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Turbo EP-based Equalization: a Filter-Type
Implementation

Irene Santos, Juan José Murillo-Fuentes, Eva Arias-de-Reyna, and Pablo M. Olmos

Abstract—We propose a novel filter-type equalizer to im-
prove the solution of the linear minimum-mean squared-error
(LMMSE) turbo equalizer, with computational complexity con-
strained to be quadratic in the filter length. When high-order
modulations and/or large memory channels are used the optimal
BCJR equalizer is unavailable, due to its computational complex-
ity. In this scenario, the filter-type LMMSE turbo equalization
exhibits a good performance compared to other approximations.
In this paper, we show that this solution can be significantly
improved by using expectation propagation (EP) in the estimation
of the a posteriori probabilities. First, it yields a more accurate
estimation of the extrinsic distribution to be sent to the channel
decoder. Second, compared to other solutions based on EP the
computational complexity of the proposed solution is constrained
to be quadratic in the length of the finite impulse response (FIR).
In addition, we review previous EP-based turbo equalization
implementations. Instead of considering default uniform priors
we exploit the outputs of the decoder. Some simulation results
are included to show that this new EP-based filter remarkably
outperforms the turbo approach of previous versions of the EP
algorithm and also improves the LMMSE solution, with and
without turbo equalization.

Index Terms—Expectation propagation (EP), linear MMSE,
low-complexity, turbo equalization, ISI, filter-type equalizer.

I. INTRODUCTION

MANY digital communication systems need to transmit
over channels that are affected by inter-symbol interfer-

ence (ISI). The equalizer produces a probabilistic estimation of
the transmitted data given the vector of observations [1]. Sig-
nificant improvements are found when the previous estimation
is given to a probabilistic channel decoder [2]. Equalization
can be done in the frequency domain to avoid complexity
problems associated with the inverse of covariance matrices
[3]. In addition, feeding the equalizer back again with the
output of the decoder, iteratively, yields a turbo-equalization
scheme that significantly reduces the overall error rate [4]–[6].

The BCJR algorithm [7] performs optimal turbo equal-
ization under the maximum a posteriori (MAP) criterion. It
provides a posteriori probability (APP) estimations given some
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a priori information about the transmitted data. However, its
complexity grows exponentially with the length of the channel
and the constellation size, becoming intractable for few taps
and/or multilevel constellations. In this situation, approximated
BCJR solutions, such as [8]–[11], can be used. They are
based on a search over a simplified trellis with only Me

states, yielding a complexity which is linear in this number
of states. However, the performance of these approaches is
quite dependent on the channel realization and the order of
the constellation used. In addition, these approximated BCJR
solutions degrade rapidly if the number of survivor paths does
not grow according to the total number of states. For these
reasons, filter-based equalizers are preferred [12].

A quite extended filter type equalizer in the literature is
based on the well-known linear minimum-mean squared-error
(LMMSE) algorithm [5], [13], [14]. This LMMSE filter is
an appealing alternative where the BCJR is computationally
unfeasible due to its robust performance with linear complex-
ity in the frame length, N, and quadratic dependence with
the window length, W. From a Bayesian point of view, the
LMMSE algorithm obtains a Gaussian extrinsic distribution
by replacing the discrete prior distribution of the transmitted
symbols with a Gaussian prior.

A more accurate estimation for the extrinsic distribution can
be obtained by replacing the prior distributions with approx-
imations of the probability distribution. This can be done by
means of the expectation propagation (EP) algorithm. The EP
approach projects the approximated posterior distribution into
the family of Gaussians by matching its moments iteratively
with the ones of the true posterior. This algorithm has been
already successfully applied to multiple-input multiple-output
(MIMO) systems [15] and low-density parity-check (LDPC)
channel decoding [16], [17], among others. It has been also
applied to turbo equalization in a message passing approach
as a way to incorporate into the BP algorithm the discrete in-
formation coming from the channel decoder [18], [19]. These
message passing methods reduce to the LMMSE estimation
if no turbo equalization is employed. A different approach is
proposed in [20], [21] under the name of block EP (BEP)
where, rather than applying EP after the channel decoder, it is
used within the equalizer to better approximate the posterior,
outperforming previous solutions.

The computational complexity of previous EP-based equal-
izers is large for long frame lengths or memories of the chan-
nel. Due to its block implementation, the complexity of the
BEP is quadratic in the frame length, becoming intractable for
large frames [21]. To overcome this drawback, a smoothing EP
(SEP) implementation is proposed in [22], but its complexity
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is cubic with the memory of the channel. Furthermore, due to
their iterative procedure, their computational load is roughly
S times the one of the LMMSE counterparts, where S is
the number of iterations used in the EP algorithm, typically
around 10 [15], [20], [21]. Besides, in both, BEP and SEP,
uniform discrete priors are assumed for the constellation of
the modulations when computing the EP approximations, even
within the turbo equalization iterations, while the use of
information from the decoder remains unexplored.

The results developed in this paper focus on improving these
previous EP-based equalizers [21], [22] both in computational
complexity and performance. First, we improve the prior infor-
mation used in the equalizer once the turbo procedure starts,
forcing the true discrete prior to be non-uniform in contrast to
the uniform priors used by previous EP-based approaches. As
a result, we achieve a performance improvement. Second, the
computational complexity of the EP algorithm is reduced to
roughly a third part of that in [21], by optimizing the choice
of EP parameters. Third, and most important, a new filter-type
EP solution is designed. This solution is constrained to have
linear complexity in the frame length and quadratic in the filter
length, i.e., it is endowed with the same complexity order than
the LMMSE filter.

