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Abstract 

During the Cryogenian period (717–635 Ma) life on Earth suffered under the effects of a 

global glaciation. Earth’s surface became (nearly) entirely frozen during two ‘Snowball Earth 

events’, which are considered as the most severe climatic perturbation in the history of our 

planet and, as such, mark a pivotal point for the early evolution of life on Earth. This 

particularly applies to eukaryotes, whose emergence represented the first step in increasing 

biological complexity, which would eventually culminate in the advent of metazoa. Prior to 

the Cryogenian, evidence for eukaryotes was mainly restricted to microfossils in nearshore 

environments, whereas during the post-glacial Ediacaran period (635–541 Ma), eukaryotic 

life became more complex as well as ecologically relevant, and started occupying the recently 

oxidized open marine realm.   

  This thesis focusses on the distribution and relevance of life surrounding the 

Cryogenian glaciations. Two Neoproterozoic sedimentary deposits were investigated in great 

detail: one deposited briefly prior to the Cryogenian (~750 Ma Chuar Group, Grand Canyon, 

USA) and one deposited in the direct aftermath of the global glaciations (~635 Ma Araras 

Group, Amazon Craton, Brazil). Lipid biomarker analyses were combined with the 

evaluation of bulk and compound-specific stable carbon isotopes, redox-sensitive trace 

elements, microfossils, and lithological observations, in order to gain a greater understanding 

of the ecologies, environmental conditions and interactions between the latter at these pivotal 

times in Earth history, when life plunged into the stress of the Snowball glaciation, and when 

it started to recover.  

 The first focus of this thesis lies on the investigation of lipid biomarkers preserved in 

the post-Marinoan sediments of the Araras Group. Lipid extracts of exceptionally preserved 

Marinoan cap dolostones of the Araras Group contain unexpected abundances of a 

hydrocarbon lipid that was unambiguously determined to be 25,28-bisnorgammacerane 

(BNG). Its stratigraphic distribution in relationship to alkane–pristane carbon isotope 

systematics suggested a mechanistic connection to an intense heterotrophic reworking of 

biomass, making BNG a novel biomarker to characterize heterotrophic reworking during 

deposition. Interestingly, BNG concentrations are significantly elevated in Araras cap 

dolostones, compared to the overlying limestone deposits, pointing to a potential 

heterotrophic contribution to these enigmatic, and as-yet-unexplained, primary dolomite 

lithologies.   
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  In a second study, multi-proxy analysis of Chuar Group sediments allowed the 

distinction of four characteristic environmental and ecological clusters, each associated with a 

specific lipid biomarker distribution. The transgressive environment of the Chuar Group is 

paralleled by increasingly reducing conditions. Counterintuitively, eukaryotic biomarkers are 

not preserved in the most reducing deposits, but in strata that have experienced rather 

oxidizing conditions. Here, unusual steranes with microbially-degraded side chains may 

provide another clue towards overall more intense heterotrophic reworking of primary 

produced biomass during the Precambrian, but most importantly suggest that eukaryotes may 

have been plentiful and relevant, but largely overlooked, in aerobic environments prior to the 

Cryogenian. Systematic community shifts observed throughout the Chuar Group coincide 

with changes in geochemical redox and environmental parameters, thereby providing one of 

the most detailed insights into the interplay of environmental conditions and ecosystem 

response in a pivotal period of eukaryotic evolution.   

 Lastly, this thesis investigates the stable carbon isotopic (δ13C) relationship between 

different organic carbon pools in Precambrian sediments. Currently, the isotopic ordering 

between bulk organic matter (kerogen), alkanes, and photosynthetically derived hydrocarbons 

are considered to have been significantly different between the Phanerozoic and Precambrian. 

Whereas the Phanerozoic offset is primarily controlled by biosynthetic differences, 

characteristic inverse carbon isotope relationships described for Proterozoic sediments were 

attributed to an enhanced heterotrophic reworking of sinking biomass before the evolutionary 

rise of metazoan grazers. This generally enhanced heterotrophy during the Precambrian has 

been invoked as the key reason for elevated dolomite : carbonate ratios in Precambrian 

deposits. Yet, the investigation of multiple mid to late Proterozoic depositional basins (1.64–

0.54 Ga) suggests that no characteristic Proterozoic isotopic offset exists. The results point 

towards stable carbon isotope systematics attributable to heterotrophic reworking, but 

primarily driven by depositional redox and the composition of the primary producing 

community. These findings allow the isotopic offsets to potentially be used as a tool to 

identify redox conditions and investigate the eukaryotic contribution to past primary 

productivity.  

  The recurring central theme, and one of the most significant observations of this 

dissertation is the significant role of heterotrophic organisms in well-oxygenated, mid-

Neoproterozoic nearshore environments. Both the Chuar and Araras Groups preserve unusual 

lipid biomarkers signatures that can be attributed to intense heterotrophic reworking. This 

implies that the ecological balance between heterotrophic and autotrophic organisms was 
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significantly shifted towards heterotrophs, which may have had non-negligible consequences 

for the marine carbon cycle, in particular in view of CO2 uptake and short-term climate 

regulation. Future research should aim at unraveling the influence of heterotrophs on 

nearshore environments as these settings are the proposed ecological niche inhabited by 

eukaryotic life during the Proterozoic.  

 However, while future research should attempt to model the magnitude of 

environmental consequences that could have been triggered by imbalances in autotrophy and 

heterotrophy, the results in this thesis unmistakably points out their largely-neglected 

importance during the Precambrian and provides one of the most detailed ecological 

investigations into the molecular remnants of life directly before and after the Snowball Earth 

events. 
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Prologue 

 Ever since Charles Darwin published his magnum opus “On the Origins of Species” 

(1859) scientists have been occupied with reconstructing the evolutionary pathway of life on 

Earth. It was Carl Woese and George Fox (1977), who suggested that all modern organisms 

can be classified in either one of three domains (i.e. Bacteria, Eukarya, and Archaea) and 

showed that these domains shared a deep branching last universal common ancestor (LUCA). 

Almost a century ago, Vladimir Vernadsky (1926) described how all life in the biosphere is 

connected to each other and how it has the power to shape the surface of the Earth and alter 

biogeochemical cycles. One important route in reconstructing how life evolved and what 

effect it had throughout the history of Earth, involves the investigation of the sedimentary 

record for biological signatures. This was already recognized by Nicolas Steno (1669) with 

the observation of macroscopic marine fossils, but with the improvement of technology also 

molecular (Treibs, 1936) and isotopic (Nier and Gulbransen, 1939) biological signatures 

could be investigated in the rock record.   

  Over the last centuries many studies have focused on the evolution of life throughout 

the Phanerozoic (0.54 Ga to present), however, the majority of phyla, including metazoa, 

already evolved before the Cambrian explosion (Narbonne, 2005). Many questions still 

remain unanswered about the distribution of life during the Precambrian (covering > 85 % of 

Earth’s history). Especially in regards how life transitioned from single cell organisms to 

complex multicellular life during the Neoproterozoic (1.0–0.54 Ga), and how this evolution 

would have influenced the biogeochemical cycles.  

  Using molecular and isotopic signatures preserved in ancient sedimentary rocks, this 

thesis forms the compiled result of a variety of projects in which I investigated the 

distribution and influence of biology during the late Neoproterozoic, a pivotal time in Earth’s 

history, which was marked by several significant climatic, geological and geological events 

such as: two global glaciations (Hoffman et al., 1998), break-up of the supercontinent 

Rodinia (Li et al., 2013), dramatic alterations in Earth’s biogeochemical cycles (Anbar and 

Knoll, 2002), eukaryotic diversification (Knoll, 2011) and the emergence and radiation of 

metazoa (Xiao and Laflamme, 2008).  
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1.1 Life on the Precambrian Earth (4.54–0.54 Ga) 

1.1.1 Early life 

  Earth formed ~4.54 billion years ago (Tera, 1980) and for the majority of this time, it 

has been inhabited by living organisms (Schopf, 1993; Margulis and Dolan, 2002; Arndt and 

Nisbet, 2012). The first lifeforms likely started as single cell organisms, which diversified 

throughout the Precambrian (4.54–0.54 Ga), eventually leading to the evolution of 

multicellular complex life as we know it. Conditions on Earth during the first 1–2 billion 

years were significantly different from those on the modern Earth, with an early atmosphere 

and ocean devoid of oxygen, limited continental land masses and likely no eukaryotic life 

(Figure 1.1; Holland, 2002; Lyons et al., 2014). The evolution of autotrophic organisms, who 

are able to assimilate inorganic carbon into organic carbon, meant the inception of carbon-

based life as we know it today. Some researchers proposed that the earliest bacterial 

organisms likely lived near hydrothermal vents, where they used hydrogen sulfide to fix 

carbon (Rasmussen, 2000; Martin et al., 2008), whereas others have suggested the earliest 

lifeforms to use the energy of the sun (i.e. photoautotrophs) to fix their carbon (Schidlowski, 

1988). Biological carbon fixation is known to cause depleted δ13C values (Hayes, 2001) 

(more details on carbon isotope systematics see Paragraph 1.3), and the observation of 

depleted δ13C values in ~3.8 billion years old metasediments of the Isua supracrustal belt in 

Greenland was therefore interpreted to represent the earliest preserved evidence of life on 

Earth (Schidlowski, 1988). In the same rock formation, stromatolite-like features were 

observed, which have been used as additional evidence to support the presence of life during 

the time these sediments were deposited (Nutman et al., 2016). However, there are abiotic 

processes known that can form hydrocarbons with similar isotopic values (Fischer and 

Tropsch, 1926; Lancet and Anders, 1970), raising doubts about the biological origin of 

depleted carbon-13 signatures in the early Archean. The first widely accepted evidence for 

microbial life is represented by the observation of bacterial remnants in the 3.4 Ga Dresser 

Group, Australia (Schopf, 1993).   

  The overall assumption is that the earliest life forms lived under anaerobic conditions 

and fix carbon solely via anaerobic pathways. It has been stated that the evolution of 

oxygenic photosynthesis on the early Earth has been the single most important 

biogeochemical innovation to generate a habitable planet for thriving eukaryotes (Shih et al., 
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2015). In this biological process, sunlight is used by organisms to convert water and CO2 into 

biomass, resulting in the release of molecular oxygen as a waste product (1.1).  

(1.1)    6𝐶𝑂2 + 6𝐻2𝑂 + ℎ𝑣 ⇌ 𝐶6𝐻12𝑂6 + 6𝑂2  Phototrophic formation of glucose 

 

 

 

Figure 1.1 | Composite display of significant changes throughout Earth’s history in biology, chemistry and 

lithology. The blue vertical bars indicate the Great Oxidation Event (GOE) (~2.4 Ga) (Holland, 2002) and the 

Neoproterozoic Snowball Earth events (~0.7 Ga) (Rooney et al., 2014; Hoffman et al., 1998). (a.) Atmospheric 

pO2 evolution relative to present atmospheric levels (PAL) showing two significate oxidation events at the GOE 

and surrounding the Snowball Earth events (Lyons et al., 2014, Blamey et al., 2016; Riding et al., 2014). (b.) 

Ocean chemistry changes in the dominant electron donor display iron (Fe) dominated conditions throughout the 

Archean and early Paleoproterozoic (Canfield et al., 2005; Holland 2006; Johnston et al., 2009), whereas 

throughout the majority of the Proterozoic S-rich conditions are suggested in near shore environments with Fe-

rich deep ocean (Poulton et al., 2011; Johnston et al., 2010) until the Snowball Earth events, when iron-rich 

conditions returned (Canfield et al., 2008) before the oceans became fully oxygenated (Pogge van Strandmann et 

al., 2015, Sahoo et al., 2016). (c.) Schematic overview of the evolution of life, with bacterial fossils being first 

observed in ~3.4 Ga old sediments (Schopf, 1993), oxygenic phototrophs are suggested to have evolved between 

3.5 and 2.7 Ga (Riding et al., 2014, Planavsky et al., 2014), organic matter preserved in 1.8 Ga sediments has been 

hypothesized to reflect eukaryotic biomass (Lamb et al., 2009; Knoll et al., 2006), but the oldest definitive 

eukaryotic microfossils are dated ~1.6 Ga (Javaux et al., 2001), complex multicellular life is first observed during 

the Tonian (1.0–0.72 Ga) (Porter et al 2000; 2016; Summons et al., 1998; Brocks et al., 2015; Knoll, 2011) and 

the earliest animals are indicated to have emerged during the late Neoproterozoic (0.70–0.54 Ga) (Love et al., 

2009, Xiao and Laflamme 2008; Och and Shield-Zhou 2012). (d.) Accumulation of the inorganic carbon isotope 

record (δ13Ccarb) through time (after Shields and Veizer, 2002), displaying severe positive and negative 

fluctuations in δ13C after the GEO and surrounding the Snowball Earth events. (e.) Lithological changes (in %) of 

chert, dolomite, limestone and evaporates through time (after Ronov 1972).  
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 Although Ohmoto et al. (2006) suggested that the early atmosphere was well 

oxygenated, the general consensus remains that this was not the case. The exact timing of the 

emergence of oxygenic photosynthesis is still severely debated, as oxygen would have been 

toxic for obligate anaerobes. In order to utilize the energetically favorable molecular oxygen 

for respiration, organisms needed to invent novel enzymes. RuBisCO (Ribulose-1,5-

biphosphate carboxylase/oxygenase) is an oxygen-tolerant enzyme in the Calvin-Benson-

Bassham (CBB) cycle of carbon fixation and has been suggested to have evolved ~2.9 Ga 

and to have become more abundant ~2.7 Ga (Nisbet et al., 2007). A recent study by Soo et al. 

(2017) investigated an array of phylogenetically conservative proteins and suggested that 

oxygenic photosynthesis likely evolved between 2.3 and 2.6 Ga.   

  The emergence of this biological process would have released free molecular oxygen 

into the Archean ocean. Due to the supersaturation of Fe2+ in the Archean ocean (Holland, 

1984; Bau et al., 1997), any molecular oxygen would have immediately reacted in the water 

column to form the insoluble Fe(OH)3, leaving the atmosphere still deprived of O2 (Catling 

and Claire, 2005). This hypothesis is supported by the oxygen-sensitive mass-independent 

fractionation of sulfur isotopes (Δ33S) (Farquhar et al., 2000; Bekker et al., 2004) and cerium 

enrichment in Archean paleosols (Murakami et al., 2001). Although the global environment 

was still anoxic, in certain local restricted environments oxygen-producing cyanobacteria 

would have accumulated O2 underneath microbial mats to form oxygen whiffs and oases 

(Anbar, 2007; Planavsky et al., 2014a; Riding et al., 2014).  

 

1.1.2 The Great Oxidation Event 

  Banded Iron Formations (BIFs) are seen throughout the early Earth, but have been 

observed in elevated abundances between 2.35–1.9 Ga, this correlates with the observation of 

a significant rise of atmospheric oxygen concentrations from < 0.001 % present atmospheric 

level (PAL) to values roughly estimated to be ~1 % PAL in the early Proterozoic (Farquhar et 

al., 2000; Pavlov and Kasting, 2002; Catling and Claire, 2005; Lyons et al., 2014). The Great 

Oxidation Event (GOE) marks the single largest relative increase of oxygen concentration in 

Earth’s history (Holland, 2002; Holland, 2006). The prevailing theory on the increase of pO2 

hypothesizes a significant community of cyanobacteria, producing a surplus of O2 and 

removing the majority of Fe2+ in the oceans via iron oxide precipitates. When Fe2+ was 

quantitatively titrated from the water column, free oxygen was able to accumulate in the 
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atmosphere. Although many researchers point towards oxygen-producing cyanobacteria for 

the removal of Fe2+ from the ocean (either abiotically (1.2) or chemotropically (1.3) (Cloud, 

1968; Konhauser et al., 2002), multiple additional studies have suggested alternative 

pathways requiring no molecular oxygen, such as fixation by anaerobic photoferrotrophic 

bacteria (1.4) (Widdel et al., 1993; Kappler et al., 2005) or by photochemical reactions (1.5) 

(Braterman and Cairn-Smith, 1987). 

