Bringing a Humanoid Robot Closer to Human Versatility:
Hard Realtime Software Architecture and
Deep Learning Based Tactile Sensing

Berthold Bauml

Kumulative Dissertation
zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften — Dr.-Ing. —

Vorgelegt im Fachbereich 3 (Mathematik und Informatik)
Universitdt Bremen

2. Dezember 2018

Datum des Promotionskolloquiums: 22. Januar 2019

Gutachter

Prof. Dr. Bernd Krieg-Briickner (Universitidt Bremen)
Prof. Dr. Gerd Hirzinger (TU Miinchen, DLR)

ii

Abstract

For centuries, it has been a vision of man to create humanoid robots, i.e., machines that
not only resemble the shape of the human body, but have similar capabilities, especially in
dextrously manipulating their environment. But only in recent years it has been possible
to build actual humanoid robots with many degrees of freedom (DOF) and equipped with
torque controlled joints, which are a prerequisite for sensitively acting in the world.

In this thesis, we extend DLR’s advanced mobile torque controlled humanoid robot Ag-
ile Justin into two important directions to get closer to human versatility. First, we enable
Agile Justin, which was originally built as a research platform for dextrous mobile manip-
ulation, to also be able to execute complex dynamic manipulation tasks. We demonstrate
this with the challenging task of catching up to two simultaneously thrown balls with its
hands. Second, we equip Agile Justin with highly developed and deep learning based tac-
tile sensing capabilities that are critical for dextrous fine manipulation. We demonstrate
its tactile capabilities with the delicate task of identifying an objects material simply by
gently sweeping with a fingertip over its surface.

Key for the realization of complex dynamic manipulation tasks is a software framework
that allows for a component based system architecture to cope with the complexity and
parallel and distributed computational demands of deep sensor-perception-planning-
action loops — but under tight timing constraints. This thesis presents the communication
layer of our aRDx (agile robot development — next generation) software framework that
provides hard realtime determinism and optimal transport of data packets with zero-copy
for intra- and inter-process and copy-once for distributed communication.

In the implementation of the challenging ball catching application on Agile Justin, we
take full advantage of aRDx’s performance and advanced features like channel synchro-
nization. Besides developing the challenging visual ball tracking using only onboard
sensing while “everything is moving” and the automatic and self-contained calibration
procedure to provide the necessary precision, the major contribution is the unified gen-
eration of the reaching motion for the arms. The catch point selection, motion planning
and the joint interpolation steps are subsumed in one nonlinear constrained optimiza-
tion problem which is solved in realtime and allows for the realization of different catch
behaviors.

For the highly sensitive task of tactile material classification with a flexible pressure-
sensitive skin on Agile Justin’s fingertip, we present our deep convolutional network ar-
chitecture TactNet-II. The input is the raw 16000 dimensional complex and noisy spatio-
temporal tactile signal generated when sweeping over an object’s surface. For compar-
ison, we perform a thorough human performance experiment with 15 subjects which
shows that Agile Justin reaches superhuman performance in the high-level material clas-
sification task (What material id?), as well as in the low-level material differentiation task
(Are two materials the same?). To increase the sample efficiency of TactNet-1I, we adapt
state of the art deep end-to-end transfer learning to tactile material classification leading
to an up to 15 fold reduction in the number of training samples needed.

The presented methods led to six publication awards and award finalists and interna-
tional media coverage but also worked robustly at many trade fairs and lab demos.

iv

Zusammenfassung

Schon seit Jahrhunderten ist es eine Vision des Menschen, humanoide Roboter zu bauen,
d.h. Maschinen, die nicht nur die Form des menschlichen Korpers nachahmen, sondern
auch dhnliche Fahigkeiten gerade im der geschickten Manipulation ihrer Umwelt haben.
Aber erst in den letzten Jahren konnten tatsdchliche humanoide Roboter mit vielen Frei-
heitsgraden und mit drehmomentgeregelten Gelenken gebaut werden. Drehmomentre-
gelung ist dabei eine Grundvoraussetzung fiir das feinfiihlige Agieren in der Welt.

In dieser Arbeit erweitern wir den fortgeschrittenen, mobilen und drehmomentgere-
gelten humanoiden Roboter des DLR, Agile Justin, in zwei wesentliche Richtungen. Ers-
tens erreichen wir, dass Agile Justin, der urspriinglich als Forschungsplattform fiir ge-
schickte mobile Manipulation entwickelt wurde, nun auch komplexe dynamische Mani-
pulationsaufgaben ausfiithren kann. Dies wird an Hand der schwierigen Aufgabe, zwei
gleichzeitig geworfene Bélle mit den Handen zu fangen, gezeigt. Zweitens statten wir
Agile Justin mit einem hochentwickelten und auf Deep Learning basierten taktilen Sinn
aus, der entscheidend fiir die geschickte Feinmanipulation ist. Wir demonstrieren sei-
ne taktilen Fihigkeiten an Hand einer Aufgabe, die grosse Feinfiihligkeit erfordert: das
Erkennen des Materials, aus dem ein Objekt besteht, alleine indem man sanft mit dem
Finger dartiberstreicht.

Grundvoraussetzung fiir die Umsetzung von komplexen, dynamischen Manipulati-
onsaufgaben ist ein Software Framework, das trotz der engen zeitlichen Randbedingun-
gen eine komponentenbasierte Systemarchitektur ermdglicht. Denn nur eine solche kom-
ponentenbasierte Architektur erlaubt es, mit der Komplexitdt und dem hohen Bedarf an
paralleler und verteilter Rechenleistung einer tiefen Sensor-Wahrnehmungs-Planungs-
Aktions Schleife umzugehen. Die vorliegende Arbeit stellt die Kommunikationsschicht
unseres aRDx! Software Frameworks vor. Diese Kommunikationsschicht bietet harte Echt-
zeit und optimalen Transport von Datenpaketen mit zero-copy Semantik fiir Intra- und
Interprozesskomunikation und copy-once Semantik fiir verteilte Kommunikation.

Fiir die Implementierung des Ballfang-Szenarios mit Agile Justin nutzen wir die Perfor-
manz und alle fortgeschrittenen Funktionen von aRDx, wie z.B. die Synchronisierung von
Kommunikations-Channels. Neben der Entwicklung der anspruchsvollen visuellen Ball-
verfolgung, die nur Onboard-Sensoren nutzt, obwohl édlles in Bewegung ist”, und eines
Verfahrens zur Autokalibration fiir den multisensoriellen Oberkorpers, um die notwendi-
ge Genauigkeit zu erreichen, ist der wesentliche Beitrag die vereinheitlichte Generierung
der Fangbewegung fiir die Arme. Die sonst iiblichen Einzelschritte, Wahl des Abfang-
punktes, Bewegungsplanung und Gelenkwinkelinterpolation, werden in zu einem nicht-
linearen Optimierungsproblem mit Randbedingungen zusammengefasst und in Echtzeit
gelost. Dieses Verfahren erlaubt es ausserdem unterschiedliches Fangverhalten zu erzeu-
gen.

Fiir die Umsetzung der feinfiihlige Aufgabe, Materialien alleine mit Hilfe des taktilen
Signals der drucksensiblen Haut auf der Fingerspitze von Agile Justin zu erkennen, be-
schreiben wir unsere Deep Convolutional Network Architektur TactNet-II. Als Input fiir
TactNet-II wird das unverarbeitete 16000 dimensionale, komplexe und verrauschte raum-
zeitliche taktile Signal verwendet, das beim Streichen {iber eines Objektes entsteht. Fiir

! Agile Robot Development — Next Generation

einen Vergleich der erreichte Erkennungsgenauigkeit mit dem Menschen zu haben, ha-
ben wir ein umfangreiche Klassifikationsexperimente mit 15 Testpersonen durchgefiihrt.
Dabei hat sich gezeigt, dass Agile Justin hohere Erkennungsraten als der Mensch erreicht,
sowohl bei der eher kognitiven Aufgabe der Materialerkennung als auch bei der eher sen-
sornahen Materialunterscheidung. Um die Effizienz von TactNet-II bzgl. der Anzahl der
benoétigten Trainingsdaten zu erhhen, haben wir aktuelle Verfahren fiir das Deep End-to-
End Transferlernen fiir TactNet-II angepasst. Wir erreichten dadurch eine bis zu 15-fache
Reduzierung der benétigten Trainingsdaten.

Die hier vorgestellten Methoden haben zum einen zu sechs Publikationspreisen und
Preisnominierungen gefiihrt, konnten aber auch robust bei vielen Messen und Laborde-
monstrationen gezeigt werden.

vi

Contents

1 Introduction

1.1 Why building humanoid robots?
1.2 Human Versatility in Dextrous Manipulation
1.3 Agile Justin: A Versatile Mobile Humanoid Robot

131 SystemOverview o

1.3.2 Experimental Scenarios
14 RelatedWork
1.5 Outline and Contributions

2 The Communication Layer of the aRDx Software Framework

2.1 Motivationand Related Work
2.1.1 Raw Communication Performance
2.1.2 High-Level Domain Data Types
2.1.3 Recent Developments
2.2 DesignConsiderations
23 Implementation
231 DataPacket Transport
2.3.2 Data Packet Serialization
24 Performance Comparison
241 StressTestSetup L.
2.4.2 aRDx and Other Frameworks
243 In-Depth AnalysisofaRDx
2.5 Small Example and Real World Applications
251 SmallaRDxClient
2.5.2 Mobile Humanoid Agile Justin
2.5.3 Other RoboticDomains
26 Summary

3 Ball Catching as a Complex Dynamic Task

31 Motivation
32 RelatedWork
3.3 Robotic Setup and System Challenges

331 Setup

O IO = WDN PP -

Contents

viii

332 Challenges. 38
3.4 Visual Ball Tracking and Automatic Calibration. 41
341 Tracking 41
3.42 Calibration. 41
3.5 Kinematically Optimal Planning 43
3.5.1 KinematicSubchains 44
352 Planning foraSingle Arm 45
3.5.3 Safety Self Collision Detection 48
354 BeyondBall Catching 49
3.6 aRDx Based System Architecture 50
3.7 Results e e 52
3.71 Stationary Single Arm Lo Lo L 52
3.7.2 Mobile Humanoid Robot 53
38 Summary 53
Deep Learning Based Tactile Material Classification 59
41 Motivation e e 59
411 Deep Learning for Material Classification 59
412 Deep n-Shot Transfer Learning 61
42 Related Work e 62
4.2.1 Tactile Material Classification 62
422 n-Shot Transfer Learning 64
43 ExperimentalSetup L 64
431 RobotSetup L oo 64
432 Material Dataset 66
433 ValidationScheme 66
4.4 Deep Learning for Material Classification and Differentiation. 68
441 Material Classification 68
442 ClassificationResults 71
443 Material Differentiation 73
444 DifferentiationResults L. 73
45 Human Performance Experiments 74
45.1 Material Classification 74
452 C(ClassificationResults 75
45.3 Material Differentiation 77
454 DifferentiationResults 77
4.6 Deep n-Shot Transfer Learning 78
4.6.1 Fine-TuningMethod 78
46.2 MatchingMethods 80
4.6.3 Concept LearningMethod 80
464 Results 81
47 Summary 83

Contents

5 Conclusion
List of Publications by the Author
References

A List of Videos

87

89

95

105

Chapter 1

Introduction

1.1 Why building humanoid robots?

Building humanoid robots has been a fascinating vision for centuries. Humanoid robots
are machines which not only resemble the physical shape of the human body but should
also have similar capabilities in autonomously acting in their environment, especially in
dextrous manipulation.

Besides the fascination, there are also rational reasons to do research in humanoid
robots:

* By building machines that try to reach human capabilities, we can get insights about
ourselves as humans: how does the human body mechanically and sensorially work
and how does human intelligence at all cognitive levels work. We can also learn
about how hard the tasks really are the human seems to master so effortlessly.

* A robot with human capabilities would be the ultimate versatile tool to free the
human from dangerous, hard or tedious tasks. Imagine humanoid robots to work as
Robonauts in the inhospitable outer space, to be co-workers in industrial production
or to serve as assistants at home in the household.

* Humanoid robots are by far the most complex robotic systems and building such
robots drives the technological developments in diverse areas as mechanics, sen-
sors and actuators, control, software architectures, and up to machine learning and
artificial intelligence.

It is only in the last few decades that technology has evolved far enough to actu-
ally work on the realization of humanoid robots. One obvious challenge in humanoid
robotics is bipedal walking. In 1996 the Honda P2 was presented as the first practical
humanoid robot with two arms and legs and a, somehow, human-like walking pattern.
In 2006, Honda demonstrated with ASIMO the first humanoid robot which could run
(6km/h). The currently most advanced humanoid robot with regard to bipedal locomo-
tion is Boston Dynamics” amazing Atlas robot [BOSTON DYNAMICS, 2018] which not only
can run in rough terrain, but jump and even handle a challenging obstacle course using
the dynamics of its whole-body.

Chapter 1 Introduction

sensors: . motor skills:
- vision (3D, high resolution) % ?‘;‘ K - many degrees of freedom
- touch (spatial-, pressure-, time resolution) = - precise control of forces
- balance S ol - highly precise timing
- (hearing) ij i
/ ~ } brain:
- general learning machine
H N & - no (little) prior knowledge

- continuous adaption

g

“whole-body” maniplatlon | fine manipulation

body control

Figure 1.1: Example tasks for human versatility in dextrous manipulation and the system pre-
requisites for their realization. A human learns most of this skills autonomously by
interacting with its environment. 1

1.2 Human Versatility in Dextrous Manipulation

Even more characteristic and challenging than bipedal walking is the human’s capability
for dextrous manipulation, i.e., humans can interact with and shape their environment
using their articulated arms and hands.

Fig. 1.1 depicts three challenging tasks that show off the human versatility

High-performance sports with whole-body control with many degrees of freedom (DOF)
and with a timing precision in the millisecond range.

Construction work with detailed control of forces in whole-body manipulation.

Watchmaking which is a delicate fine manipulation task with the fingers.

Image sources: “Baby” from http://pngimg.com/uploads/baby/baby_PNG17911.png (CC BY-NC 4.0);
“Basketball” from https://pxhere.com/en/photo/564524 (Creative Commons CC0); “Worker” from
http://archive.defense.gov/photoessays/photoessaySS.aspx?id=1775 (“The appearance of U.S.
Department of Defense visual information does not imply or constitute DOD endorsement.”); ”Watch-
maker” from https://www.flickr.com/photos/richardb23/16880266095 (CC BY-NC-ND 2.0).

http://pngimg.com/uploads/baby/baby_PNG17911.png
https://pxhere.com/en/photo/564524
http://archive.defense.gov/photoessays/photoessaySS.aspx?id=1775
https://www.flickr.com/photos/richardb23/16880266095

1.3 Agile Justin: A Versatile Mobile Humanoid Robot

To be able to perform such a broad range of challenging tasks, the following prerequi-
sites that go far beyond a classical industrial robot with a position controlled arm and a
two finger gripper are required.

Motor skills
* Many degrees of freedom, especially, articulated arms and hands.

¢ Precise control of the forces when in contact with the environment, e.g., when ma-
nipulating objects.

¢ Precise timing in the actuation over all degrees of freedom.
Sensor skills

¢ High-resolution 3D vision for modeling the environment.

¢ Force/torque sensing in all DOF to enable force control.

* High-resolution tactile sensing with millimeter spatial and milliseconds temporal
resolution, especially at the finger tips, for dextrous fine manipulation.

Information processing

¢ High ”"computational power” (the brain) for sensor signal processing, geometrical
and semantic environment modeling, whole-body motion planning and up to cog-
nitive reasoning.

* Precise timing in the millisecond range despite distributed sensor, actor and com-
puting resources.

* Learning capabilities as a prerequisite for autonomously and robustly acting in com-
plex and ever changing environments.

1.3 Agile Justin: A Versatile Mobile Humanoid Robot

Over the past 10 years, at DLR we developed and continuously upgraded a family of
torque controlled mobile humanoid robots?. With the latest key extensions towards com-
plex dynamic tasks and advanced tactile sensing, which we both present in this thesis,
our wheeled humanoid robot “Agile Justin” fulfills all of the above listed prerequisites
for human versatility in dextrous manipulation.

Chapter 1 Introduction

sensors: (@ motors:

- stereo cameras (2MPixel/25Hz) . - 8 (platform) + 19 (torso) + 26
RGB-D sensor (0.5MPixel/33Hz) (hands) = 53 DOF

- torque sensor (all DOF, 1kHz) - torque control
tactile skin: body/hand (10k Taxel/750Hz) - 1kHz clock, <3ms latency,

- IMU (6D, 512Hz) <100us jitter (wheels: 500Hz)

' computer:

~ 4x Core i7 Quad-Core (onboard)
CPU cluster with 64 cores
GPGPU cluster 16 NVidia K20

Figure 1.2: System overview of the advanced mobile humanoid robot Agile Justin including the
extension presented in this thesis. Also depicted are example scenarios, roughly re-
sembling those in Fig. 1.1 for the human, showing Agile Justin comes close to human
versatility in dextrous manipulation.

1.3.1 System Overview

Fig. 1.2 gives an overview of Agile Justin’s current motor and sensor skills and its infor-
mation processing capabilities. We describe these in more detail below.

Mechatronics: Agile Justin’s upper body [OTT et al., 2006] is based on two DLR lightweight
arms (2x 7 DOF, 10 kg payload each) [HIRZINGER et al., 2002], two DLR Hand-II [BUT-
TERFASS et al., 2001] (4x3+1 DOE, 20 N force at fingertip), a torso with 3 DOF, and a multi-
sensor head with a 2 DOF neck. All DOF are actuated and except for the neck joints and
the hands’ palm reconfiguration motor, all DOF are torque controlled in a common con-

2The family of torque controlled humanoid robots started with Justin [OTT et al., 2006], a stationary hu-
manoid upper body. Later, a mobile platform was added which led to the name Rollin’ Justin [BORST
et al.,, 2009]. Agile Justin was initially built as a clone of Rollin” Justin, only with faster joints and a more
performant mobile platform (hence the name ”Agile”). It is only later with the extensions we describe
in this thesis that Agile Justin comes close to human versatility. Agile Justin’s capabilities exceed those
of all other members of the Justin family. Therefore, when we report about tasks performed with any of
the Justin’s, we simply say that Agile Justin performed them —because he could do so as well.

1.3 Agile Justin: A Versatile Mobile Humanoid Robot

trol loop with 1kHz rate, a communication latency of <3 ms and jitter of < 100 us. The
omnidirectional mobile platform [BORST et al., 2009] has 8 DOF which (since the latest
upgrade) are also torque controlled with a sample rate of 500 Hz. This allows the system
to perform well coordinated motions from the wheels to the fingertips.

3D Perception: The multi-sensor head is equipped with a pair of 2 megapixel stereo cam-
eras as well as an IMU (inertial measurement unit) and, for advanced 3D perception, an
RGB-D sensors (Microsoft Kinect). Based on the Kinect data, a GPU-based mapping algo-
rithm generates in realtime dense 3D models of the whole workspace with a resolution of
2mm. The high-quality models are amongst others used as the basis for object recognition
and pose estimation.

Whole body motion planning: For fast motion planning in the self-acquired 3D environ-
ment models and for all 22 DOF of Justin’s torso and mobile platform, an optimization-
based planning (OMP) method is used. Besides being fast, especially in replanning of
trajectories, optimization-based planning allows to naturally incorporate dynamic con-
straints and objectives.

Tactile sensing: The articulated hands are equipped with a sensitive tactile skin with a
high spatial and temporal resolution (750 Hz and 2 mm at the finger tips). The complex
and noisy spatio-temporal signal is processed with advanced deep learning methods, so
that Agile Justin can, for example, identify the material an object is made of by simply
sweeping over its surface or precisely sense and control the slippage of grasped objects.
In addition, the whole mobile platform is covered by a highly sensitive elastic tactile
skin [KREYSSIG, 2016] which, for example, allows the robot to move safely in confined
environments.

Auto-calibration: The multi-sensorial upper body is calibrated completely automatically
and without any external tool, including the intrinsic and extrinsic parameters for the
stereo cameras, RGB-D camera, IMU, joint elasticities, and offsets. In addition, fast cal-
ibration procedures for the sensors of the mobile base and the mounted tactile skin are
provided. Fast and automatic calibration is essential, because for advanced perception
methods the precise spatial and temporal relations of the sensors have to be known. How-
ever, due to the lightweight structure of the robot as well as inevitable maintenance work,
the sensor relations have to be recalibrated all the time.

Computational resources: Agile Justin is equipped with four Core i7 Quad-Core boards
in the mobile platform and wirelessly coupled external resources including a GPGPU
cluster with 16 Nvidia K20 GPUs for realtime 3D modeling and deep learning and a Xeon
CPU cluster with 64 processor cores for parallel optimization-based motion planning. As
a research platform, easy scalability of compute resources is important and therefore only
components which require high rates and low jitter, e.g., the advanced whole-body con-
trol algorithms, or high communication bandwidth, e.g., image processing for the stereo
cameras, run onboard, everything else runs on the remote servers.

Chapter 1 Introduction

Software framework: The software architecture of Agile Justin is based on our robotic
framework aRDx (Agile Robot Development — Next Generation) we developed for re-
search in mobile manipulation and robot learning on complex and performant robotic
systems. The low-level communication layer of aRDx is highly performant and hard
realtime capable. It allows for detailed control of the quality of service and optimally
transports data packets for intra-process, inter-process (zero-copy) as well as networked
(copy-once) communication. This allows Agile Justin’s fast and deep sensor-perception-
planning-action loop to span multiple computers, even including the GPGPU server cloud
in a remote building, with a timing precision in the millisecond range.

1.3.2 Experimental Scenarios

Agile Justin has proven to successfully perform in challenging experimental manipula-
tion scenarios (see Fig. 1.2) which roughly resemble those shown in Fig.1.1 for the human.
Here we describe the scenarios in some detail.

Playing ball: In this demanding benchmark scenario [7], up to two balls are thrown to-
wards the robot and it has to catch them with its hands using only onboard sensing.
This demands for fast 3D perception, dynamical whole-body motion planning and pre-
cise (spatial and temporal) execution of the motion over all DOF (mobile platform, torso,
arms and fingers). Agile Justin can not only catch a ball but even throw it back again
using a coordinated motion of all its DOF.

Building a scaffold structure: This scenario demands for dextrous as well as whole-body
manipulation with detailed control of the forces exerted on the objects. In addition, fast
3D modeling and interpretation of the geometrically complex environment in combina-
tion with fast motion planning is required. Our longterm vision is to enable the robot not
only to autonomously execute the construction task, but to acquire the necessary skills
through autonomous learning.

Fine manipulation and tactile material classification: The tactile skin on the finger tips
with its high sensitivity and high spatio-temporal resolution not only allows for fine ma-
nipulation, e.g., by sensing the orientation of a small grasped object. By processing the
spatio-temporal signal of the skin it is possible to discriminate objects by their material —
a skill which is, e.g., important when the objects would be indistinguishable from their
3D shape alone. To do so, the robot compares the data obtained by gently sweeping
its fingers over the object with previously learned classes using advanced deep learning
methods.

In summary;, this scenarios show that, due to the extensions presented in this thesis, Ag-
ile Justin already comes close to human dexterity and versatility in mobile manipulation
with regard to sensor and motor skills as well as fundamental perception and planning.
It is therefore an almost ideal platform for research in intelligent autonomous mobile
manipulation where, for the first time, progress in cognitive capabilities is no longer hin-

1.4 Related Work

dered by the underlying robotic system. Or in other words: there is no reason that Agile
Justin could not perform tasks similar to a human - it is now all about making the robot
more intelligent.

1.4 Related Work

As stated in [ACKERMAN, 2014], Agile Justin is “arguably one of the most, if not the
most, capable dual-armed mobile humanoid robots in existence”. In what follows, we
give an overview of the state of the art of other advanced mobile humanoid robots and
their capabilities in comparison to Agile Justin.

Dynamic Capabilities

There are only few mobile humanoid robots that are dynamically more capable than Ag-
ile Justin. Outstanding is Boston Dynamics’ legged humanoid robot Atlas [BOSTON DY-
NAMICS, 2018] which can even run and jump in a challenging obstacle course. But Atlas
has only 6 DOF arms which are not precisely controllable due to the hydraulic actuation.
Although it can be equipped with the articulated Sandia Hands [LABS, 2012], the robot
only showed off simple manipulation tasks like moving boxes or turning valves.

Also the family of humanoid robots from Sarcos, like the CB [CHENG et al., 2006], is
based on hydraulic actuation which allows for the realization of dynamic tasks like catch-
ing a ball or juggling [RILEY and ATKESON, 2002], but lacks from precise controllability
which hinders the execution of dextrous manipulation tasks.

Agile Justin is up to now the only mobile humanoid robot that can perform such dy-
namically challenging tasks like ball catching and at the same time has the precision and
sensitivity to execute dextrous manipulation tasks.

Torque Control

Justin was the first humanoid robot with torque control in all joints [BORST et al., 2007].
As the precise control of the forces the robot exerts on its environment is essential for
dextrous manipulation, many recent advanced mobile humanoids are now torque con-
trolled as well. E.g., KIT’s family of humanoids including the legged Armar-4 [ASFOUR
et al., 2013] and the recently presented wheeled Armar-6 [ASFOUR et al., 2018], DLR'’s
legged TORO [ENGLSBERGER et al., 2014], or the commercially available TALOS [PAL
ROBOTICS, 2018] from PAL robotics . But not all humanoid robots have dedicated torque
sensors in each joint, which limits the control accuracy like in the humanoid open-source
platform iCub [METTA et al., 2008] or the wheeled humanoids TWENDY-ONE [IWATA
and SUGANO, 2009] and DFKI’s AILA [LEMBURG et al., 2011]. Other well-known hu-
manoids are still not torque controlled at all as, e.g., the legged humanoids Honda Asimo [SAK-
AGAMI et al., 2002] or HRP-4 [KANEKO et al., 2011].

Hands and Tactile Sensing

The fingers of Agile Justin’s hands have three actuated joints, like the human fingers
(except for the thumb), and torque sensors in each joint. Some of the other advanced

Chapter 1 Introduction

humanoid robots (the Armar family, iCub, TWENDY-ONE and AILA) have quite sophis-
ticated hands but, except for the Sandia Hand [LABS, 2012], they are all underactuated
with a maximum of two actuated DOF per finger, which limits their fine manipulation
capabilities.

Some of these advanced hands are also equipped with high-resolution tactile sensors,
but for none of them it has been shown that they can perform such a highly sensitive
task like identifying an object’s material just by touching it. As we show in this thesis,
Agile Justin can perform this tactile material classification task with even superhuman
performance, although it uses only a commercially available flexible tactile skin that sim-
ply has been taped onto its soft fingertips. The key for Agile Justin’s highly developed
tactile sensing lies in the advanced end-to-end deep learning methods used for interpret-
ing the resulting complex and noisy spatio-temporal signal. Classical learning methods
with manually designed features perform only in poorly on these skin signals.

Robotic Software Frameworks

Many of the most performant robotic systems in the challenging field of mobile manip-
ulation bring their own software framework, e.g., iCub with YARP [METTA et al., 2006],
PR2 [WILLOW GARAGE] with ROS [QUIGLEY et al., 2009], AILA with ROCK [ROCK],
which is based on Orocos [OROCQOS], in combination with ROS, or the recent Armar-6
with ArmarX [VAHRENKAMP et al., 2015].

To cope with the complexity of advanced mobile manipulation tasks with their deep
sensor-perception-planning-action loops running on distributed sensor, actor and com-
puting resources, all robotic software frameworks follow a similar component based sys-
tem architecture. A component implements a well defined part of the robot’s functionality
and communicates by means of a packet oriented transport layer with other components,
be it on the same host or distributed in the network. But for complex dynamic manipula-
tion tasks, such a component based architecture has to be supported despite tight timing
constraints.

As we will show in this thesis, Agile Justin’s software framework aRDx is currently the
only framework that provides the necessary hard realtime determinism and highly per-
formant data transport. E.g., Orocos claims realtime determinism but it is not performant,
especially for large data packets. Other robotic frameworks have only recently started to
work on achieving realtime performance, e.g. ROS 2 [GERKEY, 2015].

1.5 Qutline and Contributions

The overall goal of this thesis is to extend the capabilities of the mobile torque controlled
humanoid robot Agile Justin towards complex dynamic manipulation and highly devel-
oped tactile sensing to come closer to human versatility. This way, Agile Justin should
become an almost ideal platform for research in intelligent mobile manipulation, espe-
cially in autonomous learning.

This thesis by publication is based on the papers attached in Appendix ?? and the List of
Publications by the Author (cf. pp. 89) lists for each paper my share in percent as well as
a short description of the particular contribution. We summarize the key contributions

1.5 Outline and Contributions

of this work in what follows and discuss them in more detail in the individual chapters,
including some updated results and additional descriptions beyond the original publica-
tions. Each chapter ends with a short summary of its contributions, including the refer-
ences to the corresponding publications.

