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Abstract 

In this doctoral thesis, we present two methods for the synthetic generation of high 

temporal resolution Direct Normal Irradiance (DNI) time series from hourly means 

that can be applied globally without any local adaptation.  

• The SA (Stochastic Adaptation) method, based on the concept proposed by 

Polo et al, (2011) with several improvements. It divides the irradiance into a 

deterministic and a stochastic component, i.e., the contribution from the 

hourly mean and the stochastic fluctuation which depends on the sky 

condition, respectively. The improvements are focused on the 

characterization and reproduction of the cloud transients’ effects depending 

on the sky condition, and the identification of periods where fluctuations of 

the solar radiation take place. We have incorporated these improvements in 

two approaches, the initial approach (Larrañeta et al., 2015) and the second 

approach (Larrañeta et al., 2018-b).  

• The ND (Non-Dimensional) method relies on the normalization of the daily 

profiles of an extensive database of solar radiation data by a clear-sky 

envelope that can be used to reproduce the high-frequency dynamics of 

DNI in any location. The method is based on the concept proposed by 

Fernández-Peruchena et al, (2015) but with several improvements, the most 

relevant being the identification of the most similar day to be reproduced 

not only in terms of energy, but also in terms of distribution and variability 

of the daily DNI curves.  

It is worth highlighting that the methods presented in this work use measurements 

from one location to characterize the cloud transients and generate synthetic high 

resolution DNI data in any location where hourly DNI data is available, without any 

local adaptation. Each method requires different degrees of accuracy in the 

knowledge of local hourly DNI data. The SA method requires high-quality site 

hourly DNI series while the ND method only requires the site intra-daily 

characterization of DNI variability and distribution, and thus does not require exact 
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hour-to-hour local DNI series. 

The models have been applied in three locations with different climatic conditions. 

In the analysis of the performance of each model, the measured and synthetic time 

series have been evaluated in terms of energy, frequency distribution and 

autocorrelation. In terms of energy, we obtain annual differences lower than 0.2%. 

The similitude between measured and generated DNI distributions has been 

evaluated through the Kolmogorov-Smirnov test Integral (𝐾𝑆𝐼), and the 

performance of the synthetic series when used for the evaluation of the thermal 

power produced by a parabolic trough (PT) plant has been assessed using the daily 

normalized root mean square deviations (NRMSD). The autocorrelation have been 

addressed by evaluating the ramp rates of  both measured and synthetic data sets, 

The generation methods provide, for an annual 1-min synthetic data set, 𝐾𝑆𝐼 values 

of ~3.3 W/m2 and ~12.9 W/m2 (depending on the generation method used), and daily 

NRMSD of ~0.9% and ~3.4%, respectively. For ramp rates greater than 500 

W/m2۰min, the differences in the measured and synthetic sets are almost negligible. 

Sites selected for validating these methods are located at different climates and 

latitudes, suggesting their global applicability. 
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Resumen 

En esta tesis doctoral, se presentan dos métodos para la generación sintética de datos 

de Irradiancia Directa Normal (DNI) de alta resolución temporal a partir de 

promedios horarios que se pueden aplicar en cualquier emplazamiento sin 

necesidad de ser adaptados localmente. 

• El método SA (Adaptación estocástica). Se basa en el concepto planteado 

por Polo et al., (2011) pero con varias mejoras. Conceptualmente, la 

irradiancia se divide en una componente determinista y otra estocástica, 

esto es, la aportación del promedio horario y la fluctuación de la irradiancia 

en torno a dicho promedio, condicionada por el estado del cielo. Las mejoras 

se centran en la caracterización y reproducción de los transitorios de 

nubosidad en función de las condiciones del cielo y la identificación de los 

períodos en los que se producen las fluctuaciones de la radiación solar. 

Dichas mejoras se han abordado en dos enfoques, uno inicial (Larrañeta et 

al., 2015) y otro más reciente (Larrañeta et al., 2018-b). 

• El método ND (no-dimensional) se basa en la normalización de los perfiles 

diarios de radiación de una extensa base de datos de radiación solar en alta 

resolución temporal con respecto a una envolvente de cielo despejado que 

posteriormente se puede utilizar para reproducir las dinámicas de la DNI 

en cualquier emplazamiento. El método se basa en el concepto planteado 

por Fernández-Peruchena et al, (2015) pero introduce varias mejoras, la más 

relevante de las cuales es la introducción de un nuevo método para la 

identificación del día más similar a ser reproducido no solo en términos de 

energía, sino también en términos de distribución y variabilidad diaria de la 

irradiancia directa normal. 

Los modelos presentados en esta tesis doctoral solo requieren medidas de DNI de 

alta resolución temporal en un único emplazamiento y a partir de ellas se pueden 

simular los transitorios de nubosidad y generar datos sintéticos de DNI de baja 

frecuencia en cualquier emplazamiento en el que se dispongan de datos horarios de 
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irradiancia directa normal. La información disponible respecto a la precisión de los 

datos horarios de DNI conducirá al uso de uno u otro modelo. El modelo SA requiere 

una serie de DNI horaria en el emplazamiento de alta calidad, mientras que el 

método ND solo requiere información de los perfiles diarios de DNI en términos de 

energía, variabilidad y distribución. 

Los modelos se han aplicado en tres ubicaciones con diferentes condiciones 

climáticas. En el análisis del comportamiento de cada modelo se han evaluado las 

similitudes en términos de energía, distribución de frecuencia y autocorrelación 

entre las series medidas y sintéticas. En términos energéticos, se obtienen diferencias 

anuales inferiores al 0.2%. La similitud entre las distribuciones DNI medidas y 

generadas se ha evaluado a través del test integral Kolmogorov-Smirnov (𝐾𝑆𝐼), y 

para la evaluación de su impacto en la estimación de la potencia térmica producida 

por una central termosolar de canal parabólico se ha utilizado la desviación 

cuadrática media (NRMSD). La autocorrelación se ha evaluado a partir del análisis 

de las rampas de las series de irradiancia. Los métodos de generación proporcionan, 

para un conjunto anual de datos sintéticos en paso minutal, valores de 𝐾𝑆𝐼 entre 

~ 3.3 W/m2 y ~ 12.9 W/m2 (dependiendo del método de generación utilizado), y 

NRMSD diario de ~ 0.9 % y ~ 3.4 %, respectivamente. Para rampas superiores a 

500 W/(m2·min) las diferencias observadas son prácticamente despreciables. Los 

emplazamientos seleccionados para validar estos métodos se encuentran en climas 

y latitudes diferentes, lo que sugiere su aplicabilidad global. 
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Document structure 

This document is structured according to the recommendations established in article 

9 of the regulations governing the doctoral thesis regime (Agreement 9.1 / CG 19-4-

12) for the modality of Thesis by compendium of publications. The purpose of this 

document is to summarize and integrate the work done in the annexed publications 

that make up the thesis. Given the international nature of the publications, it has been 

decided to use the English language in the document. The sections referred are: 

Introduction, Motivation and Objective, Methodology, Results and Discussion and 

Conclusions. 

According to this structure, the section Introduction, Motivation and Objective, 

presents the needs of the industry of the solar thermal sector that motivate the 

development of the present thesis, as well as the approaches to the synthetic 

generation high temporal resolution solar radiation time series found in the 

literature. 

The next section, Methodology, is the most extensive of the document. It includes 3 

subsections. We initially describe the databases used in the training and application 

of the models. In the second sub-section we describe the stochastic adaptation 

method (Polo et al., 2011) and the two approaches that have been applied to improve 

this algorithm, the initial one (Larrañeta et al., 2015, Annex A) and the latest and 

improved approach (Larrañeta et al., 2018-b Annex D). For the development of the 

improvements related to the last approach of the stochastic adaptation method, we 

have carried out several investigations that have derived in additional publications. 

These are (Larrañeta et al., 2017-a) and (Larrañeta et al., 2017-b), Annexes B and E 

respectively. In addition, the concept on which the stochastic adaptation model is 

based, can be applied in other areas of the synthetic generation of solar radiation time 

series (Larrañeta et al., 2018-a), Annex C, as exposed at the end of the sub-section. 

The third sub-section of the methodology describes the method and the 

improvements implemented in the non-dimensional model in its only approach to 

date (Larrañeta et al., 2018-b), Annex D. 
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The Results and Discussion section presents and discusses the results of applying 

both models in their latest approaches to several sites with different climatic 

conditions, comparing the performance of each model in terms of energy, frequency 

distribution and autocorrelation. 

The Conclusions section, where we summarize the work done and the main results 

obtained and propose future lines of work related to the improvement of the models 

closes the document.  
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Estructura del documento 

El presente documento se estructura de acuerdo a las recomendaciones establecidas 

en el artículo 9 de la normativa reguladora del régimen de tesis doctoral (Acuerdo 

9.1/CG 19-4-12) dentro de la modalidad Tesis por compendio de publicaciones. El 

objeto de este documento es resumir e integrar el trabajo realizado en las 

publicaciones anexas que conforman la tesis. Dada la naturaleza internacional de las 

publicaciones, se ha decidido utilizar el idioma inglés en el documento resumen. Los 

apartados contemplados son: Introduction, Motivation and Objective, Methodology, 

Results and Discussion and Conclusions. 

Conforme a dicha estructura, en el apartado Introduction, Motivation and Objective, 

se presentan las necesidades de la industria del sector de la energía termosolar que 

motivan el desarrollo de la presente tesis, así como las aproximaciones existentes en 

la literatura a la generación sintética de series de irradiancia de alta resolución 

temporal. 

El siguiente apartado, Methodology, es el más extenso del documento. En él se 

contemplan 3 subapartados. Inicialmente se detallan en las bases de datos utilizadas 

tanto en el entrenamiento como en la aplicación de los modelos. Posteriormente se 

profundiza en las diferentes aproximaciones a las mejoras de cada uno de los dos 

modelos implementados. En el segundo subapartado se describe el método de 

adaptación estocástica (Polo et al., 2011) y los dos enfoques que se han aplicado para 

la mejora de dicho algoritmo, uno inicial (Larrañeta et al., 2015 Anexo A), y otro más 

reciente y que mejora la aproximación inicial (Larrañeta et al., 2018-b, Anexo D). Para 

el desarrollo de las mejoras relacionadas con el último enfoque del método de 

adaptación estocástica, se han realizado investigaciones que han derivado en otras 

publicaciones contempladas en esta tesis. Estas son (Larrañeta et al., 2017-a) y 

(Larrañeta et al., 2017-b), Anexos B y E respectivamente. Además, el concepto en el 

que se basa dicho modelo se puede aplicar en otros ámbitos de la generación sintética 

de series de irradiancia (Larrañeta et al., 2018-a), Anexo C, como se expone al final 

del sub-apartado. 

http://www.doctorado.us.es/normativa/normativa-propia/nueva-normativa-reguladora-del-regimen-de-tesis-doctoral#art09
http://bous.us.es/2012/numero-3/numero-3/acuerdo-9.1-cg19-4-12
http://bous.us.es/2012/numero-3/numero-3/acuerdo-9.1-cg19-4-12
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El tercer sub-apartado de la metodología describe el método y las mejoras 

implementadas en el modelo no-dimensional en su única aproximación hasta la 

fecha (Larrañeta et al., 2018-b), Anexo D. 

El apartado Results and Discussion presenta y discute los resultados de aplicar 

ambos modelos en su última aproximación a varios emplazamientos con distintas 

condiciones climáticas comparando el funcionamiento de cada modelo en la 

generación sintética de series de irradiancia directa normal en términos de promedio 

energético, distribución de frecuencia y autorregresión.    