The novel EP-based filter proposed outperforms the
LMMSE algorithm with a robust behavior to changes in the
constellation size and the channel realization, as the BEP and
SEP approaches do [21], [22]. In the experiments included, we
show that the EP filter solution greatly improves the LMMSE
solution with and without turbo equalization, specifically we
have 2 dB gains for a BPSK, 5 dB for the 8-PSK and 6-13 dB
for 16 and 64-QAM, respectively. In comparison with previous
EP approaches, the EP filter matches their performance with
BPSK constellations, and outperforms them with gains of 2
dBs for 8-PSK and 4-5 dBs for 16 and 64-QAM. We study
the extrinsic information transfer (EXIT) charts [5], [23] of
our proposal for a BPSK, where the EP-based filter achieves
the same performance as the BEP.

The scope of this paper encompasses time domain equal-
ization. Frequency domain equalization has received a lot of
attention as it usually achieves a complexity reduction for the
block-wise processing [3], [14], [24], [25]. For this reason,
derivation of a frequency domain counterpart for the proposed
EP based turbo-equalizer remains as a future research line.
Another promising research route is the application to MIMO
with channels with memory [3], [26], [27].

The paper is organized as follows. We first describe in
Section II the model of the communication system at hand.
Section III is devoted to develop a new implementation of the
EP-based equalizer considering non-uniform priors and studies
the optimal values for the parameters. In Section IV, we review
the formulation for the LMMSE filter in turbo equalization
and describe the novel EP filter-type solution proposed. In
Section VI, we include several simulations to compare both
EP and LMMSE approaches. We end with conclusions.

Through the paper, we denote the i-th entry of a vector u as
ui, its complex conjugate as u˚ and its Hermitian transpose
as uH. We define δpuiq as the delta function that takes value
one if ui “ 0 and zero in other case. We use CNpu : µ,Σq

to denote a normal distribution of a random proper complex
vector u with mean vector µ and covariance matrix Σ.

II. SYSTEM MODEL

The model of the communication system is depicted in
Fig. 1, including turbo equalization at the receiver. There are
three main blocks: transmitter, channel and turbo receiver.

A. Transmitter

The information bit sequence, a “ ra1, ..., aKsJ where ai P
t0, 1u, is encoded into the coded bit vector b “ rb1, ..., bV sJ
with a code rate equal to R “ K{V . After permuting the
bits with an interleaver, the codeword c “ rc1, ..., cV sJ
is partitioned into N blocks of length Q “ log2pMq, c “
rc1, ..., cNsJ where ck “ rck,1, ..., ck,Qs, and modulated with
a complex M-ary constellation A of size |A| “ M. These
modulated symbols, u “ ru1, ..., uNsJ, where each component
uk “ Rpukq ` jIpukq P A, are transmitted over the channel.
Hereafter, transmitted symbol energy and energy per bit are
denoted as Es and Eb, respectively.

B. Channel

The channel is completely specified by the CIR, i.e., h “
rh1, ..., hLsJ, where L is the number of taps, and is corrupted
with AWGN whose noise variance, σ2

w, is known. Each k-th
entry of the complex received signal y “ ry1, ..., yN`L´1sJ is
given by

yk “
Lÿ

j“1

hjuk´j`1 ` wk “ hJuk:k´L`1 ` wk, (1)

where wk „ CN
`
wk : 0, σ2

w

˘
and uk “ 0 for k ă 1 and k ą N.

C. Turbo receiver

When no information is available from the channel decoder,
the posterior probability of the transmitted symbol vector u
given the whole vector of observations y yields

ppu|yq 9 ppy|uqppuq (2)

where, assuming equiprobable symbols, the prior would be
given by

ppuq “ 1

M

Nź

k“1

ÿ

uPA
δpuk ´ uq. (3)

This prior matches with the definition given in [21] but, as
explained below, it is just valid before the turbo procedure.

In a turbo architecture the equalizer and decoder iteratively
exchange information for the same set of received symbols
[5], [14]. Traditionally, this exchange of information is done
in terms of extrinsic probabilities in order to improve conver-
gence and avoid instabilities. The extrinsic information at the
output of the equalizer (see Fig. 1), pEpuk|yq, is computed
so as to meet the turbo principle [13]. These probabilities,
pEpuk|yq, are approximated when the optimal solution is
intractable. We will denote the approximation by qEpukq.
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Fig. 1: System model.

The extrinsic distributions are demapped,

LEpck,jq “ log

ř
ukPA|ck,j“0 pEpuk|yqř
ukPA|ck,j“1 pEpuk|yq

, (4)

deinterleaved and given to the decoder as extrinsic log-
likelihood ratios, LEpbtq. The channel decoder computes an
estimation of the information bits, pa, along with the extrinsic
LLRs on the coded bits, computed as

LDpbt|LEpbqq “ log
ppbt “ 0|LEpbqq
ppbt “ 1|LEpbqq´LEpbtq. (5)

These extrinsic LLRs are interleaved, mapped again and given
to the equalizer as updated priors, pDpu|LEpbqq, which are
computed as

pDpuk|LEpbqq “
ÿ

uPA
δpuk´uq

Qź

j“1

pDpck,j “ ϕjpuq|LEpbqq,
(6)

with ϕjpuq denoting the j-th bit associated to the demapping
of symbol u. This process is repeated iteratively for a given
maximum number of iterations, T , or until convergence.
Note that in Fig. 1 we have included the computation of
the extrinsic information within the equalization and channel
decoding blocks. Note also that, once the turbo procedure
starts, the prior in (2) is conditioned on the input at the channel
decoder and the symbols are not equiprobable anymore. In this
situation, the posterior distribution computed by the equalizer
is given by

ppu|yq 9 ppy|uq
Nź

k“1

pDpuk|LEpbqq, (7)

The true posterior distribution in (2) and (7) has complexity
proportional to ML. When this complexity becomes intractable,
we will approximate it, denoting it as qpuq. In the following,
we omit the dependence on the input at the decoder, LEpbq,
to keep the notation uncluttered in the rest of the paper. It is
also uncluttered in Fig. 1.