(1.2)   4 Fe2+ + O2 + 10 H2O  4 Fe(OH)3 + 8 H+   (Abiotic)  

(1.3)  4 Fe2+ + HCO3
-
 + 10 H2O  4 Fe(OH)3 + CH2O + 7 H+  (Chemotrophic)  

(1.4)  4 Fe2+ + HCO3
-
 + 10 H2O + hv  4 Fe(OH)3 + CH2O + 7 H+  (Anoxic Photosynthesis)  

(1.5)   Fe2+ + 3 H2O + hv  Fe(OH)3 + 3 H+    (Photochemical) 

  The precipitation of elevated abundance of iron, likely through the reaction of oxygen, 

would have depleted the Fe2+ pool in the nearshore and surface waters giving way to a more 

redox-stratified and euxinic conditions (Figure 1.1; Johnston et al., 2006; Poulton et al., 2010; 

Poulton and Canfield, 2011). The rise of oxygen associated with the post-GOE Earth is also 

hypothesized to be the trigger for biological diversification as more complex organisms 

prefer to use the energetically favorable oxygen as an electron donor in their biosynthetic 

pathway (Cloud, 1973; Catling and Claire, 2005). 

 

1.1.3 Rise of eukaryotes 

  One of the largest quests in Precambrian geobiology is to understand the evolution 

and development of eukaryotes. The increased oxygen concentration in the aftermath of the 

GOE has been hypothesized to favor the evolution of eukaryotes as their mitochondria 

typically need free molecular oxygen (Raymond and Segre, 2006; Acquisti et al., 2007). The 

emergence of eukaryotes is stated to have occurred through endosymbiosis, a biological 

process of two individual prokaryotic organisms joining in a symbiotic union, where the 

internal mitochondrion benefits from the protection and nutrients of the host cell while 

providing energy to host cell (Margulis, 1976; Martin et al., 2001; Lane, 2011; Poole and 

Gribaldo, 2014). Eukaryotes may have initially evolved as an anaerobic organism (Martin 

and Muller, 1998), for which oxygen was still toxic. The incorporation of the oxidative 

defensive enzyme Superoxide Dismutase—which was already evolved in cyanobacteria—

during the early Paleoproterozoic, is hypothesized to have provided the eukaryotic cells the 

potential to use molecular oxygen as a terminal electron acceptor (Asada et al., 1980; Towe, 
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1996; Sheridan et al., 2003).   

  Around 1.8 Ga the first microfossils and simple macrofossils, which have been 

hypothesized to derive from eukaryotic organisms, have been observed in the rock record 

(Javaux et al., 2004; Knoll et al., 2006; Lamb et al., 2009). Additional support for this 

observation is provided by a molecular clock study which estimated the emergence of 

eukaryotic life between 1.68–1.87 Ga (Parfrey et al., 2011). However, in a more recent study, 

Gold et al. (2017) suggested eukaryotic life might have already evolved as early as 2.33 Ga, 

almost completely coinciding with the onset of the GOE. Some of the earliest potential 

eukaryotic microfossils have been described in the ~2.1 Ga Francevillian Basin, Gabon (El 

Albani et al., 2010; El Albani et al., 2014), and fungi-like remnants in the 2.4 Ga rocks from 

the Ongeluk Formation, South Africa (Bengtson et al., 2017), yet the exact nature of these 

observations remains severely debated. The oldest microfossils with definitive eukaryotic 

features have been observed in ~1.6 billion years old sedimentary rocks (Javaux et al., 2001; 

Vorob’eva et al., 2015; Zhu et al., 2016; Adam et al., 2017b). The time period between ~1.7 

and ~0.8 Ga has been described as a time of climatic, environmental, biogeochemical and 

lithospheric stability (Holland, 2006; Cawood and Hawkesworth, 2014; Lyons et al., 2014). 

And although eukaryotic fossils—including suspected red algal remnants at 1.2 Ga 

(Butterfield, 2000)—were observed throughout middle Proterozoic shallow depositional 

basins, the majority of the ocean was still dominated by prokaryotic organisms (i.e. green and 

purple sulfur bacteria) (Anbar and Knoll, 2002; Brocks et al., 2005; Fennel et al., 2005; 

Johnston et al., 2009; Hamilton et al., 2016). 

 

1.1.4 Emergence of complex life 

  The chemistry of the ocean, which has been reported to remain relatively stable 

throughout the Paleo- and Mesoproterozoic, has been indicated to witness some significant 

change during the early and middle Neoproterozoic (Canfield et al., 2008; Lyons et al., 

2014). One suggested trigger for this change has been the removal of the micronutrient 

molybdenum (Mo) via precipitation in the nearshore euxinic conditions allowing ferruginous 

conditions to become prevalent again (Scott et al., 2008; Poulton and Canfield, 2011). The 

reinstatement of nearshore ferruginous conditions is supported by the observation of BIFs in 

the distinct Neoproterozoic sediments (Canfield et al., 2008; Johnston et al., 2010). 

 Interestingly, the diminishing euxinic conditions correlate with the hypothesized 
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extended diversification and radiation of eukaryotic clades around ~800 Ma (Knoll et al., 

2006). Life up to this point has been hypothesized to have only been made up out of simple 

organisms, which are defined as lifeforms were cells are all in direct contact with the 

environment to obtain nutrients via diffusion through the cell wall (Knoll, 2011). The 

eukaryotic diversification in the Tonian is seen by several dozen different distinctive 

eukaryotic microfossils appearing in the rock record (Porter et al., 2003). Among them; vase-

shaped microfossils (VSMs) (Porter and Knoll, 2000; Strauss et al., 2014; Porter, 2016), 

smooth-walled spheroids (Riedman et al., 2014), scale microfossils (Cohen et al., 2011) and 

tintinnids (Bosak et al., 2011). Additionally, these observations correspond to the detection of 

the earliest eukaryotic derived steroid remnants in the rock record at ~750 Ma (see further 

Paragraph 1.2.2; Summons et al., 1988; Brocks et al., 2016). In combination, these 

observations suggest that complex life also evolved around this time. Knoll (2011) defined 

complex life as multicellular organisms with intercellular communication to transport bio-

essential molecules to cells which are not connected to an external environment. 

Complex life: Multicellular organisms with intercellular communication to 

transport bio-essential molecules to cells which are not connected to an 

external environment. 

  Before complex life emerged, it first needed to evolve a mechanism to bypass the 

physiological limitation of nutrient accumulating via diffusion (Knoll and Hewitt, 2011). 

Supported by molecular clock studies, the evolution of complex life has been suggested to 

have occurred during the mid-Neoproterozoic (Sperling et al., 2010), well before the 

widespread oxygenation of the ocean in the Late Neoproterozoic (see Paragraph 1.1.9; Sahoo 

et al., 2012; Planavsky et al., 2014b; Pogge von Strandmann et al., 2015). Gingras et al. 

(2011) suggested that the first mobile metazoa likely evolved in hypersaline systems 

dominated by oxygen-producing cyanobacterial mats. The relationship between oxygen and 

animal evolution is still debated. Some authors have suggested the atmosphere to have 

contained 50 % PAL oxygen at 815 Ma (Blamey et al., 2016). This corresponds with the 

generally elevated δ13C values throughout the Neoproterozoic (≥ 5 ‰) suggested indicating 

more organic carbon burial (Figure 1.1; Paragraph 1.3.1; Shields and Veizer, 2002; Halverson 

et al., 2005; Och and Shields-Zhou, 2012).   
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1.1.5  Snowball Earth 

  The Cryogenian (717–635 Ma) 

(Rooney et al., 2014) is regarded to have 

been a pivotal period for Earth’s 

biogeochemical cycles, biology in general, 

and for establishing modern 

environmental conditions. The Cryogenian 

is characterized by the occurrence of two 

so-called Snowball Earth events: long 

lasting, low latitude, global glaciations 

hypothesized to have covered the majority 

of Earth’s surface with ice sheets 

(Harland, 1964; Kirschvink, 1992; 

Hoffman et al., 1998; Hoffman and 

Schrag, 2002). The first Cryogenian 

glaciation, the Sturtian (717–662 Ma 

(Rooney et al., 2014), is hypothesized to 

have lasted over ~55 million years, 

whereas the second global glaciation, the 

Marinoan (~650–635 Ma), is thought to 

have lasted for ~15 million years (Zhang 

et al., 2008; Rooney et al., 2014). Over the 

last decades, many theories have been 

proposed about the onset of the 

Neoproterozoic global glaciations. Several 

studies pointed towards the continental 

configuration during the Cryogenian as 

one of the key drivers for the onset of the 

Sturtian (Hoffman et al., 1998; Hoffman 

and Schrag, 2002; Godderis et al., 2007). 

Throughout the late Tonian, the only 

continent on Earth’s surface was the 

supercontinent Rodinia (Figure 1.2; Li et 

 

Figure 1.2 | Continental configuration during the 

late Neoproterozoic. Figure displaying the breakup of 

the supercontinent Rodinia, surrounding the Snowball 

Earth events (717–635 Ma; Hoffman et al., 1998). 

Yellow markers indicate geographical location of the 

Chuar Group (770–742 Ma; Karlstrom et al., 2000) 

(Chapters 3–6) during deposition, Green marker shows 

the Araras Group (~635 Ma; Chapters 3, 7). (After Li et 

al., 2013) 
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al., 2008; Li et al., 2013). The tropical continental configuration is thought to have reduced 

solar adsorption, potentially lowering the global temperature by as much as 4.6°C 

(Kirschvink, 1992; Voigt et al., 2011). Hoffman et al. (1998) suggested that the rifting of the 

supercontinent Rodinia—by creating new continental margins—would have resulted in the 

enhanced burial of organic carbon, eventually leading to the drawdown of atmospheric CO2. 

Tziperman et al. (2011) modeled that the pre-Sturtian atmospheric CO2 reservoir could be 

significantly diminished, by the burial of organic carbon by sulfate-or-iron-reducing bacteria 

living in the anoxic subsurface water, resulting in severely lower temperatures. Alternatively, 

some scientists stated that the onset of the Sturtian was caused through severe volcanic 

events, potentially linked with the breakup of Rodinia, which could have emitted a significant 

amount of volcanic aerosols in the atmosphere (Stern et al., 2008; Macdonald and 

Wordsworth, 2017). Recently a study hypothesized that the observed eukaryotic 

diversification and radiation in the late Tonian could have also contributed to the initiation of 

the Neoproterozoic glaciations through the increase of organic cloud forming nuclei (Feulner 

et al., 2015).    

 Aside from the onset, the disappearance of the long-lasting ice ages is similarly 

enigmatic. One of the more obscure hypotheses suggests that a large asteroid impact was the 

trigger for the termination of the Marinoan glaciation (Grey et al., 2003; Young, 2013). The 

general scientific consensus suggests that the build-up of abundant greenhouse gasses would 

have resulted in the melting of the Snowball Earth (Kirschvink, 1992; Hoffman et al., 1998; 

Hoffman and Schrag, 2002), likely overshooting to the warmest climate ever witnessed on 

Earth, before the greenhouse gasses would be equilibrated by the oceans (short-term) and 

silicate weathering (long term). Models indicate atmospheric pCO2 levels as high as 400 to 

660 times PAL would have been required to initiate the melting of the Snowball Earth 

(Caldeira and Kasting, 1992; Pierrehumbert, 2004). Over the last decades, geochemical Δ17O 

evidence has supported the super greenhouse environment after the Snowball Earth events 

(Bao et al., 2008; Kunzmann et al., 2017).  

  Another debate is still going on about the extent of ice coverage during the 

glaciations. Most researchers favor the “Hard Snowball” scenario where glaciers reached up 

to the equator, leaving no open water to equilibrate the atmospheric CO2 (Hoffman et al., 

1998), yet others propose a “Slushball” scenario where either an open ocean occurred at low 

latitudes (Hyde et al., 2000; Le Hir et al., 2008; Ye et al., 2015), or were the low latitude ice 

cover during the Cryogenian witnessed oscillatory glacial episodes, rather than two major 
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events (Leather et al., 2002). A problem in answering this debate is that evidence from the 

sedimentary rock record remains absent as the suggested ice coverage inhibited any 

sedimentary deposition (Heron, 2015).  

  

1.1.6 Life during Snowball Earth 

  Conditions for life on the frozen planet were likely harsh. The sub-zero surface 

temperatures and thick glaciers covering the oceans would have inhibited liquid water on the 

surface and the thick dark sea ice would have severely limited photoautotrophs living 

underneath. The hypothesized cold climate would have disturbed the hydrological and silica 

weathering cycles, resulting in the ocean becoming increasingly saline, anoxic and acidic 

(Ashkenazy et al., 2013; Benn et al., 2015), all likely resulting in a severe evolutionary 

bottleneck for life (Hoffman et al., 1998; Narbonne and Gehling, 2003). Yet, all domains of 

life (i.e. Eukarya, Bacteria, and Archaea) managed to survive throughout these challenging 

circumstances. Hoffman (2016) hypothesized life could have survived through abundant 

cryoconite pans. These meltwater holes form when dust particles accumulate on the surface 

of a glacier and absorb solar radiation. Although the oceans during the Cryogenian were 

likely covered with ice, according to Goodman and Strom (2013) dust would have been 

abundant as the glaciers would have only covered the oceans and coastal regions and left the 

inner continent ice-free (Benn et al., 2015). Modern cryoconites have been observed to 

contain ~10 % organic matter, sustaining a versified microbial community of cyanobacteria, 

ciliates, rotifers, fungi, tardigrades, Thaumarchaeaota, Eukyarchaeaota, red and green algae, 

viruses, and nematodes (Christner et al., 2003; Stibal et al., 2006; Cameron et al., 2012). 

Cryoconites are part of a dynamic glacial system, which eventually gets drained through 

moulins into the oceans, providing a potential source of organic matter and nutrients to the 

Snowball oceans (Abbot and Pierrehumbert, 2010; Goodman and Strom, 2013; Hoffman, 

2016). Sanchez-Baracaldo et al. (2014) observed that organisms generally inhabited 

freshwater environments in pre-Sturtian times yet were found after the Cryogenian 

predominantly in marine environments, suggesting there was some climatic flux—potentially 

the draining of glacial freshwater into the marine realm—forcing organisms to adjust to 

saline conditions. Alternatively, benthic macroscopic phototrophs have been observed in two 

black shale horizons interbedded between the Marinoan diamictite deposits of the Nantuo 
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Formation, China, suggesting periodic open water conditions acting as possible refugia for 

life during the Snowball Earth events (Ye et al., 2015). 

 

1.1.7 The Dolomite Problem 

  The very limited preservation of sedimentary rocks throughout the Cryogenian is one 

of the main reasons why it is so difficult to investigate how life survived throughout the 

Snowball Earth events. The first sedimentary rocks deposited in the aftermath of these events 

are a layer of globally distributed glacial diamictites overlain by several meters (> 10 m) of 

pink dolomitic carbonate rocks (Hoffman et al., 1998). While the origin of the diamictite 

layer is well understood, the formation of primary dolomite (MgCa(CO3)2), remains 

unanswered for well over a century already (Van Tuyl, 1916). Although Mg2+ is 

supersaturated in the modern ocean, dolomite precipitation is inhibited by strong hydration of 

Mg-ions in solution (Markham et al., 2002). Not only the precipitation of the Marinoan age 

cap dolostones remains unclear, but throughout the late Proterozoic and early Phanerozoic 

dolomite deposition generally was more abundant (Figure 1.1) (Ronov, 1972). Over the last 

few decades several researchers have observed in lab and field experiments that certain 

microorganisms can overcome these barriers by nucleation of Mg-rich carbonates on their 

cell walls, catalyzing the precipitation of dolomite (Vasconcelos et al., 1995; Warthmann et 

al., 2000; Roberts et al., 2004; Sánchez-Román et al., 2007; Sánchez-Román et al., 2011; 

Roberts et al., 2013). Font et al. (2006) hypothesized that sulfate-reducing bacteria living in 

the anoxic sediments would have microbially mediated the formation of dolomite. To form 

the meters thick cap carbonates Font et al. (2010) modeled that this would take > 105 years, 

yet evidence to support this mechanism remains to be observed. Almost all cap carbonates 

display macroscopic lithological features with microbial laminae near the bottom succeeded 

by tube-like structures, megaripples and thin layers of barite (Hoffman et al., 1998; Hoffman 

and Schrag, 2002; Shields, 2005; Hoffman et al., 2011; Liu et al., 2013). These globally 

distributed microbial influenced textures suggest that the cap carbonates where deposited in 

the presence of organic nuclei (Bosak et al., 2013).   

