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Abstract: Reversible phosphorylation is a key mechanism that regulates many cellular processes
in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component
signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding
response regulator. Several recent studies indicate that alternative regulatory pathways controlled
by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also
play an essential role in regulation of many different processes in bacteria, such as growth and
cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and
developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host
organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role
via post-translational modifications of their protein targets. In this review, we summarize the
current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in
prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs
play an essential role in the regulation of various cellular processes, by reversibly phosphorylating
many protein targets, among them several regulatory proteins of other signaling cascades. These data
show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP
signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation,
the STK/STP systems have been proved to play important roles.

Keywords: serine/threonine protein kinase; serine/threonine protein phosphatase; reversible protein
phosphorylation; signal transduction; regulatory network; bacterial gene expression

1. Introduction

How bacteria sense and respond to the environment is a fundamental question of bacterial
physiology. The survival of microorganisms in the environment depends on their capacity to quickly
respond to and adapt to constantly changing conditions. Bacteria occupy different ecological niches.
Many bacteria are able to either exist in a free-living stage or interact with the host organism
(e.g., pathogenic and symbiotic bacteria) [1,2]. This adaptive potential is ensured by the ability
of bacterial cells to sense and transduce both external and internal signals. Protein kinases and
their cognate phosphatases, which participate in signal transduction by catalyzing reversible protein
phosphorylation, play essential roles in sensing of the external stimuli [3,4]. Phosphorylation is
probably the most prevalent and best characterized post-translational modification, and its biological
functions are well documented. It is now clear that this modification is widespread in all three domains
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of life, Eukarya, Bacteria, and Archaea [5,6]. Similarly to eukaryotes, highly diverse enzymatic
families with this type of activity (kinases/phosphatases) have been found in bacteria. These enzymes
phosphorylate and dephosphorylate various amino acid residues in proteins, most commonly serine
(Ser), threonine (Thr), tyrosine (Tyr), histidine (His), and arginine (Arg) [3,7]. Phosphorylation of these
specific amino acids in proteins is an essential component of many signal transduction pathways.
In such pathways, in addition to protein kinases and phosphatases, phosphoproteins that “sense” other
regulatory proteins play an essential role [8,9]. Thus, phosphorylation can control the activity of target
proteins, either directly, by inducing conformational changes in proteins, or indirectly, by regulating
protein-protein interactions.

In bacteria, this large number of protein kinases has been classified into five types. These include:
His kinases, Tyr kinases, Arg kinases, Hanks-type Ser/Thr kinases (STKs) (also commonly named
eukaryotic-like STKs), and atypical Ser kinases [3]. Recently, Nguyen and others [10] have proposed
a new family of protein kinases with a Ser/Thr/Tyr kinase activity, that was previously identified as a
family of ATPases. A prototypic member of this family, YdiB from Bacillus subtilis, has a unique ATP-binding
fold, not found in the known protein kinases. In general, while all types of kinases are widespread in
bacteria, some are restricted to only some species (atypical Ser kinases). His kinases and atypical Ser
kinases are involved in the regulation of gene expression and the control of metabolism, respectively,
whereas Tyr kinases and Hanks-type STKs regulate several aspects of bacterial physiology. Unlike Eukarya,
most tyrosine phosphorylation in bacteria is conducted not by Hanks-type kinases, but by non-Hanks-type
kinases, which are responsible for most of the tyrosine kinase activity [3,5,7]. Bacterial two-component
systems (TCSs), in which a membrane sensor His kinase activates a transcription factor-response regulator
in response to a specific signal, play a dominant role in bacterial signaling. However, recent studies have
shown that signaling systems composed of STKs and Ser/Thr phosphatases (STPs) also play an important
role in bacterial regulatory networks. Even though these systems do not have dedicated transcription
factors, they are capable of affecting gene expression [11–13]. Recent phosphoproteomic analyses
identified numerous (ca. 100) proteins phosphorylated on Ser or Thr residues in both Gram-positive
and Gram-negative bacteria, as well as in Archaea, indicating that regulation based on STK/STP enzymes
is common in these microorganisms [14–17].

In this review, we focused on the recent findings about STKs, which share structural and functional
homology with eukaryotic STKs, and their partner STPs, which play an important role in balancing
protein kinase functions. We here discuss their roles in bacterial signaling and physiology (protein
phosphorylation and its role in signal transduction in Archaea have been recently reviewed in
References [16,17]). To date, essentially more data are available on STKs than on STPs, indicating
that partners of these kinases have not yet been analyzed in detail and additional studies must be
performed for a comprehensive overview of the role of these proteins in bacterial regulatory networks.

2. Structure and Mechanism of Action of Bacterial STKs and STPs

2.1. Structure and Mechanism of Action of Bacterial STKs

In 1988, Hanks et al. [18] defined and described the main family of Ser/Thr/Tyr protein kinases present
in eukaryotes. It was initially believed that kinases of this type do not exist in bacteria. However, in 1991,
Munoz-Dorato and others characterized the first bacterial STK, Pkn1 from Myxococcus xanthus [19].
This enzyme shares a structural similarity with eukaryotic STKs and is required for normal development
of M. xanthus. Since then, numerous studies have indicated that many bacterial species contain protein
kinases that share structural similarities with STKs (Table 1). Consequently, these enzymes have long
been referred to as “eukaryotic-like” kinases, despite the lack of evidence that they have been acquired by
horizontal transfer of eukaryotic genes. Recently, comprehensive phylostratigraphic analyses of Stancik
and coworkers [20] suggested that Hanks-type kinases present in Eukarya, Bacteria, and Archaea share
a common evolutionary origin in the lineage leading to the last universal common ancestor (LUCA).
Moreover, the authors did not find any evidence of horizontal transfer of genes coding for Hanks-type
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kinases from Eukarya to Bacteria, strongly supporting a monophyletic origin of all Hanks-type kinases.
Consequently, these authors proposed to adopt the term “Hanks-type kinases” as a universal name for this
enzymatic family [18,20].

Table 1. Serine/threonine kinases (STKs) of Gram-positive and Gram-negative bacteria, their substrates,
and biological functions.