Chapter 2 presents the realtime deterministic and highly performant communication
layer of our aRDx software framework. First, we discuss the design considerations for a
robotic software framework that can support the component based development of com-
plex dynamic manipulation applications with their tight timing constraints. Then we
present the elegant hierarchical implementation of aRDx which fulfills all design require-
ments by providing optimal data packet transport with zero-copy for intra-process and
inter-process and copy-once for distributed communication, detailed control of the qual-
ity of service (QoS) and a powerful channel synchronization mechanism. When run on
the realtime OS QNX, aRDx also achieves hard realtime determinism. Finally, in an elab-
orate stress test benchmark, we compare the communication performance of aRDx and
aRD with prominent robotic software frameworks, namely ROS, Orocos and YARP. aRDx
and its predecessor aRD outperform all other frameworks.

Chapter 3 describes the dynamic application of catching up to two thrown balls with
Agile Justin hands which takes full advantage of aRDx’s performance and advanced fea-
tures. We give a brief overview of the challenging visual ball tracking using only onboard
sensing while “everything is moving” as well as of the automatic and self-contained cali-
bration procedure for the multi-sensorial upper body to provide the necessary precision.
A major contribution is the unified generation of the reaching motion for the arms. The
catch point selection, motion planning and the joint interpolation steps are subsumed in
one nonlinear constrained optimization problem which is solved in realtime and allows
for the realization of different catch behaviors.

Chapter 4 presents the highly sensitive task of tactile material classification with a
flexible pressure-sensitive skin on Agile Justin’s fingertip. We introduce our deep con-
volutional network architecture TactNet-II which directly works on the raw 16000 di-
mensional complex and noisy spatio-temporal tactile signal generated when Agile Justin
sweeps with a finger over a material. All experiments are based on a new and large tac-
tile dataset (3600 samples) with 36 typical household materials we recorded and which
is made publicly available. We also perform for the first time a thorough human perfor-
mance experiment with 15 subjects in which the human tactile performance is compared
to the performance of a robot and which uses the very same 36 materials for both. The re-
sults we report show that Agile Justin reaches superhuman performance in the high-level
or cognitive material classification as well as in the low-level material differentiation task.
Finally, we adapt state of the art deep end-to-end n-shot transfer learning methods to our
TactNet-II network architecture. The evaluation using our challenging 36 material dataset
shows for the first time that deep end-to-end learning is feasible for the real world task
of tactile material classification. Due to the knowledge transfer from a previously learned
material classification task, an up to 15 fold reduction in the number of training samples
required could be achieved for a new classification task with new materials.

Chapter 1 Introduction

Chapter 5 concludes this thesis by summarizing the presented work and giving an out-
look of the usage of the upgraded humanoid Agile Justin.

In the Appendix A we provide a list of videos of the presented work and their weblinks
for easy access.

10

Chapter 2

The Communication Layer of the aRDx Software
Framework

2.1 Motivation and Related Work

Advances in the performance of robotic systems are driven by the co-development of
robotic hardware and software, with the software part becoming more and more impor-
tant in recent years. This holds especially in the challenging field of mobile manipulation,
where many of the most performant robotic systems bring their own software framework.

It is not surprising that the robotics community developed its own software frame-
works and could not apply existing software concepts from other domains. The chal-
lenges in robotics are unique in their combination of a complex system architecture with,
e.g., distributed sensors, actuators and computing resources, and the necessity that a
robotic application has to span all abstraction levels, ranging, e.g., from hardware drivers
over realtime motor controllers to whole-body motion planning and symbolic task level
intelligence. Fig. 2.1 gives an overview of the different domains needed in an advanced
robotic system.

To cope with these challenges, all robotic software frameworks follow a similar com-
ponent based system architecture. Firstly, a component implements a well defined part
of the robot’s functionality and, secondly, it is a distinct execution entity (often an OS
process) which communicates by means of a packet oriented communication layer with
other components. Important benefits of such a component based approach are,

* robustness due to process boundaries with, e.g., memory protection,
¢ concurrent, parallel and even distributed execution of components,

* a decoupled development flow for a team of experts working on the diverse func-
tionalities of a robotic application.

As already mentioned in Sec. 1.4, the software frameworks used in the most advanced
humanoid robots are YARP [METTA et al., 2006] on iCub, ROCK [ROCK], which is based
on Orocos [OROCOS], in combination with ROS [QUIGLEY et al., 2009] on Aila, and Ar-
marX [VAHRENKAMP et al., 2015], which is based on the ICE middleware [HENNING,
2004], on the recent Armar-6. ROS, the most widely used software framework in mod-
ern robotics and especially in the challenging field of mobile manipulation, also plays a
growing role in humanoid robotics.

11

Chapter 2 The Communication Layer of the aRDx Software Framework

Figure 2.1: The software domains of an advanced humanoid robotic system like Agile Justin, rang-
ing from device drivers up to artificial intelligence. For each domain, the computa-
tional resources and operating system it is typically implemented on, the communica-
tion requirements, the complexity of the data structures that have to be transported,
and the requirements for the used programming languages are listed. In addition, it is
depicted for what domains the ROS (below) and aRDx (upper) frameworks can sup-
port a component based approach, what programming languages are used and how

12

C/C++
aRDx 3
rt-stack

Racket

Racket-stack

low level driver, robot controller,

domain joint controller sensor
preprocessing
microcontroller/ realtime PC
computer FPGA (QNX)
hardware bus = hard realtime,
(SPI, 12C, ...) distributed, QoS,
communi- up to 1kHz, 5MB
cation bits/bytes & nested static

simple structs = structs & arrays

hard realtime, hard realtime,
language small footprint, efficient, parallel

world modeling,
path planning

CPU/GPGPU cluster

(Linux)

“optimal” transport,
distributed, QoS,
~10Hz, up to 1GB

nested static structs
& dynamic arrays

efficient on large
data, parallel, OOP

“Al” (logic planner,

cognitive model)

cluster, internet
server cloud

“fast” transport,
distributed
<10Hz, <10MB

flexible, recursive
data types &
program snips

parallel, high level
(functional,

HDL declarative, ...)
ROS
C/Ct+ Python, Lisp,
Prolog

they are coupled with the communication layer.

2.1 Motivation and Related Work

In the following, for each of the two extreme ends of the range of software domains in
an advanced robot system, the requirements a software framework must meet to support
a component based approach for them are discussed.

2.1.1 Raw Communication Performance

All the above mentioned software frameworks have been successfully used in advanced
applications. However, when it comes to take full advantage of the hardware capabilities
of robotic systems like Agile Justin, a limitation becomes apparent. When building appli-
cations for such systems, not only the abstractions offered by the component based ap-
proach are important to cope with the systems” complexity, but also the raw performance
of the framework’s communication layer becomes essential. Here we mean communica-
tion performance in two extreme categories:

¢ Latency or realtime determinism for small (about 1 KB) data packets, as is usual for
the low-level communication in motor control running in the kHz range and, hence,
demanding for a jitter < 100 us. This corresponds to the second domain in Fig. 2.1.

* High bandwidth for large (>1MB) packets, as is typical for image and skin data
(e.g., a 2megapixel stereo-camera system at 25 Hz generates 100 MB/s, or a skin
with 3000 taxels at 750 Hz results in 2.25MB/s). This corresponds to the second
domain in Fig. 2.1.

We found out about these limitations with respect to raw communication performance
by performing elaborate stress-test benchmarks for the most popular frameworks in hu-
manoid robotics, i.e., ROS and YARP. We also included Orocos as a framework specifically
dedicated to realtime applications, but found that even this framework does not achieve
the necessary performance, especially for large data packets.

The results of this in-depth performance comparison are reported and discussed in
Sec. 2.4. In difference to the comparison of the communication performance of robotic
frameworks in [EINHORN et al., 2012], our benchmarks cover far more of the important
aspects, e.g., scaling with the number of clients and distributed communication. More-
over, due to the ”stress” character of our tests, we could uncover a number of severe
quirks for many of the frameworks, which [EINHORN et al., 2012] did not see.

The found performance limitations of the frameworks can not be explained by “physi-
cal” limits of the underlying hardware, because modern computing resources with multi-
core CPUs and clocks in the gigahertz range as well as network interfaces with 1GB/s
transport should readily be able to provide the necessary computing power and commu-
nication bandwidths. Therefore, we decided to develop a new software communication
layer with its main focus on performance. The result of this effort is the highly performant
and realtime capable communication layer of our robotic software framework aRDx (ag-
ile robot development — next generation).

13

Chapter 2 The Communication Layer of the aRDx Software Framework

aRDx has a predecessor, our aRD (agile robot development)! framework [1], which
was co-developed with the first version of the then stationary humanoid upper body
Justin [OTT et al., 2006] out of the need to support the execution of complex and compu-
tationally intensive control algorithms on distributed resources. Therefore, aRD provides
a tight coupling to MathWorks” Simulink and Realtime Coder [MATHWORKS] and it is
also hard realtime capable, but only supports point-to-point connections between com-
ponents and is only performant for small data packet sizes.

2.1.2 High-Level Domain Data Types

But also for the highest level domain, i.e., the Al or cognitive domain (see last column in
Fig. 2.1), the above described frameworks are no ideal fit, as the packet data types they
can transport between components are too restrictive. Typically, these frameworks only
support nested static structs and one-dimensional dynamic arrays as, e.g., in ROS. But
what would be needed in this highest level domain are flexible, recursive data types like
trees and graphs.

A key idea in the design of the aRDx framework is that a single communication stack
can not fulfill all demands of the wide range of domains in a robotic application, but that
there have to be two stacks. The more static but highly performant and hard realtime
deterministic stack, which we present in this thesis, and a flexible but less deterministic
high-level stack. In aRDx, the high-level stack and all other higher level functionalities
and abstractions needed in a robotic framework are implemented in a modern high-level
programming language of the Scheme/Lisp family [20], i.e., Racket [RACKET]. For ex-
ample, we directly use Racket’s in-built support for the serialization of arbitrary data
structures or its advanced synchronization support for channel based communication.

Fig. 2.1 sketches, for which range of domains of an advanced robotic application aRDx
or ROS can provide a component based approach. In aRDx’s communication layer, the
realtime stack (rt-stack) reaches down to the robot controller domain and the high-level
Racket-stack up to the AI domain. ROS, on the other hand, can only reach slightly be-
low and above the modeling and planning domain, as it neither supports realtime nor
complex data structures.

In this thesis, we focus on aRDx’s realtime stack of its communication layer. For sim-
plicity, we will often use the term aRDx in the following, even if we only mean this real-
time communication stack.

2.1.3 Recent Developments

Since about 2015, also other robotic software frameworks started to add realtime capabil-
ities to fulfill the demands of advanced robotic systems, hence, following the path aRD
and aRDx laid out already in 2006 [BAUML and HIRZINGER, 2006].

In [PAIKAN et al., 2015], YARP has been extended with run-time channel prioritization
to increase the determinism and performance of packet transport under load. It uses a

IThe name “aRD” (Agile Robot Development) was inspired by three points: (1) the concept allows for the
realization of “agile robots”, that is “fast, reactive and intelligent” robots demanding fast control rates
and high computational power; (2) it supports an agile development flow for robotic systems; and (3) it
was itself developed in an agile process during the work on our humanoid robot Justin.

14

2.1 Motivation and Related Work

similar approach to aRDx, in that it also only relies on services provided by the operat-
ing system, especially the scheduling priority for the threads implementing the packet
transport. In addition, it uses packet quality of service of the operating system’s network
stack. Although the performance could be increased, YARP still does not reach hard re-
altime determinism, as the developers state themselves in [NATALE et al., 2016]: “For
applications that require lower latency and higher determinism Orocos and aRDx may
be a preferable choice.”

In 2015, the OSRF (Open Source Robotics Foundation) released the first alpha ver-
sion [OSRF, 2015] of a complete redesign and re-implementation of ROS, named ROS 2
[ROS2]. One of the design goals for ROS 2 was the support for hard realtime deter-
minism [GERKEY, 2015] [KAY, 2016]. Other than ROS 1, ROS 2 does not implement the
actual packet transport layer itself but it is built on top of DDS (Data Distribution Ser-
vice) [PARDO-CASTELLOTE, 2003], a middleware standard for realtime systems by the
Object Management Group (OMG). There are a number of open source and commercial
vendors of DDS implementation and the goal for ROS 2 is to support many different ven-
dors. Currently, eProsima’s FastRTPS [EPROSIMA] as default, RTI's Connext [RTI] and
ADLINK'’s OpenSplice [ADLINK] are supported.

But even in the most recent ROS 2 release (Bouncy Bolson, mid 2018) [OSRF, 2018a]
the support for realtime is still only rudimentary. There is no realtime-safe intra-process
messaging. This is only planned for future releases [OSRF, 2018b].

Preliminary benchmarking results [GUTIERREZ et al., 2018] on a simple distributed
setup with only two components show that even to achieve only soft realtime perfor-
mance, the threads of the underlying DDS implementation have to be manually tweaked
specifically for the actually used DDS implementation. That means the abstraction ROS 2
wants to provide breaks down.

In a recent contribution to the ROS Discourse discussion group, Dejan Pangercic, a mem-
ber of the ROS 2 Technical Steering Committee [GERKEY, 2018], lists a number of points
that are still missing in ROS 2 to make it realtime capable [PANGERCIC, 2018]:

* Only the Connext Micro DDS [CONNEXT, 2018] implementation is hard realtime

capable, but ROS 2 is only planning to support this DDS implementation in the
future [OSRF, 2018b].

* The C++ client library, rclcpp, providing the communication API to ROS 2 applica-
tions, needs to be memory audited. E.g., if there are STL containers used, a realtime
memory allocator would have to be provided.

* Memory allocators for realtime need to be passed correctly between the ROS 2 lay-
ers.

¢ All threads in ROS 2 need to have controllable stack sizes and priorities.

* The standard GCC exceptions which dynamically allocate memory have to replaced
by static C++ exceptions.

Although the packet transport in ROS 2 is more deterministic than in ROS 1, [MARUYAMA
et al., 2016] report that the average latency is worse than in ROS 1. This holds for all

15

Chapter 2 The Communication Layer of the aRDx Software Framework

benchmarked DDS implementations and their analysis shows that the reason are the ad-
ditional conversions of the data packets between the ROS 2 and DDS packet representa-
tion.

In contrast to ROS 2, the core of aRDx’s performant communication stack directly sits
on top of the operating system functionality without any additional third party software
layers. We think this design decision is one important reason for aRDx’s high perfor-
mance and realtime determinism.

2.2 Design Considerations

The most important aspect for the design of aRDx’s communication layer is the desire
to reach the best performance possible with respect to latency and bandwidth, coming
as close as possible to the limits of the underlying hardware (CPU, network, ...) and op-
erating system. Other sources for the design decisions are the experience from working
for many years with our former robotic software framework aRD on complex robotic
systems, the inspiration from modern programming languages and the insights from in-
tensively studying the strength and weaknesses of other robotic frameworks.

In what follows, we list and shortly discuss the important features and design decisions
for aRDx.

* Packet based communication over abstract channels with many-to-many semantics
(similar to ROS topics).

* Each channel is identified by a unique channel-id which can itself be sent over the
channel.

¢ Flexible dynamic connecting and disconnecting to channels; each connection results
in a port, being either a put- or a get-port.

¢ Channels transparently transport the packets over process and host boundaries.
That means, the channel API is the same for the process = intra-process, host = inter-
process and distributed = inter-host domain.

¢ Optimal transport in each communication domain:

— zero-copy semantics in process and host domain,

— copy-once to each host with ports connected to a given channel (in contrast to
copy-once to each port on each host in a peer-to-peer model, such as, e.g., ROS
and Orocos use).

* Detailed control of the quality of service by optionally specifying a communication
priority for each connected port.

* Hard realtime determinism of the underlying OS is retained (e.g., for QNX, as we
have shown earlier with aRDx’s predecessor aRD, hard realtime performance can
even be reached for distributed communication).

16

2.2 Design Considerations

To achieve realtime determinism, all resources of a given channel have to be static,
hence, have to be determined when the channel is created (e.g., maximum packet
size, maximum ring-buffer size, maximum number of ports, ...). All dynamic mem-
ory allocation would deteriorate determinism.

No explicit serialization step with parsing/unpacking as this would reduce perfor-
mance due to, in general, at least one additional copying of the data.

Time-order of packets sent from the same host is kept intact, only the relative order
of packets sent from different hosts is not guaranteed. Otherwise, additional and
costly inter-host synchronization for each packet would be necessary.

Efficient synchronization mechanism inspired by Racket [RACKET] and Concurrent
ML [REPPY, 1999] which allows to wait blocking on an arbitrary number of ports.
This feature is of great value as it can often drastically reduce an application’s com-
plexity, which has to wait for data from different sources. E.g., in frameworks like
aRD or YARDP, this could only be solved by adding threads to the application, or for
frameworks with purely callback semantics like ROS, additional states and control
logic would have to be added.

No model of computation should be enforced. A communication layer should trans-
port data and be compatible with any model of computation which is optimal for a
given application. This is possible when providing the sync mechanism of the last
point, but not, e.g., for a callback model like in ROS/ROS 2.

No additional threads should be started in the client making it easy for the appli-
cation programmer to set the desired priorities in his application without having to
deal with threads not under his direct control; this is in contrast to the thread clutter
of other frameworks (e.g., YARP adds 2 threads for each connection to each port).

On the client side, only POSIX [GALLMEISTER, 1995] primitives should be used,
e.g., named shared memory, mutex and condition variables and TCP sockets. This
usually guarantees best performance and introduces the least possible library de-
pendencies and conflicts when, e.g., the communication layer should be linked to
an already complex application (e.g., a Matlab/Simulink [MATHWORKS] model).

Robustness against clients running amok, i.e., only the data of the channels this
client is connected to with a put-port could be compromised, but not the overall
channel logic and the rest of the communication net.

Minimal and easy to use API This is important as typical users are experts in
robotics but not necessarily software experts and are not willing to invest much
time to understand sophisticated software frameworks.

17

Chapter 2 The Communication Layer of the aRDx Software Framework

Legend

process with client

client with put-port

client with get-port

channel

process heap

domain logic

sync table

I
ﬁ

©
mp><qmn & 9 o

sync group

Figure 2.2: Process domain. In the abstract application view (left), all clients are running in the
same process. aRDx can implement (right) this by directly using the basic channel
consisting of a ring-buffer logic, simple POSIX synching data structures (a mutex and a
condition variable) and a heap for the actual packets. This is depicted in detail for the
green channel.

2.3 Implementation

The implementation of aRDx can fulfill all the design requirements including the zero-
copy semantics for the process and host domain and optimal network transport for the
distributed domain with a minimalistic and elegant hierarchical approach.

2.3.1 Data Packet Transport

The implementation for the process, host and distributed domains build on each other,
starting with a simple basic channel.

To discuss the details of the implementation, we introduce a small example application
(see Fig. 2.2, left) with five clients communicating with each other over two channels.
The application includes a one-to-one and a one-to-many pattern and a sync-group for
waiting blocking on two ports connected to each one of the channels. The Figures 2.2, 2.3
and 2.4 show for the process, host and distributed domain how a developer of such an
application might map the clients to actual processes and computer hosts. The right part
of each figure then shows for each of the domains how aRDx actually implements this
abstract application’s view.

Process Domain (Fig. 2.2)

When a client connects to a channel, it gets a port (depicted as a quadrangle with orien-
tation, depending on wether it is a put- or a get-port). If a client wants to send a packet,
it requests for a free slot in the channel’s heap, writes in its data, and puts the packet
into the channel by incrementing the put-head of the channel’s ring-buffer (the put-head

18

2.3 Implementation

host
domain

1]
Q
||

Figure 2.3: Host domain. In the application view (left) the clients are now mapped to four pro-
cesses (clouds with different colors).

is depicted with the same quadrangle orientation a put-port has). Moreover it fires the
condition variable signaling that new data is available.

If a client wants to do a blocking receive for a packet through one of its get-ports, it first
checks if a packet, which this get-port did not get yet, is available from the (correspond-
ing) channel’s ring-buffer by comparing the get-port’s head into the channel’s ring-buffer
with the channel’s put-head. If there is a new packet, the index to its slot in the heap
is returned and the slot is marked as “in-use”, avoiding that it is given to a put-port for
modifying it. After the data is processed, the client gives back the slot. If there was no
packet available, the client waits blocking on the condition variable.

All of the “higher level” constructs, like sync-groups with the capability to wait block-
ing on more than one get-port (usually from different channels), are built from this basic
channel mechanism. An example of a sync-group is depicted for the client in the upper
right of the figure. A sync-group consists of a stripped down basic channel, only consist-
ing of the mutex and condition variable and a list of the get-ports which are in the group.
When a client blocks on a sync-group, it actually blocks on the corresponding basic chan-
nel. A sync-group gets fired whenever a packet is put in any of its get-ports” channels.
This is done by the client when putting the packet into a channel by not only firing the
channel’s condition variable, but also running through a list stored in the channel with
put-ports to all the sync-groups (resp. the underlying basic channels) and fires them too.

Host Domain (Fig. 2.3)

To be able to provide a zero-copy semantics also for the host domain, processes have to
share memory to some extent. But aRDx obeys the process boundaries in all relevant
aspects by introducing an additional daemon process (red cloud) that acts like an OS
kernel regarding the communication for the clients. Only the daemon shares memory
with all processes, but the memory protection between application processes which do

19

Chapter 2 The Communication Layer of the aRDx Software Framework

distributed =
domain

Figure 2.4: Distributed domain. The five clients of the application (left) are now running on three
different hosts.

not communicate with each other is kept intact. But even two communicating application
processes share only the actual data (in the heap), while the communication logic can only
be modified by the daemon. This way, even if a process runs amok, the integrity of the
rest of the communication net can not be violated.

Technically this is achieved by a “mirror” thread in the daemon for each port in an
application process. This thread is responsible for modifying the communication logic,
when demanded by the port. This way all communication mechanisms from the process
domain, including the sync-groups, can be directly reused without change. Interestingly,
even the communication between the daemon’s threads and the port in the process is
implemented by the very same basic channels that have been implemented for the process
domain, but only mapped to shared memory.

Distributed Domain (Fig. 2.4)

Distributed communication crossing the host boundary is implemented with a similar
idea as crossing the process boundaries in case of the host domain. A channel is mirrored
on all hosts where at least one port has been connected to it. This mirroring is done in a
performance optimal way by copying the data only once to the host — independent of the
number of ports which are connected to the channel on the host. This can dramatically re-
duce the network bandwidth required compared to a simple peer-to-peer communication
approach.

Technically, each host runs an aRDx daemon as described for the host domain and
adds one additional thread for each mirrored channel and transfer direction, which sends
or receives the packets over TCP/IP to/from the corresponding mirror channels on the
remote hosts.

20

2.3 Implementation

#ifndef ROBOT_MONITOR_PACKETS_H
(include ardtime/generic_timespec) #define ROBOT_MONITOR_PACKETS_H

P £ .
(comment "Monitor data from hands") // hutogenerated file, do NOT edit

(constant RM_NR_HAND_JOINTS 12)

(newline) #include <stdint.hs
#ifdef __cplusplus
(gstruct HandMonitorPacket extern "C" {
((Timespec ts) #endif

(garray gint RM_NR_HAND_JOINTS controller)
(garray gfloat RM_NR_HAND_JOINTS q)

#include <ardtime/generic_timespec.h
(garray gfleat RM_NR_HAND_JOINTS dq) b 9 B P g

(reguire dot)

(require "robot-monitor-packet.ss")

(garray gfloat RM_NR_HAND_JOINTS tau))) | .
/* Monitor data from hands */

Figure 2.5:

(gstruct BothHandsMonitorPacket #define RM_NR_HAND_JOINTS 12
(define pkt {create—ﬂothHandsMonim*m ((HandMonitorPacket left)
“ N (HandMonitorPacket right))) typedef struct {
(define g1@ {(dot pkt left g 18@)) [. Timespec ts;
. \ robot'mor"tor'PaCket.ss \ int controller[RM_NR_HAND_JOINTS];
. V float q[RM_NR_HAND_JOINTS];
' ' float dq[RM_NR_HAND_JOINTS];
. v float tau[RM_NR_HAND_JOINTS];
v } HandMonitorPacket;

\ {require ffifunsafe)

(provide (all-defined-out))
typedef struct {

(require ardtime/generic_timespec) HandMonitorPacket left;
HandMonitorPacket right;
;+ Monitor data from hands } BothHandsMonitorPacket;

(define RM_NR_HAND_JOINTS 12)

#ifdef __cplusplus
(define-cstruct _HandMonitorPacket (—Ccplusp

[ts _Timespec] ¥ .

[controller (_array _int RM_NR_HAND_JOINTS)] #endi

[q (_array _float RM_NR_HAND_JOINTS)]

[dg (_array _float RM_MR_HAND_JOINTS)] #endif // ROBOT_MONITOR_PACKETS_H

[tau (_array _float RM_NR_HAND_JOINTS)]))
(define {create-HandMonitorPacket) .
(let ([ptr (malloc _HandMonitorPacket)]) r‘obot—monltor-packet.h
(memset ptr @ (ctype-sizeof _HandMonitorPacket))
(ptr-ref ptr _HandMonitorPacket)))

{define-cstruct _BothHandsMonitorPacket (
[left _HandMonitorPacket]
[right _HandMonitorPacketl))
(define (create-BothHandsMonitorPacket)
(let ([ptr (malloc _BothHandsMonitorPacket)])
(memset ptr @ (ctype-sizeof _BothHandsMonitorPacket))
(ptr-ref ptr _BothHandsMonitorPacket)))

Example usage of aRDx’s data packet description domain specific language. The
file robot-monitor-packets.ss defines two new packet types which use the
Timespec struct as one of their fields. The Timespec struct is defined in the file
ardtime/generic_timespec.ss which is included by robot-monitor-packets.ss. In
a Racket program (left), the robot-monitor-packets.ss file can be directly used as
a module. It is compiled on the fly into the corresponding Racket bindings (middle,
lower). It can also be converted into the corresponding header file (right) to use the
packet type from C/C++.

21

Chapter 2 The Communication Layer of the aRDx Software Framework

2.3.2 Data Packet Serialization

To allow for efficient packet transport and zero-copy semantics, aRDx uses no explicit
packet serialization step with parsing/unpacking. This is in accordance with the modern,
highly efficient serialization protocols like Capn’ Proto [CAP’N PROTO] or FlattBuffers [FLAT-
BUFFERS] which use an encoding that is appropriate both as a data interchange format
and an in-memory representation. Key is that this platform independent encoding can be
efficiently accessed by modern CPUs.

aRDx puts this to the extreme and directly uses the memory layout of the GNU GCC
compiler [GNU] with some additional memory layout pragmas. For describing the packet
data types, we developed an embedded domain specific language (DSL) implemented
in Racket. The DSL allows the description of any static C data struct including multi-
dimensional arrays (for comparison, ROS, e.g., only supports one-dimensional arrays)
and nested structs. A data description file can be directly used as a Racket module
where the corresponding Racket bindings are generated on the fly for accessing the data
types via Racket’s FFI (foreign function interface). For other programming languages, the
type description files are converted to corresponding language files, e.g., header files for
C/C++. An important feature of our Racket based implementation of the DSL is that it
generates meaningful error messages at the abstraction of the DSL and not the underlying
base language.

Fig. 2.5 shows an example of a hierarchical data packet description file and its usage.

2.4 Performance Comparison

In this section we analyze the communication performance of robotic software frame-
works and especially the communication layer of our aRDx framework.

2.4.1 Stress Test Setup

For comparing the raw communication performance of aRDx, ROS, YARP, Orocos and
aRD we ran the following stress test: a master sends as fast as possible the same data
of size P to a number C of clients (one-to-many), which, on reception, immediately send
back a response packet of the same size P to the master (many-to-one). After the master
has received all response packets it immediately, without any pause (hence, it is a stress
test), starts a new round with sending again a packet to the clients and so on. The test is
run for various packet sizes P and number of clients C and the round-trip time is mea-
sured at the master, i.e., the time one round of this ping-pong communication takes. We
ran the tests for all the three domains, namely the process, host and distributed domains.
For the distributed domain, three identical computer hosts coupled with switched 1 GigE
were used. One of them was running the master and on the other two the clients were
distributed equally, while increasing C. The transferred data was a simple byte array with
size P, so that no complex serialization of the data was necessary as we are interested in
the raw communication performance.

We did our best to implement this test as efficient as possible for all the frameworks by
using all optimizations recommended in the respective documentation. We also tried to

22

2.4 Performance Comparison

process host

1 e = aRDx -y aRD
Z -~ Orocos - ROS
g E ROS (fixed) YARP
5 -2
=7 10
T
2 104
e P a——a E :

10—6
1 10° 10* 10% 108 1 10? 10* 10° 108

packet size [byte] packet size [byte]

Figure 2.6: Results of the stress test benchmark for C = 1 client and for the process and host
domains.

set realtime priorities for the master and the clients as far as it was possible due to the ex-
treme thread-clutter of some frameworks. For aRDx, we also chose the most performant
implementation variant with one one-to-many channel for transferring the packets from
the master to all clients and one many-to-one channel for transferring the data back from
all clients to the master. Other implementation variants with aRDx and their implications
on performance are analyzed in section 2.4.2.