  The rate of the cap carbonate deposition has resulted in varying theories. Schrag and 

Higgins (2003) proposed that the cap dolostones were deposited in ~104 years, stating that the 

melting of Snowball Earth would have resulted in intense weathering, increasing the ocean 

alkalinity, which would have reacted with the already hypothesized elevated CO2 levels to 
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potentially even further increase the rate of deglaciation (Schrag and Hoffman, 2001; Higgins 

and Schrag, 2003). Shields (2005) proposed that the increased meltwater flux would have 

caused a freshwater plume overlaying dense saline marine waters, where the meltwater plume 

would have carried an elevated alkalinity forcing the rapid precipitation of carbonates 

minerals.   

  Kasemann et al. (2014) proposed the weathering of the Sturtian cap carbonates could 

have led to a supersaturation of carbonate weathering products in the aftermath of the 

Marinoan glaciation, accelerating the deposition. Yet, the “fast” deposition has also been 

challenged, as Le Hir et al. (2008) modeled that in a Slushball scenario CO2 in the 

atmosphere would have been balanced by the partly open ocean located at the equator, 

slowing the formation cap carbonates to ~2 million years.  

  By analyzing δ11B throughout the deposition of the Marinoan cap dolostones, it was 

indicated that the ocean pH dropped in the direct aftermath of the Marinoan before recovering 

and reaching neutral state again (Ohnemueller et al., 2014). The initial drop is hypothesized 

to have caused accelerated formation of carbonate minerals as CO2 and potentially greatly 

enhanced weathering fluxes neutralizing pH conditions via the release of H+ ions (1.6, 1.7) 

(Hoffman et al., 1998; Higgins and Schrag, 2003; Le Hir et al., 2009; Silva-Tamayo et al., 

2010; Kasemann et al., 2014).  

(1.6) 𝐶𝑎2+ + 𝐻𝐶𝑂3
−  ⇌  𝐶𝑎𝐶𝑂3 + 𝐻+    Calcite formation (neutral pH)   

(1.7) 𝐶𝑎2+ + 𝑀𝑔2+ + 2 𝐻𝐶𝑂3
−  ⇌  𝐶𝑎𝑀𝑔(𝐶𝑂3)2 + 2 𝐻+  Dolomite formation (neutral pH) 

 

1.1.8 Balance between autotrophy and heterotrophy 

  Before the rise of animals during the Ediacaran, life is suggested to have mainly 

consisted of microbial communities (Logan et al., 1995; Gehling, 1999; Pawlowska et al., 

2013). These microbes can be separated into autotrophic organisms, which biosynthesize 

organic molecules via sequestering carbon from the dissolved inorganic carbon (DIC) pool, 

and heterotrophic organisms, which feed of organically produced organic matter. The 

ecological balance between autotrophs and heterotrophs is dependent on multiple factors (i.e. 

environment, redox, and community), and understanding the balance is of great importance 

for understanding biogeochemical cycles, climate feedback systems and the evolution of life 

(Des Marais et al., 1992; Duarte and Prairie, 2005; Visscher and Stolz, 2005; Johnston et al., 

2009). Yet, till this day, there are few ways to quantify the degree of heterotrophy in ancient 

environments. One suggested method is comparing the isotopic offset between organic matter 
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derived from primary producers relative to alkyl lipids—the diagenetic remnant of fatty 

acids—which are generated by both heterotrophic and autotrophic organisms (Logan et al., 

1995). It is hypothesized that alkyl lipids become continuous isotopically enriched in δ13C 

with increased trophic cycling (DeNiro and Epstein, 1978) (see further Paragraph 1.3.3). 

However, this method is limited as in ancient depositional basins alkyl lipids are often 

degraded and a recent study revealed that besides trophic reworking the isotopic offsets are 

likely also influenced by additional parameters such as community, redox, and stratification 

(Close et al., 2011).   

 

1.1.9 Oxygenation of the post-Marinoan deep ocean and rise of animals 

  The severe weathering related to the deglaciation of Snowball Earth has been 

hypothesized as the trigger for the atmospheric pO2 and oxygenation of the deep ocean during 

the Ediacaran (Canfield et al., 2007; Sahoo et al., 2012). Although elevated oxygen is 

reported for subsurface water during the interglacial (Rodler et al., 2016) and during the 

deposition of the cap carbonates (Sansjofre et al., 2014) the precise timing of globally 

increased oxygen levels after the Cryogenian remains unclear at this point. Opinions vary 

between; rapid oxygenation in the direct aftermath of the Marinoan glaciation (Sahoo et al., 

2012) potentially caused by a significant red algae bloom (Elie et al., 2007); a delayed 

oxygenation of tens of millions of years (Canfield et al., 2007); a stepwise oxygenation over 

several dozen million years via multiple oxidation events (Fike et al., 2006; Scott et al., 2008; 

Sahoo et al., 2016); and a steady increased over ~100 million years after the global 

glaciations (Pogge von Strandmann et al., 2015).   

  The increase of overall oxygen concentrations and the oxygenation of the deep ocean 

throughout the Ediacaran allowed oxygen utilizing eukaryotes to benefit from the new 

conditions and to become significantly more ecologically important. ~50 million years after 

the Marinoan glaciation, the first fossils of soft-bodied metazoa are described in sedimentary 

deposits. These fossils indicate an increased ecological role for eukaryotes (Narbonne and 

Gehling, 2003; Xiao and Laflamme, 2008). It is long known that the availability of O2 limits 

the body size of eukaryotes (Runnegar, 1991), therefore the observation of the first large 

macrofossils such as Dickinsonia (Runnegar, 1991; Retallack, 2007) and Aspidella (Billings, 

1872; Gehling et al., 2000) in mid- to late Ediacaran sedimentary archives suggest increased 

oxygen concentrations. This newly established environment during the Ediacaran provided a 
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strong footing for eukaryotic clades, including metazoan, to evolve further throughout the 

Phanerozoic (0.54–present) to form the life as we know it today.  

 

1.2 Lipids as a tool for paleo-environmental reconstruction 

 Molecular fossils, or biomarkers, are a powerful tool to reconstruct ancient ecologies. 

These hydrocarbon remnants, of predominantly polycyclic membrane lipids, are 

biosynthesized by organisms. Different classes and phyla biosynthesize subtly different lipids 

which carry the potential to define specific source organisms (Treibs, 1936; Mackenzie et al., 

1982; Peters et al., 2005). By understanding the taxonomic origin and preservation pathway, 

biomarker studies are a valuable method to classify ancient depositional environments as well 

as their community structure. The molecular structures of the most common biomarkers 

referred to in this study are shown in Appendix A of this document. 

 

1.2.1 Biosynthesis of polycyclic membrane lipids 

The biosynthetic pathway used by organisms to generate their membrane lipids is suggested 

to have been highly conservative through time (Summons et al., 2006), allowing for the 

reconstruction of ancient communities. Most of the relevant polycyclic membrane lipids are 

cyclized from squalene, a C30 hydrocarbon, that is formed by the linkages of multiple C5 

isoprene groups via C-C bonds in the Squalene Synthases pathway (SQS) (Lange et al., 

2000). Depending on the organism, squalene is cyclized in different ways (Figure 1.3). Most 

bacteria use the anaerobic Squalene-Hopane-Cyclase pathway (SHC) to form hopanoids, 

pentacyclic triterpenoids which do not require molecular oxygen for their formation (Rohmer 

et al., 1979) (Figure 1.3). Eukaryotic organisms do not possess the biological pathway to 

synthesize hopanoids, most of them use the oxygen-utilizing Oxidosqualene Cyclase pathway 

(OSC) to biosynthesize sterols from an epoxide-squalene precursor (Nes, 1974; Viola et al., 

2000). Photosynthetic eukaryotic organisms such as higher plants, biosynthesize 2,3-

oxidosqualene to cycloartenol before it is further synthesized to higher steroids (e.g. 

stigmasterol among others) (Volkman, 2005). Non-photosynthetic eukaryotic phyla 

synthesize the 2,3-oxidosqualene to the protosterol lanosterol via the LAS enzyme. 

Subsequently, most metazoa convert lanosterol to cholesterol, while the majority of fungi are 

reported to biosynthesize ergosterol (Schulz-Gasch and Stahl, 2003; Summons et al., 2006). 
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However, it has been observed that specific bacterial clades are able to synthesize 

protosterols such as lanosterol (Pearson et al., 2003) and cycloartenol (Wei et al., 2016), yet 

thus far it has only be found and non-abundant organisms as well as up to this point no 

bacteria has been recognized that possesses the oxygen-utilizing sterol methyltransferase 

(SMT) pathway to alter the methyl side chain at position C-24. .  

 

 

  

 

Figure 1.3 | Biosynthesis and preservation of common eukaryotic and bacterial membrane lipids. Six 

isoprene units are synthesized via the SQS pathway to form one squalene. The majority of bacteria (red shaded 

area) cyclase squalene via the SHC pathway to form hopene membrane lipids, which gets after diagenesis, gets 

preserved as hopane lipids. Most eukaryotes (green shaded area) use the OSC to synthesize squalene into 2,3-

squalene oxide, after which non-photosynthetic organisms use the LAS pathway to form the protosterol 

lanosterol1 which gets predominantly cyclized to C27 cholesterol or to C28 ergosterol. Photosynthetic phyla 

biosynthesize 2,3-squalene oxide to cycloartenol2 via the CAS pathway, which gets further cyclized to a C29 

sterol, of which stigmasterol, poriferasterol and β-sitosterol are the most abundant observed isomers. Specific 

eukaryotic protists (i.e. ciliates) (blue shaded area) use the STC pathway to biosynthesize their membrane 

lipids directly from squalene (Conner et al., 1987; Takishita et al., 2012). Additionally, it has been observed 

that certain bacteria can also synthesize this membrane lipid via the THS gene altering a hopene molecule 

(Banta et al., 2015). 1,2The protosterols lanosterol (Pearson et al., 2003) and cycloartenol (Wei et al., 2016) are 

observed to also be synthesized by certain bacteria yet thus far only found in environmentally irrelevant 

amount. 
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  Alternatively, certain eukaryotic protists (i.e. ciliates) are demonstrated to 

biosynthesize tetrahymanol as a membrane lipid, which is preserved as gammacerane in the 

rock record (Paragraph 1.2.2). However, tetrahymanol is not unique to protists as both 

eukaryotic and bacteria were shown to biosynthesize it, among them ciliates (Mallory et al., 

1963), anaerobic fungi (Kemp et al., 1984), ferns (Zander et al., 1969), extremophilic 

polychaete worms and parasitic excavates (Takishita et al., 2012), phototropic α-

proteobacteria (Kleemann et al., 1990), nitrogen-fixing α-Proteobacteria (Rashby et al., 

2007), sulfate-reducing δ-Proteobacteria and methanotrophic γ-Proteobacteria (Banta et al., 

2015). Although the biosynthesized lipid is the same, they are suggested to be derived 

through different biosynthetic pathways. Banta et al. (2015) showed that certain bacteria 

synthesize tetrahymanol via the Tetrahymanol-Synthases pathway (THS) and SHC enzymatic 

pathway, while eukaryotes tend to use the Squalene-Tetrahymanol Cyclase (STC) pathway 

(Takishita et al., 2012) (Figure 1.3).   

 The above-mentioned membrane lipids (sterols, hopanoids, and tetrahymanol), have 

rather generic molecular configurations as they can be biosynthesized by an array of 

organisms. However, many organisms synthesize more specific membrane lipids, often 

through the alteration of the core lipid configuration by the addition or removal of a methyl 

group on specific positions. The characteristic configurations of these lipids allow to 

potentially identify more specific taxonomic classes and phyla. For instance, 24-

isopropylcholesterol has been reported to be a lipid hydrocarbon produced by sponges (Love 

et al., 2009; Love and Summons, 2015), C30 4-methyl-sterols (dinosterols) have been 

predominately observed in dinoflagellates (Rashby et al., 2007), 3β-methyl-hopanes are 

mainly observed in methanotrophic and acetic acid bacteria (Zundel and Rohmer, 1985; 

Summons et al., 1994) and aryl isoprenoids are suggested to derive from green and purple 

sulfur bacteria (Van der Meer et al., 1998; Brocks et al., 2005). However, the specificity of 

lipids is often debated. For instance, 2α-methyl-hopanes were previously linked to 

cyanobacteria (Summons et al., 1999), yet new studies have identified them in multiple other 

organisms suggesting a potential link with environmental stress (Doughty et al., 2009; Ricci 

et al., 2016). As more microorganisms are investigated on their lipid composition the 

biosynthetic path used to synthesize them, a more robust understanding about the biological 

origin of specific lipid biomarkers will be generated in the upcoming years. 
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1.2.2 Evolution of eukaryotic membrane lipids 

By understanding the biological sources as well as the preservation of membrane 

lipids over geological time, it is possible to reconstruct the depositional environment of 

ancient sedimentary sequences by evaluating the preserved molecular fossils. Over the last 

decade, Precambrian hydrocarbon extracts and laboratory procedures have been critically 

reassessed to verify the syngeneity of molecular biomarkers in ancient rock record versus 

anthropogenic hydrocarbon contamination (e.g. plastic bags, drilling fluids) (Sherman et al., 

2007; Brocks et al., 2008; Brocks, 2011; Jarrett et al., 2013; Illing et al., 2014; French et al., 

2015; Leider et al., 2016). As a result of these efforts, the oldest clearly indigenous hopanes 

are observed in the Paleoproterozoic Barney Creek Formation, Australia (1.64 Ga) (Brocks et 

al., 2005). This formation also yields the earliest observation of triaromatic steranes, but their 

distinct C-4 methylation suggests that they may derive from methanotrophic bacterial sources 

(Volkman, 2003; Brocks et al., 2005).  

 

  

 The first indigenous sterane fossils, hypothesized to derive from eukaryotic 

organisms, are detected in the sediments of the Visingsö Group, Sweden (800–700 Ma), 

Chuar Group, USA (770–740 Ma) and Kanpa Formation, Australia (725–777 Ma; Figure 1.4; 

Summons et al., 1988; Feulner et al., 2015; Brocks et al., 2016). In all three investigated well-

 

Figure 1.4 | Sterol evolution throughout the Neoproterozoic. Blue vertical bars represent the two 

Neoproterozoic global glaciations (Hoffman et al., 1998), the Sturtian Glaciation (~717–662 Ma) and the 

Marinoan Glaciation (~650–635 Ma) (Rooney et al., 2014). Grey vertical bars indicate analyzed 

Neoproterozoic sedimentary deposited in this thesis (i.e. the Chuar Group, USA (~750 Ma) and the Araras 

Platform, Brazil (~635 Ma), dotted line indicate suggested presence, fixed line indicate certain presence. 

Bacterial hopanes are first observed in the 1.64 Ga Barney Creek Formation (Brocks et al., 2005). 

