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JOHN’S ELLIPSOID AND THE INTEGRAL RATIO OF A
LOG-CONCAVE FUNCTION

DAVID ALONSO-GUTIERREZ, BERNARDO GONZALEZ MERINO, C. HUGO JIMENEZ,
RAFAEL VILLA

ABSTRACT. We extend the notion of John’s ellipsoid to the setting of integrable
log-concave functions. This will allow us to define the integral ratio of a
log-concave function, which will extend the notion of volume ratio, and we
will find the log-concave function maximizing the integral ratio. A reverse
functional affine isoperimetric inequality will be given, written in terms of this
integral ratio. This can be viewed as a stability version of the functional affine
isoperimetric inequality.

1. INTRODUCTION AND NOTATION

Asymptotic geometric analysis is a rather new branch in mathematics, which
comes from the interaction of convex geometry and local theory of Banach spaces.
From its beginning, the research interests in this area have been focused in un-
derstanding the geometric properties of the unit balls of high-dimensional Banach
spaces and their behavior as the dimension grows to infinity. The unit ball of a finite
dimensional Banach space is a centrally symmetric convex body and some of these
geometric properties include the study of sections and projections of convex bodies,
which are also convex bodies. However, when the distribution of mass in a convex
body is studied, a convex body K is regarded as a probability space with the uni-
form probability on K and then the projections of the measure on linear subspaces
are not the uniform probability on a convex body anymore and the class of convex
bodies is left. Nevertheless, as a consequence of Brunn-Minkowski’s inequality, we
remain in the class of log-concave probabilities, which are the probability measures
with a log-concave density with respect to the Lebesgue measure. It is natural
then, to work in the more general setting of log-concave functions rather than in
the setting of convex bodies and a big part of the research in the area has gone
in the direction of extending results from convex bodies to log-concave functions
(see, for instance, [AKM], [FM], [AKSW], [KM], [C], [CE]), while many of the open
problems in the field are nowadays stated in terms of log-concave functions rather
than in terms of convex bodies.
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In [J] John proved that, among all the ellipsoids contained in a convex body
K, there exists a unique ellipsoid £(K) with maximum volume. This ellipsoid is
called the John’s ellipsoid of K. Furthermore, he characterized the cases in which
the John’s ellipsoid of K is the Euclidean ball BY. This characterization, together
with Brascamp-Lieb inequality [BL], led to many important results in the theory of
convex bodies, showing that, among centrally symmetric convex bodies, the cube
is an extremal convex body for many geometric parameters like the Banach-Mazur
distance to the Euclidean ball, the volume ratio, the mean width, or the mean
width of the polar body, see [B], [SS|, [Ba]. The non-symmetric version of these
problems has also been studied, see for instance [S], [Lel, [Pal], [IN], [Schi].

A function f : R™ — R is said to be log-concave if it is of the form f(x) = e~¥(*),
with v : R” — (—o0, +00] a convex function. Note that log-concave functions are
continuous on their support and, since convex functions are differentiable almost
everywhere, then so are log-concave functions. In this paper we will extend John’s
theorem to the context of log-concave functions. We will consider ellipsoidal func-
tions (we will sometimes simply call them ellipsoids), which will be functions of the
form

£%(z) = axe(a),
with a a positive constant and xg the characteristic function of an ellipsoid &, i.e.,
an affine image of the Euclidean ball (€ = ¢+ T'BY with ¢ € R” and T € GL(n),
the set of linear matrices with non-zero determinant). The determinant of a matrix
T will be denoted by |T'|. The volume of a convex body K will also be denoted by
|K|. The trace of T will be denoted by tr(T).

Given a log-concave function f : R — R, we will say that an ellipsoid £¢ is
contained in f if for every z € R", £%(x) < f(x). Notice that if £* < f, then
necessarily 0 < a < || f|le and that for any ¢ € (0, 1]

Elfllee < 7
if and only if the ellipsoid £ is contained in the convex body
Ki(f) ={x € R" : f(z) 2 t][flloc}-

If f = xx(z) is the characteristic function of a convex body K, then an ellipsoid &£
is contained in K if and only if £ < f for any ¢t € (0, 1]. In Section 2] we will show
the following:

Theorem 1.1. Let f : R™ — R be an integrable log-concave function. There exists
a unique ellipsoid E(f) = Ellfl for some ty € (0,1], such that
e E(f)<f

° 8(f)(x)dx=max{ Ex)dx : E° gf},
R Rn
We will call this ellipsoid the John’s ellipsoid of f.

The existence and uniqueness of the John’s ellipsoid of an integrable log-concave
function f will allow us to define the integral ratio of f:

Definition 1.1. Let f : R™ — R be an integrable log-concave function and E(f) its
John’s ellipsoid. We define the integral ratio of f:

Jon f(z)da )%.

““m‘(@aﬂmm
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Remark. This quantity is affine invariant, i.e., I.rat(f o T) = I.rat(f) for any
affine map 7. When f = xx is the characteristic function of a convex body then

1
ILrat(f) = v.rat(K), the volume ratio of K (Recall that v.rat(K) = (%) ",
where £(K) is the John’s ellipsoid of K).

In Section [B] we will give an upper bound for the integral ratio of log-concave
functions, finding the functions that maximize it. Namely, denoting by A,, and B[,
the regular simplex centered at the origin and the unit cube in R”, and by || - ||k
the gauge function associated to a convex body K containing the origin, which is
defined as

|||k inf{A >0 : z € AK},

we will prove the following
Theorem 1.2. Let f : R™ — R be an integrable log-concave function. Then,
Lrat(f) < I.rat(g.),

where g.(x) = e~ I#lan=—c for any c € A™. Furthermore, there is equality if and only
if W = gc.oT for some affine map T and some ¢ € A™. If we assume f to be
even, then

Lrat(f) < Lrat(g),

where g(x) = e lelime  with equality if and only if m =goT for some linear
map T € GL(n).