El documento se cierra en el apartado Conclusions, en el que además de resumir el 

trabajo realizado y los principales resultados obtenidos, se expresan las futuras líneas 

de trabajo relacionadas con la mejora de los modelos.  
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𝐼𝑏𝑛
𝑖   Direct normal irradiance in the instant i 

𝐼𝑏𝑛
ℎ     Hourly direct normal irradiance  

𝐼𝑏𝑛
𝑑     Daily direct normal irradiance  

𝐼𝑏𝑛𝑚𝑑
𝑑    

Direct normal irradiance recorded from the sunshine to the 

solar noon 

𝐼𝑏𝑛𝑠𝑦𝑛𝑡ℎ
𝑖    Synthetic direct normal irradiance in the instant i  

𝐼𝑏𝑛𝑖3
𝑖    

Cubic interpolation of the hourly values in the high resolution 

time scale 

𝐼𝑏𝑛𝑐𝑠
ℎ   Hourly clear-sky direct normal irradiance 

𝐼𝑏𝑛𝑐𝑠
𝑑   Daily clear-sky direct normal irradiance 

𝑘𝑏
ℎ   Hourly direct fraction index 

𝑘𝑏
𝑑   Daily direct fraction index 

𝐼𝑐𝑠   Solar constant  

𝐸0   Correction due to Earth-Sun distance 

𝑚𝑅   Relative air mass 

𝑠   Silhouette index 

𝑑𝑖𝑓1−𝑚𝑖𝑛    
Differences between the 1-min DNI data to the cubic 

interpolation of the hourly values in the 1-min scale 
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σ1−𝑚𝑖𝑛
ℎ    

Standard deviation of the differences between the 1-min DNI 

data to the cubic interpolation of the hourly values in the 1-

min scale 

max1−𝑚𝑖𝑛
ℎ    

Maximum value of the differences between the 1-min DNI 

data to the cubic interpolation of the hourly values in the 1-

min scale 

τ   Tortuosity 

𝑘𝑡
𝑖  Clearness index in the instant i 

𝐼𝑔0
𝑖   Global horizontal irradiance in the instant i 

𝐼0
𝑖   Extra-terrestrial irradiance in the instant i 

𝑘𝑡
ℎ  Hourly clearness index 

P2   Perturbation coefficient 

𝐷𝑐𝑠−𝑚
𝑖    

Absolute percentage differences of the measured and clear 

sky radiation 

𝑆𝑐𝑠
𝑖   

Slope of the straight lines that join two hourly direct normal 

clear sky irradiance values 

𝑆𝑚
𝑖   

Slope of the straight lines that join two hourly direct normal 

measured irradiance values 

𝐿𝑐𝑠
𝑖   

Length of the straight lines that join two hourly direct normal 

clear sky irradiance values 

𝐿𝑚
𝑖   

Length of the straight lines that join two hourly direct normal 

measured irradiance values 

R   
Random number calculated from an uniform distribution 

between 0 and 1 

𝑉𝐼   Variability index 

𝐹𝑚   Morning fraction index 

KSI   Kolmogorov-Smirnov test integral index 
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𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙    Critical area 

𝑉𝑐   Critical value 

𝑁𝑅𝑀𝑆𝐷   Normalized root mean squared deviation 

𝑅𝑀𝑆𝐷   Root mean squared deviation 

𝑃𝑚𝑎𝑥   Maximum thermal power production 

𝑃𝑚𝑖𝑛    Minimum thermal power production 

𝑃𝑚
𝑖    

Thermal power produced when using the measured DNI as 

input for the simulation in SAM 

𝑃𝑠
𝑖   

Thermal power produced when using the synthetic DNI as 

input for the simulation in SAM 

RR   Ramp rate 
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1. INTRODUCTION, MOTIVATION 

AND OBJECTIVES 

 

The direct normal irradiance time series are one of the basic inputs for the simulation 

of Concentrating Solar Thermal (CST) systems and solar thermal electricity (STE) 

plants. The simulation models have different requirements in terms of time 

resolution of the DNI time series depending on their use or application. Studies by 

Meyer et al. (2009) and Gall et al. (2010) have emphasized the need to use time series 

with a time step shorter than 1 hour for detailed performance simulations. However, 

the availability of high resolution DNI data is often limited in terms of extension for 

most of locations, and typically historical solar resource data are available at hourly 

scale (Fernández-Peruchena et al., 2010). 

On the other hand, STE plant operators frequently use irradiance predictions based 

on satellite estimates or meteorological, solar radiation models or a combination of 

both to operate in electricity markets or define subsequent operational strategies.  

Most of the DNI prediction models are based on the short-term weather forecasts, 

which hardly exceed an hourly time step (Vincent, 2013). Nowadays, DNI series can 

be calculated at 15-min time intervals from currently operating satellites, but even 

this resolution may not be sufficient when evaluating a CST system performance 

(Beyer et al., 2010). Moreover, satellite-derived long time historic DNI series often do 

not maintain the frequency distribution of the ground measured data (Hammer et 

al., 2009). 

The solar thermal energy concentrating technologies exploit only the direct 

component. This component has unique statistical properties (Skartveit and Olseth, 

1992), showing steeper gradients than the global radiation during the cloud 

transients. There exists a correlation between the DNI and GHI that helps in 

obtaining one from the other with acceptable results; this is supported by the earlier 

attempt conducted by Skartveit and Olseth (1992) on the synthetic generation of 

irradiance values at different time intervals where the probability distribution of 

short-term irradiance data, normalized by transformation to clear sky index data 
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together with the knowledge of the autocorrelation coefficient of these sets form the 

bases for a scheme of data synthetization. 

Several authors have generated DNI values synthetically at a high frequency from 

the global irradiance values, but only a few authors have focused their models on 

the generation of high resolution DNI series from low-resolution DNI values. 

Beyer et al. (2010) generated high frequency DNI series from their cumulative 

distribution functions. Morf (2013) generated sequences of instantaneous Global 

Horizontal solar Irradiance (GHI) values dividing the solar radiation into a 

deterministic and a stochastic component. The deterministic component was related 

to the Ångström–Prescott regression, while the stochastic component was derived 

from the cloud cover index used as a driver for the generation of an on/off sequence 

of beam irradiance (Morf, 2011). Polo et al. (2011) proposed a model that was 

relatively indistinct to GHI and DNI. The model generated 10-min data from the 

hourly values while maintaining the statistical characteristics of an observed data set. 

Conceptually, the DNI was divided into a deterministic and stochastic component: 

the contribution from the hourly mean and stochastic deviation from the mean, 

respectively. The main problems detected with this model were the difference 

between the daily and hourly cumulative values of the measured and synthetic 

datasets that reached 2–4% in daily totals and 15% for hourly values, and the 

mismatches in their frequency distribution in the 10-min resolution. This model was 

improved in two attempts by Larrañeta et al. (2015) and Larrañeta et al. (2018-b) for 

a more accurate DNI generation. Grantham et al. (2017) modified the model for 

generating matched pairs of 5-min GHI and DNI values from hourly means. 

Grantham et al. (2013) previously proposed the use of bootstrapping techniques for 

generating synthetic 5-min DNI series from hourly means. Ngoko et al. (2014) 

presented a second-order Markov Transition Matrix (MTM) to generate 1-min 

synthetic GHI from the daily clearness index. It improved the first-order MTM 

model employed by Richardson and Thomas (2011) by including statistical 

characteristics associated with the atmospheric condition (clear, cloudy, and 

overcast). Bright et al. (2015) also used MTM to stochastically determine cloud cover 

to subsequently generate 1-min DNI, GHI and diffuse irradiance. However, the 

model requires other meteorological information such as cloud base height, wind 

speed or sea level pressure. The model was improved including the spatial 

dimension variation in the synthetic generation without the need of input irradiance 

data (Bright et al., 2017). Fernández-Peruchena proposed the generation of 1-minute 
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resolution DNI series from the daily (Fernandez-Peruchena et al., 2013), 3-h 

(Fernández-Peruchena et al., 2017) and hourly (Fernández-Peruchena et al., 2015) 

DNI means. The method was based on the previous generation of a database of 

dimensionless high frequency daily curves or series of DNI values obtained from the 

observed data at the location under study. The days were selected based on the 

closest Euclidean distance between the daily and hourly means of the generated and 

measured series. The results obtained with this model were satisfactory in the terms 

of variability and frequency distributions; however, it required, besides a high 

frequency database on the site, a great computational cost. For the generation of high 

frequency DNI time series on a given day it sought for the most appropriate 

combination of clear sky envelope and dimensionless daily curves within all the 

possibilities in terms of the Euclidean distance between measured and synthetic 

values. The same concept was used by Fernández-Peruchena et al. (2016) to generate 

synthetic 1-min GHI from hourly means and coupled DNI and GHI 1-min time 

series (Fernández-Peruchena et al., 2018). The model was also improved by 

Larrañeta et al, (2018-b) by modifying the clear sky envelope approximation and by 

selecting the most similar day to be downscaled from the normalized dataset in 

terms of energy, variability and distribution. 

The use of machine learning techniques such as artificial neural networks (ANN) for 

the generation of solar radiation values is mainly focused on the forecast applications 

of GHI (Mellit et al., 2005; Linares-Rodriguez et al., 2011). However, they open 

promising possibilities in the field of the synthetic generation of high temporal 

resolution solar radiation time series. 

In this doctoral thesis, we present two methods for the synthetic generation of 1-min 

Direct Normal solar Irradiance (DNI) data from hourly means that can be applied 

globally without any local adaptation 
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2. DATA & METHODOLOGY 

In the next subsections, we describe the two methodologies implemented for the 

synthetic generation of high frequency synthetic DNI data from hourly means and 

the database used for the training and testing of the methods.  

2.1. Meteorological database 

In this work, an extensive database is used for training the proposed methods (Table 

2-1). This database is composed of 1-min average values of DNI recorded during 14 

consecutive years (2002–2015) and two years of 10-min DNI averages (2000-2001) for 

the location of Seville (Spain). The measurements were taken with a sampling and 

storage frequency of 0.2 Hz. A first class Eppley NIP pyrheliometer mounted on a 

Kipp & Zonen 2AP sun tracker measured the DNI. The devices are located at the 

meteorological station of the Group of Thermodynamics and Renewable Energy of 

the University of Seville and have been periodically calibrated, at least once every 

two years (Moreno et al., 2016). 

Table 2–1. Location selected for training the methods. 

  
Latitude 

(°N) 

Longitude 

(°W) 

Altitude 

(m) 
Climate Period 

Seville 37.4 6.0 12 Mediterranean 2000-2015 

 

In addition, the models have been validated in three other locations belonging to 

different climates and latitudes (Table 2-2). We have selected these locations as a 

compromise solution between climate representativeness and availability of high 

quality 1-min DNI measured data. DNI data of Payerne (Vuilleumier et al., 2014) 

measured with a first class pyrheliometer Kipp & Zonen CHP1 pyrheliometer, have 

been provided by the Baseline Surface Radiation Network (BSRN) (Ohmura et al., 

1998); DNI data from Pretoria have been accessed from the Southern African 

Universities Radiometric Network (SAURAN) (Brooks et al., 2015), and have been 

measured with a Kipp & Zonen CHP1 pyrheliometer; DNI data from Almeria 
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belong to CIEMAT and DLR meteorological station at the Plataforma Solar de 

Almeria (PSA), and have been measured with a Kipp & Zonen CHP1 pyrheliometer. 

Data used in this work have been subjected to quality-control procedures following 

the BSRN recommendations (McArthur, 2004).  

