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1 Introduction

We study machine scheduling problems with non-renewable resource constraints. In

these problems the jobs have additional resource requirements, and they consume

the non-renewable resources when they are started on the machine. The resources

have initial stocks, which are replenished at some a-priori known moments of time.

We consider the problem on single and parallel machine environments.

Formally, we have a finite set of n jobs, J = {j1, . . . , jn} and a finite set of

non-renewable resources R consumed by the jobs. Each job j has a processing time

pj ∈ Z+, and resource requirements ai,j ∈ Z+ from the resources i ∈ R. In case of

a single resource we omit the first index and use aj. Preemption of the jobs is not

allowed and each machine can process at most one job at a time. The resources are

supplied in q different time moments, 0 = u1 < u2 < · · · < uq; the vector b̃` ∈ Z|R|+

represents the quantities supplied at u`.

A schedule σ specifies a machine and the starting time Sj of each job and it is

feasible if (i) on every machine the jobs do not overlap in time, and if (ii) at any time

point t the total supply from each resource is at least the total request of those jobs

starting not later than t, i.e.,
∑

(` : u`≤t) b̃`,i ≥
∑

(j : Sj≤t) ai,j, ∀i ∈ R. We denote

the completion time of job j in schedule σ by Cj.

We will consider several well-known objective functions, like the makespan (Cmax :=

maxj∈J Cj), the maximum lateness (Lmax := maxj∈J (Cj−dj)) and the total weighted

completion time (
∑
wjCj :=

∑
j∈J wjCj, where the weight wj ∈ Z+ describes the

importance of job j).

Scheduling with non-renewable resources has a great practical interest. We list

a few examples from the recent years. Chapter 4 of Stadtler and Kilger (2008) de-

scribes examples in the consumer goods industry and in computer assembly, where

purchased items have to be taken into account at several planning levels includ-

ing short-term scheduling which is the topic of the present thesis. Herr and Goel

(2016) study a scheduling problem arising in the continuous casting stage of steel

production. In Carrera et al. (2010), a similar problem is investigated in a shoe-firm.

2 Terminology

An optimization problem Π consists of a set of instances, where each instance has

a set of feasible solutions, and each solution has an (objective function) value. In

a minimization problem a feasible solution of minimum value is sought, while in a

maximization problem one of maximum value. A (1 + ε)-approximation algorithm
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for a minimization problem Π delivers in polynomial time for each instance of Π a

solution whose objective function value is at most (1 + ε) times the optimum value.

For a minimization problem Π, a family of approximation algorithms {Aε}ε>0, where

each Aε is an (1 + ε)-approximation algorithm for Π is called a Polynomial Time

Approximation Scheme (PTAS) for Π. A Fully Polynomial Time Approximation

Scheme (FPTAS) is a family of algorithms {Aε}ε>0 with the same properties as a

PTAS, plus each Aε runs in polynomial time in 1/ε as well.

We use the standard α|β|γ notation for scheduling problems (Graham et al.,

1979), where α denotes the processing environment, β the additional restrictions,

and γ the objective function. α = Pm indicates m parallel machines for some fixed

m. In the β field, ’rm’ means that there are non-renewable resource constraints,

rm = r indicates |R| = r. Further options are q = const meaning that the number

of supplies is a fixed constant and rj indicates job release dates.

3 Reduction and their consequences

There are strong connections between the variants of our scheduling problem and

the variants of the well-known Knapsack Problem (KP). These connections can be

described by so-called reductions and they have several important consequences.

In case of one resource there are reductions in both ways between the Knapsack

Problem and 1|rm = 1, q = 2|Cmax:

Theorem 3.1 (Györgyi and Kis, 2015a). 1|rm = 1, q = 2|Cmax ≤Strict KP .

Theorem 3.2 (Györgyi and Kis, 2015a). KP ≤FPTAS 1|rm = 1, q = 2|Cmax.

The first reduction implies an FPTAS and a fast 3/2 approximation algorithm

for 1|rm = 1, q = 2|Cmax:

Corollary 3.3 (Györgyi and Kis, 2015a). There is an FPTAS for 1|rm = 1, q =

2|Cmax in O(n ·min{log n, log(1/ε)}+ (1/ε2) log(1/ε) ·min{n, (1/ε) log(1/ε)}) time

and in O(n+ 1/ε2) space.