Species STK Substrate Function Reference

PknA FadD, FabH, KasA,
KasB, MabA Mycolic acid synthesis [21,22]

Mycobacterium GlmU Cell wall synthesis [23]

tuberculosis FtsZ, MurD, Wag31 Cell division [24–27]

PknB STK, cell signaling [27]

EmbR Arabinan synthesis [28]

GroEL1 Heat shock protein [29]

PknB FadD, KasA, KasB,
MabA Mycolic acid synthesis [21]

EmbR Arabinan synthesis [28]

GroEL1 Heat shock protein [29]

GlmU, PBPA Cell wall synthesis [23,30]

PknA STK, cell signaling [27]

RshA Anti-sigma factor, oxidative
stress response [31]

SigH Alternative sigma factor,
oxidative stress response [31]

GarA Glycogen recycling, TCA cycle [32]

PknD FadD, FabH, KasA,
KasB, MabA Mycolic acid synthesis [21,22,33]

GarA Glycogen recycling, TCA cycle [32]

GroEL1 Heat shock protein [29]

Mmp17 Membrane transporter [34]

Rv0516c Anti-anti-sigma factor [35]

Rv1747 ABC transporter [36]

PknE FadD, KasA, KasB,
FabH, MabA Mycolic acid synthesis [21,22,33]

GarA Glycogen recycling, TCA cycle [32]

GroEL1 Heat shock protein [29]

Rv1747 ABC transporter [36]

PknF FadD, KasA, KasB,
FabH Mycolic acid synthesis [21,22,37]

GroEL1 Heat shock protein [29]

GarA Glycogen recycling, TCA cycle [32]

EthR Antibiotic resistance [38]

Rv1747 ABC transporter [37]

PknG GarA Glycogen recycling, TCA
cycle, virulence [39]

PknH FadD, FabH, KasA,
KasB Mycolic acid synthesis [21,22,33]

GroEL1 Heat shock protein [29]

Rv0681 TetR family transcription factor [40]
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Table 1. Cont.

Species STK Substrate Function Reference

EmbR Arabinan synthesis, cell wall
biosynthesis, virulence [41]

DosR
TCS response regulator,
oxidative stress tolerance,
spore dormancy

[42]

DacB1 Penicillin-binding protein [40]

GarA Glycogen recycling, TCA cycle [39]

PknI FadD Mycolic acid synthesis [21]

PknJ EmbR Arabinan synthesis, cell wall
biosynthesis [41]

PepE Peptidase [43]

Mma4 Mycolic acid synthesis [43]

PknK FadD Mycolic acid synthesis [21]

VirS Transcription factor, stress
response [44]

PknL FadD, MabA,
KasA, KasB Mycolic acid synthesis [21,22]

Rv2175c DNA-binding protein, cell
envelope [45]

GroEL1 Heat shock protein [29]

Bacillus subtilis PrkA ND
Indirect regulation of
transcription factor δK and
regulator ScoC, sporulation

[46]

PrkC CpgA
GTPase, peptydoglycan
decomposition, late state of
ribosome assembly

[47]

AlsD A-acetolactase, central
metabolism [48]

Icd Central metabolism [48]

YvcK
GpsB

Sporulation process, cell growth
Cell division protein,
sporulation

[49]
[49]

YwjH Transladolase, central
metabolism [48]

GlnA Glutamine synthetase, central
metabolism [48]

Hpr Phosphotransferase system
kinase [48]

WalR
Response regulator of TCS
WalRK, cell wall metabolism
in stationary phase

[11]

AbrA

Transcriptional regulator,
exoprotease production,
competence development and
sporulation

[50]

AbrB

Global transcriptional
regulator, transition from
exponential to stationary
growth phase

[50]

YkwC Oxidoreductase [51]

EF-G, EF-Tu
Elongation factors, protein
translation, spore germination
and cell growth

[47,49,52,53]
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Table 1. Cont.

Species STK Substrate Function Reference

PrkD (YbdM) AbrA
Transcriptional regulator,
exoprotease production,
competence development

[50]

AbrB

Global transcriptional
regulator, transition from
exponential to stationary
growth phase

[49]

DnaC Helicase, DNA replication, cell
growth [49]

YabT SsbA DNA recombinase, spore
development [54]

RacA
DNA-related protein, DNA
anchoring to the cell pole,
sporulation

[49]

RecA DNA recombinase, DNA
damage repair, sporulation [49]

AbrB

Global transcriptional
regulator, transition from
exponential to stationary
growth phase

[49]

AbrA

Transcriptional regulator,
exoprotease production,
competence development and
sporulation

[49]

EF-G, EF-Tu Elongation factors, inhibition
of protein translation in spores [55,56]

YdiB (Ser/Thr/Tyr) YdiE Translation, oxidative stress
response [10]

MBP * Human myelin basic protein
(artificial substrate) [10]

Bacillus anthracis PrkC (BA-Stk1) ND
MBP *

Survival within macrophages,
virulence
Human myelin basic protein
(artificial substrate)

[57]
[57]

PrkD BasPyk
Pyruvate kinase
phosphorylation, glycolysis,
cell growth and development

[58]

MBP * Human myelin basic protein
(artificial substrate) [58]

PrkG MBP *

Human myelin basic protein
(artificial substrate) STK PrkG
involved in cell growth and
development

[58]

Corynebacterium PknA MurC Cell wall biosynthesis [59]

glutamicum FtsZ Cell division [60]

OdhI Glutamate catabolism [60,61]

PknG Soluble STK [61]

PknB FtsZ Cell division [60]

OdhI Glutamate catabolism [60,61]

PknG OdhI Glutamate catabolism [60,61]

PknL FtsZ Cell division [60]

Streptococcus Stk1 DivIVA Cell division [62]
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Table 1. Cont.

Species STK Substrate Function Reference

agalactiae CovR TCS CovRS response regulator,
toxin expression, virulence [63,64]

(Group B EF-Tu Elongation factor [63–65]

Streptococcus) PpaC Inorganic pyrophosphatase,
virulence [65]

ND ATP-dependent DNA i RNA
helicases [66]

Streptococcus pyogenes SP-STK WalR
CovR

TCS WalRK response
regulator, cell wall
TCS CovRS response regulator,
virulence

[67]
[67]

(Group A
Streptococcus) SP-HLP, HU Histone-like protein [67]

Streptococcus StkP FtsZ Cell division, cellular
morphogenesis [68]

pneumoniae DivIVA Cell division, cellular
morphogenesis [69]

PpaC Inorganic pyrophosphatase,
virulence [68]

RitR
Transcriptional regulator, iron
uptake, oxidative stress
response

[70]

MurC Cell wall biosynthesis [71]

ComD Competence-specific receptor,
TCS ComDE [72]

RR06 Adhesion, virulence [73]

RpoA RNA polymerase α subunit [74]

Streptococcus mutans PknB ND
ND

Cell wall metabolism,
bacteriocin production, cell wall
metabolism, growth, biofilm
formation
Regulation of Smu2146c, TCSs
VicRK and ComDE, oxidative
stress tolerance

[75]

Staphylococcus Stk1 SA0498 Ribosomal protein L7/L12 [76]

aureus (PknB) SA0545 Phosphate acetyltransferase [76]

(secreted) SA0731 Enolase [76]

SA1359 Elongation factor P [76]

SA2340 Glyoxalase [76]

SA2399 Fructose biphosphate aldolase [76]

MgrA Global transcriptional
regulator, antibiotic resistance [77]

SarA Global transcriptional
regulator, virulence [78]

SarZ Oxidative stress response [79]

PurA Purine biosynthesis [77,78]

HU DNA-binding histone-like protein [77,78]

CcpA Catabolite control protein A,
carbon metabolism, virulence [80]

VraR Vancomycin-resistance-associated
response regulator [81]
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Table 1. Cont.