Table 2–2. Locations selected for the application of the methods 

  Latitude Longitude 
Altitude 

(m) 
Climate Period 

Radiometric 

Network 

Almería 37.1 °N 2.3 °E 500 Semi-arid 2013 
CIEMAT-

DLR 

Pretoria -25.7 °N 28.2 °W 1410  Sub-Tropical 2016 SAURAN 

Payerne 46.8 °N 6.9 °W 491 Continental 2014 BSRN 

2.2. Stochastic adaptation (SA) model 

The SA model follows the methodology proposed by Polo et al. (2011) for the 

generation of 10-min synthetic irradiance values from a given hourly time set. The 

original method is briefly described in the following lines.  

In the first step, the 10-min data available were clustered as a function of the 

atmospheric conditions since the dynamics of the DNI vary considerably depending 

on these atmospheric conditions (clouds, aerosols, etc.). The clustering was 

performed by calculating the normalized clearness index, kt’ (Perez et al., 1990), and 

grouping the datasets into four k’t classes or intervals. 

The second step is the calculation of the standard deviation of the 10-min DNI values 

with respect to the hourly mean. The results are normalized to the maximum value 

of the complete dataset. This helps to generate the probability density function of the 

hourly time sets of normalized standard deviations values for each sky condition 

and fit it to a beta distribution curve. 

The procedure for the generation of synthetic DNI values divides the solar radiation 

into a deterministic and stochastic component. The first was generated by the cubic 

interpolation of the hourly means calculated every 4 hours in the 10-min time scale. 

The stochastic component was dynamically reproduced by using random numbers 

from the beta distribution curve whose characteristic parameters were fitted for each 
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sky condition, introducing a random sign for the fluctuation. The procedure is 

roughly described below: 

i. Calculation of the cubic interpolation of the hourly values in the high 

resolution time scale to generate the shape where the fluctuations will be 

added (𝐼𝑏𝑛𝑖3
𝑖 ). 

ii. Generation of random numbers from a uniform distribution curve [0,1] and 

determination of the inverse beta value corresponding to that probability 

and sky condition. This value is multiplied by the maximum standard 

deviation to generate the amplitude of the fluctuation (A).  

iii. Generation of random numbers from a normal distribution curve with zero 

mean and unit standard deviation to add or subtract the amplitude to or 

from the mean value (r). 

Finally, the estimation of the synthetic data for the instant i (𝐼𝑏𝑛𝑠𝑦𝑛𝑡ℎ
𝑖 ) is performed 

by means of the following equation: 

𝐼𝑏𝑛𝑠𝑦𝑛𝑡ℎ
𝑖 = 𝐼𝑏𝑛𝑖3

𝑖 + 𝑠𝑖𝑔𝑛(𝑟) ∙ 𝐴                                                                          Ec. (2–1) 

Where, the subscript 𝑖3 represents the cubic interpolated value, 𝑟 is the random 

number from the beta distribution, and 𝐴 is the amplitude of the fluctuation. 

We have improved the original method in two approaches, the initial approach 

(Larrañeta et al., 2015) and the last approach (Larrañeta et al., 2018-b). The 

improvements are focused in the stochastic component; no modifications have been 

included for the deterministic component. They can be divided in three main blocks. 

 The sky condition classification. This improvement is focused on the 

clustering of the available high resolution database into groups that 

represent similar sky condition leading to similar cloud transients to be 

reproduced in a given moment. This way, the stochastic component, related 

to the fluctuations of the solar radiation would reproduce more accurately 

real situations.  

 Clear sky equivalent DNI condition identification. In many periods when 

there are not visible clouds between the observer and the sun (although 

there may be clouds in the rest of the sky dome), there are no cloud 

transients and the synthetic data will be equivalent to the deterministic 

component.  
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𝐼𝑏𝑛𝑠𝑦𝑛𝑡ℎ
𝑖 = 𝐼𝑏𝑛𝑖3

𝑖                                                                                            Ec. (2–2) 

This improvement is focused on the identification of these clear sky 

equivalent DNI periods. 

 Stochastic component reproduction. This improvement is focused on the 

way the synthetic time series are dynamically reproduced since it has a 

significant impact in the accuracy of the algorithms.  

 Similarity of the daily sums. This improvement is focused on generating 

synthetic data sets with similar daily energy as the input data to be 

downscaled.  

In the initial approach, we aimed to generate synthetic data at 10-min resolution, 

following Polo et al, (2011) practice, but recent publications suggested a greater 

resolution up to 1-min to 5-min improves the detailed performance modelling of CST 

systems (Ramirez et al., 2017). Hence in the second approach we aim to generate 

synthetic DNI time series in the 1-min resolution.  

2.2.1. The sky condition classification 

i Initial approach 

Polo et al, (2011) used kt’ for the classification of the sky condition. The cloud 

transients do not have the same impact on the components of the solar radiation. 

Disturbances in DNI were found to be steeper than those of GHI for certain types of 

sky conditions. kt’ is based on GHI and does not properly define the sky conditions 

for this application. We propose the use of the direct fraction index, kb, (Skartveit and 

Olseth, 1992) divided in intervals of 0.1 as described in Table 2-3 instead of the 

original division into four intervals of the normalized clearness index. 

𝑘𝑏
ℎ = 𝐼𝑏𝑛

ℎ/𝐼𝑏𝑛𝑐𝑠
ℎ                                                                                                          Ec. (2–3) 

Where, Ibn is the observed direct normal irradiance and 𝐼𝑏𝑛𝑐𝑠
is the clear-sky DNI. 

We use the clear sky model A-B Proposed by Silva-Perez (2002).  

𝐼𝑏𝑛𝑐𝑠
ℎ = 𝐼𝑐𝑠 ∙ 𝐸0 ∙

𝐴

1+𝐵∙𝑚𝑅
                                                                                                Ec. (2–4) 

Where  mR is the relative air mass determined according to the expression of Kasten 
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and Young,  (1989) Ics is the solar constant, E0 the correction due to Earth-Sun 

distance and A and B are empirical parameters intended to model the state of 

transparency or turbidity of the atmosphere. This model is a modification of the 

Kastov´s formula quoted, among others, by Kondratyev (1969): 

𝐼𝑏𝑛 𝑐𝑠
ℎ = 𝐼𝑐𝑠 ∙ 𝐸0 ∙

1

1+𝑐∙𝑚𝑅
                                                                                              Ec. (2–5) 

The introduction of the second parameter is justified by the fact that, as noted by 

Murk (1959), at least two parameters are required to model the time evolution of the 

solar irradiance. The parameter A mainly accounts for the absorption in certain 

spectral bands, particularly those in which the absorption is stronger, while B 

realizes primarily scattering phenomena, but also of weak absorption phenomena. 

In any case, A and B are not independent considering that certain elements 

(including aerosols) play an important role in both dispersion and absorption 

processes; therefore, their presence in the atmosphere will be reflected in both 

parameters. 

Water vapour and atmospheric aerosols are predominant components in the 

absorption processes. Regarding dispersion processes, aerosols play a major role. 

Furthermore, the presence of these two components in the atmosphere is quite 

variable. According to the above reasoning, the presence of water vapour will be 

reflected mainly in the parameter A, which will be lower the greater the presence of 

water vapour in the atmosphere, and the presence of aerosols is mainly reflected in 

the B parameter, whose value will be greater the higher content of aerosols. 

Table 2–3. Sky condition for each kb interval 

kb interval Sky condition 

kb ≤ 0.1 Totally covered 

0.1< kb ≤ 0.2 Totally covered 

0.2< kb ≤ 0.3 Mostly covered 

0.3< kb ≤ 0.4 Mostly covered 

0.4< kb ≤ 0.5 Partly covered 

0.5< kb ≤ 0.6 Partly covered 

0.6< kb ≤ 0.67 Mostly clear 

kb >0.67 Totally clear 
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(a) (b) 

ii Last approach 

In the initial approach, each group of data should represent the behaviour of the 

instantaneous DNI under different sky conditions. However, we found that different 

sky condition situations were lumped together in the same group. A group defined 

solely by means of an interval of the direct fraction index and even more in an hourly 

basis would include situations with different types of passing clouds; therefore, it 

may not be enough to characterize the fluctuations of the instantaneous solar 

irradiance. In Figure 2-1, we show two images of the sky with similar direct fraction 

index while the passing clouds are very different. The left picture shows cirrostratus 

and the right picture shows broken clouds.  

 

Figure 2-1. Sky camera images taken with similar hourly direct fraction index. (a) 𝒌𝒃= 0.44 

obtained with a cirrostratus. (b) 𝒌𝒃= 0.40 obtained with a set of broken clouds. 

For a more accurate generation procedure, we apply a Machine Learning-based 

classification method to perform a greater discretization of the 14-years database 

used for training the model. The aim of a clustering algorithm based on a partitioning 

method is to classify a set of data with the same features into groups or clusters. In 

this work, we use the k-Medoid algorithm (Han and Kamber, 2001) since it is the 

most appropriate algorithm for this type of data (Al-Shammari et al., 2016). The k-

medoid algorithm estimates a reference point or “medoid” which has the smallest 

average dissimilarity to all other objects in the cluster. The k-medoid requires input 

information to classify each hour h. Based on Perez et al, (2011), we calculate two 

statistics intending to define the sky condition by characterizing the DNI instant 

fluctuations from the mean. 
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 The standard deviation of the differences between the 1-min DNI data to the 

cubic interpolation of the hourly values in the 1-min scale (σ1−𝑚𝑖𝑛
ℎ ).  

 The maximum value of the differences between the 1-min DNI data to the 

cubic interpolation of the hourly values in the 1-min scale (max1−𝑚𝑖𝑛
ℎ ). 

The first metric provides a measure of the distribution of the 1-min data within an 

hourly interval, while the second metric quantifies the highest fluctuation to be 

expected within an hour. The algorithm requires the specification of the number of 

clusters. We use three clusters for each interval of 𝑘𝑏 in order to have enough data 

within each of them to be capable to define the cloud transients. This number of 

clusters is also justified by the average silhouette value of 0.72, which is indicative of 

a strong structure (Kaufman and Rousseeuw, 1990). The silhouette index 

(Rousseeuw, 1987) qualifies every point by considering its position with respect to 

the other points of the cluster to which it belongs and its position with respect to 

points from other clusters.  

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
                                    Ec. (2–6) 

a(i) is the average dissimilarity between observation i and all other points of the 

cluster to which i belongs, while b(i) is the mean dissimilarity between i and its 

neighbouring cluster, i.e. the nearest one to which i does not belong. Observations 

with high s (i) values are well clustered. The average silhouette value can be used to 

evaluate the quality of the classification.  