III. NON-UNIFORM BEP TURBO EQUALIZER

EP [28]–[32] is a technique in Bayesian machine learning
that approximates a (non-exponential) distribution with an ex-
ponential distribution whose moments match the true ones. In
this paper, we focus on computing a Gaussian approximation
for the posterior in (7), which is clearly non Gaussian due to
the product of discrete priors in (6). As introduced in [21],
this is done by iteratively updating an approximation within

the Gaussian exponential family by replacing the non Gaussian
prior terms in (2) by a product of Gaussians1, i.e.,

qr`spuq 9 ppy|uq
Nź

k“1

p̃
r`s
D pukq

“ CN
`
y : Hu, σ2

wI
˘ Nź

k“1

CN
´
uk : m

r`s
k , η

r`s
k

¯
(8)

The marginalization of the resulting approximated Gaussian
posterior distribution for the k-th transmitted symbol and `-th
EP iteration yields

qr`spukq „ CN
´
uk : µ

r`s
k , s

2r`s
k

¯
(9)

where

µ
r`s
k “ m

r`s
k ` (10)

` ηr`sk hk
H
´
σ2
wI`Hdiagpηr`sqHH

¯´1 py ´Hmr`sq,

s
2r`s
k “ η

r`s
k ´ η2r`sk hk

H
´
σ2
wI`Hdiagpηr`sqHH

¯´1

hk,

(11)

H is the N` L´ 1ˆ N channel matrix given by

H “

»
——————————–

h1 0 . . . 0
...

. . . . . .
...

hL
. . . 0

0
. . . h1

...
. . . . . .

...
0 . . . 0 hL

fi
ffiffiffiffiffiffiffiffiffiffifl

(12)

and hk is the k-th column of H (see Appendix A for the
demonstration). At this point it is interesting to remark that (9)-
(11) are completely equivalent to equations (15)-(17) in [21].
Here we developed the values of the mean and variance for
each symbol while in [21] they were computed in block form.
The current description is simpler because we only include
the elements of the covariance matrix that are used during
the execution of the algorithm, excluding the non-diagonal
elements.

1Note that in [21] we used an alternative expression for (8) (an exponential
distribution with parameters γk “ mk{ηk and Λk “ 1{ηk).
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The mean and variance parameters in (8) are initialized with
the statistics from the channel decoder as

m
r1s
k “

ÿ

uPA
u ¨ pDpuk “ uq, (13)

η
r1s
k “

ÿ

uPA
pu´mr1sk q˚pu´mr1sk q ¨ pDpuk “ uq. (14)

Then, they are updated in parallel and iteratively by matching
the moments of the following distributions

q
r`s
E pukqpDpukq

moment
matchingÐÑ q

r`s
E pukqCN

´
uk : m

r``1s
k , η

r``1s
k

¯

(15)
where qr`sE pukq is an extrinsic marginal distribution computed
as2

q
r`s
E pukq “ qr`spukq{p̃r`sD pukq “ CN

´
uk : z

r`s
k , v

2r`s
k

¯
(16)

where

z
r`s
k “ µ

r`s
k η

r`s
k ´mr`sk s

2r`s
k

η
r`s
k ´ s2r`sk

, (17)

v
2r`s
k “ s

2r`s
k η

r`s
k

η
r`s
k ´ s2r`sk

. (18)

Note that this equalizer differs from the one in [21] because
we used different definitions for the true prior, pDpukq. In the
current manuscript, we considered non-uniform and discrete
priors, given by (6), during the moment matching procedure
in the equalizer, while in [21] uniform priors as in (3) were
considered by default even after the turbo procedure. To
increase the accuracy of the algorithm, a damping procedure
follows the moment matching in (15). We have defined an
algorithm, described in Algorithm 1, called Moment Matching
and Damping that runs these two procedures.

A. The nuBEP algorithm

Algorithm 2 contains a detailed description of the whole EP
procedure, where S is the number of EP iterations while T is
the number of turbo iterations. Note that the difference with the
approach in [21] lies in the definition of the prior distribution
used during the moment matching procedure. In [21], we use
an uniform distribution (denoted with the indicator function),
forcing the same a priori probability for the symbols, regard-
less of the information fed back from the decoder, during the
moment matching employed in the equalizer even after the
turbo procedure starts. In this paper, we refine the definition
of the prior used in the moment matching of EP algorithm as in
(6), considering non-uniform priors once the turbo procedure
starts. For this reason, we named this algorithm non-uniform
BEP (nuBEP) turbo equalizer.

2Note that in this paper we used qr`s
E pukq to denote the extrinsic marginal

distribution, while in [21] we denoted as qr`szkpukq and called it cavity
marginal function.