Gammacerane, the molecular remnant of tetrahymanol, is first observed in the Chuar Group (Summons et 

al., 1988). The earliest indigenous eukaryotic derived steranes (C27 cholestane and C28 ergostane) are 

reported in the Tonian Visingsö Group, Kanpa Formation and Chuar Group (Summons et al., 1988; Brocks 

et al., 2015). C28 cryostane is thus far only observed in Tonian sediments (Brocks et al., 2015). C29 

stigmastane and 24-isopropylcholestane are first observed in the interglacial Masirah Bay Formation (Love 

et al., 2009; Love and Summons, 2015).  
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preserved Tonian successions, predominantly 

the molecular remnant of cholesterol, 

cholestane (C27H48), is detected, with minor 

traces of the uncommon C28 sterane 

cryostane (C28H50) (Brocks et al., 2016). This 

is a characteristic signature for mid-

Neoproterozoic sediments as from the 

Ediacaran onwards there is always a 

combination of C27, C28 and C29 steranes 

observed (Huang and Meinschein, 1979). 

With generally C28 steranes, relative to C29 

steranes, increasing throughout the 

Phanerozoic, this has been suggested to 

reflect an increased diversification of 

phytoplankton assemblages (Grantham and 

Wakefield, 1988). The dominance of C27 

steranes (> 95 %) in the pre-Sturtian depositional basins as well as in the post-Marinoan 

deposits of the Mirassol d’Oeste Formation are suggested to be indicative for a dominance of 

red algae during the early and middle Neoproterozoic (Butterfield, 2000; Elie et al., 2007). 

The absence of any C29 steranes in the above-mentioned sediments may indicate that C29 

biosynthesizing organisms developed during the second half of the Neoproterozoic.  

After the cholestane dominance in the mid-Neoproterozoic sediments, C29 steranes are 

observed to become the most abundant sterol remnant in middle to late Ediacaran sediments 

(Figure 1.5; Love et al., 2009; Kelly et al., 2011; Grosjean et al., 2012). Hoshino et al. (2017) 

showed that C29 steranes likely emerged locally during the late Cryogenian and became the 

most abundant sterol in all marine environments throughout the Ediacaran, suggesting a 

change from red to green algae. Furthermore, eukaryotes yielding C29 steranes in their 

membranes are observed to be significantly more resistant to temperature fluctuations in the 

environment (Dufourc, 2017). The environmental stress provided by the Neoproterozoic 

glaciations and deglaciations (Paragraph 1.1.5) might have acted as a trigger for the evolution 

of a more temperature resistant sterols (Hoshino et al., 2017).  

  The most abundant steranes detected in almost all post-Snowball Earth sediments are 

generally C27, C28 and C29 steranes, yet as described above (Paragraph 1.2.1), other steranes 

can be observed as well. One particular sterane observation has fueled heated scientific 

 

Figure 1.5 | Triangular plot of the general 

sterane ratio during the late Neoproterozoic. 

Letter (A) indicates pre-Sturtian (> 717 Ma) 

sediments exhibiting cholestane (C27) dominance 

(> 95 %) (Brocks et al., 2015), Letter (B) 

represent middle to late Ediacaran deposits which 

displays a dominance of green algae derived C29 

steranes (Hoshino et al., 2017). 
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debate, is the detection of 24-isopropylcholestane (24-IPC; C30H54) in the interglacial 

sediments of the Masirah Bay Formation, Oman (~680 Ma) (Love et al., 2009; Love and 

Summons, 2015). This biomarker has thus far only been observed in modern sponges 

(Bergquist et al., 1980; Gold et al., 2016). Combined with the hypothesis that demospongia 

have been suggested to be among the most basal metazoa (Nielsen, 1985), Love et al. (2009) 

interpreted the presence of 24-IPC in the Cryogenian interglacial Masirah Bay Formation 

(~650 Ma, Oman), to potentially reflect the earliest evidence of metazoa in the rock record. 

However, several authors have suggested that 24-IPC might be derived from other sources as 

the oldest widely accepted sponge fossils are of early Cambrian age (Antcliffe et al., 2014; 

Antcliffe, 2015; Muscente et al., 2015).  

  The earlier mentioned 26-methyl-cholestane is only observed in Tonian sediments and 

might represent an extinct biosynthetic pathway. One hypothesis links 26-methyl-cholestanes 

with organisms that use membranolytic enzymes to prey on other organisms. In order to not 

be harmful to themselves, they would have had to biosynthesize an alternative sterol in their 

cell membrane (Brocks et al., 2016). This interpretation is supported by the co-occurrence of 

half circle borings in Tonian vase shaped fossils (Porter, 2016). The co-occurrence of borings 

and 26-methyl-cholestane in Tonian sedimentary sequences potentially suggests that 26-

methyl-cholestane might represent the sterol composition of the earliest predators (Brocks et 

al., 2016) well before metazoan predators with a digestive system evolved in the Ediacaran 

(Logan et al., 1995; Bengtson, 2002).  

  The molecular remnant of tetrahymanol, gammacerane (C30H52), has also been 

detected in sediments predating the Snowball Earth events (Summons et al., 1988; Schinteie 

et al., 2017). Although tetrahymanol can be derived by multiple organisms (Paragraph 1.2.1), 

abundant levels of gammacerane are suggested to be reflecting eukaryotic ciliate 

communities living in marine and lacustrine depositional basins (Ten Haven et al., 1989; 

Harvey and Mcmanus, 1991; Sinninghe Damsté et al., 1995). The biosynthesis of 

tetrahymanol in ciliates, via the STC pathway, is hypothesized to represent a primitive 

biosynthetic pathway, as it requires far fewer steps in comparisons to sterols and can be 

conducted under anaerobic conditions (Kemp et al., 1984). Additionally, ciliates are 

suggested to be among the earliest eukaryotes to have evolved (Douzery et al., 2004), which 

is supported by the observation of preserved tintinnids in the Cryogenian Tsagaan Formation 

(Bosak et al., 2011). Interestingly, ciliates are observed with both sterol and tetrahymanol 

membrane lipids. It is shown that if ciliates are grown in the presence of sterol-producing 

organisms they do not biosynthesize tetrahymanol (Conner et al., 1968). But, when 
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heterotrophic ciliates are grown devoid of sterols they will synthesize tetrahymanol. 

Additionally, contrary to most sterol producing biosynthetic pathways, the tetrahymanol 

biosynthesis does not require free molecular, allowing ciliates to survive under dysoxic 

conditions.  

 

1.2.3 Thermal alteration of preserved organic molecules 

  Before molecular fossils can be used to interpret the depositional environment, it is of 

utmost importance to assess if the observed hydrocarbons are indigenous, overprinted by 

anthropogenic hydrocarbons (i.e. oils, plastics, grease), altered during deposition or degraded 

during post-deposition. To evaluate if rocks are contaminated and potentially display false 

positive results, it has been proposed to investigate the hydrocarbon content of both the 

sample interior as well as its exterior (Jarrett et al., 2013; French et al., 2015) and to also 

investigate for any anthropogenic hydrocarbons such as for plastic derived branched alkanes 

with quaternary carbons (BAQCs) are present (Brocks et al., 2008; Leider et al., 2016).  

  Indigenous molecular biomarkers can be preserved for billions of years, but this can 

only occur if the preservation conditions during and after deposition are optimal. The 

majority of organic matter (OM) deposited under oxic conditions will be respired in the form 

of CO2, thus leaving limited hydrocarbon traces to be found in the rock record. Whereas the 

preservation of OM in oxygen-limited environments is enhanced due to reduced aerobic 

microbial oxidation as well as the absence of (oxygen depended) eukaryotes which are 

responsible for a significant portion of OM remineralization (Killops and Killops, 2005; 

Hallmann et al., 2011).   

  Considering that the early Earth witnessed severe oxygen limitation prior to the 

Ediacaran (e.g. Lyons et al., 2014; Figure 1.1) made the conditions for the preservation OM 

were likely more favorable. However, if hydrocarbons are exposed to significant thermal 

stress after deposition, especially over extended geological time, organic molecules can crack 

and lose their distinctive structures (Killops and Killops, 2005). To assess the thermal 

maturity of organic material in ancient sediments pyrolysis experiments can be performed 

(i.e. Rock-Eval pyrolysis) to indicate if the preserved OM is either immature, mature or 

overmature for hydrocarbon generation (e.g. peak oil window; Figure 1.6). Immature (TMAX: 

< 435°C) and mature (TMAX: 435–450°C) organic matter is generally suitable for lipid 

biomarker analysis, whereas for overmature organic matter it gets increasingly more difficult 
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for the detection of non-volatile hydrocarbons.   

  The thermal stress of OM can also be quantified by comparing the relative abundance 

of similar molecules with different isomers with a diverse resistance to thermal alteration 

(Table 1.1). Examples include: (i) the hopane based C31 22S/(22S+22R) index, where C31 22S 

is reported to be more resistant to thermal stress, yet it reaches thermal equilibrium (~0.60) 

well before peak oil window (Figure 1.6; Mackenzie, 1984); (ii) the sterane based C27 ααα  

S/(S+R) ratio, achieving thermal equilibrium in the second half of the oil window with an 

equilibrium at 0.55 (Summons et al., 1988); (iii) the sterane parameter C27 ββ/(αα+ββ) which 

is indicated to reach thermal equilibrium (~0.70) during the late oil window  

(Seifert and Moldowan, 1986); (iv) the aromatic hydrocarbon methylphenanthrene index  

 

 

Table 1.1 | Composite list of molecular indices to interpret preserved organic matter 

Information A Parameter Direction References 

Thermal maturity  Methylphenanthrene ratio Increases with maturity Radke et al., 1986 

 Ts/(Ts+Tm) Increases with maturity Seifert and Moldowan, 1978 

 C27 (ββ/(αα + ββ) Increases with maturity Seifert and Moldowan, 1986 

 C31 (22S / (22S + 22R) Increases with maturity Peters et al., 2005 

 Dia/(dia+reg) steranes Increases with maturity Seifert and Moldowan, 1986 

 C27 (22S / (22S + 22R) Increases with maturity Summons et al., 1988 

 Aromatic sterane ratio Increases with maturity Mackenzie, 1984 

 Methyl adamantane ratio Increases with maturity Chen et al., 1996 

 Tricyclics / hopanes  Increases with maturity Peters et al., 2005 

Lithology Dia/(dia+reg) steranes High in shales Rubinstein et al., 1975 

 Norhopanes / hopanes High (>1) in carbonates Peters et al., 2005 

Redox and 

environment 

Pristane / Phytane 

 

High (> 1) in oxic and 

terrestrial derived OM 

Didyk, 1978 

 

 

C35 Homohopane index 

 

Elevated in anoxic 

environments 

Peters et al., 2005 

 

 

Sterane / hopane 

 

Elevated in oxic 

environments 

Peters et al., 2005 

 

 

Dibenzothiophene ratio 

 

Higher in marine 

derived organic matter 

Hughes et al., 1995 

 

Stratification and 

salinity 

 

Gammacerane index 

 

High in hypersaline and 

stratified water columns 

Sinninghe Damsté et al., 

1995 

 

C19 nor-androstane ratio 

 

High in stratified 

environments 

Kelly, 2009 

 
 

AThe relative relationships between compounds in molecular indices are commonly influenced by several 

additional factors (e.g. maturity, redox) besides the primary reported mechanism above and therefore 

multiple molecular indices should be used in the assessment of depositional environments. 
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(MPI-1) ranges between 0.4–1.5 for immature to mature oils, reaching its thermal equilibrium 

after the peak oil generation (Figure 1.6; Radke et al., 1986); (v) the methyladamantane ratio, 

due to the stable nature of the diamondoid molecules, is especially useful for investigating 

OM which witnessed severe thermal stress (Figure 1.6; Chen et al., 1997); (vi) the relative 

abundance of diasteranes compared to regular steranes (dia/(dia+reg)) where it is reported 

that diasteranes are more resistant to thermal alteration (Figure 1.6; Seifert and Moldowan, 

1986); (vii) the hopanes based Ts/(Ts+Tm) ratio, where it is observed that 18α-22,29,30-

trisnorneohopane (Ts) is significantly more resistant to heat as 17α-22,29,30-trisnorhopane 

(Tm; Figure 1.6; Seifert and Moldowan, 1978; Moldowan et al., 1986). Additionally, thermal 

stress can also be investigated by comparing different compounds classes with each other, for 

instance, indicated by the increase of the thermally more stable tricyclic terpanes compared 

with hopanes (Figure 1.6; Peters et al., 2005). Another indicator is elevated aromatization 

which increases with thermal stress, this is expressed in the relative abundance of triaromatic 

steroids (TA) compared with monoaromatic steroids (MA; Figure 1.6; Mackenzie, 1984). 

However, the relative distribution between individual compounds as well as separate isomers  

 

 

Figure 1.6 | Relationship between thermal maturity and different molecular indices. (a.) TA: triaromatic 

steranes, MA: monoaromatic steranes (Mackenzie, 1984); (b.) Methylphenanthrene ratio (1.5 *(2-MPhen+3-

MPhen) / (Phen + 1-MPhen + 9-MPhen) (Radke et al., 1986); and (c.) Methyladamantane ratio (1-

methyladamantane / (1-methyladamantane + 2-methyladamantane) (Chen et al., 1996). Figure modified after 

Peters et al., 2005  
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are not solely influenced by thermal stress, other factors, such as; redox, salinity, lithology, 

biodegradation, and community, can also influence the parameters (Moldowan et al., 1986; 

Rullkötter and Marzi, 1988; Peters et al., 2005). To characterize the OM in ancient 

sedimentary deposits it is thus important to understand all the controls influencing the lipid 

inventory. Although diasteranes can reflect thermal maturity in low-maturity samples 

variation in the diasteranes ratio is commonly attributed to the lithology of the source rock.

 Generally, clay minerals enhance the preservation of organic matter compared to 

carbonate or silt mineralogys. The preferential preservation of hydrocarbons in siliciclastic 

lithologies is partly due to hydrocarbons absorbing to the mineral surface of clay minerals, 

reducing the remineralization rate and with the sedimentation of the mineral particle will be 

buried to preserve the OM from further degradation (Hedges and Keil, 1995; Killops and 

Killops, 2005). To evaluate the depositional environment of a source rock it has been 

proposed to investigate the relative proportion of both diasteranes (Rubinstein et al., 1975; 

Van Kaam-Peters et al., 1998) and diahopanes (Moldowan et al., 1991; Peters et al., 2005) 

relative to their regular molecular configurations. Steranes and hopanes that are deposited in 

clay-rich environments are recognized to partly undergo a restructuring of the molecular 

configuration via acid clay catalysis to form dia-terpanes (Rubinstein et al., 1975; Moldowan 

et al., 1991). 

 

1.2.4 Degradation of preserved organic matter 

  Another important parameter influencing preserved organic matter (OM) is post-

depositional biodegradation. Both aerobic and anaerobic microbial organisms have been 

recognized to contribute in the degradation of organic matter (Connan, 1984; Palmer, 1993; 

Connan et al., 1997; Larter et al., 2003). During the biodegradation of preserved 

hydrocarbons, microorganisms use the initial OM as a dietary substrate for their own 

survival. Because n-alkanes are among the most energetically favorable preserved 

hydrocarbon compounds, organisms preferentially remove the short and medium chained 

alkyl lipids first. As the n-alkane pool gets depleted in carbon-13, longer chained n-alkanes 

get removed as well as isoprenoids and alkylcyclohexanes, followed eventually by polycyclic 

compounds. The removal of saturated hydrocarbons results in biodegraded OM becoming 

characterized by increased aromatization and an increased unresolved complex matrix 

(UCM). As the name already suggests, the UCM is compiled out of several thousand 
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molecules—indicated to be unfavorable residual products of biodegraded hydrocarbons—

which are unable to be individually identified using conventional chromatographic techniques 

(Sutton et al., 2005). To classify the level of biodegradation a scale from 0 to 10 was 

introduced (Volkman et al., 1983; Alexander et al., 1984; Noble et al., 1985; Peters et al., 

2005), where 0 indicates no biodegradation, 1: lightly, 2 moderately 3: heavily and 4–10 are 

all indicative of severe biodegradation (Figure 1.7).  