2.4.2 aRDx and Other Frameworks

For the performance comparison of aRDx with other popular frameworks, we ran the
benchmarks on Linux. This OS is supported by all frameworks and, as it is the most
widely used OS for advanced robotic systems, we expected the frameworks to be best
optimized for Linux. The used computers were identical and configured as follows:

— Dell Precision T3500, 6 GB RAM,

— Intel Xeon W3530@2.80 GHz,

— 4 cores, hyper-threading turned off,

— SuSE Linux SLED11 SP2, kernel 3.0.58, 32bit (PAE), gcc 4.3.4.

Packet Size

Fig. 2.6 shows the results for C = 1 client and packet sizes from 4 to 100MB for the
process and host domain. Each plot shows the mean round-trip time (averaged over
some 100 runs) over the packet size for the various frameworks. Please be aware of the
log-log-scaling of the plots.

The performance of aRDx is almost always the best — most dramatically for the host
domain where no other framework can provide zero-copy semantics. Only for small
packet sizes (up to 1 KB), where the transfer time is dominated by the constant overhead
of a framework, aRDx is beaten by aRD’s minimalistic implementation.

23

Chapter 2 The Communication Layer of the aRDx Software Framework

-@- aRDx —w-aRD host distributed

-&- Orocos - ROS 2.x 108
_ ROS (fixed) —4 YARP
o 107}
i) 8 |
g 1o g 1x10 /
o
e
=
e 10-5 +

5' X 107 I I I L L
1 2 5 10 20 50 200 1 2 5 10 20
clients clients

Figure 2.7: Benchmark results plotted over the number of clients to highlight the frameworks’ be-
havior for the two extreme aspects of performance: latency (left, showing the round-trip
time for 4 Byte packets) and effective bandwidth (right, showing the effective bandwidth
for 1 MB packets).

In what follows, we discuss some features and quirks of the other frameworks we
came about. All these frameworks scale very well and roughly linear with the number of
clients. For the process domain, YARP can provide zero-copy semantics. In this domain,
ROS with its nodelets also was expected to show constant transfer times but could do so
only after we fixed the implementation (labeled ROS fixed). Standard ROS (labeled ROS)
completely initializes the memory of newly constructed packets, hence, the transfer time
scales with the packet size.

For the host domain, YARP and ROS perform very similar, since both communicate
over loopback TCP sockets. In the case of large packets (> 1MB), they even reach almost
the performance of the shared memory based transport of aRD, showing that the Linux
loopback sockets are very efficient.

In all tests, the performance of Orocos was worst, although we always tried the opti-
mal parameters. We suspect that this comes due to the additional abstraction layer with
ACE/TAO in Orocos’s communication stack. For ROS, we found another severe quirk in
the host and distributed domain and packet sizes of 10KB to 100KB. There, the round-trip
time dramatically increases 100x. A further analysis showed that this effect disappears
completely when adding a pause of at least 100ms between each round of the test (see
the inset in the 1-client plot depicting the round-trip time over the pause time for 1KB
packet). This means, ROS is not really stress resistent.

Latency and Bandwidth

Fig. 2.7 discusses in more detail the two extreme aspects of performance over the number
of communication clients: latency with 4 Byte packets for the host domain and bandwidth
with 1 MB packets for the distributed domain. For the latter, the effective bandwidth by is
defined as the summed up number of bytes transferred in each round of the test between
the master and the C clients divided by the round-trip time At: b = 2CP/At.

24

2.4 Performance Comparison

process standard N channels
1072 —
-@- aRDx
= -y aRD
: 10_3 E aRDx (N channel) <
g aRDx (1 sync)
a 10_4 aRDx (N sync) <«
£ L
_z — 2RDx (ync on N) 1sync / N'sync syncon N
g 1075 ¢ Wl
2 b ——
10*6 | | L | | | | >v— AV— <+
1 2 5 10 20 50 200 e
clients

Figure 2.8: In-depth analysis of aRDx. The stress-test benchmark was implemented with different
channel and sync-group configurations (right) and performance results for the 4 Byte
packet size (hence, latency performance) are compared for the process domain (left).

As already discussed in Fig. 2.6 for the process and host domain, the minimalistic aRD
has the smallest latencies for small packets, but aRDx still performs 4x better than all
other frameworks. For all frameworks, the latency scales linearly with slope 1, showing
that the interplay of the frameworks’ internal logic and the Linux scheduler works nearly
optimal, e.g., the scheduler can distribute the load on all 4 CPU cores.

For the distributed domain, all frameworks, except aRDx, have a peer-to-peer seman-
tics, leading to a saturation of the effective bandwidth at the physical bandwidth limit of
the GigE interface of about 110 MB/s. In contrast, the effective bandwidth of aRDx keeps
increasing with the number of clients as it has to transfer the data from the master to the
clients only once for each of the two hosts.

As a side note, again Orocos performed by far the worst, and we could not run the
test beyond 20 clients without crashes. For YARP, we could not run the tests beyond 50
clients for the process and 100 clients for the host domain without crashes. Presumably
this happens due to the thread-clutter YARP generates with 3 threads per port and 2
threads for each connection to a port.

2.4.3 In-Depth Analysis of aRDx

To get a deeper insight into the performance of aRDx, we analyzed how it scales with
the number of channels and the impact of adding sync-groups. In addition, we ran tests
on the realtime OS QNX to demonstrate aRDx’s realtime determinism and compare the
results to the Linux case.

Varying Configurations

The stress-test benchmark has been implemented with different numbers of channels and
sync-groups. Fig. 2.8 shows the performance results for the process domain as the impact
of the different configurations is the biggest for this domain.

25

Chapter 2 The Communication Layer of the aRDx Software Framework

For all depicted configurations, the master sends its packets to a single channel to which
all clients are connected to.

¢ In the ”“standard” configuration, the clients send their response packets over one
shared channel to which the master is connected to. The master then waits in a
loop, blocking on its get-port for all clients” responses.

¢ In the "1 sync” configuration, the master has a sync-group containing the get-port,
so that each client, in addition to putting its packet into the response channel, also
has to fire the sync-group. The master now waits in its loop blocking on the sync-
group, only subsequently getting the packet from the get-port.

¢ In the "N sync” configuration, each client has a sync-group with its respective get-
port in it. Now the master has to fire all sync-groups every time it is putting a packet
into the channel.

* In the ”N channel” configuration each client has its own response channel, so that
they can put in their packets in parallel. The master now waits blocking for one
get-port after the other.

¢ In the "sync on N” configuration, in difference to the previous one, the master has
one sync-group containing all its get-ports for the response channels and, instead
of looping over the get-ports in fixed order, now blocks in its loop on the sync-
group and subsequently gets the packet from the get-port which activated the sync-
group. In this configuration, all clients have to fire the same sync-group, hence, the
parallelism in sending the response packets is reduced.

The performance results show that even for the process domain, the different configu-
rations have only minor influence on the latency — maximally a factor of 2 compared to
the standard configuration. Only the difference in the parallelism possible between the
”N channel” and “sync on N” configurations is clearly visible. For the host domain, the
differences in the latencies relative to the standard configurations are even smaller and
almost non-existent.

The results show that aRDx’s implementation is very efficient and can easily handle
hundreds of channels and sync-groups with almost no influence on the performance.

Hard Realtime

To prove the hard realtime determinism of aRDx, we ran the stress-test on the realtime
OS QNX and measured, besides the average, also the worst-case performance. Fig. 2.9
shows the results and compares them to the performance for Linux.

The plots show the average and, depicted as an error-bar, the minimal and worst-case
round-trip time. In the distributed domain, the error-bars are omitted for Linux because
worst-case timing would be out of scale. When run on QNX, aRDx is highly determin-
istic with very little jitter ranging from about 10 us (compared to 200 us on Linux) for
small client numbers and the process domain up to only 1 ms for 200 clients and the host
domain (not plotted). This excellent realtime behavior is complemented with almost the

26

2.5 Small Example and Real World Applications

process distributed
Z 107 = 107
Q ? = —— aRDx (Linux)
£ £
Z\. 1041 i 102 ¢ -@- 2RDx (QNX)
£ 5 107
—O FO .
=) =51 =
5 10 —— aRDx sync on N (Linux, bound) g
@ aRDx sync on N (QNX) =
1 0—6 1 1 L L 1 0—4 | L L L L L
1 2 5 10 20 50 200 1 2 5 10 20
clients clients

Figure 2.9: Realtime determinism of aRDx. For the process domain (left), all tests were run with
4 Byte packets (latency performance) and in the “sync on N” configuration (most chal-
lenging internal synchronization logic) on the realtime OS QNX and, for comparison,
on Linux with the clients bound to the CPUs (best determinism on Linux). For the dis-
tributed domain (right), the tests were run for 4 Byte (lower) and 1 MB packets (upper).

same average performance as for Linux. Even for the distributed domain, the combi-
nation of aRDx and QNX’s TCP/IP stack could reach a worst-case round-trip time of
< 500 us. This proves that applications with hard realtime demands in the 1kHz range
can be implemented on distributed computing resources by aRDx/QNX. Finally, the per-
formance of QNX’s TCP/IP stack was tested for throughput by running the tests with
1 MB packet size. Even here, it performs very well compared to Linux.

In summary, the combination of QNX and aRDx reaches excellent hard realtime deter-
minism for the host and process domains, easily allowing for applications with 100 clients
running in the kHz range. Even for the distributed domain, the worst-case round-trip la-
tencies are no larger than 500 ys.

2.5 Small Example and Real World Applications

In this section we first present a small example of the raw aRDx API and then discuss the
system architecture of Agile Justin as a complex real world example. Finally, we show
the broad range of robotic domains in which aRDx and aRD are used beyond humanoid
robots.

2.5.1 Small aRDx Client

The low-level API of aRDx is a plain C-library without any dependencies on other frame-
works or libraries except for the standard C (POSIX compatible) library. The API consists
of management functions for creating and removing channel-ports as well as sync groups
and only five main functions for handling packets. The code example in Fig. 2.10 outlines
the usage of these functions.

In this low-level interface, packet data may, by convention, only be modified by a send-
ing client and never be read or written after the ownership is released. In a higher-level

27

Chapter 2 The Communication Layer of the aRDx Software Framework

#include <ardx/ardx.h>
#include "mypacket.h" || ||
int main(int, char**) {
ardx_channel_id_t pcid = {42, ARDX_CHANNEL_DOMAIN_HOST},
gcid@ = {43, ARDX_CHANNEL_DOMAIN_HOST},
gcidl = {44, ARDX_CHANNEL_DOMAIN_HOST};
ardx_channel_port_t *pport, *gports[2];
size t pkt_size = sizeof(mypacket t);
pport = ardx_connect_channel(&pcid, ARDX_CHANNEL_MODE_PUT, pkt_size);

gports[0] = ardx_connect_channel (&gcid®, ARDX_CHANNEL_MODE_GET, pkt_size);
gports[1] ardx_connect_channel (&gcidl, ARDX_CHANNEL_MODE_GET, pkt_size);

ardx_sync_group_t *sg = ardx_create_sync_group(gports, 2);

—
O
~

while (1) {
ardx_channel_port_t *port = ardx_sync(sg);
ardx_packet_t* gpacket = ardx_channel_get(port);
mypacket_ t *gdata = (mypacket_ t*)ardx_packet_data(gpacket);

ardx_packet_t* ppacket = ardx_malloc_packet(pport);
mypacket_t *pdata = (mypacket_t*)ardx_packet_data(ppacket);

// process data
pdata->value = gdata->value+l;
typedef struct _mypacket_t {

ardx_channel_put(pport, ppacket); int value;
ardx_release_packet(port, gpacket); } mypacket_t;
) _
} (a) (b)

Figure 2.10: The C-source-code in (a) shows a fully functional aRDx-client-program that works on
structs of the type mypacket_t given in (b). As illustrated in the abstract view (c), the
example program consists of a single process with a single thread. It can read data
from two get-ports, both inside a sync-group, connected to two different channels. A
single put-port allows to send data to a third channel. The program is composed of
the the specification of the used channels (L5-7), followed by the connection of the
three ports to these channels resulting in two get- and one put-port (L11-13). Both
get-ports are combined in one sync-group (L15). The main processing loop first waits
via sync on new data on one of both get-ports, then retrieves a handle to the packet
and a pointer to the data area from the returned port (L18-20). After allocating a
packet-handle for the put-port, together with a pointer to its data area (L22, 23), both
data pointers are accessible. This allows to generate the outgoing data in-place (L26).
Afterwards, the outgoing packet is sent and the incoming packet is released.

28

2.5 Small Example and Real World Applications

language wrapper, this is enforced automatically (e.g., in C++ using a kind of smart point-
ers for resource management) as well as type safety is guaranteed.

2.5.2 Mobile Humanoid Agile Justin

The development of the aRDx framework and its predecessor, the aRD framework, has
been driven by the demands of the advanced mobile humanoid robot Agile Justin. Fig.2.11
shows the implementation of Agile Justin’s system architecture based on aRDx. The high
performance and hard realtime capabilities of aRDx are key for the versatility of Agile
Justin, allowing it to perform time-critical tasks like catching and throwing balls or to
perform large scale data processing in the context of 3D-vision and dextrous fine manip-
ulation [5].

The usage of the aRDx framework for Agile Justin has several important advantages.
One is the described raw communication performance for high bandwidth as well as low
latency settings. The high bandwidth allows to distribute large amounts of data, as they
are generated from the cameras, Kinect and skin sensors efficiently between different
processes and, when needed to the outside systems. With the help of the daemons run-
ning on each computer, it is guaranteed that always the least possible data is transferred.
Likewise, aRDx’s very low latency makes it possible to distribute even control loops in
the kHz range over multiple processes and even hosts, as is done on the onboard QNX
system.

Another advantage of the low latency communication, especially in the process and
host domain via zero-copy, is that the aRDx’s communication primitives can be easily
used for intra-process communication in high performance scenarios. This greatly simpli-
ties inter-thread communication and can significantly reduce concurrency related errors.
If a process uses aRDx-channels for all internal communication, it could be easily split up
into different processes, thus improving encapsulation, stability and reusability without
any performance penalties. In the presented system, an example for the reusability are
the multiply used image compression and decompression components. Before the aRDx
based implementation, these components had to be part of the corresponding monolithic
algorithmic processes for performance reasons.

The viewers and controls GUIs running on the user interface computer are also con-
nected via aRDx channels. They allow to observe or control the sensor input and state
of the system throughout the processing loop. This is only possible because additional
receivers have the least possible influence on the rest of the system. They cannot block
senders or other receivers directly or indirectly by additional copying of data in the pro-
cess or host domain and they have, due to the copy-once design, the least possible in-
fluence in the distributed domain. Therefore, these user interface programs can be con-
nected and disconnected at arbitrary points in time without danger of violating timing
constraints, neither in the sensor-perception-planning-control loop nor in the hard real-
time motor control loop.

A particularly impressive demonstrator which takes full usage of aRDx’s performance
is the ball catching scenario which we will present in more detail in Chap. 3.

29

Chapter 2 The Communication Layer of the aRDx Software Framework

iPad

head cam cam ball kinect kinect kinect skin 3d
control V|ewer viewer viewer IR RGB depth viewer viewer
4y —_ — —A T
Ml i fecmp] | (deciip] [decmp] [decp] || I
,,::;::_— J — ~ — — —
/7 User Interface =+ e ' s N A . A A
i \ 1 SO Smmmmeel N N TSl P
[1 P e TN o N ™ A
¥ ! ' S0 i \
i S ! balltracker] Vi } |
14 [camera — sl P RR \ !
b comp. |>=—"! | — R .\ :
1y — 1 —] T — L
i [camera e JO/__: \ . ~
(& - \O/'=4/ — i A
q [1 (I
) [!
MU — [Pose] = =f-
ilter .-rir==-»[decombine]: }
SKin R i
[skin | — > e o
recognition; /,l i ; l ” ” ” in
— = —
nect — »[comp. >——>Lcombine |———— i __,,&lj__/'*
o =’ 1
=>{Eomp =gy /
N = H43-14-----------------m-m T fused 3d
A A 5
e A modeller
/ /,,’,,—-_-_::‘_'_Z::: ——————
v 4 -~
! ot — ¥
i [3'm- torse <—=\:\4 GPU Cluster ”
i ,'Il :\ i
i bil - 4 ti e A=
PN\, [sim. mobilef—»=——— motion p—_| object |em—e--—r :
i platform |[«—=—= '. coordinator, {" 7---==<| recognition [>=—=""", |
[] [i
; ' i | Object Recognition P
™| sim. hands [~ Y b i
1 1 1
! ” ” i - |
L= ' —
oo 4— head \\‘ _________ /,/ | % g1
} task o= planner ||)
A B drive scheduler F»=—------=-+--—----- > -

Onboard QNX Planning Cluster

Figure 2.11: The communication architecture of Agile Justin. The computing resources consist of

30

two onboard (Linux and QNX, blue framing) and multiple computers and clusters
outside the robot (computers are marked as colored rounded boxes). Each of these
two groups can internally communicate over GigE, but are connected with each other
via WLAN (each rectangular block is a single process, mirror channels are connected
by dashed arrows). The system architectures comprises one large sensor-perception-
planning-control loop spanning all computing systems. This is in contrast to more
classical action-perception loops which run on a single computer and do not contain
higher level perception models or global planning algorithms. The sensory input is
completely generated onboard, preprocessed there and then sent by WLAN outside
for further processing. After higher level processing and planning on these infor-
mations, the resulting desired actions are sent back, where they are handled by the
realtime QNX system, which runs the 1/,kHz control loop spanning multiple pro-
cesses. To efficiently transfer the data over the low bandwidth WLAN connection,
the data is compressed (comp. blocks) before transmission and decompressed after-
wards (decmp. blocks). Another way to reduce the communication load, is to transfer
the sensor input at the lowest needed rate and to transfer them only once outside the
system, even when multiple receivers exist. This is, e.g., done for the skin data and
Kinect depth images, which are needed for the 3D-modelling as well as the user in-
terface (blue channels and boxes at the top).

2.5 Small Example and Real World Applications

Figure 2.12: Robotic domains in which the aRD and aRDx frameworks are used. Clockwise, start-
ing in the upper left: ExoMars Rover, Agile Justin, human robot cooperation (HRC),
DLR antagonistic humanoid HASy, DLR bipedal humanoid Toro, MiroSurge, Brain-
controlled assistent. (Pictures are taken from the corresponding publications as refer-
enced in Sec. 2.5.3.)

2.5.3 Other Robotic Domains

Although originally developed for the advanced humanoid Agile Justin, the aRDx and
aRD frameworks have proven valuable in a wide range of other robotic domains (see also
Fig. 2.12). Especially aRD allows due to its very lightweight implementation for easy and
non-invasive integration in existing software tools and porting to new OSes. E.g., besides
Linux and QNX, which aRDx supports, aRD has been ported to VxWorks, Windows and
iOS as well.

* Humanoid Robots: The development of aRD started with Agile Justin’s predecessors,
the stationary humanoid upper body Justin [OTT et al., 2006] and later its mobile
extension Rollin” Justin [BORST et al., 2007]. But the aRD framework is also used in
DLR’s torque-controlled biped humanoid robot [OTT et al., 2010] and the advanced
antagonistic humanoid upper body HASy [JORG et al., 2014]. In all this applications,
aRD is mainly used to connect the distributed sensor and actuator resources and to
run the distributed control algorithms.

31

Chapter 2 The Communication Layer of the aRDx Software Framework

* Planetary Rover [LEITE et al., 2012]: For the experimental wheeled planetary rover
ExoMars, the communication with all sensors and the distributed control algorithms
are realized with aRD.

* Medical robotics: aRD is used in the advance robotic surgery setup MiroSurge [TO-
BERGTE et al., 2009][HAGN et al., 2010][TOBERGTE et al., 2010] to implement the
distributed control algorithms for the robots as well as the coupling to the haptic
telepresence station. Moreover, it also connects a mobile user interface on an iPhone
[14].

e Brain/EMG based control in assistive robots [VOGEL et al., 2010][VOGEL et al., 2011][VO-
GEL et al.,, 2015]: aRD is used to implement the distributed control algorithms and
for coupling a non-realtime interface implemented in Simulink to the realtime con-
trol.

* Biomechanics experiments [HOPPNER et al., 2017]: To learn about the biomechanics of
the human, test stands with actuators and sensors are developed and controlled by
a realtime Simulink model. All the communication is based on aRD.

* Human robot cooperation [PARUSEL et al., 2011] [FUCHS et al., 2010]: In a co-worker
setup, where a number of torque controlled robotic arms are closely working to-
gether with a human to solve manufacturing tasks, aRD is used in the distributed
control of the multiple arms as well as in coupling a complex state machine and a
non-realtime user interface.

2.6 Summary

In this chapter, we presented the hard realtime capable and highly performant commu-
nication layer of our aRDx robotic software framework. aRDx is key for extending the
versatility of our humanoid robot Agile Justin, which was built as a research platform for
dextrous mobile manipulation, towards complex dynamic mobile manipulation tasks. In
general, robotic software frameworks deal with the complexity and high computational
demands of deep sensor-perception-planning-action loops using distributed sensor, ac-
tor and computing resources by providing a component based system architecture. But
it is only due to the high performance of aRDx that allows for such a component based
approach also under the tight timing constraints of dynamic tasks.

aRDx’s predecessor, the aRD software concept, which we presented in [1], was de-
signed to enable the distributed execution of computationally demanding complex con-
trol algorithms for our advanced mechatronic systems with many DOF. aRD also provides
a component based software architecture under hard realtime constraints and it provides
a tight coupling to Mathworks Simulink/Coder toolchain but it allows only for point-to-
point communication and is inefficient for large data packet sizes.

The main insight for the design of the aRDx framework was that two instead of a single
communication layer are necessary to cope with the wide range of domains in robotics
software from low-level hardware drivers up to artificial intelligence (AI) based decision
making. aRDx’s higher level communication is, as we sketched in [20], directly based

32

2.6 Summary

on a modern “programmable programming language” of the Scheme family and allows
for the transport of flexible and arbitrarily complex data data structures as used in AL
The lower level communication of aRDx is more static, but it is because of this that al-
lows for its high performance and hard realtime capabilities. We presented this second
communication layer in this chapter and in [13] and [3].

There we described the design goals and design considerations for aRDx’s communi-
cation layer. The most important goals are:

¢ identical API for intra-process (process domain), inter-process (host domain) and
distributed communication,

¢ hard realtime determinism in the kHz range,

¢ optimal data transport, i.e., zero-copy for the process and host domain and copy-
once to the remote host in a one-to-many communication for the distributed do-
main,

¢ detailed control of the quality of service of the communication channels,
¢ advanced multi-channel synchronization mechanisms.

Our implementation of aRDx reaches all these design goals. aRDx has an elegant hi-
erarchical architecture where everything is based on the basic channel mechanism of the
process domain. By mapping this channel to shared memory, host domain communica-
tion is realized via the aRDx-daemon for keeping memory protection between the clients.
The distributed domain communication is based on these daemons (one on each host)
which copy packets once between hosts and provide them locally via zero-copy to the
clients. Even the advanced channel synchronization mechanisms are directly built on top
of the basic process domain channels.

We performed elaborate stress test benchmarks to compare aRD and aRDx to other
most prominent robotic software middlewares, namely ROS, YARP and Orocos. aRD
and aRDx perform best for all communication domains and aRDx is the only framework
that provides optimally efficient copy-once transport in the distributed domain. When
run on the hard realtime OS QNX, aRDx achieves hard realtime determinism for all three
communication domains, even when using complex communication schemes including
channel synchronization.

In addition, in Sec. 2.1.3 we discussed the recent efforts in other robotic software frame-
works to support realtime communication. Especially ROS 2, a redesign of ROS which is
based on third party DDS implementations, has hard realtime performance as an impor-
tant design goal, but even in its latest release the realtime support is only rudimentary.

aRD and aRDx were originally co-developed with DLR’s Justin family of advanced
torque controlled humanoid robots. And with aRDx, the mobile humanoid Agile Justin [5]
reached a new level of versatility in that it can now also perform complex dynamic ma-
nipulation tasks. The challenging dynamic task of catching thrown balls with its hands
was presented in [6][7] and is also described in detail in Chapter 3.

aRD and aRDx are also used in many other challenging robotic application domains,
e.g., surgical robotics [14], planetary rover testbed or human robot co-workers, as we have
shown in [1] and Sec. 2.5.3.

33

Chapter 2 The Communication Layer of the aRDx Software Framework

34

Chapter 3

Ball Catching as a Complex Dynamic Task

3.1 Motivation

Catching a flying ball with a hand is a challenging, highly dynamic task, even more so
when using only onboard sensing on a moving mobile humanoid robot. But it is also
for humans a hard task, e.g., ball catching is used for assessing the motor impairment of
children [WAELVELDE et al., 2003].

By realizing ball catching, Agile Justin (see Fig. 3.1) achieves an unprecedented level of
versatility in the field of mobile humanoid robotics: it can now perform demanding tasks
in dextrous as well as highly dynamic mobile manipulation.

We chose ball catching as a benchmark for a dynamic mobile manipulation task, pre-
cisely because it is hard and not forgiving: a tight interplay of fast perception, a good
catching strategy, body control and dexterity is needed to achieve the necessary precision
in space (< 2cm) and time (< 5ms), and all has to be done in realtime due to the ball’s
short flying time (< 1s). Moreover, not only a robotics expert, but even the layman can
easily judge the performance of the system by comparing it to human performance.

A key role in realizing ball catching on the advanced humanoid robot plays our aRDx
software framework. Ball catching with its complex and deep perception-planning-action-
control loop running on distributed computing resources demands for a component based
architecture to cope with the system’s complexity. But only due to aRDx’s high perfor-
mance and hard realtime determinism, such a component based architecture can be real-
ized despite the tight timing constraints of this dynamic task.

3.2 Related Work

Ball catching has already a quite long history in robotics for testing theories and im-
plementations in as different fields as fast hand-eye coordination [HONG and SLOTINE,
1995], neural networks for human like movement behaviour [NISHIWAKI et al., 1997], off-
the-shelf components for realtime vision [FRESE et al., 2001], motion primitives for human
like path generation [RILEY and ATKESON, 2002], tele-operation for fast tasks [SMITH and
CHRISTENSEN, 2007] or kinematically optimally realtime motion planning [8].

In the pioneering work of [HOVE and SLOTINE, 1991] and [HONG and SLOTINE, 1995],
the 4 DOF "WAM” arm, equipped with a gripper to grasp the ball, and an active vision
system is used. The catch point is chosen heuristically and a Cartesian path is generated

35

Chapter 3 Ball Catching as a Complex Dynamic Task

Figure 3.1: Left: Agile Justin catching two simultaneously thrown balls. The mobile humanoid

36

operates completely wirelessly using only onboard sensing. All DOF are used to suc-
cessfully perform the task with a catch rate of over 90%: the arms (each 7 DOF), the
torso (3 DOF), and the mobile platform (1 DOF used) are used for the reaching motion,
the neck (2 DOF) for keeping the balls in the cameras’ field of view, and the hands (12
DOF each) for actively grasping the ball. Velocity limits: arms: 100 — 150°/s; torso:
90 — 200°/s; neck: 205 — 330°/s; mobile platform: 1.4m/s. Right: The ball catching
setup. The balls are thrown by a human from a distance of about 4-6 m towards the
robot with a speed of typically 7m/s, resulting in a flight time of about 1s. The two
ball trajectories (At = 20 ms) and Justin in the final catch configuration are shown. The
(simple) collision model (virtual cylinder and walls), against which the planner tests
both TCPs of the final catch configuration to avoid self-collisions, is depicted in pink.
The ball has a diameter of 8.5cm and a weight of 50 g resulting in significant air drag
effects (for a 5m throw > 20 cm shorter flying distance compared to a purely ballistic
trajectory).

3.2 Related Work

as a third order polynomial and executed by the inverse kinematics running in the control
loop.

The seminal work of [FRESE et al., 2001] introduced a system for using common com-
puting hardware for stereo vision processing and catching with a seven DOF lightweight
robot arm. A simple catch point selection strategy in combination with inverse kinematics
is used for generating the reaching motion.

In [KIM et al., 2014] not only balls but objects with uneven shapes are caught using a
stationary vision system, a KUKA LWR 4+ arm and an Allegro hand [BAE et al., 2012].
They use a learning based method both for tracking the object’s trajectory and the motion
generation. The parameters of a so called dynamical system are learned for arm motions
in Cartesian space and a standard inverse kinematics is used to compute the actual joint
angles. They demonstrate the successful catching of partially filled water bottles, a tennis
racket and a card box.

In [SALEHIAN et al., 2016] the previous method is extended to allow for ”“soft catching”,
i.e., instead of having the hand stopped at catch time, it moves with the object for a short
period of time. This reduces the impact force and makes the catching more robust as it
reduces the relative velocity to the object and leaves more time for the fingers to close on
it.

There are only few examples of ball catching with humanoid robots. The system pre-
sented in [NISHIWAKI et al., 1997] has a 5 DOF arm on a stationary humanoid upper body,
but only the arm is moving. It uses a “cooking basket” at the end effector for catching the
ball and an active vision system. The inverse kinematics is solved by a neural network,
which should lead to a human like movement behavior.

Riley and Atkeson [RILEY and ATKESON, 2002] presented ball catching experiments
using a Sarcos [CHENG et al., 2006] humanoid robot with 30 DOF equipped with a base-
ball glove. An external stereo vision system is looking for color-coded balls. A Cartesian
end effector trajectory to intercept the ball is generated using a programmable pattern
generator based on motion primitives. Using an inverse kinematics, the trajectory in joint
space is generated.