Algorithm 1 Moment Matching and Damping

Given inputs: µr`spk , σ
2r`s
pk , z

r`s
k , v

2r`s
k ,m

r`s
k , η

r`s
k

1) Run moment matching: Set the mean and variance of the
unnormalized Gaussian distribution

q
r`s
E pukq ¨ CN

´
uk : m

r``1s
k,new, η

r``1s
k,new

¯
(19)

equal to µr`spk and σ2r`s
pk , to get the solution

η
r``1s
k,new “

σ
2r`s
pk v

2r`s
k

v
2r`s
k ´ σ2r`s

pk

, (20)

m
r``1s
k,new “ η

r``1s
k,new

˜
µ
r`s
pk

σ
2r`s
pk

´ z
r`s
k

v
2r`s
k

¸
. (21)

2) Run damping: Update the values as

η
r``1s
k “

˜
β

1

η
r``1s
k,new

` p1´ βq 1

η
r`s
k

¸´1

, (22)

m
r``1s
k “ η

r``1s
k

˜
β
m
r``1s
k,new

η
r``1s
k,new

` p1´ βqm
r`s
k

η
r`s
k

¸
. (23)

if ηr``1s
k ă 0 then

η
r``1s
k “ η

r`s
k , m

r``1s
k “ m

r`s
k . (24)

end if
Output: ηr``1s

k ,m
r``1s
k

B. On the election of EP parameters

The moment matching condition explained in (15) deter-
mines the optimal operation point found by the EP approxima-
tion. By repeating this procedure, we allow to find a stationary
solution for the operation point. In order to avoid instabilities
and control the accuracy and speed of convergence, some EP
parameters are introduced. These parameters are the number
of EP iterations (S), a minimum allowed variance (ε) and
a damping factor (β). Based on recent studies, these EP
parameters can be further optimized [33]–[35]. Following the
guidelines in those papers and after extensive experimentation,
in the general case we found out that instabilities can be
controlled by setting3 ε “ 1e´8. Regarding the accuracy of
the algorithm, it is convenient to start with a conservative
value of the damping parameter β in Algorithm 2. The value
β “ 0.1 forces our algorithm to move slowly towards the EP
solution. Once the turbo procedure starts, we let the damping
parameter grow in order to speed up the achievement of the EP
solution, reducing the value of S from 10 in [21] to 3. A simple
rule for determination of β that fulfills this requirements and
leads to good performance is an exponential growth with
a saturation value of 0.7, i.e., β “ minpexpt{1.5 {10q, 0.7q,
where t P r0, T s is the number of the current turbo iteration.
With this criterion the number of EP iterations after the turbo
procedure starts is reduced to S “ 3, hence reducing the
computational complexity by more than a third.

3Parameters have been chosen to optimize turbo equalization [35].
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Algorithm 2 nuBEP Turbo Equalizer
Initialization: Set pDpukq “ 1

M

ř
uPA δpuk ´ uq for k “

1, . . . , N
for t “ 1, ..., T do

1) Compute the mean m
r1s
k and variance η

r1s
k given by

(13) and (14), respectively.
for ` “ 1, ..., S do

for k “ 1, ..., N do
2) Compute the k-th extrinsic distribution as in (16),
i.e.,

q
r`s
E pukq “ CN

´
uk : z

r`s
k , v

2r`s
k

¯
(25)

where z
r`s
k and v

2r`s
k are given by (17) and (18),

respectively.
3) Obtain the distribution
ppr`spukq 9 q

r`s
E pukqpDpukq and estimate its

mean µ
r`s
pk and variance σ

2r`s
pk . Set a minimum

allowed variance as σ2r`s
pk “ maxpε, σ2r`s

pk q.
4) Run the moment matching and damping proce-
dures by executing Algorithm 1.

end for
end for
5) With the values mrS`1s

k , η
rS`1s
k obtained after the EP

algorithm, calculate the extrinsic distribution qEpukq.
6) Demap the extrinsic distribution and compute the
extrinsic LLR, LEpck,jq, by means of (4).
7) Run the channel decoder to output pDpukq

end for
Output: Deliver LEpck,jq to the channel decoder for k “
1, . . . , N and j “ 1, . . . , Q

IV. FILTER-TYPE TURBO EQUALIZATION

A. LMMSE filter

In this subsection we review the formulation of the
LMMSE-based filter [5], [13], [14], modified to allow for
unnormalized transmitted energy and a different computation
of the extrinsic distribution. The LMMSE-based filter [5],
[13], [14] estimates one symbol per k-th iteration, uk, given
a W-size window of observations, yk “ ryk´W2 , ..., yk`W1sJ,
where W “ W1`W2`1. This procedure differs from [36], where
each transmitted symbol is estimated given the whole vector
of observations, y. The LMMSE equalizer approximates the
prior for each symbol, pDpukq, as a Gaussian

pDpukq « p̃Dpukq “ CNpuk : mk, ηkq , (26)

where the mean, mk, and variance, vk, are a priori statistics for
each transmitted symbol, given by (13) and (14), respectively.
For the first iteration of the turbo equalization no a priori
information is available and a suitable initialization is mk “ 0,
ηk “ Es, which boils down to mk “ 0, ηk “ 1 when
normalizing the energy [5], [13], [14]. Given the current
prior and the channel impulse response (CIR), the LMMSE
filter computes a Gaussian approximation of the posterior
probability of each symbol. When a turbo scheme is used,
the equalizer and decoder exchange extrinsic information [6].

Through the turbo equalization iterations, the a priori statistics
in (26) are updated with the information fed back from the
channel decoder.