  The removal of certain polycyclic terpanes is rather interesting as structurally 

compounds share abundant similarities (e.g. hopanes–vs.–25-nor-hopanes), yet microbial 

organisms significantly favor one (hopanes) over the other (25-nor-hopanes). This allows the 

identification of severely biodegraded oils as they commonly contain an increased abundance 

of pentacyclic hydrocarbon, characterized by a demethylation at the C-10 position, such as 

25-nor-hopanes (Moldowan and McCaffrey, 1995; Peters et al., 2005; Bennett et al., 2006; Li 

et al., 2015). 

 

  

Figure 1.7 | Biomarker degradation scale. Degradation expressed on a scale from 1 to 10; L: lightly 

biodegraded, M: moderately biodegraded, H: heavily biodegraded. The severity of alteration for each molecular 

class is expressed as initially altered (dashed pink line), substantially depleted (solid pink line), and fully 

depleted (dark red line) (modified after Peters et al., 2005) 

 

1.2.5 Environmental molecular indices 

  As molecular biomarkers derive from distinct organic sources, some provide the 

opportunity to reconstruct the environmental conditions during deposition. The ratio between 

bacterial hopanes and sterane molecules is reported to indicate the community balance 

between bacteria and eukaryotes, as well as a redox indicator as sterol producing organism 

preferentially occupy oxidizing environments (Peters et al., 2005; Brocks et al., 2016). The 

ratio of dibenzothiophene (DBT), an organosulfur molecule, relative to phenanthrene has 
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been suggested to differentiate between marine (> 1) and non-marine conditions (< 1) 

(Hughes et al., 1995; Peters et al., 2005). Both DBT and Phen have been suggested to derive 

through the diagenesis and catagenesis of organic matter. Organosulfur molecules (e.g. DBT) 

are formed through a reaction of an organic substrate with reduced sulfur species (e.g. 

hydrogen sulfide). Reduced species are more commonly found in marine conditions, 

especially in reduced marine conditions (Hughes et al., 1995).  

  The molecular remnant of tetrahymanol, gammacerane, is a common marker used in 

oil and source rock studies (Peters et al., 2005), where elevated levels in marine and non-

marine depositional basins are hypothesized to indicate a stratified (Sinninghe Damsté et al., 

1995) or hypersaline water column (Chen and Summons, 2001). Recently it was reported that 

the nor-androstane ratio also has the potential to indicate water column stratification (Kelly, 

2009).  Another way to evaluate the redox conditions is to evaluate the phytol degradation 

products in a depositional basin. Phytol is derived from the phytyl tail of a primary produced 

chlorophyll molecule which, depending on the redox conditions in the water column, gets 

converted to either pristane or phytane (Figure 1.8). Under reducing conditions phytol is 

preserved as phytane (C20H42), while under oxidizing conditions phytol is converted to 

phytenic acid before being preserved as pristane (C19H40; Didyk, 1978). The ratio between 

pristane and phytane (Pr/Ph) is a common parameter used to identify if the organic matter is 

derived from a reduced marine (> 1) or oxidized lacustrine (< 3) depositional basin (Peters et 

al., 2005; Evenick, 2016). However, the precise values can be affected by thermal 

degradation (Koopmans et al., 1999).  

 

 

Figure 1.8 | Phytol degradation pathway. Under oxic conditions the phytyl sidechain of Chlorophyll gets 

oxidized to phytenic acid, before being preserved as pristane, whereas phytane is the molecular remnant of 

diagenesis of phytol under anoxic conditions (Didyk, 1978, figure after Hallmann et al., 2011) 
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1.3  Precambrian carbon isotope systematics 

 The single most important building block for life on Earth is carbon. The unique 

tetrahedral structure of elemental carbon, with 4 valence electrons means that it prefers to 

form covalent bonds with other atoms to form stable molecules. The carbon atom has two 

stable isotopic forms, 12C and 13C, which on average are in a ratio of 98.9 : 1.1. Normalizing 

the relative proportion of 12C versus 13C—generally against the Vienna Peedeebelemnite 

(VPDB) standard (1.8)—allows for the possibility to search for anomalies in the carbon cycle 

through time and environments. 

  (1.8)    𝛿13𝐶𝑆𝑎𝑚𝑝𝑙𝑒 = (
( 𝐶13 / 𝐶12 )𝑆𝑎𝑚𝑝𝑙𝑒

( 𝐶13 / 𝐶12 )𝑉𝑃𝐷𝐵
− 1) × 1000  

1.3.1 Inorganic and organic carbon isotopes 

  Carbon is preserved in multiple forms, the majority being stored as carbonate 

minerals (1*108 PgC) in sedimentary deposits (Ronov et al., 1990). Although modern 

carbonates are predominantly biogenically formed by foraminifera and coccolithophorids, 

due to the evolutionary absence of these organisms in the Precambrian, it is suggested that 

ancient carbonates were precipitated abiotically by an oversaturation of Ca2+ reacting with 

HCO3
- to form CaCO3 (1.6) (e.g. Warren, 2006). The HCO3

- in this reaction is derived from 

the dissolved inorganic carbon (DIC) pool, which is equilibrated by atmospheric CO2. The 

dissolution of CO2 in marine waters generally forms HCO3
-, a transition that does not provide 

any significant carbon isotopic fractionation; therefore, the isotopic signature preserved in 

marine carbonates reflects the atmospheric CO2 values during deposition. This provides an 

opportunity to reconstruct the ancient atmospheric carbon cycle by analyzing the stable 

carbon isotopic signature of ancient carbonate rocks (δ13Ccarb). Studies towards the δ13CCARB 

signatures throughout time showing average δ13C values of ~0 ‰ , although periodically (e.g. 

early Paleoproterozoic, late Neoproterozoic and late Permian) carbon isotopic anomalies 

ranging between -16 ‰ and +12 ‰ are observed (Figure 1.1; Schidlowski, 2001; Halverson 

et al., 2005; Kristanssen-Totton et al., 2016).  

 Additional to the preservation of inorganic carbon in the form of carbonates, organic 

carbon may also be preserved over geological time. The isotopic signature of organic carbon 

(δ13Corg) is depleted relative to corresponding inorganic isotopic signatures as organisms 

discriminate against 13C, resulting in a negative isotopic fractionation (Nier and Gulbransen, 

1939). The majority of photoautotrophs use the Ribulose-1,5-Bisphosphate 
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Figure 1.9 | CO2 solubility versus 

temperature and salinity. Figure highlights 

that increased temperature and salinity 

decreases the CO2 solubility (after Schidlowski 

et al., 1984) 

 

Carboxylase/Oxygenase (RuBisCO) enzyme as 

part of the Calvin-Benson-Bassham (CBB) 

cycle to sequester their carbon from the DIC 

pool. On average, this pathway results in an 

isotopic discrimination of -28 ‰ (±2 ‰) 

relative to the δ13Ccarb (Leary, 1988; Hayes, 

1994; Schidlowski, 2001). Alternative 

biological pathways provide significantly 

different isotopic values, for instance, organic 

matter derived from methanotrophs display 

values up to -130 ‰ (Hinrichs et al., 1999), 

while organisms that use the reverse 

tricarboxylic acid (rTCA) cycle produce an 

average carbon isotopic signature of -10 ‰ 

(Van der Meer et al., 1998).   

  Although other carbon fixation pathways exist the most common pathway is the CBB-

cycle, which is also shown to be extremely conservative through geological time, suggested 

having already evolved during the Archean (Schidlowski, 2001; Nisbet et al., 2007). Because 

of the distinct 13C discrimination for organisms using the CBB-cycle, it is suggested that the 

isotopic composition of preserved hydrocarbons can indicate biologically produced carbon. 

Yet it is important to note that under specific abiotic conditions hydrocarbons can be 

synthesized (i.e. Fisher-Tropsch synthesis) resulting in depleted carbon-13 values similar to 

those produced via the CBB cycle (Fischer and Tropsch, 1926; Lancet and Anders, 1970). 

Therefore, the depleted δ13Corg values recorded from Hadean minerals (Bell et al., 2015) and 

early Archean rocks (Mojzsis et al., 1996; Rosing, 1999; Schidlowski, 2001; Ohmoto et al., 

2006) might provide false positive readings for biologically produced hydrocarbons.  

 

1.3.2 Carbon isotope decoupling 

  Analysis of the relationship between organic and inorganic carbon revealed the 

isotopic offset to have decreased over time. Hayes (1994) hypothesized that this is due to 

relatively more methanotrophic organisms—which generally fractionates more depleted 

δ13Corg—during the Archean, while after the GOE organisms utilizing the CBB-pathway (i.e. 
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cyanobacteria) became more environmentally relevant (Paragraph 1.1.2), resulting in an 

average observed offset between organic and inorganic carbon isotopes (Δδ13Corg-carb) of -28 

‰ (±2 ‰) in Proterozoic marine sedimentary deposits. Generally, Δδ13Corg-carb values show 

coupled values since the Paleoproterozoic, but a decoupling is observed during severe 

negative δ13Ccarb anomalies. These severe negative anomalies occurred predominantly in the 

late Proterozoic, notably the Bitter Springs (0.85 Ga) (Macdonald et al., 2010) and Shuram 

(0.56 Ga) (Lee et al., 2015). The negative isotopic excursions and Δδ13Corg-carb decoupling has 

led to many hypotheses about their mechanistic origin, including the oxidation of a large 

dissolved organic carbon (DOC) pool (Rothman et al., 2003; Fike et al., 2006; McFadden et 

al., 2008), an asteroid impact event (Young, 2013), extinction of a significant portion of the 

primary producers (Kaufman et al., 1997), intense ocean stratification (Ader et al., 2009), 

amplified precipitation of carbonates (Schrag et al., 2013) and/or post-depositional alteration 

(Knauth and Kennedy, 2009). While positive δ13Ccarb anomalies such as the Lomagundi 

excursion (2.1 Ga) (Schidlowski et al., 1976; Martin et al., 2013) are attributed to increased 

oxygen producing primary productivity (Canfield et al., 2013) and show no significant 

isotopic decoupling between organic matter and carbonates.    

  Δδ13CORG-CARB decoupling is also observed in carbon limiting environments, such as 

modern heliothermal lakes (Schidlowski et al., 1984; Schidlowski et al., 1994; Wieland et al., 

2008; Houghton et al., 2014) and hypersaline Antarctic lakes (Trichet et al., 2001). Increased 

salinity and temperature both restrict the solubility of the CO2 in aqueous solutions (Figure 

1.9), diminishing the DIC pool. When carbon becomes a limiting nutrient, autotrophs start 

sequestering carbon via diffusion rather than the RuBisCo pathway resulting in significantly 

smaller organic isotopic fractionation (Schidlowski et al., 1984; Schouten et al., 2000). 

Although these are localized and rare isotopic effects and do not significantly impact the 

global carbon cycle, it is important to understand and recognize these signatures when 

interpreting the preserved carbon isotopes in ancient sedimentary deposits. So far, the only 

Proterozoic rocks hypothesized to be deposited under such conditions are the phosphatic 

stromatolites of the 1.77 Ga Jhamarkotra Formation, Aravalli Supergroup, India (Banerjee et 

al., 1986; Sreenivas et al., 2001). 
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1.3.3 Compound-specific carbon isotope systematics 

  Measuring bulk organic 

carbon isotopes only provides a 

general idea of the biological carbon 

cycle during deposition. Significantly 

more information can be gathered by 

separating the organic matter into the 

kerogen and bitumen fraction. 

Kerogen is an accumulation of 

insoluble resistant biomacromolecules 

(> 1000 Da), which mainly derive 

from primary produced bulk organic 

matter formed during the early stages 

of diagenesis (Tegelaar et al., 1989; 

De Leeuw et al., 1991). The bitumen 

fraction is soluble, in organic solvents, 

and can be further separated in order 

to isolate individual hydrocarbons 

such as polycyclic terpanes (Paragraph 1.2), phototrophic derived phytol lipids or general 

alkyl lipids and the stable molecular remnant of fatty acids.   

  By performing compound-specific isotope analysis (CSIA), the δ13C value for each 

isolated lipid can be determined. As lipids are biosynthesized through an array of metabolic 

reactions, some affect the carbon isotope kinetics (DeNiro and Epstein, 1977). Organisms 

which use the CBB cycle to sequester carbon will use the mevalonate pathway prior to the 

pyruvate pathway in their lipid biosynthesis, which generates fatty acids ~1.5 ‰ more 

depleted carbon-13 signatures compared to isoprenoids (e.g. phytol; Hayes, 1993) and ~4‰ 

more depleted versus bulk organic matter (Figure 1.10; Bidigare et al., 1997; Schouten et al., 

1998a). Yet, methanotrophic bacteria use the pyruvate pathway first and therefore the 

isotopic signatures between alkyl and isoprenoid lipids are inversed (Rohmer et al., 1993; 

Summons et al., 1994).   

  As stated earlier, most environments are dominated by autotrophs which use the CBB 

cycle to fix carbon and therefore the preserved isotopic values of isoprenoids in modern 

sediments are generally relatively elevated in carbon-13 in comparison to the alkyl lipids 

Figure 1.10 | Biosynthesis and preservation of δ13C 

of specific organic matter through time. Biosynthesis 

of organic matter using the CBB cycle leads to n-

alkanes and isoprenoids with lower δ13C values, 

compared to the kerogen (Hayes, 1993; Bidigare et al., 

1997). This biosynthetic signature is preserved in 

Phanerozoic sediments, yet in the Proterozoic times it 

has been suggested that alkyl lipids were severely 

enriched through heterotrophic reworking (Logan et al., 

1995).  
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(Hayes, 1993). Yet in Proterozoic sediments, Logan et al. (1995) observed an inversed carbon 

isotopic relationship between kerogen and alkyl lipids (Δδ13Calk-ker; Figure 1.10). As 

previously indicated kerogen mainly consists out of primary produced organic matter, 

therefore predominantly reflecting the δ13C signature of autotrophs. In contrast, alkyl lipids 

are biosynthesized by both autotrophs and heterotrophs. DeNiro and Epstein (1978) showed 

that heterotrophic organisms isotopically discriminate against 13C while excreting CO2, 

leaving behind organic matter with more elevated δ13C values. Logan et al. (1995) 

hypothesized that during the Proterozoic, due to the absence of eukaryotic grazers and fecal 

pellets, organic particle sizes would have been smaller, and the organic sedimentation rate 

would have been slower. The reduced sinking speed of DOC allowed the organic matter to be 

longer subjected to repeated heterotrophic reworking, leading to the mixing in of more 13C 

enriched alkyl lipids relative to the δ13C of preserved organic matter. Using a numerical 

model, Close et al. (2011) tested this hypothesis as well as the relationship between alkyl and 

phytyl lipids (Δδ13Cphy-alk), describing that the Δδ13Calk-ker is mainly controlled by 

heterotrophic reworking, however the Δδ13Cphy-alk offset can be influenced via a variety of 

environmental controls (i.e. stratification, community and carbon pool mixing). Recently, 

studies of the Proterozoic 1.4 Ga Xiamaling Formation, China (Luo et al., 2015) and 1.1 Ga 

Touadenni basin, Mauritania (Blumenberg et al., 2012) have shown large variations in the 

Δδ13Calk-ker offset. A possible scenario for this variation could be that during the Proterozoic 

benthic microbial communities influenced the organic matter preservation (Pawlowska et al., 

2013). Over the last years, several papers have been published hypothesizing that due to the 

absence of predation during the majority of the Proterozoic era, microbial mats were 

abundantly present in shallow environments (e.g. Gehling, 1999; Logan et al., 1999; Gehling 

and Droser, 2013; Pawlowska et al., 2013). This would have generated aggressively oxidizing 

environments in the cyanobacterial mats, which would decrease the overall preservation 

potential (Pawlowska et al., 2013). 