Corollary 3.4 (Györgyi and Kis, 2015a). There is an 3/2-approximation algorithm

for 1|rm = 1, q = 2|Cmax of time complexity O(n log n).

If we have more than one resource, then there are similar reductions between the

r-dimensional Knapsack Problem (r−DKP ) and 1|rm = r, q = 2|Cmax. From these

reductions we can obtain a PTAS for the problem with fixed number of resources

and 2 supply dates and we can prove that there is no FPTAS for the problem with

at least 2 resources and 2 supply dates unless P = NP .
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Theorem 3.5 (Györgyi and Kis, 2015a). 1|rm = r, q = 2|Cmax ≤Strict r −DKP .

Corollary 3.6 (Györgyi and Kis, 2015a). For any fixed r, there is a PTAS for

1|rm = r, q = 2|Cmax.

Theorem 3.7 (Györgyi and Kis, 2015a). r-DKP ≤FPTAS 1|rm = r, q = 2|Cmax.

Corollary 3.8 (Györgyi and Kis, 2015a). If r ≥ 2 then there is no FPTAS for

1|rm = r, q = 2|Cmax unless P = NP .

4 Complexity and approximation results for sin-

gle machine problems

4.1 Makespan minimization

According to our knowledge the first single machine results of the topic are from the

1980s. The problem was a natural extension of the problem of Carlier and Rinnooy

Kan (1982), where there were no machines but there were precedence constraints

among the jobs. In case of machine scheduling, the most basic results can be found

in Carlier (1984), we highlight the NP-hardness of the problem:

Theorem 4.1 (Carlier, 1984). The problem 1|rm = 1|Cmax is NP-hard, even in

case of pj = aj and q = 2.

Toker et al. (1991) showed a reduction from a variant where the supplies arrive

uniformly (i.e., b1,i = b2,i = . . . = bq,i for each resource i and u` = (`− 1)u2) to the

two-machine flow shop problem, which is solvable in O(n log n) time (Johnson, 1954).

This result was extended in Xie (1997), which allows several resources. Grigoriev

et al. (2005) showed that 1|rm = 1, pj = p|Cmax can be solved by scheduling the

jobs in non-decreasing resource requirement order as soon as possible. This paper

also presented two very simple 2-approximation algorithms for 1|rm|Cmax.

Though the problem 1|rm = 1, q = 2|Cmax is NP-hard by Theorem 4.1, there is

a positive result for a slightly more general problem:

Theorem 4.2 (Györgyi and Kis, 2014). The problem 1|rm = const , q = const |Cmax

can be solved in pseudo polynomial time.

The following result of Györgyi and Kis (2017) helps to obtain polynomial time

approximation schemes for the general problem 1|rm, rj|Cmax, provided that we have

a family of approximation algorithms for restricted versions of the problem.
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Table 1: Approximability of 1|rm|Cmax with q supplies
and rm = r resources if P 6= NP . The question mark
indicates that we do not know the existence of an FPTAS
for 1|rm = 1, q > 2|Cmax.

q = 2 q > 2

r = 1 FPTAS* PTAS*, ?
r = const ≥ 2 PTAS*, no FPTAS* PTAS, no FPTAS
r = arb. no PTAS no PTAS

* described in the dissertation

Proposition 4.3 (Györgyi and Kis, 2017). In order to have a PTAS for

1|rm, rj|Cmax, it suffices to provide a family of algorithms {Aε}ε>0 such that Aε is

a (1 + ε)-approximation algorithm for the restricted problem where the supply dates

and the job release dates before uq are from the set {`εuq : ` = 0, 1, 2, . . . , b1/εc}.

Now we turn to the achieved approximability results:

Theorem 4.4 (Györgyi and Kis, 2014). There is a PTAS for 1|rm = 1, q =

const |Cmax.

From Proposition 4.3 and Theorem 4.4, we have the following:

Theorem 4.5. There is a PTAS for 1|rm = 1|Cmax.

If aj = pj for each job j, then there is a much simpler and faster PTAS for the

same problem:

Theorem 4.6 (Györgyi and Kis, 2015b). There is a PTAS for the problem 1|rm =

1, aj = pj|Cmax.