Species STK Substrate Function Reference

GraR TCS GraSR response regulator,
antibiotic resistance [82]

SpoVG
Transcriptional
factor, virulence,
antibiotic resistance

[83]

Staphylococcus
epidermidis Stk ND

Polysaccharide intercellular
adhesin (PIA) production,
biofilm formation, virulence

[84]

Mycoplasma
pneumoniae PrkC ND

Surface protein (adhesin P1),
HmW1-3,
and MPN474 phosphorylation,
adhesion

[85]

Mycoplasma
genitalium MG_109 ND Virulence [86]

Enterococcus faecium Stk P5AP
Cell signaling, antibiotic
resistance, peptydoglycan
biosynthesis

[87,88]

Myxococcus Pkn2 HU Histone-like protein [89]

xanthus Pkn4 PFK Glycolysis [90]

Pkn5 ND
Soluble STK, cell growth and
development, formation of
fruiting bodies

[91]

Pkn6 ND
Transmembrane STK, cell
growth and development,
formation of fruiting bodies

[91]

Pkn8 Pkn14 Soluble STK [92]

MrpC
Transcription factor,
development of fruiting
bodies

[92]

Pkn14 MrpC
Transcription factor,
development of fruiting
bodies

[92]

Synechocystis sp.
PCC 6803 SpkA ND PilA1, A2, A5, A6, A9,

A10 expression, cell motility [93,94]

MBP *, casein *,
histone * Artificial substrates [93,94]

SpkB GlyS
Glycyl-tRNA synthetase
β-subunit, oxidative stress
adaptation

[95]

SpkC SpkK Soluble STK, stress response [96]

SpkD ND Carbon metabolism, TCA cycle
regulation, bacterial growth [97]

SpkE ND Cell signaling [98]

SpkF SpkC Membrane-associated STK,
stress response [96]

SpkG ND High salt resistance,
stress-mediated signaling [99]

SpkK GroES Small co-chaperonin [96]

Anabaena sp. PknA ND Optimal growth [100]

PknC ND Optimal growth [100]

PknD ND Optimal growth, heterocyst
functioning, nitrogen fixation [101–103]
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Table 1. Cont.

Species STK Substrate Function Reference

PCC 7120 PknE ND
Optimal diazotrophic growth,
heterocyst differentiation,
nitrogen fixation

[101–103]

PknH ND

Diazotrophic growth,
maintaining connections
between heterocysts and
vegetative cells

[104]

L. PrkA PolC DNA Polymerase III α subunit [105]

monocytogenes RpoA RNA polymerase α subunit [105]

RpoB RNA polymerase β subunit [105]

RecA Recombinant protein [105]

EF-Tu, EF-G Translation elongation factors [105]

Yvck
Cell wall homeostasis,
glycerol metabolism, cytosolic
survival, virulence

[106]

Pseudomonas
aeruginosa PpkA Fha1

FHA domain-containing
protein,
hemolysin-coregulated
protein 1 (Hcp1) secretion,
biofilm formation, virulence,
stress tolerance

[107]

H1 * Eukaryotic histone H1 [108]

Yersinia
pseudotuberculosis YpkA (secreted) ND

Virulence factor activated by
host cell actin, cytoskeleton
disruption, inhibition of
macrophage function

[109]

E. coli (EHEC) Stk ND Virulence [110]

Rhizobium
leguminosarum

BAE36_06965
BAE36_16215
BAE36_31125

ND Optimal cell growth, oxidative
stress adaptation [111]

ND, not determined; * artificial (in vitro model) kinase substrates; TCA cycle—tricarboxylic acid cycle;
ABC transporter—ATP-binding cassette transporter; TCS—two-component system.

Hanks-type serine/threonine kinases (STKs) are either membrane or cytoplasmic proteins
containing a catalytic domain with 12 specific signatures defined by Hanks. Moreover, STKs possess
additional subdomains, which are responsible for the regulation of STK activity or influence their
subcellular localization. These kinases can be autophosphorylated. The kinase domains of STKs
are typically organized into 12 subdomains that fold into a characteristic two-lobed catalytic core
structure with the active site located in a deep cleft formed between the two lobes (Figure 1) [112–114].
The N-terminal lobe is involved in the binding and orienting of an ATP molecule (phosphate donor),
whereas the C-terminal lobe is responsible for binding to the protein substrate and transfer of the
phosphate group. The structural conservation of the catalytic domain in different kinases is remarkable
and maintained across eukaryotic and bacterial domains. Despite little sequence homology between
members of the superfamily, the kinase catalytic domain can be defined by the presence of specific
conserved motifs and 12 nearly invariant residues participating in positioning of the ATP molecule
and protein substrate for catalysis [7,112,114]. The activation segment is the most important regulatory
element of the kinase. It includes several conserved loop motifs: catalytic, Mg2+-binding, activation and
P+1 loops (Figure 1). The STK activation occurs by phosphorylation of at least one Ser/Thr residue in
the activation loop, and this is achieved by either autophosphorylation or transphosphorylation
by another kinase. The activation loop is the most variable region of the activation segment,
determines substrate specificity, and is a site of protein-protein interactions that modulate kinase
activity. The P+1 loop, which is a critical point of contact between the kinase and its substrate, is a
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major determinant of the distinct substrate specificity of Ser/Thr and Tyr kinases. In the former, this
loop contains a conserved Ser or Thr residue that interacts with the catalytic loop. A glycine-rich P loop
plays an important role in the transfer of the phosphoryl group and exchange of ATP/ADP during the
catalytic cycle [7]. All these conformational changes allow the transfer of a γ-phosphate group from
ATP to the Ser or Thr residue in the protein substrate. The first described structure of bacterial STK was
that of Mycobacterium tuberculosis PknB (Figure 1) [115–117]. The structure of this protein was found to
be very similar to that of the mouse cyclic AMP-dependent protein kinase (PKA). The catalytic domain
of PknB exhibits the typical two-lobed structure. Structure similarities between these proteins suggest
a common activation mechanism shared by eukaryotic and prokaryotic STKs. PknB was crystalized as
a dimer, indicating interactions between the opposite sides of the N-terminal lobes of two catalytic
domains. The obtained results support a similar model of activation for bacterial STKs. The importance
of dimerization in kinase activation was further documented by mutagenesis studies, in which the
replacement of conserved amino acid (aa) residues in the N-terminal lobe reduced autophosphorylation
and altered substrate specificity [7,118,119]. However, the mechanism by which dimerization results
in autophosphorylation remains unknown. One of the proposed hypotheses concerns the formation
of asymmetric dimers. As shown for M. tuberculosis PknB, dimerization resulting in front-to-front
asymmetric dimers enables subunit interactions, in which one monomer functions as an activator of
the second monomer (a substrate), thus mimicking a trans-autophosphorylation complex [120].
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Figure 1. Structure of the catalytic domain of Mycobacterium tuberculosis STK PknB. (a) Crystal structure
of the PknB catalytic domain with an ATP molecule (Protein Data Bank (PDB) accession number
1MRU) [117]. N-terminal and C-terminal lobes as well as individual loops are indicated. α-Helices
are shown in pink, β-sheets are in yellow, ATP molecule is shown in red and grey, and Mg2+ ions
are shown as green spheres. (b) Primary amino acid sequence of the 286-residue catalytic domain of
PknB. The amino acids (aa) of the N-terminal lobe are blue and aa of the C-terminal lobe are black.
Conserved motifs are marked with square brackets, invariant residues are denoted by asterisks, and the
phosphorylated Tyr residues in the activation and P+1 loops are shaded in blue.
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Apart from the catalytic domain, many bacterial STKs contain, additional domain(s) that mediate
the binding of ligands and/or protein-protein interactions [e.g., penicillin-binding and Ser/Thr
kinase-associated repeats (PASTA) and forkhead-associated domains responsible for recognizing
phosphothreonine epitopes on proteins (FHA)] [114]. It has been found that the variability in this
modular organization of STKs is characteristic of bacteria that have a few different STKs, such as
Myxobacterium, Streptomyces coelicolor, and Streptococcus pneumoniae. Among membrane STKs, one class
of these enzymes (PASTA-STKs) possesses the extracellular PASTA domain, which is not found in
Eukaryotes. Gram-positive bacteria possess at least one STK located in the membrane, which is
composed of a cytoplasmic catalytic domain linked by a transmembrane segment to an extracellular
domain containing a variable number of PASTA motifs. Importantly, membrane STKs with PASTA
motifs play a major role in the regulation of bacterial cell division and morphogenesis. These motifs
interact with the peptidoglycan and serve as a regulatory domain of STK kinase activity [7,121–124].
The PASTA domains were characterized for the first time by crystal structure analyses in the PBP2X
protein from S. pneumoniae. In this protein, two PASTA repeats with a unique β3α topology were
found [124]. In the case of M. tuberculosis, the extracellular sensor domain of the transmembrane kinase
PknD forms a propeller-like circle structure composed of six β-sheet motifs symmetrically arranged
around a central pore [125], whereas the kinase PknB contains an extracellular domain that is composed
of four linearly organized PASTA repeats [126]. PknB from Staphylococcus aureus shows a similar linear
organization of its sensor extracellular domain, which contains three PASTA repeats [127]. As has been
shown for B. subtilis PrkC, the PASTA motifs can interact with the peptidoglycan, a ligand of the STK
receptor site [128]. The presence of a ligand has also been found to play a role in the dimerization
of these enzymes, as it was reported for PknB from M. tuberculosis and PknB from S. aureus: in these
STKs, binding of peptidoglycan to the PASTA repeats induces dimerization of two kinase molecules,
resulting in STK activation [7,126,128]. Thus, PASTA-STKs would behave as membrane receptors able
to signal information about the status of the cell wall to their endogenous phosphorylation targets.
Several genetic studies indicate that generally genes encoding the PASTA-STKs are located next to
and co-transcribed with genes coding for their cognate STPs (e.g., for PknB/PstP of M. tuberculosis,
PknB/PppL of S. mutans, PrkC/PrpC of B. subtilis, Stk1/Stp1 of S. aureus, Stk1/Stp1 of B. anthracis,
Stk1/Stp1 of S. agalactie, and SP-STK/SP-STP of S. pyogenes) (Table 1) [47,52,65,67].

