring intervals

are correctly specified. In real applications, identification of the censoring intervals is likely

to depend on the specifics of the study setting. In the present example, we have deter-

mined the censoring intervals by comparing the growth rates between the adjacent visits. In

other applications, determination of censoring intervals may depend on the specific disease

screening practice or even on experts’ clinical judgment. In either case, incorrectly specified
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censoring intervals represent a source of misclassification. The impact of misclassification can

be examined through carefully designed sensitivity analyses. A related restriction is that we

assume the process producing the censoring intervals to be independent of the true anchoring

event distribution. While such an assumption is reasonable in our example, there may be

situations where it is less defendable. In those circumstances, incorporating the correlations

between the anchoring event times and the visit times becomes necessary for the estimation

of F0. We are currently studying this issue.

This work represents an important step towards sorting out the methodological issues

concerning the unobserved anchoring events. This distribution-free approach has allowed

us to operate with virtually no distributional constraints and thus is quite robust against

model misspecification. To some extent, the robustness may have been gained at the expense

of estimation efficiency. But if our simulation study is of any guidance, the efficiency loss

appears to be rather minimal.

In a practical data analysis, one should always weigh the pros and cons of parametric vs.

nonparametric methods. In some situations, parametric methods have a greater capacity to

accommodate the more complex modeling structures. In this analysis, we have primarily

focused on the estimation of the population-average skeletal growth rates. The method has

a certain affinity to the generalized estimating equations (GEE) models. In our application,

we did not attempt to accommodate the individual-specific growth rates. Had that been an

interest, one would have to consider incorporating random slopes into the model, and thus

necessitating parametric assumptions. That extension goes beyond the scope of distribution-

free estimation and requires different theoretical justifications. The fundamental idea of the

two-step procedure, however, remains relevant.

Scientifically, the research has generated valuable insights that the traditional analysis fails

to provide. By quantifying the skeletal growth rates before and after the PGS, we showed

This article is protected by copyright. All rights reserved

A
cc

ep
te

d
  A

rt
ic

le

 
 



Distribution-free Estimation with Interval Censoring 19

that the sex differences in adult bodies started to emerge before the PGS and continued after

it. In particular, the maintenance of the post-PGS skeletal growth rates in boys, in multiple

body parts, appears to be a main driving force for the sexual dimorphism in human growth.

This, among other things, strongly implicates gonadal hormones’ influences on pubertal

development.

7. Supplementary Materials

Web Appendix A, referenced in Section 3, is available at the Biometrics website in Wiley

Online Library. Example data and computational code are also included as parts of the

supplementary materials.
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Figure 1. Peak growth periods in 360 children
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Figure 2. Skeletal measurements in the peak growth intervals. This figure appears in color
in the electronic version of this article.
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Figure 3. The estimated CDFs of F0 for males and females. This figure appears in color
in the electronic version of this article.
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Figure 4. The fitted anchoring point models. This figure appears in color in the electronic
version of this article.
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Table 1
Simulation results for wider censoring intervals. % Bias: Percentage of average bias; M-C SD: Monte-Carlo

standard deviation; Av. SE: Average estimated standard error; 95% CP: Empirical coverage probability of the
estimated 95% Wald confidence interval.

λ = 50 α = 5 β = 8
n 100 200 400 800 100 200 400 800 100 200 400 800

Proposed model:

% Bias 0.182 0.052 0.047 0.017 0.117 0.464 0.115 0.189 0.417 0.212 0.240 0.178
M-C SD 0.453 0.291 0.215 0.147 0.254 0.173 0.128 0.086 0.278 0.193 0.137 0.094
Av. SE 0.425 0.297 0.207 0.146 0.244 0.175 0.124 0.088 0.274 0.192 0.134 0.096
95% CP 0.916 0.944 0.937 0.945 0.939 0.938 0.942 0.948 0.942 0.949 0.939 0.951

Midpoint imputation:

% Bias 1.195 1.135 1.223 1.160 11.022 10.512 11.034 10.587 7.237 7.005 7.217 7.035
M-C SD 1.041 0.748 0.530 0.360 1.023 0.710 0.508 0.350 1.139 0.774 0.556 0.388
Av. SE 1.031 0.738 0.521 0.371 0.987 0.710 0.504 0.359 1.086 0.782 0.556 0.396
95% CP 0.915 0.870 0.789 0.655 0.907 0.879 0.804 0.682 0.904 0.883 0.818 0.699

Normal distribution assumption:

% Bias 0.463 0.255 0.245 0.223 0.170 0.361 0.167 0.345 1.723 1.267 0.978 0.910
M-C SD 0.792 0.568 0.398 0.269 0.261 0.184 0.129 0.088 0.342 0.238 0.169 0.112
Av. SE 0.738 0.555 0.394 0.278 0.257 0.183 0.129 0.090 0.380 0.251 0.172 0.120
95% CP 0.912 0.926 0.941 0.942 0.942 0.944 0.945 0.957 0.964 0.951 0.931 0.930

Use true F0:

% Bias 0.018 0.022 0.006 0.006 0.226 0.121 0.130 0.028 0.013 0.114 0.015 0.006
M-C SD 0.354 0.245 0.177 0.119 0.257 0.176 0.126 0.085 0.277 0.190 0.134 0.092
Av. SE 0.343 0.245 0.172 0.121 0.252 0.178 0.125 0.087 0.269 0.190 0.132 0.094
95% CP 0.947 0.948 0.932 0.944 0.948 0.947 0.944 0.953 0.940 0.949 0.933 0.957
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Table 2
Simulation results for narrower censoring intervals. % Bias: Percentage of average bias; M-C SD: Monte-Carlo
standard deviation; Av. SE: Average estimated standard error; 95% CP: Empirical coverage probability of the

estimated 95% Wald confidence interval.

λ = 50 α = 5 β = 8
n 100 200 400 800 100 200 400 800 100 200 400 800

Proposed model:

% Bias 0.123 0.050 0.053 0.028 0.118 0.646 0.013 0.094 1.446 0.880 0.786 0.536
M-C SD 0.367 0.241 0.185 0.123 0.456 0.331 0.238 0.161 0.499 0.346 0.247 0.166
Av. SE 0.346 0.248 0.175 0.124 0.434 0.316 0.228 0.162 0.482 0.343 0.243 0.174
95% CP 0.932 0.951 0.931 0.947 0.945 0.937 0.939 0.945 0.925 0.935 0.936 0.952

Midpoint imputation:

% Bias 0.500 0.446 0.521 0.487 9.143 7.920 9.089 8.510 5.929 5.204 5.880 5.615
M-C SD 0.807 0.589 0.420 0.274 1.479 1.077 0.763 0.500 1.578 1.139 0.810 0.532
Av. SE 0.810 0.578 0.405 0.289 1.470 1.044 0.735 0.527 1.566 1.112 0.783 0.563
95% CP 0.936 0.925 0.895 0.870 0.932 0.922 0.896 0.875 0.924 0.925 0.899 0.872

Normal distribution assumption:

% Bias 0.416 0.243 0.258 0.235 0.565 1.349 0.827 1.056 4.296 3.228 2.678 2.569
M-C SD 0.648 0.437 0.315 0.208 0.462 0.328 0.229 0.153 0.676 0.457 0.328 0.212
Av. SE 0.609 0.446 0.316 0.219 0.479 0.331 0.229 0.160 0.816 0.484 0.319 0.221
95% CP 0.917 0.933 0.930 0.946 0.957 0.952 0.945 0.940 0.965 0.938 0.910 0.876

Use true F0:

% Bias 0.006 0.023 0.005 0.001 0.348 0.342 0.201 0.035 0.073 0.177 0.032 0.016
M-C SD 0.344 0.232 0.174 0.114 0.479 0.338 0.241 0.160 0.515 0.343 0.248 0.166
Av. SE 0.331 0.237 0.166 0.117 0.470 0.331 0.234 0.164 0.497 0.350 0.244 0.173
95% CP 0.935 0.954 0.939 0.956 0.947 0.942 0.946 0.953 0.940 0.943 0.939 0.959
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Table 3
Empirical relative efficiency of the proposed method vs the case of known F0. M-C SD: Ratio of Monte-Carlo

standard deviations; Av. SE: Ratio of the average estimated standard errors.

