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2. Introduction 

2.1 The maintenance of the Ca2+ homeostasis 

Ca2+ is an essential component of living organisms. In vertebrates calcium salts are the 

building blocks of the bones and teeth while ionized serum calcium is a first messenger in 

the blood, which by acting through the calcium-sensing receptor regulates diverse 

physiological processes as bone remodeling or intestinal water absorption [1].  

Furthermore, calcium is an important second messenger within the cells where it takes 

part in the regulation of vital processes from proliferation to cell death [2]. Intracellular 

Ca2+ signals show high spatiotemporal versatility and this way they are capable to 

regulate distinct intracellular processes [3]. While in synapses Ca2+ signal triggers 

exocytosis in milliseconds, its signaling effect can also last for hours driving cell division 

or apoptosis. The intracellular Ca2+ level is regulated by a cell type specific toolkit. The 

composition of the toolkit changes adaptively depending on the fate of the cell being 

that either differentiation or cell death. This remodeling of the Ca2+ handling system 

makes possible for the cell to cope with different circumstances, but its abnormal 

changes contribute to the formation of several diseases such as Alzheimer disease or 

cancer.  

In resting state the intracellular Ca2+ concentration is between 100-200 nM, while in the 

outer space it is around 1 mM. Most of the cytosolic Ca2+ is bound to membrane surfaces 

or to calcium-binding proteins. The maintenance of the low intracellular Ca2+ 

concentration – that requires a lot of energy - is necessary to avoid the formation of 

calcium hydroxide phosphates in the cytosol. The steep Ca2+ gradient contributes to the 

strong electrochemical gradient across the plasma membrane that also drives Ca2+ 

uptake [4].   

Ca2+ works as a second messenger through the formation of calcium transients. Berridge 

et al. divides the processes, which create Ca2+ signals, into two groups; the “ON 

processes” contribute to the increase, while the “OFF processes” to the decrease of the 

intracellular Ca2+ concentration [5]. Ca2+ can enter the cytosol through plasma membrane 

channels from outside of the cell or from intracellular stores, and then it is actively 

removed by Ca2+ pumps and/or exchangers, and is also buffered by Ca2+ binding 
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proteins/acidic lipids. Given that there are many different isoforms generated from each 

of these proteins of the Ca2+ signaling toolkit, the characteristics of the Ca2+ signal can be 

vastly versatile from small single spikes to high frequency oscillations. Depending on the 

spatiotemporal features of the Ca2+ signal distinct Ca2+ - dependent effectors become 

activated influencing basic cellular processes like proliferation, cell migration, exocytosis 

or apoptosis (Figure 1.).  

 

 

Figure 1. The Ca2+ signal is generated by the concerted actions of the “on” and “off” 

reactions. The Ca2+ molecules can enter the cytosol from the extracellular space or they can 

be released from the internal stores through Ca2+ channels. The excess Ca2+ is removed by 

Ca2+ pumps, exchangers and buffers [6].  

2.1.1 Ca2+ increase reactions 

2.1.1.1. Ca2+ release from the internal stores 

Ca2+ is stored in distinct compartments within the cells, primarily in the endoplasmic 

reticulum / sarcoplasmic reticulum (ER/SR) and in the mitochondria. After stimulus Ca2+ is 

quickly released from the ER through the activation of membrane receptors IP3Rs (inositol 

1,4,5-trisphosphate receptor) [7], and from the SR by ryanodine receptors (RYR) [8]. IP3Rs are 

receptor channel molecules, which are activated by the second messenger IP3 and by Ca2+ 

itself. IP3 is generated from inositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC), which 

is coupled to several cell surface receptors, such as G-protein-coupled receptors (GPCRs) or 
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receptor tyrosine kinase-linked receptors (RTKRs). Ryanodine receptors are mostly found in 

excitable cells. They are directly activated by L-type Ca2+ channels in the striated muscle, 

while in other cell types their opening is initiated by the increasing cytoplasmic Ca2+ 

concentration. This phenomenon is called Ca2+ induced Ca2+ release (CICR). IP3Rs are also 

activated by Ca2+ until its concentration reaches ~ 300 nM in the cytosol, which in turn 

inhibits Ca2+ release through the receptor [6].  

The mitochondria are also sensitive to the rise of the cytosolic Ca2+ concentration that takes 

up Ca2+ by the mitochondrial calcium uniporter (MCU). Elevated Ca2+ concentration within 

the mitochondria induces ATP production through the activation of the Ca2+ sensitive 

dehydrogenases, which provides energy for the regulation of the Ca2+ transients and the 

following cell responses. An elevated Ca2+ concentration in the mitochondria also induces 

increased production of reactive oxygen species (ROS). During the decay phase of 

intracellular Ca2+ signal Ca2+ is removed from the mitochondria by Na+/Ca2+ and H+/ Ca2+ 

exchangers. In case of a Ca2+ overload the mitochondrial permeability transition pores (MTP) 

open through which cytochrome-c is released that in turn triggers apoptosome formation 

and ultimately apoptosis in the cell [9]. 

Calcium is also stored in the Golgi apparatus and a Ca2+ efflux – independent of the ER Ca2+ 

store – was shown through the Golgi IP3Rs. However, the exact mechanism of the Golgi Ca2+ 

release process is still unclear. Calcium ions are also stored in the cytoplasm attached to 

Ca2+-binding proteins such as calretinin and parvalbumins [10]. The high amount of Ca2+ 

stored in the ER and the mitochondria are also bound to other Ca2+-binding proteins within 

the organelles, for example to calreticulin in the ER, calsequestrin in the SER.  

2.1.1.2. Plasma membrane Ca2+ channels 

Ca2+ influx from the outer space is driven by the electrochemical gradient between the two 

sides of the plasma membrane. There are many different types of plasma membrane Ca2+ 

channels that can be divided into three groups based on their gating characteristics [5]. 

Voltage gated Ca2+ channels are found in excitable cells and their activation requires only 

milliseconds, initiating cellular responses such as synaptic vesicle fusion or muscle 

contraction. Another group of channels are gated by the binding of a specific ligand. The 

receptor-operated channels bind a ligand from the external space, while second messenger-

operated channels react to ligands from the internal space. An example for the former is the 
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glutamate binding NMDA (N-methyl-D-aspartate) receptors [11], for the latter the 

arachidonic acid sensitive Ca2+ channels [12]. The third large group of channels is activated 

by the depletion of the internal Ca2+ stores, these are the store operated Ca2+ channels 

(SOCs).  

Store operated Ca2+ entry (SOCE) is noticeable in almost all non-excitable cell types, and it 

often controls Ca2+ mediated processes in excitable cells, as well. SOCE is generated primarily 

by two families of proteins [13]. STIM proteins (stromal interacting molecule) localize to the 

ER membrane having a Ca2+-binding EF-hand domain on their ER lumen facing N-terminus. 

When the Ca2+ concentration in the lumen of the ER decreases, the Ca2+ ions dissociate from 

this domain and after oligomerization the STIM molecules relocate to ER-plasma membrane 

junctions. Here they activate the pore formation of the Orai protein family (Orai1-3) by 

direct binding allowing Ca2+ entry across the plasma membrane from the extracellular space. 

[13]. As a result, after the decrease of the ER lumen Ca2+ level, the so-called calcium release 

activated calcium (CRAC) current is measurable through the plasma membrane. 

In non-excitable cells Ca2+ store depletion most often is a consequence of IP3R activation. IP3 

is produced after cell surface receptor stimulation by many different stimuli, such as 

hormones, growth factors or ATP. SOCE is an example when the main sources of Ca2+ - 

internal and external - are combined and contribute to the rise of the Ca2+ signals [14]. 

2.1.2 Ca2+ decrease reactions 

After Ca2+ level increase, the intracellular Ca2+ concentration needs to be lowered to its basal 

level by the concerted action of the Na+/Ca2+ exchangers (NCX), the plasma membrane Ca2+ 

ATPases (PMCA), the sarco/endoplasmic reticulum Ca2+ ATPases (SERCA) and the 

mitochondrial uniporters. NCX becomes activated by micromolar Ca2+ concentration, 

however, it can remove quickly high amount of Ca2+ from the cytosol by virtue of its high 

transport capacity. It transports one Ca2+ ion at the expense of three sodium ions entering 

the cytoplasm using the transmembrane sodium gradient. It is mostly found in excitable 

cells, especially in cardiac and skeletal muscle and in the nervous system [15].  

PMCA and SERCA pumps are low capacity but high affinity transporters being able to restore 

the very low 100 nM resting cytosolic Ca2+ concentration. They use the energy of ATP 

molecules to pump Ca2+ ions against their concentration gradient towards the outer space or 

into the ER lumen. Another Ca2+ pump, the secretory-pathway Ca2+ ATPase (SPCA) transports 
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Ca2+ into the Golgi compartments with high affinity. It does not only contribute to the uptake 

of excess Ca2+ from the cytosol, but it is also able to transport Mn2+ ions. Both Ca2+ and Mn2+ 

molecules are necessary for the basic function of the secretory pathway such as protein 

synthesis, folding or trafficking. Mn2+ is also a cofactor in number of enzymes and its removal 

from the cytosol by SPCA prevents its accumulation to toxic levels [16]. 

Mitochondrial uniporters (MCUs) use the mitochondrial membrane potential as an energy 

source for ion transport. The uniporter is active when Ca2+ concentration is high. This can 

happen when the Ca2+ level in the entire cytosol is strongly increased, or only locally when 

the ER and mitochondria are in close proximity and Ca2+ released by the IP3R or RYR directly 

activate mitochondrial Ca2+ uptake [17]. Fine tuning of intracellular Ca2+ signals is 

accomplished by the regulation of expression and activity of the numerous isoforms and 

splice variants of this Ca2+ toolkit. 

 

2.2. Ca2+ transport ATPases 

In mammals three types of Ca2+ ATPase are known: PMCAs, SPCAs and SERCAs. All of them 

belong to the P-type ATPases as during their enzymatic cycle a phosphorylated aspartate 

intermediate is generated. They use ATP to translocate ions against their electrochemical 

gradient and they all can be inhibited by the transition state analogue orthovanadate. P-type 

ATPases have 10 transmembrane domains including strongly conserved regions in the 

cytoplasmic side between the second and third, and the fourth and fifth domains [18].  

2.2.1. Sarco/endoplasmic reticulum Ca2+- transport ATPase (SERCA) 

There are three SERCA proteins (SERCA1-3) coded by 3 different genes (ATP2A1-3). Their 

main role is to refill the Ca2+ stores and restore the basic Ca2+ concentration of the cytosol 

after transients. They pump 2 Ca2+ ions into the ER/SR by hydrolyzing one ATP molecule [19]. 

Among the Ca2+ transport ATPases only the SERCA1 protein was successfully crystalized [20]. 

Based on its crystal structure SERCA proteins have four large domains: the M-domain 

(membrane domain), which contains the 10 transmembrane helices, and the cytosolic A 

(actuator)-, N (nucleotide binding)- and P (phosphorylation)-domains. ATP binds to the N-

domain, while the phosphorylated aspartate residue is located in the P-domain. The A-

domain coordinates the movement of the N- and P- domains during the catalytic cycle [21]. 
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Detailed information about the SERCA structure helped to build the models describing PMCA 

structure and function [22].  

SERCA1 is most abundant in the skeletal muscle, giving almost 50% of membranes proteins 

of muscle cells, and being accountable for around 40% of their metabolic rate. SERCA1 has 

two isoforms generated by the alternative splicing of its exon22. SERCA1b is present during 

neonatal development, while SERCA1a is expressed in adults [23, 24].  SERCA2 has four 

known isoforms among which SERCA2b has a housekeeping function and it is expressed in a 

lower amount but ubiquitously. SERCA2a, c and d are all expressed in the heart. SERCA2a 

isoform is most abundant in the cardiac muscle but also present in other muscle types and 

neuronal cells [25]. SERCA3 is the most recently identified and the least known member of 

the family. It differs from the other two SERCA pumps by having a five-fold lower affinity 

toward Ca2+. Its expression is widespread but it is found always together with the 

housekeeping form SERCA2b which makes possible to fine tune the ER Ca2+ uptake. The 

expression of SERCA3 is known to be altered in several cancer types [26]. It is abundantly 

expressed in normal colon, breast and bronchial epithelium however its expression is lost 

during the carcinogenesis of these tissues [27-29]. Treatment of colon, breast or lung cancer 

cell lines with histone deacetylase inhibitors was shown to induce SERCA3 expression 

together with differentiation. These data suggest that SERCA3 is an important regulator of 

differentiation and its loss contributes to malignant transformation. 

2.2.2. Plasma membrane Ca2+- transport ATPase (PMCA) 

There are four plasma membrane Ca2+ ATPases (PMCA1-4) coded by four different genes 

(ATP2B1-4) which all localize on different chromosomes. PMCAs become activated by the 

increase of the cytosolic Ca2+ concentration and their main role to pump excess Ca2+ out 

from the cytosol. They use one ATP to transport one Ca2+ [30]. Nevertheless, there is a great 

functional diversity among these pumps which is further increased by the generation of over 

20 splice variants through alternative splicing at two splice sites (Figure 2) [31]. Their general 

structure consists of 10 transmembrane helices and three intracellular domains.  
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Figure 2. Schematic model of plasma membrane Ca2+ ATPase [32]. The PMCA has ten 

transmembrane helices (on the top), a small intracellular loop including splice site ´A´ and an 

acidic lipid binding region (AL). In the large intracellular loop there is the ATP binding site 

(ATP) and the catalytic phosphorylation site (P).The calmodulin binding sequence (CBS) and 

the ´C´splice site are found in the C-terminal tail. Below the splice variants of PMCA4 at splice 

cite ´C´ and the splice variants of PMCA2 at splice cite ´A´ are shown. 

  

Splice site A and the acidic lipid binding region (AL) are found in the small intracellular loop, 

which according to the SERCA structure forms the A domain. The ATP binding region and the 

catalytic phosphorylation site are located in the large intracellular loop forming the N and P 

domains, respectively. The C-terminal tail contains the calmodulin binding site (CBS), which 

overlaps with splice site C. In the resting state the C-terminal tail strongly interacts with the 

catalytic domains and serves as an autoinhibitor [32]. Splicing at site C affects the interaction 

of the C-terminal tail both with Ca2+-calmodulin (Ca2+-CaM) and the core regions and 

determines the basal activity of the pump. In general PMCAs with an ´a´ insert have a higher 

basal activity and lower CaM affinity than the ´b´splice variant without the insert. Since the 

strength of the interaction also depends on the sequence composition of the catalytic region 

large differences can be found among the same splice variants of the different isoforms. For 

instance, PMCA4b has a lower basal activity and hence a stronger activation by Ca2+-CaM 

than PMCA2b [31]. Alternative splicing at the C-terminal region also affects the regulation of 

the pump by other means such as phosphorylation by protein kinases and interaction with 

other proteins. The splice site A variants differ in their intracellular targeting; for example 

the PMCA2 proteins with a ´w´ insert are targeted to the apical membrane in polarized 
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epithelial cells, while the ´x´variants have basolateral localization [33]. Amino acid sequence 

differences also influence the interaction with acidic phospholipids in the AL region close to 

splice site ´A´. Because of all these differences a toolkit of PMCA proteins is generated in 

which each member differs in its activation kinetics, interaction partners and regulation. 

The functional diversity is coupled with distinct developmental, tissue and cell type specific 

distribution (Table 1) [31, 34].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Human PMCA isoforms and splice variants (Based on [31, 34].) 

 

PMCA1x/b is considered as the housekeeping isoform and appears the earliest during mouse 

embryonal development. Homozygous deletion of the ATP2B1 gene in mice causes 

embryonic death [35]. However the other splice variants of PMCA1 protein are only 

expressed in specific cell types mostly in the brain and in striated muscle. PMCA4x/b is also 

ubiquitously expressed, while other PMCA4 variants are mostly found in the heart and in 

smooth muscle. Loss of both copies of the ATP2B4 gene causes complete male infertility in 

mice [35]. PMCA2 and PMCA3 are mostly expressed in excitable cells, and so they 

abundantly found in the brain and in skeletal muscles. Some of them are present in very 

specialized cell types, like PMCA2w/a in auditory and vestibular hair cells [36] while 

Isoform Alternative 
splice variants 

Major sites of expression Gene knockout phenotype 
(mouse) 

 
 

PMCA1 

x/a 
x/b 
x/c 
x/d 
x/e 

Brain 
Ubiquitous, lung, kidney 
Skeletal muscle, heart 
Skeletal muscle 
Brain 

Embryonic lethal 
(homozygotes); altered 
smooth muscle Ca

2+
 

regulation (heterozygotes) 

 
 
 
PMCA2 

w/a 
x/a 
z/a 
w/b 

 
x/b 
z/b 

Brain, cochlear outer hair cells 
Brain 
Brain 
Brain, lactating mammary epithelial 
cells 
Brain, spinal cord 
Brain 

Profoundly deaf, severe 
ataxia, reduced milk Ca

2+
, 

motor neuron loss 
(homozygotes) 

 
PMCA3 

x/a 
z/a 
x/b 
z/b 

Brain, spinal cord 
Brain, pancreatic beta cells 
Brain, Skeletal muscle 
Brain 

Not determined 

 
 
 
PMCA4 

x/a 
z/a 
x/b 
z/b 
x/d 
z/d 
x/e 
z/e 

Smooth muscle, bladder, heart  
Smooth muscle, heart 
Ubiquitous, heart, kidney 
Heart 
Heart 
Heart 
Brain, bladder 
Brain, bladder 

Male infertility due to 
sperm motility defect 
(homozygotes)  
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PMCA2w/b in the lactating mammary glands. The phenotype of ATP2B2-/- mice is ataxia, 

profound deafness [37] and reduced Ca2+ content in milk [38]. Furthermore, often multiple 

PMCA isoforms are present simultaneously in a cell having different expression level and 

subcellular localization. For example in cochlear hair cells in the inner ear PMCA2w/a is 

specifically targeted to the apical stereocilia while PMCA1x/b resides in the basolateral 

membrane [39].  