In order to do so we will prove a characterization of the situation in which the
John’s ellipsoid of an integrable log-concave function is £(f) = (By)®l/ll= In such
case we will say that a log-concave function is in John’s position.

The isoperimetric inequality states that for any convex body K the quantity
|0K]

n—1

is minimized when K is a Euclidean ball. This inequality cannot be reversed

[K| ™=

in general. However, in [B], it was shown that for any symmetric convex body K,

there exists an affine image T K such that the quotient % is bounded above
TK| n

by the corresponding quantity for the cube BZ . If we do not impose symmetry
then the regular simplex is the maximizer. This linear image is the one such that
TK is in John’s position, i.e., the maximum volume ellipsoid contained in K is the
Euclidean ball. The quantity studied in the isoperimetric inequality is not affine
invariant but in [P], a stronger affine version of the isoperimetric inequality was
established. Namely, it was shown that for any convex body K

n

K[ [0 (K| < | B3| [T (B3)]

where IT*(K), which is called the polar projection body of K, is the unit ball of the
norm ||z{|r=(xy = |z|| P+ K|, being P, 1 K the projection of K onto the hyperplane
orthogonal to z. This inequality is known as Petty’s projection inequality and there
is equality in it if and only if K is an ellipsoid. Furthermore, following the idea in
the proof of the reverse isoperimetric inequality, a stability version of it was given
in [A], showing that for any convex body K

n=1 1 1
(1) K| [IT°(K)|" =

n—1 1
— U.Ta;t(K)| 2| | ( 2)'
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The isoperimetric inequality and Petty’s projection inequality have their func-
tional extensions. Namely, Sobolev’s inequality, which states that for any function
f in the Sobolev space

of
8:@»

WhHL(R™) = {f € LY(R") : € L'(R™) w}
we have

nid
IV £l = n| B3| (| f] =

n—1’

and the affine Sobolev’s inequality, proved in [Z], which states that

2 n I* n < —_—,
(2) ”f”n,l' (O < 2|Bg_1|

where IT*(f) is the unit ball of the norm
lellnecoy = [ 19 4a).)lds

We would like to recall here the fact that W1 (R™) is the closure of Cf,, the space of
C* functions with compact support, [M]. These inequalities are actually equivalent
to their geometric counterparts.

In Section @] we will follow the same ideas to obtain functional versions of the
reverse isoperimetric inequality and a stability version of the affine Sobolev inequal-
ity. We will prove the following extension of (), which is a reverse form of () in
the class of log-concave functions.

Theorem 1.3. Let f € WHY(R™) be a log-concave function. Then
o [IT*(f)|
Il T COT 1
n—1

( B3| ) T e s tos( 4 ) T e n-1 '
2[By | Tan f(‘lc];«!l;o W Jan f(@)da " I.rat
e 114 (gD ) " Lrar(s)

Remark. By (@) the left-hand side term is bounded above by 1. This lower bound
is affine invariant, and if f = yx is the characteristic function of a convex body,
then we recover inequality ().

Remark. Let us note that if f]R" f(z)dz =1 the previous inequality turns into

* 1
SR £10)).\ 0

|B7 | ’
2B; 7

which along with the affine Sobolev inequality ([2]) provides us with a bound for the
power entropy of f of the following form

2
H(f) 1= e Jen F@)log f(a)de < (ﬂ;ﬁf(f)) ,

For other recently studied connections between Information theory and convex
geometry we refer to [BMI], [BM2] and references therein.
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Let us introduce some more notation: If K is a convex body, r(K) will denote
its inner radius, i.e., the radius of the largest centered Euclidean ball contained in
it. For a set A C R™, the positive hull of A is the convex cone

posA = {Z)‘iwi DA >O,xi€A,n€N}.

i=1
Given a convex set £ C R™ and = € OF, the boundary of E, the normal cone of E
at x is defined as

NE,z)={ueR" : (z —xz,u) <0,Vz € E}.
The support cone of E at x is the cone
S(E,x) =cl | J AE - 2).
A>0

The following polarity relation holds:
N(E,z)* = S(E,z),
where the polarity relation is the polarity of convex cones
C*={yeR": (y,z) <0, Vo € C}.

If H is an affine subspace through x, then the normal cone to E N H at z, relative
to the subspace H is

Ny(ENnH,z)={u€ Hy : (z—z,u) <0,Vz€ ENH},
where Hj is the linear subspace parallel to H. The similar duality holds
Ny(ENH,z)*H = S(ENH,z),.
where the duality is taken with respect to the linear subspace Hy. It happens that
(3) Ny(ENH,z) = Py,N(E,x),

where Py, denotes the orthogonal projection onto the linear subspace Hy. We refer
the reader to [Sch] for these and other known facts on convex cones.
For any function f : R™ — R and any € > 0, we will denote f. the function given

by
€T\ €
fo@) =1 (%)
If f and g are two log-concave functions, then their Asplund product is the log-
concave function

Frglz) = max f(x)g(y) = max f(z —y)g(y).