In Figure 2-2 we present the silhouette plot and the cluster groups together with their 

centroids of the interval 0.4 < 𝑘𝑏 ≤ 0.5, respectively. In the silhouette plot, we present 

the silhouette value of each point. We also present the average silhouette value and 

the number of points of each cluster, and for the entire set.  
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Figure 2-2. Silhouette plot of the classification obtained for the interval 0.4 < 𝒌𝒃 ≤ 0.5. (a) 

Clusters and centroids for the interval 0.4 < 𝒌𝒃 ≤ 0.5. (b) 

Twenty-four groups are constructed using this cluster methodology: three for each 

𝑘𝑏 bin of width 0.1. Table 2-4 shows the centroids obtained for each 𝑘𝑏 interval. In 

addition, we present the probability of occurrence of each cluster within each 𝑘𝑏 

interval in the 14 years of measurements for the location of Seville (Spain). 
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Table 2–4. 𝝈𝟏−𝒎𝒊𝒏
𝒉  and 𝒎𝒂𝒙𝟏−𝒎𝒊𝒏

𝒉  of the centroids obtained for each label and 𝒌𝒃 interval 

and probability of occurrence of each cluster 

Interval Label σ1−𝑚𝑖𝑛
ℎ  (W/m2) max1−𝑚𝑖𝑛

ℎ  (W/m2) Probability 

0 < kb ≤ 0.1 

1 6 23 0.68 

2 44 174 0.25 

3 85 397 0.07 

0.1 < kb ≤ 0.2 

1 72 301 0.37 

2 30 116 0.39 

3 120 523 0.24 

0.2 < kb ≤ 0.3 

1 127 520 0.26 

2 77 303 0.4 

3 27 106 0.34 

0.3 < kb ≤ 0.4 

1 76 292 0.41 

2 124 477 0.29 

3 23 89 0.31 

0.4 < kb ≤ 0.5 

1 122 456 0.35 

2 20 83 0.28 

3 73 289 0.37 

0.5 < kb ≤ 0.6 

1 74 302 0.34 

2 20 79 0.34 

3 124 495 0.31 

0.6 < kb ≤ 0.7 

1 124 538 0.27 

2 15 59 0.41 

3 67 280 0.32 

kb > 0.7 

1 133 599 0.23 

2 67 291 0.29 

3 18 70 0.48 
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2.2.2. Clear sky equivalent DNI condition identification 

We use the term “clear sky equivalent DNI” to refer to either DNI during clear sky 

conditions or DNI during all-sky conditions that is similar to clear sky irradiance. In 

these situations the stochastic component is null and the synthetic data will be equal 

to the deterministic component. In order to generate synthetic data according to that 

sky condition, we aim to identify these clear sky equivalent DNI periods. 

i Initial approach 

In the initial approach, the decision of whether or not to include fluctuations in the 

synthetic data was led by a daily index. We assumed a daily direct fraction index 

greater than 0.65 represents a clear sky profile along all the day, but we found the 

model did not properly reproduce the hazy days (Gueymard, 2005) when the daily 

kb values suggest partly cloudy days (kb ≈0.55) but the DNI may show negligible 

fluctuations. At this point, we defined a new coefficient P2 in order to identify hazy 

days when the stochastic component is equal to zero. 

The coefficient P2 is based on the concept of tortuosity, τ, commonly used in the 

diffusion of porous media (Epstein, 1989) that can be defined in a simplified manner 

as the relationship between the length of a curve, L, and a straight segment (chord) 

that joins its ends, X. 

τ = 𝐿
𝑋⁄                                                                                                                            Ec. (2–7) 

Figure 2-3 represents the diffusion in a porous medium where the tortuosity is larger 

in case B than in case A because the chord is smaller even for the same length. 
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Figure 2-3. Tortuosity in porous media.  

Many mathematical equations have been proposed over the years for the accurate 

estimation of the value of tortuosity for a certain curve f(t). Patasius et al. (2005) 

proposed the estimation as the integral of the squared derivative of the curve divided 

by the curve length, L. 

τ =
∫ (𝑓′(𝑡))

2
𝑑𝑡

𝑡2
𝑡1

𝐿
                                                                               Ec. (2–8) 

With regard to solar radiation, Muselli et al. (2000) proposed a coefficient to estimate 

the perturbation state of the hourly clearness index (𝑘𝑡
ℎ) curve during the day from 

the integral of the second derivative. 

S2 = ∑ {𝑘𝑡
ℎ+2 − (2 ∙ 𝑘𝑡

ℎ+1) + 𝑘𝑡
ℎ}

2

ℎ                                                              Ec. (2–9) 

In this study, we propose a coefficient to estimate the perturbation state of the hourly 

DNI to estimate days without fluctuations in the high resolution time scale similar 

to the S2 coefficient by using the direct normal irradiance profile instead of the 

clearness index profile. 

P2 = ∑ {𝐼𝑏𝑛ℎ+2 − (2 ∙ 𝐼𝑏𝑛ℎ+1) + 𝐼𝑏𝑛ℎ}2
ℎ                                              Ec. (2–10) 

In an experimental approach, we have observed that fluctuations with high 

amplitude and frequency occurred under variable sky conditions. For daily kb index 

lower than 0.3, regular fluctuations were observed on the DNI. Thus, we have 
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calculated the perturbation coefficient only for daily values of kb greater than 0.3. In 

an empirical approach observing the daily DNI profiles of an entire year for the 

location of Seville, we identified a threshold value of P2 of 215·103 W2/m4 to 

distinguish days with and without fluctuations with an 82% of success. 

i Last approach 

Analysing the initial approach, we found that in many cases, we added fluctuations 

in clear sky equivalent DNI hourly periods because a daily index may not be 

appropriate to characterize the intra-daily performance of the solar radiation. To 

solve this weakness, we implemented an algorithm to identify clear sky equivalent 

DNI periods in an hourly basis (Larrañeta et al., 2017-a). The approach is performed 

following an iterative process to fit a clear sky envelope day by day and then, by the 

comparison of the differences between the means, the slopes and the lengths of the 

measured and theoretical clear sky curves, flag hourly periods as clear or with 

fluctuations.  

In the first step of the iterative process, intending to have an initial envelope clear 

sky curve, we use the parameters A and B of the clear sky model A-B (paragraph 

2.2.1-i) fitted to the maximum irradiance values divided by the correction due to 

Earth-Sun distance obtained for each solar angle higher than 5°. The hourly direct 

fraction index 𝑘𝑏
ℎ is afterwards calculated as in Ec. 2-3. The initial hourly values 

flagged as clear are defined by means of a direct fraction index greater than 0.65.  

In a second step, we identify, for each day, those hours with a direct fraction index 

greater than 0.65. If we found more than two hours matching this condition, we run 

an empirical fit of the clear sky envelope to those hourly values using a least square 

procedure. Under the assumption that the state of the atmosphere does not change 

substantially from one day to the next, the fitted A and B parameters will remain 

constant until the exposed conditions (more than two hours with 𝑘𝑏
ℎ greater than 

0.65) appear again. In days with only few hours flagged as initially clear separated 

in time, the method will generate unreal A and B parameters. To overcome those 

situations, if the fitted A and B parameters exceed the threshold maximum and 

minimum values, they values from the previous day will be used. 

Those threshold maximum and minimum values are calculated using the 

measurements of direct solar radiation during 14 years (2000–2013) from the training 

database. We calculate the A and B parameters assuming the same conditions as 
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exposed in the previous paragraph, but in this case, due to the high resolution of the 

available data, a few hours flagged as initially clear correspond to many more points 

and therefore, the fit is generally better. The threshold maximum and minimum 

values are the Percentile 99 and Percentile 01 of the obtained A and B values for the 

entire dataset. Figure 2-4 represents the boxplot of the A and B values calculated for 

14 years at the location of Seville.  

 

Figure 2-4. A-B clear sky model parameters boxplot for 14 years at the location of Seville. 

In order to appreciate the strength of correlation between both parameters we 

present a scatter plot of the daily fitted values in Figure 2-5. Outliers have not been 

included in the plot. 
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Figure 2-5. A-B clear sky model parameters scatter plot for 14 years at the location of Seville. 

From Figures 2-4 and 2-5, we can observe that there is a strong correlation between 

both parameters and that most of the outliers appear for A values greater than 1.03 

and B values greater than 0.4. 

Once obtained a clear sky curve fitted to each day, the next step consists of 

identifying periods with irradiance similar to the clear sky irradiance from the 

comparison of both curves hour by hour. The criteria used are based on the method 

proposed by Reno et al, (2016) to identify clear sky equivalent periods of GHI from 

1-min observations but in our case, because of the lower resolution data (hourly time 

step), we use only 3 of the 5 metrics originally proposed. Each hour is defined by two 

points, which leads to the comparison of linear segments. In clear conditions, at 

lower solar angles the variation of the hourly mean from one hour to the next is 

greater than for solar angles close the solar noon because the daily clear sky solar 

radiation curve is similar to a Gaussian curve. Therefore, we divide the daily curves 

into three intervals each covering 1/3 of the maximum solar angle. Figure 2-6 

presents an example of the threshold values for each interval on the clear sky curve 

of a summer day. 



 Data & Methodology 

49 

 

 

Figure 2-6. Example of the three independently analysed intervals depending on the 

maximum solar elevation for a summer day. 

The identification of the clear sky equivalent DNI consists on the concurrence of 

three criteria depending on the hourly mean and the slope and length of the straight 

line. Note that each criterion is not overly restrictive on its own, but the combination 

of the three of them would determine whether the analysed hour is flagged as clear 

or not. We quantify the threshold values by empirically analysing the daily profiles 

of fourteen years of aggregated hourly DNI values (2000-2013) of the training set. 

Hourly mean criterion 

The first criterion involves the comparison of the hourly clear sky values and the 

measured means. The analysis consist in the calculation of the absolute percentage 

differences of the measured and clear sky radiation Dcs-mi. A large difference in the 

means represents an alteration condition due to passing clouds. Table 2-5 presents 

the limit values for each solar interval. 

𝐷𝑐𝑠−𝑚
𝑖 = abs (100 ∙

𝐼𝑏𝑛𝑐𝑠
𝑖−𝐼𝑏𝑛

𝑖

I𝑏𝑛
𝑖 )                                                                                     Ec. (2–11) 

Where the subscript i represents the time instant, cs the clear sky and m the measured 

data.   
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Table 2–5. Threshold clear sky identification values for the hourly mean criterion 

Solar elevation Condition Classification 

Interval 1 Dcs-mi < 35% Clear 

Interval 2 Dcs-mi < 15% Clear 

Interval 3 Dcs-mi < 10% Clear 

 

The shadows that come from the horizon obstacles and the fact of working with 

hourly means involves a source of error affecting mainly low solar elevations 

(interval1). For these reason, the identification of threshold clear sky values in this 

criterion are less restrictive the lower the solar angle. The threshold Dcs-mi values 

correspond to quantiles of about 0.5 (0.46, 0.54 and 0.52 for the intervals 1, 2 and 3 

respectively). Values adjusted to the location under study. 

Whenever Dcs-mi is lower than 2.5%, the hour is classified as clear regardless the rest 

criteria output. This statement includes points where the measured DNI is higher 

than the clear sky DNI. 

Slope criterion 

The second criterion consists on the comparison of the slopes of the straight lines that 

join two hourly mean values. For each hour, the slope would be the variation of the 

hourly DNI divided by the time interval. 

 𝑆𝑐𝑠
𝑖 =

𝐼𝑏𝑛𝑐𝑠
𝑖 − 𝐼𝑏𝑛 𝑐𝑠

𝑖−1

𝑇𝑖 − 𝑇𝑖−1
⁄                                 Ec. (2–12)

   

𝑆𝑚
𝑖 =

𝐼𝑏𝑛
𝑖 − 𝐼𝑏𝑛

𝑖−1

𝑇𝑖 − 𝑇𝑖−1
⁄                                  Ec. (2–13)

   

We assume that a difference between the measured and the clear sky slope signs 

implies an alteration on the sky condition caused by passing clouds. The condition 

for the clear sky identification in this criterion is expressed in Table 2-6. 
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Table 2–6. Condition for the clear sky identification for the slope criterion. 