2.2.2.1. Regulators of PMCA activity 

The primary regulator of PMCA activity is the Ca2+- calmodulin complex. When the 

intracellular  Ca2+concentration rises, each CaM molecule binds 4 Ca2+ ions and Ca2+-CaM 

complexes are formed. The binding of Ca2+-CaM to the C-terminal region of the PMCA 

induces a conformational change in the protein and thus the connection between the 

inhibitory region and the catalytic domains is relieved and the pump becomes active [40]. 

The kinetics of the binding of Ca2+-CaM to the most common PMCA isoforms was heavily 

investigated. It was found that PMCA4b binds the Ca2+-CaM complex slowly and also 

dissociates it slowly, only after a couple of minutes. However, PMCA4a, which has another 

splice variant in its CaM binding sequence, binds Ca2+-CaM quickly but then dissociates it 

faster [41], resulting in an overall lower affinity (relatively high Kd) for the Ca2+-CaM complex 

than the other splice form. The PMCA2 and PMCA3 pumps, which are common in excitable 

cells, both have fast activation and slow inactivation kinetics, resulting in tight Ca2+-CaM 

binding (low Kd) [42]. Pumps with a slow inactivation rate have a longer memory of the 

earlier Ca2+ spike, which means that if subsequent signals come quickly the pumps are still 

active and can act promptly. 

Acidic phospholipids are also important regulators of PMCA proteins. PIP2 

(phosphatidylinositol-4,5- bisphosphate) is an important signaling molecule and a known 

regulator of different pumps and channels. PIP2 can be hydrolyzed by the Ca2+- dependent 

PLC into diacyglycerol (DAG) and IP3, of which the latter induces Ca2+ release from the 

internal stores [43]. Previously, two acidic lipid binding regions were identified, one close to 

splice site ´A´ and another in the CBS region within the C-terminal tail. Recently, with 

homology modelling of PMCA4b a third PIP2 binding area was described, within the stalk 

region of the pump. This region formed by positively charged residues creates several 

binding pockets for the inositol ring of the PIP2 molecule. It was demonstrated that by 
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binding PIP2 molecules PMCA4b can influence the amount of available PIP2 for intracellular 

signaling. Furthermore, it can directly decrease PLC activation providing a second layer of 

protection by pumping out Ca2+ from the vicinity of the bound PIP2 molecules [44].  

The activity of PMCA proteins is also dependent on their abundance in the plasma 

membrane. It was shown that PMCA4b mostly resides in the intracellular compartments in 

sub-confluent cell cultures, while at confluency it translocates to the plasma membrane. A 

di-leucine sorting signal was identified in the C-terminal tail of the pump (1167LLL) that 

regulates its internalization to early endosomes after loss of cell-cell contact. Alternation of 

this motif to three alanines increased the plasma membrane localization of PMCA4b in sub-

confluent cells and changed the trafficking of PMCA4b after internalization [45]. 

Phosphorylation can also change the activity of PMCAs. Several phosphorylation sites for 

protein kinases A and C were described in the C-terminal tail of these pumps. The effect of 

phosphorylation is isoform dependent as it can both increase and decrease the activity of 

the pumps [46, 47]. 

There are cleavage sites for both calpain and caspase-3 proteases in the C-terminal tail of 

PMCA. Proteolytic cleavage of this region releases the autoinhibition of the pump [48]. 

During apoptosis caspase-3 activity removes the complete inhibitory region and the pump 

becomes fully active [49]. This might help to avoid excessive Ca2+ overload and consequently 

necrotic death of the cells [50]. 

2.2.2.2. Interactions with scaffold proteins 

Several protein partners of PMCAs have been identified. On the one hand these protein-

protein interactions can influence the activity of the pump, on the other hand they can 

target PMCAs into specific membrane microdomains or signaling platforms. One of the most 

important interaction sites is the PDZ-binding sequence at the C-terminus of each b-splice 

variant. PDZ proteins have scaffolding and anchoring roles creating platforms for protein-

protein interactions or linking proteins to the cytoskeleton. PMCA1b, 2b and 3b carry an 

identical PDZ-binding sequence (-ETSL). PMCA2b was shown to interact with the scaffold 

protein Na+/H+ exchanger regulatory factor 2 (NHERF2) [51]. It was demonstrated that in 

polarized MDCK cells “w” A-splice variant PMCA2w/b localizes to the apical membrane and 

this is stabilized by NHERF2-binding that anchors the pump to the actin cytoskeleton [52]. 

The PDZ-binding sequence of PMCA4b is different in one amino acid residue (-ETSV), and it 
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interacts with different PDZ proteins. Co-expression of membrane-associated guanylate 

kinase (MAGUK) scaffold family member PSD-95 (post synaptic density protein) and PMCA4b 

in COS-7 cells resulted in the redistribution of the pump into clusters which were fenced by 

the actin cytoskeleton and hindered the lateral mobility of the protein [53, 54].  

2.2.2.3. Interactions with signaling molecules 

PMCAs by interacting with other proteins are also able to regulate downstream signaling 

events. The protein partners come into contact with different regions of the pump. Through 

its PDZ-domain PMCA4b interacts with the neural nitric oxide synthase (nNOS) molecule.  

PMCA4b was shown to decrease nNOS activity and as a consequence also -adrenergic 

stimulation of cardiomyocytes in mice [55]. Interestingly, this effect is not related to the 

pump’s Ca2+ extruding capacity, in this respect PMCA has a structural role by tethering nNOS 

into a special membrane compartment of the cardiac cell [56]. 

Interactions with the N-terminal segment of the pump were also described. For example a 

regulatory protein 14-3-3ε can bind to this region and inhibit the activity of PMCA4 [57]. 

Several proteins were found to interact with the large intracellular loop as well. Tumor 

suppressor Ras effector protein, RASSF1 was found to directly interact with PMCA4b in a 

yeast two hybrid screen system. Co-expression of the two proteins inhibited the activation of 

the ERK pathway in the cells after activation with epidermal growth factor (EGF) [58].  

Also association of PMCA and endothelial nitric oxide synthase (eNOS) was demonstrated 

through the catalytic loop which led to the inhibition of eNOS activity and NO production in 

endothelial cells [59].  

There is ample evidence in the literature that PMCA can regulate the activity of the 

calcineurin (CaN) / NFAT (nuclear factor of activated T-cell) pathway. Calcineurin is a 

Ca2+/CaM dependent serine/threonine protein phosphatase which can activate the NFAT 

transcription factor family [60]. It was shown that both PMCA4 and PMCA2 directly interact 

with calcineurin through their catalytic core region which results in a reduced NFAT 

activation. It was hypothesized that this effect is achieved by keeping the bound calcineurin 

in a low Ca2+ environment [61, 62]. Furthermore, in osteoclasts an autoregulatory loop was 

described between PMCA1 and 4 and NFATc1, where NFATc1 directly binds to the promoter 

region of these PMCAs and induces their expression while PMCA activity reduces cytosolic 

Ca2+ oscillations, hence NFAT activation [63]. Additionally, in endothelial cells PMCA4b was 
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described to decrease NFAT activation after vascular endothelial growth factor (VEGF) 

induction. PMCA4 also reduced endothelial tube formation of mouse lung endothelial cells 

both in vitro and in vivo [64].  

An interaction of PMCA and a scaffold protein POST (Partner of STIM) in T-cells was also 

described. POST was discovered as a binding partner of the ER Ca2+ sensor molecule STIM1. 

It is also able to bind to other proteins including SERCAs, PMCAs and Na+/K+-ATPases thus 

creating multimolecular complexes. Upon interaction with the PMCA POST lowers the 

activity of the pump and in this way it helps to maintain the elevated intracellular Ca2+ 

concentration upon T-cell stimulation [65]. 

All these findings revealed that PMCA proteins are important members of the intracellular 

signaling network and besides removing excess Ca2+ from the cytosol they are able to 

influence specific signaling pathways. 

 

2.3 Alternations of Ca2+ transport in cancer 

During the malignant transformation cells acquire the features of cancer cells. These 

features are called as the hallmarks of cancer [66], which are the sustained proliferative 

signaling, avoidance of cell death, resistance against anti-proliferative signaling, replicative 

immortality, stimulation of angiogenesis, invasive capacity and ability to form metastasis, 

altered energy metabolism and avoidance of the immune response.  Ca2+ plays an important 

role in the regulation of many of these processes in healthy cells, and alterations of several 

Ca2+ handling proteins were described in cancer cells. These alterations can modify not only 

the spatial and temporal features of the intracellular Ca2+ changes but also the steady state 

Ca2+ level of the subcellular compartments resulting in both cases in an altered activation of 

downstream signaling pathways [67]. 

2.3.1. The role of Ca2+ in tumor cell survival   

Ca2+ plays an important role in the regulation of cell cycle in healthy cells. Early in the G1 

phase, elevation of cytosolic Ca2+ concentration is required for the initiation of the cell cycle 

through the activation of transcription factors c-fos, c-jun, myc and NFAT. These 

transcription factors regulate the expression of cell cycler regulator cyclin dependent kinases 

(CDK2 and 4) and cyclins (D and E). During the G1/S transition phase Ca2+ is required for the 
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phosphorylation step of the retinoblastoma checkpoint protein that causes its inactivation. 

Furthermore, during the G2/M transition Ca2+ oscillations regulate centrosome separation 

through CaMKII  (Ca2+/calmodulin-dependent protein kinase II) activity [68].  

In cancer cells the activity of several Ca2+-dependent transcription factors is sustained 

initiating constant growth. The reason for the sustained growth activation can be the 

increased Ca2+ inflow to the cell [69]. For example in prostate cancer cells transient receptor 

potential cation channels TRPC6 and TRPV6 have been shown to induce the activation of the 

NFAT signaling pathway and TRPV6 was identified as a prognosticator for tumor progression 

[70]. Members of SOCE were found to enhance cell growth in several types of cancer such as 

breast, prostate, colorectal and cervical cancer [71]. For example, Orai3 channel was 

reported to be overexpressed in breast, lung and prostate cancer. In MCF-7 breast cancer 

cells, Orai3 was found to increase cell cycle progression through the induction of proto-

oncogene c-myc [72]. In prostate cancer cells, Orai3 and Orai1 form heterotetramers that 

can be activated by arachidonic acid (AA) independently from store depletion. This, on the 

one hand, induces the calcineurin-NFAT pathway, which ultimately activates cyclin D1 and 

proliferation. On the other hand, it contributes to the avoidance of apoptosis by decreasing 

the ratio of the homomeric Orai1 channels, which are necessary for apoptosis induction 

through SOCE [73]. 

It has been known for a long time that Ca2+ plays an important role in the regulation of cell 

death. There are several different forms of cell death including apoptosis, autophagy and 

necrosis. Ca2+ overload in the mitochondria and Ca2+ depletion of the ER both can trigger 

apoptosis, while excessive cytoplasmic Ca2+ overload can induce necrosis [74]. During 

autophagy, a process with particular importance in both cancer cell death and resistance, 

Ca2+ was shown to regulate autophagosome formation and it can activate the death-

associated protein kinase (DAPK), one of the major regulatory protein of autophagy [75]. 

There is a cross-talk among these processes and they can be present in a given tissue, 

simultaneously.  

Cancer cells are able to avoid cell death through altered regulation of Ca2+ handling 

molecules. For example, the decreased expression and/or activation of plasma membrane 

Ca2+ channels can reduce the chance of a Ca2+ overload after apoptotic stimuli. In androgen 

independent prostate cancer cells, the expression of Orai1 and STIM1 proteins were found 

to be decreased resulting in decreased SOCE [76]. This was coupled with adaptation to a 
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reduced Ca2+ level in the ER because of the reduced expression of the ER Ca2+ binding 

protein calreticulin and the SERCA2b pump [77].  

However, increased expression of Ca2+ channels can also lead to apoptosis resistance either 

by inhibiting pro-apoptotic pathways or by directly refilling ER stores with Ca2+ and in this 

way avoiding ER depletion caused ER stress. For example, in breast cancer cells, Orai3 

initiated c-myc activation induces not only proliferation but it also decreases the expression 

of the pro-apoptotic Bax protein [78]. While in certain astrocytoma cells TRPV1 channels are 

highly expressed both in the plasma membrane (PM) and in the ER membrane and activation 

of these channels induces apoptosis by initiating ER stress [79].  

Ca2+ released from the ER through IP3R channels can be directly taken up by the 

mitochondria in their contact sites which can initiate permeability transition pore (PTP) 

opening and cytochrome-c release. Consequently, resistance can come from the decreased 

expression or activation of IP3Rs.This was observed in cisplatin resistance bladder cancer 

cells where decreased expression of IP3R1 prevented apoptosis [80]. Furthermore, it was 

demonstrated that anti-apoptotic protein Bcl-2 can directly interact with IP3Rs and inhibit 

their activities [81]. 

2.3.2 The role of Ca2+ in tumor cell migration and metastasis 

Ca2+ is a key regulator of cell migration in healthy cells. In migrating cells, an increasing Ca2+ 

gradient is generated from the front, where protrusions are developed, towards the rear end 

of the cell, where the trailing edge is retracted. This makes possible to differentially regulate 

Ca2+-dependent modulators of the migratory process along the polarized cell [82]. One such 

modulator is the Ca2+-dependent myosin light chain kinase (MLCK), which by 

phosphorylating the regulatory light chain of myosin II initiates contraction. Focal adhesions 

(FA) connect the cytoskeleton of the cell with the extra cellular matrix (ECM). For cell 

motility, FAs need to be assembled in the front and disassembled in the rear. This is primarily 

controlled by focal adhesion kinase (FAK) which is a non-receptor tyrosine kinase.  FAK 

activity is regulated directly by local Ca2+ changes in the focal adhesion site [83] and also 

through the calcium/calmodulin-dependent kinase II [84]. Furthermore, the Ca2+-dependent 

protease calpain 2 also regulates FAK activity by proteolysis [85]. In the leading edge of 

fibroblasts, stretch-activated TRPM7 channels together with IP3R channels in the ER 
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generate local Ca2+ flickers, which are necessary for directed migration toward 

chemoattractants [86].  

Meyer et al. investigated in detail the spatial distribution and polarized function of Ca2+ 

regulating molecules in the leader cells of collectively migrating human umbilical vein 

endothelial cells (HUVECs) [87]. They found that receptor tyrosine kinase signaling was 

increased in the front of the cells and this led to a similarly polarized activation of PLC and 

generation of IP3 and DAG. This activity generated local Ca2+ pulses in the front that induced 

MLCK activity. They showed that the global - toward the rear increasing - Ca2+ gradient was 

also present in these cells. Furthermore, the low global Ca2+ concentration in the front was 

the result of the enhanced Ca2+ extrusion capacity of the PMCA proteins, which localized 

mostly in the front of the cells. It was presented that the localization of the ER Ca2+ sensor 

molecule STIM1 also shifted towards the front, which was coupled with a decreasing Ca2+ 

level in the ER lumen. 

Metastasis is the major cause of cancer related death and cell migration is a prerequisite for 

metastasis. While in cancer cells the same set of Ca2+ signaling molecules are present as in 

normal cells, their activity and expression are often remodeled [82]. Increased Ca2+ intake 

through plasma membrane Ca2+ channels was shown to enhance cell migration in several 

cancer types [69]. For example, in metastatic prostate cancer, increased expression of TRPV2 

channel was found when compared to the primary tumor. Elevated expression of TRPV2 

increased the motility of the cells and the production of invasion associated enzymes, MMP9 

and cathepsin B [88]. SOCE was shown to be necessary for enhanced migration and 

metastasis of MDA-MB-23 breast cancer cells. Downregulation of Orai1 and STIM1 

expression or activity decreased cell migration and metastatic potential, in vivo [89]. In the 

lung cancer cell line A549 EGF treatment induced the expression of TRPM7 channel. 

Inhibition of TRPM7 activity and/or expression reduced the migratory potential of the cells 

[90]. ER Ca2+ receptor channel IP3R3 expression was found to be elevated in glioblastoma 

cells and inhibition of IP3R3 by caffeine decreased cell motility both in vitro and in vivo [91]. 

2.3.3 Remodeling of PMCAs in cancer 

Changes in the expression and the activity of PMCA proteins were described in several types 

of cancer, however, their role in carcinogenesis is isoform dependent. PMCA4b expression 

was found to be downregulated unanimously in cancer cells from various tumor types. 
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Strong decrease of PMCA4 expression was found in lymph node metastasis of colorectal 

cancer when compared to normal tissue and adenomas [92]. Furthermore, differentiation of 

colon cancer cell lines with short chain fatty acids, trichostatin A or by spontaneous 

differentiation strongly increased PMCA4b expression of the cells [93]. Similarly, PMCA4b is 

abundantly expressed in normal breast epithelium but it is present in a very low amount in 

breast cancer cells. Differentiation of breast cancer cell line MCF-7 with histone deacetylase 

inhibitors also enhanced the expression of this pump [94]. These results suggest that 

PMCA4b expression strongly correlates with the degree of differentiation of cells.  

In the case of PMCA1, the results are more controversial. In oral cancer cell lines its 

expression was found strongly downregulated by increased methylation in its promoter 

region, and its amount was also decreased in primary oral squamous cell carcinomas and in 

premalignant lesions [95]. PMCA1 protein level was also reduced in SV40-transformed 

fibroblasts compared to control cells [96] but a moderate increase in its mRNA level was 

detected in breast cancer cell lines [97]. It was demonstrated that PMCA1 was abundantly 

present in colon cancer cells and its expression only moderately increased after treatment 

with differentiating agents [93, 98]. 

Alterations in PMCA2 protein expression was described in breast cancer cells. In healthy 

breast tissue, PMCA2 is only expressed during lactation. However increased expression of 

PMCA2 mRNA was detected in several breast cancer cell lines [99]. It was suggested that the 

higher abundance of PMCA2 decreased the basal cytosolic Ca2+ concentration in these cells 

that resulted in a decreased susceptibility of the cells for apoptosis. PMCA2 was found to 

interact with calcineurin-A in the human breast cancer cell line MCF-7 and this interaction 

decreased the activity of transcription factor NFAT in the cells [62]. Inhibition of the 

PMCA2/calcineurin interaction induced the expression of the proapoptotic protein Fas 

Ligand on the cell surface and increased apoptosis of the cells [100].  