Disney presented a ball catching setup in [KOBER et al., 2012] using their Animatronic
humanoid upper body with 39 DOF and hydraulic actuation. The Animatronic is a robot
specialized for human robot interaction in amusement parks and it can not be used for
general manipulation tasks where precise motion control and reasonable payloads are
needed. For ball catching, they use simple heuristics for catch point selection and an
inverse kinematics. The vision system is external and stationary.

In difference to all previously presented work, we show ball catching on a mobile hu-
manoid robot using not only the arms but also the torso and mobile platform for the
reaching motion. This makes ball tracking considerably more difficult, as only on-board
sensors are used that are now moving.

In addition, we use an unified approach for generating the reaching motion without
heuristics and based on nonlinear optimization. This is different to the usual splitting
in the three steps: catch point selection, path planning and joint trajectory interpolation.
The unified approach allows to work close to the robot’s dynamical limits and to define
different catch behaviors simply by specifying an objective function.

37

Chapter 3 Ball Catching as a Complex Dynamic Task

Only recently, in [KOC et al., 2018] a similar online optimal trajectory generation method
was used for another “sports robotics” application, robot table tennis. But there, only a
single stationary arm and a non-moving vision system are used.

3.3 Robotic Setup and System Challenges

3.3.1 Setup

Fig. 3.1 and Fig. 3.2 show the overall ball catching setup and Agile Justin’s system archi-
tecture. The thrown balls are tracked by a head-mounted stereo camera system. Based
on this, a (continuously improving) prediction of the balls’ trajectories is computed and
is sent to the planning module. Then the planner decides where, when, and in which
configuration to catch the balls.

3.3.2 Challenges

In what follows, we list the main challenges on all architectural levels in making the
mobile humanoid robot Agile Justin catch balls using the arms, torso and mobile platform
for the reaching motion.

1. Low Latency: Given the flight time of the balls of typically < 1s and the limited
dynamical performance of Agile Justin, the robot has to start its reaching motion as
soon as possible to cover a reasonably sized catch space. Hence, the latency of the
tracking, prediction and planning modules should be as low as possible.

2. High Precision in Space and Time: To successfully catch a ball, the hand position-
ing and finger-closing timing has to reach a precision of 2cm and 5 ms, respectively.
This is determined by the hand geometry, ball size and hand closing speed (see
Fig. 3.3 for details), so that the ball does not hit the fingers of the open hand and
does not bounce out of the hand again before the fingers can close.

3. Moving Camera System: To reach the necessary precision in space and time, the
ball tracking module has to integrate all measurements of the ball’s positions during
its flight until immediately before it is caught (because, the closer the ball comes
to the robot, the more precise gets the estimation of, especially, the depth). This
means, while tracking the ball, the robot is already performing its reaching motion
including the torso and mobile platform and, hence, also the head. Therefore, the
head motion relative to an inertial frame has to be estimated too.

4. Not Completely Cancelable Vibrations: The upper body of Agile Justin is built fol-
lowing lightweight design principles as is necessary for a mobile service robot. But
the lightweight structure inevitably introduces elasticities and, hence, vibrations,
especially when performing highly dynamical motions. These vibrations can not be
completely canceled even when applying elaborate control algorithms [WIMBOCK
et al., 2009]. They are most dominant in the torso joints and make it harder to esti-
mate the movement of the head and limit the precision with which the hand can be
positioned, as the path planner can not (easily) anticipate these vibrations.

38

3.3 Robotic Setup and System Challenges

circle detector |«
25Hz/25ms

pose estimator _E MHT/UKF
512Hz/0.5ms —> 25Hz/10ms
7}

circle detector |

25Hz/25ms
ball tracker -
25Hz/35ms 3 Linux/
________________ ’,,_________,QuadCore
____________ YoE_
’ A

1
1 | arm/torso/head |
.| control (I19DOF)

1kHz state machine/

communicator/
view control

platform control [¢—> IkH
60Hz/50ms >l z ¢
———— = - - R
| | I E | hand control 1= 1 —
LN E | 1 IkHz 1
B A L
s bt te : 1 |’ \I
| E i I 1 collision | 1, 2?&!}2:!‘ 1
| B : B 1 1 detection | I \Z\ \ms !
ot 1 512Hz/05ms | 1 4 1
ts tv tp tc 1 1 ¢ . 1
B e S - P 1 1 . .
. QNX/ o |
. =1, DualCore o tigizer .
| i i 60ms
IELEERH = 132 Cores
ts ly te

Figure 3.2: Computing, communication and software architecture. Agile Justin’s sensors and ac-
tuators are coupled by a variety of bus systems to the onboard computing resource,
consisting of one Linux (Intel Core i7 QuadCore) and two QNX (realtime OS) com-
puters (Intel Core i7 QuadCore), all connected by GigE network. An external cluster
(32 CPU cores, 4x Xeon Dual-QuadCore) running QNX is coupled by WLAN. For all
software modules, the rate at which they run, as well as their worst case processing
time, is specified. When the cameras (running at 25Hz) take images at t;, the data
arrives At,. = 40ms later at the Linux computer, where the visual ball tracker mod-
ule is triggered. After processing (worst case processing time At,, = 35ms), the re-
sulting ball trajectory prediction is sent at t, = ts + At,. + Aty to the coordinator
module. The coordinator collects and distributes all data, controls the whole catch-
ing course (e.g., is the system active, catching or idle?), computes the desired head
movements (see Sec. 3.5) and communicates with the planning module running on
the external cluster. Based on the trajectory prediction, the planner computes the joint
paths in At, , = 60ms and sends them back to the coordinator, where they arrive at
ty =ty + Aty p + Aty , with At, . = 17 ms accounting for all delays of the back and forth
transfers. The desired paths are then executed and the hand is closed at the planned
catch time by means of the controller modules. The diagram in the lower left depicts
the timing for two subsequent and the last camera frame (Aty, = 40 ms between dashed
ticks).

39

Chapter 3 Ball Catching as a Complex Dynamic Task

Figure 3.3: Closeup of the hand catching a ball flying with a speed of about 5m/s (first image

immediately before the fingers start to move; At = 26.5ms). Initially, the fingers are
pre-shaped to form a little basket with a maximized opening cross section. After the
ball has entered, the fingers are closed with maximum speed to finally cage the ball.
The catch frame, that the planner uses as a virtual tool center point (TCP, one for each
arm), lies in the middle of the opening cross section and its z-axis points anti-parallel to
the ball’s flying direction. This leads to maximum robustness in compensating errors
in space and time of the ball trajectory prediction as well as of the arm positioning.
Finger parameters: length L = 14 cm, max. joint velocity wmax = 550°/s.

. Not Fully Observable Kinematic State: Besides the observable vibrations, there are

non-observable errors between the desired and the actually performed movement:
the elasticities in the torso structure lead to ”quasi-static” deflections depending
on the arm configuration and high accelerations and decelerations of the mobile
platform can lead to wheel slippage.

. Holistic Calibration of a Multi-Sensorial Humanoid: To reach the high precision

needed (see Challenge 2), the sensors as well as the complex kinematic chain have to
be precisely calibrated, e.g., the cameras’ intrinsic parameters and mounting frames
and the joints” elasticities and offsets. The completely assembled system has to be
calibrated as a whole due to inevitable mounting tolerances and the elasticities in
the complex kinematic chain.

. No Longterm Stability of Calibrated Parameters: Mainly due to the light weight

design of the robot, once calibrated parameters can change over time, e.g., due to
slippage and elongation of the torso’s tendon or due to the regular maintenance
especially at the robot’s head.

. Limited Computing Resources and Communication Bandwidth: As illustrated in

Fig. 3.2, attention is required what data to compute at which stage and what kind
of information needs to be exchanged between components. To operate completely
wirelessly, it is required that all computations that demand high bandwidth or low
latency have to be performed on the robot’s embedded hardware.

In the following sections, we describe the main components we realized for ball catch-

ing taking all of these challenges into account.

40

3.4 Visual Ball Tracking and Automatic Calibration

0.2 : : . .
—&— Error to ground truth
0.15 Error estimated by UKF 4
g 041
0.051
0 | | | | | N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Elapsed time since track creation in s

Figure 3.4: Visual ball tracking. Left: Prediction error over time compared to the accuracy esti-
mated by the UKF. Right: View from one of the cameras mounted at the robot’s head
while a person is tossing two balls towards the robot. Results are marked in the image:
circle detections are depicted as red circles while detected tossed balls are shown as
their predicted trajectory through filled circles.

3.4 Visual Ball Tracking and Automatic Calibration

3.4.1 Tracking

The first important stage in catching balls is to track them. In [BIRBACH, 2012] [11] [BIR-
BACH and FRESE, 2013] ball tracking on Agile Justin is reported that copes with the Chal-
lenges 1 through 5.

For tracking balls from camera images, we use a two-staged bottom up approach. First,
we detect balls as circles using a scheme similar to Hough-transform but which replaces
the hard gradient intensity threshold with a soft illumination invariant indicator of gradi-
ent purity. Other than the commonly used gradient intensity, gradient purity is computed
via an original normalization scheme based on the local image intensity variance.

In the second step, these circle measurements are fed into a multiple hypothesis tracker
(MHT) [COox and HINGORANI, 1996] handling multiple Unscented Kalman filters (UKF)
as single target probabilistic models (cf. Fig. 3.4 for a view from the robot including
results). Compared to simply fitting a parabola to triangulated 3D points, the UKF takes
into account, that measurement uncertainties increase with distance and are larger in
depth direction. Fig. 3.4 shows how the prediction accuracy increases over time while the
ball is coming closer to the cameras.

The cameras are not static but move when the robot moves and even shake from the
reaction forces of moving the arms. Neglecting these vibrations would drastically reduce
the precision, roughly by a factor of 3. Our solution to this problem is to view the head-
arm system as a self-contained catching device (cf. Sec. 3.5.1). It is somehow moved by
the rest of the robot and obtains this motion solely from a head-mounted IMU (inertial
measurement unit).

3.4.2 Calibration

Complex mobile manipulation tasks, in particular catching a flying ball, require an accu-
rate interplay of actuation and sensing (Challenge 6). This accuracy can only be achieved
by calibrating the relevant components beforehand. In the case of Agile Justin, a pair of

41

Chapter 3 Ball Catching as a Complex Dynamic Task

t =2.0s t =4.0s t="7.0s

Figure 3.5: Left lower: Agile Justin’s kinematic with Left and right hand frame Fy / Fr, head frame
Fy, torso’s chest frame Fr, platform frame Fp, and an arbitrary world frame Fy. Left
upper: Sketch of the sensor setup. Right: The calibration process (Sec. 3.4.2) works as
follows: The robot observes (magenta dotted line) a point-feature pasted on the left Fy
and right hand Fr (not shown) while moving the head. Additionally, all measurements
from the IMU, mounted in the robot’s head Fy, and the joint angle and torque sensors
are recorded.

stereo cameras, a Microsoft Kinect sensor (not used in ball catching but in other manip-
ulation tasks) and an IMU, all mounted at the robot’s head, have to be calibrated with
respect to its kinematic chain.

Typical procedures for calibrating are often time-consuming, involve multiple people
overseeing a series of subsequent calibration steps and require external tools. We have
therefore developed an auto-calibration method for the different sensors of Agile Justin
in a single, completely automatic and self-contained procedure. The key idea is, instead of
using a few very precise measurements, e.g., by using a calibration plate, to take benefit of
having a robot that can autonomously collect at high rate many measurements — although
typically with less precision per single measurements.

By automatically detecting a single point feature on each wrist while moving the robot’s
head, the stereo cameras’ and the Kinect’s infrared camera’s intrinsic and extrinsic as well
as the IMU’s extrinsic parameters are calibrated while considering the arm joint elastic-
ities and joint angle offsets (see Fig. 3.5). All parameters are obtained by formulating
the calibration problem as a single least-squares batch-optimization problem, which is
initialized by a rough initial guess, as is, e. g., available when re-calibrating.

The procedure is integrated on Agile Justin and runs completely automatically, from
recording the sensor data while moving the head and the arms up to solving the least-
squares batch-optimization problem. To speed up the whole procedure, parallel to record-
ing the measurements, the feature detection is already performed (see Fig. 3.6 for the full
calibration flow).

In summary, the calibration effort is reduced considerably and allows to obtain an ac-
curate calibration in around 5 minutes by simply “pushing a button”.

42

3.5 Kinematically Optimal Planning

] realtime
move to arm
position

v
'

move head
(continuos)

Cameras Kinect IR ~15s

IMU arm angle, torque marker detection TErEr ection
record 512Hz record 1000Hz I

252s

record 12.5Hz record

for head sween motions

for 16 arm positions

data preprocessing: ~5s batch
timestamp de-jittering
v

MTK model preparation ~ ~5S
\

MTK optimization 30
(Levenberg Marquardt)

~40s
35s

v

| result parameters |

Figure 3.6: Flow chart of the calibration procedure. At the first stage, the robot’s arms are moved
into the calibration configuration one after another. For each arm configuration, the
head is rotated to observe the wrist, while IMU, kinematic data and detected wrist fea-
tures in the cameras and Kinect IR are recorded in realtime. The second stage batch
processes all recorded data by preprocessing (including de-jittering of timestamps),
preparing the estimator’s model and insert the data and performing the actual opti-
mization to obtain the calibration results.

3.5 Kinematically Optimal Planning

Given the prediction of the ball’s trajectory, the path planner has to decide where (catch
point x.), when (catch time f.) and in which configuration (final joint angles g.) to op-
timally catch the ball, while obeying constraints like joint position limits, joint velocity
limits or geometrical limits to avoid self-collisions (cf. Fig. 3.1).

We design and implement a kinematically optimal path planner which subsumes all of
these three steps in an unified nonlinear optimization problem with constraints. This ap-
proach allows to come closer to the robot’s dynamic limits, as these limits can be directly
included as constraints. But also different catch behaviors can be generated via the objec-
tive function, e.g., a “soft” mode, where the joint accelerations are minimal, or a “latest”
mode, where the ball is caught at the latest possible point inside the robot’s workspace.

43

Chapter 3 Ball Catching as a Complex Dynamic Task

Local minima in this nonlinear optimization are overcome by applying a parallel multi-
start technique.

Other than the more general, sample-based path planners, like probabilistic roadmaps
(PRM) and rapidly exploring random trees (RRT) [LAVALLE, 2006, GONZALEZ-BANOS
et al., 2006, KARAMAN et al., 2011], which can cope with geometrically more complex
scenes, the optimization-based planner directly computes smooth and optimal joint paths
and does so very fast (planning time for a 7 DOF arm At, = 60ms). The fast processing
not only reduces the overall latency (Challenge 1), but also allows to re-compute the paths
several times during the ball’s flight, which is absolutely necessary as the trajectory pre-
dictions of the ball changes significantly during its flight (cf. Fig. 3.4).

3.5.1 Kinematic Subchains

The motion planner uses a rigid body kinematics model of Agile Justin (see Fig. 3.5),
ignoring all the disturbing effects as described in Challenge 4 and Challenge 5, such as
elasticities, vibrations or wheel slippage. A more precise model, however, would be way
too complex for fast planning.

But this problem can be solved by clever use of the kinematic structure of Agile Justin.
On one side, the dominant source of errors between the desired and actual motion is the
kinematic subchain from the mobile platform to the torso’s chest, whereas the two sub-
chains from the hands to the head are very stiff and well modeled by a rigid body kine-
matics. On the other side, the cameras perpetually measure the balls positions /! relative
to the head frame F;. So, the precision with which the hand can be positioned relative to
the ball at the catch time depends not on the full motion error of the platform—torso’s
chest chain, accumulated between the motion onset and the catch time ¢., but only on
the much smaller error, accumulated during the much shorter time span between the
time ¢; of the last ball measurement before the actual catching and ¢! In the worst case,
the difference is t. — t] = Aty + Aty + Aty p + Aty + Aty (see Fig. 3.2 for the various
time variables). But the timespan can be further reduced, when taking advantage of the
direct measurement of the head frame relative to the world via the IMU. Then only the
processing time of the planner is relevant and for this t; time, tc — t; = Aty + Aty o + Aty .

This makes it clear that precise planning is only possible for the arms (i.e., torso’s
chest—hand chains), but even so when the imprecise platform—torso’s chest chain
moves. Therefore, for each arm, a motion planner is run for precise hand positioning,
whereas the platform—torso’s chest chainis used to extend the catch space by moving
the 3 DOF of the torso and 1 DOF of the platform according to a simple heuristic that
brings the hand’s start position closer to the predicted ball trajectory. In addition, the 2
DOF of the torso’s chest—head chain are moved to keep the ball in the cameras’ field
of view during its flight by continuously pointing the head towards the ball positions
according to the first valid prediction from the tracker module. For this, a simple analytic
inverse kinematics is applied and a limiter filter enforces the joint position and velocity
limits.

The arm planner considers the torso’s chest as its static base frame. But, because in
reality the chest is moving, the ball’s trajectory x;, as predicted from measurements at t;
relative to the head frame, has to be transformed to the torso’s chest frame at ¢..

44

3.5 Kinematically Optimal Planning

3.5.2 Planning for a Single Arm

When a ball is thrown at ty = 0, the planner has to solve the following problem: given
the start configuration of the arm g(0) = go and start joint velocities w(0) = wy, at which
time t. and in which configuration g(t.) = g with w(t.) = 0 should the arm intercept the
ball on its trajectory, while obeying constraints? Note that the arm joints do not have to
stand still at be beginning, which is especially important to allow for recommanding, as
the ball trajectory prediction changes over time.

The following assumptions are made to solve the nonlinear optimization problem in
realtime.

Kinematic Planning

Although for catching a ball, the arm has to move fast and, in general, its dynamics plays
an important role for generating an optimal movement path, we choose to do a purely
kinematic optimization, i.e., the objective function and constraints depend only on g, ¢4
and 4 and not on the joint torques .

This approximation is not too bad for our LWR-III arm, because for fast motions, the
joint velocity limits dominate the robot behavior: e.g., if the robot has to move in 1s (the
ball’s typical flight time in our setup) as far as possible, only 0.1 s are needed for accelerat-
ing and decelerating respectively, but 80% of the time the robot moves at maximum joint
velocity. That means the details of how the robot accelerates/decelerates are not very im-
portant for the overall performance, as long as the maximally allowed accelerations are
conservatively chosen to never exceed the torque limits of the robot.

Trapezoidal Joint Velocity Ramps

We restrict the robot movements to trapezoidal velocity ramps, because, as argued before,
the precise characteristics of the acceleration and deceleration phases are not essential for
the overall performance and trapezoidal ramps can be easily handled analytically. More-
over, for the objective functions we present here (see Sec. 3.5.2), the trapezoidal ramps are
even optimal.

1 ift>0

0 otherwise
inition Q(t, t1,t2) = 6(t; —t) — 0(t — tp), with t; < t, the trapezoidal ramp for a single
joint can be written as

Using the step function 6(t) = { , with fot dt'o(t') = to(t) and the def-

q(t) = aé(t, tl/ tZ)/
G(t) = wo +atd(t, ty,), (3.1)
a(t) = go + wot + gtzé(t, t,to).

The acceleration phase with 4, = 4 ends at t1, then a phase with § = wmay lasts until

tr, when the deceleration phase with a4, = —a starts. There are two cases: first, t; = t,
i.e., a triangle ramp, and second, t; < f,, i.e., a “full” trapezoidal ramp, where, because of

45

Chapter 3 Ball Catching as a Complex Dynamic Task

(1) = Wmax, itholds t; = “m2—=0_This means that the ramp in both cases is completely
determined by only the two parameters 2 and t,.

Collision Avoidance

To avoid collisions with the environment and the robot’s body, the arm’s TCP at the final
catch configuration g, is tested against a simplified but conservative geometrical model
as depicted in Fig. 3.1.

Optimization Problem

With these assumptions the nonlinear optimization problem with nonlinear constraints
can be written as:

C/tC — i H /t, 3.2
(4, te) arg min, (,t) (3.2)

S={(gt) eRNxR: |higt)=0,i=1...Ny,
g]-(q,t) >0,j=1...Ng},

with an objective function H, equality constraints /; and inequality constraints g;. Note,
that the optimization space is only N + 1 dimensional, because due to the assumptions
(especially the trapezoidal ramps assumption), the robot movement is completely deter-
mined by specifying the catch configuration g. and the catch time ¢..

Objective Function

In the following, three objective functions, that lead to significantly different catch behav-
iors, and the constraints are presented.

* Soft mode: This objective forces to make soft movements with accelerations as small
as possible for each joint:

1

Hanla) = | 42 (5

max,i

Note, a; = a;(g;,t) is defined by substituting g;(t.) = ¢; and 4;(f.) = 0ineq. 3.1 and
(analytically) solving the resulting quadratic equations.

* Latest mode: In this mode, the arm tries to intercept the ball as late as possible on
its trajectory, hence

Hlatest(q/ t) = —t

* Cool mode: This is a catch behavior where the robot first moves as fast as possible
to a configuration where it can intercept the ball on its trajectory and then “coolly”
waits for the ball reaching the hand and finally suddenly closes the fingers to grasp
the ball. Unlike for the other catch modes, here one has to distinguish between the

46

3.5 Kinematically Optimal Planning

time £, the robot reaches the catch configuration g, and the time t¢, the ball is finally

grasped.

Hcool(q/ t) =

with fiin; = tmini(g;) being the minimal time the joint i needs to reach the given
angle g; when moving as fast as possible, i.e. with |a;] = 4.y ;. The minimal time
tmin,i is defined by substituting §;(fmin ;) = 0 and g;(tmin;) = ¢; in equation 3.1 and
solving the resulting quadratic equation.

Constraints

In what follows, we describe the constraints for the right arm, for the left arm they are
analogous.

¢ Equality constraints: To completely define the task — where, when and in which
hand orientation to catch the ball — we use equality constraints. At the catch time,
the hand has to be at the same position as the ball and the open hand (its z-axis)
has to point in the direction of the ball’s velocity vector. But the hand’s orientation
around its z-axis is arbitrary which gives the optimizer more freedom to find an
optimal catch motion (see Fig. 3.3).

Let Fr(q) = (&x(q),éy(q),8,(q), xr(q)) be the hand catch frame and xp(t) and vp(t)
the ball position and velocity at time ¢. Let further ¢g(g,t) and 95(g, t) be the angles
one has to rotate the vector vg(t) first around é(q) and then around éy(q), respec-
tively, so that the resulting vector v becomes anti parallel to é,(q). The equality
constraints can then be written as

xr(q) = xg(t),
®B(q,1) 0,
1913(11, t) = 0.

* Inequality constraints: These constraints force the solution (g, t.) to stay inside the
feasible part of the solution space and are defined as follows.

— joint angle limits:
qmin,i S ql S qmaxli, i - 1 e N

— catch time limits, with tmaxc = 1.8 s for our setup:

0 < t < tmax,c

— minimal time limits, which avoid infeasible ramps, i.e. ramps which need a
a > Amax OF joint velocities w > wWmax:

tZtmin,i(qi)/ lZlN,

with t,in ; as defined in Sec. 3.5.2.

47

Chapter 3 Ball Catching as a Complex Dynamic Task

Figure 3.7: Agile Justin and its self
collision model made
of sphere swept convex
hulls (SSCH).

— collision avoidance, where d(x, W) is the distance between a point x and one of
the Ny = 8 geometry objects W as defined in Fig. 3.1:

d(xr(q),Wx) >0, k=1...Ny.

In sum, there are Nj;, = 5 equality and Ny = 2N + 2+ N + 8 = 31 inequality constraints
for the N = 7 DOF robot arm.

The solver for the nonlinear constrained optimization problem is based on the highly
efficient implementation of the SQP (sequential quadratic programming) method [SPEL-
LUCCI, 1998] [SPELLUCCI, 1999].

3.5.3 Safety Self Collision Detection

When the robot executes the highly dynamic catching motion, any error in, e.g., path
planning or control, could lead to self collision of the robot and, hence, to fatal damage.
Other than in less dynamic tasks, a manual intervention, e.g., by pressing an emergency
button, is not possible. Therefore, we developed a realtime self collision detection al-
gorithm which runs at the full control rate of 1kHz as a separate component. The self
collision module computes, based on the current joint angles and velocities, if the robot
could stop using the the maximal deceleration before a self collision would happen. If it
predicts a potential self collision, the module initiates a braking motion.

The algorithm is based on computing the swept volumes of all bodies and checking
them pairwise for collisions and operates on joint angle intervals. Such, it does not only
test a single or N intermediate configurations but assures safety of a whole movement.
Key idea of this new swept volume computation is the representation of the volumes as
convex hulls extended by a buffer radius, so called sphere swept convex hulls (SSCH).
This leads to tight and compact bounding volumes (see Fig. 3.7). The operation set avail-
able to model the different joints is strictly conservative and allows for a trade-off between
accuracy and computation time. During a configurable timespan the algorithm updates
a table of pairwise distances and thus can guarantee hard realtime.

48

3.5 Kinematically Optimal Planning

3.5.4 Beyond Ball Catching
Throwing a Ball

Agile Justin can move even fast enough to throw a ball back when combining its arm
and the mobile platform DOF in a coordinated whole-body motion (we can not use the
torso DOF as their motors are too weak, so we activate these joints’ electronic brakes
during throwing). We us a similar optimization-based approach as for catching, but now
including the additional DOF of the rotation motion around the mobile platform’s vertical
axis. In addition, a new equality constraint for throwing the ball into the same direction
it was thrown towards the robot before replaces the old catch constraint and the objective
function is used to maximize the throw distance (Agile Justin can throw up to 7 m).

To successfully throw a ball, also the hand’s fingers have to open at the right time,
so, throwing demands for a whole-body motion with timing precision in the millisecond
range from the wheels to the fingertips. Although the controllers of the hands and the
robot’s body run on different computers, this timing precision can be achieved due to
aRDx’s hard realtime determinism even for distributed communication.

The accompanying video! of [5] shows an example of Agile Justin playing catch with
a human. If there are two Justin humanoids available, they can play catch with each
other [BAUML, 2012]?, i.e., more than 2 x 20 DOF have to work together in a well-coordinated
way.

Optimization-based Path Planning in Self-acquired 3D Models

When planning kinematically or dynamically optimal whole-body motions for tasks like
ball catching and throwing, optimization-based planning has proven valuable. But also
when, in addition, planning for collision-free paths in geometrically complex environ-
ments is required, optimization-based planning has proven successful [RATLIFF et al.,
2009] [BYRAVAN et al., 2014] and even beats sample-based planners, in particular when it
comes to planning for robots with many DOF like our humanoid robot Agile Justin.

For really autonomous operation in previously unknown environments, the robot first
has to build a 3D map with its onboard sensors and then plan motions in this self-acquired
map. On Agile Justin, we compute in realtime a 3D volume grid model, a so called trun-
cated signed distance function (TSDF) model, of its environment based on its RGB-D
Kinect sensor and using a GPU-based mapping algorithm similar to KinectFusion [NEW-
COMBE et al., 2011]. From this TSDF voxel model we compute an Euclidian distance
transform (EDT) which results in a map where for each voxel the distance to the nearest
obstacle is stored (negative distance for voxels outside and positive distance voxels inside
the obstacles). For collision free path planning, an obstacle avoidance term is added to
the objective function which sums up the positive EDT values of all voxels the robot is
sweeping over during its motion. This way, maximizing the objective leads to the robot’s
trajectory being pushed out of any overlap with the obstacles.

Our main contribution is the idea of computing the obstacle avoidance objective func-
tions and their gradients directly from the KinectFusion model on the GPU without ever

Ihttps://www.youtube. com/watch?v=F12N6yZrkio
’https://www.youtube.com/watch?v=93WHRSKg3gE

49

https://www.youtube.com/watch?v=Fl2N6yZrk1o
https://www.youtube.com/watch?v=93WHRSKg3gE

Chapter 3 Ball Catching as a Complex Dynamic Task

Figure 3.8: Optimization-based whole-body motion planning in self-acquired 3D models. Agile
Justin in our evaluation scenario (top left): Its left hand is to be moved from the left
of a cardboard box to the right of it. A 3D model of the scene is generated from depth
data of a head-mounted Kinect and converted to an EDT representation which is then
used for planning (top right). The robot is modeled as a set of spheres (red) positioned
according to the joint angles and forward kinematics. The initial path goes through the
obstacle (bottom left), the planned trajectory avoids it (bottom right).

transferring any model to the CPU and the integration into a robotic system (see Fig. 3.8).
In our current implementation, the summed-up time from taking the first look at the
scene until the path avoiding an obstacle is planned, is less than three second.

3.6 aRDx Based System Architecture

The computing, communication and software architecture based on the aRDx framework
is the key for the tight interplay of all components and for the low latencies and high
timing precision (cf. Challenges 1, 2, 8).

Parallel and Distributed Computing

Even onboard of Agile Justin, parallel and distributed computing resources are necessary:
despite their high computational demands, the visual tracking and whole-body control
modules have to run onboard because of the high data volume (100 MB/s for both stereo
images) and the high control rate (1 kHz), respectively. In contrast, the planner is run on
an external cluster, as only the ball trajectory predictions and resulting joint paths have to
be transferred back and forth at the cameras’ frame rate (25 Hz).