Solar elevation Condition Classification 

Interval 1,2,3 Sign (𝑆𝑐𝑠
𝑖) = Sign (𝑆𝑚

𝑖) Clear 

Line length criterion 

The third criterion consist on the analysis of the length of the straight lines that join 

two hourly mean values and their corresponding absolute percentage differences 

calculated as follows:  

𝐿𝑐𝑠
𝑖 = √(𝐼𝑏𝑛𝑐𝑠

𝑖 − 𝐼𝑏𝑛𝑐𝑠
𝑖−1)2 + (𝑇𝑖 − 𝑇𝑖−1)2                                              Ec. (2–14)

    

𝐿𝑚
𝑖 = √(𝐼𝑏𝑛

𝑖 − 𝐼𝑏𝑛
𝑖−1)2 + (𝑇𝑖 − 𝑇𝑖−1)2                                 Ec. (2–15)

                        

𝐿𝐷𝑐𝑠−𝑚
𝑖 = abs (100 ∙

𝐿𝑐𝑠
𝑖−𝐿𝑏𝑛

𝑖

L𝑏𝑛
𝑖 )                                Ec. (2–16)

   

Following a similar assumption as in the hourly mean criterion, a large difference in 

the line length represents an alteration condition due to passing clouds. The length 

of the line that joins two hourly mean clear sky values varies substantively 

depending on the solar elevation therefore we combine the absolute differences on 

the line lengths and the clear sky line length. The combination of these calculations 

leads to the line length clear sky classification as presented in Table 2-7. 

Table 2–7. Line length classification conditions for the clear sky identification. 

Solar elevation Condition Classification 

Interval 1 LDcs−m
i  < 25 % & 𝐿𝑐𝑠

𝑖 > 220 Clear 

Interval 2 LDcs−m
i< 35 % & 𝐿𝑐𝑠

𝑖 > 110 Clear 

Interval 3 LDcs−m
i< 120 % & 𝐿𝑐𝑠

𝑖 < 30 Clear 

 

For low solar angles, the hourly mean criterion is lower than for high solar angles 
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however, the line lengths follow the inverse pattern. The threshold 𝐿𝐷𝑐𝑠−𝑚
𝑖 values 

correspond to quantiles of 0.46, 0.54 and 0.52 for the intervals 1, 2 and 3 respectively. 

Once identified the periods with irradiance similar to the clear sky irradiance, we 

execute a daily iterative process that consists on the readjustment of the clear sky 

model to those flagged clear sky periods through the process previously exposed 

until the A and B parameters converge. Figure 2-7 shows the block diagram of the 

process. The subscript j represents the modelled day 

 

Figure 2-7. Block diagram of the process 
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To assess the performance of the model, we have utilized one year (2014) of the 

training dataset. The instantaneous DNI data have been integrated into hourly 

means for the execution of the model and to 10-min resolution to observe the 

performance of the model. Ten consecutive daily profiles are illustrated in Figure 2-

8. The charts on the left side show the DNI hourly means of the daily profiles and 

the charts on the right show the daily profiles in 10-min means. The measured data 

is printed in discontinuous blue, the identified clear sky equivalent DNI periods are 

presented in continuous black and for the case of hourly means, and the clear sky 

fitted shape is presented in a dotted cyan line. 
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Figure 2-8. Illustrative daily examples of the last approach clear sky equivalent DNI model 

performance. 
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2.2.3. Stochastic component reproduction 

i Initial approach 

In the original SA model (Polo et al., 2011), the stochastic component was reproduced 

by means of beta distributions fitted to the normalized standard deviations of the 

instant values to the hourly means from the training dataset, being the sign of the 

fluctuation randomly added from a normal distribution.  

The standard deviations of the high resolution values of the training set were 

normalized dividing it by the maximum deviation of the complete dataset. This 

procedure assumes that the amplitude of fluctuations remains similar under all sky 

conditions. However, this assumption may not hold true in case of DNI. Therefore, 

we suggest the normalization of the deviations for each proposed kb range to the 

maximum value in the interval. 

 In the original model the normalization was performed using a unique maximum 

value of the deviation of the 10-min direct normal irradiance data with respect to the 

hourly. In the improved model, there is a maximum deviation value for each defined 

interval.  The largest fluctuations occur during the passage of clusters of low clouds 

with high density like cumulus or stratocumulus, therefore the maximum deviations 

are found in the central intervals of the clearness index as shown in Table 2-8.  

Table 2–8. Maximum deviation of the 10-min direct normal irradiance with respect to the 

hourly mean for each kb interval. 

kb [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.67] 

𝑚𝑎𝑥
𝑖𝑚𝑝𝑟𝑜𝑣

Wm 215 345 401 431 442 435 430 

𝑚𝑎𝑥
𝑜𝑟𝑖𝑔

Wm 442 442 442 442 442 442 442 

Diff (W/m2) 227 97 41 11 0 7 12 

 

The highest differences between the improved and original models are found for low 

values of the clearness index because of the smaller DNI fluctuations that occur due 

to the presence of dense and compact clouds during the mostly-covered sky 

conditions. 



 Data & Methodology 

57 

 

In case of absence of clouds or overcast sky with DNI hourly values lower than 

90 W/m2, no fluctuations are observed in the DNI values. Although, the latter case is 

not relevant for the performance of a STE plant, this case is still considered important 

for the development of an accurate model. The calculation of the synthetic DNI is 

implemented by neglecting the fluctuations for hourly values below 90 W/m2. 

Hence, when the DNI hourly values are lower than 90 W/m2, the stochastic 

component is equalled to zero. 

ii Last approach 

Following the initial approach, we found that, in some cases, we might reproduce 

values that never happened because of the combination of the beta fit and the 

assumption of a normal distribution of the fluctuation sign. 

To solve this weakness, we calculate the stochastic component based on the common 

practice for the dynamic generation of synthetic data from Markov models (Ngoko 

et al., 2014). To this end, we calculate the Empirical Cumulative Distribution 

Function (ECDF) of the differences between the 1-min DNI data to the cubic 

interpolation of the hourly values in the high resolution time scale (𝑑𝑖𝑓1−𝑚𝑖𝑛) of each 

cluster. The procedure is described below: 

1. Calculate the ECDF of the  𝑑𝑖𝑓1−𝑚𝑖𝑛  for each cluster (Section 2.2.1-ii). 

2. Select the group from which the fluctuations are going to be reproduced: To 

this end, we generate a random number Y from a uniform distribution 

between 0 and 1 for each hour h, and locate the cluster whose probability of 

occurrence is the same as the generated with the random number in the 

training dataset. 

3. Estimate the stochastic component of the 1-min synthetic data: We generate 

random numbers R from a uniform distribution between 0 and 1 for each 

instant i, and locate the value, within the previously selected cluster (step 2), 

whose cumulative probability is the same as the value of the random 

number R, obtaining thus the stochastic component (𝐼𝑏𝑛𝑠𝑡𝑜𝑐
𝑖 ). Figure 2-9 

shows a graphical explanation of the step 3.  
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Figure 2-9. Graphical reproduction of step 3 of the last approach for the stochastic 

component reproduction. For a randomly generated value of probability of probability of 

0.79 we obtain a stochastic component of -120 W/m2. 

Within the last approach, the ECDFs of the training set already include positive and 

negative fluctuations of the instant data from the mean, and thus it is not necessary 

to generate a random sign for the fluctuation. 

In the last approach, we intend to generate synthetic DNI datasets in the 1-min 

resolution but most of the cloud transients are gradual and last longer than 1-min 

(Larrañeta et al., 2017 -b). In that research work we intended to delve deeper into the 

knowledge of the cloud transients. We evaluated the cloud transients by analysing 

the dynamics of the direct fraction index kb for one year (2014) of DNI measurements 

of the training dataset in different time steps. We use six temporal resolutions 

calculated as the integration of the 5-seg measurements. 1-min, 5-min, 10-min, 15-

min, 30-min and 1-h besides the instant 5-seg values. We calculate the direct fraction 

index in each of the selected time steps dividing the observed DNI data by the clear-

sky DNI using the A-B model (2.2.1-i). The sky condition (related to cloudiness or 

cloud type) is defined by means of the levels of attenuation of the direct solar 

radiation reaching the earth surface. Based on Martinez-Chico et al. (2011) we can 

classify the type of clouds into 5 groups through intervals of the direct fraction index 

of 0.2.  The kb thresholds selected for performing this classification are presented in 

Table 2-9. 
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Table 2–9. Classification of sky conditions. 

Group G1 G2 G3 G4 G5 

kb kb ≤ 0.2 0.2 < kb  ≤ 0.4 0.4 < kb ≤ 0.6 0.6 < kb ≤ 0.8 kb > 0.8 

 

To quantify the occurrence of different cloud transients, we count the number of 

times that the kb varies from one group to another, this is, counting changes in the 

sky condition. We also quantify the duration of the transient by counting the time 

that the sky condition remains inside the threshold values.  

For the assessment of the results we presented the transition matrices. Each value 

represents the transition from an initial sky condition (column) to a final sky 

condition (row). In this manner, values in the diagonal represent the persistence, 

values over the diagonal represent the entrance of clouds and values above the 

diagonal represent the exit of clouds. We divide the tables into number of 

occurrences, and percentage of occurrences where we omit the persistence in order 

to quantify only the cloud transients. Table 2-10 presents the transition matrixes for 

the 1-min resolution. 

Table 2–10. Transition matrix for the integrated 1-min resolution. 

  

Number of occurrences 

Entrance of clouds 

Percentage of occurrences 

Entrance of clouds 

  G1 G2 G3 G4 G5 G1 G2 G3 G4 G5 

E
xi

t 
o

f 
cl

o
u

d
s 

G1 57613 1630 76 22 9  11% 1% 0% 0% 

G2 1666 6416 1632 100 10 12%  11% 1% 0% 

G3 99 1650 7167 1700 98 1% 11%  12% 1% 

G4 17 129 1748 11932 1789 0% 1% 12%  12% 

G5 11 20 101 1861 142635 0% 0% 1% 13%  

 

Certain symmetry between values above and below the diagonal is observed. The 

values closer to the diagonal are the most repeated, i.e., transitions are progressive. 

As the time step increases, this trend is reduced. In Figure 2-10 we present the 

percentage of progressive transitions depending on the time step.  
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Figure 2-10. Percentage of occurrences of the progressive transients depending on the time 

step. 

This same conclusion can be observed on Table 2-11. Aiming to compute the 

entrance of the clouds, we count the number of occurrences that the sky condition 

changes from clear (kb > 0.8, G5) to any of the other defined state. Table 11 shows that 

as we increase the time step there is a shift towards a reduction in the percentage of 

progressive transitions and an increase in the steeper transitions. This can be 

explained because in a larger time step, more situations are integrated into a single 

value, averaging the result of several phenomena. 
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Table 2–11. Transition from G5 to the rest of the groups. 

  Number of occurrences Percentage of occurrences  

  Group 
TOTAL 

Group 

  G1 G2 G3 G4 G1 G2 G3 G4 

T
im

e 
St

ep
 

5-seg 246 696 1644 9167 11753 2% 6% 14% 78% 

1-min 9 10 98 1789 1906 0% 1% 5% 94% 

5-min 52 123 239 741 1155 5% 11% 21% 64% 

10-min 47 73 173 436 729 6% 10% 24% 60% 

15-min 38 56 123 306 523 7% 11% 24% 59% 

30-min 24 40 55 159 278 9% 14% 20% 57% 

1h 11 22 48 101 182 6% 12% 26% 55% 

 

In view of the results of this research, in the last approach of the stochastic 

component reproduction, the random number R (step 3) of each instant should have 

a dependence on the previous instant, since in the 1-min resolution, most of the 

transients are progressive (Figure 2-10). In an empirical approach, we have taken the 

decision of limiting the difference between two consecutive values of  R to ±0.3. 