Based on both genomic and proteomic studies, it has been established that various bacterial
species harbor more than one STK and, frequently, the number of STKs reflects the complexity of
the environments inhabited by these bacterial species [7,20]. Interestingly, mycobacteria have an
unusually large repertoire of this type of kinases. For example, 11 STKs have been identified in M.
tuberculosis; these proteins are involved in various cellular processes, such as growth, development,
biofilm formation, antibiotic resistance, primary and secondary metabolism, stress responses,
and virulence (Table 1) [129–133]. Further, multiple STKs have been identified and characterized
in other microorganisms (e.g., Anabaena sp., Synechocystis sp., and M. xanthus). Using different
methods (in vitro kinase assay, mass spectrometry, site-directed mutagenesis, 2D electrophoresis,
and phospho-amino acid analysis), target proteins for several individual STKs have been determined
(Table 1). Consequently, a large range of substrate-specificity has been described for these kinases,
including other STKs. This indicates a high complexity of bacterial regulatory networks, in which
these STKs appear to play a major role.

Interestingly, the great majority of STKs discovered to date are from Gram-positive bacteria,
and only a few have been thus far identified in Gram-negative bacteria. In fact, it had been postulated
that some bacteria, such as Escherichia coli, do not possess STK orthologs. However, recently, Li and
others [110] have discovered a putative STK, Stk, that acts as an effector in a strain of enterohemorrhagic
E. coli (EHEC). This previously unknown effector, which upon translocation to the infected mouse
cells efficiently phosphorylates IκBα and activates the NF-κB pathway, induces aggressive host
inflammatory response during EHEC infection. In addition, other STK orthologs have also been
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identified recently in other pathogenic Gram-negative bacteria, such as Pseudomonas aeruginosa (PpkA)
and Yersinia pseudotuberculosis (YpkA) [107,109].

Interestingly, according to genomic analyses, STK orthologs can also be found in non-pathogenic
Gram-negative bacteria, e.g., soil bacteria that establish symbiotic interactions with legumes (rhizobia).
For instance, three genes encoding putative STKs have been identified in the genome of Rhizobium
leguminosarum Rt24.2, although protein substrates for these putative STKs are still unknown [111].

To summarize, the available data indicate that Gram-positive bacteria possess a higher variety of
STKs than Gram-negative bacteria. Among them, M. tuberculosis has the highest number of enzymes
of this type determined thus far (Table 1).

2.2. Structure and Function of Bacterial STPs

The bacterial ability to sense and respond to the changing environmental conditions requires
continuous and reversible phosphorylation. Apart from STKs, cognate STPs are engaged in this
process [7,13]. However, up to now, less bacterial STPs have been discovered and biochemically
characterized than STKs (Table 2). This may be because (i) enzymes of this type have not been of great
interest to researchers to date and (ii) the number of STPs present in bacterial cells is considerably
smaller than that of STKs. Even in Gram-positive pathogenic bacteria, which have been intensely
studied for many years, only a few STPs have been identified so far, independently of the type of
ecological niche that they inhabit [134]. Further, in the case of Gram-negative bacteria, only a few
examples of these enzymes have been described, and data are especially scarce for the soil bacteria
(Table 2). As commented above, this may be partially explained by the fact that, for a long time,
proteins with these activities were not of scientific interest since, similarly to TCSs and phosphorelay
signal transduction (where both phosphohistidine (His-P) and aspartyl-phosphate groups undergo
relatively rapid hydrolysis), they were considered to not be necessary for dephosphorylation of Ser-P-
and Thr-P-phosphorylated regulatory proteins. However, phosphorylated Thr and Ser residues are not
as labile as His-P, and, therefore, cognate phosphatases are needed to quench the signaling cascades
involving cognate STKs [7,13,135].