Rather than computing the posterior distribution as in (7),
the LMMSE filter [5] considers the a posteriori probabilities
with respect to the estimated transmitted symbol, puk. For
this reason, and to keep the same notation than in [5], we
will denote the approximated posterior as qpuk|pukq. With this
posterior distribution in mind, the extrinsic probability at the
output of the LMMSE filter can be computed as

qEpuk|pukq “ qpuk|pukq
p̃Dpukq . (27)

This distribution is Gaussian and can be derived from the
extrinsic distribution of the estimated symbol computed in [5],
as shown in Appendix B, yielding

qEpuk|pukq “ CN
`
uk : zk, v

2
k

˘
(28)

where

zk “ ck
Hpyk ´HWmk `mkhWq

ckHhW

, (29)

v2k “
ck

HhWEsp1´ hW
Hckq

pckHhWq2 , (30)

and, in turn,

ck “
´
Σk ` pEs ´ ηkqhWhW

H
¯´1

EshW, (31)

HW “

»
————–

hL . . . h1 0
. . . . . .

. . . . . .
0 hL . . . h1

fi
ffiffiffiffifl

(32)

is the W ˆ pW ` L ´ 1q channel matrix, hW is the (W2 ` L)-th
column of HW and

mk “ rmk´L´W2`1, ...,mk`W1sJ, (33)
Vk “ diagpηk´L´W2`1, ..., ηk`W1q, (34)

Σk “ σ2
wI`HWVkHW

H. (35)

The computational complexity is dominated by (31), which has
to be recomputed every k-th iteration. Hence, the complexity
is OpNW2q. This complexity can be further reduced by relying
on some approximations proposed in [5], [14].

B. EP filter (EP-F)

A novel EP filter-type is developed in this subsection to
improve the accuracy and performance of the LMMSE-based
filter explained above. As explained in Subsection IV-A,
if the LMMSE filter is run, the prior of each symbol is
approximated by a Gaussian with the statistics given by the
decoder, i.e., with mean and variance given by (13) and
(14), respectively. By using the EP algorithm we approximate
the posterior distribution with a Gaussian family. Since the
posterior distribution includes the true discrete priors, we take
into account the discrete nature of symbols.

At every iteration of the EP algorithm, `, we approximate
the product of priors of individual symbols in (7) as a product
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Algorithm 3 EP-F
Initialization: Set pDpukq “ 1

M

ř
uPA δpuk ´ uq for k “

1, . . . , N
for t “ 1, ..., T do

1) Compute the mean m
r1s
k and variance η

r1s
k given by

(13) and (14), respectively.
for ` “ 1, ..., S do

for k “ 1, ..., N do
2) Compute the k-th extrinsic distribution as in (28),
i.e.,

q
r`s
E puk|pukq “ CN

´
uk : z

r`s
k , v

2r`s
k

¯
(37)

where z
r`s
k and v

2r`s
k are given by (29) and (30),

respectively.
3) Obtain the distribution
ppr`spukq 9 q

r`s
E puk|pukqpDpukq and estimate its

mean µ
r`s
pk and variance σ

2r`s
pk . Set a minimum

allowed variance as σ2r`s
pk “ maxpε, σ2r`s

pk q.
4) Run the moment matching and damping proce-
dures by executing Algorithm 1.

end for
end for
5) With the values mrS`1s

k , η
rS`1s
k obtained after the EP

algorithm, calculate the extrinsic distribution qEpuk|pukq
in (28).
6) Demap the extrinsic distribution and compute the
extrinsic LLR, LEpck,jq, by means of (4).
7) Run the channel decoder to output pDpukq

end for
Output: Deliver LEpck,jq to the channel decoder for k “
1, . . . , N and j “ 1, . . . , Q

of N Gaussians, p̃r`sD pukq “ CN
´
uk : m

r`s
k , η

r`s
k

¯
, whose pa-

rameters (means and variances) are adjusted to find a better
approximation, qr`spuq 9 ppy|uqśN

k“1 p̃
r`s
D pukq, to the true

posterior. Similarly to (27)-(28), for each k-th symbol, we first
compute the current extrinsic distribution,

q
r`s
E puk|pukq “

qr`spuk|pukq
p̃
r`s
D pukq

. (36)

Now, a more accurate posterior distribution can be obtained by
finding a new Gaussian approximation, p̃r``1s

D pukq, to match
the moments of qr`sE puk|pukqp̃r``1s

D pukq and qr`sE puk|pukqpDpukq,
as in (15). With these new values for the mean, mr``1s

k , and
variance, ηr``1s

k , we can recompute a new extrinsic distribution
q
r``1s
E puk|pukq, which is more accurate than the one in (28).

The final extrinsic distribution delivered to the decoder is
the one obtained after the last iteration of the EP algorithm,
following (36).

We denote this new algorithm as EP-filter (EP-F). Algo-
rithm 3 is a detailed description of its implementation. Note
that the main difference between Algorithm 2 and Algorithm 3
lies in the computation of the extrinsic distribution, i.e.,
equations (25) and (37). The computational complexity is also
dominated by (31), which has to be computed for each symbol

and each `-th iteration. Hence, the complexity is S times the
LMMSE complexity, i.e. OpSNW2q, where S is the number of
iterations of the EP-F. At this point, it is interesting to remark
that the approximations proposed in [5], [14] to further reduce
the complexity cannot be applied when the EP is used. The
reason is that these approximations remove (at some points)
the prior variance computed by the decoder, setting it to one.