Györgyi and Kis (2015b) also presented a PTAS for the problem 1|rm = const , q =

const |Cmax, which we can generalize by Proposition 4.3 as follows:

Corollary 4.7. There is a PTAS for the problem 1|rm = const |Cmax.

We end this section by summarizing the approximability status of the different

variants of 1|rm|Cmax in Table 1.

4.2 Minimizing the total weighted completion time

Minimizing the total completion time is strongly NP-hard. This result was first

achieved by Carlier (1984). This paper was written in French, thus it remained

unknown for several authors. Later, Gafarov et al. (2011) proved the NP-hardness

of the problem and then Kis (2015) rediscovered the result of Carlier:
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Table 2: Easy variants of 1|rm = 1|
∑
wjCj.

Variant Optimal schedule
pj = aj = ā non-increasing wj order
pj = wj = 1 non-decreasing aj order
aj = wj = 1 SPT order

wj = w̄, pj = aj SPT order
aj = ā, pj = wj LPT order

Theorem 4.8 (Carlier, 1984; Kis, 2015). The problem 1|rm = 1|
∑
Cj is strongly

NP-hard.

We examine variants where we can state job independent connections among the

processing times, the resource requirements and the weights. If these connections

are strong enough we can find easy ordering rules that yield optimal schedules, see

Table 2.

Then, we provide a non-trivial expression for the objective function value, if

pj = wj for each job j. In the following lemma H` denotes the length of the idle

period in schedule S in the interval [u`, u`+1], and P` denotes the total working time

(when the machine is not idle) in [u`, u`+1].

Lemma 4.9 (Györgyi and Kis, 2018b). If pj = wj, for each job j, then the objective

function value of any feasible schedule S can be expressed as

∑
j

pjCj =
∑
j≤k

pjpk +

q∑
`=2

H`−1 · (P` + P`+1 + . . .+ Pq).

After that, we consider the variant where pj = aj = wj for each job j. Surpris-

ingly, this very restrictive variant is already NP-hard:

Theorem 4.10 (Györgyi and Kis, 2018b). The problem 1|rm = 1, q = 2, pj = aj =

wj|
∑
wjCj is weakly NP-hard, and 1|rm = 1, pj = aj = wj|

∑
wjCj is strongly

NP-hard.

However, we could derive a 2-approximation algorithm for it, using the result of

Lemma 4.9:

Theorem 4.11 (Györgyi and Kis, 2018b). Scheduling the jobs in LPT order is a

2-approximation algorithm for 1|rm = 1, pj = aj = wj|
∑
wjCj.
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5 An exact method for 1|rm|Lmax

In contrast to the complexity and approximation results, there are only sporadic

computational results on machine scheduling problems with non-renewable resource

constraints. Grigoriev et al. (2005) have provided some test results for one of their

approximation algorithms. For a related problem, where some of the jobs produce,

while other jobs consume some non-renewable resources, Briskorn et al. (2013) pro-

pose an exact method for minimizing the total weighted completion time of the

jobs. In the more general project scheduling setting, Neumann and Schwindt (2003)

study the makespan minimization problem with inventory constraints, and describe

a branch-and-bound method for solving it.

This section summarizes the branch-and-cut method of Györgyi and Kis (2018a)

for 1|rm|Lmax. Since we have to compute the maximum lateness objective, choosing

the right MIP model is a non-trivial issue. After some preliminary tests, we have

chosen the model with completion time variables. The MIP formulation is

minLmax

s.t.

Cj ≥ pj , ∀j

Cj1 + pj2 ≤ Cj2 +M · (1− ordj1,j2), ∀j1 < j2

Cj2 + pj1 ≤ Cj1 +M · ordj1,j2 , ∀j1 < j2

Cj − pj ≥
q∑

`=2

u` · (zj,` − zj,`−1), ∀j

Lmax ≥ Cj − dj , ∀j

∑
j∈J

ai,jzj` ≤ b`,i, ∀`, ∀i

zj,`−1 ≤ zj,`, ∀j, ∀`

zj,q = 1, ∀j

ordj1,j2 ∈ {0, 1}, ∀j1 < j2

zj` ∈ {0, 1}, ∀j, ∀`.