Table 2. Bacterial serine/threonine phosphatases (STPs), their substrates, and biological functions.

Species STP Type Partner
kinase Substrate Function References

Mycobacterium
tuberculosis PstP PPM PknB PknA STK, cell signaling, cell growth and division, cell survival [136,137]

PknB STK, cell signaling, cell growth [137]

PknH STK, cell signaling, cell growth [136]

PknJ STK, cell signaling, cell growth [138]

PykA Pyruvate kinase, glycolysis [138]

EmbR Transcriptional regulator of embCAB operon [136]

ND S-adenosylhomocysteine hydrolase, homocysteine
metabolism [139]

PapA5 Cell wall metabolism [140]

Rv0019c FHA-domain-containing protein interacting with FtsZ,
GtsQ, and PapA5, cell division [140]

PBPA PBP, cell wall biosynthesis [30]

Bacillus PrpC PP2C PrkC EF-G, EF-Tu Translation factor [47,52]

subtilis PrkC STK, cell signaling, biofilm formation, sporulation [47,52]

CpG Ribosome-associated GTPase [47]

YezB Stress response [47]

HPr kinase Phosphotransferase system [141]

RsbX PPM RsbB RsbS, TsbR Sigma B regulation, stress response [142]

RsbU PPM RsbV RsbV Sigma B regulation, stress response [142]

RsbP PPM RsbV Energy stress response [142]

SpoIIE PPM SpoIIAA Anti-anti-sigma factor, sporulation [143]
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Table 2. Cont.

Species STP Type Partner
kinase Substrate Function References

Bacillus
anthracis

PrpC
(BA-Stp1) PP2C BA-Stk1 PrkC

(BA-Stk1)
STK, cell signaling, survival within macrophages,
virulence [144]

PrkD PrkG Dual-specificity tyrosine phosphorylation-regulated
kinases [58]

Streptococcus Stp1 PP2C Stk1 Stk1 STK, cell signaling, cell aggregation [65]

agalactiae P35 Mn2+-dependent inorganic pyrophosphatase [65]

(group B PpaC Inorganic pyrophosphatase [65]

Streptococcus) PurA
ND

Purine synthesis
Hemolysin activity, autolysis, virulence

[65]
[65]

Streptococcus PhpP PP2C StkP StkP STK, cell signaling [74]

pneumoniae RitR Transcriptional regulator [70]

ComD Competence-specific receptor, TCS ComDE system [72]

MurC Peptydoglycan synthesis [71]

MapZ Cell division [145]

RR06 TCS response regulator [67,146]

DivIVA Cell division [147]

Streptococcus SP-STP PP2C SP-STK SP-STK STK, cell signaling [67,148]

pyogenes (secreted) SP-HLP
ND

Histone-like protein
Induction of host cell apoptosis [148]

Streptococcus
mutans PppL PP2C PknB STK, cell signaling [149]

Staphylococcus
aureus Stp1 PP2C Stk1 Stk1 STK, cell signaling, membrane integrity, cell division, cell

wall biosynthesis [150–152]

GraR TCS response regulator [150–152]

MgrA Global transcriptional regulator [79]

Myxococcus
xanthus Pph1 PP2C Pkn5 Pkn5 Negative effector of development, vegetative growth and

formation of fruiting bodies [153]

Enterococcus
faecium StpA PP2C Stk Stk P5AP STK, cell signaling, antibiotic resistance, peptydoglycan

biosynthesis [85]

MBP * Myelin basic protein (artificial substrate) [85]

Mycoplasma
pneumoniae PrpC PP2C HPr Phosphocarrier protein, phosphotransferase system [154]

Mycoplasma
synoviae PrpC PP2C

ND
Phosphopeptides

*

Cell signaling
Artificial substrates [155]

Mycoplasma
genitalium MG_207 PPM MG_109 ND Cell signaling, virulence [156]

Listeria Stp PP2C EF-Tu Translation factor, protein synthesis regulation [157]

monocytogenes SOD Superoxide dismutase, respiratory metabolism [158]

Pseudomonas
aeruginosa PppA PP2C PpkA FHA-1 FHA-domain-containing protein, hemolysin-coregulated

protein 1 (Hcp1) secretion [105]

TpbA PPP TpbB Dual-specificity Ser/Thr/Tyr kinase, cell motility, biofilm
formation [159]

Stp1 PP2C ND Protein synthesis [105,159]

Escherichia
coli PrpA PPP

ND
Casein, MBP

*

Signaling protein misfolding via TCS CpxRA, heat shock
response
Dual-specificity Ser/Thr/Tyr phosphatase

[160]

Salmonella
enterica ser.

Typhi

PrpZ
(Ser/Thr/Tyr) PP2C MBP * Myelin basic protein [161]

Synechocystis
sp.

PCC 6803
IcfG PP2C Slr1856 Carbon metabolism [162]

PphA PPM PII Nitrogen assimilation [163]

Anabaena sp.
PCC7120 All1758 PP2C ND Diazotrophic growth, cell morphology, glycolipid

synthesis [164]

Rhizobium
leguminosarum PssZ PP2C ND Cell envelope biogenesis, stress response, motility [165]