2. JOHN’S ELLIPSOID OF A LOG-CONCAVE FUNCTION

In this section we show the existence and uniqueness of the John’s ellipsoid of
an integrable log-concave function and show that the integral ratio of a function is
an affine invariant.

For any ellipsoid £%, its integral is a|€|. Since for any t € (0, 1] the convex body
K.(f) has a unique maximum volume ellipsoid & (f) = E(K(f)), then

max{ ENx)dx : E* < f} = max ¢y (t),
RTL

te(0,1]
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where

Gy (t) = tl| flloolE(S)]-
Thus, in order to prove Theorem[[ T we need to prove that the function ¢(¢) attains
a unique maximum in the interval (0, 1] at some point ty. Then the ellipsoid £(f)
will be the function

E(f) (@) = toll fllooxe,, (5) (@) = (o (£)1 1= (2),

where &, (f) is the John’s ellipsoid of the convex body Ky, (f). If f = xx with K
a convex body then the John’s ellipsoid of f will be the characteristic function of
the John’s ellipsoid of K £(K)! = Xe(x)- We will prove that ¢ attains a unique
maximum in the interval (0, 1]. First we prove the following:

Lemma 2.1. Let f be a log-concave function and let ¢5 : (0,1] — R defined as
before. For any to,t1 € (0,1] and any X € [0, 1]

Or(to ) = 05 (t0)' A op(t2)™.
Proof. Since f is log-concave
{geR": fl@) 2670 fle} 2 L—=N{z eR™ : f(x) = to]flo}
+ Mz eR": f(z) =t/ flle}-
Thus, if &,(f) = a; + T; By with T; a symmetric positive definite matrix, ¢ = 0,1,

then
{zeR": f(@) 2570 fllc} 2 (1= N)E,(f) + A&, (f)
= (1 — A)CLO + )\(Zl + (1 — A)TtoBg + ATtlBg
(4) 2 (1 =XNag+ day + (1 = N1y, + ATy, ) By
Taking volumes, since by Minkowski’s determinant inequality, for any two sym-
metric positive definite matrices A, B we have that [A + B|w > |A|% + |B|# with

equality if and only if B = sA for some s > 0, we obtain
1

Eaan (DT > (1= \To + ATy|=| B3| =
> (1= N)[To|» + ATy[7)|B3»
= (L= V& (NI + M (DI
(5) > & (NI 1€ (I,

where the last inequality is the arithmetic-geometric mean inequality. Conse-
quently,

(€ (N = Eo (NIMEL NI
and multiplying by t(l)f)‘t{‘HfHoo

Gr(th M) > dr(to) P s(t).

Now, Theorem [T will be a consequence of the following

Lemma 2.2. Let f : R™ — [0,+00) be an integrable log-concave function and let
o5 :(0,1] = R defined as before. Then ¢y is continuous in (0,1] and

li t) =0.
Jlm ¢(t)

Consequently ¢y attains its mazimum value at some to € (0,1]. Furthermore, such
to 1S5 unique.
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Proof. In order to show the continuity of ¢ in (0, 1] from the right it is enough to
show that for any to € (0,1) , if dy,(¢) is the smallest number such that

Kto-i-a(f) - Kto (f) c dto (E)Kto-i'a(f)?

then lim, o+ dy,(¢) = 1, since then

[Erot+e (N < €k ()] < iy (€)"[Ero 42 ()]
and consequently
Hm &y 1< (f)] < [ (f)]
e—0t
and )
Jim (e = lim, sl ()] = 1€ (1)
Let us see then that lim,_,o+ di,(¢) = 1.

Notice that for every € Ky, (f)\ lim._0+ K¢,+(f) we have that f(z) = to|| f]| -
Assume that lim, o+ dy,(¢) is not 1. Then there exists a segment [xo,z1] and a
point ¢ € (zg,x1) such that [zg, ] is contained in Ky, (f)\ lim, o+ Kiy4e(f) and
x1 € Ky, (f) for some t; > to. Then, since f is log-concave f(c) > f(zo) = to,
which contradicts the fact that [xo, ¢] is contained in Ky, (f)\ lim._ o+ Ktyre(f).

A similar argument proves that ¢ is continuous from the left.

Let us now prove that lim, .o+ ¢(t) = 0. Let ¢ > 0. Since f is integrable, we
can find R(g) big enough such that

/ Fx)de < <.
R"\R(c) B} 2

;e have that

NOW, for any t < W

tlf oo Ke (A = tllfllocl Ke(f) N R(e) B | + tl fll ool K (f)\R(2) BS |
< tlflelrC) B+ oo
Ko(f)\R(e)Bg
< E—F/ f(z)dx
2 Jro\R(e)By
< E—FEZE
2 2
Then,
< li < li =
0 < lim #l|flloo|€e(f) < lm t]lf]lool K2 (f)] =0
and so
lim ¢/(t) = 0.
Jm ¢ (t) =0

Consequently ¢ attains its maximum for some to € (0, 1]. Let us prove that such
to is unique. Assume that there exist two different ¢; < o at which ¢ attains its
maximum. Then, by Lemma 2T for any A € [0, 1]

dr(t17M5) = dp(t) s ()
Thus, for any A € [0, 1]
€y (N7 = € (NI €6 ()]

and all the inequalities in (] are equalities. This implies that T}, is a multiple of
T}, and so the ellipsoids &, and &, are homothetic. Besides, since there is equality

2
n
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in the arithmetic-geometric mean inequality both ellipsoids have the same volume
and, &, is a translate of &, . Thus, for any A € [0, 1] we have