All these changes of Ca2+ handling molecules might not be the driving causes of cancer 

formation but rather consequences, nevertheless, they help to sustain cancer hallmarks. 

Better understanding of their function and modulation helps to identify new biomarkers or 

drug target molecules. 
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2.3.4. The effect of HDAC inhibitor treatment on PMCAs in cancer cells 

In eukaryotes, genomic DNA together with histone proteins is organized into the chromatin. 

The DNA strand is coiled around the globular nucleosomes formed by histone H3, H4, H2A 

and H2B proteins that are connected by linker histone H1. During gene expression this 

structure needs to loosen in order to RNA polymerase II binding [101]. Postsynthetic 

modification of the DNA and/or posttranslational modification of histone proteins can alter 

gene expression a phenomenon named epigenetic regulation. These alternations of the 

chromatin are reversible, changing during development and are affected by environmental 

factors. In the DNA, cytosines in CpG sequences can be methylated and when CpG islands in 

promoter regions are methylated that can lead to gene silencing. Remodeling of DNA 

methylation is often described in cancer cells [102].  

Histone proteins can go through various posttranslational modifications, like acetylation, 

methylation, phosphorylation or ubiquitylation. Histone acetyl transferases (HATs) are able 

to transfer an acetyl group to lysine residues in histone proteins. These acetylated lysines are 

specifically recognized by bromodomain containing proteins, such as helicases, 

methyltransferases, transcription coactivators and HATs themselves. Through the action of 

these proteins, histone acetylation influences chromatin remodeling and subsequently gene 

transcription, DNA replication and repair as well [103]. Increased acetylation of a chromatin 

region enhances DNA transcription there. In contrast histone deacetylases (HDACs) remove 

the acetyl groups from the lysine amino acids of histones. 18 different HDAC proteins were 

already described. Class I HDACs (HDAC1, HDAC2, HDAC3 and HDAC8) are found only in the 

nucleus, while class II HDACs shuttle between the nucleus and the cytoplasm (HDAC4, 

HDAC5, HDAC7, HDAC9, HDAC6 and HDAC10) and they all use Zn2+ as cofactor. Class III 

HDACs are the SIRT proteins that require NAD+ to their function. Since NAD+ production is 

dependent on the cellular nutrient levels, the activity of these HDACs is influenced by the 

metabolic state of the cells [104]. Beside histones they regulate acetylation of non-histone 

proteins as well. For example HDAC6 deacetylates -tubulin through which it regulates cell 

migration [105]. 

Since it was found that the expression and/or activities of HDACs are often increased in 

cancer cells, the antitumor effect of HDAC inhibitors was investigated [106]. Several different 

types of HDAC inhibitors were developed and it was demonstrated that they can affect 
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differentiation, apoptosis, motility, metastatic capacity and immunogenicity of cancer cells 

[107]. Hydroxamates – like trichostatin A (TSA) and suberoylanilide hyroxamic acid (SAHA or 

vorinostat) - interfere with HDAC activity by chelating the catalytic Zn2+. TSA was shown to 

induce differentiation or apoptosis in colon, gastric and prostate cancer cells [108, 109] and 

to enhance the effect of other antitumor drugs [110]. SAHA was approved as drug against 

cutaneous T cell lymphoma. Short chain fatty acids as butyrate or valproic acid (VPA) also 

has been shown to decrease tumor cell proliferation and increase cell death [111, 112]. VPA 

was already a known medication for epilepsy and seizures and its inhibitor effect on HDACs 

was only subsequently discovered. All the above mentioned HDAC inhibitors target multiple 

HDACs, lately several isoform selective HDAC inhibitors were developed and their clinical 

effect is currently investigated [107]. 

The influence of HDAC inhibition on PMCA expression has been examined in gastric, colon 

and breast cancer cell lines. It was demonstrated that after treatment with TSA or short 

chain fatty acids expression of PMCA4b was strongly increased in gastric and colon cancer 

cells while the abundance of PMCA1 isoform was only moderately elevated [93]. 

Spontaneous differentiation in post-confluent Caco-2 colon cancer cell cultures also induced 

PMCA4b expression. Similar results were obtained in breast cancer MCF-7 cells. PMCA4b 

was present in very low amount in control cells however treatment with valproate or SAHA 

caused a strong increase in PMCA4b expression. There was a higher amount of PMCA1b 

detected in the untreated cells, and its expression was only slightly elevated by the 

treatment [94].  

The effect of HDAC inhibitor treatment on melanoma cells was also investigated. On one 

hand it was found that HDAC inhibitors can induce cell death in melanoma cells by increasing 

the expression of pro-apoptotic proteins (BIM, BAX) and decreasing the anti-apoptotic ones 

(Bcl-2). On the other hand this effect was strongly cell line and agent dependent [113, 114]. 

In BRAF mutant melanoma cells combination treatment with BRAF inhibitor PLX4720 and 

SAHA increased the number of the apoptotic cells compared to single agent treatment. 

SAHA also sensitized resistant BRAF mutant cells to PLX4720 treatment induced apoptosis 

[115]. It was also found that HDAC inhibitor treatment affected the immunogenicity of 

melanoma cells. Pan-HDAC inhibitor (LHB589) increased the expression of MHC and co-

stimulatory molecules [116] while treatment with various class I HDAC inhibitors induced 

PDL-1 ligand expression on melanoma cells [117]. HDAC inhibitors were tested also in clinical 
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trials in metastatic melanoma patients however as single agents induced high level of 

toxicity. Since they were shown to increase immunogenicity and increase apoptosis in BRAF 

inhibitor resistant cells their applicability in combination therapies is currently investigated 

[118].  

 

2.4. Metastatic melanoma 

Incidence of melanoma is constantly rising worldwide but the white skin population in 

North-America, Australia and Europe is particularly susceptible for this disease [119]. In the 

USA, melanoma was one of the three most prevalent cancers among men in 2016 [120]. 

When melanoma is recognized in a localized stage the 5-year survival rate is 98%, however, 

among patients with regional metastasis it becomes 63% while with distant metastasis it is 

only 15% [119]. Surgical removal is the primary therapy for stage 0-II and resectable stage III 

melanomas. For unresectable stage III and IV cases a variety of targeted therapy, 

immunotherapy and chemotherapy are administered. Several new therapeutic options 

emerged in the last decade but the low percentage of long-term survivors shows the need 

for further research in this area. 

2.4.1. Melanoma development 

In the healthy skin, melanocytes are localized in the junction of the two layers of the skin, 

the epidermis and the dermis. The epidermis constitutes the barrier toward the outer 

environment through stratified keratinocytes, which are constantly renewed. The dermis 

provides nutrients and mechanical support. The basement membrane is localized between 

these two layers. The role of melanocytes is to produce melanin and transfer it to 

keratinocytes to provide protective cap over the nucleus against UV radiation. Melanocytes 

during development migrate to the skin from the neural crest where they develop several 

dendrites through which they are in connection with about 36 keratinocytes each. The 

proliferation capacity of melanocytes is tightly controlled by the surrounding keratinocytes 

[121]. 

Congenital nevi are present at birth and more nevi are commonly acquired during childhood. 

Dysplastic nevus shows histological abnormalities and regarded as a precursor towards 

cutaneous melanoma. The first malignant stage is the radial growth phase of melanoma 
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where cells rapidly proliferate and show local invasiveness. The second is the vertical growth 

phase of melanoma where cells spread already toward the subcutaneous tissue and the 

chance for metastasis is elevated. The final stage is when metastases are developed [122]. 

Melanoma cells in contrast to melanocytes do not develop dendrites and loss their contacts 

with keratinocytes, proliferate rapidly and express melanoma-associated antigens (MAA). 

This high immunogenicity of melanoma cells led to the discovery of several, not only 

melanoma specific, tumor associated antigens such as MAGE, and that makes melanomas a 

promising target of immunotherapy [123].  

2.4.2. Mutational landscape and targeted therapies 

Several oncogenic mutations were identified in melanoma and most of these can lead to the 

constant activation of mitogen activated protein kinase (MAPK) pathway. This pathway can 

be stimulated by external stimuli of epidermal growth factor (EGF), insulin-like growth factor 

(IGF) or transforming growth factor (TGF) through the receptor tyrosine kinase receptors in 

the plasma membrane, all of which activate the downstream small GTPase RAS proteins 

(HRAS, KRAS, NRAS). Ras proteins act on the downstream serine-threonine RAF kinases 

(ARAF, BRAF, CRAF), which turn on the MEK kinases that in turn activate ERK1 and ERK2. ERK 

proteins can traffic to the nucleus where they directly activate transcription factors such as 

ELK-1 inducing growth and survival [119]. Mutations in the NRAS gene were identified in 15% 

of melanomas [124], while in about 50% of the cases BRAF mutation was found. Among the 

many described BRAF mutations the V600E is particularly prevalent, where a glutamic acid is 

changed to a valine [125]. This mutation is found in more than 75% of the cases.  

Mutations with lower frequency were identified in other pathways as well. Inactivating 

mutation of the tumor suppressor protein PTEN is often present that enhances PIP3 

production and in this way the activation of the PI3K/Akt/mTOR pathway. Furthermore, 

activating mutations in the PI3K/Akt/mTOR pathway were also described. 

Since the constituent activation of the MAPK pathway is so frequently the driving force of 

melanoma cell survival and spread, specific inhibitors were developed against the BRAF and 

MEK kinases. Before these agents only the chemotherapeutic drug dacarbazine was available 

for patients with metastatic melanoma resulting in median overall survival around 5 months. 

Introduction of mutant BRAF (V600E) specific inhibitor vemurafenib and later dabrafenib 

initiated quick and high response rate (60%) and raised median overall survival to around 13 
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months. However, there were patients with intrinsic resistance and in most of the cases 

acquired resistance emerged within 6-8 months [126]. A number of molecular mechanisms 

have been described for the intrinsic resistance such as PTEN loss [127], cyclin D1 

amplification and stromal cells produced hepatocyte growth factor (HGF) stimulation 

through its receptor CMET. Acquired resistance mechanisms are induced by the BRAF 

inhibitor treatment. They can be either ERK-dependent like upregulation of the RTK 

receptors which results in the reactivation of ERK, or ERK-independent like the induction of 

the PI3K/Akt/mTOR pathway [126]. 

The other successfully targeted molecules in the MAPK pathways are MEK1 and MEK2. 

Several highly specific inhibitors were developed like trametinib and comibetinib, and since 

2014 the combination therapy of BRAF inhibitor dabrafenib and MEK inhibitor trametinib is 

approved for unresectable and metastatic BRAF mutant melanomas [128]. MEK inhibitors 

were also tested in clinical trials with NRAS mutant melanoma patients, however, their 

efficacy were unfortunately very low; combination of MEK inhibitors with PI3K-AKT or 

CDK4/6 inhibitors might increase the therapeutic benefit [124].   

Mutations of receptor tyrosine kinase C-KIT were also identified with lower frequency (2-5%) 

in cutaneous melanomas and trials with C-KIT inhibitor imatinib and sunitib were conducted 

and gave promising results [129].  

2.4.3. Immunotherapy to treat melanomas 

Most efficiently and least invasively the patient´s own immune system could eradicate 

cancer cells. However, tumor cells are able to evade or suppress immune response even if 

they are so immunogenic as most melanoma cells. Immunotherapies like treatment with 

cytokines (IL-2, IFN-) or adoptive cell therapy with ex vivo grown antitumor lymphocytes 

were already used in metastatic melanomas [123], however, the breakthrough was recently 

achieved with the use of immune checkpoint inhibitors. This method is based on the 

regulation of T-cell activation. CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4) is a 

transmembrane receptor and its expression is increased after the activation of T-cells. It can 

interact with the costimulatory molecules B7 (CD80, CD86) expressed on the surface of the 

antigen presenting cells (APC) which counteracts with T-cell activation and induces anergy of 

the cell. Inhibition of this interaction by CTLA-4 specific antibody frees B7 molecules so they 

can interact with costimulatory receptor CD28 and enhance T-cell activation [130].  
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PD1 (programmed cell death receptor 1) receptors also conduct negative regulatory signals 

and are present not only in activated T-cells but also on B-cells and natural killer cells. 

Natural APCs and also cancer cells can express its ligands PD-L1 and PD-L2 and through this 

interaction decrease T-cell activity [119].  

CTLA-4 inhibitor ipilimumab was approved first in 2011, next PD-1 blockers pembrolizumab 

and nivolumab were introduced which generated higher response rate (~ 40%) and less 

toxicity. Currently, combination therapy with ipilimumab and nivolumab raised further the 

response rate over 50% however, serious adverse effects (AEs) were also more frequent (~ 

50%). Based on these results PD1 inhibitor nivolumab was approved as first-line therapy for 

PD-L1 positive tumors. Combination therapy with ipilimumab is proposed for patients with 

PD-L1 negative tumors because only for this subgroup of patients it was shown to be 

superior when compared to monotherapy [130].  

Of note, AEs rarely can be severe or lethal even with PD-1 inhibitors, and there are many 

patient who are intrinsic resistant to immunotherapy or acquire quickly resistance during the 

treatment. Further predictive biomarkers for sensitivity to immunotherapy still need to be 

identified.  

In the case of BRAFV600 melanomas both targeted therapy and immunotherapy is an 

option. Phase III clinical trials are ongoing to determine in which sequence it is better to 

employ them [130, 131].   

2.4.4. Ca2+ signaling in melanoma 

As it was discussed earlier the expression and activity of Ca2+ regulatory proteins are often 

altered in tumor cells. In melanomas, changes in the expression of several Ca2+ channels and 

consequently alternations in Ca2+ signaling were described [132].  

TRPM1 (transient receptor potential melastatin 1) channels are very important regulators of 

normal melanogenesis and are abundantly expressed in normal melanocytes and in benign 

nevi. However, their expression is strongly decreased in primary melanomas and they are 

absent in metastases. It was found that TRPM1 level negatively correlates with tumor 

aggressiveness and TRPM1 mRNA level might be used as a predictive marker for future 

metastases. Its expression was shown to be under the control of transcription factor MITF, 

which is a known regulator of melanocyte differentiation and it is often downregulated in 
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melanoma cells. TRPM8, TRPM2 and TRPM7 were all found to be upregulated in melanoma 

cells where they contributed to increased proliferation and metastatic capacity [133]. 

SOCE is the most common Ca2+ entry mechanism is non-excitable cells. Elevated expression 

of store operated Ca2+ channel Orai1 and stromal interacting molecule 2 (STIM2) was 

described in both melanoma cell lines and melanoma tissues and silencing of these proteins 

decreased the metastatic and migratory potential of these cells but increased their 

proliferation [134]. In another study, Orai1 and STIM1 were found to be upregulated in 

melanoma cells which was associated with the enhanced activity of the CaMKII/Raf-1/ERK 

signaling pathway. Furthermore, inhibition of SOCE decreased both melanoma cell 

proliferation and migration [135]. In both studies, the effect of SOCE on melanoma cells was 

independent of their BRAF mutational status.  

A specific mechanism was described by Sun et al. through which SOCE influence cell 

migration and metastasis in melanoma cells. They found that STIM1 and Orai1 initiate 

Ca2+oscillations which regulate invadopodium assembly through phosphotyrosine Src 

activation and ECM degradation by increasing MMP production [136].  

Voltage-gated T-type Ca2+ channels were also found to be upregulated in melanoma cells 

that was shown to enhance proliferation [137]. Clinically used T-type channel blockers 

caused decreased proliferation and autophagy and induced apoptosis in melanoma cell lines 

[138].  

Since Ca2+has a diverse effect on cell migration, it is an important regulator of melanoma cell 

motility, as well. A guanine nucleotide exchange factor Epac (exchange protein directly 

activated by cyclic AMP) increases melanoma cell migration by inducing Ca2+release from the 

ER and ultimately increasing intracellular Ca2+ level. This effects cell motility by increasing 

actin assembly [139]. It was also presented that cGMP-specific phosphodiesterase PDE5A is 

downregulated in BRAF mutant melanoma cells that results in cytosolic Ca2+elevation. This 

led to increased contractility of the cells through enhanced phosphorylation of myosin light 

chain 2 and to enhanced metastatic potential in lung colonization assay [140].  

Elevated expression of Ca2+/calcineurin activated transcription factor NFAT2 and NFAT4 was 

found in BRAF mutant melanoma cell lines which directly increased cyclooxygenase-2 (COX-

2) transcription. COX-2 is a known positive regulator of cancer cell migration and invasion 

and often associated with poor prognosis [141].  
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Ryanodine receptor RyR2 and ligand gated Ca2+ channel P2X7 were also shown to be 

upregulated in BRAF mutant melanoma cells. Ryr did not function as a Ca2+ channel but it 

modulated P2X7 function while P2X7 had an antiapoptotic effect after simultaneous 

stimulation with apoptosis inducer  2-methoxyestradiol (2ME) and its agonist ATP. However, 

after downregulation of P2X7 expression with siRNA the cells became sensitized to 2ME 

treatment [142]. 

It was also suggested that inhibition of SERCA pumps can contribute to the induction of 

apoptosis in BRAF inhibitor resistant melanoma cells. They found that in BRAF mutant 

melanoma cells BRAF inhibitor treatment causes an increase in the basal cytosolic Ca2+ level 

which induces ER stress and apoptosis. This effect could be further increased by the addition 

of SERCA inhibitor thapsigargin even in vemurafenib resistant cells [143].  

Nevertheless, the role of plasma membrane Ca2+ pumps in melanoma progression has not 

been investigated until now. 
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3. Aims 

 

PMCA proteins are key regulators of intracellular Ca2+ homeostasis in all cell types. They 

differ in their kinetic and regulatory features that define their ability to respond to a variety 

of incoming Ca2+ signals. By shaping intracellular Ca2+ transients and through interactions 

with other molecules, PMCA proteins play a role in the regulation of crucial cellular 

processes such as differentiation, migration or cell death. 