ND, not determined; * artificial (in vitro model) phosphatase substrates; TCS—two-component system;
FHA-domain—forkhead-associated domain; PBP—penicillin-binding protein.
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Up to now, four protein phosphatase superfamilies have been identified in Bacteria and
Archaea, including phosphoprotein phosphatases (PPPs), metal-dependent phosphatases (PPMs),
and conventional and low-molecular-weight protein Tyr phosphatases [12,16,17,35,166]. Enzymes with
the STP activity are members of the two structurally different families, PPPs and PPMs.
However, a great majority of identified and biochemically characterized STPs belong to the PPM family.
Generally, enzymes of the PPP superfamily dephosphorylate Ser-P and Thr-P of the protein substrates.
An example of an enzyme with this activity is PrpA from E. coli [160]. However, some members of this
family, as was confirmed by in vitro studies, show dual-specificity, and can remove phosphate groups
not only from Ser-P and Thr-P, but also from Tyr-P (e.g., TpbA from P. aeruginosa and PP1-cyano2 from
Microcystis aeruginosa) [7,35,159,162,167,168]. Serine/threonine protein phosphatases (STPs) belonging
to the PPM family can be either Mg2+- or Mn2+-dependent phosphatases that, although differing
in size, share a common conserved catalytic domain consisting of 9–11 signature sequence motifs,
in which there are eight conserved aa residues [5,13,16,169,170]. Based on the biochemical properties
of bacterial PPM PP2C-type STPs characterized to date, these enzymes preferentially use Mn2+ as
the metal ion [171]. The N-terminal catalytic domains of all known PP2C STPs share a common
core that spans ca. 300 aa residues [172–174]. Comparative sequence analysis of the core region of
various PP2C STPs revealed the presence of 11 conserved motifs and eight invariant residues (one
aspartate (Asp) in motifs 1 and 2, Thr in motif 4, glycine (Gly) in motifs 5 and 6, Asp and Gly in motif
8, and Asp in motif 11) [175,176]. Some PP2C STPs contain additional motifs, motifs 5a and 5b, located
between motifs 5 and 6. Depending on the presence of motifs 5a and 5b, the PP2C STPs are subdivided
into two subfamilies [171]. Some examples of enzymes from the first subfamily, which lack these
motifs, are IcfG from Synechocystis sp. PCC 6803, and sporulation-specific phosphatase SpolIE and
stress response phosphatases RsbP, RsbU, and RsbX from B. subtilis (Table 2). Enzymes belonging
to the second subfamily of PPM PP2C contain all signature motifs and are cognate phosphatases of
STKs described above. Interestingly, no inhibitors of these phosphatases have been identified thus
far. Usually, a specific STP from the PPM family is dedicated to a particular STK, and these proteins
are frequently encoded by genes that belong to the same operon. Interestingly, some discrepancies
between the numbers of STKs and STPs in individual bacterial species have been observed; the former
are usually more numerous than the latter. The most spectacular example is M. tuberculosis, which
contains 11 STKs and only one STP identified to date [12,35,169]. Bacterial STPs from the PPM family
share an essential structural similarity with the human PP2C phosphatase, which is involved in cell
differentiation, growth, metabolism, and stress response (Figure 2) [13,177]. The catalytic core domain
of human PP2C comprises a central β-sandwich formed by the association of two five-stranded
anti-parallel β-sheets surrounded by a pair of anti-parallel α-helices on either side. This spatial
arrangement generates a cleft, which acts as a metal center for two metal ions (each metal ion is
hexacoordinated by conserved aa and water molecules). This constitutes the active site of the enzyme.
The phosphatase activity of PP2C enzymes (dephosphorylation) most probably involves a nucleophilic
attack of the phosphorous atom by a metal-activated water nucleophile. This mechanism, which is
similar in eukaryotes and bacteria, is ensured by the presence of conserved aa in the active site of these
enzymes. The main difference between human PP2C and members of the bacterial PP2C family is the
lack of 3 α-helices in the latter (helices 7–9), which are most probably involved in substrate specificity
and/or regulation of the human PP2C. Up to date, only a few proteins from the bacterial PPM family
have been crystallized (e.g., PstP from M. tuberculosis, SaSTP from Streptococcus agalactiae, and PphA
from Thermosynechococcus elongatus) [178–180]. The obtained data indicate that the catalytic domains
of these bacterial enzymes are structurally nearly identical to the catalytic domain of the human
PP2C, with the presence of highly conserved aa residues in the active site (Figure 2). However, a few
structural differences were found. These include the absence of histidine (His62) in the active site of
bacterial enzymes, and the presence of an additional (third) metal ion in the active site and a loop
above the active site, which is most probably involved in the regulation of substrate binding and
catalysis [7,13,155].
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3. The Role of STKs and STPs in Bacterial Signaling and Physiology

3.1. Interactions of STKs and STPs with Transcriptional Regulators

Analyses of various mutant strains of bacteria lacking Hanks-type serine/threonine kinase (STK)
and/or serine/threonine phosphatase (STP) have facilitated the understanding of how these signaling
enzymes contribute to the regulation of gene expression in prokaryotes. STK- and STP-mediated gene
expression has been proven to be essential for various cellular processes, such as bacterial growth,
cell division and morphology, iron transport, secondary metabolite production, antibiotic resistance,
virulence, and interactions with plants (Tables 1 and 2) (Figure 3) [12,15,16,165,166].

Although STKs and STPs are not DNA-binding proteins, they mediate gene expression via
post-translational modifications of a wide range of protein targets, including TCS response regulators,
and key components of the transcriptional and translational machineries. This mechanism ensures
an additional level of control of TCS-mediated gene expression, which increases the versatility of
bacterial adaptation to changing environmental conditions. As shown for B. subtilis, a Gram-positive
model bacterium widely used in both basic research and industrial applications, its PrkC kinase and
PrpC phosphatase are involved in spore development and biofilm formation [51,181]. The YkwC
oxidoreductase is a target of both these enzymes. Phosphorylation of this protein at Ser281 abolishes
its activity. Similarly, in the important human pathogen M. tuberculosis, STP PstP has been found to be
required for accurate cell division and survival [136]. Enzymes with STK and STP activities also affect
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cell growth, segregation, and virulence in Streptococcus pyogenes (SP-STK and SP-STP) and S. agalactiae
(Stk1 and Stp1) [64,66]. Among other substrates, S. agalactiae Stk1 phosphorylates CovR (control of
virulence), which is a regulatory component of the TCS CovR/CovS that modulates the expression
of over 100 genes associated with virulence, including a gene encoding β-hemolysin [182,183].
Similarly, in S. pyogenes (also known as Group A Streptococcus), the CovR/CovS system regulates
the expression of a large number of virulence genes, and several products of these genes are SP-STK
targets (including CovR) [184,185]. Agarwal and others [67] described that S. pyogenes non-polar
SP-STP mutants displayed several morphological changes, such as increased bacterial chain length,
thickened cell wall, and reduced capsule and hemolysin production. Moreover, SP-STK is involved
in the regulation of S. pyogenes cell division [67,148]. Similar regulatory relationships between
STK/STP and TCS signaling pathways have been found in another human pathogen, S. pneumoniae.
Transcriptional regulator RitR (Rit stands for “repressor of iron transport”), an S. agalactiae CovR
homolog, is important for the virulence of this bacterium. The RitR negatively regulates the expression
of a gene coding for the iron uptake transporter Piu, and its activity is regulated by reversible
phosphorylation by both StkP kinase and PhpP phosphatase [70,186].
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in different bacteria.

A high complexity of regulation of gene expression via STK/STP signaling has been observed
in M. tuberculosis. In this bacterium, 11 STKs (PknA–L) identified thus far recognize and
phosphorylate a large range of protein substrates related to various cellular processes, such as cell
wall biosynthesis (involved in mycolic acid synthesis (FadD, FabH, KasA, KasB, MabA, and GlmU)
and arabinan synthesis (EmbR)), glycogen recycling (GarA), cell division (FtsZ, MurD, and Wag31),
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heat shock response (GroEL1), and transcription regulation (RshA and SigH) (Table 1) (Figure 3).
Moreover, individual Pkn kinases can be substrates of other Pkn enzymes, as has been reported
for PknA and PknB, which are each other’s targets. EmbR is a very important protein among the
different STK M. tuberculosis substrates. This transcriptional regulator from the OmpR-like family
plays an important role in cell wall biosynthesis through the regulation of embC, embA, and embB
genes encoding three arabinosyltransferases [28,41]. EmbR is a target of several mycobacterial STKs
(PknA, PknB, PknH, and PknJ). It has been reported that phosphorylation of this regulatory protein
by PknH enhances its ability to bind to the promoter sequences of embC, embA, and embB genes.
Interestingly, considering that the only M. tuberculosis STP identified thus far is PstP, this protein is
thought to dephosphorylate all STKs and their protein substrates. In fact, STKs: PknA, PknB, PknH,
and PknJ are among the biochemically confirmed substrates of PstP (Table 2). Thus, PstP, as the
sole STP, is extremely important for mycobacterial pathogenesis. These findings illustrate the high
complexity of gene regulatory network in this bacterium, in which STKs play a major role.