€2 (F)] = 1€, ()]

But then ¢¢(t2) > ¢ (t1), which contradicts the assumption of the maximum being
attained at two different points. O

Now that we have established the existence and uniqueness of the John’s ellipsoid
of an integrable log-concave function f, we can define the integral ratio of f as

rrat() = (0 ) = (gLl >

fRn E(f)(x)dx maXie(0,1] o (t)

The integral ratio of a function is an affine invariant, i.e., for any affine map T
we have that I.rat(foT) = I.rat(f). This is a consequence of the following lemma.
Lemma 2.3. Let f : R™ — R be an integrable log-concave function and let T' be an
affine map. Then for any t € (0,1]

E(foT™ 1) =TE&(f).
As a consequence

dror-1(t) = [T|¢s(t),
the mazimum of ¢sor—1 and ¢y is attained for the same tg, and

E(foT™H=E&(f)oT .

Proof. Notice that
Ey(foT™!) ={z €R" : f(T'2) 2 t|flloc} = T{z €R" : f(z) 2 t[|flloc} = TK:(f)-
Consequently

E(foT ) =TE(f).

O

3. JOHN’S POSITION OF A LOG-CONCAVE FUNCTION AND MAXIMAL INTEGRAL
RATIO

A log-concave function will be said to be in John’s position if £(f) = (By)tl/ll=
for some ty € (0,1]. By Lemma 23] for any log-concave integrable function there
exists an affine map T such that f o7 is in John’s position. In this section we will
give a characterization for a function to be in John’s position. As a consequence
we will obtain an estimate for the function ¢(t) that will allow us to give an upper
bound for the integral ratio of any integrable log-concave function. We will follow
the ideas in [GS] and prove the following

Theorem 3.1. Let f : R® — R be an even integrable log-concave function and
to € (0,1]. Assume that (By)tlflle < f. Then the following are equivalent:
1. £(f) = (By)tollflles,
2. There exist
o {u} COK, NS 1<i<m,1<j<m(d)
. {)\i}ﬁp {Mij};n:(lz); with )\i,,uij >0 and

o {a;}™,, with a; € [to d%r(Kt)‘t:to ,to ,#%T(Kt)‘t:to}
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with1<m <1+ "("+1) and n < m/(i) < "("+1 for any 1 < i < m, such
that

=1
and for any t € (0,1], and any 1 < i <m if TBY C K(f)

m’ (i)
t
—a; log (%>+ E pig{Tuij, wig) < E Hig -
=1 =1

Proof. Any ellipsoid £ C R" is & = T'BY with T a symmetric positive definite
matrix. For any symmetric positive definite matrix T', we will call zp € R™ the
vector

T = (tllu e ,tln,tgl, e ,tgn,tnl, . ,tnn)t.
Notice that the set Cspq = {zp : T symmetric positive definite} is a convex cone

n(n+1)
2

contained in a linear subspace L C R™ of dimension . We will consider the

following two sets in R x L:
E={(s,x7) € [0,400] x L : T € Cspa, (TBy)* Wl= < 11
and
Cy = {(s,zp) € [0,+00] X L : T € Cypa, e *|T| > to}.

First of all, notice that both of them are convex. In order to show that F is convex
set let (s;,2r1,) € E, i = 1,2. From the definition of F, this means that

K, ., D T,BY.
By (@) we get that
Ke*(lfk)slfksz 2 ((1 - )‘)Tl + )‘TQ)BS

from which ((1 — A)s1 + As2, T(1—x)1,4213) € E.

In order to see that C; is convex let (s;,x7,) € C1, i =1,2. Then e~ *
i = 1,2. Minkowski’s determinant inequality and the arithmetic-geometric mean
imply that

(1=X)s1+Aso 1 (1=X)s1+Asg

e A= N AT > e (L= M| E A+ AT )

_(A=X)s1+Aso (1— )\)
T

>e T T

1—X A
_ ( 751|T1) n ( 752|T2|)n
> 1,

from which we conclude ((1 — A)s1 + As2, (1 — N1 + A\T2) € Cy.

Second, notice that if s # 0 and e~*|T'| = to, then the point (s, 1) belongs to the
boundary of C7, which is smooth around it. Then there exists a unique supporting
hyperplane of C; at (s,xr). Since the function g(s) = e® is convex, its graph is

1
above its tangent line at the point (—logto, ¢, ). Thus, for any (s,zr) € C1,
(~Lar), (7)) = —s+u(T) 2 —s+n|T|x
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1,
—s+ntyenr

Y%

—1
n

1 1 it
> —sH4nty |ty "+ (s +logto)

n
= logto+n
= <(_17$1n)7(_10gt07$1n)>'

Consequently, the supporting hyperplane to C; at (—logtg,zy,) is orthogonal to

the vector (—1,z5,). If ¢ = 1, then the supporting hyperplane at the point
(=logto,zr,) = (0,2z1,) is not unique. Notice that in such case, for any a > —1

<((Z, IIn)? (Sv ‘TT)>

as + tr(T) > as + n|T|%

1

> as—l—ntge%
1 1
> as+nty <1+—(s—|—1))
n
(a+1)s+n
n

v

<(CL, IIn)? (05 Iln)>

and if @ < —1 then there exist some s > 0 such that en <1 — % Then
= as+ ne%

< n

<(a7 xln)’ (07 xln)>

Thus, if tg = 1, a hyperplane orthogonal to a vector (a,z,) through (0,27, ) is a
supporting hyperplane to C; if and only if @ > —1. Besides,

P N(C1,(0,25,)) = Nt (Cr N, (0,21,)) = pos{—z1, }.