V. RELATION TO PREVIOUS APPROACHES

A. Update of the priors

We improve the prior information used in the equalizer once
the turbo procedure starts, forcing the true discrete prior to be
non-uniform in contrast to the uniform priors used by previous
EP-based approaches.

In previous proposals [20]–[22], the probabilities from the
channel decoder, pDpukq, were used to initialize, at the
beginning of every iteration of the turbo-equalization, the
product of Gaussians that in the EP approximation replaces the
product of priors, p̃r1sD pukq. But when the moment matching
was performed in the EP algorithm, i.e.,

q
r`s
E pukqIukPA

moment
matchingÐÑ q

r`s
E pukqp̃r``1s

D pukq, (38)

the true priors used were uniformly distributed following

IukPA “
1

M

ÿ

uPA
δpuk ´ uq. (39)

In the current proposal, we keep the initialization of the
Gaussians in every step of the turbo-equalization, p̃r1sD pukq,
but also propose to replace the uniform priors in (39) by non-
uniform ones in the moment matching step, as explained in
(15), i.e.,

q
r`s
E pukqpDpukq

moment
matchingÐÑ q

r`s
E pukqp̃r``1s

D pukq, (40)

where

pDpukq “
ÿ

uPA
δpuk ´ uq

Qź

j“1

pDpck,j “ ϕjpuqq, (41)

Note that the different definition of priors -(39) in previous
proposals, (41) in this manuscript- is the difference between
the currently proposed nuBEP algorithm and the BEP in [21],
with remarkable improvements.

B. Parameter Optimization

The computational complexity of the EP algorithm is re-
duced to roughly a third part of that in [21], by optimizing
the choice of EP parameters. In particular, we propose some
new values for ε and β, that control numerical instabilities in
the EP updates, and S, the number of iterations of the EP
equalizer. The parameters proposed in this paper reduce the
number of iterations in turbo equalization to S “ 3, rather
than the S “ 10 iterations that were used in [21].
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C. Filter-type solution

The new filter-type EP solution proposed is constrained to
have linear complexity in the frame length and quadratic in
the filter length, i.e., it is endowed with the same complexity
order than the LMMSE filter. This complexity is not quadratic
with the block length as the one of the BEP [21] nor cubic
with the window length as complexity of the SEP [22].

D. Equalization solved with EP

Regarding the EP-based equalizers proposed by other au-
thors, the approach in [18], [19] should be mentioned. These
proposals deal just with how to pass information between the
channel decoder and the LMMSE equalizer. Our proposal first
focuses on the EP based equalization, performed indepen-
dently of the turbo iterations. Therefore the approaches are
quite different. Issues such as how to use the priors in the
moment matching within the EP equalizer or the damping do
not arise in these proposals where the improvement is related
only to the handling of probabilities between blocks.

VI. SIMULATION RESULTS

In this section, we compare the performance of both the
block LMMSE and EP-F equalizers for different scenarios.
We also include the performance of the BEP [21] and the
AWGN bound as references. Note that the MMSE filter [5]
has not been included in the simulations since the block
LMMSE exhibits equal or better performance than any fil-
tering approaches based on the LMMSE algorithm. We did
not include the SEP algorithm since it exhibits the same
performance as the block implementation, as shown in [22].
We also include the nuBEP approach to illustrate the quite
improved behavior when using non-uniform priors at each EP
iteration, even reducing from 10 to 3 the number of iterations
of the EP approach. The EP parameters have been selected as
explained in Subsection III-B, both for the nuBEP and EP-
F methods. For a full performance comparison with BCJR
approximations, such as M-BCJR [8], M*-BCJR [10], RS-
BCJR [9], NZ and NZ-OS [11], please see [21]. In Table I
we include a detailed comparison of the complexity of all the
simulated algorithms. Above we include the computational
complexity of previous algorithms in [21] (BEP) and [22]
(SEP), the block and filter implementation of the LMMSE and
BCJR approaches. Below we provide the complexity for the
new approaches in this paper, i.e., the proposed nuBEP and
EP-F. Parameter W is typically around two times the length
of the channel, L. Here, we simulate the scenarios in [13],
[14], using the same channel responses and modulations. Other
modulations are also considered. The absolute value of LLRs
given to the decoder is limited to 5 in order to avoid very
confident probabilities. We use a (3,6)-regular LDPC of rate
1/2, and belief propagation as decoder with a maximum of
100 iterations. The window length in the filtered approach is
set to W “ W1 ` W2 ` 1, where W1 “ 2L and W2 “ L ` 1 as
suggested in [14].

In the following, we first include a section to analyze the
performance of our approach in a low complexity scenario
with BPSK modulation, similarly to [14]. The optimal BCJR

TABLE I: Complexity comparison between algorithms.

Algorithm
Complexity per
turbo iteration

BCJR NML

BEP 10LN2

block-LMMSE LN2

SEP 10NW3

LMMSE filter NW2

nuBEP 3LN2

EP-F 3NW2

algorithm can be run in this scenario with a low enough
computational complexity and is used as bound. Next, we
include a section to analyze the behavior of the algorithms
in a large complexity scenario, where we use high-order
modulations such as 8-PSK, 16-QAM and 64-QAM.