50

3.6 aRDx Based System Architecture

In what follows, we describe how the main modules of the ball catching architecture
from Fig. 3.2 are implemented on Agile Justin’s computing resources, using the key fea-
tures of the aRDx framework. The Fig. 2.11 in the previous chapter 2 gives an overview
of this aRDx based implementation of the architecture in Fig. 3.2.

Realtime Ball Tracking

The camera and the IMU readers, the pose estimator and the main ball tracking module
are all realized as separate aRDx components, running on the same onboard Linux com-
puter. Despite the realtime requirements and the high data bandwidth, such a modular
architecture can be realized because of aRDx’s zero-copy transport in the host domain
and the communication QoS prioritization.

This modularity not only reduces the complexity compared to a monolithic multi-
threaded architecture, as we had to use before the availability of aRDx and where, e.g.,
for the access to the different sensors many third-party libraries with often interfering
realtime APIs had to run in the same OS process. But the modularity also allows for the
reuse of components, e.g., the same camera readers in combination with separate com-
pression/decompression components are now used for monitoring as well.

Inside the main ball tracker module, aRDx’s process domain communication (again,
with zero-copy transport) is used to implement the multithreaded tracking pipeline. In
particular, the configurable ring buffering for each aRDx channel greatly simplifies tasks
such as the data association of asynchronous sensor streams for multi-sensor fusion.

For automatic calibration, aRDx’s generic recording tool is used which provides for an
arbitrary number of communication channels either in-memory recording or buffered on
the fly disk recording. All this is directly based on aRDx’s inbuilt ring buffering.

Parallel Path Planning

The ball tracker sends an updated trajectory prediction every 40 ms to the external plan-
ning cluster and the resulting joint trajectory is sent back to the robot. Due to aRDx’s
optimal copy-once distributed transport and quality of service prioritization, the trans-
port of this trajectory data does not interfere with the low priority communication for
system monitoring, e.g., the camera images sent to the GUI computers.

The optimization-based motion planner is computationally demanding with about 60 ms
to converge in worst case. Therefore, individual planners run in parallel in a master-slave
setting on 8 CPU cores for each arm. Given the first ball trajectory prediction, a parallel
multi-start search for a globally optimal solution is executed. Then each updated trajec-
tory prediction is assigned to a free planner slave in a round robin scheme to minimize
latency. The master-slave scheme is realized with aRDx’s hard realtime host domain com-
munication.

Whole-Body Control

The joint trajectory is sent to the computationally demanding whole-body control algo-
rithms which run distributed on two onboard QNX computers. Despite the high control
rate of 1kHz, the distributed execution is feasible due to the hard realtime determinism

51

Chapter 3 Ball Catching as a Complex Dynamic Task

soft
latest
cool

— (1)
2 1 @

2 — 3)
— @

1 —)
0 — (6
1 (W]

,/—/\ 1 /\ :

! 00 02 0.4 0.6 08 10
0.0 02 04 0.6 0.8 1. 0.0 02 04 0.6 0.8 1.0 tis]

t[s] t[s]

g [radfs]

Figure 3.9: Planning results for a simulated ball trajectory in a single arm setup. For each catch be-
havior, the first row shows the resulting catch configuration g. and the second row
the joints” velocity ramps ¢;(t). For ”latest” mode, the robot catches the ball later
(fclatest = 1.0s) on the ball trajectory and has therefore to move much faster and fur-
ther than in “soft” ({50 = 0.945) and “cool” (t.coo1 = 0.33s and tg = 0.945) mode.
The catch configurations for “soft” and “cool” mode are almost the same, but the catch
times differ significantly. The smoothest velocity ramps are achieved in ”soft” mode,
whereas the other two modes reach the acceleration and velocity limits in some joints.

that aRDx’s distributed domain communication in combination with QNX’s capable net-
work stacks provides.

Also the realtime self collision detection is running onboard and is coupled by aRDx’s
distributed domain communication to the control components.

3.7 Results

Here, we present the experimental evaluation of the ball catching task. First, for a station-
ary single arm and then for the full mobile humanoid robot.

3.7.1 Stationary Single Arm

Simulation

To visualize the differences in the three catch behaviors, for each mode the planner was
run for the very same simulated ball trajectory and the very same start configuration. The
catch behaviors differ significantly and are discussed in Fig. 3.9.

Experiments

The formulation of the subtasks of the motion generation for ball catching, i.e., catch
point selection, path planning and joint interpolation, as a unified nonlinear optimization
problem without heuristics has two major advantages. One is the definition of the catch

52

3.8 Summary

Figure 3.10: Consecutive catch configurations for a continuous catch sequence without moving
back to a start configuration before the next ball is thrown (”soft” mode).

behavior by the objective function as shown before. The other advantage is that the start
configuration of the arm is arbitrary and the whole workspace can be used for catching.
Fig. 3.10 shows an experiment® of a sequence of catches where between the catches the
arm was not moved back to its default start configuration, but started the new catch from
the configuration the catch before ended.

3.7.2 Mobile Humanoid Robot

Fig. 3.11 shows the full humanoid Agile Justin performing ball catching?: one experiment
with a single ball and one with two balls. In Fig. 3.12 the resulting joint paths for the
single ball case are discussed in detail. These two catches and many others can be found
in the video [7], both from an outside view as well as from the robot’s perspective.

Agile Justin reaches a success rate of over 90 %, given that the balls are thrown inside
the robot’s catch space.

3.8 Summary

Catching a thrown ball with a hand is a challenging task for humans as well as for robots.
This chapter presented the main elements of the holistic system architecture from [6] that
enables the mobile humanoid robot Agile Justin to catch up to two thrown balls using
only onboard sensing with a success rate of over 90 %. That means, Agile Justin has now
reached an unprecedented level of versatility in the field of humanoid robotics: it can
perform demanding tasks in dextrous as well as highly dynamic mobile manipulation
tasks and, hence, has made a step further towards human versatility.

Key to the realization of the holistic system architecture is the aRDx software frame-
work which allows for a component based approach to cope with the complexity and high

3The video of all single arm experiments, which is accompanying [8], can be found at https://youtu.be/
ssR7rIKajeo

4The video from [7], showing the ball catching with Agile Justin, can be found at https : //www.youtube.
com/watch?v=R6pPwP3s7s4

53

https://youtu.be/ssR7rIKajeo
https://youtu.be/ssR7rIKajeo
https://www.youtube.com/watch?v=R6pPwP3s7s4
https://www.youtube.com/watch?v=R6pPwP3s7s4

Chapter 3 Ball Catching as a Complex Dynamic Task

Figure 3.11: Image sequences of Justin catching one (left column) and two (right column) balls
(first image immediately before starting to move and At = 200ms). For the single
ball case, all DOF are moving, including the mobile platform, the torso and the head,
whereas in the case of two balls, only the arms are used.

54

3.8 Summary

 [deg/s]

 [deg/s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 L L L I I I L I
t[s] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.12: Joint velocity ramp while catching a single ball (same as in left column of Fig. 3.11),
where all DOF participate in the motion. The robot starts to move at t = 0s, catches
the ball at t. = 0.702s. The last correction movement starts at {; = 0.680s, which
means, that the corresponding planning started at t, = 0.603s. Left column: Velocity
profile gr of the right arm. For the desired velocity (upper), the corrections due to the
repeated re-planning based on the improving ball trajectory predictions are clearly
visible as small kinks. Besides the noise, the measured profile (lower) very precisely
resembles the desired one (upper), proving, that the purely kinematic planner and its
parametrization generates paths that do not exceed the dynamical capabilities of the
robot. Right column: Desired and measured (dashed) paths of the torso (upper), head
(middle) and mobile platform (lower) joints. The deviations in the head motions are
due to the limiter filter and not relevant (as long as the ball is still in the cameras’ field
of view), as only the measured angles are used in the transformations. The motion
errors of the torso and mobile platform, however, directly affect the final precision of
the hand position, but only the accumulated error between ¢, and ¢, (the last time a
new head measurement was integrated) counts, resulting in 1.5° for the torso’s ver-
tical joint (joint 1), which exhibits, as expected, the largest error, and 0.006m for the
mobile platform.

55

Chapter 3 Ball Catching as a Complex Dynamic Task

computational demands of the deep sensor-perception-planning-action loop despite the
realtime constraints and the distributed sensor and computing resources. We described
this in [6] and [8] for the original implementation using the aRD framework and in [13],
[3] and Sec. 3.6 for the current, more advanced implementation based on aRDx.

In [6] we analyzed the main challenges for realizing ball catching on a mobile hu-
manoid, where ”“everything is moving” and only onboard sensing and limited computing
and communication resources are available.

The visual ball tracking, as described in [11], uses only the head mounted cameras and
is based on robust circle detection using a new normalized pattern matching scheme,
multi hypothesis tracking and Unscented Kalman filters in combination with IMU (also
in the head) based pose estimation to robustly track and predict the trajectories of up to
two balls on the moving robot.

As precision is essential for successfully catching a ball, we developed a fast (5 min),
automatic (“push a button”) and self-contained (no calibration plate) calibration method
for Agile Justin’s multi-sensorial upper body. In [10] and [2] we presented the calibration
method and [12] optimized the set of used arm configurations to reach high precision with
a minimal number of configurations to speed up the whole calibration procedure. In [9]
we extended our calibration method to also incorporate the second IMU in the mobile
base, hence, calibrating a pair of IMUs at the opposite ends of the imperfect kinematic
chain of the torso.

For generating the reaching motion of the arms, instead of using separate steps for catch
point selection, catch configuration computation and path generation, we presented an
unified approach, which subsumes all three steps in a single, nonlinear optimization prob-
lem with nonlinear constraints [8]. This not only gives rise to a better overall performance
(e.g. bigger reachable workspace and faster thrown balls can be caught) as one can get
closer to the dynamical limits of the robot, but also allows to optimize for different cri-
teria, which leads to significantly different catch behaviors. In [6] we described how the
realtime optimal planning of the arm motion is combined with a heuristics for the motion
of the torso and mobile platform joints to increase Agile Justin’s catch space by intelli-
gently taking the different kinematic subchains into account.

We use a similar optimization-based approach for planning an optimal whole-body
trajectory, including the mobile platform, to make Agile Justin throwing the ball back, as
shown in [5].

When developing highly dynamical robotic applications, an independent tool for col-
lision prediction and avoidance is essential to provide safety for the robot. For this, we
developed in [15] a realtime swept volume based distance computation for self collision
detection for complex serial kinematic chains which was in [16] extended to the mobile
platform.

The realized ball catching and throwing system gained respectable attention, resulting
in an award winning [5] and an award finalist [7] video contribution, which has more
than 460000 views on YouTube® and international media coverage. In addition, the two
publications describing the collision detection [15] and automatic calibration [10] meth-
ods became best paper award finalists at major robotic conferences.

Shttps://www.youtube . com/watch?v=R6pPwP3s7s4

56

https://www.youtube.com/watch?v=R6pPwP3s7s4

3.8 Summary

In the future, we want to make ball catching more flexible by allowing for arbitrary
and even dynamic environments. For this, we want to adapt our work on GPU based
optimization-based whole-body motion planning based on realtime self-acquired 3D en-
vironment models using a RGB-D camera [18] [19]. Currently, the complete modeling
and motion planning takes less than 3 s, but we are planning to speed it up to 100 ms.

57

Chapter 3 Ball Catching as a Complex Dynamic Task

58

Chapter 4

Deep Learning Based Tactile Material
Classification

4.1 Motivation

To allow autonomous robots to robustly and dextrously act in physical contact with their
environment, the sense of touch is indispensable. A challenging example is dextrous ma-
nipulation with multi-fingered hands, where a feedback signal with high force resolution
in combination with a high spatial and temporal resolution is required for the dynamical
contact situation. In fact, it is widely accepted that a key prerequisite for closing the large
gap in manipulation performance between humans and robots is to come closer to hu-
manlike performance in robotic tactile sensing [DAHIYA et al., 2013] [KAPPASSOV et al.,
2015].

A task which can clearly demonstrate the tactile sensing capabilities with respect to
force and temporal resolution and, to a lesser extent, to spatial resolution is the identifi-
cation of an object’s material by only gently sweeping over its surface.

4.1.1 Deep Learning for Material Classification

In this chapter, we show that a humanoid robot can exceed human performance in tactile
material classification and material differentiation using only the spatio-temporal force
signal of a flexible tactile skin mounted on the Agile Justin’s soft fingertip (see Fig. 4.1,
left). The sensor used is a commercially available and geometrically configurable tactile
foil sensor from Tekscan [TEKSCAN] which could be easily mounted (e.g., glued) on the
surface of any robotic system. This is an important advantage compared to other tac-
tile sensors, e.g., the bulky sensor like the BioTac [WETTELS et al., 2008] [SYNTOUCH],
for which parts of the robot hand’s structure have to be replaced, or stiff sensors, e.g.,
[MITTENDORFER and CHENG, 2011], which can not be mounted on curved or elastic sur-
faces. Another example of a flexible sensor mounted on a soft surface is iCub’s fingertip
sensor [SCHMITZ et al., 2010].

To reach superhuman performance, we use a modern deep learning architecture and
training methods for processing the complex spatio-temporal tactile signal. We also show
that the end-to-end deep learning method outperforms classical learning methods, which
are based on manually designed features.

For comparing the tactile performance of humans and the robot, we conduct human
performance experiments (see Fig. 4.1, right) on a new representative set of 36 materials

59

Chapter 4 Deep Learning Based Tactile Material Classification

Figure 4.1: Robot vs. human: DLR’s Agile Justin (left) and a human subject (right) performing a

60

sweeping motion to identify the material on the surface of a given tube. Only the sense
of touch can be used: the visual cue is removed for the human by presenting the tubes
behind a curtain and the robot is blindfolded symbolically; the auditory cue is removed
by an ear protector for the human (Agile Justin does not have a microphone). Agile
Justin is equipped with two DLR Hand-II and to the soft finger tip of the index finger
of the right hand a flexible tactile skin with a 4 x 4 taxel array is attached (see Fig. 4.3
for details). The procedure for exploring a given tube is performed autonomously by
the robot: grasp the tube with the left hand to stabilize it; grasp the tube with the
thumb and the index finger of the right hand and slide down along the tube with
the right hand at a constant velocity of 3cm/s for 2s. The force is held roughly at 1N
(precision about 20%) using the hand’s joint torque sensors. In the human performance
experiment, the subject performs a similar sliding motion with the index finger of its
dominant hand, only horizontally on a lying tube.

4.1 Motivation

knowledge set task set

training training

knowledge
transfer

learning system I:> learning system

Figure 4.2: n-shot transfer learning. From a large number of classes with many samples per class
(the knowledge set) a classifier is trained once. The learned knowledge is then ex-
tracted and transferred to a new classifier (often of the same architectural type) to sup-
port the learning of a new classification task on previously unseen classes with only a
few n samples per class.

typically found in everyday household environments. One task is tactile classification,
where the unique identity of the touched material has to be reported. This task measures
the more high-level or cognitive performance. The second task is material differentiation,
in which pairs of materials are presented and the human subject has to report whether
both materials are the same or different. This task measures the raw sensor and low-level
processing performance, as no long-term memory is involved.

4.1.2 Deep n-Shot Transfer Learning

A drawback of learning and especially deep learning is that it typically requires a large
number of training samples. In robotics, sample acquisition is costly, even more so for
active sensing tasks like tactile sensing.

It is therefore desirable to require as little training data as possible and, in the extreme
case, to require only a single sample per to be learned class. This is the well known one-
shot learning problem [FEI-FEI et al., 2006]. The generalized n-shot learning, where n
(small number) samples per class are used, is a topic of intensive research in the machine
learning community (see Sec. 4.2).

The main idea in n-shot learning methods is to make use of pre-knowledge to support
the learning task at hand. Typically, the pre-knowledge is acquired by training on a large
dataset, including many classes and many samples per class, once and then this knowl-
edge is transferred to a new task with previously unseen classes, but only few samples
per class. Fig. 4.2 depicts such a transfer learning procedure.

Here, we investigate and show the feasibility of deep n-shot transfer learning for the
real world tactile material classification task.

61

Chapter 4 Deep Learning Based Tactile Material Classification

4.2 Related Work

4.2.1 Tactile Material Classification

The seminal work in tactile material classification is [FISHEL and LOEB, 2012], using the
multi-modal BioTac [WETTELS et al., 2008] sensor (including static and dynamic pressure,
temperature and heat flow). They reported to classify C = 117 different materials based
on n = 15 training samples per material with an accuracy of 95.4% (but needing 5 trial
motions on average) using Gaussian classification on hand-designed features. However,
the sample data was acquired using a precisely controlled test bench setup and the per-
formance degrades dramatically when transferred to a real robotic setup [XU et al., 2013].

[FISHEL and LOEB, 2012] also conducted a small material differentiation experiment
in which five human subjects had to discriminate the materials in each of eight pairs of
materials (which were informally selected by the authors from the C = 117 materials as
the most difficult to discriminate).

[HOELSCHER et al., 2015] used a BioTac sensor on a PA10 robot and performed a com-
prehensive comparison of diverse feature sets and learning methods for the discrimina-
tion of 49 object surfaces. The results show that not elaborate features that depend on
the detailed time structure of the signals, but rather simple and ”static” features (most
prominent temperature and thermal flow) perform best. A linear SVM (support vector
machine) in combination with multiple exploration motions reached an accuracy as high
as 97%.

[SINAPOV et al., 2011] use a finger nail with an accelerometer as a tactile sensor and per-
formed 5 different scratch motions (different velocities and directions) for discriminating
20 object surfaces. Instead of extracting low dimensional features, they directly used the
down-sampled (5 temporal and 25 frequency bins) spectrogram (time varying frequency
response) of the 400 Hz sensor signal. Using a SVM classifier, they reach an accuracy of
65.7% for a single scratching motion and 80% using all 5 motions.

We adopt a similar spectrogram based classification method to the tactile skin sensor
in Sec. 4.4.1.

[KABOLI et al., 2015] and [CHATHURANGA et al., 2015] address the problem of mak-
ing tactile material classification based on high-resolution time signals more robust. The
former use the 3-axis accelerometers (250 Hz) of their stiff quasi-skin mounted on a Nao
robot’s body and the latter use a soft 3-axis force measuring tactile sensor (1kHz) in a
test bench setup, where the effect of varying applied force and velocities is systematically
studied. Both use correlation based features to dramatically reduce the high dimensional
time series (some 100 values) to a low dimensional vector (<10 values) which is then fed
into a SVM for classification.

[GAO et al., 2016] present a deep learning convolutional neural network (HapticNet)
to classify samples recorded from two BioTac sensors, which were mounted on a robot
gripper during five different exploration motions.

For the classification of C = 14 materials with a BioTac sensor in a test bench setup,
[KERR et al., 2014] reach an accuracy of 79% using surface texture and thermal properties.
The authors apply principal component analysis (PCA) to extract important features from
the sensor data and a simple neural network for learning them. They also conduct a

62

4.2 Related Work

Table 4.1: Related work in tactile material classification.
(C = classes; n = samples per class; 4 = accuracy)

paper sensor setup C n a[%]

[FISHEL and LOEB, 2012] BioTac test bench 127 15 95.4
[XU et al., 2013] BioTac ShadowHand | 10 15 99.0
[HOELSCHER et al., 2015] BioTac PA10 arm 49 50 93.0
[KABOLI et al., 2014] stiff skin Nao 5 30 100
[KABOLI et al., 2015] BioTac ShadowHand | 20 10 83.5
[SINAPOV et al., 2011] accelerometer robot 20 50 65.7
[CHATHURANGA et al., 2015] | accelerometer test bench 8 120 89.0
[GAO etal., 2016] BioTac PR2 53 10 83.2
[STRESE et al., 2016] pen manual 69 188 39.0
[KERR et al., 2014] BioTac test bench 14 15 79.1
[EGUILUZ et al., 2016] BioTac test bench 34 | eff.3001 | 100
[KERZEL et al., 2017] OptoForce test bench 32 100 98.8
[L1and ADELSON, 2013] GelSight manual 40 24 99.8
[4] flexible skin | Agile Justin 6 80 97.5

[17] flexible skin | Agile Justin | 36 100 95.0

material classification experiment with 12 human subjects in which the BioTac sensor
based accuracy exceeds the human performance.

Multi-channel neural networks are used by [KERZEL et al., 2017] to classify a set of
C = 32 materials based on the 3D force signals of an OptoForce sensor [OPTOFORCE] and
in a test bench setup. They reach an accuracy of 99% but the performance dramatically
drops to 68% when artificial Gaussian noise is added to simulate a real world robotic
setup.

Table 4.1 summarizes these and more works on tactile material classification. Most
works use test bench setups, although those results do not transfer well to the noisy en-
vironment of a real robot system. Here we use the humanoid robot Agile Justin, which
results in significant variation in the collected tactile samples (see Fig. 4.3).

Our work presented here is the first to exclusively use the signal of a flexible tactile
skin for material classification. That means, we show for the first time, that a tactile sensor,
which has the aforementioned advantages of providing a high-resolution spatio-temporal
signal, as it is required for fine manipulation, and of being easy to mount on any robotic
structure, can also be used for material classification.

To our knowledge, there are no other comparison studies of the tactile material recogni-
tion performance between humans and real robotic systems. But even in case of test bench
setups, only the two works of [FISHEL and LOEB, 2012] and [KERR et al., 2014] using the
BioTac sensor conduct small experiments for a comparison with human performance.

IThe 5min recording time results in effective 300 samples assuming 1s sweeping time as we use in our
experiments.

63

Chapter 4 Deep Learning Based Tactile Material Classification

4.2.2 n-Shot Transfer Learning

To our knowledge, besides ours, the only work on transfer learning in tactile material
classification is [KABOLI et al., 2016]. They use the signals of the 2kHz pressure sensor
and the 19 electrodes (50 Hz sample rate) of the BioTac [WETTELS et al., 2008] sensors
mounted on the fingertips of a Shadow Hand [SHADOW]. The hand holds the objects
while sliding over the surface with two fingers. From the raw high-dimensional signal,
tirst, lower dimensional features are extracted, using manually designed feature descrip-
tors. Their online tactile learning algorithm, which is based on a least squares support
vector machine (SVM) classifier, works in this lower dimensional feature space. For 1-
shot learning with a knowledge set of 10 objects and a task set of 12 objects, they reach an
excellent accuracy of 97 %.

In contrast, our work uses a flexible pressure-sensitive skin instead of the bulky BioTac
sensor. We also use a larger dataset with 36 materials which, in addition, is publicly
available and allows for comparison to other methods in the future.

The most important difference, however, is that we do not use manually designed fea-
ture descriptors, but a deep end-to-end learning scheme with automatic feature extrac-
tion. End-to-end learning is important not only because it makes the time-consuming
feature design by an expert obsolete, but because the automatic feature extraction gives
better performance for the flexible skin sensor (see Sec. 4.4.2).

Recently, there has been much interest in n-shot learning in the context of deep learning,
which usually demands for large training set sizes. Early works [HOFFMAN et al., 2014]
use feature extraction from a network trained on the large knowledge set and then use
classification in this feature space. A more advanced, so called matching method, is the
Siamese network [KOCH et al., 2015], in which twin networks are trained especially for
getting a good feature space for later matching via a simple distance function, e.g., the
Euclidian distance.

Newer works use quite complex (recurrent) neural networks that require episodic train-
ing [VINYALS et al., 2016] [SNELL et al., 2017] [RAVI and LAROCHELLE, 2017]. These
transfer learning networks are not easy to train and usually work only for rather simple
base network architectures. In contrast, [BAUER et al., 2017] show in their recent work
that, using a capable feed forward neural network trained on the knowledge set as a ba-
sis, simple matching and logistic regression based transfer methods work surprisingly
well and outperform all the more complicated methods by a large margin on the usual
benchmark tasks.

Therefore, here we use our high performing deep learning architecture as the basis for
the state of the art transfer learning methods from [BAUER et al., 2017].

4.3 Experimental Setup

4.3.1 Robot Setup

Our material classification task is motivated by our “"Mars Habitat” demonstrator [5], in
which the mobile humanoid robot Agile Justin autonomously builds up a scaffold struc-
ture from single tubes. The robot should be able to discriminate tubes made of different

64

4.3 Experimental Setup

100

s [digits]

—
w
5
= 100
1]
a)

t [steps]
b)

Figure 4.3: a) The finger tip with the flexible tactile skin taped to it (upper) and the usage of a
thin laboratory glove on top of the tactile skin to increase the grip (lower). The tactile
skin is a 4 x 4 taxel array sensor, commercially available from Tekscan sensor 4256E),
which provides a spatio-temporal pressure signal at 750 Hz sample rate. b) Four plots
of the raw spatio-temporal signal of the tactile skin during the middle 1.33s of the 2s
exploration motion along the tube. The 750 Hz sample rate of the sensor results in a
1000 x 4 x 4 = 16000 dimensional sample, which is used without any pre-processing
in our end-to-end deep learning method. To demonstrate how challenging material
classification is in this real world robotic setup (in distinction to a test bench setup), the
upper two plots depict two samples of the same material class (white metal) which our
network correctly recognizes as “same” and the lower two plots show samples for two
different materials (cotton fabric reverse and linen fabric smooth) which our network
correctly classifies as “different”. From looking at the plots, it seems the other way
around: the lower two samples look more similar than the upper two.

65

Chapter 4 Deep Learning Based Tactile Material Classification

materials by simply sweeping with its fingers over them, e.g., in case the camera view is
obstructed. Fig. 4.1 and the video [BAISHYA and BAUML, 2016]? describe the experimen-
tal setup for the material classification of tubes with Agile Justin.

We use one sensor patch of a Grip VersaTek® sensor 4256F from Tekscan [TEKSCAN].
The sensor is made from two thin flexible polyester sheets with a printed matrix of
piezoresistive ink cells in between. It is only 0.1 mm thin and the patch with 4 x 4 taxels
(size 2.5mm) is 1.6cm x 1.6cm wide and the pressure range goes from 0.34 kPa up to
345kPa. An important feature is the high sample rate of 750 Hz for reading out the full
Sensor.

We attached the sensor patch to the tip of the index finger of the robot’s right hand by
using a double-sided adhesive tape (see Fig. 4.1 and 4.3). The robot’s fingertip is made of
soft silicon and has a slightly curved contact surface with the sensor. To increase the grip
while sweeping over a surface, we added a layer of latex cut off from a thin laboratory
glove. This simple attachment method can be performed easily and quickly and results
in a stable position of the sensor relative to the finger’s kinematics during long-term use
(> 10* sweeps).

4.3.2 Material Dataset

The C = 36 everyday household materials of our sample dataset are depicted in Fig. 4.4.
The materials are glued to tubes or the tube is made of the material®.

The procedure for exploring a given tube is performed autonomously by the robot:
grasp the tube with the left hand to stabilize it; grasp the tube with the thumb and the
index finger (equipped with the tactile sensor) of the right hand; slide down along the
tube with the right hand at a constant velocity of 3cm/s for 2s; release the tube. While
sliding down, the contact force of the right hand’s thumb is controlled to stay constant at
about 1 N with a precision of about 20% using the hand’s joint torque sensors. For mate-
rial classification and differentiation we use the 1.33 s in the middle of the sliding motion
resulting, given the sample rate of f = 750Hz, in a 1000 x 4 x 4 = 16000 dimensional
spatio-temporal signal per sample.

For each material tube, we recorded n = 100 samples resulting in N = 3600 samples
overall. To cover the inhomogeneity of the tubes, each tube was randomly rotated around
its vertical axis after each sweep. To cover the drift in the sensor and, especially, in the
force control of the hand, a different material was selected each time after 10 sweeps
and the recording took place over a period of three days. We made the dataset publicly
available at [TULBURE and BAUML, 2018].

4.3.3 Validation Scheme

Cross-Validation

We use 5-fold stratified cross-validation [KOHAVI, 1995] with 2 runs, i.e., the n = 100
samples per class are split in folds of 20 test samples and 80 samples for learning. When

https://www.youtube. com/watch?v=623yRPx9Pkc
3Only for (9, 10, 13, 14, 19, 20, 34) the tubes are made of the materials.

66

https://www.youtube.com/watch?v=623yRPx9Pkc

4.3 Experimental Setup

TR

A

W\

Figure 4.4: The 36 everyday household materials. (0) synthetic leather rough, (1) synthetic leather
smooth reverse, (2) synthetic leather smooth, (3) metallic jersey, (4) cotton fabric reverse,
(5) cotton fabric, (6) linen fabric smooth reverse, (7) velours paper reverse, (8) linen fab-
ric smooth, (9) wood, (10) white metal, (11) reflecting fabric reverse, (12) reflecting fabric,
(13) metal, (14) plastic smooth, (15) latex, (16) silicon, (17) jersey, (18) velours paper, (19) wall-
paper, (20) plastic rough, (21) spun fleece, (22) synthetic leather rough reverse, (23) cork,
(24) linen fabric rough, (25) gunny, (26) carton, (27) denim, (28) carpet rough, (29) car-
pet smooth, (30) metallic grid, (31) rubber rough vertical, (32) rubber smooth, (33) rubber
rough horizontal, (34) foam, (35) neoprene. Source: Materials 10 and 13 are from Alutruss
(www.alutruss.com); 9, 14, 19, 20 from a standard h/w store; remaining from Modulor
(www.modulor.de), a shop for designers.