  

In this work we wanted to examine how different PMCA isoforms shape the cytosolic Ca2+ 

signal and investigate if PMCA proteins play a role in Ca2+ signaling of metastatic melanoma 

cells. In order to study this: 

1. We analyzed the differential effects of PMCA isoforms PMCA4b, PMCA4a and 

PMCA2b on the pattern of the SOCE induced Ca2+ signal. Therefore, we expressed 

mCherry-tagged PMCA variants together with the genetically encoded Ca2+ indicator 

GCaMP2 in Hela cells.   

2. We studied the influence of PMCA proteins on Ca2+ signaling in both BRAF mutant 

and BRAF wild type melanoma cells. We determined the expression pattern of the 

PMCA proteins and analyzed the effect of mutant BRAF inhibitor treatment on the 

PMCA expression, localization and the intracellular Ca2+ signal. 

3. Since metastatic melanoma cells are highly motile we aimed to analyze the effect of 

mutant BRAF inhibition on the migratory capacity of melanoma cells. 

4. We investigated how PMCA affected the motility of melanoma cells. Therefore, we 

generated BRAF mutant cell lines overexpressing PMCA4b and tested their migratory 

characteristics in vitro, and their metastatic capacity in vivo. 

5. Since HDAC inhibitor treatment has been shown to induce PMCA4b expression in 

breast and colon cancer cells, we treated the melanoma cells with HDAC inhibitors 

alone or in combination with the mutant BRAF inhibitor. We examined the 

expression, localization and activity of the PMCA, and determined the migratory 

activity of the cells in response to the HDAC inhibitor treatments. 
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4. Materials and methods 

4.1 Cell culture 

In our experiments we used the HeLa cervix adenocarcinoma cell line and four melanoma 

lines: the BRAF/NRAS wild type MEWO, the NRAS mutant MJZJ and the two BRAF mutant 

A375 and A2058 cells. MEWO, A375 and A2058 cell lines were obtained from the American 

Type Culture Collection, MJZJ was established at the Institute of Cancer Research at the 

Medical University of Vienna [144]. Cells were grown in Dulbecco’s modified Eagel’s Medium 

(DMEM) supplemented with 10% FBS, 100 mg/ml streptomycin, 100 U/ml penicillin at 37oC 

and 5% CO2 in a humidified atmosphere. 

4.2 Transfection of HeLa cells and generation of stable cell lines 

For the Ca2+ signal measurements, HeLa cells were transiently co-transfected with one of the 

mCherry-PMCA4b, mCherry-PMCA4b-LA, mCherry-PMCA4a or mCherry-PMCA2b constructs 

and the pN1- GCaMP2 plasmid. The mCherry-PMCA constructs were generated as described 

in [44, 45], the pN1-GCaMP2 plasmid was a gift from Junichi Nakai, RIKEN Brain Science 

Institute, Saitama, Japan [145]. Cells were seeded in an Imaging Chamber Lab-Tek II (Nalge 

Nunc International) at a 4-6x104 cells/well concentration 24 hours before transfection. 

Transient transfections were performed with transfection reagent FuGENE HD (Roche 

Applied Science) according to the manufacturer’s protocol. Measurements were carried out 

48 hours after transfection. 

The sh-HeLa cell line was created by stable transfection with PMCA4 shRNA plasmid (sc-

42602-SH) and shRNA plasmid-A (sc-108060) was used as control. Cells were seeded in a six-

well plate and before transfections medium was changed to the shRNA Plasmid Transfection 

Medium (sc-108062). Transfection was carried out with shRNA Plasmid Transfection Reagent 

according to the manufacture’s protocol. To select successfully transfected cells Puromycin 

dihydrochloride (1μg/ml) (sc-108071) was added to the medium 48 hours after transfection. 

In every 2-3 days, medium was changed to fresh medium with Puromycin for two weeks. 

Then cell clones were generated using cloning rings and PMCA4b protein level was analyzed 

by Western Blotting. Sh-HeLa cell lines with lowest PMCA4b expression were established. 
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4.3 Transfection of melanoma cells and generation of stable cell lines  

For the melanoma studies A375-GFP, A375-GFP-PMCA4b I, A375-GFP-PMCA4b II, MEWO-

GFP and MEWO-GFP-PMCA4b cell lines were generated by stable transfection with SB-CAG-

GFP-PMCA4b-CAG-Puromycin or SB-CAG-GFP-CAG-Puromycin vectors that include a Sleeping 

Beauty transposon system. These vectors were created by the modification of SB-CAG-GFP-

ABCG2-CAG-Puromycin vector (a generous gift from T. Orban [146]) from which the GFP-

ABCG2 insert was cut out with AgeI and BclI enzymes. The GFP-PMCA4b sequence was 

excised from the pEGFP-PMCA4b plasmid [33] by first opening the vector with ClaI enzyme 

digestion and then with a partial digestion with AgeI and BamHI. Afterwards GFP-PMCA4b 

was ligated into the open SB-CAG-CAG-Puromycin vector. Stable transfection with the SB-

CAG-GFP-PMCA4b-CAG-Puromycin was performed by first seeding 2-3.5x105 MEWO and 

A375 cells/well on 6-well plates. 24 hours later SB-CAG-GFP-PMCA4b-CAG-Puromycin vector 

and SB100x transposase plasmid were added to the cells in 1:10 ratio together with Fugene 

HD transfection reagent (Roche Applied Science). 48 hours later selection of transfected cells 

started with 1µg/ml puromycin dihydrocloride. 

4.4 Treatments of melanoma cells 

Mutant BRAF (V600E) inhibitors vemurafenib (PLX4032) and GDC0879, and the MEK kinase 

inhibitor selumetinib were obtained from Selleck Chemicals (Munich, Germany). All these 

inhibitors were dissolved in DMSO and kept at -80oC. HDAC inhibitors valproic acid sodium 

salt and suberoylanilide hyroxamic acid (SAHA) were purchased from Sigma-Aldrich. 200 mM 

stock solution of valproate was prepared in distilled water while SAHA was dissolved in 

DMSO at 100 mM concentration. Both were stored at -20 oC. Cells were seeded 24 hours 

before treatment either on 6-well plates (1-2x105 cells/well) or into imaging chambers (1-

2x104 cells/well). The appropriate drug was applied in fresh medium the next day and cells 

were cultured for the appropriate period of time. SAHA was replaced daily in fresh medium. 

The final DMSO concentration was lower than 0.01% in all experiments. 

4.5 Ca2+ signal measurements 

In order to detect the changes in the intracellular Ca2+ concentration, HeLa cells were 

transfected with the genetically encoded Ca2+ indicator GCaMP2 (described above) while 
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melanoma cells were loaded with the synthetic Fluo-4 green fluorescent Ca2+ indicator. 

Before loading the cells with Fluo-4, they were washed twice with HBSS supplemented with 

2 mM CaCl2, 0.9 mM MgCl2 and 20 mM HEPES pH7.4. Then to the same solution 0.5 µM 

Fluo-4 AM (Molecular Probes, F14201) was added and cells were incubated for 30 min at RT. 

Following the incubation cells were washed twice with the same solution.  

Store operated Ca2+ entry was induced in two steps. First the intracellular Ca2+ stores were 

depleted. Cells were washed twice and kept in nominally Ca2+ free solution (HBSS 

supplemented with 100 µM EGTA, 100 µM CaCl2, 0.9 mM MgCl2 and 20 mM HEPES pH 7.4) 

and they were stimulated first by thapsigargin (2 µM) and after 2 minutes also by ATP (100 

µM). Than 3 minutes later store operated Ca2+ entry was induced by restoring the external 

Ca2+ concentration to 2 mM. Ca2+ signal was also evoked by the A23187 Ca2+ ionophore 

treatment. For this, cells were washed twice and kept in HBSS supplemented with 2 mM 

CaCl2, 0.9 mM MgCl2 and 20 mM HEPES pH7.4. Thereafter, 2 µM A23187 was added to the 

solution.  We used two different inhibitors, LaCl3 and Caloxin 1c2 to investigate the role of 

PMCA4b in the regulation of the intracellular Ca2+ signal. LaCl3 (1 mM) was administered 

when the Ca2+ signal reached its peak. The PMCA4b-specific inhibitor Caloxin 1c2 (20 µM) 

was added to the cells 10 minutes before the Ca2+ signal was triggered.  

Time-lapse images were acquired by Zeiss LSM500 and Olympus IX81 laser scanning confocal 

microscopes with a 60x (1.4) oil immersion objective. Z-resolution was adjusted to 1 µm and 

images were taken every 0.3 s/1 s. The relative fluorescence intensity values were calculated 

as F/Fo (where Fo was the average initial fluorescence). We used Fluoview FV500 (v4.1), 

ImageJ v1.42q and Prism4 v4.01 (GraphPad Software) software products to analyze the data. 

4.6 Protein analysis by Western Blot 

For total protein extraction cells were washed twice with PBS and then they were incubated 

with 6% TCA for 1-24 hours at 4 oC. The precipitated protein was centrifuged (4000g, 10 min, 

4oC) and the pellet was dissolved in a modified Laemmli-type sample buffer (62,5 mM Tris-

HCl, pH 6,8, 2% SDS, 10% glycerol, 5 mM EDTA, 100 mM DTT, 125 mg/ml urea és 0,28 mg/ml 

bromphenolblue). The protein concentration of the samples was determined with a 

modified Lowry method [147, 148]. 20-30 g proteins were loaded on 7.5% or 10% 

acrylamide gels and after electrophoresis samples were transferred to PVDF membranes. 

After blocking with 5% milk solution, the membranes were incubated with the appropriate 



34 
 

primary antibody. Primary antibodies are listed in Table 9.1. Anti-PMCA4b antibody, JA3 is 

specific for PMCA4b that recognizes the region between residues 1156-1180 [149]. As 

secondary antibodies, HRP-conjugated anti-rabbit and anti-mouse (Jackson 

ImmunoResearch, dilution 1:10000) were applied and Pierce ECL Western Blotting Substrate 

(Thermo Scientific) and luminography were used for detection. Densitometric analysis was 

performed by ImageJ software v1.42q. 

4.7 Immunofluorescence staining 

After washing twice with HBSS (37oC), cells were incubated in 4% paraformaldehyde solution 

at 37oC for 15 minutes. Then they were washed five times with PBS and to permeabilize the 

cell membrane, they were kept in ice cold methanol for 5 minutes. Cells were washed again 

five times with PBS and then they were kept in blocking buffer (PBS containing 2 mg/ml 

bovine serum albumin, 1% fish gelatin, 0.1% Triton-X 100, 5% goat serum) for 1 hour at RT. 

Subsequently primary antibody against PMCA4b (JA3, dilution 1:200) was applied in blocking 

buffer for 1 hour at RT. Next, cells were washed three times with PBS and they were 

incubated with the secondary antibody Alexa Flour 488-conjugated anti-mouse IgG 

(Invitrogen) in blocking buffer for 1 hour at RT. Images were acquired by Olympus IX-81 and 

Zeiss LSM500 laser scanning confocal microscopes with a 60x (1.4) oil immersion objective. 

Images were analyzed with FluoviewFV500 software v4.1 or ImageJ software v1.42q. 

4.8 Quantitative real-time reverse transcription PCR (qPCR) 

mRNA was isolated with TRIzol reagent (Life Technologies) from control, vemurafenib-

treated and HDAC inhibitor-treated melanoma cells. For reverse transcription the RevertAid 

Reverse Transcriptase (Thermo Scientific) was used and amplification was performed with 

the Maxima SYBR Green master mix (Thermo Scientific) on an Applied Biosystems® 7500 

Real-Time PCR System. All primer pairs used in the experiments are listed in Table 9.2 [150]. 

PMCA4b mRNA level was determined with the TaqMan assays Hs00608066_m1 (PMCA4b) 

and Hs99999905_m1 (GAPDH) (both from Thermo Scientific). 
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4.9 Proliferation assay 

Proliferation was analyzed by BrdU incorporation (colorimetric) assay (Roche Applied 

Science, Vienna, Austria, 11 647 229 001) according to the manufacturer’s protocol. A375-

GFP, A375-PMCA4bI and A375-PMCA4bII cells were seeded in triplicates on 96-well plates in 

1x104 cells/well concentration. Both control and vemurafenib-treated (48 hours) cells were 

labeled with 10 µM BrdU for 2 hours at 37oC. Incorporated BrdU level was determined by 

absorbance measurement at 370 nm (reference: 492 nm) and calculated as A370-A492. 

4.10 Viability assay 

Viability was tested on vemurafenib and HDAC inhibitor treated A375, A2058 and MEWO 

cells. First the cells were trypsinized and kept in suspension. Two dyes were mixed into the 

solution (Solution 13, Chemometec, 910-3013) from which Acridine Orange labeled all cells 

while DAPI stained only the non-viable cells. The number of cells in both populations was 

determined by the NucleoCounter NC-3000TM system (Chemometec) by applying 10 l of 

each sample on 8-well NC-slide. Viability was calculated as total cells - nonviable cells/total 

cells. 

4.11 Cell cycle analysis 

The ratio of vemurafenib and HDAC inhibitor treated A375, A2058 and MEWO cells in each 

cell cycle phases was analyzed based on their DNA content. First lysis buffer (Solution 10, 

910-3010, Chemometec) was mixed with DAPI stain solution (Solution 12, 910-3012, 

Chemometec) at a final concentration 10 g/ml DAPI. Then cells were trypsinized and 

incubated with the lysis buffer at 37oC. After five minutes reaction was stopped with 

stabilization buffer (Solution 11, 910-3011, Chemometec) and from each sample 10 l was 

added into 8-well NC-slide. Cellular fluorescence was measured with a NucleoCounter NC-

3000TM system (Chemometec).  

 4.12 Analysis of cellular morphology 

Morphological analysis of individual A375-GFP and A375-GFP-PMCA4b cells was performed 

on phase contrast images of the cells with the ImageJ 1.47v program´s particle analyzing 

option. We calculated the following morphological parameters: cellular area, aspect ratio 
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(defined as (major axis) / (minor axis) of the ellipse which best fits the shape of the cell) and 

circularity (defined as 4π* (cell area) / (cell perimeter)2). 

4.13 Cell migration assays 

Random and directional migration of melanoma cells was assessed with three different 

methodologies. 

4.13.1 Random migration assay using phase contrast videomicroscopy 

Migratory capacity of control and vemurafenib treated melanoma cells, as well as the A375-

GFP and the A375-GFP-PMCA4b cell lines were analyzed. Cells were plated in the inner 8 

wells of 24-well plates (Corning Incorporated, Corning, NY) and remained in the incubator 

overnight for cell attachment. At the beginning of videomicroscopic measurement, medium 

was changed to CO2-independent medium (Gibco-BRL Life Technologies, Carlsbad, CA) 

supplemented with FCS and 4 mM glutamine. Following the first 24-hour-measurement cell 

were treated with vemurafenib (0.5 µM) and followed for 72 hours afterwards. Cell 

migration was recorded by an inverted phase-contrast microscope (World Precision 

Instruments, Sarasota, FL) placed in a custom-built incubator maintaining 37°C and room 

ambient gas atmosphere. Images of 3 microscopic fields from each well were acquired every 

5 minutes. Cell positions were registered by a custom made cell-tracking program that 

enables manual labeling of individual cells [151]. Cell motility was calculated as the net 

displacement of cells between 0-12 and 48-60 hours of recordings with or without 

treatment.  

4.13.2 Random migration assay using fluorescent cell nuclei tracking assay 

A375 cells were treated with HDAC inhibitor valproate (4mM) for 48 hours. Before 

measurement cell nuclei were labeled with 0.1 μM Hoechst 33342 for 1 hour. Images were 

taken automatically by the ImageXpress Micro XL (Molecular Devices, Sunnyvale, CA USA) 

high content screening system with a Nikon CFI Super Plan Fluor ELWD ADM 10x objective. 

During the experiment cells were kept at 37oC in 5% CO2 humidified atmosphere. For 

Hoechst (447/60 nm) detection excitation wavelength was 377/50 nm. 4 images were 

acquired in every 30 minutes for 24 h. Data analysis was done with the Multidimensional 
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Motion Analysis module of MetaXpress High Content Image Acquisition & Analysis Software 

Version 5.3. The cell nuclei cut-off was 9–15 μm. 100 μm was adjusted as maximum 

displacement between two points on the trajectory of individual cells.  

4.13.3 Directional cell migration assay 

A375 cells were treated with various concentration of valproate for 48 hours and then cells 

were trypsinized and seeded on a 48-well Boyden chamber (Neuro probe, Gaithersburg, MD) 

with uncoated Nucleopore membranes (Whatman) at 2x104 cells/well concentration. Pore 

diameter of the membranes was 8 µm. Both in the upper and the bottom chamber DMEM 

containing 10% FCS was present and fibronectin (100 µg/ml, Millipore) was applied as a 

chemoattractant to the bottom chamber [152]. Cells were incubated for 6 hours at 37oC. 

Then from the upper side of the membrane the cells were removed by scraping and the filter 

was treated with methanol to fix the cells on the lower side. After staining the cells with 

toluidine blue, cells were counted with a light microscope at ×200 magnification. When the 

PMCA4 specific inhibitor caloxin 1c2 was used, it was added to the medium after seeding on 

the Boyden chamber at a 20 µM concentration. 