 

  



L. M. van Maldegem (2017)                                       Chapter I: Introduction 

32 

 

1.4 Objectives of this thesis 

  Through the combined use of molecular biomarkers, stable isotopes, and bulk 

geochemical techniques (highlighted in Figure 1.11, and further described in Chapter 2), the 

general scope of this thesis is to investigate the distribution of life surrounding the 

Neoproterozoic Snowball Earth events (717–635 Ma), specifically to enhance our 

understanding about the evolution of complex life.  

This thesis can be divided into 3 main research topics, each with specific goals:  

1. A study of the preserved organic biosignatures in the 635 Ma Araras Group, 

Amazon Craton, Brazil 

• The main objective for this study is to research the organic matter in the cap 

carbonate deposits of the 635 Ma Araras Group, Amazon Craton, Brazil to 

identify how life recovered in the direct aftermath of the Marinoan glaciation. 

• This study aims to understand the molecular structure, distribution throughout 

time and potential biological source of an unusual C28 pentacyclic terpane 

observed in elevated abundances throughout the Mirassol d’Oeste Formation 

of the Araras Group. 

• Furthermore, this thesis assesses whether there is a relationship between the 

preserved organic molecules and cap dolostones lithology of the Mirassol 

d’Oeste Formation. 

 

2. The paleo-environmental reconstruction and molecular lipid distribution of the ~750 

Ma Chuar Group, Grand Canyon, USA  

• The focus of this project is to research the preserved molecular, isotopic, 

lithological and elemental data throughout the Chuar Group in order to unravel 

the community distribution prior to the Sturtian glaciation.  

• Additionally, the molecular biomarker distribution and molecular parameters 

will be compared to both environmental and preservation indicators. 
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3. Understanding the controls and limitations of bulk and compound-specific carbon 

isotope systematics in the middle and late Proterozoic (1.64–0.54 Ga) 

• Another objective of this thesis is to investigate the suggested characteristic 

Proterozoic carbon isotopic ordering between bulk organic matter, alkyl lipids, 

and phytyl lipids to unravel which mechanisms influence them and how the 

isotopic ordering can be used as a potential tool to reconstruct ancient 

depositional basins. 

• Furthermore, the heavy organic carbon isotopic anomaly observed in the 

Awatubi Member (Chuar Group; also studied in objective 2) is investigated 

through a multidisciplinary approach using isotopes, redox-sensitive elements, 

biomarkers, and lithological observations. 
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1.5 Thesis outline 

  The aforementioned research goals and objectives (Paragraph 1.4) are addressed in 

Chapters III-VII. Chapter II details the methods and instruments used in this study to 

acquire the data used in Chapters III-VII (see also Figure 1.11). Chapter III predominantly 

focusses on bisnorgammacerane (BNG), a rare pentacyclic terpane, observed in elevated 

abundances throughout the cap dolostones of the post-Marinoan Araras Group, Brazil. 

Detailed investigation of BNG throughout geological time and across a wide array of 

environmental conditions reveals BNG to be a potential novel molecular indicator and 

furthermore suggests that BNG may provide a solution to the conundrum of primary dolomite 

precipitation during the Marinoan deglaciation. Chapter IV investigates the isotopic 

relationship between the δ13C values of kerogen as well as alkyl and phytyl lipids throughout 

the middle and late Proterozoic—with a special focus on the Tonian Chuar Group, USA—in 

order create a better understanding of the factors controlling the carbon isotopic ordering. 

Chapter V researches the potential biological and environmental sources causing the 

elevated δ13Corg values (< 15 ‰) seen throughout the Awatubi Member, Chuar Group, USA. 

Chapter VI studies the preserved biological signatures throughout the transgressive ~750 Ma 

Chuar Group, USA. Using a multiproxy approach of molecular biomarkers supported by 

lithological observations, redox-sensitive trace metals, and microfossils, this study reveals the 

pre-Sturtian lipid biomarker signatures as well as investigates the paleo-environmental 

conditions during the deposition of the Chuar Basin. Chapter VII investigates the unusual 

lipid biomarker distribution of the Araras Group, Brazil to uncover the recovery of life in the 

direct aftermath of the Marinoan glaciation. Chapter VIII describes the overarching 

conclusions of this study and provides a future outlook. Chapter VIII is succeeded by an 

accumulated List of References and Appendices. Appendix A displays the most common 

cyclic hydrocarbon molecules referred to in this study, Appendixes B-F presents the 

supplementary material for Chapters III-VII including all raw data values.  
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Figure 1.11 | Flowchart of methods and instruments used in this thesis to acquire geochemical data. Blue 

boxes indicate input, green boxes output, white boxes actions, grey boxes samples fraction, orange arrow 

indicate methods used for both Chuar and Araras samples, blue arrow only Chuar samples, red arrows only 

Araras samples.  
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1.6   Anticipated publications arising from this work 

Chapter III  

Intense heterotrophy after Snowball Earth caused cap dolostone deposition  

Lennart M. van Maldegem, Pierre Sansjofre, Johan W. H. Weijers, Klaus 

Wolkenstein, Paul K. Strother, Lars Wormer, Jens Hefter, Yosuke Hoshino, Stefan 

Schouten, Jaap S. Sinnighe Damsté, Nilamoni Nath, Christian Griesinger, Nikolay B. 

Kuznetsov, Marcel Elie, Marcus Elvert, Erik Tegelaar, Gerd Gleixner and Christian 

Hallmann   

Christian Hallmann and Lennart van Maldegem designed the research; Lennart van 

Maldegem conducted the organic geochemical work up, including preparative LC separation 

of the organic matter preserved in the carbonates rocks from the Araras Group and Chuar 

Group, and measured the organic extracts using GC-TOF-MS, GC-MS-MS and compound 

specific isotope analysis using a GC-IRMS. Johan Weijers and Erik Tegelaar measured over 

100 additional Phanerozoic samples from the Royal Dutch Shell oil database. Lennart van 

Maldegem, Lars Wormer and Marcus Elvert performed preparative LC, Jens Hefter operated 

the preparative GC. NMR spectrometry measurements were performed by Klaus Wolkenstein 

and Nilamoni Nath; Pierre Sansjofre, Johan Weijers, Paul Strother, Yosuke Hoshino, Stefan 

Schouten, Jaap Sinnighe Damsté, Nikolay Kuznetsov, Marcel Elie, and Erik Tegelaar 

provided new samples; Lennart van Maldegem and Christian Hallmann analyzed all 

geochemical data; Lennart van Maldegem and Christian Hallmann wrote the manuscript with 

input from all others.  

Chapter IV  

Redox and community steered carbon isotopic ordering  

 Lennart M. van Maldegem, Pierre Sansjofre, Paul K. Strother, Amy E. Kelly, 

Benjamin J. Nettersheim, Enno Schefuss, Gerd Gleixner, and Christian Hallmann  

Christian Hallmann and Lennart van Maldegem designed the research; Lennart van 

Maldegem conducted the organic geochemical work up of the Chuar Group samples and 

analyzed the compound-specific isotope analysis via a GC-IRMS. Amy Kelly performed 

additional geochemical analyses; Pierre Sansjofre, Johan Weijers, Paul Strother, Amy Kelly, 

and Benjamin Nettersheim provided new samples; Lennart van Maldegem and Christian 

Hallmann analyzed data; Lennart van Maldegem and Christian Hallmann wrote the 

manuscript.    
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Chapter V  

Tonian organic 13C anomaly caused by local carbon limitation 

Lennart M. van Maldegem, Pierre Sansjofre, Paul K. Strother and Christian Hallmann 

 

Christian Hallmann and Lennart van Maldegem designed the research; Lennart van 

Maldegem conducted the organic geochemical work up of the Chuar Group samples via GC-

TOF-MS and GC-MS-MS. Pierre Sansjofre analyzed the trace elemental composition and 

stable isotopic content of the carbonates. Lennart van Maldegem, Pierre Sansjofre, Paul 

Strother and Christian Hallmann collected fresh sample material. Lennart van Maldegem, 

Pierre Sansjofre, and Christian Hallmann analyzed the data; Lennart van Maldegem prepared 

the draft.  

Chapter VI  

Biological signatures and paleo-environmental reconstruction of the Tonian 

Chuar Group, Grand Canyon, USA 

Lennart M. van Maldegem, Pierre Sansjofre, Paul K. Strother, Thorsten Bauersachs, 

Lorenz Schwark and Christian Hallmann  

 

Christian Hallmann and Lennart van Maldegem designed the research; Lennart van 

Maldegem conducted the organic geochemical work up of the Chuar Group samples via GC-

TOF-MS and GC-MS-MS. Pierre Sansjofre measured the trace elemental composition and 

stable isotopic content of the carbonates. Paul Strother analyzed the microfossil content, 

Thorsten Bauersachs, and Lorenz Schwark performed Rock-Eval pyrolysis. Lennart van 

Maldegem, Pierre Sansjofre, Paul Strother and Christian Hallmann collected fresh sample 

material. Lennart van Maldegem, Pierre Sansjofre, Paul Strother and Christian Hallmann 

analyzed the data; Lennart van Maldegem wrote the chapter with input from Christian 

Hallmann.  

Chapter VII  

Biomarker taphonomy throughout the post-Marinoan Araras Group, Brazil  

Lennart M. van Maldegem, Pierre Sansjofre, and Christian Hallmann   

Christian Hallmann, Pierre Sansjofre and Lennart van Maldegem designed the research; 

Lennart van Maldegem conducted the organic geochemical work up of the Araras Group 

samples via GC-TOF-MS and GC-MS-MS. Pierre Sansjofre provided samples. Lennart van 

Maldegem, Pierre Sansjofre, Paul Strother and Christian Hallmann analyzed the data; Lennart 

van Maldegem wrote the manuscript with input from Christian Hallmann.    
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Methods and instruments 
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2.1  Prior to laboratory work up 

Prior to the laboratory workup all glassware, glass wool, silica gel, the stainless steel 

puck and mill, quartz sand and aluminum foil were baked at 500°C for 8 h to remove any 

organic contaminants. Activated copper, used to remove elemental sulfur, was activated with 

a 1 M hydrochloric acid (HCl) solution before being washed with deionized (DI) water to 

reach neutrality and being cleaned three times by methanol (MeOH) and dichloromethane 

(DCM) under ultrasonication. High purity grade solvents (Merck n-hexane, cyclohexane, 

MeOH Suprasolv® grade, and DCM UniSolve® grade) were used throughout all laboratory 

procedures.  

 

2.2  Workup of rock samples 

In recent years it has become evident that hydrocarbon contamination from ancient 

and/or anthropogenic sources can pose a significant problem when analyzing ancient rocks 

samples (Grosjean and Logan, 2007; Sherman et al., 2007; Brocks et al., 2008; Hallmann et 

al., 2011; Illing et al., 2014; French et al., 2015; Leider et al., 2016). To overcome 

ambiguities and establish whether detected hydrocarbons are syngenetic and indigenous, 

solely indigenous (but not syngenetic) or derive from contamination introduced during 

residence, sampling or during the laboratory workup process, we separated all samples into 

interiors and exteriors and analyzed these in parallel to procedural blanks. Sufficiently large 

samples of a solid composition were sectioned using a lapidary trim saw (Lortone Inc.) fitted 

with an 8” diamond rimmed stainless steel saw blade that was previously cleaned by 

ultrasound-assisted solvent extraction (DCM) and by baking at 400ºC. Samples too small or 

too fissile for sectioning with a saw were abrasively separated into an exterior portion (in the 

form of abraded powder) and an interior portion using the micro-ablation technique (see 

(Jarrett et al., 2013) for details). After sawing, solid sample interiors and exteriors were 

wrapped in thick clean aluminum foil and fragmented into pieces smaller than ca. 1 cm3 by 

the impact of a solvent-cleaned hammer. Powdering of these fragments was achieved in a 

Siebtechnik Shatterbox (Scheibenschwingmühle) using a custom-made stainless steel puck 

and mill, which were cleaned by baking (500°C for 8 h) prior to use. Between samples, the 

puck and mill were cleaned by grinding and discarding clean Quartz sand (3x) followed by a 

solvent wash. 
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2.3  Solvent extraction and fractionation of lipid extracts 

Between 10 and 25 grams of powdered sediment was extracted at 120ºC (20 min.) 

under stirring with DCM in a CEM MARS 6 microwave extraction system. Three extractions 

were performed with 30 mL solvent each, which were pooled after centrifugation (2 min. at 

2000 rpm) in the Teflon extraction tubes. After removal of elemental sulfur using copper 

granules (activated with HClaq [1M], washed to neutrality [DI water] and solvent cleaned 

with MeOH and DCM), extracts were concentrated to a volume of 3 mL in a Büchi Syncore 

Analyst (700 mbar, 45°C). Hexane (3 mL) was added and concentrated down again. This 

total lipid extract (TLE) was filtered through a glass wool filled (ca. 0.5 cm) Pasteur pipette 

(baked clean at 500°C) and allowed to evaporate to a volume of ca. 500 µL under ambient 

atmospheric conditions. One half of this TLE was removed for archival at the University of 

Bremen. The other half was transferred onto a silica gel (600 mg, 0.063–0.2 mm, Merck) 

filled Pasteur pipette and fractionated into saturated hydrocarbons, aromatic hydrocarbons 

and polars by sequential elution with n-hexane, n-hexane/DCM (7:3, v:v) and DCM/MeOH 

(1:1, v:v).  

 

2.4  Molecular sieving 

To obtain fractions of baseline separated linear alkanes and phytyl hydrocarbons for 

the Chuar Group samples, saturated hydrocarbons were separated using molecular sieves. 

Adduction into a 5Å sieve (ca. 1 g, Merck) was performed overnight in cyclohexane (3 mL) 

at 80°C. The non-adduct was extracted with cyclohexane (3 x 3 mL) under ultrasound 

assistance. Isoprenoids were isolated from the 5Å non-adduct through a ZSM-5 sieve (Acros 

Organics) adduction, following the same procedure as described for the 5Å adduction 

experiment above. To release the n-alkanes and isoprenoids, the sieves were placed in pre-

cleaned 30 mL PTFE tube with 3 mL of n-hexane before 10 mL of concentrated hydrofluoric 

acid (HF) (40 % v/v, Merck Millipore) was added and left under stirring for 2 h to digest. The 

overlying n-hexane containing the released hydrocarbons was pipetted off and transferred to a 

new vial.  
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2.5  Preparative chromatography  

2.5.1  Preparative liquid chromatography (LC-Prep) 

After extraction, selected saturated hydrocarbon fractions were cleaned up using a 

multi-step in-house protocol, where linear and branched alkanes were removed by molecular 

sieving as described above, followed by liquid chromatographic preparation on an Agilent 

1260 HPLC system to remove the UCM (Figure 3.2), and a final cleanup by preparative GC. 

BNG was separated from interferences using size-exclusion chromatography (normal phase) 

at 22°C eluting with DCM (1 mL min-1) and isolated using an Agilent 1260 fraction collector.  

2.5.2  Preparative gas chromatography (GC-Prep) 

Preparative capillary gas chromatography was used to further purify the compound. 

Aliquots of 5 µL of the pre-cleaned hydrocarbon fraction in hexane were repeatedly injected 

via a Gerstel CIS 4 in solvent vent mode and into an Agilent 6890N gas chromatograph. The 

inlet was equipped with a deactivated, baffled glass liner (70 mm x 1.6 mm i.d.), set to an 

initial temperature of 40°C and heated to 320°C at 12°C s-1 and a final hold time of 2 min. 