67

Chapter 4 Deep Learning Based Tactile Material Classification

we perform hyperparameter search, the learning dataset with the 80 samples is further
split, again using 5-fold cross-validation, into 64 training samples and 16 validation sam-
ples. This scheme guarantees that the test samples of a given (outer) fold are never used
for training or hyperparameter optimization.

1-sweep & 3-sweep Exploration

The classification accuracy can be increased by sweeping multiple times over the given
material. We simulate the multiple sweeps by randomly drawing three samples of the
same class from the test dataset and combine the network’s per sample prediction with
Bayesian fusion (for material classification) or majority voting (for material differentia-
tion).

4.4 Deep Learning for Material Classification and
Differentiation

4.4.1 Material Classification

In this section we present our deep learning methods and performance experiments for
material classification. For comparison, we first apply classical material classification
methods, which have been used for other tactile sensors, to the signal of our flexible
tactile skin.

Classical Learning on Manual Features

We start with classical learning methods on two manually designed spectral feature sets
for material classification which are computed from the temporal Fourier spectrum of the
spatio-temporal skin signal: low dimensional L-features and high dimensional H-features.

The three L-Features are directly derived from the spectral features reported in [FISHEL
and LOEB, 2012]: roughness, which is the integrated spectral power, and two fineness
teatures, which are the spectral centroids in a low and high frequency band.

The 760 dimensional H-features are based on the short-time Fourier transform (STFT) [CO-
HEN, 1995] of the sensor signal, i.e, the frequency response of the sensor over time. This
method is similar to [SINAPOV et al., 2011], but we use a higher number of time and
frequency bins and extend it to the multi-taxel signal.

On both feature sets we apply two well-known classification algorithms [BiIsHOP, 2006],
namely k-nearest neighbours (kNN) and support vector machine (SVM).

Deep Learning

In difference to classical learning methods with manually designed feature descriptors,
deep learning is an end-to-end learning scheme with automatic feature extraction from
the raw sensor input. End-to-end learning is important, not only because it makes the
time-consuming feature design by an expert obsolete, but because the automatic fea-
ture extraction usually gives dramatically better performance as the breakthroughs in

68

4.4 Deep Learning for Material Classification and Differentiation

input(1000,16) l linput(lOOO,lG)
L input (1000,16)
TactNet-I TactNet-I
[conv, 15x5, 32, BN, Rel U |
;maxpool, 10x1 output (36) v output (36)
l cony, 15x5, 64, BN, ReLU l | Euclidean distance |
+ maxpool, 10x1 +
[conv, 15x5, 128, BN, ReLU | [FcL 256, RelU |
*maxpool, 10x1 - + '
| dropiut 08 | | dropout 0.7 |
[FcL 512, BN,RelU | [FCL, 256, RelU |

Y !

| FCL, 36, softmax | | FCL, 2, softmax |
+ output #output

a) b)

Figure 4.5: a) Architecture of the TactNet-II network as used for tactile material classification. b)
Adapted Siamese network for material differentiation. It is built from two pre-trained
TactNet-II networks for mapping the inputs into an abstract feature space where the
Euclidean distance is computed.

domains such as image recognition [KRIZHEVSKY et al., 2012] or speech recognition [HIN-
TON et al., 2012] have proven.

Here we apply deep learning to perform material classification directly on the raw
16000 dimensional spatio-temporal signal of the flexible tactile skin.

Base network

In our convolutional neural network (CNN) architecture, the 3D spatio-temporal signal
is first converted into a 2D input signal by flattening the spatial dimensions into one di-
mension, as tests have shown that using the full 3D signal results is no better performance
but is computationally less efficient in the here used deep learning software framework
TensorFlow [ABADI et al., 2015]. This means that, as expected4, the temporal correlations
are important but that there are no significant spatial correlations in the signal.

The spatially flattened 2D signal is fed into a stack of convolutional and max-pooling
layers which implicitly perform the feature extraction. This transforemd signal is used as
the input for a fully connected layer followed by a softmax layer for the classification. In
each convolutional layer, batch normalization [IOFFE and SZEGEDY, 2015] is performed
before the application of the activation function. This allows for a more robust training
irrespective of the variation in the samples’” statistics.

“The spatial resolution of the sensor is way too low to see the fine structure of the materials, whereas
the spatial fine structure is, via the sweeping motion, transformed into a temporal structure which the
individual taxels can resolve due to the high sample rate.

69

Chapter 4 Deep Learning Based Tactile Material Classification

Fig. 4.5 depicts this base network for which in an architectural search, the number of
convolutional layers, the kernel size, and the size of the fully connected layers were opti-
mized using the cross-validation scheme from Sec. 4.3.3.

The network is trained by minimizing a standard cross entropy loss function with a
L2 regularization using an Adam optimizer [KINGMA and BA, 2015] with learning rate
scheduling.

In what follows, we present two advanced training methods which we adapted for our
tactile network architecture.

Adversarial training

Adversarial training [GOODFELLOW et al., 2014] was originally developed to make a clas-
sifier more robust against adversarial attacks. But it can also be seen as a smart technique
for efficient data augmentation with random noise. In random noise data augmentation,
for each training sample x, a number of perturbed samples ¥ = x + €7 are added to the
training set where the same class label f as for the original sample x is assumed. # € [0,1]
is a uniformly distributed random variable and € is the noise scaling factor (e.g., in the
order of the sensor noise). This data augmentation makes the classifier robust against
typical real world perturbations and, hence, is a kind of regularization.

The trick in adversarial training is, instead of augmenting with many random samples
(which is very inefficient in high dimensional input spaces), to only add the worst case
perturbation 7 < ||, i.e., the perturbation which changes the per sample loss function
E(x,t,0) for training the classifier’s parameters 6 the most. The adapted loss function for
adversarial training reads then

7(x,t,0) = esign(VyE(x,t,6))
E(x,t,0) = aE(x,t,0) + (1 — «)E(x + #(x,t,0),t,0),

where « is a weighting factor for the contributions of the original and adversarial sample
and set to « = 0.5 for all our experiments.

Monte Carlo Dropout Model

The Monte Carlo dropout model (MC dropout) [GAL and GHAHRAMANI, 2016] is a re-
cent method for efficient Bayesian learning in deep neural networks. MC dropout reinter-
prets in a variational inference scheme the usual standard dropout as drawing samples of
the network weights W from an approximate posterior distribution p(W|X, T) ~ q4(W)
given the training samples and labels (X, T). The resulting loss function for optimizing
the parameters ¢ of the approximator g,(W) is exactly the same as the loss function for
standard learning with dropout. But during prediction, the dropout is kept switched on
and for a given input x, multiple runs M through the network are performed (each with

70

4.4 Deep Learning for Material Classification and Differentiation

anew W ~ q4(W) via dropout). This results in a Monte Carlo approximation of the full
Bayesian predictive distributions

p(tlx, X, T) = /p(t\x, W)p(6, X, T)dW

M
~) p(tlx, W), with W) ~ qu*(w(m))‘
m

The exact Bayesian predictive distribution would represent the correct prediction un-
certainty, i.e., combined model uncertainty and noise, and would not suffer from over-
titting. But the MC dropout approximation usually gives also better prediction than the
point estimate of standard non-Bayesian deep learning. An important parameter is the
dropout rate which we optimize in the hyperparameter search. The number of runs is set
to M = 100 for all our experiments.

4.4.2 Classification Results
Method Comparison

Table 4.2 reports the accuracies for the network architectures and training methods on
our dataset with 36 materials, using the evaluation method as described in Sec. 4.3.3.
When using the advanced adversarial training and MC dropout training methods, the
performance is best and an accuracy of up to 86.3 % is achieved. This clearly proofs that
tactile material classification with a flexible tactile skin is feasible. We name the network
architecture using the advanced training methods TactNet-II. In the 3-sweep case, we use
the Bayesian fusion scheme from Sec. 4.3.3 and the accuracy gets as high as 95.0 %.

Table 4.2: Material Classification Performance

sweeps network type al%] | o[%]
base 865 | 15
1 adversarial 86.1 | 1.1

adversarial + MC dropout

(TactNet-II) 863 | 12

base 943 | 15

3 adversarial 945 | 14
adversarial + MC dropout 950 | 09

(TactNet-II)

Fig. 4.6 shows that TactNet-II clearly outperforms the classical classification methods
by a large margin. This proves that end-to-end deep learning is superior to learning
on manually designed features and that deep learning is the key for making a flexible
pressure-sensitive skin, despite its complex and noisy spatio-temporal signal, usable for
highly sensitive tactile perception.

71

Chapter 4 Deep Learning Based Tactile Material Classification

accuracy [%]

100

Il]-features
75 mEE H-features
50 | HEE TactNet-II

kNN

SVM TactNet-II

Figure 4.6: Comparison of deep learning TactNet-II to classical classification methods with manu-
ally designed features.

true label

accuracy [%]

CONOUIBRWNROOWONOUIRWNF,O

| NN N Y Y Y Y N T T N N v v |

[N NN NN

20

1.0

0.8

0.6

- 0.4

- 0.2

O—ANMNMIFINONOAO—=HNMNIFINONONO—HANM
—

T T T T T T T T T T T T T T T T T T T TTTT —- 0.0

34 +
35

TTTTTTTTTT
HNOSNONO—ANM
A A A A A A AT AN ANNANANNNANNNO MM

predicted label

100

80 —

60 —

40 -

20

HNANOINDEFNONO
AN e —

material ID

Figure 4.7: Confusion matrix (upper) and its diagonal values (lower), hence, the per class accuracy.
For the latter, the order is from high to low accuracies. All results are for TactNet-II
and the 1-sweep case. The dashed line marks the average accuracy of 86.3% over all

materia

72

Is.

4.4 Deep Learning for Material Classification and Differentiation

Confusion Matrix and Grouping

The confusion matrix C in Fig. 4.7 and its diagonal values show that some materials are
easier (e.g., the rubbers) and others harder (e.g., the leathers) to classify than average.
For further analysis, we use spectral clustering on the confusion matrix C by setting

the affinity matrix to A = 3((C—1) + (C — 1)) to get 6 groups of materials which are
”confused the most” with each other. The materials are then ordered such, that for each
group the materials in a group have consecutive material IDs. Actually, this order is used
in all our figures, including the Fig. 4.4 of the materials and the Fig. 4.7 of the confusion
matrix. In the latter, one can clearly see that the hard to identify materials (especially the
leathers) get only confused with one another.

No Overfitting

The standard deviations o we report are computed via cross-validation and represent the
combined uncertainty due to potential overfitting and due to the finite number of test
samples per fold. In our results, the ¢ is no larger than expected due to the finite number
of test samples, showing that there is no significant overfitting.

4.4.3 Material Differentiation

In material differentiation, we want to learn a function f(x,, x;) which takes two input
samples x,; and x; and reports back 1 if both samples are from the same class, i.e., t; = t;,
or 0 if they are from different classes, i.e., t; # f;.

For this, we adapt a Siamese network model [KOCH et al., 2015] which was originally
developed in the context of one-shot learning. The idea is that both input samples are first
independently mapped into an abstract feature space and then a distance in this feature
space is computed between the input samples. Finally, the distance is mapped with an
additional network to the decision probability for “same” or ”different”.

Fig. 4.5 shows our Siamese network model for material differentiation. The two sister
TactNet-II networks are identical and have been pre-trained on the classification task and
their weights are fixed. Only the weights of the fully connected layers after the Euclidian
distance layer are trained specifically for the differentiation task.

4.4.4 Differentiation Results

For the performance evaluation of our material differentiation network, we first perform
the usual cross-validation split into test and training samples. Then, for each of the two
datasets, we randomly generate sets of material pair samples with an equal number of
“same” and ”different” pair samples (3.6 - 10* samples for training and 2.7 - 103 for test-
ing).

Table 4.3 reports the performance results. For the 1-sweep case, the accuracy in ma-
terial differentiation is about 5 % larger than for material classification, showing that, as
intuitively expected, differentiation is the simpler task.

Again, we are not suffering from severe overfitting as ¢ has roughly the size as expected
due to the finite number of test samples.

73

Chapter 4 Deep Learning Based Tactile Material Classification

Table 4.3: Material differentiation performance

sweeps | a (%] | o [%)]
1 91.8 | 09
3 954 | 09

4.5 Human Performance Experiments

To have a baseline for our robotic tactile sensor and processing performance, we per-
formed human performance experiments for material classification and material differ-
entiation. Fifteen human subjects, eight males and seven females with age between 21
and 49 years, participated in the experiments. All participants were tested to have normal
touch sensitivity using the “Touch-Test Sensory Evaluation” from North Coast Medical®.

Like in the robotic case, the human subjects should only use tactile information by
sweeping a finger over the tubes, but no other sensorial cue. For this, we used the exper-
imental setup in Fig. 4.1: the tubes were presented to the human subject behind a curtain
to remove the visual cue. In addition, the subjects had to wear ear protectors to remove
the auditory cue, as it turned out that humans can hear for some materials the material
identity while sweeping their finger over it.

For each subject, the experiments were conducted on two days, on the first day the
material classification and on the second day the material differentiation experiment. All
experiments were conducted by the same investigator.

4.5.1 Material Classification

The experiments consisted of a training and a testing phase. In the training phase, the
subjects had 10 min to get familiar with the materials by touching and sweeping over
material samples attached to small plates. During this phase, the materials had to be
grouped in five to seven groups according to their subjective tactile similarity. This should
help later when performing the tactile classification task. All subjects reported that the
10 min for this phase was more time than they needed. This may have been due to the
fact that our material set consists of everyday household materials with which the test
persons were already familiar. During the training phase, the visual cue could not be
excluded as the subjects had to see where to find the material samples and had to reorder
them.
The testing phase consisted of three directly successive sub-phases for each material:

1. Sweep once over the presented tube and decide for the material class by looking at
the previously grouped material sample plates and telling the number written on
them.

2. Sweep three times over the tube in both directions and decide again by looking at
the sample plates for the material class.

Swww.ncmedical . com

74

www.ncmedical.com

4.5 Human Performance Experiments

100
75 1
50 A

25 A

accuracy [%]

0_

1-sweep 3-sweeps by touch
Bl robot (groups) [robot M human (groups) [human

Figure 4.8: Human vs. robot material classification accuracy. Results are reported for the 1-sweep
and 3-sweep cases for the robot and the human. For the human, the additional "by
touch” case is reported, in which the human was allowed, after having performed the
three sweeps over the tube, to also touch the sample materials before deciding for the
material class.

3. Sweep ones more over the tube and decide by sweeping over the material samples
for comparison by touch.

During testing, each material was presented to the subject once, but the subjects were
not told about this, and the order of the materials was random. The overall time of an
experiment was at maximum 45 min.

4.5.2 Classification Results

Fig. 4.8 reports the accuracies of the human experiment averaged over all subjects in
comparison with the robot performance. The human performance is dramatically worse.
Even the 1-sweep robot accuracy is 40% higher than the ”3-sweep and compare by touch”
accuracy of the human. To make the task even simpler, we also report the accuracy for
identifying at least the correct material group which the subjects formed individually
in the training phase. But even this accuracy is still about 30% worse than the one of
the robot for the way harder 1-sweep class identity task. For completeness, Fig. 4.8 also
reports the robot’s performance in identifying the correct group using the groups from
Sec. 4.4.2.

Fig. 4.9 shows the confusion matrix and the accuracy for each material class. The com-
parison with the results of the robot in Fig. 4.7 shows that for every single class the robot
reaches at least human accuracy.

This surprisingly bad human performance is compatible with the statements of almost
all human subjects: after the training phase (in which they could see the material sam-
ples while touching them), they expected the classification task to be way easier than they
judged it after they had actually performed the experiment (but were not told about their
performance). One explanation for this initial overrating of their tactile capabilities could
be that humans almost always use additional visual cues to prime their tactile expecta-
tion.

75

Chapter 4 Deep Learning Based Tactile Material Classification

1.0

0.8

0.6

true label
DORINI NI DN = = = = o b e e

- 0.4

l... - 0.2

TT T T T 11 T
O=HANMFLNONCONO—=HANNIHINONONO—HNNFHLNONSNONO—HNMNF LD
Hre A e A T = AN AN AN AN NN AN M NN

predicted label

BUWNFROOONQUIIRWNR OO UTIRWN RO

25

T
—
™

100

80

60

accuracy [%]

20 1

material ID

Figure 4.9: Confusion matrix (upper) for the human performance experiment and its diagonal val-
ues (lower) ordered from high to low accuracies. The dashed line marks the average
accuracy over all materials.

76

4.5 Human Performance Experiments

4.5.3 Material Differentiation

Due to the high number of (326) = 630 possible material pairings, an exhaustive evaluation
of the material differentiation performance in a study with human subjects is impossible.
Therefore, to get at least a lower bound for the material differentiation performance, we
selected the eight hardest to differentiate material pairs. To have a fair set of the hardest
pairs, we selected the four hardest pairs for the human and the four hardest pairs for the
robot, using the following two criteria based on the classification confusion matrices:

* The hardest materials are the ones which have the smallest on-diagonal values.
* The hardest materials are the ones which have the highest off-diagonal values.

For each criterion, we selected two materials from the robot and human confusion matrix.
Because one material pair was the same in the robot and human case, only seven actual
pairs were used in these experiments: (0, 1), (12, 7), (16, 10), (10, 14), (9, 10), (11, 12), (4, 8).
These seven material pairs are made up from 11 different materials. In the experiment, we
presented the human subjects an equal number of those “different pairs” and of “same
pairs” made up from the same 11 materials.

In this experiment, there was no training phase, but the subjects were allowed to make
them familiar with all material samples again. The subjects were not told that only pairs
from a subset of the materials will be presented in order not to bias their decision.

In the testing phase, a pair of tubes was presented to the subjects behind the curtain.
Each presentation had two sub-phases:

1. Sweep once over each tube of the given pair and decide and say if the materials are
the same or different.

2. Perform two additional sweeps in both directions over the first and then two sweeps
over the second tube. Finally, it was allowed to sweep once more over the first tube
before the decision had to be made.

Each of the “different pairs” were presented twice and an equal number of the “same
pairs”. The presentation order of the these pairs was random. The overall time of an
experiment was at maximum 45 min.

4.5.4 Differentiation Results

Fig. 4.10 reports the human accuracy for the differentiation task in comparison to the
robot performance for the selected hardest material pairs. To show that this accuracy is
a lower bound for the accuracy computed over all pairs, also the robot accuracy for all
pairs is depicted.

The robot clearly outperforms the human in material differentiation, although by a
smaller margin than for material classification. An interpretation of this finding could
be that the human raw sensorial and low-level processing tactile performance is good,
but that human tactile memory is not well trained. It would be interesting to repeat the
experiments with a blind subject which is more dependent on its tactile performance.

77

Chapter 4 Deep Learning Based Tactile Material Classification

accuracy [%]

1-sweep 3-sweeps
Il robot (all) I robot (hard) I human (hard)

Figure 4.10: Human vs. robot material differentiation performance. The “hard” results are for
the selected seven hardest material pairs, whereas the “all” result is for all possible
material pairs.

4.6 Deep n-Shot Transfer Learning

In Fig. 4.2 n-shot transfer learning is summarized. The knowledge set D = {X;, ¥j; ﬁ 1

has many classes C and a large number of samples 7 per class, i.e., N = Cii. If the task
set D = {x;,y;}}, consists of C classes with only few samples n per class, i.e, N =
Cn, the problem is called a C-way n-shot learning problem. The goal in n-shot transfer
learning is to reach high accuracy on test samples from the task classes, although the task
set for training has only few samples. The trick is to transfer knowledge from the large
knowledge set (with different classes).

In what follows, we first describe the three state of the art deep transfer learning meth-
ods we adopted for our tactile deep convolutional network TactNet-II and then we re-
port the resulting performance for a 6-way n-shot learning task based on our 36 material
dataset.

4.6.1 Fine-Tuning Method

As a typical CNN, our TactNet-II architecture (Fig. 4.11 a) consists of two parts: the auto-
matic hierarchical feature extraction layers and the classification perceptron. The first part
extracts important features from the input in a hierarchical fashion from low (elementary)
to high semantic level [XU et al., 2014, KRIZHEVSKY et al., 2012], whereas the second part
expands these features into a high dimensional space to fit a classification hyperplane.

The idea in fine-tuning is, inspired by [HOFFMAN et al., 2014], that the hierarchical
features learned are generic when the number of training samples and classes is large
enough. So, this features can be learned once from a large knowledge set and then be
reused. For a new task, the input samples x are first transformed into this feature space,
u = ¢(x; ¢), with the parameters ¢ previously learned from the knowledge set. Then,
only the classification in the abstract feature space has to be learned from the (small) task
set.

For a CNN, implementing this fine-tuning scheme means that all layers, except for the
output layer (OL), are pre-trained on the knowledge set and then the weights are fixed.
Only the OL is then trained on the task set. As a baseline, we also evaluate learning with-
out knowledge transfer, i.e., all layers of the network are trained on the task set and the

78

4.6 Deep n-Shot Transter Learning

—
O
Y .
£33 llnput (1000,16)
|15x5’ conv 32, BN, RelLU | |nput(1000,16) |npUt(1000,16)
. maxpool, 10x1 l l Z
[15x5, conv 64, BN, RelU | TactNet-ll| | TactNet-I
maxpool, 10x1 without without
Y oL oL
[15x5, conv 128, BN, RelLU | :
maxpool, 10x1 output output
v (512) ¢ y (512)
| [dropout0g | leuclidean distance |
A/
| fcl, 512, BN, RelU | similarity measure

""" '

| fdl, c softmax |
............... loutput (c)
a) b)

Figure 4.11: Deep transfer learning network architectures. a) The TactNet-II CNN. In transfer
learning, first the full TactNet-II is trained on the knowledge set. For the n-shot learn-
ing, only parts of the network are re-trained. The boxes on the left indicate for the
fine-tuning methods OL and OL-FCL which layers are kept fixed (gray) and which
are re-trained (empty). As baseline, the NK method without knowledge transfer re-
trains the full network. b) Matching network architecture. During testing, a pair of a
test sample and a sample from the task set are mapped in parallel to the feature space
by two trained identical TactNet-IIs. The Euclidean distance is then computed in this
feature space. For the NN method, a standard pre-trained TactNet-II is used whereas
the Siamese method trains the networks explicitly for discrimination between two
given classes.

79

Chapter 4 Deep Learning Based Tactile Material Classification

knowledge set is not used. We name this the no-pre-knowledge (NK) method. Fig. 4.11 a)
gives a graphical summary of these two learning variants.

4.6.2 Matching Methods

Another method for reusing the learned feature mapping u = ¢(x; ¢), hence, the knowl-
edge set, is to directly perform a nearest neighbor (NN) classification without any learn-
ing on the task set. The idea is that a simple distance metric in the abstract feature space
can cover the class structure better than using the simple metric in the original sample
space.

For 1-NN, given the task set D = {x;,y;})Y, and a distance metric d(u1,u7) in the
feature space, a sample x is classified as y* according to

E3

i = argmind (p(x; ¢), ¢(xii9)), ¥ =y

We use the feature mapping of TactNet-II without the output layer and the simple Eu-
clidian metric d(uy, up) = ||ug — uz||2. Fig. 4.11 b) depicts this NN method as a network
structure, where two identical shortened TactNet-IIs are fed in parallel with x and the x;.

An advanced variant of this matching idea is the Siamese network [KOCH et al., 2015].
In this method, also the training on the knowledge set for getting the feature mapping
is done in the matching setup with the two identical twin networks (hence, the name
Siamese). The idea is that this in way the mapping learns better features for the matching
task than when trained for a classification task.

4.6.3 Concept Learning Method

In all methods described before, the transfer of knowledge is performed solely via the
mapping into the feature space learned on the knowledge set. [BAUER et al., 2017] de-
scribe a simple probabilistic method that additionally transfers knowledge from the learned
weights of the output layer in a OL fine-tuning setting like in Sec. 4.6.1.

Given the weights W of the C class neurons in the output layer, which have to be trained
from the transformed task set samples u = ¢(x; @), with x € D and W the weights of the C
class neurons that have been trained on the knowledge set D. The full Bayesian approach
in [BAUER et al., 2017] using the assumptions of a large number of classes C and samples
per class 7 in the knowledge set and a small number of samples per class 7 in the task set,
leads then to the following maximum a posteriori (MAP) point estimate for the predictive
probability distribution for a new sample of a task class

p(ylx, D, D) = p(y|x, Wuar),
with Wyap = arg max p(D|W)p(W|W).

This is the same maximization expression as in standard MAP estimation but with a prior
p(W|W) for the weights W that depends on the weights W trained on the knowledge set.

80

4.6 Deep n-Shot Transter Learning

With W = (wy, ..., wc) are the weights of the C task class neurons and W = (@, .. ., We)

of the C knowledge class neurons and the probabilistic model assumption that the prior
is a univariate Gaussian distribution, the prior can be written as

_ C
pWIW) = [[N (welpug, 0%),

(@e — 1) (We — pg)-

e

1 &, 18
po= Ly 2=y
C C

@

uz and 0% are the empirical mean and variance of the trained weights of the knowledge
set class neurons and F is the dimensionality of the feature space (i.e., F = dim(u)). It is
important to note that the prior p(W|W) is not centered at 0 but shifted by 5.

In summary, the concept learning method of [BAUER et al., 2017] biases the weights of
the task class neurons to be close to the mean of the knowledge class neuron weights and
the strength of this bias is inversely proportional to the variance of the knowledge class
neuron weights.

For the error function, this prior results in a L, regularization term, but with the calcu-
lated optimal strength and the shift:

C
E(W) = —logp(PIW) +5s)_ (w. — m) (we —m),

[

s=1/(20%), m = ug.

We call the method using this regularization term OL-mean. The method OL from Sec 4.6.1
is the case where the strength s is set to the default, as used when training the TactNet-II.

4.6.4 Results
Cross-Validation

To evaluate the n-shot learning performance of a classifier with our material dataset with
K = 36 classes, we use a double cross-validation scheme. On the class level, we split the
K = 36 materials randomly into C = 6 task set classes and the C = 30 knowledge set
classes, i.e., we perform 6-way n-shot learning. If not mentioned otherwise, all results are
reported for averaging over S = 100 random splits (but the same random splits are used
for all learning methods). For each of theses material splits, we then perform another
5-fold cross-validation scheme to compute its mean accuracy.

Method Comparison

Fig. 4.12 shows that the n-shot transfer learning methods work very well and reach accu-
racies of > 75% even for 1-shot learning and > 90% for 10-shot learning. Compared to
using no pre-knowledge (NK method), the accuracy gain is as high as 40%.

For 1-shot learning, the fine-tuning as well as the matching based NN methods perform
comparably well, but for large n the accuracy of the NN method is almost 4% lower than

81

Chapter 4 Deep Learning Based Tactile Material Classification

100

H NK
B NN
I OL-mean

80

60

accuracy [%]

40 1 75.4 75.5

20 +

1 5 10
samples

Figure 4.12: Performance comparison of the best transfer learning methods and the NK method
without pre-knowledge.

OL-mean. This shows that learning of a shallow classifier in the feature space, although
on only few examples, still covers better the class structure of the tactile data than a simple
Euclidean metric.

The accuracy for the simple OL fine-tuning method is 75.0 % and, hence, 0.5 % lower
than for OL-mean, proving that our adaption of the concept learning method to our
TactNet-II network architecture works.

Feature Mapping

All the here used transfer learning methods depend on the assumption that TactNet-II
learns a good feature mapping u = ¢(x; ¢) when trained on the knowledge set, so that
classification in the feature space is easier than directly in the input space. To check this
assumption, we perform t-SNE [VAN DER MAATEN and HINTON, 2008] dimensionality
reduction in the input as well as in the learned feature space for the easy and hard to
classify material combinations. Fig. 4.13 shows that in the input space the classes of the
hard material combination are completely mixed up, while in the feature space, except for
two classes, they are well separated. Also for the easy combination, the mapped samples
are more clearly separated.
This visually underpins the rationale of the used deep transfer learning methods.

Sample Efficiency

In robotics, the usefulness of transfer learning depends on the reduction in the number
of samples needed to reach a desired accuracy level. For this, Fig. 4.14 compares the
accuracies of transfer learning (OL-mean) and learning without pre-knowledge (NK) for
n =1,...,80. For 1-shot learning, NK reaches the same accuracy level only for 15 times

82

4.7 Summary

3 26 x 32 x 4 x 8 x 23
12 28 x 34 x b 9 28

Figure 4.13: t-SNE on in the input (upper row) and learned feature space (lower row) for the easy
(left column) and hard material combinations (right column).

more samples. In case an accuracy of > 90% is desired, 10-shot transfer learning still
needs about 5 times less samples than NK.

4.7 Summary

In [17], we have shown for the first time that a robot equipped with a flexible tactile
skin can exceed human performance in tactile material classification. Tactile material
classification is a rather high-level task as it involves longterm memory, but also for the
low-level task of tactile material differentiation, the robot performs better than the human,
hence, the robot truly reaches superhuman tactile performance.