λ = 50 α = 5 β = 8
n 100 200 400 800 100 200 400 800 100 200 400 800

Wider censoring intervals

M-C SD 1.280 1.191 1.213 1.233 0.986 0.986 1.008 1.013 1.005 1.016 1.019 1.023
Av. SE 1.238 1.209 1.205 1.203 0.967 0.985 0.996 1.005 1.019 1.013 1.015 1.021

Narrower censoring intervals

M-C SD 1.068 1.038 1.060 1.082 0.952 0.978 0.989 1.007 0.969 1.007 0.992 1.000
Av. SE 1.047 1.047 1.052 1.057 0.924 0.953 0.975 0.988 0.970 0.981 0.994 1.004
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Table 4
Estimates of pubertal growth parameters from three models. Model I: The proposed model; Model II: The midpoint

imputation model; Model III: A model based on normal distribution approximation. Unit for λ̂: cm; unit for α̂ and

β̂:cm/year.

Variable Model
Boys Girls

λ̂ (se) α̂ (se) β̂ (se) λ̂ (se) α̂ (se) β̂ (se)

Height
I 156.99 (0.97) 8.38 (1.16) 9.20 (1.37) 148.34 (0.71) 8.24 (1.06) 7.60 (1.07)
II 155.13 (3.73) 4.79 (6.73) 12.37 (6.77) 148.63 (5.41) 8.48 (10.68) 6.45(10.67)
III 156.39 (0.79) 13.36 (1.79) 8.64 (0.66) 149.08 (0.68) 9.85 (0.83) 8.65 (0.94)

Elbow
diameter

I 6.33 (0.06) 0.26 (0.09) 0.57 (0.10) 5.79 (0.05) 0.28 (0.08) 0.28 (0.09)
II 6.10 (0.24) -0.19 (0.45) 0.95 (0.45) 5.64 (0.45) -0.02 (0.89) 0.57 (0.89)
III 6.32 (0.05) 0.46 (0.07) 0.47 (0.05) 5.77 (0.30) 0.31 (0.69) 0.27 (0.65)

knee
diameter

I 9.14 (0.08) 0.20 (0.11) 0.42 (0.11) 8.37 (0.05) 0.33 (0.07) 0.38 (0.09)
II 8.69 (0.54) -0.64 (1.03) 1.32 (1.05) 7.96 (0.74) -0.50 (1.47) 1.15 (1.47)
III 9.13 (0.11) 0.54 (0.24) 0.39 (0.25) 8.38 (0.17) 0.42 (0.37) 0.33 (0.29)

Shoulder
length

I 34.13 (0.39) 1.43 (0.64) 2.52 (0.60) 32.71 (0.19) 1.91 (0.30) 1.40 (0.37)
II 31.23 (1.67) -4.05 (3.02) 8.287 (3.08) 35.09 (2.63) 6.71 (5.27) -3.52 (5.28)
III 33.93 (0.28) 2.58 (0.91) 2.51 (0.26) 32.66 (0.17) 1.82 (0.18) 2.18 (0.30)

Upper
body
length

I 79.68 (0.54) 2.64 (0.67) 5.68 (0.81) 77.44 (0.41) 4.02 (0.54) 3.87 (0.60)
II 74.53 (3.24) -7.56 (6.12) 15.46 (6.10) 81.26 (4.71) 11.61 (9.30) -4.14 (9.28)
III 79.61 (0.43) 4.22 (0.66) 4.96 (0.39) 77.69 (0.40) 4.83 (0.35) 4.66 (0.54)

Wrist
diameter

I 4.99 (0.05) 0.17 (0.07) 0.43 (0.06) 4.67 (0.04) 0.29 (0.06) 0.21 (0.07)
II 4.82 (0.17) -0.14 (0.31) 0.74 (0.31) 4.95 (0.30) 0.82 (0.59) -0.34 (0.59)
III 4.97 (0.07) 0.32 (0.14) 0.33 (0.19) 4.64 (0.20) 0.28 (0.54) 0.26 (0.36)
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