A. BPSK scenario

In Fig. 2 we include the BER, averaged over 104 ran-
dom frames, for the LMMSE, BEP [21], nuBEP, EP-F and
BCJR equalizers with a BPSK modulation and two differ-
ent channel responses and lengths of encoded words: h “
r0.227 0.46 0.688 0.46 0.227sJ and V “ 4096 bits in Fig. 2
(a)-(c) and h “ r0.407 0.815 0.407sJ and V “ 1024 bits in
Fig. 2 (d)-(f). The channel responses were selected following
the simulations in [13], [14]. The performances of block-
algorithms, BEP and nuBEP, are very similar to the equivalent
forward filtering approach. When the nuBEP algorithm is ap-
plied, 2 and 1.5 dBs gains are obtained compared to LMMSE
approach in the turbo scenario, for the two simulated scenarios,
respectively. The EP-F exhibits a performance similar to that
of the nuBEP.

In Fig. 3 we include the EXIT charts of the BEP [21],
nuBEP, EP-F, LMMSE and BCJR for the channel response
h “ r0.227 0.46 0.688 0.46 0.227sJ as in [5], [13], BPSK
modulation with Eb{N0 “ 9 (solid) and 7 dB (dashed).
The EXIT chart of the LDPC encoder of 2048{4096 and
R “ 1{2 used is also depicted (solid). The horizontal and
vertical axis depict the mutual information at the input, Ii,
and the output, Io, respectively. We use arrows to show the
evolution of the mutual information along the turbo iterations
for Eb{No “ 9 dB. Vertical (horizontal) arrows indicate the
improvement in the mutual information each time the equalizer
(channel decoder) is executed. When no a priori information is
given to the decoder, i.e., Ii “ 0, both BEP and EP-F provide a
higher value for the mutual information at the output, Io, than
the LMMSE approach, i.e., they start from a more accurate
estimation even before the turbo equalization. This greatly
improves the performance as it enlarges the gap between the
equalizer and the channel decoder EXIT curves. It can be seen
that the LMMSE approach will fail when Eb{No “ 7 dB,
because both curves intersect.

Note that the wide EXIT tunnel from the equalizer to the
LDPC decoder is suggesting that the code is not optimum in
terms of capacity [37]. An optimal code in this sense would
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Fig. 2: BER along Eb{N0 for BEP [21] (˝), nuBEP (˝), EP-F (˚), block-LMMSE (Ź) and BCJR (˛) turbo equalizers, BPSK, codewords of
V “ 4096 bits (a)-(c) and V “ 1024 bits (d)-(f) and two different channel responses. Black lines represent the AWGN bound.

exhibit an EXIT chart near below the one of the equalizer and
above the curve of the 1{2 rate LDPC code used. The design
of this code for the channel equalization response is out of the
scope of this paper and remains as a future line of research.

B. Large complexity scenario

In Fig. 4 we simulate the same scenario of Fig. 2, but using
an 8-PSK modulation rather than a BPSK. It can be observed
that after increasing the order of the modulation, the EP-F
approach presented in this work performs identically as its
block counterpart, greatly improving the performance of the
LMMSE algorithm before and after the turbo procedure. An
improvement of the BER of the EP-F with respect to the one

of the BEP approach in [21], after turbo equalization, can also
be observed.

In Fig. 5 we depict the BER performance after five turbo
loops for channels h “ r0.227 0.46 0.688 0.46 0.227sJ
in (a) and h “ r0.407 0.815 0.407sJ in (b) with different
modulations. We use solid lines to represent a 64-QAM con-
stellation and dashed lines for a 16-QAM. We sent codewords
of length V “ 4096 in both scenarios. It can be observed
that the performance of the EP-F matches with the one of its
block implementation proposed in this paper (nuBEP) when
a 16-QAM is used. However, the EP-F approach slightly
degrades with a 64-QAM, where the block nuBEP gets the
most accurate performance. Note that the behavior of the
EP-F could be improved by increasing the length of the filter,
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Fig. 3: EXIT charts for the decoder, the BEP [21], nuBEP, EP-F,
LMMSE and BCJR equalizers with 7 (dashed) and 9 (solid) dB of
Eb{N0, BPSK modulation and codewords of V “ 4096.

yielding the performance of its block implementation. We have
a remarkable improvement of 3-5 dB with respect to the BEP
in [21] and of 7-13 dB compared to the LMMSE algorithm.

For the sake of completeness, we include Fig. 6 to show
how the BER changes along the turbo iterations and differ-
ent block lengths at Eb{N0 “ 13 dB for an 8-PSK and
h “ r0.227 0.46 0.688 0.46 0.227sJ. The nuBEP algorithm
is represented in (a) and the filter approach EP-F in (b). It
can be observed that BER is higher for shorter codes and it
improves when the code length is increased, as expected. Also,
the BER does not significantly improve after the fifth turbo
iteration. In the view of these results we stopped running our
turbo equalizers after five turbo iterations in the experiments
presented above.