R𝑖 = R𝑖−1 ± 0.3                                                               Ec. (2–17) 

2.2.4. Similarity on the daily sums 

The application of the original model in the generation of synthetic series often 

resulted in significant differences between the cumulative daily values of the hourly 

time series to be downscaled and the synthetic 1-min series. This problem can be 

solved by means of an iterative procedure where the daily synthetic series are 

recalculated until both cumulative daily values differ in less than 2%. A daily 

uncertainty of a 2% is accepted since that value represents the uncertainty of most of 

the first class pyrheliometers. This improvement is implemented in both, the initial 

and last approach. 

2.2.5. Non-published improvements 

We have already implemented the coupled GHI plus DNI synthetic generation to 
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the last approach of the SA model. The method follows the same methodology as the 

synthetic generation of the DNI but also for the GHI. The deterministic component 

of the high resolution GHI is calculated from the cubic interpolation of the hourly 

means every four hours. The stochastic component is calculated from the ECDFs of 

the clustered database (2.2.1-ii). To generate the GHI coupled to the transients of the 

DNI, we follow the stochastic component reproduction steps (2.2.3-ii). In the third 

step, we generate a single random value R for each instant that is used to locate the 

value whose cumulative probability is the same as the value of the random number 

but in this case within the ECDF of the selected cluster of the DNI and GHI in 

parallel. This way, transients will be either negative (entrance of clouds) or positive 

(exit of clouds) at the same time in the GHI and the DNI with a value corresponding 

to the same probability of occurrence.  

 

2.2.6. Other applications for the SA model 

The main concept of the SA model can be applied to many phenomena related to the 

solar radiation of which a relatively large database is available. In the research paper 

“A methodology for the stochastic generation of hourly synthetic direct normal 

irradiation time series” (Larrañeta et al., 2018-b) we use this concept for the synthetic 

generation of hourly DNI values from hourly GHI means intending to keep the same 

frequency distribution as the measured DNI data with similar results to those of the 

most common decomposition models (Gueymard and Ruiz-arias 2014) in terms of 

daily, monthly and annual deviations. 

This work was motivated by the necessity of the CSP industry to have around fifteen 

years of high resolution DNI data for plant performance evaluation purposes when 

only two or three years of hourly DNI and GHI measured data are available on the 

site under study and fifteen years of GHI data can be obtained from a nearby 

location. In (Larrañeta et al., 2018-b) we intend to fulfil that necessity.  

For a given value of global radiation, there is a range of possible direct radiation 

values conditioned to the state of the atmosphere. In Larrañeta et al., 2018-b, we 

intend to emulate, in a simplified form, the variability of the atmospheric 

components that affect the attenuation of the direct component. The methodology 

proposed in that research paper follows the SA model approach of dividing the solar 

radiation into a deterministic and a stochastic component. The deterministic 
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component is generated through a classical decomposition model (Erbs et al., 1982). 

The stochastic component, which is added to the deterministic component, is 

calculated from the cumulative frequency distribution of a sufficiently large 

database. In this research, we used the aggregated hourly DNI and GHI values of 14 

years (2000–2013) for the location of Seville for the training of the stochastic 

component. Once trained, the stochastic component could be reproduced globally 

without local adaptation. For the deterministic component we require at least two 

years of hourly aggregated DNI and GHI measurements on the site under study. We 

used the measurements of three consecutive years of three locations with different 

climates for the training of the deterministic component (two years) and to test the 

model performance (1 year) (Table 2-12). 

Table 2–12. Locations selected for the application of the model for the stochastic generation 

of hourly synthetic direct normal irradiation time series (Larrañeta et al., 2018-b). 

  
Latitude 

(°N) 
Longitude 

(°W) 
Altitude 

(m) 
Climate Training Test 

Pamplona 42.8 −1.6 450 Atlantic 2010-2011 2012 

Pretoria -25.75 28.22 1410  Sub-Tropical 2013-2014 2015 

Payerne 46.81 6.94 491 Continental 2010-2011 2012 

 

For the deterministic component, we calculated the fourth order polynomial fit to 

the point cloud of the hourly clearness index versus the hourly direct fraction index 

for solar elevations higher than 10° and kb lower than 0.85 to avoid incorrect 

measurements caused by horizon obstacles and the ‘enhancement effect’ due to the 

reflection from the base of the clouds (Tapakis and Charalambides, 2014). 

For the stochastic component, we used the procedure described in paragraph 2.2.3-

ii to reproduce the ECDF of the training dataset. For each kt, the stochastic component 

was fitted to the ECDF of the difference between the measured kb and the 

deterministic kb. In order to have a statistically significant ECDF, we divide the kt 

values into intervals of ±0.02 points and we cluster the data into three sun elevations 

intervals; 10-30°, 30-60°, and 60-90°, understanding that the behaviour of the solar 

radiation varies significantly depending on this parameter (Tovar-Pescador 2008).  

The synthetic hourly DNI data was generated by adding the stochastic component 
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to the deterministic component. Figure 2-11 shows the scatter plots of the hourly 

direct fraction index versus the hourly clearness index of the measured (left) and 

modelled (right)  data for the three locations used for the application of the procedure 

(a-c).  

 

Figure 2-11. Scatter plots of the kt versus the measured (left) and synthetic (right) kb for 

Pamplona, Pretoria, and Payerne. 
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2.3. Non-Dimensional (ND) model 

The original method (Fernández-Peruchena et al., 2015) consists in the normalization 

of the daily DNI curve by the clear-sky envelope, creating daily dynamic paths from 

observed DNI data. The method transforms each daily 1-min DNI curve into a 

dimensionless curve where the normalized time and the DNI range from 0 to 1. In 

Figure 2-12 (a), we show the dimensionless daily shape obtained from a randomly 

selected day Figure 2-12 (b). For the synthetic generation of 1-min data, days were 

generated following the next steps: 

1. Calculate the clear sky DNI envelopes. To this end, the two parameters 

defining the ASHRAE exponential model (MacPhee, 1972) are adjusted for 

each day. 

2. Generate a database of dimensionless daily curves of the location under 

study. Normalize the measured data in terms of time and energy. The non-

dimensionalization of the temporal scale is performed day by day by 

dividing the elapsed Universal Time (UT) since sunrise by day length (time 

between sunrise and sunset). This way, the x-axis value of 0 corresponds to 

sunrise and the x-axis value of 1 corresponds to sunset. The non-

dimensionalization of the solar DNI scale is performed by dividing each 

actual solar DNI value by the corresponding DNI value of the clear-sky DNI 

envelope. This way, the y-axis value of 0 corresponds to totally overcast 

conditions and the y-axis value of 1 corresponds to clear sky conditions.  

3. Generation of synthetic 1-min DNI series on a given day. Combine 

envelopes and dimensionless daily DNI curves until the closest Euclidean 

distance between the daily and hourly means of the synthetic and measured 

series is found.  At least one year of 1-min measured solar radiation data in 

the site under study is required. 
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Figure 2-12. Dimensionless daily profile (a) of a randomly selected daily DNI curve (b). 

In the case of the ND model, we have published so far only one approach for the 

improvement of the original method (Larrañeta et al., 2018-b) for the synthetic 

generation of 1-min DNI data from hourly means. However, a few more 

improvements have been developed but haven´t yet been published. They are 

described in paragraph (2.3.3.). The improvements already published can be divided 

in two main blocks. 

 Clear sky envelope calculation. We found that the third step of the original 

methodology demands a high computational cost and requires a high-

resolution solar radiation database, of at least one year, in the location under 

study. The modifications proposed here have been implemented in order to 

speed up the generation procedure. We propose a simpler clear sky 

envelope method and the use of dimensionless curves obtained from one 
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location, to generate synthetic high temporal resolution DNI data in any 

location. 

 Selection of the most similar day. The original method seeks for the most 

similar day between the normalized database and the input hourly DNI 

data in terms of energy. Since variability and temporal distribution of the 

irradiation have a great impact on CSP plant production, we propose to 

implement a method to seek for the most similar day in terms of energy, 

variability and distribution. 

2.3.1. Clear sky envelope calculation 

For the calculation of the dimensionless daily data packs, we use the envelope clear 

sky concept (Gómez Camacho and Blanco Muriel, 1990) to determine the maximum 

daily envelope clear sky irradiance (Ibncs
). We implement the clear sky A-B model 

(paragraph 2.2.1-i), Ec (2-4). 

We intend to characterize a unique set of parameters (A, B) for each year in a given 

location. These parameters are annually estimated by adjusting them to the 

maximum observed values of the relation 𝐼𝑏𝑛 𝐸0⁄  for every value of solar elevation 

higher than 5°.  We use the relationship 𝐼𝑏𝑛 𝐸0⁄  to make A and B parameters 

independent of the day of the year.  

A daily clear sky curve in the hourly resolution is ‘lower ‘than in the 1-min resolution 

as it is shown in Figure 2-13 because the hourly resolution trends to smooth the 

amplitude of the cloud transients. In Table 2-13, we present the annual A-B 

parameters in the 1-min and the hourly resolution for 14 years (2002-2015) from the 

training database. 



                           

68 

 

     Synthetic generation of high-temporal resolution direct normal irradiation time series 

 

 

Figure 2-13. Daily clear sky curve fitted to measured 1-min and hourly DNI data. 

Table 2–13. Annual 1-min and hourly A-B clear sky parameters for the years 2002-2015 at 

Seville. 

 1-min resolution 1-h resolution 

Year A B A B 

2002 0.829 0.119 0.864 0.178 

2003 0.812 0.109 0.825 0.145 

2004 0.837 0.113 0.859 0.165 

2005 0.848 0.115 0.865 0.155 

2006 0.844 0.115 0.843 0.155 

2007 0.836 0.129 0.839 0.157 

2008 0.851 0.130 0.860 0.166 

2009 0.835 0.121 0.849 0.164 

2010 0.830 0.104 0.861 0.164 

2011 0.838 0.143 0.847 0.178 

2012 0.824 0.117 0.835 0.144 

2013 0.822 0.109 0.833 0.135 

2014 0.814 0.116 0.857 0.168 

2015 0.848 0.130 0.848 0.155 
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For the normalization of the training dataset, we use the annual empirically 

calculated A-B parameters that define the clear sky envelope in the 1-min resolution 

year by year.  

2.3.2. Selection of the most similar day 

In the original model, the most similar day selection was carried out taking into 

account the similarity of the cumulative values between a given day and the 

database used for the training. Based on Moreno-Tejera et al, (2017), we characterize 

the daily DNI curve shapes by means of the energy, variability and distribution. We 

use the daily direct fraction index (𝑘𝑏
𝑑)to characterize the daily energy of a given day 

following next equation: 

𝑘𝑏
𝑑 =

𝐼𝑏𝑛𝑑

𝐼𝑏𝑛𝑐𝑠
𝑑  ,                                                                                                                                 Ec. (2–18) 

where 𝐼𝑏𝑛𝑑 is the daily DNI and 𝐼𝑏𝑛𝑐𝑠
𝑑 is the daily DNI under clear sky conditions. 

For the characterization of the variability, we use the Variability Index (𝑉𝐼) (Stein et 

al., 2012) defined as the ratio between the length of the DNI curve and the length of 

the maximum enveloping clear day curve calculated in Section 3.2.1. 

𝑉𝐼 =
∑ √(𝐼𝑏𝑛

𝑖−𝐼𝑏𝑛
𝑖−1)

2
+∆𝑡2𝑛

𝑖=2

∑ √(𝐼𝑏𝑛𝑐𝑠
𝑖−𝐼𝑏𝑛𝑐𝑠

𝑖−1)
2

+∆𝑡2𝑛
𝑖=2

                                                                                          Ec. (2–19) 

𝐼𝑏𝑛𝑐𝑠
 is the hourly enveloping clear sky direct normal irradiance, the subscript i 

represents the time instant, Δt refers to an interval of one hour, n is the number of 1-

hour intervals of the considered day. For the characterization of the temporal 

distribution, we use the morning fraction index 𝐹𝑚 defined as the ratio between the 

accumulated DNI in the first half of the day and the accumulated DNI for the whole 

day. 