<((Z, IIn)? (Sv E%I[n»

(The proof of the last inequality can be found in the proof of the geometric case
in [GS]). Thus all the supporting hyperplanes to Cy at (0,zj,) are hyperplanes
orthogonal to some vector (a,zy,) with a > —1.

Now, let us assume that £(f) = (By)tl/ll=. Then, since £(f) is unique,
(—logto,xy,) is the unique common point to £ and C;. Since both sets are convex
there exists a hyperplane through (—logtg,zs, ) separating them. If ¢y # 1 this
hyperplane has to be orthogonal to the vector (—1,xy, ). If to = 1, this hyperplane
is not necessarily unique but it has to be orthogonal to some vector (a,xy,) with
a > —1 and for every (s,zr) € E,

((a,x1,), (s,z7)) =as+tr(T) <n={(a,z5,),(0,25,))-

Thus, if a vector (a, z1, ) verifies this condition for any (s, zr) € E, so does (—1,zy,)
and in any case, the vector (—1,zy,) belongs to N(E, (—logto,z,)), the normal
cone to E at (—logto, z, ).

Notice that

En({-logte} x L) = {(—logto,zr) : T € Cspa, T By C K;,} = {—logto} x Ey,
where

Ey = {erel:TeCyy,TBECK,)
= {zr €L : T € Cspa, (T'u,v) < hg, (v)Vu,v € sy
= {IT el :Te¢ Cspd7 <$T,Iuvt> < hKfo (1)) V’UJ,U S Sn_l}.



JOHN’S ELLIPSOID AND THE INTEGRAL RATIO OF A LOG-CONCAVE FUNCTION 11

Therefore Ey is given by the intersection of the convex cone Cgpq with a family of
halfspaces H, , that change continuously with u,v € S"~!. Then the translation
of the support cone 1, + S(Eo, z1, ) is the intersection of Cspq with the halfspaces
that pass through =,

vy, +S(Eo,zr1,) = {z7 € L : (T'u,v) < hg, (v)Vu,v € S st (u,v) = hre,, (v)}

Since By C Kj,, the condition (u,v) = hg, (v) only occurs when u = v and
u € S" 1 NOK;, and then

rr, +8(Eo,zr,) = {zr €L : T € Cspa,(Tu,u) < hg, (u), Yu € S" MoK, }
= {ar €L :TE€CCspa, (xr,Tyut) <1,Vue S in 0Ky, }

Then the dual cone of S(Ey, xy, ) is
N(Eo,zr,) = pos{Tyy: : u€ S" 1 NIK,}
and so
Nt ((E N (—logtoer + et ), (—logto,xr,)) = {0} x pos{ayy: : u€ S" ' NIKy,}.
Since, by @),
Nes (BN (—logtoer + el), (—logto,1,)) = P, .+ N(E, (—logto, z1,))

we have, by Caratheodory’s theorem, that for any vector (o, xT) € N(E,(—logty, g,
there exist some positive {u,; }j:1 and some vectors {u; }j:1 in S"~1 N 0K, with

1<m < 2% guch that

(o, 1) Zﬂj Tyjut

Now, by Caratheodory’s theorem again, there exist some vectors {(a;, z7,)}™, €
N(E,(—logtg,z1,)) and some positive numbers {\;}7,, with 1 <m <1+ w
such that

m m' (4)
(=Lzr,) = Z)\i(aiwai) Z (cvi, Z Hij Ty ut,)
i=1 i=1
Equivalently, there exist some positive {\; }7%, { ,u”} , somnie vectors {u”} )

in S"~! N 9K, and some numbers {a;}™; such that

=1 j
and for any t € (0, 1], and anylgzgmifTBQCKt

—oy 10g( ) Z uu TT Tyt Z Mij-
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Since for any vector uw and any symmetric positive definite 7" we have that

(Tu, u) E tijuitt; = (T, Tyt ),
3,j=1

the last inequality is the same as

m' (i) m/(3)
t
—a; log (%) Zl iz TUU,’U,U < Z
] i=1
Finally, notice that since r(K;)BY C K, then if a vector (o, E;n:/l Tyt ), With

J

u; € S"~1 belongs to the normal cone N(E, (so,xr,)), it has to verify that

t
—alog <—) +7r(K) <1
to

and so for any ¢t > tg

a 2 ’I”(Kt) -1
log (%)
and for any t < tg
S T‘(Kt) —1
log (%)
Thus, a belongs to the interval
d* -
tQ—T‘(Kt) tQ—T‘(Kt)
[ dt t—to dt t—to

and so all the «a; belong to this interval.
Now assume that 2 holds. Then, since (By)®llfl < f we have that (- logto, 1, ) €
E and since the vectors u;; € 0Ky, NS" 1, (—logto,zas,) ¢ E for any A > 1. Thus
(—logto,zr,) € OF and we can consider the normal cone of E at (—logto,xr, ),
N(E,(—logto,z1,)). The conditions in 2 say that
m' (i)

m
(_]"Iln) = Z)‘i(o‘ia Z ,uij'ruijufj)a
i=1 j=1

with (v, Y50 (l) Hig Tt ¢ )€ N(E,(—logty,zy,)) andso (—1,zy,) € N(E, (—logto, zr,))-
Indeed, for any t € (0, 1] and & = T BY such that (—logt,zr) € E we have that

m m/ (i)
(mlogt,xr), (~1,1,)) = > A(—ailogt+ Y pij(wr, Ty ue )
i=1

j=1
m m’ (1) m m' (i)