VII. CONCLUSION

In a previous work, we presented a novel equalizer based on
expectation propagation (EP) [21]. This solution presents quite
an improved performance compared to previous approaches
in the literature, both for hard, soft and turbo detection. The
solution was presented as a block-wise solution and it was
therefore denoted as block-EP (BEP). The major advantage of
the BEP lies in the fact that its computational complexity does
not grow exponentially with the constellation size and channel
memory, as opposed to most equalizers, which are unfeasible
for moderate values of these parameters. However, it exhibits
a quadratic increase with the size of the transmitted word,
V . To avoid this problem, filter-type equalizers are usually
preferred [12]. For this reason, we proposed a smoothing EP
(SEP) equalizer in [22]. However, the SEP has a computational
complexity cubic in the channel length, L. Both BEP and
SEP equalizers make use of a moderate feedback in the
sense that an initial uniform discrete prior is assumed at the
beginning of each execution of the EP algorithm, even after the
turbo procedure has started. In this paper, we first propose a
design to include the non-uniform discrete nature of the priors
from the decoder in the EP algorithm, which amounts to a

stronger feedback, quite outperforming the previous BEP and
SEP approaches. Second, we develop a reduced-complexity
approach by proposing better values of the EP parameters.
The resulting algorithm has been denoted as nuBEP, and it
significantly outperforms the BEP reducing the computational
complexity to less than the third part. Finally, we adapt the EP
block equalizer to the filter-type form, emulating the Wiener
MMSE filter-type [14]. Therefore, we mimic the structure of
the filter-type MMSE equalizer. The EP is used to better
approximate the posteriors of a windowed version of the
inputs, shifted for every new output estimate. As a result,
we present a novel solution dealing with W inputs at a time
and with quadratic computational complexity in W. This novel
solution, the EP-F, despite the reduction in the computational
complexity, exhibits a performance in terms of BER quite
close to that of its block counterpart, the nuBEP. Furthermore,
it remarkably improves the performance of the LMMSE turbo-
equalizer, with same complexity order in terms of L and V .
In the included experiments, for channels usually used as
benchmarks in the literature, gains in the range 5-13 dB are
reported for 8-PSK, 16-QAM and 64-QAM modulations.

One of the main benefits of this new proposal is to reduce
the computational complexity, reducing it to be of quadratic
order with the filter length. Other approaches, such as those
solutions working on the frequency domain [3], could be
investigated to achieve this goal. In this paper we face
the equalization in single-input single-output channels, the
application to MIMO channels with memory [27] remains
unexplored.

APPENDIX A
PROOF OF (10) AND (11)

In [21], the posterior distribution used for BEP is

qr`spuq „ CN
´
u : µr`s,Σr`s

¯
(42)

where

µr`s “ Σr`spσ´2
w HHy ` diagpηr`sq´1mr`sq, (43)

Σr`s “
´
σ´2
w HHH` diagpηr`sq´1

¯´1

. (44)

By a direct application of the Woodbury identity, equation (44)
can be rewritten as

Σr`s “ diagpηr`sq ´ diagpηr`sqHHC´1Hdiagpηr`sq (45)

where
C “ Hdiagpηr`sqHH ` σ2

wI. (46)

The k-th diagonal element of (45) yields (11). Regarding (43),
it can be divided into two terms

µr`s “ Σr`sσ´2
w HHyloooooomoooooon
T1

`Σr`sdiagpηr`sq´1mr`sloooooooooooomoooooooooooon
T2

. (47)

We apply the following identity [31],

pA´1`BHD´1Bq´1BHD´1 “ ABHpBABH`Dq´1 (48)

to the first term, T1, in (47), yielding

T1 “ diagpηr`sqHHC´1y. (49)
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Fig. 4: BER along Eb{N0 for BEP [21] (˝), nuBEP (˝), EP-F (‹) and block-LMMSE (Ź) turbo equalizers, 8-PSK, codewords of V “ 4096
(a)-(c) and V “ 1024 (d)-(f) and two different channel responses. Black lines represent the AWGN bound.

Now, we replace (45) into the second term, T2, in (47),
obtaining

T2 “ mr`s ´ diagpηr`sqHHC´1Hmr`s. (50)

By replacing (49) and (50) into (47), we finally get

µr`s “ mr`s ` diagpηr`sqHHC´1py ´Hmr`sq, (51)

whose k-th element is given by (10).

APPENDIX B
PROOF OF (29) AND (30)

In [5], the extrinsic distribution of the estimated symbol is
computed as

qEppuk|ukq „ CN
`
puk : ukck

HhW, σ
2
k

˘
(52)

where

puk “ ck
Hpyk ´HWmk `mkhWq, (53)

σ2
k “ ck

HhWEsp1´ hW
Hckq, (54)

ck is given by (31) and hW is the (W2 ` L)-th column of HW

defined in (32). Note that we generalized the expressions in
[5] to consider a symbol energy of Es. If we set Es “ 1, we
obtain exactly the formulation in [5]. Instead of the extrinsic
distribution of the estimated symbol, we use in our formulation
the extrinsic distribution of the true symbol, which can be
computed from (52) as

qEpuk|pukq „ CN
`
uk : zk, v

2
k

˘
(55)
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Fig. 5: BER along Eb{N0 for BEP [21] (˝), nuBEP (˝), EP-F (˚) and block-LMMSE (Ź) turbo equalizers after five turbo loops, 64-QAM
(solid lines) and 16-QAM (dashed lines), codewords of V “ 4096 and two different channel responses. Black lines represent the AWGN
bound.
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Fig. 6: BER of nuBEP (a) and EP-F (b) turbo equalizers at Eb{N0 “ 13 dB for several turbo iterations and lengths of encoded words.
8-PSK modulation and the channel response h “ r0.227 0.46 0.688 0.46 0.227sJ were used.

where

zk “ puk
ckHhW

, (56)

v2k “
σ2
k

pckHhWq2 , (57)

yielding the formulation in (29) and (30).
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[13] M. Tüchler, A. Singer, and R. Koetter, “Minimum mean squared
error equalization using a priori information,” IEEE Trans. on Signal



12

Processing, vol. 50, no. 3, pp. 673–683, Mar 2002.
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