This result was achieved in a real world, non-benchmark setup with a commercially
available flexible tactile skin that was simply taped to Agile Justin’s soft fingertip. With
this setup, we recorded a new tactile dataset with 3600 samples from 36 everyday house-
hold materials and made it publicly available at [TULBURE and BAUML, 2018].

To process the complex and noisy spatio-temporal signal of the tactile skin, we de-
signed and implemented a deep convolutional network architecture for tactile material
classification, TactNet-II, using directly the raw 16000 dimensional spatio-temporal signal
as input. For training, we adapted state of the art deep learning methods like adversarial
training and efficient Bayesian deep learning (MC dropout) for TactNet-II and reached an
accuracy for the material classification task as high as 95.0 %. For material differentiation

83

Chapter 4 Deep Learning Based Tactile Material Classification

100

accuracy [%]

1 5 10 20 40 60 80
samples

I NK BBl OL-mean

Figure 4.14: Performance comparison of n-shot transfer learning (OL-mean method) and learning
without prior knowledge (NK).

we used TactNet-II as a building block in a Siamese-like network architecture and reached
an accuracy as high as 95.4 %.

TactNet-II is an enhanced version of TactNet from our previous work on tactile material
classification [4] where we used a smaller dataset of 6 materials. In [4] we also compared
TactNet with classical tactile classification methods which are based on low dimensional,
manually designed features. In Sec. 4.4.2 we have updated this comparison to the new
TactNet-II and the full 36 material dataset. The results show that the classical methods
perform poorly on the complex spatio-temporal signal of the flexible tactile skin which
clearly shows the superiority of automatic feature extraction in deep end-to-end learning.

As a baseline for highly developed tactile sensing, we performed a thorough human
performance experiment with 15 subjects in [17]. In the material classification task, the
humans performed poorly with an accuracy of at least 30% worse than the robot. For
the low-level material differentiation task, the human performance was still significantly
lower than the robot performance, but by a smaller margin.

Sample efficiency is key in making learning feasible in robotics, as collecting data is an
active and therefore expensive task. In [21] we have shown for the first time, that deep
end-to-end transfer learning for tactile material classification is feasible. By adapting state
of the art deep transfer learning methods to our TactNet-II deep CNN architecture, we
reached a classification accuracy as high as 75.5% for 6-way 1-shot learning and of over
90% for 10-shot learning. This leads to a 15 and 5 time reduction in the number of samples
needed compared to learning without knowledge transfer.

Our analysis shows that the probabilistic concept learning method [BAUER et al., 2017],
which has so far only been used in a vision benchmark example, can be applied to the
real world material classification task. By using the TactNet-II, it outperforms all other
tested deep n-shot transfer learning methods for all 7.

84

4.7 Summary

This work on deep learning based tactile material classification resulted in a double
award finalist [4] at the major robotic conference IROS 2018 and international TV cov-
erage and was robustly demonstrated live at public institute events and numerous lab
demonstrations.

In the future, we want to apply deep learning based processing of the spatio-temporal
tactile sensor signal for tasks like slippage detection in grasping or the evaluation of the
stability of a grasp on an object.

85

Chapter 4 Deep Learning Based Tactile Material Classification

86

Chapter 5

Conclusion

In this thesis, the versatility of the advanced torque controlled mobile humanoid robot
Agile Justin has been significantly increased into two important directions. First, al-
though originally developed as a research platform in dextrous manipulation, Agile Justin
can now also execute complex dynamic manipulation tasks. This was demonstrated with
the challenging task of catching up to two simultaneously thrown balls with its hands.
Second, Agile Justin has now highly developed tactile sensing capabilities that are impor-
tant for dextrous fine manipulation. We have demonstrated its tactile capabilities with the
delicate task of identifying an objects material simply by gently sweeping with a fingertip
over its surface.

The hard realtime capable and highly performant communication layer of our aRDx
robotic software framework is key for realizing complex dynamic manipulation tasks. It
is generally accepted that only by using a component based system architecture in the
development of mobile manipulation applications one can handle the complexity and
the computational demands (including parallel and distributed execution) of their deep
sensor-perception-planning-action loops. But only due to aRDx’s performance, such a
component based system architecture can also be used for dynamic manipulation tasks
with their tight timing constraints.

Besides hard realtime determinism, aRDx provides optimal data packet transport, i.e.,
zero-copy semantics in the process and host and copy-once semantics in the distributed
domain, as well as advanced channel synchronization. It has an elegant hierarchical archi-
tecture where, starting from a simple channel mechanism for intra-process packet trans-
port, the communication in the process, host and distributed domain build upon each
other.

In implementing the challenging dynamic ball catching application for Agile Justin, we
took heavy use of all the features of aRDx. aRDx is not only used for the communication
between the individual subsystems but inside the subsystems as well, e.g., for parallel
execution or synchronization of sensor inputs. Besides developing the challenging visual
ball tracking using only onboard sensing while “everything is moving” and an automatic
and self-contained calibration procedure for the multi-sensorial upper body to provide
the necessary precision, a major contribution is the realization of a unified generation of
the reaching motion for the arms. The catch point selection, motion planning obeying
dynamic and geometrical constraints and the joint interpolation are subsumed in one
nonlinear constrained optimization problem which is solved in realtime. Agile Justin
reaches a success rate of over 90 % in catching up to two simultaneously thrown balls and

87

Chapter 5 Conclusion

the optimization-based planning approach allows for the realization of different catch
behaviors.

We used a similar optimization-based approach for planning an optimal whole-body
trajectory, including the mobile platform, to make Agile Justin throwing the ball back.

Another important component of Agile Justin, but in this thesis only briefly mentioned,
is the realtime visual 3D modeling of the environment which is executed on a wire-
lessly coupled GPU cluster via aRDx communication. On the resulting dense and high-
resolution 3D models we perform optimization-based motion planning for autonomously
acting in previously unknown environments.

For the highly sensitive task of tactile material classification, the signal of a flexible
pressure-sensitive skin which is simply taped to Agile Justin’s soft fingertip is used. We
presented our deep convolutional network architecture TactNet-II which directly uses
the raw 16000 dimensional complex and noisy spatio-temporal signal from one sweep
over a material as input. TactNet-II is trained with advanced deep learning methods like
adversarial training and efficient Bayesian deep learning, namely Monte Carlo dropout,
and reaches a classification accuracy of over 86 %.

For comparison, we also performed a thorough human performance experiment with
15 subjects using the very same 36 material. In the the more high-level cognitive mate-
rial classification task, the humans performed poorly with an accuracy at least 30% worse
than the robot. But also for the low-level material differentiation task, the human perfor-
mance was still significantly lower than the robot performance, but by a smaller margin.

Sample efficiency is key in making learning feasible in robotics, as collecting data is
an active and, hence, expensive task. We have shown for the first time, that deep end-
to-end transfer learning for tactile material classification is feasible. By adapting state
of the art deep transfer learning methods to our TactNet-II deep CNN architecture, we
reached a classification accuracy in this real world setting as high as 75.5% for 6-way 1-
shot learning and of over 90% for 10-shot learning. This leads to a 15 and 5 time reduction
in the number of samples needed compared to learning without knowledge transfer.

The presented work gained respectable attention with the publications becoming once
an award winner and five times award finalists at major robotic conferences. In addi-
tion, Agile Justin has been covered many times in international media including more
than 500000 overall clicks on YouTube. But the new capabilities of Agile Justin also work
robustly and could be regularly shown at trade fairs (Automatica 2010 - 2014), public
institute events and numerous lab demonstrations.

In summary, as stated in [ACKERMAN, 2014], Agile Justin is “arguably one of the most,
if not the most, capable dual-armed mobile humanoid robots in existence”. Regarding its
mechatronic and sensor as well as its perception and planning capabilities, Agile Justin
already comes close to human versatility — at least in a lab setting. Hence, Agile Justin is
an almost ideal research platform for intelligent mobile manipulation where advances in
artificial intelligence are no longer hindered by the constraints of the robotic system. The
approach we are currently pursuing is to use autonomous learning, especially deep rein-
forcement learning, as the core principle in autonomous humanoid robots which robustly
and dextrously operate in complex and changing environments.

88

List of Publications by the Author

Reviewed Publications

In Scientific Journals

[1]

(2]

BAUML, BERTHOLD and GERD HIRZINGER: When hard realtime matters: Software for
complex mechatronic systems. Robotics and Autonomous Systems, 56(1):5-13, 2008.

My share is 95%.

| analyzed the demands of software for advanced mechatronical systems, designed and im-
plemented the software framework aRD, the predecessor of aRDx, and performed benchmark
experiments.

BIRBACH, OLIVER, UDO FRESE and BERTHOLD BAUML: Rapid Calibration of a Multi-
Sensorial Humanoid’s Upper Body: An Automatic and Self-Contained Approach. Interna-
tional Journal of Robotics Research, 2014.

My share is 25%.

This paper is an updated and extended version of [10]. The main extensions are a realtime and
parallel calibration pipeline, which | designed based on aRDx, and new experiments, which |
co-conducted. | wrote parts of the paper.

HAMMER, TOBIAS and BERTHOLD BAUML: The Communication Layer of the aRDx Soft-
ware Framework: Highly Performant and Realtime Deterministic. Journal of Intelligent
and Robotic Systems, 77, 2015.

My share is 50%.
This paper is an updated and extended version of [13] and describes the application of aRDx
for the system architecture of Agile Justin which | designed.

At Peer-Reviewed Conferences

[4] BAISHYA, SHIV and BERTHOLD BAUML: Robust Material Classification with a Tactile

Skin Using Deep Learning. In Proc. IEEE International Conference on Intelligent Robots
and Systems. Best Cognitive Robotics Paper Finalist.
Best Student Paper Finalist., 2016.

My share is 49%.

This publication resulted from the first author's master’s thesis that | initiated and advised.
| designed the feature sets and classification methods for the classical approach to material
classification. In addition, | designed the tactile deep convolutional network architecture
TactNet and the experimental setup for the performance evaluation. The main parts of the
paper, including the result discussion, were written by me.

89

List of Publications by the Author

[5]

[6]

[7]

[8]

90

BAUML, B., T. HAMMER, R. WAGNER, O. BIRBACH, TH. GUMPERT, F. ZHI1, U. HIL-
LENBRAND, ST. BEER, W. FRIEDL and]J. BUTTERFASS: Agile Justin: An Upgraded
Member of DLR’s Family of Lightweight and Torque Controlled Humanoids. In Proc. IEEE
International Conference on Robotics and Automation. Best Video Award., 2014.

My share is 50%.

| designed the holistic system architecture of Agile Justin. In addition, | developed and
implemented the optimization-based ball throwing, designed and implemented the opti-
mization based path planning based on self-acquired 3D models, developed and imple-
mented the tactile material classification and co-developed the auto-calibration method for
the multi-sensorial upper body. The aRDx robotic software framework was designed and
co-implemented by me. | directed the video and wrote the accompanying short paper.

BAUML, BERTHOLD, OLIVER BIRBACH, THOMAS WIMBOCK, UDO FRESE, ALEXAN-
DER DIETRICH and GERD HIRZINGER: Catching Flying Balls with a Mobile Humanoid:
System Overview and Design Considerations. In Proc. IEEE-RAS International Conference
on Humanoid Robots, 2011.

My share is 60%.

| analyzed the requirements for the holistic system architecture and designed it. Based on
the aRD and aRDx frameworks, | implemented the mapping of the software components
onto the robot’s distributed hardware resources. In addition, | contributed the physical ball
trajectory model for the visual ball tracking. | developed and implemented the realtime
generation of the reaching motion based on my optimization-based planner for the arms
and a smart way for using the robot’s kinematic sub-chains. The experiments were designed
and co-conducted by me.

BAUML, BERTHOLD, FLORIAN SCHMIDT, THOMAS WIMBOCK, OLIVER BIRBACH,
ALEX DIETRICH, MATTHIAS FUCHS, WERNER FRIEDL, UDO FRESE, CHRISTOPH
BORST, MARKUS GREBENSTEIN, OLIVER EIBERGER and GERD HIRZINGER: Catching
Flying Balls and Preparing Coffee: Humanoid Rollin’Justin Performs Dynamic and Sen-
sitive Tasks. In Proc. IEEE International Conference on Robotics and Automation. Best
Video Finalist., 2011.

My share is 30%.

| directed and contributed to the first part of the video (70% of the video) presenting
ball catching on the mobile humanoid robot Justin and wrote the accompanying short
paper. In addition, | co-developed the visual ball tracking and developed and implemented
the optimization-based realtime generation of the reaching motion. | designed the holistic
system architecture and, based on the aRD and aRDx framework, implemented the mapping
of the software components onto the distributed hardware resources of Agile Justin. The
experiments were co-conducted by me.

BAUML, BERTHOLD, THOMAS WIMBOCK and GERD HIRZINGER: Kinematically Opti-
mal Catching a Flying Ball with a Hand-Arm-System. In Proc. IEEE International Confer-
ence on Intelligent Robots and Systems, 2010.

My share is 80%.
| developed the generation of the reaching motion of the arm as a unified nonlinear constraint

[9]

[10]

[11]

[13]

optimization problem and implemented a parallel distributed realtime solver. In addition, |
designed and implemented the system architecture fulfilling the realtime demands of the
dynamic task of ball catching based on our aRD software framework. The validation exper-
iments were conducted and analyzed by me and | wrote the paper.

BIRBACH, OLIVER and BERTHOLD BAUML: Calibrating a Pair of Inertial Sensors at
Opposite Ends of an Imperfect Kinematic Chain. In Proc. IEEE International Conference on
Intelligent Robots and Systems, 2014.

My share is 30%.

| provided the idea of how to calibrate the two IMUs of Agile Justin despite the imperfect
kinematic chain between them. In addition, | co-developed the mathematical models and
conducted the experiments on Agile Justin.

BIRBACH, OLIVER, BERTHOLD BAUML and UDO FRESE: Automatic and Self-Contained
Calibration of a Multi-Sensorial Humanoid’s Upper Body. In Proc. IEEE International Con-
ference on Robotics and Automation. Best Vision Paper Finalist., 2012.

My share is 20%.

| contributed the underlying idea for automatic calibration to use the robot to automatically
record many, albeit relatively imprecise, measurements instead of a few measurements of a
precise but external calibration pattern. In addition, | co-developed the models for the sensors
and the kinematic chain with soft joints and integrated the auto-calibration implementation
on Agile Justin using our aRDx software framework and co-conducted the experiments.

BIRBACH, OLIVER, UDO FRESE and BERTHOLD BAUML: Realtime Perception for Catch-
ing a Flying Ball with a Mobile Humanoid. In IEEE Proc. International Conference on
Robotics and Automation, 2011.

My share is 20%.

| contributed the physical ball trajectory model and co-developed the sensor models. In
addition, | co-invented the idea of using a normalization scheme based on the local image
intensity variance for robust circle detection. The integration of the ball tracking onto the
distributed system resources of Agile Justin based on aRD/aRDx was designed and co-
implemented by me. | also co-conducted the evaluation experiments.

CARRILLO, HENRY, OLIVER BIRBACH, HOLGER TAUBIG, BERTHOLD BAUML, UDO
FRESE and JOSE A. CASTELLANOS: On Task-Oriented Criteria for Configurations Selec-
tion in Robot Calibration. In Proc. IEEE International Conference on Robotics and Automa-
tion, 2013.

My share is 10%.

This is based on our prior contributions to automatic humanoid robot calibration. | assisted
during the design of the proposed method and co-conducted the experiments on the robot
for evaluation.

HAMMER, TOBIAS and BERTHOLD BAUML: The Highly Performant and Realtime De-
terministic Communication Layer of the aRDx Software Framework. In Proc. Int. Conf. on

Advanced Robotics (ICAR), 2013.

91

List of Publications by the Author

[14]

[15]

[16]

[17]

[18]

92

My share is 50%.

| provided the requirement analysis and design considerations for a performant robotic soft-
ware framework and designed the aRDx architecture and its elegant hierarchical implementa-
tion. In addition, | designed the stress test benchmarks for the communication performance
of robotic frameworks and did the discussion of the results and wrote the main part of the

paper.

KONIETSCHKE, RAINER, TIM BODENMUELLER, CHRISTIAN RINK, ANDREA
SCHWIER, BERTHOLD BAEUML and GERD HIRZINGER: Optimal Setup of the DLR
MiroSurge Telerobotic System for Minimally Invasive Surgery. In Proc. IEEE International
Conference Robotics and Automation (ICRA), 2011.

My share is 10%.
| implemented the GUI on the handheld device (iPhone) and integrated it in the aRD based
robotic surgery system architecture. For the latter, | ported our aRD framework to the iOS
operating system.

TAUBIG, H., B. BAUML and U. FRESE: Real-Time Swept Volume and Distance Compu-
tation for Self Collision Detection. In Proc. IEEE International Conference on Intelligent
Robots and Systems. Best Student Paper Finalist., 2011.

My share is 15%.

| contributed to the design and the precise and clear writing up of the method in the paper.
Based on our aRD framework, | designed and co-implemented the integration of the realtime
collision detection on Agile Justin and conducted the experiments.

TAUBIG, HOLGER, BERTHOLD BAUML and UDO FRESE: Real-time Continuous Colli-
sion Detection for Mobile Manipulators — A General Approach. In Proc. IEEE-RAS Inter-
national Conference on Humanoid Robots, 2012.

My share is 10%.

| contributed to the design and the clear formulation of the method. Based on our aRD
framework, | designed and co-implemented the integration of the realtime collision detection
on Agile Justin and conducted the experiments.

TULBURE, ANDREEA and BERTHOLD BAUML: Superhuman Performance in Tactile Ma-
terial Classification and Differentiation with a Flexible Pressure-Sensitive Skin. In Proc.
IEEE/RAS International Conference on Humanoid Robots, 2018.

My share is 50%.

This publication resulted from the first author's master’s thesis that | initiated and advised.
| designed the extended tactile deep convolutional network architecture TactNet-Il and the
experimental scenarios of material classification and differentiation. In addition, | designed
the human performance experiments and wrote main parts of the paper.

WAGNER, RENE, BERTHOLD BAUML and UDO FRESE: 3D Modeling, Distance and
Gradient Computation for Motion Planning: A Direct GPGPU Approach. In Proc. IEEE
International Conference on Robotics and Automation, 2013.

My share is 20%.
| contributed the underlying idea of efficiently combining the models from dense SLAM with

[19]

optimization-based path planning (OMP) by directly computing the EDT (Euclidian distance
transform) from the TSDF models. | implemented the optimization-based path planning,
designed the aRDx based software architecture for integrating the method on Agile Justin
and co-conducted the experiments. The part of the paper about OMP were written by me.

WAGNER, RENE, UDO FRESE and BERTHOLD BAUML: Real-Time Dense Multi-Scale
Workspace Modeling on a Humanoid Robot. In Proc. IEEE International Conference on
Intelligent Robots and Systems, 2013.

My share is 15%.
| co-designed the multi-scale approach including the computation of the EDT for path
planning and co-conducted the experiments on Agile Justin and wrote parts of the paper.

At Peer-Reviewed Workshops

[20]

BAUML, BERTHOLD: One for (Almost) All: Using a Modern Programmable Programming
Language in Robotics. In Proc. IEEE International Conference on Robotics and Automation,
Keynote of SDIR Workshop, 2013.

My share is 100%.
This paper provides an analysis of using the Racket programming language as the base for
the higher level layers of our aRDx robotic software framework.

Submitted Publications

At Peer-Reviewed Conferences

[21]

BAUML, BERTHOLD and ANDREEA TULBURE: Deep n-Shot Transfer Learning for Tactile
Material Classification with a Flexible Pressure-Sensitive Skin. In Proc. IEEE International
Conference on Robotics and Automation, 2019.

My share is 70%.

| designed the adaption of state of the art n-shot transfer learning methods to our tactile
deep convolutional network architecture TactNet-Il. In addition, | designed the evaluation
scenarios based on splitting our material dataset in a knowledge and task set and provided
the discussion of the results. The paper was written by me.

93

List of Publications by the Author

94

References

[ABADI et al,, 2015] ABADI, MARTIN, A. AGARWAL, P. BARHAM, E. BREVDO, Z. CHEN,
C. CI1TRO, G. S. CORRADO, A. DAVIS, J. DEAN, M. DEVIN, S. GHEMAWAT, I. GOODFELLOW,
A. HARP, G. IRVING, M. ISARD, Y. JiA, R. JOZEFOWICZ, L. KAISER, M. KUDLUR, J. LEVEN-
BERG, D. MANE, R. MONGA, S. MOORE, D. MURRAY, C. OLAH, M. SCHUSTER, J. SHLENS,
B. STEINER, I. SUTSKEVER, K. TALWAR, P. TUCKER, V. VANHOUCKE, V. VASUDEVAN, F. VIE-
GAS, O. VINYALS, P. WARDEN, M. WATTENBERG, M. WICKE, Y. YU and X. ZHENG (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Technical Report,
Google Research.

[ACKERMAN, 2014] ACKERMAN, EVAN (2014). IEEE Spectrum Robotics Video Monday. https://
spectrum.ieee.org/automaton/robotics/robotics-hardware/video-monday-icra-2014.

[ADLINK] ADLINK. ADLINK OpenSplice DDS. http://www.prismtech.com/dds-community.

[ASFOUR et al., 2013] ASFOUR, T., J. SCHILL, H. PETERS, C. KLAS, J. BUCKERA, C. SANDER,
S. ScHULZ, A. KARGOV, T. WERNER, and V. BARTENBACH (2013). ARMAR-4: A 63 DOF
Torque Controlled Humanoid Robotnoid Robot. In Proc. IEEE/RAS International Conference on Hu-
manoid Robots.

[ASFOUR et al., 2018] ASFOUR, TAMIM, L. KAUL, M. WACHTER, S. OTTENHAUS, P. WEINER,
S. RADER, R. GRIMM, Y. ZHOU, M. GROTZ, F. PAUS, D. SHINGAREY and H. HAUBERT (2018).
ARMAR-6: A Collaborative Humanoid Robot for Industrial Environments. In IEEE/RAS International
Conference on Humanoid Robots (Humanoids).

[BAE et al.,, 2012] BAE, J., S. PARK, J. PARK, M. BAEG, D. KiM and S. OH (2012). Development of a
low cost anthropomorphic robot hand with high capability. In 2012 IEEE/RS] International Conference
on Intelligent Robots and Systems, pp. 4776—4782.

[BAISHYA and BAUML, 2016] BAISHYA, SHIV and B. BAUML (2016). Robust Material Classification
with a Tactile Skin Using Deep Learning. https://wuw.youtube.com/watch?v=623yRPx9Pkc.

[BAUER et al., 2017] BAUER, MATTHIAS, M. ROJAS-CARULLA, J. SWIATKOWSKI, B. SCHOELKOPF
and R. E. TURNER (2017). Discriminative k-shot learning using probabilistic models. In NIPS work-
shop on Bayesian Deep Learning.

[BAUML, 2012] BAUML, BERTHOLD (2012). Agile and Rollin” Justin Playing Ball. http://www.
youtube. com/watch?v=93WHRSKg3gE.

[BAUML and HIRZINGER, 2006] BAUML, BERTHOLD and G. HIRZINGER (2006). Agile Robot Devel-
opment (aRD): A Pragmatic Approach to Robotic Software. In Proc. IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS).

[BIRBACH, 2012] BIRBACH, OLIVER (2012). Tracking and Calibration for a Ball Catching Humanoid
Robot. PhD thesis, Universitdt Bremen, Fachbereich 3 (Mathematik und Informatik).

95

https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-monday-icra-2014
https://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-monday-icra-2014
http://www.prismtech.com/dds-community
https://www.youtube.com/watch?v=623yRPx9Pkc
http://www.youtube.com/watch?v=93WHRSKg3gE
http://www.youtube.com/watch?v=93WHRSKg3gE

References

[BIRBACH and FRESE, 2013] BIRBACH, OLIVER and U. FRESE (2013). A Precise Tracking Algorithm
Based on Raw Detector Responses and a Physical Motion Model. In Proc. IEEE International Conference
on Robotics and Automation, pp. 4746 — 4751.

[BisHOP, 2006] BisHOP, CHRISTOPHER M. (2006). Pattern Recognition and Machine Learning.
Springer.

[BORST et al., 2009] Borst, C., T. WIMBOCK, F. SCHMIDT, M. FUCHS, B. BRUNNER,
F. ZACHARIAS, P. R. GIORDANO, R. KONIETSCHKE, W. SEPP, S. FUCHS, C. RINK, A. ALBU-
SCHAFFER and G. HIRZINGER (2009). Rollin’ Justin: Mobile Platform with Variable Base. In Proc.
IEEE International Conference on Robotics and Automation, pp. 1597-1598.

[BORST et al., 2007] BORST, CH., C. OTT, T. WIMBOECK, B. BRUNNER, F. ZACHARIAS, B. BAUML,
U. HILLENBRAND, S. HADDADIN, A. ALBU-SCHAEFFER and G. HIRZINGER (2007). A Hu-
manoid Upper Body System for Two-Handed Manipulation. In Proc. IEEE International Conference on
Robotics and Automation (ICRA).

[BOSTON DYNAMICS, 2018] BOSTON DYNAMICS (2018). Atlas: The World’s Most Dynamic Hu-
manoid. https://www.bostondynamics.com/atlas.

[BUTTERFASS et al., 2001] BUTTERFASS, J., M. GREBENSTEIN, H. LIU and G. HIRZINGER (2001).
DLR-Hand II: Next Generation of a Dextrous Robot Hand. In Proc. IEEE International Conference on
Robotics and Automation, pp. 109-114.

[BYRAVAN et al,, 2014] BYRAVAN, A., B. BOOTS, S. SRINIVASA and D. FOX (2014). Space-Time
Functional Gradient Optimization for Motion Planning. In Proc IEEE International Conference on
Robotics and Automation.

[CAP'N PROTO] CAP’N PROTO. Cap’n Proto. https://capnproto.org.

[CHATHURANGA et al,, 2015] CHATHURANGA, DAMITH SURESH, Z. WANG, Y. NOH,
T. NANAYAKKARA and S. HIRAI (2015). Robust Real time Material Classification Algorithm
Using Soft Three Axis Tactile Sensor: Evaluation of the Algorithm. In Proc. IEEE International
Conference on Intelligent Robots and Systems.

[CHENG et al., 2006] CHENG, G.,S.-H. HYON, J. MORIMOTO, A. UDE, G. COLVIN, W. SCROGGIN
and S. C. JACOBSEN (2006). Cb: A humanoid research platform for exploring neuroscience. IEEE-RAS
International Conference on Humanoid Robots.

[COHEN, 1995] COHEN, LEON (1995). Time-Frequency Analysis. Prentice-Hall.

[CONNEXT, 2018] CONNEXT, RTI (2018). Connext DDS Micro. https://www.rti.com/products/
connext-dds-micro.

[COX and HINGORANI, 1996] COX, INGEMAR J. and S. L. HINGORANI (1996). An Efficient Im-

plementation of Reid’s Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of
Visual Tracking. IEEE Trans. Pattern Anal. Mach. Intell., 18(2):138-150.

[DAHIYA et al., 2013] DAHIYA, RAVINDER S., P. MITTENDORFER, M. VALLE, G. CHENG and V. J.
LUMELSKY (2013). Directions Toward Effective Utilization of Tactile Skin: A Review. IEEE Sensors
Journal, 13(11).

[EGUILUZ et al., 2016] EGUILUZ, A. GOMEZ, I. RANO, S. COLEMAN and T. MCGINNITY (2016).
Continuous Material Identification through Tactile Sensing. In Proc. Int. Joint Conference on Neural
Networks.

96

https://www.bostondynamics.com/atlas
https://capnproto.org
https://www.rti.com/products/connext-dds-micro
https://www.rti.com/products/connext-dds-micro

[EINHORN et al., 2012] EINHORN, ERIK, T. LANGNER, R. STRICKER, C. MARTIN and H.-M.
GROSsS (2012). MIRA - Middleware for Robotic Applications. In Proc. IEEE International Confer-
ence on Intelligent Robots and Systems.

[ENGLSBERGER et al., 2014] ENGLSBERGER, J., A. WERNER, C. OTT, B. HENZE, M. A. ROA,
G. GAROFALO, R. BURGER, A. BEYER, O. EIBERGER, K. SCHMID and A. ALBU-SCHAFFER
(2014). Overview of the torque-controlled humanoid robot TORO. In 2014 IEEE-RAS International
Conference on Humanoid Robots, pp. 916-923.

[EPROSIMA] EPROSIMA. eProsima FastRTPS. http://www.eprosima.com/index.php/
products-all/eprosima-fast-rtps.

[FEI-FEI et al., 2006] FEI-FEI, L1, R. FERGUS and P. PERONA (2006). One-shot learning of object
categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):594-611.

[FISHEL and LOEB, 2012] FISHEL, J.A. and G. LOEB (2012). Bayesian exploration for intelligent iden-
tification of textures. Frontiers in Neurorobotics, 6(4):1-20.

[FLATBUFFERS] FLATBUFFERS. FlatBuffers. https://google.github.io/flatbuffers/.

[FRESE et al., 2001] FRESE, U., B. BAUML, S. HAIDACHER, G. SCHREIBER, I. SCHAEFER,
M. HAHNLE and G. HIRZINGER (2001). Off-the-Shelf Vision for a Robotic Ball Catcher. In Proc.
IEEE/RS] International Conference on Intelligent Robots and Systems.