4.14 Lung colonization assay 

Tail vein injection of A375-GFP, A375-GFP-PMCA4b I and II cells (4x105cells/0.2 ml serum 

free DMEM) was performed on 11-week old female SCID mice (10 mice / group) provided by 

the National Institute of Oncology, Hungary. We sacrificed the mice 6 weeks later. The lung 

and the tumor tissue in the chest cavity were taken out, fixed in formalin and embedded in 

paraffin. Hematoxylin-eosin stained sections from the tissue blocks were analyzed with 

TissueFAXS System (TissueGnostics GmbH, Vienna, Austria) (20x). Using Tissue Quest 

program the tumor regions were highlighted and their area was quantified. The Guidelines 

for Animal Experiments were followed during the execution of the protocol and permission 

was obtained from the Department of Experimental Pharmacology in the National Institute 

of Oncology, Budapest, Hungary (permission number: 22.1/722/3/2010).  
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5. Results 

 

5.1 Distinct PMCA isoforms shape intracellular Ca2+ transients differently 

We wanted to analyze how differences in the kinetic properties of PMCA isoforms affected 

the patterns of Ca2+ transients. In our experiments we used three PMCA isoforms, PMCA4b, 

PMCA4a and PMCA2b, which strongly differed in their kinetics of activation by Ca2+-CaM and 

they also had distinct inactivation rates.  Previous experiments demonstrated that PMCA4b 

is activated by the Ca2+-CaM complex very slowly (kon) while the activation of PMCA2b and 

PMCA4a are much faster [42, 153, 154]. Based on these characteristics, PMCA4b is a “slow” 

pump, while PMCA2b and PMCA4a are “fast” pumps. Furthermore, PMCA4a has a fast Ca2+-

CaM off-rate (koff) which means it becomes quickly inactivated after a Ca2+ spike. In contrast, 

PMCA4b and PMCA2b have a much slower Ca2+-CaM off-rates; they remain active longer, a 

characteristic called as the “memory” of the pumps [154]. 

We investigated the patterns of Ca2+ transients in response to either the store operated Ca2+ 

entry (SOCE) or after a Ca2+ ionophore stimulus. SOCE was induced by the addition of the 

SERCA pump inhibitor Thapsigargin (2 M) followed by ATP (100 M) in a nominally Ca2+ free 

solution. In this way the ER Ca2+ pool became depleted and its refill with Ca2+ was blocked. 

Then extracellular Ca2+ concentration (2 mM) was restored that resulted in a sharp increase 

in the intracellular Ca2+ concentration by allowing Ca2+ to enter the cells through store 

operated Ca2+ channels (SOCs). The SOCE-mediated Ca2+ signal lasted for about 10-15 

minutes depending on cell type and condition (Figure 3B).  

5.1.1 The effect of siRNA knockdown of PMCA4b on the SOCE mediated Ca2+ 

signal  

In our experimental model we used HeLa cells, which in a sub-confluent state express 

PMCA1 and PMCA4b in low levels but with confluency the expression of PMCA4b rises 

(Figure 3A). In order to investigate the role of PMCA4b in Ca2+ signaling, we stably 

downregulated PMC4b expression in HeLa cells with a PMCA4 specific short hairpin RNA. In 

this new cell line (sh-PMCA4) even in confluent state the abundance of PMCA4b remained 

very low (Figure 3A) while the expression of PMCA1 did not change.   
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Figure 3. SOCE-mediated Ca2+ signal in sh-PMCA4 and control Hela cells. (A) Analysis of 

PMCA1 and PMCA4 protein levels in 3, 5 or 7 days long grown control HeLa and sh-PMCA4 

cells. PMCA1 and PMCA4 protein expression level was analyzed by Western blotting using a 

pan-PMCA antibody 5F10 and a PMCA4b specific antibody JA3 to detect the two proteins. (B) 

A representative diagram of a SOCE mediated Ca2+ signal in sh-PMCA4 Hela cells. Addition of 

thapsigargin and ATP empties the ER Ca2+stores in nominally Ca2+-free solution then re-

addition of external Ca2+ (2 mM) induces SOCE. (C, D) cells were transfected with 

Ca2+indicator GCAMP2. Ca2+ signal was induced with Ca2+readdition in individual control 

HeLa (C) and sh-PMCA4 (D) cells. Each graph shows over 30 cells.  

To detect changes in the intracellular Ca2+ concentration cells were transiently transfected 

with the genetically encoded fluorescent Ca2+ indicator GCaMP2. We found that in all sh-

PMCA4 cells the decay of the Ca2+ transients was slow and nearly all cells responded equally 

to the incoming Ca2+ signal.  In contrast, in the control cells the pattern of Ca2+ signaling was 

more diverse; Ca2+ clearance was fast in a subpopulation of cells while in the rest of the cells 

the decay phase was similar to that of the sh-PMCA4b cells indicating that PMCA expression 

varies quite substantially between cells.  
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 5.1.2 The differential impact of slow and fast pumps with long or short 

memory on the SOCE mediated Ca2+ transients 

We generated mCherry-tagged PMCA4b, PMCA2b and PMCA4a constructs and co-

transfected HeLa cells with one of the PMCA isoforms and the Ca2+ indicator GCaMP2. This 

way we could follow changes in intracellular Ca2+ concentration and visualize PMCA 

expression in the same cell. In our experiments besides of the wild-type PMCA4b we also 

used the mutant PMCA4b-LA, in which three leucine residues (Leu1167-1169) were 

substituted with alanines in the pump´s C-terminal region. Earlier we characterized this 

mutant [45] and showed that it has an enhanced plasma membrane localization compared 

to the wild type protein while it retains all other characteristics of the wild type pump.  We 

found that overexpression of PMCA4b (slow pump with memory) strongly altered the shape 

of the Ca2+ transient (Figure 4A). 

 

Figure 4. SOCE mediated Ca2+ signals in PMCA4b, PMCA4b-LA, PMCA4a and PMCA2b 

expressing HeLa cells. Cells were co-transfected with mCherry-tagged PMCA constructs and 

Ca2+ indicator GCaMP2. The data in (A, B) shows results from > 15 cells. The graphs in (C) and 

(D) show the mean values of the Ca2+ signals from 20 to 30 cells ± 95% CI. 
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The first quick rise in the intracellular Ca2+ concentration was followed by a much faster 

decay phase than in the control HeLa or the sh-PMCA4 cells and this was followed by 

periodic baseline oscillations. Expression of PMCA4b-LA had a similar effect (Figure 4B) 

except that the baseline oscillations were far more synchronized in these cells presumably 

due to its higher abundance and more even distribution in the plasma membrane.  

Transient expression of PMCA4a (fast pump with no memory) had a very different effect on 

the Ca2+ transient. After a rapid increase, the intracellular Ca2+ concentration quickly 

decreased however it did not return to the baseline but stabilized in a new, increased 

steady-state level. Furthermore, cells expressing PMCA2b (fast pump with long memory) 

cleared very quickly the excess Ca2+ from the cytosol producing only one short peak.   

5.1.3 Influence of PMCA isoforms on Ca2+ transients generated independent of 

SOCE 

 In order to investigate the effect of different PMCA isoforms on the Ca2+ transients initiated 

by other stimuli, we induced Ca2+ transients with the calcium ionophore A23187 in the 

presence of 2 mM external Ca2+. The ionophore facilitates Ca2+ influx into the cells 

independently from plasma membrane channels. Interestingly, we found that PMCA 

isoforms influenced the ionophore-mediated intracellular Ca2+ transients in a similar manner 

as SOCE (Figure 5).  

 

Figure 5. Ca2+ transients after ionophore treatment in control, PMCA4b-LA, PMCA2b and 

PMCA4a expressing HeLa cells. Cells were transfected with Ca2+ indicator GCaMP2 and the 

indicated mCherry-tagged PMCA isoform. Ca2+ signal was initiated with A23187 (2 M). The 

data in (A, B) are results from > 15 cells. The graphs in (C) and (D) indicate the mean values of 

the Ca2+ signals from 20 to 30 cells ± 95% CI. 
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In control cells the pattern of the Ca2+ signals was diverse (Figure 5A), while in PMCA4b-LA 

expressing cells after an initial spike baseline oscillation developed (Figure 5B). Expression of 

fast responding pumps PMCA4a and PMCA2b initiated a quick response to the rise of the 

cytosolic Ca2+ concentration which resulted in a sustained elevation of the Ca2+ 

concentration or a rapid return to the basal level, respectively (Figure 5C). 

Our results showed for the first time that PMCA proteins play key role in the regulation of 

intracellular Ca2+ responses and can uniquely shape the incoming Ca2+ signal.  

 

5.2 The role of PMCA4b in the regulation of intracellular Ca2+ signaling in 

BRAF mutant melanoma cells 

Our results show that alterations in PMCA level and/or type can substantially change the 

Ca2+ signal that may further influence downstream events. Altered expression of PMCA 

proteins has already been described in several cancer types but not in metastatic melanoma 

[155]. In our study we used four melanoma cell lines: two BRAF (V600E) mutants (A375, 

A2058), one NRAS mutant (MZJZ) and one BRAF and NRAS wildtype (MEWO). First we 

analyzed which PMCA proteins are expressed in these cells and then we investigated the 

effects of mutant BRAF and MEK inhibitor treatments on PMCA expression and intracellular 

Ca2+ clearance.  

5.2.1 BRAF inhibitor treatment increases PMCA4b expression in BRAF mutant 

melanoma cells 

We used two mutant BRAF specific, low molecular weight inhibitors, vemurafenib (PLX4032) 

and GDC0879, which block the BRAF-MEK-ERK pathway selectively in BRAF (V600E) mutant 

cells. Cells were treated with 0.5 M Vemurafenib and 0.5 M GDC0879 for 72 hours and 

the expression of PMCA proteins was analyzed by Western blotting (Figure 6, 7).  
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Figure 6. Expression of PMCA4b is increased by BRAF inhibitor treatment selectively in 

melanoma cells with BRAF mutation. (A)Two BRAF wild type (MEWO, MJZJ) and two BRAF 

mutant (A2058, A375) cell lines were treated with mutant BRAF specific inhibitor 

vemurafenib (0.5 M) and GDC0879 (0.5 M) for 72 hours. Protein expression levels were 

determined by Western blot analysis. (B) After densitometric analysis PMCA4b protein levels 

were normalized to -tubulin expression and represented as fold increase over the untreated 

controls. Bars indicate means ± SE from three independent measurements. 

We investigated the expression of PMCA proteins with isoform specific antibodies and found 

that two PMCA isoforms, PMCA1 and PMCA4b were present in these cell lines (Figure 6A) 

while PMCA2 and PMCA3 were not detected (Figure 7).  We found that BRAF inhibitor 

treatment strongly increased the expression of PMCA4b selectively in BRAF mutant cells 

while it did not affect the expression of PMCA1 in any of these cells (Figure 6B). Hence in 

further experiments we concentrated on the changes of the PMCA4b protein.  
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Figure 7. Expression of different isoforms of PMCA3 and PMCA2 proteins were analyzed in 

control and vemurafenib treated MEWO, A375 and A2058 cells by Western blot. As markers 

we applied cell lysates from COS cells overexpressing the indicated PMCA isoforms. 

We examined the time course of PMCA4b expression at both the mRNA and protein levels in 

A375 cells.  

 

Figure 8. (A1) Changes in PMCA4b mRNA and (A2) protein expression after vemurafenib 

treatment (0.5 M) at different time points in A375 cells. (B1) A375 cells were treated with 

increasing amount of vemurafenib for 72 hours and expression of PMCA4b, SERCA2 and 

SERCA3, pERK and ERK was analyzed by western blots. (B2) Densitometric analysis of western 

blots of PMCA4b expression after concentration dependent treatment with vemurafenib in 

A375, MEWO and A2058 cells. Data are shown as fold increase over the untreated controls. 

Bars indicate means ± SE from three to five independent measurements. 
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A substantial increase in PMCA4b expression could be detected between 16 to 48 hours of 

treatment both at mRNA and protein levels (Figure 8A). After 48 hours PMCA4 mRNA 

expression declined to a lower level whereas protein abundance increased up to 72 hours 

and stayed constant at least for an additional 48 hours. Then we tested the effect of 

increasing concentration of vemurafenib on the abundance of PMCA4b (Figure 8B).   We 

found that 0.5 M vemurafenib concentration increased PMCA4b protein level almost 

maximally so we performed all further measurements with this concentration. 

We also analyzed the expression of sarco/endoplasmic reticulum Ca2+ ATPases, SERCA2 and 

SERCA3, after BRAF inhibitor treatment, both being important regulators of the intracellular 

Ca2+ homeostasis (Figure 8B2). SERCA3 was not detected in these cells while the expression 

of SERCA2 was abundant but did not change by the treatment. 

We also investigated the effect of vemurafenib treatment on the expression of various Ca2+ 

channels in the two BRAF mutant cell lines A375 and A2058 (Figure 9).  

 

 

Figure 9. Changes of mRNA expression level of Ca2+ channels after vemurafenib treatment 

(0.5 M, 72 hours). mRNA level of inositol 1,4,5-triphosphate receptor type 1-3 (IP3R1, IP3R2, 

IP3R3), Orai calcium release-activated calcium modulator 1 (Orai1), ryanodine receptor 2 

(RYR2), stromal interaction molecule 1 and 2 (STIM1, STIM2) and transient receptor potential 

cation channel subfamily M member 1 (TRPM1) was measured by quantitative real-time PCR 

analysis. mRNA levels were normalized to glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) expression and bars show the means and SEM of two independent measurements 

implemented in duplicates. N.D., not detectable. C: control, V: vemurafenib. 

We found that the mRNA expression of the inositol 1,4,5-trisphosphate receptor type 1-3 

(IP3R1, IP3R2, IP3R3), Orai calcium release-activated calcium modulator 1 (Orai1), ryanodine 

receptor 2 (RYR2) and stromal interaction molecule 1 and 2 (STIM1, STIM2) was not 

modified by the treatment. Solely in A2058 cells the mRNA level of transient receptor 
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potential cation channel subfamily M member 1 (TRPM1) was substantially elevated while in 

A375 cells TRPM1 was not detectable neither before nor after the treatment. These results 

show that BRAF inhibitor treatment selectively upregulates the expression of the PMCA4b 

isoform in BRAF mutant melanoma cells. 

5.2.2 MEK inhibitor treatment increases PMCA4b expression in both BRAF 

mutant and NRAS mutant melanoma cells 

MEK1 and MEK2 kinases are part of the RAS/RAF/MEK/ERK pathway and since they are 

activated in both BRAF and NRAS mutant cells MEK inhibitors can be effective in both cell 

types. We treated one BRAF and NRAS wild type (MEWO), one NRAS mutant (MZJZ) and two 

BRAF mutant (A375, A2058) cell lines with a MEK1/2 inhibitor selumetinib (0.5 M AZD6244) 

for 72 hours and investigated its effect on PMCA4b expression (Figure 10).   

 

Figure 10. Effect of MEK inhibitor treatment on PMCA4b abundance. BRAF and NRAS wild 

type (MEWO), NRAS mutant (MZJZ) and BRAF mutant (A375, A2058) cell lines were 

incubated with MEK1/2 inhibitor selumetinib (0.5 M) for 72 hours.  (A) Protein level of 

PMCA4b, pERK and ERK was analyzed by western blots. (B) Densitometric analysis of 

PMCA4b protein levels was performed and data was normalized to -tubulin expression 

levels and expressed as fold increase over the untreated controls. Bars indicate means ± SE 

from three independent measurements. 

We found that selumetinib treatment on one hand increased PMCA4b abundance in both 

BRAF mutant cell lines comparably to BRAF inhibitor treatment, and on the other hand it had 

a similar effect in the NRAS mutant cells. This indicates that BRAF/MEK signaling plays a role 

in the regulation of PMCA4b expression.  
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5.2.3 PMCA4b upregulation is coupled with increased plasma membrane 

abundance 

In order to analyze the intracellular localization of PMCA4b before and after BRAF inhibitor 

treatment we performed immunofluorescent staining and confocal imaging. One BRAF wild 

type cell line (MEWO) and two BRAF mutant cell lines (A375, A2058) were treated with 0.5 

vemurafenib for 72 hours (Figure 11).  

 

Figure 11. Protein level of PMCA4b in the plasma membrane was analyzed after BRAF 

inhibitor treatment (0.5 M vemurafenib, 72 hours). Immunostaining with anti–PMCA4b 

antibody (JA3) was performed. Images were taken by confocal microscope with a 60X 

objective. 

We found that in the two BRAF mutant cell lines vemurafenib treatment strongly increased 

PMCA4b abundance in the plasma membrane. 

5.2.4 Increased PMCA4b expression results in enhanced Ca2+ clearance 

To investigate the effect of increased PMCA4b abundance on intracellular Ca2+ signaling we 

initiated intracellular Ca2+ signal in both control and vemurafenib treated cells and followed 

the changes of intracellular Ca2+ level in single cells with confocal microscopy. Cells were 

filled with Ca2+ indicator Fluo-4 and then SOCE mediated Ca2+ signal was induced in two 

steps. First external medium was changed to nominally Ca2+ free solution and  afterwards 2 

µM thapsigargin  and 100 µM ATP were added to the cells to deplete internal Ca2+ stores. 

Then the external Ca2+ concentration was restored to 2 mM and that evoked an intracellular 

Ca2+ increase (Figure 12).  
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Figure 12. SOCE mediated Ca2+ signal in control and vemurafenib treated melanoma cells. 

(A1, A2, B, C1) After pretreatment with vemurafenib (0.5 M, 48 hours) Ca2+ stores were 

depleted with Thapsigargin (2 M) and ATP (100 M) in nominally Ca2+-free environment, 

then extracellular Ca2+ concentration was restored (2 mM) which induced intracellular Ca2+  

increase by allowing Ca2+ entry through SOCE channels. Data show the average of normalized 

fluorescent intensity values (F/F0) of 10-30 cells from three independent measurements. (C2) 

Half peak decay time of the second phase of the SOCE signal in control and vemurafenib-

treated A375 cells was calculated. Bars represent the mean ± SD of individual cells analyzed 

in two to three independent experiments. Significances compared to control indicated by 

(***P<0.001); two-tailed unpaired t-test.  

 

We found that after vemurafenib treatment, intracellular Ca2+clearence was increased in the 

BRAF mutant cells (Figure 12B, C1) as compared to that of the control cells (Figure 12A1, A2). 