< Z)\Z(Z —azlogto +Z Z )\zllfw
=1 =1 i=1 j—=1

= n+logty

= <(_]‘Ogt0’xln)7(_17x1n)>'
Thus, the supporting hyperplane to Cy at (—logtg, 25, ) orthogonal to (—1,x;, ) is
also a supporting hyperplane to E at (—logtg,zy,) and so this is the unique point
in the intersection of Cy and E. Thus, £(f) = (By)tollflle. O
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We also have a version of this theorem when we do not assume f to be even:
Theorem 3.2. Let f : R™ — R be an integrable log-concave function and ty € (0,1].
Assume that (By)tolflle < f. Then the following are equivalent:

1. £(f) = (By)toll/ll< |
2. There exist
o {u;j}j=1 COK,, NS 1, 1<i<n, 1<j<m(i)
o (N}, {mij e (1), with Ai, i; > 0 and
o {a;}1",, with a; € [to T r(Ky) ‘t t ,to dt, r(Ky) ‘t t0i|
with , 1 <1+ "(n+3) andn <m/ (1) < n("+3 for any 1 < i < m, such that

1
and for any t € (0, 1] nd any 1 <i<m if c+TBY C Ki(f)

—ailog ( > Z pigle,ugg) + Y pag(Tuig, i) < iy,

Proof. The proof follows the same lines as that of Theorem [3.1] but considering the
convex sets in R x R” x L

E={(s,c,xr) € [0,400] x R" X L : T € Cypa, (c+TBy)* I~ < 1}
and
C1 ={(s,¢c,zr) € [0,400] x R" x L : T € Cspae” °|T| > to}.

In this case the unique contact point between these sets will be (—logto,0,z7, ),
the normal vector to C; at it will be (—=1,0, 2y, ), and the projection of the normal
cone to E at it onto ey will be

P, (N(E, (~logto,0,a1,)) = {0} x pos{(u, ) - u € S"" ' NIK}.

e

d

Remark. From the proof of Theorem BIland Theorem 32 we deduce that if £(f) =
Etollflle then necessarily ty > e~™. Indeed, assume that £(f) = (By)tollfll=. Since
E is convex, for any A € (0,1), A(—logto,z1,) € E, (or \(—logto,0,z1,) + (1 —
A)(0,a,0) for some a in the non-symmetric case). Then

(A(=logto, x1,), (=1, 21,)) < ((=logto,z1,), (=1, 21,))
or, equivalently,
Alogty + An < logty + n,
which implies that logty +n > 0, which is equivalent to g > e

—n
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Corollary 3.3. Let f be an integrable log-concave function such that maxeo,1) ¢y (t) =
bf(to), i-e., its John’s ellipsoid is E(f) = &, (f)olfll. Then for every t € (0,1]

&) < (1—@(%)") € ().

Besides, if there is equality for every t € (0, 1], then for some ¢ € R™

E(f) = e + (1 ~log <%)_> £ (f).

Proof. By Lemma 23] we can assume that £(f) = (By)®l/l~. Then by Theorem
there exist

o {uij}j=1 COK, NS 1 1<i<m,n<j<m(i)
° {)\i}yila {/Lij};-n gz), with )\i, Wij > 0 and
o {a;},, with o; € [to T r(Ky) ’t to yto dt* r(Ky) ’t to}

Wthﬁmﬁl—k@andlgm(i)g@foranylgigm,suchthat

i )\iai = —1,
i=1

m ml(l)
Z Z )‘iﬂwul] =0
i=1 j=1
m m'(i)
I, = Z Z AiflijUij & Ugj,

J:
and for any ¢t € (0,1], and any 1 <i <m if ¢, + TBY C K,(f)
m/(d) m' (i)

- log< > Z Hij ct,u” Z Tu”,u” Z g -
- =

Multiplying the last mequahty by A; and summing in 7 we obtain that for any
te (0,1]if ¢, + TBY C K,(f)

log ( ! ) +tr(T)<n
to

log ( ) + n|T|
Thus, if £ C K(f) then

€= < (1 —log (%>n> €0 ()]

and so it happens for the John’s ellipsoid of K.(f), &(f). Besides, if there is
equality in this inequality there has to be equality in all the inequalities. Then

and so
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E(f) = ¢, + Ty By verifies that tr(T) = n|T|* and so it has to be a Euclidean ball.

Thus )
E(f) =it <1 g <%) ) £ ().

The maximizers of the integral ratio will be log-concave functions like the ones
defined in the following lemma. Let us study some of their properties

O

Lemma 3.4. For any ty > e~ ™ and conver body K C R™ with 0 € K, let
fK t[)(x) — e~ max{||z||K7(n+logto),O}.