Similarly, Stk1 (also called PknB), the only STK identified in S. aureus to date, recognizes and
phosphorylates a large set of proteins, including two global regulatory proteins, SarA and MgrA
(Table 1). The former is involved in the regulation of ca. 100 genes, including the positive regulation of
agrBDCA expression and negative regulation of the expression of its own gene [187,188]. AgrC and
AgrA are the sensor and response proteins, respectively, of a TCS system that senses critical extracellular
concentrations of an octapeptide that acts as a quorum sensing signaling molecule in this bacterium.
Another global transcriptional regulator, MgrA, is involved in the regulation of the expression of
many genes, including a gene encoding a multi-drug efflux pump component, NorA [151,189–192].
Phosphorylation of MgrA by Stk1 prevents its binding to the norA promoter, resulting in increased
norA transcription [77,190,191].

In contrast with Gram-positive bacteria, considerably less data are available for STKs and
STPs in Gram-negative bacteria (Tables 1 and 2). One of the first identified STKs was that from
M. xanthus, a Gram-negative soil bacterium that, in response to environmental stress factors, can shift
from vegetative growth to the formation of fruiting bodies [193]. Six STKs have been identified
in this bacterium (Pkn2, Pkn4, Pkn5, Pkn6, Pkn8, and Pkn14). Among them, Pkn8 and Pkn14 are
involved in the regulation of the activity of MrpC, a transcriptional factor essential for the activation
of gene expression during fruiting body development. In this regulatory cascade, the membrane
kinase Pkn8 phosphorylates the cytoplasmic kinase Pkn14, which subsequently phosphorylates
MrpC [92,194]. Phosphorylation of MrpC by Pkn14 prevents its binding to the mrpC promoter
sequence. Thus, Pkn8/Pkn14-mediated phosphorylation of MrpC represses mrpC gene expression
during vegetative growth and allows for timely expression of fruA, and, in a consequence, fruiting
body development in response to environmental stressors.

Hanks-type serine/threonine kinase and phosphatase (STK and STP enzymes) have also been
identified and biochemically characterized in P. aeruginosa [107,108,159]. It has been reported that
the STK PpkA is a FHA domain-containing protein, whereas the STP PppA is an Mn2+-dependent
phosphatase belonging to the PP2C family. Both these P. aeruginosa enzymes are involved in biofilm
formation, tolerance to stress, and virulence. Further, the presence of numerous STKs has been
confirmed in Synechocystis sp. and Anabaena sp. These proteins are engaged in the regulation of cell
growth and adaptation to stress conditions (Table 1) [93–96,99–103,195].

Surprisingly, very little is known about STKs and STPs of the soil and symbiotic nitrogen-fixing
bacteria. Recently, several genes encoding putative STKs and STPs have been identified in the
genome of R. leguminosarum bv. trifolii Rt24.2, a nitrogen-fixing symbiont of clover plants (Trifolium
pratense) [111,165]. Among these genes, pssZ, encoding a protein that shares a high similarity with
STPs, was identified in the genomic Pss-I region. This region is involved in the synthesis of acidic
exopolysaccharide (EPS), which plays an essential role in the symbiotic interactions of many rhizobial
strains with their host legumes [196]. The pleiotropic effects of a pssZ mutation, including the lack of
EPS production, decreased growth and motility, altered cell-surface properties, and failure to infect the
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host plant, indicate that the STP PssZ is required for several cellular processes, both in the free-living
state and during symbiosis.

It is also important to note than many recent studies in bacteria indicate the existence of additional
levels of regulation between the different phosphorylation systems, such as cross-phosphorylation
of protein kinases. A good example is the bacterium M. tuberculosis, in which cross-phosphorylation
between various Hanks-type STKs, as well as their phosphorylation by protein Tyr-kinases have been
confirmed [3,197].

3.2. The Role of STKs and STPs in Regulation of Transcription and Protein Biosynthesis

Apart from many response regulators of various TCSs, different protein components of the
transcriptional and translational machineries have been found to be STK and STP substrates (Figure 3).
These include: the histone-like protein HU, and the elongation factors EF-G and EF-Tu (Tables 1
and 2). Similarly to histones in eukaryotes, bacterial histone-like proteins play an essential role in the
regulation of DNA replication and transcription, most probably by introducing structural changes in
the DNA that facilitate or prevent binding of other regulatory proteins to DNA [198–200]. As shown
for E. coli, the histone-like protein HU regulates the transcription of ca. 8% genes [200]. Recent studies
have shown that histone-like proteins are substrates of several STKs and STPs in other bacteria, such
as Stk1 from S. aureus, Pkn2 from M. xanthus, and SP-STK and SP-STP from S. pyogenes (Tables 1
and 2) [89,148,151]. As described for M. xanthus, phosphorylation of HUα by Pkn2 prevents its binding
to DNA [89]. HUα and HUβ are highly conserved in bacteria, and these proteins function in the
regulation of gene expression, acting as heterodimers. Post-translational modifications of histone-like
proteins by STKs may affect their binding to DNA or their binding to other transcriptional regulators.

Moreover, STKs and STPs have found to be engaged in the modulation of activity of DNA and
RNA polymerases by reversibly phosphorylating these enzymes. For example, RpoA, the α subunit of
RNA polymerase, has been identified as a substrate of S. pneumoniae StkP (Table 1), suggesting that this
kinase may regulate gene expression by controlling the interaction of RpoA with certain transcription
factors [74]. In L. monocytogenes, PrkA interacts with several proteins that are crucial for replication
and transcription, such as the DNA polymerase III subunit α (PolC), the RNA polymerase subunits α
and β (RpoA and RpoB), and the recombination protein RecA [105].

Several translation elongation factors, which play an essential role in protein biosynthesis,
are substrates of prokaryotic STKs and STPs (Figure 3). Three different factors are engaged in
the initiation of the translation elongation step: EF-Tu, EF-Ts, and EF-G. EF-Tu is responsible for
delivering aminoacyl-tRNA to the ribosome acceptor site and association with GTP; EF-Ts acts as
a guanine nucleotide exchange factor on EF-Tu; and EF-G is an additional GTPase involved in the
translocation of mRNA and tRNA [105,157]. In the spore-forming soil bacterium B. subtilis, the kinase
PrkC and phosphatase PrpC reversibly phosphorylate the elongation factors EF-Tu and EF-G [47,52].
Phosphorylation of EF-Tu prevents its binding to aminoacyl-tRNA and thus inhibits the translation
elongation step [157]. EF-Tu is also a substrate of PknB in M. tuberculosis [201]. Phosphorylation of this
protein reduces its interaction with GTP, increasing resistance to specific antibiotics and decreasing
the total level of protein synthesis, which can promote dormancy of M. tuberculosis cells. Similarly in
L. monocytogenes, EF-Tu and EF-G are substrates of the kinase PrkA. Furthermore, Burnside and
others [66] showed that in S. agalactiae, ATP-dependent DNA and RNA helicases are targets of the
kinase Stk1. Collectively, these data suggest that the regulation of the activity of translation elongation
factors by phosphorylation in bacteria may serve the purpose of adjusting the level of protein synthesis
in response to changing environmental conditions.