We also analyzed the changes of the intracellular Ca2+decay after a Ca2+ ionophore A23187 

stimulus that induced Ca2+uptake independent of the Ca2+entry channels. We found that 

under these conditions - similarly to that seen in case of SOCE - the peak decay half time was 

shorter in vemurafenib treated BRAF mutant cells as compared to that of the control cells 

(Figure 13A, C). 
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Figure 13. Ca2+signal in control and vemurafenib treated cells (0.5 M, 48 hours) after 

Ca2+ionophore stimulus. (A) A375 cells were treated with Vemurafenib (0.5 M) for 48 hours 

then stimulated with A23187 (2 M) in HBSS supplemented with 2 mM Ca2+. Where indicated 

lanthanum (LaCl3, 1 mM) was added right after when Ca2+ signal reached the peak.  (B) Cell 

were pretreated with caloxin 1c2 for 10 minutes before Ca2+ signal was initiated with A23187 

in vemurafenib treated cells. (C) Half peak decay time of the Ca2+signal in control and 

vemurafenib-treated +/- caloxin 1c2 pretreated A375 cells was determined.  Data shows the 

average fluorescent intensity values of 10-15 cells. Bar graphs are mean ± SD of individual 

cells taken from two to three independent experiments. Significances are denoted by *** 

(P<0.001), ** (P<0.01); two-tailed unpaired t-test.  

 

To verify that PMCA4b is primarily responsible for the increased Ca2+decay, we performed 

the experiments in the presence of PMCA inhibitors lanthanum and a PMCA4-specific 

inhibitor caloxin1c2. Because lanthanum can also interfere with the function of 

Ca2+channels, LaCl3 was added right after the Ca2+signal reached its peak. Immediately after 

addition lanthanum abolished Ca2+clearance and caused a sustained elevation of the 

cytosolic Ca2+ level (Figure 13A). Furthermore, PMCA4 specific inhibitor caloxin1c2 treatment 

also decreased Ca2+ clearance in the cells resulting in a slower decay phase similar to that 

seen in the control cells (Figure 13B, C). These two experiments show that an increased 

PMCA4b presence is coupled to an enhanced Ca2+ extrusion capacity and consequently 

faster Ca2+ clearance in vemurafenib treated BRAF mutant melanoma cells.   
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5.3 Elevated PMCA4b expression decreases the migratory capacity of A375 

cells 

Melanoma cells frequently show increased motility that can be coupled with strong 

metastatic capacity. Hence we analyzed how BRAF inhibitor treatment influenced the 

migratory capacity of the BRAF mutant cell lines (A375, A2058) and used the BRAF wild type 

cells (MEWO) as control. We performed time-lapse video microscopy to follow the 

movement of individual cells during the 3-day-long treatment period and the net migrated 

distance was analyzed (Figure 14A).  

 

Figure 14. Vemurafenib treatment strongly decreases the migratory capacity of BRAF mutant 

melanoma cells. Cells were treated with vemurafenib (0.5 M, 72 hours) and migration was 

recorded with time-lapse video microscopy. (A) Migration trajectories of 20 - 24 individual 

cells of control and vemurafenib treated A375 cells. The starting points of all trajectories 

were moved to the origin of the graph. (B) Bar graphs represent the mean +/- SEM of the net 

displacement of single cells during the first twelve hours of the treatment and between 48 – 

60 hours.  Significance was calculated between control and vemurafenib treated cells as 

(**P<0.01); two tailed Student’s t-test. 

We found that during the first twelve hours of the treatment vemurafenib moderately 

decreased the migration of A375 cells, while after two days cell migration was strongly 
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reduced by BRAF inhibition in both BRAF mutant cell lines (Figure 14B). The timing of the 

inhibitory effect on migration is corresponded with the increase in PMCA4b expression that 

was most substantial after 48 hours (Figure 8).  Migratory capacity of the BRAF wild type 

MEWO cells was found to be much lower compared to that of the BRAF mutant cells and this 

was not affected by the treatment, as expected.  

In order to investigate the effect of PMCA4b abundance on the migratory capacity of 

melanoma cells we stably transfected the BRAF mutant A375 and the BRAF wild type MEWO 

cell lines with GFP alone or with GFP-tagged PMCA4b. From A375 cells we established two 

PMCA4b expressing cell lines, independently; A375-GFP4b-I and A375-GFP4b-II (Figure 15A). 

Western blot analysis showed that the expression level of both the endogen and the GFP-

tagged PMCA4b were similar in both cells. Protein level of mutant BRAF (V600E) and pERK 

was not altered by the increased PMCA4b abundance. To verify that the GFP-tagged 

PMCA4b protein localizes properly, we took confocal images of the cells and found that in 

both cell types GFP-PMCA4b was present abundantly in the plasma membrane (Figure 15B). 

We also compared the proliferation rate among the original, the GFP-tagged and the two 

PMCA4b-expressing A375 cell lines and found that proliferation didn´t differ significantly 

among them. Treatment with vemurafenib strongly reduced cell division in all cell lines, as 

expected (Figure 15C).  

 

 

Figure 15. Generation of stably transfected GFP- and GFP-PMCA4b expressing A375 and 

MEWO cell lines. (A) Protein expression level of PMCA4b, BRAFV600E and pERK was 

determined by western blot. (B) Intracellular localization of GFP-PMCA4b was analyzed by 

confocal imaging (60X objective, scale bar, 20 m). (C) Proliferation was measured by BrdU 

incorporation assay. Data indicate the mean +/- SEM of three independent experiments. 

Significances refer to differences between control and vemurafenib treated cells (*P<0.05; 

* P<0.01); two tailed Student’s t-test. 
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However, when we analyzed the migratory capacity of the GFP and the GFP-PMCA4b 

expressing cells, we found a strong decrease in the motility of both A375-GFP-4b expressing 

cell lines compared to the control GFP expressing cells (Figure 16). The motility of the 

MEWO-GFP-4b cells was identical to the control GFP expressing MEWO cells.  

 

 

Figure 16. GFP-PMCA4b expressing A375 cells show decreased migration compared to 

control. Cell migration was recorded by time-lapse video microscopy for 16 hours. (A) 

Trajectories show the movement of individual cells. Their initial positions were transferred to 

the origin of the plot. (B) Net displacement in 12 hours was determined. Significances 

indicate the differences between GFP-expressing control and GFP-PMCA4b expressing cells 

(**P<0.01, ***P<0.001); two-tailed unpaired t-test.    

Furthermore, the morphology of the PMCA4b expressing cells was also strongly altered. 

While the control cells had an elongated shape with more long outgrowths, the PMCA4b 

overexpressing cells were more epithelial like with a rounded, cobble-stone shape (Figure 

17A). We analyzed several morphological parameters of the cells and found that A375-GFP-

4b cells show increased circularity and cellular area compared with A375-GFP cells while 

their aspect ratio (defined as (major axis) / (minor axis)) was decreased (Figure 17B).  
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Figure 17. A375-GFP-PMCA4b cells show altered cellular morphology. (A) Cell masks were 

generated from phase contrast video microscopy images with ImageJ program to highlight 

cell shape differences. (B) Quantitative analysis of cellular area, aspect ratio ((major axis) / 

(minor axis)) and circularity was performed in both GFP expressing (n=249) and GFP-PMCA4b 

expressing (n=204) cells. Bars demonstrate means ± SEM from 3 independent experiments. 

Significant differences compared to GFP expressing cells was analyzed (*** (P<0.001); two-

tailed unpaired t-test). 

Since PMCA4b overexpression shifted the cellular morphology of the cells toward a more 

epithelial-like form, we analyzed the mRNA expression of several proteins involved in the 

epithelial mesenchymal transition process. However, we found no differences in the 

expression of ZEB-1, Snail and vimentin between the GFP and GFP-PMCA4b expressing cells 

and E-cadherin was not present in either of these cell lines (Figure 18A).  

 

Figure 18. (A) Relative mRNA expression of EMT marker proteins E-cadherin, ZEB-1, Snail and 

vimentin was determined by quantitative real-time PCR in A375-GFP-PMCA4b and A375-GFP 

cells. N.D. stands for not detectable. (B) Analysis of SERCA2 protein expression with western 

blot in vemurafenib treated (48 hours, 0.5 M) and control A375-GFP-PMCA4b and A375-GFP 

cell lines. 
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We also compared the expression of the ER Ca2+ pump SERCA2 in the GFP and the two GFP-

PMCA4b expressing cell lines and found that it was not modified (Figure 18B).  

These results show that overexpression of PMCA4b strongly decreases the migratory 

capacity of A375 cells and this effect is coupled with an altered cellular morphology. 

Vemurafenib had a similar effect on the migration of both BRAF mutant melanoma cell lines 

but BRAF inhibition also decreased the proliferation of the cells while PMCA4b 

overexpression did not.  

5.4 PMCA4b expressing A375 cells have decreased metastatic capacity in vivo 

Melanoma patients with metastasis have a particularly grim prognosis. Cell migration is a 

critical step in metastatic spread therefore, we analyzed the effect of increased PMCA4b 

presence in A375 cells on their invasive capacity. We performed a lung colonization assay in 

mice during which 4x104 A375-GFP or A375-GFP-PMCA4b cells/mouse were injected into the 

animal´s tail vein. After 6 weeks mice were sacrificed and their lung tissues were analyzed. 

We found that in the control group tumor cells established large tumors in the lung 

parenchyma and some tumor cells invaded the lung tissue along blood vessels or bronchioles 

(Figure 19A). While in the two groups of animals injected with PMCA4b expressing cells, only 

smaller tumors were formed on the surface or in the connective tissue of the lung. 

Quantification showed that PMCA4b overexpression strongly decreased the number of 

animals with tumor in their lungs (Figure 19B). Furthermore, the tumor burden - measured 

as total tumor area in the cross sections of lungs - was also reduced in the PMCA4b 

expressing group (Figure 19C). 
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Figure 19. Lung colonization assay in mice to compare the metastatic activity of A375-GFP 

and A375-GFP-PMCA4b cells. 4x104 cells / mouse (n=10) were injected. (A) Tumors could be 

readily identified with hematoxylin staining in paraffin tissue sections. In the representative 

images white asterisks mark tumors in the lung parenchyma, black asterisks indicate tumors 

in the connective tissue. Black frames circumscribe the high-magnification areas of the lower 

panels. Black arrows point to areas where along blood vessels and bronchiole invasive tumor 

cells are noticeable. Arrowheads mark interlobular tumors. (B) The number of animals with 

tumor in the lung was significantly higher in the control group compared with A375-GFP-

PMCA4b cells receiving two groups (Chi-square test, P=0.034). (C) Total area of tumors was 

quantified on hematoxylin-stained tissue sections in each group. 

In order to investigate if PMCA4b expression is decreased during the malignant 

transformation of melanomas, two ONCOMINE data sets with benign nevi and melanoma 

samples were analyzed (Figure 20). We found that the number of cases with low PMCA4 

expression was higher in cutaneous melanomas in both data sets. Furthermore, combination 

of the data from the two data sets showed that high expression of PMCA4 was present only 

in 26 melanoma samples out of 69 (38%), while in benign nevi that was the case in 21 

samples out of 27 (77%). 

 



56 
 

 

Figure 20. PMCA4b expression in benign nevi and melanoma specimens based on gene 

expression microarray data from ONCOMINE platform. (A, B) Two independent gene 

expression microarray dataset were used. (C) The data from the two cohorts were combined 

which showed that cases with low PMCA4b expression were significantly more in the 

cutaneous melanoma group than in in the benign nevus group (p=0.0006). 

Altogether, our results show that BRAF inhibition selectively upregulates PMCA4b expression 

in BRAF mutant melanoma cells which results in an increased Ca2+ clearance after 

stimulation. Furthermore, both BRAF inhibition and PMCA4b overexpression decreased the 

migration capacity of the BRAF mutant A375 cells and PMCA4b overexpression also reduced 

the cells´ metastatic capacity in vivo. Interestingly, despite its strong anti-migratory effect 

PMCA4b expression did not alter the proliferation of the cells that is a typical feature of the 

metastasis suppressor genes. 

 

5.5 The effect of HDAC inhibitor treatment alone and in combination with 

vemurafenib on PMCA protein expression in melanoma cells 

The impact of histone deacetylase treatment on the expression of the PMCA4b has already 

been investigated in breast and colon cancer cell lines [93, 94]. In these studies both short 

chain fatty acids such as butyrate and valproic acid and the hydroxamic acid SAHA 
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(vorinostat) increased the expression. However, the effect of HDAC inhibitor treatment on 

PMCA expression in melanoma cells was not formerly investigated.  

5.5.1 HDAC inhibitor treatment increases the abundance of both the PMCA4b 

and the PMCA1 isoforms in melanoma cells  

First we treated three melanoma cell lines, the BRAF wild type (MEWO) and the two BRAF 

mutant (A375, A2058) cells, with an increasing concentration of SAHA or valproate, and 

analyzed the changes in PMCA expression by Western blot (Figure 21). We used two 

different antibodies against the PMCA proteins, a PMCA4 isoform specific one (JA9) and a 

pan-PMCA antibody (5F10). The latter recognized two bands in all cell lines from which the 

lower band corresponded to PMCA4b while the upper band to PMCA1, as determined by the 

isoform specific antibodies JA9 and NR1, respectively (Figure 21A). We found that PMCA4b 

expression was strongly elevated in both MEWO and A375 cells while only moderately in 

A2058 cells in response to the HDAC inhibitor treatments.  

 

Figure 21. Concentration dependent treatment of melanoma cells with HDAC inhibitor SAHA 
and valproate. After 48 hours total cell lysates were prepared and analyzed by Western 

Blotting (30 g / sample). C: control, D: DMSO. Densitometric analysis of PMCA4b expression 

was performed than data were normalized to -tubulin expression level and were presented 
as fold increase over untreated control. Diagrams show the means ± SE from three 
independent measurements. Significance was calculated by ANOVA and Dunett`s post hoc 
tests and asterisks show differences (* p < 0.05) from control.  
 

Surprisingly, beside the increased PMCA4b expression the abundance of PMCA1 was also 

increased by the treatment of the A375 and A2058 cells. Expression of both isoforms was 

already elevated after 0.5 M SAHA and 1 mM valproate treatment (Figure 21B). 
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Then we analyzed the changes in PMCA expression at different time points of the treatment 

(Figure 22) and found that PMCA4b level reached saturation after 48 hours in all cell lines. 

PMCA4b expression also went up in the control samples at later time points as the culture 

reached confluency in good accordance with earlier findings [45]. 

 

Figure 22. Time dependent change of PMCA proteins during HDAC inhibitor treatment. Cells 

were treated with 2 M SAHA or 2 mM valproate for the indicated time points. PMCA protein 
expression was analyzed with Western Blotting. Densitometric analysis of PMCA4b 

expression was performed than data were normalized to -tubulin expression level and were 
presented as fold increase over untreated control. Diagrams show the means ± SE from three 
independent experiments. Significance was calculated by ANOVA and Dunett`s post hoc tests 
and asterisks show differences (* p < 0.05) from control.   
 
Since our experiments showed that BRAF inhibitor treatment induced PMCA4b expression in 

the BRAF mutant melanoma cell lines, we wanted to test the combined effect of BRAF and 

HDAC inhibition on the PMCA abundance. Therefore, we treated all three cell lines either 

with 1 M SAHA or 2 mM valproate in combination with 0.5 M vemurafenib (Figure 23). 

Interestingly, we found no additive effect of the two treatments on PMCA4b expression in 

these cell lines. In A375 cells BRAF inhibitor treatment had a stronger effect than the HDAC 

inhibitors, while in A2058 cells all treatment increased PMCA4b expression in a similar 

extent (Figure 23B). In BRAF wild type MEWO cells only HDAC inhibitors had an effect on 

PMCA4 abundance, as expected.  
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Figure 23. Combination treatment with HDAC inhibitor SAHA or valproate with BRAF inhibitor 

vemurafenib had no additive effect on PMCA4b protein expression. Treatment was 

performed with 1 M SAHA or 2 mM valproate in combination with 0.5 M vemurafenib for 

48 hours. (A) Expressions of proteins were determined with Western Blotting and analyzed 

with densitometry. PMCA4b and PMCA1 were detected with isoform specific and pan-PMCA 

antibodies as well. (B, C, D) Data were normalized to -tubulin expression levels and 

expressed as fold increase over untreated controls. Diagrams show the means ± SE from 

three independent experiments. Asterisks represents significant differences compared to 

control (* p < 0.05) by two-tailed paired t-test.  
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As we have shown earlier, vemurafenib treatment does not influence PMCA1 abundance 

and combined treatment had no additional effect above HDAC inhibitor treatment alone, as 

expected. We also analyzed the changes in ERK phosphorylation and found that contrary to 

vemurafenib treatment HDAC inhibition did not decrease ERK activation but eventually even 

slightly increased that (Figure 23C). This shows that the effect of HDAC inhibitors on PMCA 

expression is independent of ERK activation in these cell lines. Furthermore, this effect was 

also independent from the BRAF mutational status of the cells, since HDAC inhibitors 

increased PMCA4b expression in both BRAF wild type (MEWO) and BRAF mutant (A375, 

A2058) cell lines. Additionally, we analyzed the changes in acetylation of the H3 histone 

protein after HDAC inhibitor and vemurafenib treatment (Figure 24). We found that 

treatment with the HDAC inhibitors – in contrast to the BRAF inhibitors - increased H3 

histone acetylation in all cell lines. 

 

Figure 24. Alternations in H3 histone acetylation following the treatment with HDAC inhibitor 

SAHA and valproate or BRAF inhibitor vemurafenib for 48 hours. Vem: 0.5 M vemurafenib, V 

+ S: 0.5 M vemurafenib and 1 M SAHA, V + V: 0.5 M vemurafenib and 2 mM valproate. 

Acetylated-H3 protein level was determined by Western blot and the data were 

densitometrically analyzed, normalized to -tubulin expression levels and expressed as fold 

change compared to control.  