For compound separation, the GC was equipped with a Restek Rxi-XLB capillary column (30 

m, 0.53 mm i.d., 0.5 µm film thickness). The GC was operated in constant flow mode using 

Helium as carrier gas at a rate of 4 mL min-1. After an initial time of 2 min at 60°C, the oven 

was heated with 20° min-1 to 150°C and with 8°C min-1 to 320°C, with a final hold time of 6 

min. A zero-dead volume splitter diverted 1 % of the column effluent via a restriction control 

capillary to a flame ionization detector (FID), whereas the remaining 99 % were transferred 

to a Gerstel preparative fraction collector (PFC). The PFC was connected via a heated fused 

silica transfer capillary to the GC and set to 320°C. The switching device, directing the 

column effluent into seven time-programmable individual traps, was also set to 320°C. After 

trapping, the compound was recovered with 5 x 500 µL hexane.  

 

2.6  Gas chromatography and mass spectrometry 

2.6.1  GC-TOF-MS 

Full scan analyses were performed on a Trace GC Ultra gas chromatograph (Thermo 

Scientific) coupled to an ALMSCO BenchTOF-dx mass spectrometer (MS). The GC was 

fitted with a custom VF-1 column (40 m, 0.15 mm i.d., 0.15 µm film thickness) using a 

constant flow (1.4 mL min-1) of He (5.0, Westfalen AG) as a carrier gas. Samples (typically 
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1/1000 µL) were injected in splitless mode using a PTV injector (ramped from 60°C to 

315°C at 14.5° sec-1). The GC oven was subsequently held at 60ºC (2 min) before ramping at 

4.5° min-1 to a final temperature of 325°C, which was held for 10 min. Ionization was 

achieved at 70 eV (electron impact) and 250°C with a filament current of ca. 4 A. Data was 

measured from m/z 30–800 but only recorded from m/z 50–550 at ca. 1000 mass resolution 

using 2469 scans per scanset and a scanset period of 250 ms. Analytes were quantified by 

comparison to internal standards perdeuterated C30D62 triacontane (Sigma-Aldrich) in the 

saturated hydrocarbon fraction and d14-p-terphenyl (Sigma-Aldrich) for the aromatic fraction 

without correcting for individual response factors. 

2.6.2  GC-MS-MS 

Target compounds analysis for biomarkers was performed on a Thermo Quantum 

XLS Ultra triple quadrupole MS coupled to a Thermo Trace GC Ultra, fitted with a DB-XLB 

capillary column (60 m, 0.25 mm i.d., 0.25 µm film thickness) and a deactivated pre-column 

(10 m, 0.53 mm i.d.). A constant flow of Helium (5.0, Westfalen AG) was used as a carrier 

gas (1.3 mL min-1). Volumes of typically 1 or 2 out of 1000 µL were injected on column at 

70°C. The oven was held isothermal at 70°C (5 min), then heated to 335ºC at 4º min-1 and 

held at final temperature for 9 min. Ionization was achieved by electron impact at 70 eV and 

250°C, with an emission current of 50 μA. Q1 and Q3 were each operated in 0.7 Da 

resolution with a cycle time of 0.5 seconds. Q2 was operated with Argon 5.0 collision gas at a 

pressure of 1.1 mTorr and varying collision voltages depending on the target analyte. 

Compounds were quantified relative to d4-5α-cholestane (Sigma Aldrich) without correcting 

for individual response factors. 

 

2.7  Compound-specific stable carbon isotope analyses 

The stable carbon isotopic composition of the Chuar Group n-alkanes and isoprenoids 

were determined at the Max Planck Institute for Biogeochemistry (Molecular 

Biogeochemistry research group), Jena, Germany on an HP 5890 GC (Agilent Technologies) 

coupled to a Delta Plus XL isotope ratio mass spectrometer (Finnigan MAT, Bremen, 

Germany). Aliquots of 1 µL of the 5 Å adduct were injected in splitless mode at 280°C and 

separated on a DB1-MS capillary column (50 m, 0.32 mm i.d., 0.52 µm film thickness) 

operated with He (constant flow, 1.7 mL min-1) as a carrier gas. The oven was held 

isothermal at 50°C for 1 min, ramped at 9º min-1 to 308°C, held isothermal for 2 minutes and 
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finally ramped at 20° min-1 to 320°C, where it was held isothermal for 3 min. Stable carbon 

isotope ratios were determined relative to a CO2 reference gas, pulsed before and after the 

elution of analytes during a run. This CO2 was cross-calibrated relative to a reference mixture 

of isotopically known n-alkanes. Data are presented in the conventional δ13C notation as 

permil deviations from the VPDB standard. Samples were analyzed in duplicate with 

analytical errors estimated at ± 0.2 ‰. 

2.8  Bulk stable organic carbon isotope analyses 

  The stable carbon isotopic composition of kerogens was determined at the Max 

Planck Institute for Biogeochemistry (IsoLab), Jena, Germany. Bulk powdered samples were 

digested with HClaq (6 M, diluted from Alfa Aesar 36 % w/w aq.) to remove carbonates and 

washed to neutrality with DI water. After drying and homogenization, the powdered samples 

(5–10 mg) were loaded into tin capsules (0.15 mL, 5 mm ID, Lüdiswiss AG) and combusted 

online at 1020°C in a Carlo Erba EA-1100 elemental analyzer with a He carrier gas flow rate 

of 85 mL min-1. Generated CO2 was passed through a reduction furnace (650°C) and 

separated from other gases on a Porapak PQ 3.5 GC column (80/100 mesh) at 40°C. The 

product gases were transferred to a Finnigan MAT Delta+ XL mass spectrometer via a 

ConFlo III interface operated in diluted mode for δ13Corg. The stable carbon isotopic values 

are reported in the 

2.9  Nuclear magnetic resonance (NMR) spectroscopy 

NMR measurements were conducted at the Max Planck Institute for Biophysical 

Chemistry, Göttingen, Germany. The sample was dissolved in 40 μL 99.96 % CDCl3 and 

transferred into a 1.7 mm NMR tube. 1D 1H and 2D double quantum filtered correlated 

spectroscopy (DQF-COSY), nuclear Overhauser effect spectroscopy (NOESY), 1H-13C 

heteronuclear single quantum coherence (HSQC), and 1H-13C heteronuclear multiple-bond 

correlation (HMBC) spectra were recorded at 295 K on a Bruker Avance III 800 MHz 

spectrometer equipped with a 1.7 mm cryo CP-TCI probe. The 1H and 13C chemical shifts 

were referenced to CHCl3 (δH = 7.26 ppm, δC = 77.16 ppm). NMR spectra were processed 

with Topspin 2.1 (Bruker). DQF-COSY: Spectra were acquired as a 200*(t1)4096*(t2) data 

matrices, where N* refers to N complex pairs, using 128 transients per FID and a 1 s delay 

between scans. Spectral width of 2000 Hz was chosen in ω2 and ω1, respectively. The time 

domain data was processed by zero filling to 8 k and 8 k points in the ω2 and ω1 dimensions, 

respectively, with a sine square window function in both dimensions. HSQC: Spectra were 
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acquired as a 512*(t1)1024*(t2) data matrices, where N* refers to N complex pairs, using 

176 transients per FID and a 1.5 s delay between scans. Spectral width of 2003 Hz and 12195 

Hz was chosen in ω2 and ω1, respectively. The time domain data was processed by zero 

filling to 2 k and 1 k points in the ω2 and ω1 dimensions, respectively, with a cosine square 

window function in both dimensions. HMBC: Spectra were acquired as a 512*(t1)1000*(t2) 

data matrices, where N* refers to N complex pairs, using 256 transients per FID and a 1.5 s 

delay between scans. Spectral width of 2000 Hz and 12066 Hz was chosen in ω2 and ω1, 

respectively. The time domain data was processed by zero filling to 8 k and 2 k points in the 

ω2 and ω1 dimensions, respectively, with a cosine square window function in both 

dimensions. 62.5 ms delay for evolution of long-range coupling, phase sensitive mode, no 

refocusing of long-range couplings before and no decoupling during acquisition. NOESY: 

Spectra were acquired as a 256*(t1)4096*(t2) data matrices, where N* refers to N complex 

pairs, using 40 transients per FID and a 2 s delay between scans. The mixing time used for 

the experiment was 400 ms. Spectral width of 2000 Hz was chosen in ω2 and ω1, 

respectively. The time domain data was processed by zero filling to 8 k and 1 k points in the 

ω2 and ω1 dimensions, respectively, with a cosine square window function in both 

dimensions. 

 

2.10  Carbonate analysis 

 The δ13Ccarb and δ18O isotopic signal of the carbonates was determined on a Gas 

Bench 2 coupled with a Delta V Plus Mass Spectrometer (Thermo Fischer). ~150 µg of 

powdered samples was reacted in a helium-filled, pressurized (~3 bar) tube with 6 droplets of 

concentrated H2PO4 at 70°C for 60 min. The released CO2 was collected cryogenically and 

analyzed on the mass spectrometer using an in-house reference gas. The measurements were 

calibrated with the Rennes 0, NSB-19 and NBS-21 international standards. Samples were 

measured in triplicated and for the δ13Ccarb error bars of 0.1 % (2 σ) were observed, and 0.2 % 

(2 σ) for δ18O.  

 

2.11  CHNS analysis 

  The carbon and nitrogen content of the samples were quantified on a Vario Max 

elemental analyzer (Elementar) at the Max Planck Institute for Biogeochemistry, Jena, 

Germany. Before measurement 250 mg of samples were weighed into ceramic cups with 
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tungsten trioxide added. Samples dropped into a combustion tube filled with tungsten trioxide 

(WO3) and heated to 1100°C. The carrier gas He2 was mixed with O2 to generate a flash 

combustion. The analytes were internally transferred to a second combustion tube filled with 

a blend of copper oxide and platinum, and heated to 900°C. After combustion, the gas 

mixtures flowed into a reduction tube filled with tungsten and heated to 830°C. The 

remaining nitrogen was measured by a thermal conductivity detector (TCD) which was 

followed by the release of the captured CO2 from the adsorption column which was also 

measured by the TCD. Reference materials were analyzed for every 15-20 samples to 

determine the accuracy and reliability of the analysis. 

 

2.12  Rock-Eval pyrolysis 

  The thermal maturity of the samples was assessed via a VINCI Rock-Eval II 

instrument at the Institute for Geosciences, University of Kiel, Germany. 1 gram of powdered 

sample was rapidly heated in an inert atmosphere to a maximum of 300°C, thereby recording 

the amount of free hydrocarbons (S1 signal; HC mg g-1). After which the temperature was 

increased to 550°C at 25°C min-1 in order to determine the S2 peak (Flame ionization 

detector; HC mg g-1). The maximum generation of stable hydrocarbons during the S2 peak 

temperature program is recorded as TMAX. The S3 (CO2 mg g-1) was determined using a 

thermal conductivity detector to measure the released CO2 up to 390°C. 

 

2.13  Elemental analysis 

 Inorganic elemental analyses were analyzed by a High Resolution Inductive Coupled 

Plasma- Mass Spectrometer (HR-ICP-MS) (Thermo Fischer) installed at the Insitut 

Universitaire Européen de la Mer (IUEM), Brest, France. 100 mg of sample was digested in a 

Teflon bottle with 2 mL of HCl [6 M) for 24 h. For shale samples, an additional digestion 

was performed using a mixture of HF and HCl (3:1 v/v) for 48 h. The solution was 

evaporated to (0.5 μL) before being made up to a 10 mL solution with a 2 % HNO3
- and 0.05 

% HF solution for trace element analysis. The injected solution was ionized with an argon 

plasma operating at 6000–8000°C. The ion beam was focused with electric field at -2000 V 

while transferred to the detector. Precision and accuracy were better than 1 % (mean 0.5 %) 
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of the measured value for the major-minor elements and 8 % for the trace metals, as checked 

by international standards and analysis of replicate samples. 

 

2.14  Microfossil analysis 

 Palynological samples were prepared via HCl-HF-HCl acid treatment at Boston 

College, Massachusetts, USA. The residues were sieved using a 10 µm mesh followed by a 

zinc chloride heavy liquid separation to further sieve at 10 µm. Organic residues were 

mounted directly on glass slides using epoxy resin. Samples were analyzed using a Zeiss 

Universal microscope equipped with Zeiss PlanApo 63X and Zeiss Plan-Neoflur 25X 

objectives, and analyses were undertaken using transmitted white light supplemented by 

infrared analysis. 
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Abstract  

Earth’s most severe glaciations occurred 717–635 Myr ago and put life under intense 

pressure. Enigmatic cap dolostones were globally deposited directly after these 

Snowball Earth events for currently unclear reasons. Here we show that Marinoan cap 

dolostones of the Araras Group contain exceptional abundances of a novel biomarker, 

25,28-bisnorgammacerane (BNG). Analysis of its occurrence and carbon isotope 

systematics reveal a mechanistic connection to extensive heterotrophic reworking of 

biomass in a stratified water column. BNG concentrations in the Araras cap carbonate 

dwindle at the dolostone-limestone boundary, highlighting the role of heterotrophic 

microbes in nucleating and precipitating Mg-carbonates. Intense heterotrophy during 

the Marinoan deglaciation reduced the marine carbon sink, causing vastly accelerated 

weathering, larger alkalinity fluxes and the rapid deposition of cap carbonates. 

 

3.1  Introduction 

 The Late Neoproterozoic global glaciations marked a pivoting point for the evolution 

of life on Earth (Hoffman et al., 1998): while Tonian (1.0–0.72 Ga) sediments are 

predominantly characterized by bacterial remains, along with traces of some simple 

eukaryotic life, more complex life emerged during the Ediacaran (0.64–0.54 Ga), eventually 

leading to the evolution of large soft-bodied organisms of the Ediacara biota and true metazoa 

(Butterfield, 2000; Xiao and Laflamme, 2008). In particular, the relationship between the 

termination of the Marinoan Snowball Earth event at 635 Ma (Rooney et al., 2014), and the 

evolution of complex life has fueled abundant discussion as these glaciations have variably 

been considered either a bottleneck or a catalyst for the evolution of organismic complexity. 

Several geochemical proxies point to a significant rise in environmental oxygenation after the 

Marinoan glaciation (Fike et al., 2006; Sahoo et al., 2012; Sansjofre et al., 2014), potentially 

triggered by a significant influx of nutrients during deposition of diamictites. This stimulated 

photosynthetic primary productivity, thereby increasing carbon burial and stoichiometrically 

augmenting free molecular oxygen concentrations in the atmosphere and oceans (Broecker, 

1970). Yet virtually nothing is known about the nature and response of life in the direct 

aftermath of Snowball Earth, or how this could have impacted biogeochemical cycles. One 

major reason is that the majority of post-Marinoan cap carbonates, which conformably drape 

glacial diamictites (Hoffman et al., 1998), preserve exceedingly little organic matter and are 

mostly too thermally mature for the preservation of specific molecular biomarker 

information. These cap carbonates were likely deposited very rapidly under highly elevated 

pCO2 and increased marine alkalinity (Hoffman et al., 1998).    
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 Yet, no good explanation exists for the primary dolomite lithology that makes up the base of 

all observed cap carbonates (Shields, 2005) since the precipitation of dolomite is kinetically 

inhibited at non-evaporitic low-temperature conditions due to strong hydration of Mg2+ ions 

in solution (Land, 1998; Hänchen et al., 2008; Roberts et al., 2013). The lack of good 

explanations for the “dolomite problem”, i.e. a significantly elevated proportion of dolostones 

deposited during the Precambrian, has now occupied geoscientists for more than a century 

(Van Tuyl, 1914) and the origin of many sedimentary dolostone deposits remains 

Figure 3.1 | 25,28-bisnorgammacerane in the Araras cap dolostone. The lower ~10 m of pink Araras cap 

dolostone contain no preserved hydrocarbons (chromatogram #10), in agreement with an oxidizing 

depositional environment. Following the precipitation and drawdown of redox-sensitive lead upon 

decreasing Eh, and allowing organic preservation (around 11 m), BNG (structure determined via NMR; see 

Appendix B1–B6 for more information) is the dominant hydrocarbon biomarker (> 1000 ng/g TOC, #20), 

suggesting intense heterotrophy during the deposition of the cap dolostone. A drop in BNG concentrations 

to < 10 ng/g TOC (note the logarithmic scale) coincides with the dolostone to calcite transition and is 

paralleled by a strong increase in common eukaryotic (i.e. steroid) and phototrophic (pristane and phytane 

peaks in green) biomarkers, indicating enhanced preservation and less trophic forcing. Violet and blue 

triangles represent common BNG associated compounds (see Figure 3.6 and Paragraph 3.3). 
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controversial (Machel, 2004). To resolve this issue, we focused on primary dolostones of the 

Mirassol d’Oeste Formation (Araras Platform, Brazil) and overlying Guia Formation 

limestones as they represent the only known Marinoan cap carbonate that preserves organic 

matter sufficiently well (TMAX < 440ºC) to allow for a molecular organic geochemical 

investigation (see Chapter 2). While the lower ~11 m of this cap carbonate are organic barren, 

in agreement with an oxidizing depositional environment suggested by a pink color and low 

authigenic lead enrichment (Pbaut) (Figure 3.1), a return to reducing conditions is indicated by 

the sudden precipitation and drawdown of the Pb reservoir and preservation of bitumen at 

12.5 m. Here, exceptional abundances (> 1000 ng/g TOC) were found of a hitherto 

unidentified terpenoid. The compound was isolated from 3.5 gram of pyrobitumen collected 

from Mirassol d’Oeste Fm. Isolation of the target compound occurred through a combination 

of lipid extraction, column chromatography (Paragraph 2.3), preparative liquid 

chromatography (Paragraph 2.5.1), and preparative gas chromatography (Paragraph 2.5.2) 

resulted in the recovery of ~20.6 µg of the compound with a purity of > 99 % (Figure 3.2). 