3.3. The Role of STKs and STPs in Cell Wall Architecture and Metabolism, Cellular Metabolism, Cell Division,
and Adaptation to Stress Conditions

Several proteins involved in cell envelope and membrane biogenesis have been identified as
substrates of prokaryotic STKs and STPs (Tables 1 and 2) (Figure 3). Among the different bacterial
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species studied, M. tuberculosis stands out because of the large set of STKs involved in this process.
Almost all STKs identified in this bacterium (PknA, PknB, PknD, PknE, PknF, PknI, PknK, and PknL)
are involved in the biosynthesis of mycolic acids, which are major and specific lipid components of the
mycobacterial cell envelope essential for cell survival [202]. These STKs phosphorylate several proteins
engaged in the mycolic acid biosynthesis pathway, such as FadD, FabH, KasA, KasB, and MabA.
In addition, STKs PknA, PknB, PknH, and PknJ are involved in the regulation of the synthesis of
arabinan, an important polysaccharide component of the mycobacterial cell wall. Moreover, PknA
and PknB also affect cell division, since they phosphorylate two important proteins involved in this
process, FtsZ and FipA (the latter is required for cell division under oxidative stress) [203].

Hanks-type serine/threonine kinases (STKs) with PASTA repeats in the extracellular domain are
supposed to sense cell wall-related processes and to be engaged in the regulation of cell wall/envelope
biogenesis. This hypothesis has been confirmed for the B. subtilis PASTA-containing STK PrkC,
which is indispensable for the response of dormant spores and growing cells to peptidoglycan
derivatives (muropeptides) [53,128]. A direct and specific interaction between the PASTA domains of
this enzyme and muropeptides has indeed been confirmed [204]. In addition, PrkC phosphorylates
YvcK, a protein responsible for the adequate localization and function of penicillin-binding protein 1
(PBP1), which is required for cell wall morphogenesis [205]. In this bacterium, all of the Hanks-type
STKs characterized to date except for PrkD (PrkA, PrkC, and YabT) are engaged at different stages
of the sporulation process (onset, dormancy, germination, and outgrowth) [49,203,206]. While PrkC
participates in the initiation of the spore germination process, YabT is involved in inhibition of protein
synthesis in the spore during dormancy. Expression of the genes encoding PrkA and YabT strongly
increases during sporulation as a result of the action of the spore-specific sigma factors δE and δF,
respectively. PrkA positively affects the expression of a gene encoding another sigma factor important
for sporulation, δK [46,49]. YabT contains DNA-binding domain and is able to phosphorylate the
DNA-related RecA protein, RacA (which is involved in the anchoring of DNA to the cell pole), and the
global transcriptional regulator AbrB [49,206].

In S. aureus, the PASTA-containing Stk1 and its cognate phosphatase Stp1 also play essential
roles in the modulation of cell wall structure and susceptibility to cell wall-acting β-lactam
antibiotics [150,152]. Moreover, a strain lacking both these proteins exhibited essential defects in
cell division, including irregular cell shape and size, and multiple and incomplete septa. This suggests
an important role of Stk1 and Stp1 in cell division. Moreover, the Stk/Stp system has been found to
participate in numerous metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle,
nucleotide metabolism, and synthesis and secretion of some virulence factors (e.g., α-hemolysin) [152].
Similarly, the Stk/Stp system regulates peptidoglycan structure and metabolism in Enterococcus faecium
(by influencing the crosslinking L,D-transpeptidase pathway) [87].

Interestingly, it has been recently reported that the STP PssZ of the soil bacterium R. leguminosarum
is involved in the synthesis of EPS, which plays an essential role as a signal molecule in symbiotic
interactions with its host plant, clover [165]. A mutant strain lacking a functional PssZ showed, apart
from changes in the cell-surface properties, defects in cell division and size. Although protein substrates
of this enzyme remain to be identified, this finding suggests that STKs and STPs play important role in
the synthesis of envelope components and proper cell division also in Gram-negative bacteria.

In different streptococci (S. agalactiae, S. pyogenes, S. pneumoniae, and S. mutans), the regulatory
STK/STP system is involved in human pathogenesis and affects cell growth and morphology,
the production of hemolysin and fatty acids, and DNA topology (via modulation of the activity
of histone-like proteins) [134]. In addition, S. pyogenes Stp is a secreted phosphatase that, after entering
the host cell, mediates its apoptosis [146].

Moreover, bacterial STK/STP systems are involved in the regulation of various metabolic
processes (Tables 1 and 2) (Figure 3). For example, in M. tuberculosis, numerous STKs (PknB, PknD,
PknE, PknF, PknG, and PknH) regulate glycogen recycling by directly acting on the protein GarA.
In B. subtilis, PrkC affects central metabolism by phosphorylating AlsD, YwjH, and GlnA, whereas
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Corynebacterium glutamicum kinases PknA, PknB, and PknG are engaged in glutamate metabolism
(Table 1). Interestingly, among the various identified and biochemically characterized STKs in the
unicellular cyanobacterium Synechocystis sp. PCC6803, high specificity of individual proteins to
particular cellular processes was found. For example, SpkB participates in motility and the oxidative
stress response [95,207–209]. A spkB mutant exhibits a pronounced hypersensitivity to oxidative stress
and severe growth retardation, whereas a spkD mutant displays impaired growth at low concentrations
of inorganic carbon sources and a spkG mutant is sensitive to high salt concentrations [97,99].
Furthermore, among several STKs identified in another cyanobacterium, Anabaena sp. PCC7120, which
is able to form nitrogen-fixing heterocysts, PknE and PssH are required for heterocyst development
and diazotrophic growth, respectively [101,104].

4. Conclusions

Reversible phosphorylation is a key mechanism that enables bacteria to sense and respond
to changing environmental conditions. Signal sensing and transduction in bacteria are conducted
by various regulatory systems, including TCSs and STKs/STPs. Many recent studies indicate that
pathways controlled by Hanks-type STKs and STPs play an essential role in the regulation of various
cellular processes, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm
formation, stress response, metabolic and developmental processes, and virulence. STKs and STPs
function in the regulation of gene expression by reversibly phosphorylating many protein targets
that are involved in bacterial signaling and physiology. However, identification of environmental
signals that trigger the signaling cascade and the elucidation of mechanisms that regulate the crosstalk
between STK/STP signaling enzymes, elements of TCSs, and the translational machinery require
further study. Results of these studies will facilitate understanding of the function of prokaryotic
regulatory networks.
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