Our branch-and-cut method uses the MIP model as the representation of the

problem, and we do not use the solver as a black-box, instead, we generate cutting

planes in the course of the solution process in order to speed up the optimization

algorithm. We have examined the following cutting planes:

ordj1,j2 + ordj2,j3 − ordj1,j3 ≤ 1,

−ordj1,j2 − ordj2,j3 + ordj1,j3 ≤ 0

}
∀j1 < j2 < j3,

∑
j∈S

pj(dmax(S) + Lmax − Cj + pj) ≥
1

2

∑
j∈S

p2j +

∑
j∈S

pj

2
 , S ⊆ J ,

Lmax ≥ Cj1 − (pj2 − dj2 + dj1) · (1− ordj1,j2) + pj2 − dj2 , ∀j1 < j2,

ordj1,j2 ≥ zj1,`+1 − zj1,` + zj2,`+1 − zj2,` − 1, ∀j1, j2 : dj1 < dj2 ,∑
j∈J

(zj,` − zj,`−1) · pj ≤ u`+1 − u` + pmax, ∀`.
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Table 3: Results with 50 jobs and 10 supply dates.

50 jobs 1 resource 3 resources 10 resources

10 supply dates # opt avg. gap # opt avg. gap # opt avg. gap

no cuts 6 1.43 8 1.035 5 1.049
Xpress 7 1.77 7 1.007 5 1.039
our 5 1.20 7 1.021 7 1.029

our + Xpress 7 1.22 6 1.028 7 1.018

We have generated several instances for different (n, q) pairs and for each case,

we have examined instances with 1, 3 and 10 resources. The Mosel language of

FICO Xpress (2016) was used for implementation. After that, we have compared

the results in case of four settings: without generating any cutting planes (’no cuts’),

enabling the built-in cuts, but not using our cuts (’Xpress’), disabling the built-in

cuts, but using (some of) our cuts (’our’), and using both our and the built-in cuts

(’our+Xpress’).

Table 3 depicts the results in case of 50 jobs and 10 supply dates for an illustra-

tion. We characterize the results by the number of the optimally solved instances

(out of 10) and by the average integrality gap (the ratio of the best upper and lower

bounds).

6 Results for parallel machine problems

6.1 Makespan minimization

Parallel machine scheduling is also one of the most classical scheduling problems.

The makespan minimization problem is already NP-hard in the case of two machines

(Lenstra et al., 1977). However, there are several approximation algorithms for this

problem, e.g., a 4/3-approximation algorithm by list scheduling (see, e.g., Pinedo

(1995)) or a PTAS by Hall and Shmoys (1989). Note that, we can create 7/3-

approximation and (2 + ε)-approximation algorithms for P |rm|Cmax based on these

algorithms. This problem was also introduced by Carlier (1984) and in the same

year, Slowinski (1984) examined the preemptive version of the problem.

Our first result is a PTAS in case of the number of parallel machines and resources

is constant. We have modified this PTAS so that it can deal with the case when

(some of) the jobs are dedicated to machines:

Theorem 6.1 (Györgyi and Kis, 2017). Pm|rm = const , rj|Cmax and Pm|rm =

const , rj, ddc|Cmax admit a PTAS.
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Table 4: Approximability of P |rm|Cmax

with m machines and rm = r resources
(in case of q ≥ 2 supplies) if P 6= NP .

m = const m = arb.

r = 1 PTAS PTAS*

r = const ≥ 2 PTAS* no PTAS
r = arb. no PTAS no PTAS

* described in the dissertation

If we have an arbitrary number of parallel machines and at least two resources,

then there is no PTAS for the problem (Györgyi and Kis, 2017). However, we have

a positive result in the case of one resource:

Theorem 6.2 (Györgyi, 2017). There is a PTAS for P |rm = 1|Cmax.

Table 4 summarizes the approximability status of the different variants of P |rm|Cmax.

6.2 Lateness minimization

Since the optimum lateness may be 0 or negative, a standard trick is to increase

the lateness of the jobs by a constant that depends on the input. In our case, let

L′max := maxj{Cj − dj + D}, where D := maxj∈J {dj} + uq. In order to provide a

PTAS for the lateness objective, we have to assume that the processing times are

proportional to the resource consumptions:

Theorem 6.3 (Györgyi and Kis, 2017). If L′max is defined as above, then Pm|rm =

1, pj = aj|L′max admits a PTAS.
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