𝐹𝑚 =
𝐼𝑏𝑛𝑚𝑑

𝑑

𝐼𝑏𝑛𝑑                                                                                                                     Ec. (2–20) 

𝐼𝑏𝑛𝑚𝑑
𝑑  is the DNI recorded from the sunshine to the solar noon. 

For the selection of the most similar day, we use the k Nearest Neighbour (kNN) 

classification algorithm of a supervised Learning Machine (Fix and Hodges, 1951).  

kNN categorizes objects based on the classes of their nearest neighbours in the 

dataset. kNN predictions assume that objects near to each other are similar. We train 
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the algorithm with 14 years (2002-2015) of the training database from Seville. We use 

the daily triplets of  𝑘𝑏
𝑑, 𝑉𝐼 and 𝐹𝑚 as predictors with the same weight and we assign 

one class label to each day. In a second step, we calculate these daily triplets of 

indexes for each curve of the input dataset and then we predict the most similar day 

with the trained learning machine. The output of the algorithm would be the class 

label found to be the most similar day of the database of Seville to the input day to 

be downscaled.  

Once the most similar days of the normalized database to the input DNI are selected, 

to generate the synthetic 1-min DNI data, we use a random iterative procedure that 

modifies the A and B parameters until the cumulative value of the available 1-h 

annual set and the synthetically generated 1-min annual set differ in less than 0.2%. 

The iterative process requires an initial A-B pair of values. We calculate them using 

the envelope clear sky method for the 1-h annual dataset used as input of the model. 

2.3.3. Non-published improvements 

We have also already implemented the synthetic generation of consistent GHI and 

DNI in the ND model. To that end, we have firstly normalized the GHI of the training 

database. In this case the X-axis is also the normalized time and the Y-axis is the 

instant clearness index defined as: 

𝑘𝑡
𝑖 = 𝐼𝑔0

𝑖/𝐼0
𝑖                                                                                                             Ec. (2–21) 

Where 𝐼𝑔0𝑖 is the global horizontal irradiance and 𝐼0𝑖  is the 1-min extraterrestrial 

irradiance on a horizontal surface.  

Then, in the selection of the most similar day, we use the daily 𝑘𝑡 among the 𝑘𝑏, 

VI and 𝐹𝑚 to seek for the most similar day to be unpacked. Once the day is selected, 

we use again the extra-terrestrial curve to generate the synthetic 1-min GHI.  

We have also implemented an improvement related to the VI index. When 

quantifying the short-term variability through the daily VI index, the time step of the 

data series plays a significant role. Since the input data to be downscaled comes in 

the hourly resolution, the dimensionless daily profiles from the training database 

have also been labelled in terms of variability in the hourly resolution but this 

decision implies a great loss of information and has a significant impact in the 

generated data.  
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To tackle that weakness, we have implemented an algorithm to obtain VI values in 

the 1-min resolution from the hourly values.  For predicting the high temporal 

resolution VI time series, we implement four supervised Machine Learning 

techniques; Lineal regression, nonlinear regression, k Nearest Neighbour (kNN) and 

decision tree. The algorithms have been trained with 14 years of measurements of 

DNI in the period 2002-2015 and tested with the measures of the entire 2016. Figure 

2-14 summarizes the approach. 

 

Figure 2-14. Schematic summary of the methodology 

In Figure 2-15 we show an “arrow head” diagram (𝑘𝑏 versus 𝑉𝐼) for one entire year 

(2016) of the measured set in the hourly (a) and 1-min (b) resolution and the synthetic 

VI set in the 1-min resolution (c). 

Linear

VI1-hour Nonlinear VI1-min

kNN
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ML 
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Figure 2-15. Arrow head diagram or the year 2016 for the location of Seville in the measured 

hourly resolution (a), the measured 1-min resolution (b) and the synthetic 1-min resolution 

calculated with the kNN algorithm. 

It can be observed from figures a and b, that the arrow head diagram of the measured 

data is strongly dependent on the time scale of the data. Note that the VI values in 

the 1-min time scale range from 0 to 25 while the VI values in the hourly time scale 

range from 0 to 3.5. In the hourly resolution (a) most of the data have VI daily values 

close to 1 while in the 1-min resolution (b) it can be observed that the VI daily values 

have greater dispersion, thus variability is characterized more precisely the greater 

the time resolution of the available data. The arrow head diagram of the synthetic VI 

daily data in the 1-min resolution (c) presents a similar shape to the measured VI 

daily data in the 1-min resolution (b).
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3. RESULTS AND DISCUSSION 

In the analysis of the performance of the methods we only compare the SA model in 

the second approach and the ND model in its single approach because of the 

different resolution of the synthetically generated data with the first approach of the 

SA model (10-min) to the rest of the approaches (1-min). We could integrate the 1-

min values to the 10-min resolution in order to compare the results of the three 

approaches but we understand it losses relevance since we have reached a greater 

resolution for the synthetic generation. We neither compare the results with the 

original methods since in that case, the models were trained with local data for the 

location under study and in the approaches here presented we generate synthetic 

high resolution data in anywhere using data from Seville to train the models, 

therefore, results are not comparable.  

The synthetic data generated with the SA model is expected to follow the shape of 

the measured data hour by hour, but the fluctuations of the solar radiation due to 

the cloud transients are synthetically reproduced. On the other hand, the ND model 

would reproduce fluctuations that have been measured but may not follow the 

hourly distribution of the measured data. 

In Figure 3-1 we present some examples of the daily profiles where the goodness of 

the methods in reproducing the daily shapes of the 1-min DNI is qualitatively 

illustrated. We show four consecutive days measured at the location of Almeria (blue 

line) together with the corresponding synthetic data generated by each 

methodology: SA modelled (left side, red dotted lines), and ND modelled data (right 

side, green dotted line). 
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Figure 3-1. Illustrative examples of the results of the synthetic generation with the stochastic 

adaptation model (Ibns-SA) and non-dimensional model (Ibns-ND) compared to the 

measured dataset (Ibnm) for the location of Almeria. 
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To assess the performance of the models, we evaluate the mean, distribution and 

autocorrelation of the generated time series in comparison to the measured time 

series in each location. 

3.1. Evaluation of the mean 

The models maintain the mean by definition. The SA model includes an iterative 

procedure where the daily synthetic series are recalculated until both cumulative 

daily values, measured and synthetic, differ in less than 2%. The ND model uses an 

iterative procedure until the cumulative value of the available 1-h annual set and the 

synthetically generated 1-min annual set differ in less than 0.2%. 

3.2. Evaluation of the distribution 

To evaluate the distribution we calculate the 𝐾𝑆𝐼 (Kolmogorov-Smirnov test 

integral) index that is defined as the integrated differences between the CDFs of the 

two data sets (Espinar et al., 2009). This index has the same units as the 

corresponding magnitude 

𝐾𝑆𝐼 = ∫ 𝐷𝑛𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
,                                                                                                                 Ec. (3–1) 

where, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛are the extreme values of the independent variable, and 𝐷𝑛  are 

the differences between the CDFs of the measured and synthetic datasets. 

The 𝐾𝑆𝐼 in W/m2 shows comparable results regardless of the time resolution of the 

synthetic data. The higher the 𝐾𝑆𝐼 values, the worse the model fit. 

It is a common practice to evaluate a relative value of 𝐾𝑆𝐼 (%), obtained by 

normalizing the 𝐾𝑆𝐼 (W/m2) to the critical area 𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . 

𝐾𝑆𝐼(%) = 100 ∙
∫ 𝐷𝑛𝑑𝑥

𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
                                                                                         Ec. (3–2) 

𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑉𝑐 ∙ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)       

The critical value 𝑉𝑐  depends on the population size 𝑁 and is calculated for a 99% 

level of confidence as:  

𝑉𝑐 = 1.63
√𝑁

⁄     𝑁 ≥ 35                                                                                              Ec. (3–3) 



                           

76 

 

     Synthetic generation of high-temporal resolution direct normal irradiation time series 

 

This relative metric should be used with care: when evaluating long time high-

resolution datasets, the 𝐾𝑆𝐼 (%) will result in high values even for the same model 

performance. The more extensive the population size, the lower the critical area (in 

inverse proportion to √𝑁) and consequently the greater the 𝐾𝑆𝐼 (%) for the same 

model performance. Therefore, the 𝐾𝑆𝐼 (%) should only be used to compare datasets 

of the same length and resolution. 

Figure 3-2 shows, the ECDFs of the measured (blue line) and synthetic datasets 

generated with each model (red and green dotted line) in one-year dataset for the 

three locations under study. We can observe that the greatest differences are found 

for low levels of irradiance in the case of the SA model.  
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Figure 3-2. ECDFs of the measured (Ibnm) and synthetic DNI datasets generated with the 

stochastic adaptation model (Ibns-SA) and the non-dimensional model (Ibns-ND). 

The ND model synthetic data presents the best results in terms of frequency 

distribution for the location of Almería, while the SA model presents a higher 𝐾𝑆𝐼 in 

all the locations. Table 3-1 shows the 𝐾𝑆𝐼 value of each model in the selected 

locations. 

Table 3–1. 𝑲𝑺𝑰 of the implemented models for the measured and synthetic DNI annual sets 

for each location 

Parameter Station (year) SA Model ND Model 

𝐾𝑆𝐼 (W/m2) 

Almería (2013) 12.7 2.8 

Pretoria (2016) 15.4 3.4 

Payerne (2014) 10.6 3.6 

 

Figure 3-3 and Figure 3-4 show a bar plot of the monthly 𝐾𝑆𝐼 (W/m2) and 𝐾𝑆𝐼 (%) of 

the DNI time series for the three locations under evaluation.   
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Figure 3-3. 𝑲𝑺𝑰 (W/m2) values obtained in the comparison of 1-min synthetic DNI data 

compared to the measured data for the locations of Almería, Pretoria and Payerne with the 

SA model (a) and the ND Model (b). 
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Figure 3-4. 𝑲𝑺𝑰 (%) values obtained in the comparison of 1-min synthetic DNI data 

compared to the measured data for the locations of Almería, Pretoria and Payerne with the 

SA model (a) and the ND Model (b). 

The SA method provides average monthly 𝐾𝑆𝐼 values of 11.2 W/m2 in Payerne, 16.0 

W/m2 in Pretoria and a maximum value of 29.6 W/m2 in Pretoria. The ND model 

provides average monthly 𝐾𝑆𝐼 values of 6.2 W/m2 in Almería, 9.0 W/m2 in Payerne 

and a maximum value of 16.5 W/m2 in Pretoria.  

There is a seasonal bias on the 𝐾𝑆𝐼 strongly related to the intra-daily variability 

characterization of the solar radiation. The months with greater 𝐾𝑆𝐼 values are found 

in those seasons having a large number of high variability days. Table 3-2 shows 

monthly 𝐾𝑆𝐼 values calculated from the implemented models and ground 

measurements for Pretoria site, along with the number of measured days with a high 

intra-daily variability (VI index > 15). Figure 3-5 shows the histogram of the VI index 
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calculated with the measured and synthetic 1-min datasets for Pretoria site. 

Table 3–2. Monthly 𝑲𝑺𝑰 (W/m2) of the implemented models for the measured and synthetic 

DNI annual sets for the location of Pretoria and the number of days with VI index > 15 (high 

intra-daily variability). 