[FucHS et al., 2010] FucHS, STEFAN, S. HADDADIN, M. KELLER, S. PARUSEL, A. KOLB and
M. SuPPA (2010). Cooperative bin-picking with Time-of-Flight camera and impedance controlled DLR
lightweight robot II1. In Proc. IEEE International Conference on Intelligent Robots and Systems.

[GAL and GHAHRAMANI, 2016] GAL, YARIN and Z. GHAHRAMANI (2016). Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep Learning. In Proc. Int. Conference on Ma-
chine Learning.

[GALLMEISTER, 1995] GALLMEISTER, BILL O. (1995). POSIX. 4: Programming for the Real World.
O'Reilly.

[GAO etal., 2016] GAO, YANG, L. A. HENDRICKS, K. J. KUCHENBECKER and T. DARRELL (2016).
Deep Learning for Tactile Understanding From Visual and Haptic Data. In Proc. IEEE International
Conference on Robotics and Automation.

[GERKEY, 2015] GERKEY, BRIAN (2015). Why ROS 2.0?. https://design.ros2.org/articles/
why_ros2.html.

[GERKEY, 2018] GERKEY, BRIAN (2018). Introducing the ROS 2 Technical Steering Committee. https:
//discourse.ros.org/t/introducing-the-ros-2-technical-steering-committee/6132.

[GNU] GNU. GCC, the GNU Compiler Collection. gnugcc.

[GONZALEZ-BANOS et al., 2006] GONZALEZ-BANOS, H.H., D. HsU and J. LATOMBE (2006). Mo-
tion planning: Recent developments. In GE, S.S. UND FE.L. LEWIS, ed.: Automous Mobile Robots:
Sensing, Control, Decision-Making and Applications. CRC.

[GOODFELLOW et al., 2014] GOODFELLOW, I. J., J. SHLENS and C. SZEGEDY (2014). Explaining
and Harnessing Adversarial Examples. ArXiv e-prints.

97

http://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
http://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://google.github.io/flatbuffers/
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
https://discourse.ros.org/t/introducing-the-ros-2-technical-steering-committee/6132
https://discourse.ros.org/t/introducing-the-ros-2-technical-steering-committee/6132
gnu gcc

References

[GUTIERREZ et al., 2018] GUTIERREZ, CARLOS SAN VICENTE, L. U. S. JUAN, I. Z. UGARTE and
V. M. VILCHES (2018). Towards a distributed and real-time framework for robots: Evaluation of ROS
2.0 communications for real-time robotic applications.

[HAGN et al., 2010] HAGN, ULRICH, R. KONIETSCHKE, A. TOBERGTE, M. NICKL, S. JORG,
B. KUBLER, G. PAssiG, M. GROGER, F. FROHLICH, U. SEIBOLD, L. LE-TIEN, A. ALBU-
SCHAFFER, A. NOTHHELFER, F. HACKER, M. GREBENSTEIN and G. HIRZINGER (2010). DLR
MiroSurge: a versatile system for research in endoscopic telesurgery. Int] Comput Assist Radiol Surg,
5(2):183-193.

[HENNING, 2004] HENNING, M. (2004). A new approach to object-oriented middleware. IEEE Internet
Computing, 8(1):66-75.

[HINTON et al., 2012] HINTON, GEOFFREY, L. DENG, D. YU, G. DAHL, A. MOHAMED, N. JAITLY,
A. SENIOR, V. VANHOUCKE, P. NGUYEN, T. SAINATH and B. KINGSBURY (2012). Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82—97.

[HIRZINGER et al., 2002] HIRZINGER, G., N. SPORER, A. ALBU-SCHAFFER, M. HAHNLE,
R. KRENN, A. PAscucct and M. SCHEDL (2002). DLR’s Torque-Controlled Light Weight Robot 111
- are we Reaching the Technological Limits now?. In Proc. IEEE International Conference on Robotics
and Automation, pp. 1710-1716.

[HOELSCHER et al., 2015] HOELSCHER, JANINE, J. PETERS and T. HERMANS (2015). Evaluation of
Tactile Feature Extraction for Interactive Object Recognition. In Proc. IEEE-RAS International Confer-
ence on Humanoid Robots.

[HOFFMAN et al., 2014] HOFFMAN, JuDY, E. TZENG, J. DONAHUE, Y. JiA, K. SAENKO and
T. DARRELL (2014). One-Shot Adaptation of Supervised Deep Convolutional Models. In Proc. In-
ternational Conference in Learning and Representation.

[HONG and SLOTINE, 1995] HONG, W. and J. SLOTINE (1995). Experiments in Hand-Eye Coordina-
tion Using Active Vision. In Proc. Fourth International Symposium on Experimental Robotics.

[HOPPNER et al., 2017] HOPPNER, HANNES, M. GROSSE-DUNKER, G. STILLFRIED, J. BAYER and
P. VAN DER SMAGT (2017). Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be
Decoupled from Force by Cocontraction and Predicted from Electromyography. Frontiers in Neuro-
robotics, 11:17.

[HOVE and SLOTINE, 1991] HOVE, B.M. and J. SLOTINE (1991). Experiments in Robotic Catching.
In Proc. IEEE American Control Conference, pp. 380-385.

[IOFFE and SZEGEDY, 2015] IOFFE, SERGEY and C. SZEGEDY (2015). Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift. In ICML.

[IWATA and SUGANO, 2009] IWATA, HIROYASU and S. SUGANO (2009). Design of Human Symbiotic
Robot TWENDY-ONE. In Proc. IEEE International Conference on Robotics and Automation.

[JORG et al., 2014] JORG, STEFAN, J. TULLY and A. ALBU-SCHAFFER (2014). The Hardware Abstrac-
tion Layer - Supporting Control Design by Tackling the Complexity of Humanoid Robot Hardware. In
Proc. IEEE International Conference on Robotics and Automation.

98

[KABOLI et al., 2014] KABOLI, MOHSEN, P. MITTENDORFER, V. HUGEL and G. CHENG (2014).
Humanoids Learn Object Properties From Robust Tactile Feature Descriptors via Multi-Modal Artificial
Skin. In Proc. IEEE/RAS International Conference on Humanoid Robots.

[KABOLI et al., 2015] KABOLI, MOHSEN, A. D. L. ROsA, R. WALKER and G. CHENG (2015). In-
Hand Object Recognition via Texture Properties with Robotic Hands, Artificial Skin, and Novel Tactile
Descriptors. In Proc. IEEE/RAS International Conference on Humanoid Robots.

[KABOLI et al., 2016] KABOLI, MOHSEN, R. WALKER and G. CHENG (2016). Re-using Prior Tactile
Experience by Robotic Hands to Discriminate In-Hand Objects via Texture Properties. In Proc. IEEE
International Conference on Robotics and Automation.

[KANEKO et al., 2011] KANEKO, K., F. KANEHIRO, M. MORISAWA, K. AKACHI, G. MIYAMORI,
A. HAYASHI and N. KANEHIRA (2011). Humanoid robot HRP-4 - humanoid robotics platform with
lightweight and slim body. In Proc. IEEE International Conference on Intelligent Robots and System.

[KAPPASSOV et al., 2015] KAPPASSOV, ZHANAT, J. A. C. RAMON and V. PERDEREAU (2015). Tac-

tile sensing in dexterous robot hands - Review. Robotics and Autonomous Systems, 74(Part A):195-
220.

[KARAMAN et al., 2011] KARAMAN, S., M. WALTER, A. PEREZ, E. FRAZZOLI and S. TELLER
(2011). Anytime Motion Planning using the RRT*. In IEEE International Conference on Robotics
and Automation (ICRA).

[KAY, 2016] KAY, JACKIE (2016). Proposal for Implementation of Real-time Systems in ROS 2. http:
//design.ros2.org/articles/realtime_proposal.html.

[KERR et al., 2014] KERR, E., T. M. MCGINNITY and S. COLEMAN (2014). Material classification
based on thermal and surface texture properties evaluated against human performance. In 13th Interna-
tional Conference on Control Automation Robotics Vision (ICARCV), pp. 444—449.

[KERZEL et al., 2017] KERZEL, M., M. ALI, H. G. NG and S. WERMTER (2017). Haptic material
classification with a multi-channel neural network. In 2017 International Joint Conference on Neural
Networks (IJCNN).

[KIM et al., 2014] KM, S., A. SHUKLA and A. BILLARD (2014). Catching Objects in Flight. IEEE
Transactions on Robotics, 30(5).

[KINGMA and Ba, 2015] KINGMA, DIEDERIK P. and J. BA (2015). Adam: A Method for Stochastic
Optimization. In Proc. ICLR.

[KOBER et al., 2012] KOBER, J., M. GLISSON and M. MISTRY (2012). Playing Catch and Juggling
with a Humanoid Robot. In Proc. IEEE-RAS International Conference on Humanoid Robots.

[KocC et al., 2018] Koc, OKAN, G. MAEDA, G. MAEDA and J. PETERS (2018). Online optimal tra-
jectory generation for robot table tennis. Robotics and Autonomous Systems, 105:121-137.

[KOCH et al., 2015] KOcCH, G., R. ZEMEL and R. SALAKHUTDINOV (2015). Siamese neural networks
for one-shot image recognition. In Proc. ICML Deep Learning workshop.

[KOHAVI, 1995] KOHAVI, RON (1995). A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection. In Proc. Int. Joint Conference on Artificial Intelligence.

99

http://design.ros2.org/articles/realtime_proposal.html
http://design.ros2.org/articles/realtime_proposal.html

References

[KREYSSIG, 2016] KREYSSIG, JULIA (2016). Geometrical Calibration of a Tactile Skin on a Humanoid
Robot. Master’s thesis, Technische Universitit Miinchen Fakultat fiir Informatik.

[KRIZHEVSKY et al., 2012] KRIZHEVSKY, A., I. SUTSKEVER and G. HINTON (2012). ImageNet clas-
sification with deep convolutional neural networks. In Proc. NIPS.

[LABS, 2012] LABS, SANDIA NATIONAL (2012). The Sandia Hand. https://www.sandia.gov/
research/robotics/_assets/documents/SandiaHand_Handout_Final.pdf.

[LAVALLE, 2006] LAVALLE, STEVEN M. (2006). Planning Algorithms. Cambridge University Press.

[LEITE et al., 2012] LEITE, ALEXANDRE CARVALHO, B. SCHAFER and M. L. DE OLIVEIRA E
SOUZA (2012). Fault-Tolerant Control Strategy for Steering Failures in Wheeled Planetary Rovers.
Journal of Robotics, 2012.

[LEMBURG et al., 2011] LEMBURG, J., J. DE GEA FERNANDEZ, M. EICH, D. MRONGA, P. KAMP-
MANN, A. VOGT, A. AGGARWAL, Y. SHI and F. KIRCHNER (2011). AILA - design of an au-
tonomous mobile dual-arm robot. In 2011 IEEE International Conference on Robotics and Automation,
pp- 5147-5153.

[LT and ADELSON, 2013] LI, Rul and E. H. ADELSON (2013). Sensing and Recognizing Surface Tex-
tures Using a GelSight Sensor. In Proc. CVPR.

[VAN DER MAATEN and HINTON, 2008] MAATEN, L.J.P. VAN DER and G. HINTON (2008). Visu-
alizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research, 9:2579-2605.

[MARUYAMA et al., 2016] MARUYAMA, YUYA, S. KATO and T. AZuMI (2016). Exploring the perfor-
mance of ROS2. In Proc. IEEE Conference on Embedded Software.

[MATHWORKS] MATHWORKS. The MathWorks. http://www.mathworks.com/.

[METTA et al., 2006] METTA, G., P. FITZPATRICK and L. NATALE (2006). YARP: Yet Another Robot
Plattform. International Journal of Advanced Robotics, 3(1):43-48.

[METTA et al., 2008] METTA, GIORGIO, G. SANDINI, D. VERNON, L. NATALE and F. NORI (2008).
The iCub humanoid robot: an open platform for research in embodied cognition. In Proc. of the 8th
Workshop on Performance Metrics for Intelligent Systems.

[MITTENDORFER and CHENG, 2011] MITTENDORFER, PHILIPP and G. CHENG (2011). Humanoid
Multimodal Tactile-Sensing Modules. IEEE Trans. Robot., 27(3):401-410.

[NATALE et al., 2016] NATALE, LORENZO, A. PAIKAN, M. RANDAZZO and D. E. DOMENICHELLI

(2016). The iCub Software Architecture: Evolution and Lessons Learned. Frontiers in Robotics and
Al, 3:24.

[NEWCOMBE et al., 2011] NEWCOMBE, RICHARD A., S. I1zADI, O. HILLIGES, D. MOLYNEAUX,
D. KM, A. J. DAVISON, P. KOHLI, J. SHOTTON, S. HODGES and A. FITZGIBBON (2011). Kinect-
Fusion: Real-time dense surface mapping and tracking. In Proc. IEEE International Conference on
Mixed and Augmented Reality.

[NISHIWAKI et al., 1997] NI1sHIWAKI, KOICHI, A. KONNO, K. NAGASHIMA, M. INABA and
H. INOUE (1997). The Humanoid Saika that Catches a Thrown Ball. In Proc. IEEE International
Workshop on Robot and Human Communication, pp. 94-99.

100

https://www.sandia.gov/research/robotics/_assets/documents/SandiaHand_Handout_Final.pdf
https://www.sandia.gov/research/robotics/_assets/documents/SandiaHand_Handout_Final.pdf
http://www.mathworks.com/

[OPTOFORCE] OPTOFORCE. OptoForce. http://optoforce.com/3dsensor/.
[OROCOS] OROCOS. The Orocos Project. http://www.orocos.org.

[OSRF, 2015] OSRF (2015). ROS 2 alpha releases. ~ https://index.ros.org/doc/ros2/
Alpha-Overview/.

[OSREF, 2018a] OSRF (2018a). ROS 2 Releases. https:/ /index.ros.org/doc/ros2/Releases/ .
[OSREF, 2018b] OSREF (2018b). ROS 2 Roadmap. https://index.ros.org/doc/ros2/Roadmap/.

[OTT et al., 2010] OTT, CHRISTIAN, C. BAUMGARTNER, J. MAYR, M. FUCHS, R. BURGER, D. LEE,
O. EIBERGER, A. ALBU-SCHAFFER, M. GREBENSTEIN and G. HIRZINGER (2010). Development
of a Biped Robot with Torque Controlled Joints. In Proceedings of IEEE-RAS International Conference
on Humanoid Robots.

[OTT et al., 2006] OTT, CHRISTIAN, O. EIBERGER, W. FRIEDL, B. BAUML, U. HILLENBRAND et al.
(2006). A Humanoid Two-Arm System for Dexterous Manipulation. In Proc. IEEE/RAS International
Conference on Humanoid Robots (HUMANOQOIDS).

[PAIKAN et al., 2015] PAIKAN, A., U. PATTACINI, D. DOMENICHELLI, M. RANDAZZO, G. METTA
and L. NATALE (2015). A Best-Effort Approach for Run-Time Channel Prioritization in Real-Time
Robotic Application. In Proc. IEEE International Conference on Intelligent Robots and Systems.

[PAL ROBOTICS, 2018] PAL ROBOTICS (2018). TALOS. http://pal-robotics.com/en/
products/talos/.

[PANGERCIC, 2018] PANGERCIC, DEJAN (2018). ROS2 for real-time applications (on ROS discourse).
https://discourse.ros.org/t/ros2-for-real-time-applications/6493/4.

[PARDO-CASTELLOTE, 2003] PARDO-CASTELLOTE, G. (2003). OMG Data-Distribution Service: ar-
chitectural overview. In 23rd International Conference on Distributed Computing Systems Workshops,
2003. Proceedings., pp. 200-206.

[PARUSEL et al., 2011] PARUSEL, SVEN, S. HADDADIN and A. ALBU-SCHAFFER (2011). Modular
state-based behavior control for safe human-robot interaction: A lightweight control architecture for a
lightweight robot. In Proc. IEEE International Conference on Robotics and Automation.

[QUIGLEY et al., 2009] QUIGLEY, MORGAN, B. GERKEY, K. CONLEY, J. FAUST, T. FOOTE, J. LEIBS,
E. BERGER, R. WHEELER and A. NG (2009). ROS: an open-source Robot Operating System. In
Proceedings of the Open-Source Software workshop at the International Conference on Robotics and
Automation (ICRA).

[RACKET] RACKET. Racket. http://racket-lang.org.

[RATLIFF et al., 2009] RATLIFF, NATHAN, M. ZUCKER, J. A. D. BAGNELL and S. SRINIVASA
(2009). CHOMP: Gradient Optimization Techniques for Efficient Motion Planning. In IEEE Int.
Conf. on Robotics and Automation (ICRA).

[RAvVI and LAROCHELLE, 2017] RAVI, SACHIN and H. LAROCHELLE (2017). OPTIMIZATION AS
A MODEL FOR FEW-SHOT LEARNING. In Proc. International Conference on Learning Represen-
tations.

[REPPY, 1999] REPPY, J. H. (1999). Concurrent Programming in ML. Cambridge University Press.

101

http://optoforce.com/3dsensor/
http://www.orocos.org
https://index.ros.org/doc/ros2/Alpha-Overview/
https://index.ros.org/doc/ros2/Alpha-Overview/
https://index.ros.org/doc/ros2/Roadmap/
http://pal-robotics.com/en/products/talos/
http://pal-robotics.com/en/products/talos/
https://discourse.ros.org/t/ros2-for-real-time-applications/6493/4
http://racket-lang.org

References

[RILEY and ATKESON, 2002] RILEY, MARCIA and C. G. ATKESON (2002). Robot Catching: Towards
Engaging Human-Humanoid Interaction. Autonomous Robots, 12:119—128.

[ROCK] ROCK. Rock: the Robot Construction Kit. https://www.rock-robotics.org.
[ROS2] ROS2. ROS 2. https://index.ros.org/doc/ros2/.
[RTI] RTI. RTI Connext. https://www.rti.com/products.

[SAKAGAMI et al., 2002] SAKAGAMI, Y., R. WATANABE, C. AOYAMA, S. MATSUNAGA, N. Hi-
GAKI and K. FUJIMURA (2002). The intelligent asimo: system overview and integration. In Proc.
IEEE International Conference on Intelligent Robots and Systems.

[SALEHIAN et al., 2016] SALEHIAN, SEYED SINA MIRRAZAVI, M. KHORAMSHAHI and A. BIL-
LARD (2016). A Dynamical System Approach for Catching Softly a Flying Object: Theory and Experi-
ment. IEEE Transactions on Robotics.

[SCHMITZ et al., 2010] SCHMITZ, ALEXANDER, M. MAGGIALI, L. NATALE, B. BONINO and
G. METTA (2010). A Tactile Sensor for the Fingertips of the Humanoid Robot iCub. In Proc. IEEE
International Conference on Intelligent Robots and Systems.

[SHADOW] SHADOW. Shadow Hand. https://www.shadowrobot.com.

[SINAPOV et al., 2011] SINAPOV, JIVKO, V. SUKHOY, R. SAHAI and A. STOYTCHEV (2011). Vi-
brotactile Recognition and Categorization of Surfaces by a Humanoid Robot. 1EEE Transactions on
Robotics, 27(3):488—497.

[SMITH and CHRISTENSEN, 2007] SMITH, CHRISTIAN and H. I. CHRISTENSEN (2007). Using
COTS to Construct a High Performance Robot Arm. In IEEE International Conference on Robotics
and Automation (ICRA).

[SNELL et al., 2017] SNELL, JAKE, K. SWERSKY and R. S. ZEMEL (2017). Prototypical Networks for
Few-shot Learning. CoRR, abs/1703.05175.

[SPELLUCCI, 1998] SPELLUCCI, P. (1998). A Sqp Method For General Nonlinear Programs Using Only
Equality Constrained Subproblems. MATHEMATICAL PROGRAMMING, 82:413-448.

[SPELLUCCT, 1999] SPELLUCCI, P. (1999). DONLP2 short users guide. ftp://ftp.mathematik.tu-
darmstadt.de/pub/department/software/opti/DONLP2.

[STRESE et al., 2016] STRESE, MATTI, C. SCHUWERK, A. IEPURE and E. STEINBACH (2016). Mul-
timodal Feature-based Surface Material Classification. IEEE Transactions on Haptics, PP(99).

[SYNToucH] SYNTOUCH. SynTouch. www.syntouchllc.com.
[TEKSCAN] TEKSCAN. Tekscan. www.tekscan. com.

[TOBERGTE et al., 2009] TOBERGTE, ANDREAS, R. KONIETSCHKE and G. HIRZINGER (2009). Plan-
ning and Control of a Teleoperation System for Research in Minimally Invasive Robotic Surgery. In
IEEE Int. Conf. on Intelligent Robots and Systems (IROS).

[TOBERGTE et al., 2010] TOBERGTE, ANDREAS, G. PASsIG, B. KUEBLER, U. SEIBOLD, U. A.
HAGN, F. A. FROHLICH, R. KONIETSCHKE, S. JORG, M. NICKL, S. THIELMANN,
R. HASLINGER, M. GROEGER, A. NOTHHELFER, L. LE-TIEN, R. GRUBER, A. ALBU-SCHAFFER
and G. HIRZINGER (2010). MiroSurge—Advanced User Interaction Modalities in Minimally Invasive
Robotic Surgery. Presence: Teleoperators and Virtual Environments, 19(5):400—414.

102

https://www.rock-robotics.org
https://index.ros.org/doc/ros2/
https://www.rti.com/products
https://www.shadowrobot.com
www.syntouchllc.com
www.tekscan.com

[TULBURE and BAUML, 2018] TULBURE, ANDREEA and B. BAUML (2018). The TactMat Dataset:
DLR’s Robotic Tactile Material Classification Dataset. dlr-alr.github.io/dlr-tactmat.

[VAHRENKAMP et al., 2015] VAHRENKAMP, NIKOLAUS, M. WACHTER, M. KROHNERT,
K. WELKE and T. ASFOUR (2015). The robot software framework ArmarX. it - Information
Technology, 57(2).

[VINYALS et al., 2016] VINYALS, ORIOL, C. BLUNDELL, T. LILLICRAP, K. KAVUKCUOGLU and
D. WIERSTRA (2016). Matching Networks for One Shot Learning. In LEE, D. D., M. SUGIYAMA,
U. V. LUXBURG, I. GUYON and R. GARNETT, eds.: Advances in Neural Information Processing
Systems 29, pp. 3630-3638. Curran Associates, Inc.

[VOGEL et al., 2015] VOGEL, J., S. HADDADIN, B. JAROSIEWICZ, J. SIMERAL, D. BACHER,
L. HOCHBERG,]J. DONOGHUE and P. VAN DER SMAGT (2015). An assistive decision-and-control
architecture for force-sensitive hand—arm systems driven by human—machine interfaces. International
Journal of Robotics Research, 34(6):763-780.

[VOGEL et al., 2011] VOGEL, JORN, C. CASTELLINI and P. VAN DER SMAGT (2011). EMG-Based
Teleoperation and Manipulation with the DLR LWR-III. In Proc. IEEE International Conference on
Intelligent Robots and Systems.

[VOGEL et al., 2010] VOGEL, JORN, S. HADDADIN, J. D. SIMERAL, S. STAVISKY, D. BACHER, L. R.
HOCHBERG, J. P. DONOGHUE and P. VAN DER SMAGT (2010). Continuous Control of the DLR
Light-weight Robot III by a human with tetraplegia using the BrainGate2 Neural Interface System. In
International Symposium on Experimental Robotics.

[WAELVELDE et al., 2003] WAELVELDE, HILDE, W. DE WEERDT, P. DE COCK and B. SMITS-
ENGELSMAN (2003). Ball catching. Can it be measured?. Physiotherapy Theory and Practice,
19:259-267.

[WETTELS et al., 2008] WETTELS, N., V. SANTOS, R. JOHANSSON and G. LOEB (2008). Biomimetic
tactile sensor array. Advanced Robotics, 22(8):829-849.

[WILLOW GARAGE] WILLOW GARAGE. PR2 - Personal Robot 2. www.willowgarage . com.

[WIMBOCK et al., 2009] WIMBOCK, THOMAS, D. NENCHEV, A. ALBU-SCHAFFER and
G. HIRZINGER (2009). Experimental Study on Dynamic Reactionless Motions with DLR’s
Humanoid Robot Justin. In Proc. IEEE International Conference on Intelligent Robots and Systems.

[XU etal.,, 2013] XU, D., G. LOEB and]J. FISHEL (2013). Tactile identification of objects using Bayesian
exploration. In Proc. IEEE International Conference on Robotics and Automation.

[XU et al.,, 2014] XU, YAN, T. MO, Q. FENG, P. ZHONG, M. LAI and E. I. C. CHANG (2014). Deep
learning of feature representation with multiple instance learning for medical image analysis. In Proc.
IEEE Int. Conf on Acoustics, Speech and Signal Processing.

103

dlr-alr.github.io/dlr-tactmat
www.willowgarage.com

References

104

Appendix A
List of Videos

We provide a list of videos of the presented work and their weblinks for easy access.

* “"Robust Material Classification with a Tactile Skin Using Deep Learning”, 2016, ad-
ditional video for [4].
https://www.youtube.com/watch?v=623yRPx9Pkc

e ”Agile Justin: An Upgraded Member of DLR’s Family of Lightweight and Torque
Controlled Humanoids”, 2014, video of contribution [5].
https://www.youtube.com/watch?v=F12N6yZrklo

¢ ”Agile and Rollin” Justin Playing Ball”, 2012, [BAUML, 2012].
https://www.youtube.com/watch?v=93WHRSKg3gE

¢ ”Catching Flying Balls and Preparing Coffee: Humanoid Rollin’Justin Performs Dy-
namic and Sensitive Tasks”, 2011, video of contribution [7].
https://www.youtube.com/watch?v=R6pPwP3s7s4

¢ “Kinematically Optimal Catching a Flying Ball with a Hand-Arm-System”, 2010,
accompanying video of [8].
https://youtu.be/ssR7rIKajeo

105

https://www.youtube.com/watch?v=623yRPx9Pkc
https://www.youtube.com/watch?v=Fl2N6yZrk1o
https://www.youtube.com/watch?v=93WHRSKg3gE
https://www.youtube.com/watch?v=R6pPwP3s7s4
https://youtu.be/ssR7rIKajeo

	1 Introduction
	1.1 Why building humanoid robots?
	1.2 Human Versatility in Dextrous Manipulation
	1.3 Agile Justin: A Versatile Mobile Humanoid Robot
	1.3.1 System Overview
	1.3.2 Experimental Scenarios

	1.4 Related Work
	1.5 Outline and Contributions

	2 The Communication Layer of the aRDx Software Framework
	2.1 Motivation and Related Work
	2.1.1 Raw Communication Performance
	2.1.2 High-Level Domain Data Types
	2.1.3 Recent Developments

	2.2 Design Considerations
	2.3 Implementation
	2.3.1 Data Packet Transport
	2.3.2 Data Packet Serialization

	2.4 Performance Comparison
	2.4.1 Stress Test Setup
	2.4.2 aRDx and Other Frameworks
	2.4.3 In-Depth Analysis of aRDx

	2.5 Small Example and Real World Applications
	2.5.1 Small aRDx Client
	2.5.2 Mobile Humanoid Agile Justin
	2.5.3 Other Robotic Domains

	2.6 Summary

	3 Ball Catching as a Complex Dynamic Task
	3.1 Motivation
	3.2 Related Work
	3.3 Robotic Setup and System Challenges
	3.3.1 Setup
	3.3.2 Challenges

	3.4 Visual Ball Tracking and Automatic Calibration
	3.4.1 Tracking
	3.4.2 Calibration

	3.5 Kinematically Optimal Planning
	3.5.1 Kinematic Subchains
	3.5.2 Planning for a Single Arm
	3.5.3 Safety Self Collision Detection
	3.5.4 Beyond Ball Catching

	3.6 aRDx Based System Architecture
	3.7 Results
	3.7.1 Stationary Single Arm
	3.7.2 Mobile Humanoid Robot

	3.8 Summary

	4 Deep Learning Based Tactile Material Classification
	4.1 Motivation
	4.1.1 Deep Learning for Material Classification
	4.1.2 Deep n-Shot Transfer Learning

	4.2 Related Work
	4.2.1 Tactile Material Classification
	4.2.2 n-Shot Transfer Learning

	4.3 Experimental Setup
	4.3.1 Robot Setup
	4.3.2 Material Dataset
	4.3.3 Validation Scheme

	4.4 Deep Learning for Material Classification and Differentiation
	4.4.1 Material Classification
	4.4.2 Classification Results
	4.4.3 Material Differentiation
	4.4.4 Differentiation Results

	4.5 Human Performance Experiments
	4.5.1 Material Classification
	4.5.2 Classification Results
	4.5.3 Material Differentiation
	4.5.4 Differentiation Results

	4.6 Deep n-Shot Transfer Learning
	4.6.1 Fine-Tuning Method
	4.6.2 Matching Methods
	4.6.3 Concept Learning Method
	4.6.4 Results

	4.7 Summary

	5 Conclusion
	List of Publications by the Author
	References
	A List of Videos