Then
o Ki(fKty) = (1 —log (%);> Ky (frto)

E(frto) = <1 —log (%)n) Eto (K t0)
maXie(0,1] ¢fK,t0 (t) = ¢fK,t0 (tO)

_ wvrat(K) ! B (i)i "\T
Lrat(fr,) = 7%% (/0 (1 log = dt

Lrat(fr,,) is decreasing in to in the interval [e™", 1].
Proof. Notice that || fk i,lcc = 1. Then, by definition of K;(fx,i,)
Kilfxe) = {z€R": max{|zx — (n+logto),0} < — logt}

< (o)) (1) )

Consequently, for any ¢ € (0, 1]

Ki(fr1,) = (1 — log (%) n) Kty (frt0)-
E(fK o) = <1 —log <%> n) Eto (fr o)
S0 = 1 (1 ~tog () ) e 10)

Since the function g(z) = z(1 —logz) attains its maximum at © = 1, ¢y, (t)
attains its maximum at ¢ = ty. Consequently

no 1
Lrat(fie,)" = 7ﬁ0|5t0(f1<,t0)| o fr o (z)de

1 1
E |/| Ce
Ko (freto)| ( )
= 1-1lo dt
t0|5t0 fKto | 8 to

Then

and
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1 n
v.rat(K)™ t
_ #/ 1_1og<_ d.
to 0 to

Changing variables t = tge™*° we have
“+o0 1 n
Lrat(fru,)" = U.rat(K)/ (1 + —s) e %ds,
n

log to

3=

which is clearly decreasing in ¢g € [e™", 1]. O

Now, we have the following, which in particular, since I.rat(fpn~ +,) and I.rat(fan +,)
decrease in tg, implies Theorem

Theorem 3.5. Let tg € (0,1] and let f : R™ — R be an integrable log-concave
such that maxe(o,1) ¢ (t) = ¢y (to), i.e., its John’s ellipsoid is E(f) = E, (f)olFll=.
Then we have that

Lrat(f) < L.rat(fani,)

with equality if and only if W = fa,—ct, 0T for some affine map T and some
ce A" If f is even

Lrat(f) < Lrat(fpn )
with equality if and only if m = fBn t, 0T for some T € GL(n).
Proof. Let f: R™ — R be such that max;c(o,1) ¢y (t) = ¢y (to). Then

S S x)dx
Freti = T e T

1
- to|5f<to>|/ol ()l

1
= ——— | wvrat(K)"|Ep(¢)|dt
E ), Pt e )

t(A™)
v.ra / |5f ()[dt
t0|5j to)|

L vrat(Am)" / log (i) i@t
- to 0 to
= I.Tat(fAnyto)n.

Besides, if there is equality, all the inequalities are equalities and so v.rat(K;) =
v.rat(A™), which implies that K, = T3 A", for some affine map T; and |E;(t)| =

1 n
(1 — log (%) n> |€¢(to)|, which by Corollary B3] implies that the John’s ellip-

IN

1
soid of every level set () = ¢, + (1 — log (%)n) Er(to) and so T, = ¢ +

1
(1 —log (%) n> T for every t € (0,1]. Thus, we have that

1
Ki=c + (1 — log (;) ) TA™.
0
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By Lemma 23] we can assume without loss of generality that K;, = nA™. In
such case ¢, = 0. Then, calling ¢t = ¢™® and {yp = e~ *° we have that

—) K. .

By log-concavity, we have that for every s € [0, s¢]

P Ky + (1 - i) K
S0 So

_ (1_i)cl+(1+f_s_0)Keso
S0 n n

and then c,—s = (1 - %) c1. If s > s we have that

Ke-s =ce-s + (1—}—i —
n

Ke—s

V)

K. 2 2k, .+ (1 - S—O) K
S S

S S
= —Ocefs + (1 — —O) c1 + K.-s
S S

and also in this case c,-s = (1 — %) c1. Thus, for any s > 0
Koo (12 )t (142 - 2) Ko,
S0 n n

Consequently, ﬁ = ¢ () o T with T an affine map and

v(z) = inf{s:ze K.}
= inf{s X € <1—i)cl+(1+£—S—O)Keso}
S0 non
—s 1
= inf{s : x6£c1+(s+n—so)< ¢ 2 ——cl)}
So n S0
K, - 1
= inf{s : x—ﬁcle—l—(s—i—n—so)( e ——cl)}
S0 n S0
n
= max\{ ||z — —c; —(n—sp),0
%o (%KC*SO*%Q)

= max\ ||z + c1 — (n+logtp),0
log o (%Kto'f‘ﬁcl)
n
= max :v—i—l a1 — (n+logty),0
0og tO (An+ 1Oglt0 Cl)
Notice that for v to be well defined necessarily ¢ = #gtocl € A" and then there
exists ¢ € A™ such that
fo_ o~ max{||-—nell(an o~ (n+log t0).0} o
[1£lloo
or, equivalently,
[ o~ max{ ||l an—c)—(n+logto),0} o p

1fllee
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The same proof works in the even case. In the even case we know that ¢; = 0

for any t and then T} = (1 — log (%)

n

) T. Thus, we can assume without loss of

generality that K;, = nB], and then it implies that llfﬂ = fBnt,0T. 0

Finally, we will compute the integral ratio of this maximizing function in the
following lemma. We will do it for a whole class of functions that include the
maximizing one.

Lemma 3.6. Let a > 1 and f(x) = e I?I%. Then

n

Lrat(f) = (M> : vrat(K) ~vrat(K).