Intracellular Ca2+ signals are shaped by the concerted action of Ca2+ channels and pumps in 

the plasma membrane and the ER. It has been shown that treatment with HDAC inhibitors 

can alter the expression of the Ca2+-signaling molecules [27, 156, 157] hence we analyzed 

the changes in the expression of SERCA2 and SERCA3 proteins after HDAC inhibitor 
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treatment alone or in combination with vemurafenib (Figure 24). The housekeeping isoform 

SERCA2 - which was detected in all three cell lines - was slightly decreased by the treatment 

in the two BRAF mutant cells (Figure 24D). It has been demonstrated that SERCA3 expression 

is increased during cancer cell differentiation [27, 156]. We found that HDAC inhibitor 

treatment evoked SERCA3 expression only in A2058 cells while SERCA3 could not be 

detected in the other two cell lines with or without treatment. We also investigated the 

changes in the expression of the Ca2+ channels at the mRNA level in response to 2 mM 

valproate alone or in combination with 0.5 M vemurafenib (Figure 25).  

 

Figure 25. Alternations in the mRNA expression of Ca2+ channels and PMCA4b after 

treatment with valproate alone (2 mM) or in combination with vemurafenib (0.5 M) for 48 

hours. The mRNA level of inositol 1,4,5-triphosphate receptor type 1-3 (IP3R1, IP3R2, IP3R3), 

stromal interaction molecule 1 and 2 (STIM1, STIM2), Orai calcium release-activated calcium 

modulator 1 (Orai1), transient receptor potential cation channel subfamily M member 1 

(TRPM1) and PMCA4b was determined with quantitative real-time PCR analysis. Data was 

normalized to the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

Bars show means ± S.E.M. of three independent measurements done in duplicates. N.D. 

stands for not detectable.  

Importantly, in MEWO and A375 cells the mRNA expression of these channels was not 

influenced by the treatments. In the A2058 cell line IP3R3 mRNA level was strongly increased 



62 
 

after valproate treatment while the combination treatment triggered TRPM1 expression. We 

showed earlier that vemurafenib treatment caused an increase in TRPM1 mRNA level that 

could be responsible for this latter effect. We also demonstrated that the mRNA level of 

PMCA4b changed in a similar manner as protein expression after HDAC inhibitor treatment.  

5.5.2 HDAC inhibitor treatment increases Ca2+ clearance in a PMCA4b 

dependent manner 

Next we studied if the increase in PMCA4b expression affected intracellular Ca2+ clearance. 

In order to study this, we analyzed the intracellular localization of PMCA4b before and after 

HDAC inhibitor treatment.  We found that treatment with either valproate (2 mM) or SAHA 

(1 M) induced an increase in the abundance of PMCA4b in the plasma membrane of the 

cells (Figure 26), indicating that the newly generated pump was functional. 

 

Figure 26. Immunofluorescence staining of PMCA4b in control and HDAC inhibitor treated 

cells. SAHA (1 M) and valproate (2 mM) treatment was applied for 48 hours. 

Immunofluorescence staining was performed with anti-PMCA4b antibody. Confocal 

microscopy (60x objective) was used for staining analysis. 

Then, A375 cells were filled with the Ca2+-sensitive fluorescent indicator Fluo-4 and the 

intracellular Ca2+ signal was measured in both control and HDAC inhibitor treated cells after 

stimulation with the Ca2+ ionophore A23187. We found that in the valproate treated cells the 

decay of the Ca2+ signal was faster than in the control cells (Figure 27A). In order to 
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investigate the specific role of PMCA4b in the faster decline of the fluorescent signal we 

repeated the signal measurement after pretreating the cells with the PMCA4-specific 

inhibitor caloxin 1C2 (20 M) (Figure 27B, C). Importantly, we found that the inhibitor 

treatment was able to significantly reverse the increase in Ca2+ decay underlining the 

importance of PMCA4b in shaping the Ca2+ signal.  

 

Figure 27. The effect of HDAC inhibitor treatment on Ca2+ clearance is PMCA4 dependent. 

A375 cells were treated with valproate (2 mM) for 48 hours than they were filled with Ca2+-

sensitive fluorescent indicator Fluo-4. (A) Intracellular Ca2+ signal was induced with Ca2+ 

ionophore, A23187 (2 M) in control and valproate treated cells. (B) Valproate treated cells 

were first pretreated with caloxin 1c2 (20 M) PMCA4-specific peptide inhibitor for 10 

minutes before ionophore stimulation. (C) Analysis of the half-peak decay time in control, 

valproate treated and valproate and caloxin 1c2 treated A375 cells. Bars represent mean ± 

SD of individual cells coming from three independent measurements. Significance was 

calculated between control and valproate-treated cells or valproate and valproate plus 

caloxin treated cells by two tailed unpaired t-test (*** P<0.001). 

5.5.3 Changes in cell viability and cell cycle progression after HDAC inhibitor 

treatment in melanoma cells 

Since earlier it was found that HDAC inhibitor treatment could influence the viability of 

cancer cells [107], we analyzed how HDAC inhibitor treatment alone or in combination with 

vemurafenib influenced cell viability and cell cycle progression in MEWO, A375 and A2058 

cells. To calculate viability we measured the number of dead cells and the total number of 

the cells. While in MEWO and A2058 cells viability was not influenced by any of the 

treatments, in A375 cells vemurafenib alone and in combination with both HDAC inhibitors 

had a small, but significant decreasing effect (Figure 28 A1, B1, C1).   
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Figure 28. Cell cycle progression and cell viability was assessed after SAHA and valproate 

treatment alone or in combination with vemurafenib. Experiments were performed for 48 

hours. For single treatments vemurafenib (0.5 M), SAHA (1 M), valproate (2 or 4 mM) 

were used, in combination V+S: vemurafenib (0.5 M) + SAHA (1 M), V+V: vemurafenib (0.5 

M) + valproate (2 mM) were applied. (A1, B, C1) Viability was calculated as total cells - 

nonviable cells/total cells. (A, B, C) Ratio of cells in cell cycle phases Sub G1 and G2/M. Data 

represents the mean of three independent experiments. Significance was calculated 

compared to control indicated by asterisks (* p < 0.05); two-tailed paired t-test. 

In order to analyze the impact of the inhibitors on cell cycle progression, we determined the 

ratio of cells among four cell cycle phases based on their DNA content. Dying cells are in the 

Sub G1 phase, resting cells in the G0/G1 phase, during DNA synthesis the cells are in the S 

phase followed by the G2/M phase where cells have two sets of paired chromosomes. We 

found that all three cell lines were affected differently by the treatment. In MEWO cells 
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neither proliferation nor cell death were changed by any of the treatments (Figure 28 A2, 

A3). In A375 cells, in good accordance with our earlier results, cell division was strongly 

inhibited by vemurafenib, however, it was not influenced by the HDAC inhibitors. In 

contrast, cell death was increased by all of the treatments and combination of vemurafenib 

with valproate had an additive effect compared to single treatments (Figure 28 B2, B3). In 

A2058 cells, cell death was slightly increased by HDAC inhibitor treatment but not by 

vemurafenib. Proliferation was decreased among the single agents mostly by SAHA, while 

among combination treatments valproate together with vemurafenib had the strongest 

effect (Figure 28 B3, C3). Altogether, we found that both the viability and proliferation were 

only moderately affected by HDAC inhibitor treatments in melanoma cells and this effect 

was slightly increased by the combination treatments in the BRAF mutant cell lines. 

5.5.4 Valproate treatment inhibits both random and directed migration of A375 

cells 

Earlier we showed that vemurafenib increased PMCA4b expression and decreased cell 

migration of A375 cells. Moreover, PMCA4b overexpression mimicked the effect of 

vemurafenib on cell motility. Since valproate treatment increased PMCA4b expression in this 

cell line in a similar extent as vemurafenib did, we wanted to investigate its effect on the 

migratory capacity of the cells. First we compared random cell migration between control 

and valproate treated cells for 24 hours with an automated fluorescence microscope 

(ImageXpress Micro XL). We found that valproate treatment strongly reduced the velocity of 

the cells as compared to that of the control cells (Figure 30A). We also tested the effect of 

valproate treatment on the directed migration of A375 cells with modified Boyden chamber 

assay, where a fibronectin coat was applied in the lower chamber as chemoattractant. After 

48 hours pretreatment with an increasing concentration of valproate, cells were added to 

the chambers. Following a 6-hour incubation period the number of cells on the lower side of 

the Boyden chamber membrane was assessed. We found that 1 mM valproate treatment 

decreased significantly the directional movement of the cells that was further reduced with 

increasing concentrations of the drug (Figure 30B1). 
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Figure 30. Both random and directed migration of A375 cells are strongly decreased by 

valproate treatment. (A) Mean velocity was measured during random migration for 24 hours 

after 4 mM valproate treatment with an automated fluorescence microscope (ImageXpress 

Micro XL). Data represents the mean ± SEM of ≥ 100 individual cells from three independent 

experiments. Significance relative to control is indicated by (*** P<0.001); two-tailed 

unpaired t-test. (B1) Directed migration was analyzed with modified Boyden chamber assay 

for 6 hours after treatment with valproate in the indicated concentrations. The number of 

cells in representative fields on the lower side of the Boyden chamber membrane was 

counted. (B2) Cells were treated with 4 mM valproate for 48 hours, than caloxin 1c2 (20 nM) 

was added to the cells before the modified Boyden chamber assay. Data shows the mean of 

three experiments ± SEM. Significances are indicated by (*** P<0.001); two-tailed unpaired t-

test. 

To investigate the specific role of PMCA4b in this effect, we performed the same assay as 

before but in the presence of the PMCA4b specific inhibitor caloxin 1c2. Interestingly, caloxin 

treatment increased the directed migration of both control and vaproate treated cells 

(Figure 30B2) suggesting that PMCA4b played an important role in the regulation of the 

migration of A375 cells. 
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6. Discussion 

 

The PMCA (ATP2B1-4) family of proteins shows great diversity counting more than 20 

distinct variants. While their biochemical properties and some specific cellular functions 

have been determined, less was known about their specific role in shaping the Ca2+ signal. 

Therefore, we generated a methodology to test the influence of PMCAs on the Ca2+ 

transients in HeLa cells. Later the same methodology was used to study the role of PMCAs in 

different kinds of cancer cells, including cell lines of melanoma origin. Recent studies have 

shown that PMCA4b is downregulated in certain type of cancers. Here we found that 

inhibition of the BRAF/MEK/ERK pathway in BRAF mutant melanoma cells increased the 

expression of PMCA4b, and resulted in enhanced Ca2+ clearance and decreased cell 

migration. Similarly, when PMCA expression was induced by HDAC inhibitor treatment 

independently from the ERK activation, a faster Ca2+ clearance rate and reduced migratory 

capacity was evoked in melanoma cells.  Furthermore, specific inhibitors of PMCA4 could 

partially reverse these effects proving that PMCA4 has a primary role in the regulation of 

Ca2+ signaling and cell migration.  

6.1 The effect of PMCA activity on the SOCE induced Ca2+ signal 

It was suggested earlier that PMCA played an important role in the regulation of the decay 

phase of the Ca2+ signal induced by the store operated or other means of Ca2+ entry into the 

cytosol. After a rise in the intracellular Ca2+ level besides the PMCAs also the SERCA proteins, 

the mitochondria and when present the Na+/Ca2+ exchangers can remove Ca2+ from the 

cytosol. The specific effects of each transporter were tested by the use of specific inhibitors. 

Klishin et al. [158] used calf pulmonary endothelial cells;  they depleted the internal Ca2+ 

stores by the addition of thapsigargin in a Ca2+ free medium and then Ca2+ entry was 

initiated by increasing the extracellular Ca2+ concentration. They found that in these cells 

PMCA shaped primarily the decay phase of the Ca2+ signal while the Na+/Ca2+ exchange 

affected mostly the size of the peak, and mitochondria had no effect.  

The role of the PMCA in the regulation of the Ca2+ signal decay phase was also demonstrated 

in immune cells [159]. Interestingly, after activation of Jurkat T-cells with lectin 

phytohemagglutinin (PHA) a decrease in Ca2+ clearance was found. It was shown that both 
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PMCA and ER Ca2+ sensor protein STIM1 translocate to the forming immunological synapse 

(IS) and STIM1 attenuates PMCA activity by direct binding. Later it was found that another 

protein partner of STIM1 (POST) was also required to the decreased activity of PMCA in the 

IS [65]. Upon store depletion POST binds to STIM1 and this complex interacts with PMCA, 

which results in a decreased Ca2+ extrusion capacity of the pump.  

It was shown that PMCAs can also influence intracellular Ca2+ signaling by controlling the 

availability of PIP2. On the one hand, it can decrease PLC activity by removing Ca2+ from its 

vicinity and on the other PMCA can directly bind PIP2 molecules preventing their processing 

to IP3. In this way PMCAs regulate Ca2+ release from the ER by a mechanism independent of 

its Ca2+ transporting ability [44]. 

In our experiments we demonstrated that PMCA isoforms due to their distinct kinetic 

features influence the pattern of the Ca2+ signal initiated by SOCE differently. PMCA2b is a 

fast pump with long memory [154] and its expression resulted in a short Ca2+ spike. Because 

this isoform remains active for about 20 minutes after stimulation - even when Ca2+ level 

decreases - it precludes the formation of another immediate Ca2+ signal. Its ability to 

generate distinct Ca2+ spikes is particularly important in the Purkinje neurons in the 

cerebellum [160, 161]. The activation kinetics of PMCA2 makes it possible to react fast Ca2+ 

signals quickly in the nerves system where it is abundantly present. The length of the Ca2+ 

signal also influences the activation of downstream Ca2+ dependent signaling molecules. 

PMCA2 overexpression was shown to decrease the activation of transcription factor NFAT in 

HEK cells by decreasing the activity of Ca2+- dependent phosphatase calcineurin [62].  

PMCA4a and PMCA4b are the C-terminal splice variants of the same protein but they 

strongly differ in their kinetic properties and consequently in their tissue distribution. 

PMCA4a can get activated quickly but then it has a short memory [41]. It is expressed in 

smooth muscles, in the heart, in the nervous system and it is the only PMCA form that is 

present in the sperm tail. In sperms a sperm-specific cation channel (CatSper) was described 

that necessary for sperm hyperactivation [162]. Absence of PMCA4 in mice results in male 

infertility due to impaired sperm motility [163].  Interestingly, in activated sperm cells the 

pattern of the Ca2+ signal is similar to that observed in PMCA4a expressing Hela cells [164]. 

PMCA4b is a slow pump with long memory [41, 154] and so it is capable to regulate Ca2+ 

signals in non-excitable cells. We found that in PMCA4b expressing cells, store operated Ca2+ 

entry evoked first a large peak followed by periodic baseline oscillations. In non-excitable 
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cells, Ca2+ oscillations are mostly described as repetitive Ca2+ release and uptake from the ER 

to the cytosol regulated by the IP3R ER receptor channels and the ER Ca2+ pumps SERCA 

proteins [165]. In our experimental setup, we excluded the effect of the ER by first inducing 

Ca2+ release in zero Ca2+ environment and by blocking SERCA activity with thapsigargin. 

Under these conditions, Ca2+ oscillations were produced by the concerted action of SOCE 

channels and PMCA4b. Ca2+ oscillations can greatly vary in their spatial and temporal 

features and oscillatory signals with distinct frequency and amplitude were shown to initiate 

different downstream cellular responses [6]. Previously it was demonstrated in human bone 

marrow-derived mesenchymal stem cells that PMCA can play a role in the regulation of Ca2+ 

oscillations [166].  It was also found that increased presence of PMCA4 resulted in decreased 

activation of the transcription factor NFAT in both HEK and endothelial cells [61, 64].  

Furthermore, a mathematical model was generated by our group that took into account the 

activation kinetics of the PMCA isoforms and their distinct Ca2+ -CaM binding. The 

mathematical model described well our experimental results. According to the model, the 

slow activation of PMCA4b was necessary to the formation of Ca2+ oscillations. SOCE 

channels became activated quickly and hence Ca2+ concentration increased substantially 

before PMCA4b was fully active. 

6.2 The role of PMCA4b in the regulation of melanoma cell migration 

In migrating cells an increasing Ca2+ gradient is present from the front towards the rear of 

the cells [82]. It was found in endothelial cells that there is an increased abundance of PMCA 

in the front of the cells [87]. It was demonstrated that this increased presence of the PMCA 

contributed to the maintenance of the low Ca2+ level and to the formation of local Ca2+ 

pulses and periodic activation of the MLCK resulting in pulsatile retraction and adhesion in 

the front. It was also found that ectopic expression of PMCA4 in VEGF treated endothelial 

cells decreased NFAT activity and migratory capacity of the cells [64]. However the role of 

PMCAs in cancer cell migration has not been yet investigated. 

Melanoma cells often have strong migratory and metastatic capacity and it was 

demonstrated that increased Ca2+ uptake contributes to this phenomena. It was found that 

SOCE channel OraI1 and its partner STIM2 are strongly expressed in melanoma cells, and in 

the invasive edge of primary tumors and lymph node metastases [134]. Downregulation of 

their expression decreased the migratory and metastatic capacity of the cells but enhanced 
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their proliferation. In another study STIM1 and Orai1 was found to be abundantly present in 

melanoma cell lines and tissues and their inhibition decreased both the proliferation and 

migration of the cells [135]. SOCE activation was associated with ERK activation which could 

be reversed by CaMKII or Raf1 inhibition. Furthermore, STIM1 and ORAI1 induced Ca2+ 

oscillations were shown to initiate invadopodium formation and extracellular matrix 

degradation [136] through the regulation of Src kinase activity and MT1-MMP release. It was 

also demonstrated that STIM1 and Orai1 expression was higher in melanoma cell lines than 

in normal epidermal human melanocytes and their expression was increased in cells derived 

from metastatic melanoma compared to cells derived from primary melanoma. 

Downregulation of STIM1 decreased the metastatic capacity of melanoma cells in vivo in a 

lung colonization assay.  

Expression of several TRPM channels (TRPM8, TRPM2, TRPM7) was also found to be 

upregulated in melanoma cells and to have an increasing effect on proliferation [132]. These 

data suggest that increased Ca2+ uptake play a major a role in the strong proliferative and 

metastatic capacity of melanoma cells. 