Month Jan Feb Mar Apr May Jun Jul  Aug Sep Oct Nov Dec 

KSI SA model  

(W/m2) 
26.8 25.4 22.4 10.7 17.3 4.3 6.8 4.3 6.3 11.7 26.6 29.6 

KSI ND model  

(W/m2) 
15.3 16.5 5.2 3.8 6.2 10.9 4.4 4.0 5.2 5.2 15.8 13.1 

Nº days VI>15 12 15 10 6 7 2 4 2 6 9 15 17 

 

 

Figure 3-5. Histogram of the VI index calculated with the measured (VIm) and synthetic 1-

min datasets with the stochastic adaptation model (VIs-SA) and the non-dimensional model 

(VIs-ND) for the location of Pretoria. 

When quantifying the short-term variability through the daily VI index, the time step 

of the data series plays a significant role. Since the input data to be downscaled comes 

in the hourly resolution, the dimensionless daily profiles from the training database 

have also been labelled in terms of variability in the hourly resolution but this 

decision implies a great loss of information and has a significant impact in the 

generated data. In figure 11 we can observe that the synthetic datasets present higher 
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repetitions for lower VI daily values.  

The greater presence of high intra-daily variability days is found from November to 

March, which coincides with the greater 𝐾𝑆𝐼 values. Moreover, synthetically 

generated 1-min DNI series show a higher occurrence of low daily VI index values 

with respect to the measured one. These results suggest a weakness in the 

characterization of the intra-daily variability through the VI index in the case of the 

ND model. In the case of the SA model, the stochastic component reproduction 

(section 2.2.3-ii) may not be accurate enough since it is independent of the intra-daily 

variability. Additionally, the use of hourly values in the calculation of the variability 

index entails a loss of information.  

The 𝐾𝑆𝐼 statistic evaluates the differences of the CDFs of solar radiation measured 

and synthetic datasets; these differences are assumed to have an impact on plant 

production. Thus, the interest in the DNI high temporal resolution synthetic 

generation and therefore the simulation of the cloud transients relies not only on the 

DNI itself, but also on its impact on plant production. In this doctoral thesis, we 

propose to compare the synthetic data to the measured data also in terms of thermal 

power produced in a field of a Parabolic Trough (PT) plant. To this end, we have 

simulated in NREL´s SAM software, version 2017.1.17 (Blair et al., 2014) a PT plant 

with a similar configuration to the Andasol 3 plant (NREL, 2013) currently in 

operation. The main characteristics are summarized in Table 3-3.  

Table 3–3. Main technical data used in SAM to model a plant configuration similar to 

Andasol 3. 

Parameter Andasol 3 

Net output at design (MWe) 50 

Number of loops 156 

Collectors per loop 4 

Solar field aperture area (m2) 510,120 

HTF Therminol VP-1 

Storage capacity (hours) 7.5 

 

We evaluate the deviations between the modelled thermal power produced in the 

field with measured and synthetic data using the 𝑁𝑅𝑀𝑆𝐷 defined as: 
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𝑁𝑅𝑀𝑆𝐷 (%) = 100 ∙ (𝑅𝑀𝑆𝐷
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

⁄ ),                                                         Ec. (3–4) 

where 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛  are the maximum and minimum power production values of 

the observed dataset, respectively and RMSD is the Root Mean Squared Deviation. 

RMSD = √
1

𝑁
∑ (𝑃𝑚

𝑖 − 𝑃𝑠
𝑖)2𝑁

𝑖=1  ,                                                                                     Ec. (3–5) 

where N is the number of data pairs, 𝑃𝑚
𝑖  is the power produced when using the 

measured DNI as input and 𝑃𝑠
𝑖 is the produced when using the synthetic DNI as 

input in SAM. The evaluation is performed in the hourly and daily resolution. Only 

daylight hours are considered in this analysis. 

The results for the NRMSD of the thermal power produced in the three analysed 

locations are presented in Table 3-4. 

Table 3–4. 𝑵𝑹𝑴𝑺𝑫 of the modelled thermal power produced with the measured and 

synthetic datasets in the proposed PT plant. 

Parameter Station (year) SA Model ND Model 

NRMSDhourly (%) 

Almería (2013) 2.3 12.4 

Pretoria (2016) 2.7 12.8 

Payerne (2014) 2.3 14.7 

NRMSDdaily (%) 

Almería (2013) 0.8 3.0 

Pretoria (2016) 1.2 3.1 

Payerne (2014) 0.8 4.1 

 

When evaluating the NRMSD of the thermal energy produced in a PT plant with a 

common configuration, we observe that the SA model shows better performance. 

This occurs because it synthetizes the data hour by hour intending to follow the daily 

shape of the DNI while the ND model uses daily parameters to select the day to be 

generated. The hourly NRMSD is greater in the ND model than in the SA model in 

days with an uncoupled synthetic and measured variability. The differences in the 

performance of both models are reduced in the daily NRMSD.  
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3.3. Evaluation of the autocorrelation 

For the evaluation of the autocorrelation, we calculate the ramp rates (RRs) as the 

difference between successive data points over one minute using eq. 13: 

𝑅𝑅 =
((𝐼𝑏𝑛

𝑖 − 𝐼𝑏𝑛
𝑖−1) − (𝐼𝑏𝑛𝑐𝑠

𝑖 − 𝐼𝑏𝑛𝑐𝑠
𝑖−1))

∆𝑡
⁄  ,                             Ec. (3–6) 

where Δt refers to an interval of one minute. The units are given in W/m2·min. We 

calculate the absolute RRs values for the annual datasets taking into account only 

daytime observations for solar elevations above 5°. 

Figure 3-6 shows the ECDFs of the measured and synthetic absolute RR values 

generated with each model (left) and their differences (right) in one complete year 

for each location. Figure 3-7 shows a bar plot of the monthly KSI values for the 

absolute RR time series of each model in the selected locations. Both modelled 1-min 

DNI datasets show ECDFs similar to the measured one. For high RRs (> 500 

W/m2min), the differences in the measured and synthetic ECDFs values are almost 

negligible. The differences found at low RR indicate a lower variability of both 

modelled datasets with respect to the measured dataset.  
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Figure 3-6. ECDFs of the measured (RRm) and synthetic absolute RR datasets generated 

with the stochastic adaptation model (RRs-SA) and non-dimensional model (RRs-ND) (left) 

and their differences (right). 
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Figure 3-7. Monthly KSI values for the absolute RR time series of each model in the selected 

locations obtained with the SA model (a) and the ND Model (b). 
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4. CONCLUSIONS 

In this doctoral thesis, we present two methodologies for generating synthetic DNI 

data at 1-min time resolution in the absence of local high-frequency measured DNI 

series. Their global applicability is assured taken into account the flexibility of inputs: 

from accurate hourly DNI series (the SA method), to intra-daily characterization of 

DNI variability and distribution (the ND method), where exact hour-to-hour local 

DNI evolution is not required. 

The SA and ND models have been trained with 14 years of measured 1-min DNI 

data for the location of Seville (Spain), and require no previous knowledge of the 

high-frequency patterns of solar irradiance at these sites (i.e., no local measurements 

of high-frequency solar irradiance are required to apply them). To address their 

performance, we have compared the outputs of the proposed methodologies in three 

locations with diverse climatic conditions. The comparison of the frequency 

distribution of the synthetic DNI data compared to the measured ones reveals that 

the ND methodology shows a better performance (KSI ~3.3 W/m2) compared with 

the SA methodology (KSI ~12.9 W/m2). We also propose a comparison in terms of 

the estimation of the thermal power produced in the solar field of a typical PT plant. 

In this case, we observe that the SA methodology provides a lower hourly NRMSD 

(~0.9 %) compared with the ND methodology (~3.4 %). 

These methodologies are based on previous works (Polo et al., 2011; Fernández-

Peruchena et al., 2015).  

The improvements to the Polo et al (2011) methodology (SA model), that have been 

implemented in two approaches, are focused on the characterization and 

reproduction of the stochastic component of the solar radiation and the identification 

of clear sky equivalent DNI periods.  

The stochastic component of the solar radiation is reproduced based on the ECDF of 

a sufficiently large database from one location. This way, only real situations will be 

generated and there is no need of having an extensive database in the location under 

study. This concept can be applied to other phenomena related to the solar radiation 

as presented in Larrañeta et al (2018-b), where we developed a methodology to 

generate decomposition models that emulate the non-linear relation between the 
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global and direct component of the solar radiation.   

The identification of the clear sky equivalent DNI periods from hourly values of DNI 

in (Larrañeta et al 2017-a) is based on the fit of a clear sky envelope to the hourly 

values day by day and then, by the comparison of the differences between the means, 

the slopes and the lengths of the measured and theoretical clear sky curves. 

Identifying clear sky equivalent DNI periods from hourly values of DNI could be 

useful for other applications related to the solar radiation further than the synthetic 

generation of solar data, such as the on-site adaptation of satellite derived data and 

the evaluation of solar systems performance degradation.  

The modifications of the Fernández-Peruchena et al. (2015) methodology (ND 

model) are focused on the characterization of the daily profiles in terms of energy, 

variability and distribution. 

The ND model presents better results in terms of frequency distribution of the 1-min 

DNI synthetic data than the SA model. With respect to the RRs and the NRMSD of 

the thermal power produced in a PT plant with a common configuration, the SA 

model performs better. These results suggest that the similarity in terms of frequency 

distribution of the synthetic solar radiation dataset with the measured dataset alone 

does not provide more accurate results in terms of the estimation of the power 

produced by a CSP plant, but taking into consideration other features like a proper 

characterization and reproduction of the intra-daily variability may lead to more 

accurate results in this terms. 

Both models show satisfactory results for CSP plants performance evaluation 

considering that the uncertainties involved in this subject (DNI measurements 

uncertainties, assumptions taken in CSP modelling, etc.) are greater than the average 

daily NRMSD value obtained for the locations under study (0.9% for the SA model 

and 3.4% for the ND model). The SA model could be used when accurate hourly 

DNI values are available at the site. Alternatively, the ND model could be used when 

the cloud transients are roughly characterized at hourly scale, even if the hourly DNI 

series are not precise at the site. This may be the case of the evaluation of operating 

strategies or the optimization of storage systems.  

This research shows, for the first time, the generation of 1-min DNI series in different 

locations without any local adaptation or calibration. The sites selected are located at 

different climates and latitudes, supporting the feasibility of a global applicability of 

the methodologies.  
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Future improvements are focused in the ND model since we understand it has a 

greater field of applicability. It can be used when daily information of the DNI 

profiles is available and it reproduces cloud transients that have actually happened. 

Future improvements of this method should focus on the following issues: 

 Improvement in the characterization of the variability of the solar radiation. 

A possible approach is to use two indexes: one giving information about the 

number of fluctuations and the other giving information about the 

amplitude of the fluctuations.  

 The model performance should also improve by training the models with 

data from different climates. We could generate a database of normalized 

profiles for each of the Köppen classification climates. When a downscale 

were required, we could use the normalized profiles of the same Köppen 

climate to generate high temporal resolution solar radiation data.  

 Clear sky assessment on a daily basis: Once the most similar days to be 

downscaled have been selected, we should perform a daily assessment of 

the clear sky envelope that minimizes the differences between the available 

1-h set and the synthetically generated 1-min set in terms of energy. To that 

end we could solve an optimization problem where the cost function to be 

minimized should be the difference between the cumulative daily value of 

the measured and synthetic set depending on the A-B parameters of the 

clear sky model for a given day.  
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