Proof. On one hand

N +oo +oo
/ e loli gy = / / e tdtde = / /1 e tdxdt
n o fal|e 0 to K
too n
- |K|/ thetdt = |K|T (1 + —) .
0 «
On the other hand, for any ¢ € (0, 1]
K= (- 1ogt)§K
and then,
1
&i(f) = (= logt)=E(K),
where £(K) is the John ellipsoid of K. Thus,
¢5(t) = t(~logt)=|E(K)|.
Let us find max;e (g,1) t(—log )« |E(K)| = max,e(o,+00) € *sa |E(K)|. Taking deriva-

tives we obtain that this maximum is attained at s = g and so

n

n N\a _n
e t(~log 1) *€(K)| = ()" e i),

Consequently

RI=

Lrat(f) = (M> vrat(K).

n

4. REVERSE SOBOLEV-TYPE INEQUALITIES

In this section we will prove Theorem[I.3l First we will define the polar projection
body of a function

Proposition 4.1. Let f : R™ — [0,400) be a log-concave integrable function. If
the following quantity is finite for every x € R™ then it defines a norm

x
foll =2l | maxs (52 ) o
oL SER ||
Besides, if f € WHY(R™) this norm equals

lall = | 1 5w).a)ldy.
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The unit ball of this norm is the polar projection body of f, which will be denoted
by 11 (f)-
Proof. Notice that

]

2|x|/ max f (y—|— si) dy
oL SER |I|
+oo T
= 2|x|/ {yE:CJ‘:maxf(y—i—s—)thdt
o sER ||
1
— Al [ P i
0

1
= 2 fl / [ ——

and it is clear that it is a norm.
If f € WHL(R™), for almost every t the boundary of K, is {z € R" : f(z) =
t|| flloo} and we have

1
20allfoc [ 1Pt

0
1 flloo
] / /
0 {f(z)=t}

||$HH*(f)

<V(y)7 %>’ dHy—1(y)dt

where v(y) is the outer normal unit vector to {x € R™ : f(x) >t} and dH,,_ is the
Haussdorff measure on the boundary of it. Since v(y) = ;ﬁzgl almost everywhere

the above expression is

/”floo /
0 {f (@)=t}

which, by the co-area formula, equals

[ 1wty

< Vi)

IV f()l x>} dH,, 1 (y)dt

We will use the following lemma to prove Theorem [[.3l

Lemma 4.2. Let f : R™ — R be a log-concave function and g(z) = (BY)*(z).
Then
li =
Jim frge(2) = f(2)
and
lim
e—0t

M = |Vf(z)|+ f(z)loga almost everywhere.

Proof. By definition of the Asplund product, since f is continuous,

lim f*g.(z) = lim sup f(z)a"xBy (g) = lim sup f(z —ey)a® = f(2).

e—=0t e—=0T z=g4y e—0t yEBY
Besides, if f is differentiable in z,

b DOV I L epe” = @) + f(a" = 1)

+ + n
e—0 9 e—0 yEBY 9
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€ € €
- - 1
= lim sup f(z = ey)a” = f(z)a + f(2) lim e .
e—0t ye By € e—0t €
Since
lim sup fle—ey) —fz) _ V()
e=0t ye By €
the previous limit equals |V f(z)| + f(z) log a. O

The following lemma was proved in [CE|]. We reproduce it here for the sake of
completeness:

Lemma 4.3. Let f :R™ — R be an mtegmble log-concave function. Then

e—0+t £

lim Jur J * Je(@)dz = g J = n | flx)de+ [ f(x)logf(z)dx
R™ R™

Proof. First of all, notice that if f(z) = e~"(*) with u a convex function, then
fofelz) = e rnlaie),

since, as u is convex, its epigraph epiwu is a convex set and then

. v .
Jnf @) eu (2) = inf ute) +eul)
= inf{p : (z,p) € (1 +¢)epiu}
z
= (1
1+ 1+e
Then,
f]Rn f * fE f]Rn

1
= ((1+s)” / e~ (@) gy / e“(z)da:>
E n n
<(1 + 5)" — 1> / 6_(1+8)u(1)d$
E n
Zeu(w) _
N / () (¥> .
n g

Now, taking limit when ¢ tends to 0 we obtain the result. The monotone conver-
gence theorem and possibly a translation of the function u allows us to interchange
limits. (|

Now we are able to prove Theorem

Proof. Since all the quantities in the statement of the theorem are affine invariant,
i.e., they take the same value for f and for foT, we can assume that f is in John’s
position. That is, £(f) = (By)%lfll=. On the one hand, by Jensen’s inequality

1

By ( [ |<Vf<z>,9>|dz) - da<9>> '
|B2|n (/sn 1/ (Vf(2),0)|dzdo(6 )>_1

-1
2 By )
By | Vf(z)|dz
By |+ (n 57| Rnl (2)]

I (f)|=

Y]
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On the other hand, let g(z) = £(f)(x). By Lemma [2] we have that

VA + £(2) logltollflle) = lim I X9 =1

e—0t £
< lim f*fa(z —f(Z)
e—0t £

By Lemma [£3] integrating in z € R™ we have that

)|dz )dz 1 o) <n )dz 2)1 z)dz
[owsela + [ restostlfle) <n [ e+ [ 5ees)

R’Vl
Then

[ iwsen<n [ i [ seon i

Il 1T ()
Consequently, <"—> is bounded below by

|1BE |
2501

. = fn r)log 0# %dx
(tol ) Lrat(F) (M) ; (ehif)
Ja 1777 () e TIRNE

, we can write tg = e~ *°" for some s¢ € [0, 1] and then

4 < Joon F(@)da: )nTlJrfnf(I)log(town ) du
Jon [777 (@)dee Il N

2t f@) |
f]R" 1l 11T

Since the maximum of g(s) = e *[(1 4+ s)A+ B] with A >0, B<0 and s > 0 is
1
Il I ()]

Since tg > e~ "

attained when s = _TF we have that B is bounded below by
(2\3" 1\)
n— -1
Jan f(z)log(%)%dz N fon f =
e Jgn f(x)dx ||f||go —Rn ITat(f)
Jgn [t (x)da
[l
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