In our work we found that in BRAF mutant melanoma cells inhibition of the BRAF/MEK/ERK 

pathway induced PMCA4 expression and that was coupled with enhanced Ca2+ clearance and 

decreased migratory capacity of the cells. The expression of PMCA4b alone was able to 

strongly reduce the motility and metastatic capacity of A375 melanoma cells in vivo. 

Microarray data showed that PMCA4b expression was lower in melanoma specimens than in 

benign nevi. Our data are in good accordance with the above described results on Ca2+ 

channels. Ca2+ uptake is elevated by synergistic actions of the upregulated Ca2+ channels and 

downregulated Ca2+ release mechanisms resulting in increased migratory and metastatic 

activity of melanoma cells. Since we demonstrated that PMCA activity can influence the 

SOCE mediated Ca2+ signal it is possible that PMCA reduces melanoma cell motility by 

opposing the Ca2+ entry by SOCs, especially because we found no change in the expression of 

store operated Ca2+ channels (Orai1, STIM1 and 2) and inositol 1,4,5-trisphosphate receptors 

type 1-3 (IP3R1, IP3R2, IP3R3) after BRAF inhibitor treatment, or in the PMCA4b expressing 

cells.  

We demonstrated that increased PMCA4b expression strongly reduced the metastatic 

capacity of A375 cells. However, we found that it did not influence the proliferation of the 
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cells. In conclusion, PMCA4b reduces the ability of melanoma cells to metastasize without 

affecting proliferation fulfilling the definition of metastasis suppressors [167].  

6.3 The effect of HDAC inhibitor treatment on PMCA expression and cell 

migration in melanoma cells 

It was found previously that HDAC inhibitor treatment increased the expression of PMCA4 in 

colon and breast cancer cells. Treatment with short chain fatty acids and trichostatin A 

evoked a marked increase in the expression of PMCA4b and a moderate elevation of 

PMCA1b protein level in various gastric and colon cancer cell lines [93]. In MCF-7 breast 

cancer cells, both short chain fatty acid and SAHA treatments induced a strong upregulation 

in PMCA4b expression and that was coupled with an enhanced Ca2+ clearance from the cells 

[94]. It was also demonstrated that PMCA4 is present in a substantial amount in the normal 

breast tissue.  

We found a similar pattern of PMCA expression in melanoma cells in response to HDAC 

inhibitor treatments. Both valproate and SAHA increased the expression of PMCA4b in 

melanoma cell lines independent of their BRAF mutational status. Interestingly, HDAC 

inhibitor treatments also induced the expression of PMCA1 in two out of the three 

melanoma cell lines. We showed that increased PMCA4b abundance resulted in enhanced 

Ca2+ clearance in the A375 cells and their motility was also strongly decreased by valproate 

treatment. Both effects were partially reverted by the use of PMCA4 specific inhibitor 

caloxin 1c2 proving that PMCA4b play a primary role in regulation of the intracellular Ca2+ 

signal and cell migration. Importantly, we found no change in the expression of the SOCE 

channels by the treatments suggesting that they are not responsible for the decreased 

motility of the HDACi treated cells. 

We found that HDACis enhanced the abundance of PMCA1 in the BRAF mutant A375 and 

A2058 cells but it did not change that of in the BRAF wild type MEWO cell line. Previously, it 

was shown that the expression of PMCA1 was moderately altered by HDAC inhibitors in 

colon cancer cells while it was not modified in MCF-7 breast cancer cells [93, 94]. It was 

demonstrated that PMCA1 expression is regulated by vitamin D in osteoblasts, the small 

intestine, kidney distal tubules and also in colon cancer cells [168, 169]. Deletion of PMCA1 

specifically in the intestinal absorptive cells caused decreased responsiveness to 1, 25-



72 
 

dihydroxyvitamin D3 and reduced bone mineral density in mice [170]. In melanoma cell 

lines, the antiproliferative effect of 1, 25(OH)2D3 was shown to be cell line dependent [171], 

however, lower vitamin D levels in the blood of melanoma patients were associated with 

advanced melanoma stage [172]. Since Vitamin D can influence HDAC activity [173] it is 

possible that vitamin D regulate PMCA1 expression through epigenetic mechanisms.  

We also tested the effect of HDAC inhibitors alone or in combination with vemurafenib on 

the viability of melanoma cells. It was found previously that treatment with HDAC inhibitors 

can induce apoptosis in melanoma cells, however, this effect was strongly cell line and 

inhibitor dependent [113]. We found that the viability of these cell lines was not 

substantially altered by any of the treatments. We also analyzed the ratio of the proliferative 

and apoptotic cells after treatments and found that the changes were cell type specific. 

Proliferation of A375 cells was strongly reduced by BRAF inhibition but it was not affected by 

the HDAC inhibitor treatment. The ratio of cells in the SubG1 phase was increased by both 

treatments and it was further increased by the combination treatment with vemurafenib 

and valproate. The PTEN mutant A2058 cell line showed a moderate response to 

vemurafenib treatment but HDAC inhibitor could decrease proliferation and increase cell 

death significantly in these cells. Similar results were obtained on cell viability by other 

groups as well [174] and a higher ratio of apoptotic cells was observed only at higher 

concentration of HDACis [115]. 

Taken together, our data show that PMCA proteins play an important role in the regulation 

of the intracellular Ca2+ signal. BRAF inhibitor treatment selectively upregulated the 

expression of the PMCA4b isoform only in BRAF mutant melanoma cells, while HDAC 

inhibitor treatment increased PMCA4b abundance in all cell lines independent of their BRAF 

mutational status. Increased PMCA4b expression enhanced intracellular Ca2+ clearance and 

decreased the migratory and metastatic capacity of the highly motile A375 melanoma cells. 
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7. Summary 

Plasma membrane calcium ATPases (PMCA) maintain the resting low intracellular calcium 

concentration by pumping out excess calcium from the cytosol. There are four different 

PMCA proteins (PMCA1-4) coded by four genes and through alternative splicing more than 

20 isoforms are produced. PMCA isoforms differ in their kinetic properties, tissue 

distribution and in their intracellular localization. Regarding their activation by Ca2+-

calmodulin PMCAs can be categorized as fast or slow pumps. Depending on their inactivation 

rates PMCAs with short and long lasting activity can be distinguished that is referred as to 

the memory from earlier Ca2+ spikes.  

We found that PMCA isoforms due to their distinct kinetic features influence the pattern of 

the Ca2+ signal initiated by SOCE differently and this is in good accordance with their 

physiological role in specific cell types and tissues. In our measurements, the quickly 

activating PMCA2b with long memory produced distinct Ca2+ spikes just like the spikes in the 

Purkinje neurons in the cerebellum. PMCA4a is also a fast pump but with a short memory. As 

a result, after a fast decay the intracellular Ca2+ concentration stabilized in a new, increased 

steady-state level in the PMCA4a expressing cells. Earlier a similar pattern was found also in 

activated sperm cells. The PMCA4b isoform is primarily present in non-excitable cells, we 

found that its slower activation rate allows the formation of relatively large Ca2+ transients 

and can initiate periodic baseline oscillations. 

Earlier it was demonstrated that expression of PMCA proteins can be altered in colon and 

breast cancer cells. We found that inhibition of the BRAF/MEK/ERK pathway selectively 

upregulated the expression of PMCA4b in BRAF mutant melanoma cells and this effect was 

coupled with enhanced Ca2+ clearance in the cells. Expression of PMCA4b in BRAF mutant 

A375 cells profoundly changed the morphology of the cells, decreased their migratory 

capacity in vitro and reduced their metastatic capacity in vivo. Furthermore, histone 

deacetylase inhibitor treatment increased PMCA4b expression in melanoma cells 

independent from ERK activation and it enhanced the Ca2+ clearance and decreased the 

motility of the cells in a PMCA4b dependent manner.  Our data demonstrates for the first 

time that PMCA4b is an important regulator of the migration of melanoma cells and that 

PMCA4b is a putative metastasis suppressor protein. 
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8. Összefoglalás 

A plazmamembrán típusú kalcium ATPázok (PMCA) részt vesznek a nyugalmi kalcium 

koncentráció fenntartásában. A négy PMCA fehérje (PMCA1-4) négy különböző génen 

kódolt, melyekről alternatív “splicing” során több mint húsz izoforma képződhet. Az 

izoformák különböznek kinetikai tulajdonságaikban, szöveti megoszlásukban és sejten belüli 

elhelyezkedésükben.   

Úgy találtuk, hogy az egyes PMCA fehérjék eltérő kinetikai tulajdonságainak köszönhetően 

különbözőképpen befolyásolják a Ca2+ szignál mintázatát, ami összhangban áll fiziológiás 

szerepükkel az egyes sejttípusokban. A Ca2+/kalmodulin komplex által gyorsan aktiválódó, de 

hosszan aktívan maradó, hosszú memóriájú PMCA2b hatására egyedi Ca2+ tüskék alakultak ki 

kísérleteinkben csak úgy, mint a Purkinje sejtekben, a kisagyban. A PMCA4a variáns szintén 

gyorsan aktiválódik, azonban az aktivitását gyorsan elveszíti. Ennek következtében a 

PMCA4a-t kifejező sejtekben a kezdeti gyors csökkenés után egy új, megemelkedett 

intracelluláris Ca2+ szint alakult ki, amihez hasonló mintázatot találtak aktivált 

spermiumokban is. A PMCA4b elsősorban nem-ingerelhető sejtekben van jelen, amelyekben 

lassú aktivációja hozzájárul a relatíve nagyobb amplitudójú és hosszabb ideig fenntartott Ca2+ 

jelek és az azt követő periodikus alapszintű oszcilláció kialakulásához. 

Korábbi eredmények alapján a PMCA fehérjék kifejeződése megváltozik vastagbél es emlő 

tumor sejtekben a normál szövethez képest. Kísérleteinkben azt tapasztaltuk, hogy BRAF 

mutáns melanóma sejtekben a BRAF/MEK/ERK jelátvitel gátlásakor a PMCA4b szintje 

megemelkedett és ezzel összhangban a sejtet érő stimulust követően a Ca2+ eltávolítás 

sebessége megnőtt. A PMCA4b túltermeltetése BRAF mutáns A375 sejtekben a sejtalak 

drasztikus változását okozta, valamint in vitro a sejtek mozgását, in vivo pedig az 

áttétképzést csökkentette. Úgy találtuk, hogy a PMCA4b fehérje kifejeződése hiszton 

deacetiláz gátló kezelés hatására is megemelkedett a melanóma sejtekben, de ez a hatás 

független volt az ERK fehérje aktivációjától. Ugyanakkor ezekre a sejtekre is fokozott Ca2+ 

eltávolítás és csökkent migráció volt a jellemző, PMCA4b függő módon.  

Eredményeink azt mutatják, hogy a PMCA4b fontos szerepet játszik a sejtek Ca2+ jelátviteli 

folyamataiban és feltehetően ezen keresztül a melanóma sejtek mozgásának 

szabályozásában.  Végül érdemes kiemelni, hogy a PMCA4b fehérjét elsőként azonosítottuk, 

mint lehetséges metasztázis szuppresszort.   
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9. Tables and abbreviations 

9.1 Primary antibodies 

Name Source Type Dilution 

Anti-PMCA4b (JA3) [149] Mouse monoclonal 1:1000 

Anti-PMCA1 Affinity BioReagents, PA1-914 Rabbit polyclonal 1:1000 

Anti-PMCA2 [175] Rabbit polyclonal 1:1500 

Anti-PMCA3 [175]   

Anti-pan-PMCA (5F10) [175] Mouse monoclonal 1:5000 

Anti-SERCA2 Sigma-Aldrich, S1439 Mouse monoclonal 1:2500 

Anti-SERCA3 (PL/IM430) [93] Mouse monoclonal 1:200 

Anti-phospho- 
p44/42MAPK (ERK1/2) 

Cell Signaling, CST4370S Rabbit monoclonal 1:1000 

Anti-ERK1/2 (MK1) Santa Cruz, sc135900 Mouse monoclonal 1:500 

Anti--tubulin Abcam, ab6046 Rabbit polyclonal 1:1000 

Anti-BRAF-V600E (VE1) Spring Bioscience Corp.  
E19290 

Mouse monoclonal 1:500 

Anti-acetyl-Histone H3 
(Lys 9/Lys 14) 

Cell Signaling, 9677 Rabbit polyclonal 1:1000 

Anti-Na+/K+ ATPase Enzo Life Sciences 
BML-SA247-0100 

Mouse monoclonal 1:2000 
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9.2 Primers used for SYBR Green expression analysis 

Oligo Name Sequence (5'-3') 

IP3R1 forward  TTG GGC CTG GTT GAT GAT CG 

IP3R1 reverse  TTT GGG CAG AGT AGC GGT TC 

IP3R2 forward  AGA AGA ATG CCA TGC GTG TG 

IP3R2 reverse  ACC CTC GCT TCT CAG TTT CC 

IP3R3 forward  CCT AAG AAG TTC CGT GAC TG 

IP3R3 reverse  TCC TTG TCC TGC TTA GTC TG 

ORAI1 forward  TGG ACG CTG ACC ACG ACT AC 

ORAI1 reverse  CCT CGA TGT TGG GCA GGA TG 

RYR2 forward  ATG TAT CTG TGC TGC CTG TC 

RYR2 reverse  CTT CTG ATC GCT GCT TAG AG 

STIM1 forward  GAT GGA CGA TGA TGC CAA TG 

STIM1 reverse  GAA GGT GCT GTG TTT CAC TG 

STIM2 forward  AAC GAC ACT TCC CAG GAT AG 

STIM2 reverse  ACC ACA TCC AAT GCC TTG AG 

TRPM1 forward  GTG TCA GCA CAG GTG TTA TC 

TRPM1 reverse  TCC TTT CCA ACC AGG TCT TC 

E-cadherin forward CAGAGCCTCTGGATAGAGAACGCA 

E-cadherin reverse GGCATTGTAGGTGTTCACATCATCGTC 

SNAIL1 forward TATGCTGCCTTCCCAGGCTTG 

SNAIL1 reverse ATGTGCATCTTGAGGGCACCC 

ZEB1 forward CCAGTGGTCATGATGAAAATGGAACACC 

ZEB1 reverse CAGACTGCGTCACATGTCTTTGATCTC 

Vimentin forward GGCTCAGATTCAGGAACAGC 

Vimentin reverse CTGAATCTCATCCTGCAGGC 

GAPDH forward AGCTCACTGGCATGGCCTTC 

GAPDH reverse ACGCCTGCTTCACCACCTTC 
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9.3 Abbreviations 

AA: arachidonic acid 

AE: adverse effect 

APC: antigen presenting cell 

ATP: adenosine triphosphate 

CaM: calmodulin 

CaMKII: Ca2+/calmodulin-dependent protein kinase II 

CaN: calcineurin 

CBS: calmodulin binding sequence 

CDK: cyclin dependent kinase 

CICR: Ca2+ induced Ca2+ release 

COX-2: cyclooxygenase-2 

CRAC: calcium release activated calcium current 

CTLA-4: cytotoxic T-lymphocyte-associated antigen 4 

DAG: diacyglycerol 

DAPI: 4´,6-diamidino-2-fenilindol 

DAPK: death-associated protein kinase 

DTT: dithiothreitol 

ECM: extracellular matrix 

EGF: epidermal growth factor 

eNOS: endothelial nitric oxide synthase 

Epac: exchange protein directly activated by cyclic AMP 

ER: endoplasmic reticulum 

ERK: extracellular-signal regulated kinase 

FA: focal adhesion 

FAK: focal adhesion kinase 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase 

GCaMP2: GFP-based Ca2+ probe 

GFP: green fluorescent protein 

GPCR: G-protein-coupled receptor 

HAT: histone acetyl transferase 
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HBSS: Hanks´ Balanced Salt Solution 

HDAC: histone deacetylase 

HGF: hepatocyte growth factor 

HUVEC: human umbilical vein endothelial cell 

IGF: insulin like growth factor 

IP3: inositol 1,4,5-trisphosphate 

IP3R: inositol 1,4,5-trisphosphate receptor 

IS: immunological synapse 

MAGE: melanoma-associated antigen 

MAGUK: membrane-associated guanylate kinase 

MAPK: mitogen activated protein kinase 

MCU: mitochondrial calcium uniporter 

MEK: MAPK/ERK kinase 

MLCK: myosin light chain kinase 

MMP: matrix metalloproteinase 

mTOR: mechanistic target of rapamycin 

NCX: Na+/Ca2+ exchanger 

NFAT: nuclear factor of activated T-cell 

NHERF2: Na+/H+ exchanger regulatory factor 2 

NMDA: N-methyl-D-aspartate 

nNOS: neural nitric oxide synthase 

PD1: programmed cell death receptor 1 

PD-L1: programmed death-ligand 1 

PIP2: phosphatidylinositol-4,5- bisphosphate 

PIP3: phosphatidylinositol-3,4,5- bisphosphate 

PLC: phospholipase C 

PMCA: plasma membrane Ca2+ ATPases 

POST: partner of STIM 

PSD-95: post synaptic density protein 95  

PTEN: phosphatase and tensin homolog 

PTP: permeability transition pore 

RAF: rapidly accelerated fibrosarcoma 
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RAS: rat sarcoma 

RASSF1: Ras association domain-containing protein 1 

ROS: reactive oxygen species 

RTKR: receptor tyrosine kinase-linked receptor 

RYR: ryanodine receptor 

SAHA: suberoylanilide hyroxamic acid 

SERCA: sarco/endoplasmic reticulum Ca2+ ATPases 

SOC: store operated Ca2+ channel 

SOCE: store operated Ca2+ entry 

SPCA: secretory-pathway Ca2+ ATPase 

SR: sarcoplasmic reticulum 

STIM: stromal interacting molecule 

TCA: trichloroacetic acid 

TGF: transforming growth factor 

TRPC: transient receptor potential cation channel subfamily C (“C” for canonical) 

TRPM: transient receptor potential cation channel subfamily M (“M” for melastatin) 

TRPV: transient receptor potential cation channel subfamily V (“M” for vanilloid) 

TSA: trichostatin A 

VEGF: vascular endothelial growth factor 
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