On the spectral properties of square matrices that are strictly sign-regular of some order

Rola Al-Seidi (rolanazmi@yahoo.com),
Prof. Jürgen Garloff
Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany

Introduction

By "spectral structure of square matrices" we mean properties of the eigenvalues and eigenvectors of matrices. In view of the wellknown Perron-Frobenius theory that describes the spectral structure of general entrywise nonnegative matrices, we study the spectral structure of strictly sign-regular matrices of some order. A matrix is called strictly sign-regular of order k, denoted by $S S R_{k}$, if all its minors of order k are nonzero and have the same sign. For example, totally positive matrices (TP), i.e., matrices with all minors positive, are $S S R_{k}$ for all k. Another important class of matrices are those that are $S S R_{k}$ for all odd k. Such matrices have interesting sign variation diminishing properties, and it has been recently shown that they play an important role in the analysis of certain nonlinear cooperative systems.

Definitions and Notations

We will introduce the following definitions.
(1) A vector $x \in \mathbb{R}^{n}$ is called totally nonzero if no entry of x is zero.
(2) Let v be the function from the totally nonzero vectors $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n}$ into the nonnegative integers defined by
$v(x):=\#\left\{i: x_{i} x_{i+1}<0\right\}$, for $i=1,2, \ldots, n-1$,
the total sign variation of x. For general vectors $x \in \mathbb{R}^{n}, v^{-}(x)$ is the minimum value of $v(y)$ among all totally nonzeros y that agree with x in its nonzero entries and $v^{+}(x)$ is the maximum value of $v(y)$ among all such vectors. In the case that x has zero entries, $v^{-}(x)$ is also $v\left(x^{\prime}\right)$ in which x^{\prime} is simply the result of deleting the zero entries from x.
(3) For a vector $x \in \mathbb{R}^{n}$, let
$v_{c}^{-}(x):=\max _{i} v^{-}\left(x_{i}, x_{i+1}, \ldots, x_{n}, x_{1}, \ldots, x_{i}\right)$,
the cyclic number of sign variations.
(4) Consider the linear time-varying system

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t) \tag{1}
\end{equation*}
$$

with $A(t)$ a continuous matrix function of t. This system is called totally positive differential system, denoted by $T P D S$, on a time interval (a, b) if its transition matrix $\phi\left(t, t_{0}\right)$ is totally positive for any $\operatorname{pair}\left(t_{0}, t\right)$ with $a<t_{0}<t<b$. Here the transition matrix is the matrix satisfying $x(t)=\phi\left(t, t_{0}\right) x\left(t_{0}\right)$. In particular, $\phi\left(t_{0}, t_{0}\right)=I$. In the special case where $A(t)$ is a constant matrix, i.e., $A(t) \equiv A$, then $\phi\left(t, t_{0}\right)=\exp \left(\left(t-t_{0}\right) A\right)$. Of course, the transition matrix is real, square, and nonsingular.
© Let $\mathbb{M}^{+} \subset \mathbb{R}^{n \times n}$ denote the subset of $n \times n$ real matrices that are tridiagonal with positive entries on the super- and sub-diagonals.
© Let $A \in \mathbb{R}^{n \times n}$. We say that a set of complex
numbers $c_{1}, \ldots, c_{m} \in \mathbb{C}^{n}$ matches A if $\sum_{i=1}^{m}\left|c_{i}\right|^{2}>0$, and for every i if the eigenvector v^{i} of A is real then c_{i} is real and, if v^{i}, v^{i+1} is a conjugate complex pair then $c_{i+1}=\bar{c}_{i}$.
The following example is a simple illustrative example to the previous definitions.

Example

Motivation and Previous Works
Applications of strictly sign-regular matrices often come from their interpretation as variation-diminishing transformations. Strictly sign-regular matrices are characterized by the strong variation-diminishing property, i.e., $v^{+}(A x) \leq v^{-}(x)$ for all nonzero $x \in \mathbb{R}^{n}$. In particular, multiplying a vector by a $T P$ matrix can only decrease the number of sign variations in the vector. It was shown that the system (1) is $T P D S$ if and only if $A \in \mathbb{M}^{+}$. Several studies analysed certain non-linear dynamical systems by showing that the transition matrix in the variational system satisfies a variation-diminishing property with respect to the cyclic number of sign variations in a vector. Motivated by this, Theorem (A) shows that the $S S R_{k}$ property is equivalent to a non-standard variation-diminishing property. Theorem (B) provides a simple necessary and sufficient condition for a nonsingular square matrix A to satisfy a $C V D P$

Theorem \mathbf{A} Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Pick $k \in\{1, \ldots, n\}$. Then the following two conditions are equivalent.
(i) For any vector $x \in \mathbb{R}^{n} \backslash\{0\}$ with $s_{c}^{-}(A x) \leq k-1, v^{+}(A c) \leq k-1$.
(ii) A is $S S R_{k}$.

Theorem B Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. The following two conditions are equivalent.
(i) For any vector $x \in \mathbb{R}^{n} \backslash\{0\} v_{c}^{+}(A x) \leq v_{c}^{-}(x)$.
(ii) The matrix A is $S S R_{r}$ for all odd r in the range $r \in\{1, \ldots, n\}$.

Main Results

Our main results extend Theorem (A) to vectors $x \in \mathbb{C}^{n}$ and study the properties of the eigenvalues of the matrices in Theorem (B).
(1) Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and $S S R_{k}$ for some $k \in\{1, \ldots, n-1\}$. For any $c_{1}, \ldots, c_{n-1} \in \mathbb{C}$ that match A, we have

$$
v^{+}\left(\sum_{i=0}^{k} c_{i} v^{i}\right) \leq k-1
$$

(2) Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and $S S R_{k}$ for all odd $k \in\{1,3, \ldots, n\}$. Then the following statements are true.
(1) λ_{1} is a positive simple eigenvalue of A.
(2) The algebraic multiplicity of any eigenvalue of A is not greater than 2 .
(3) The inequalities $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right|>\left|\lambda_{4}\right| \geq\left|\lambda_{5}\right| \ldots$ hold.
(1) For every $i \in\{3,5,7, \ldots\}, \lambda_{i-1}, \lambda_{i}$ are either a pair of complex conjugate or both are real and of the same sign. © If n is even, then λ_{n} is real.

Acknowledgement

I am gratefully acknowledge KWIM for the financial support to attend $E W M-G M 2018$, Graz. This work is done in cooperation with Prof. Michael Margaliot, Tel-Aviv University. We thank him for his support, comments, suggestions, and continuous discussions.

References

[1] Ben-Avraham, Tsuff, et al. "Dynamical systems with a cyclic sign variation diminishing property." arXiv preprint :1807.02779 (2018).
[2] Margaliot, Michael, and Eduardo D. Sontag. "Revisiting totally positive differential systems: a tutorial and new results." arXiv preprint 1802.09590 (2018).
[3] Karlin, Samuel. Total positivity. Vol. 1. Stanford University Press, 1968
[4] Fallat, Shaun M., and Johnson, Charles R. Totally nonnegative matrices. Princeton University Press, 2011.