Identification of the unambiguous compound was conducted by mass spectrometry 

(Paragraph 2.6) and unprecedentedly sensitive microcryoprobe NMR analysis (Paragraph 

2.9) (Wolkenstein et al., 2015).  

 

 

Figure 3.2 | Total ion GC-MS chromatograms (TIC, m/z 50–550) showing the stepwise isolation of BNG 

(orange diamonds) (see methods in Chapter 2). (A) Full saturated hydrocarbon fraction, (B) Fraction containing 

BNG after molecular sieving and preparative liquid chromatography, (C) Fraction after preparative gas 

chromatography contains BNG in > 99 % purity.  
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3.2  Identification of 25,28-bisnorgammacerane (BNG) 

The compound was first preliminarily characterized by GC-MS as a previously 

unknown triterpenoid and HR-EI-MS data confirmed a molecular formula of C28H48 (m/z 

384.3744 M+; calcd for C28H48, 384.3756). Structural elucidation was performed using 1D 

and 2D microcryoprobe NMR spectroscopy (for additional figures and tables see Appendix 

B.1–B.6). The 1H NMR spectrum showed only signals in the aliphatic region. Only 14 

carbons were observed in the HSQC and HMBC spectra, suggesting a symmetrical molecule 

with six methyl, 12 methylene, six methine, and four quaternary carbons (Appendix A.6). 

Detailed analysis of COSY, HSQC, and HMBC correlations suggested a pentacyclic 

triterpane structure with only six-membered rings. HMBC correlations indicated that the 

methyl groups are located in positions 23, 24, 26, 27, 29, and 30, establishing the constitution 

of the molecule as 25,28-bisnorgammacerane (BNG) (Figure 3.3). 

 

 

Figure 3.3 | Chemical structure and 1H-1H COSY (bold), key HMBC (H→C), and key NOESY 

correlations of 25,28-bisnorgammacerane. See for further details Appendix B.1–B.6 

 

 

This constitution is only compatible with C2 symmetry. The conformation (trans-fused 

chairs) and relative configuration could be established by the observation of large (> 10 Hz) 

axial/axial 3JHH couplings for Hα-3, Hβ-2, Hα-1, Hβ-10, Hα-5, Hβ-6, Hα-7, Hα-9, and Hβ-11. 

The relative configuration was further corroborated by determination of the spatial proximity 

of protons. NOESY correlations were observed between the axial 24-methyl group and H-10 

and between H-10 and the axial 26-methyl group as well as between H-5 and H-9. However, 

no NOESY correlation was observed between the 24-methyl group and H-5, indicating that 

24- and 26-methyl groups and H-10 are at the same side and H-5 and H-9 are at the opposite 

side of the molecule (Figure 3.3). In addition, a strong NOE was observed between the two 

equatorial protons Hβ-1 and Hα-11. Further support for the conformation and configuration 

came from the HMBC correlations of methylene protons, showing distinct 3JCH correlations 
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for equatorial protons and 2JCH correlations for axial protons. Thus, the configuration of BNG 

was determined to be either 5α(H),8β,9α(H),10β(H),13β(H),14α,17β(H),18α(H) or  

5β(H),8α,9β(H),10α(H),13α(H),14β,17α(H),18β(H). Since no isomers of BNG were 

observed, it is very likely that the primary configuration of the BNG precursors tetrahymanol 

and gammacerane (Hills et al., 1966) is preserved and the configuration of BNG is 

5α(H),8β,9α(H),10β(H),13β(H),14α,17β(H),18α(H). (Figure 3.3; Appendix B.1–B.6).  

 

3.3  Biological source of BNG 

  To increase our understanding of the paleo-environmental significance of BNG, we 

studied a collection of 249 rocks, coals and oils, spanning the past ~800 Myr of Earth history 

(Appendix B.7) including a sample set consisting of 94 petroleum fluids from the Shell 

laboratories in Rijswijk, The Netherlands and 39 oils and rock extracts from the Royal 

Netherlands Institute of Sea Research (NIOZ), the Netherlands. Compounds were identified 

by comparison of their retention times and elution order to standard samples (Figure 3.4). 

Presence of BNG in oil samples was confirmed by a co-elution experiment of an oil with an 

aliquot of the internal TeS. 20 extract, Araras Group, Brazil.   

 

 

 

Figure 3.4 | 25,28-bisnorgammacerane identification. 25,28-bisnorgammacerane identification (a.) Mass 

spectrum (electron impact: 70 eV), (b.) NMR-determined structure, where orange diamonds indicate 

demethylation, (c.) gas-chromatographic elution pattern and tandem chromatography of rock extract 

(Petershill #893), (d) Occurrence of bisnorgammacerane and gammacerane throughout 800 Myr of Earth 

history of the novel molecular marker 25,28-bisnorgammacerane: rocks in orange bars, oils in black bars, 

circles indicate absence in analyzed samples. Red crosses indicate elevated gammacerane/hopane values (> 

0.15) (Appendix B.7), a molecular indicator for water column stratification (Sinninghe Damsté et al., 1995).  

Green areas mark global warm periods with low-frequency moving average global δ18O > 0 ‰ after 

(Prokoph et al., 2008). 

d. 
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While BNG is observed in both marine (14.8 %) and non-marine (42.1 %) samples 

irrespective of lithology, we note that rocks with positive BNG detection were predominantly 

deposited in the (sub)tropical zone (paleolatitudes of ca. 30° N/S (van Hinsbergen et al., 

2015)), display lithological signs of elevated salinities and seem to roughly correspond to 

warm periods in Earth history (Figure 3.4). In particular, the secular co-occurrence of BNG 

and gammacerane suggests a mechanistic relationship. Gammacerane is diagenetically 

derived from tetrahymanol, which is predominantly biosynthesized by heterotrophic 

bacterivorous eukaryotic ciliates and mostly occurs in rocks deposited in stratified saline 

settings (Sinninghe Damsté et al., 1995) or conditions of elevated salinity (Chen and 

Summons, 2001). Commonly, abundant gammacerane concentrations are hypothesized to 

derive from eukaryotic ciliates which biosynthesize tetrahymanol when deprived of sterols in 

their diet (Conner et al., 1968; Ourisson et al., 1987). As sterol synthesizing organisms are 

abundant in modern oxygenated water column, elevated gammacerane levels are interpreted 

as derived from ciliates living below the chemocline, were they thrive under reduced oxic 

conditions (Ten Haven et al., 1989; Harvey and Mcmanus, 1991; Sinninghe Damsté et al., 

1995). This is supported by the δ13C values of gammacerane (Sinninghe Damsté et al., 1995) 

which have been found to have higher isotope values relative the bulk organic matter.  

Figure 3.5 | Stable carbon and 

nitrogen isotopic composition of bulk 

organic matter throughout the lower 

Araras Group. The δ13C value of 

BNG (orange diamond) is lower than 

δ13Corg (grey diamonds) (Ader et al., 

2014) suggesting that it’s precursor 

was not influenced by heterotrophic 

dietary intake of isotopically heavy 

green sulfur bacteria. The δ15Nbulk 

values (Ader et al., 2014) display a 

significant enrichment as soon as Pbaut 

concentrations increase due to 

precipitation in an increasingly 

reducing environment (purple circles) 

(Sansjofre et al., 2014), suggesting 

when the environment became micro- 

aerobic severe heterotrophic 

denitrification occurred.  
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This was interpreted that heterotrophic ciliates likely consumed autotrophic green sulfur 

bacteria (GSB)—which inhabit the same ecological niche—whom assimilate carbon through 

the reverse TCA cycle, leading to elevated δ13C values (Quandt et al., 1977). Although, the 

compound-specific isotopic values of BNG in the Araras samples shows a stable carbon 

isotopic value of -27.7 ‰, similar to the δ13C values of the bulk organic matter (Ader et al., 

2014), suggests the organism synthesizing BNG did not feed on GSB (Figure 3.5).   

  The most probably explanation lies in evolutionary changes in the ecological 

importance of sterol biosynthesizing eukaryotes. From our own data and literature reports 

(Pawlowska et al., 2013), it has become clear that before the Ediacaran, eukaryotes played a 

rather insignificant role in primary production and were significantly less abundant than 

during the Phanerozoic. As a corollary, the absence of dietary sterols, even in mildly 

oxygenated to aerobic settings, would lead ciliates to always biosynthesize tetrahymanol. 

Thus Proterozoic sedimentary gammacerane likely still points to water column stratification 

(which could involve a halocline, as it was suggested for the aftermath of the Snowball Earth 

events (Shields, 2005)) it would not necessarily point to water column anoxia—the 

environmental condition that precludes eukaryotes and, hence, dietary sterol provision during 

the Phanerozoic. Tetrahymanol producing ciliates have been suggested to be amongst the 

earliest eukaryotes that have evolved (Douzery et al., 2004), which is supported by the 

observation of morphologically preserved tintinnids in Cryogenian rocks (Bosak et al., 2011) 

and the detection of gammacerane in the Tonian Chuar Group (Summons et al., 1988). 

Besides the inclination to feed on sterols (which would shut down tetrahymanol production), 

ciliates have been reported to be bacterivorous (Harvey and Mcmanus, 1991) and even 

reported to be cannibalistic if alternative food sources run out (Dawson, 1929; Polis, 1981). 

Due to the organic lean nature of the samples from the Araras Group and the presumably 

significantly higher resistance to microbial degradation relative to the remainder of the 

primary produced organic matter, ciliate cannibalism provides one plausible explanation for 

the characteristic dominance of 25,28-BNG.  

  While gammacerane is absent in the studied Araras cap dolostone, we identified an 

older sedimentary sequence (~750 Ma Chuar Group, Grand Canyon, USA) (for a more 

detailed description of the Chuar Group Geology see Paragraph 6.2), where the connection 

between gammacerane and BNG becomes obvious (Figure 3.3) Here, an anti-correlative 

relationship between gammacerane and BNG, as well as co-occurrence of the latter with 

minute abundances of 25-norhopanes, demethylated at the same C-10 carbon position (Blanc 

and Connan, 1992).  
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  The demethylation of pentacyclic triterpenoids at position C-10 (i.e. leading to 25-

nor-hopanoids) is a common feature in most biodegraded oils (Moldowan and McCaffrey, 

1995; Peters et al., 2005; Bennett et al., 2006; Li et al., 2015). This is likely due to a 

combined effect of C-10 being the preferred site for enzymatic attacks on pentacyclic 

terpanes (Rullkötter and Wendisch, 1982) and the resulting compounds being less prone to 

further degradation, which leads to their concentration over regular triterpanes during 

progressive biological degradation (Blanc and Connan, 1992). The presence of C-10 

demethylated compounds in non-biodegraded fluids (Bao, 1997) is likely due to mixing 

between different oils (Volkman et al., 1983), although it should be pointed out that a 

statistical predominance of C-10 demethylated compounds in lacustrine and marine setting 

with limited oxygen conditions was found by Blanc and Connan (Blanc and Connan, 1992). 

The occurrence and disappearance of 25,28-BNG in the Chuar Group is paralleled by 

exceedingly small traces of 25-norhopanes. Nota bene that no regular C30 or extended C31–

C35 hopanes were detected in this stratigraphic interval (Paragraph 6.4.5). We take this co-

occurrence as a further indicator for the demethylation of gammacerane having happened in 

parallel to the demethylation of hopanes in the water column. The salient difference is that 

BNG apparently carries a much higher resistance to complete degradation than other 

terpenoids. The degradation and removal of methyl groups thus occur prior to diagenesis with 

a formation pathway likely leading from tetrahymanol, via 25,28-bisnortetrahymanol to 

25,28-BNG. In fact our working model does not assume a strange or different composition of 

primary producers at the stratigraphic position that is dominated by BNG, but assumes that 

most of the primary produced biomass (which was exceptionally low in eukaryotes) was 

reworked as a consequence of intense heterotrophic recycling, with BNG as the sole survivor 

and hence indicator of such rather rare conditions of intense heterotrophy.   

  Every single investigated source rock sample containing 25,28-BNG also consistently 

features two additional uncommon triterpanes. Their abundances were too low for NMR-

based structural determination but based on mass spectra as shown in Figure 3.7, we 

tentatively identified these compounds as 25,28,29,30-tetranorgammacerane and 25-nor-des-

E-gammacerane, although the latter could also be derived from hopanoids degradation. The 

loss of an E-ring has been previously linked to either photochemical (Simoneit et al., 2009) or 

microbial (Trendel et al., 1982) alteration of the oxygenated ring of unsaturated hydrocarbons 

(Jacob et al., 2007; Ma et al., 2014), while further demethylation would be indicative of 

progressive degradation of BNG. The consistent co-occurrence of these compounds with 
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25,28-BNG lends additional support to the idea that all of these compounds have been 

generated through intense microbial degradation during deposition and not afterward. 

 

 

Figure 3.6 | Mass spectra (70eV, EI), molecular structure and molecular fragmentation of (a.) 25,28,29,30-

tetranorgammacerane and (b.) 25-nor-des-E-gammacerane.  

 

3.4  Carbon isotope systematics 

  Additional constraints are provided by the stable carbon isotopic offset between 

kerogen, i.e. amalgamated bulk organic matter, and the sum of weighted alkanes (n-C15–n-

C33) representative of input from microbial fatty acids (Δδ13CA-K). Bulk sedimentary organic 

matter (i.e. kerogen) represents an amalgamation of the various biological components that 

constitute the primary producing community, with added detrital organic matter and some 

biomass from heterotrophic organisms. Since degradation-resistant biopolymers are mostly 

produced by phototrophic eukaryotes but not by most bacteria, kerogen is likely affected by a 

taphonomic bias and represents eukaryotic phototrophs disproportionally strong (e.g. 

Tegelaar et al., 1989; Gelin et al., 1999; De Leeuw et al., 2006). During progressive 

heterotrophic reworking of primary produced biomass, the latter is degraded and 

quantitatively depleted without affecting its stable carbon isotopic composition. The biomass 

of heterotrophic bacteria becomes increasingly isotopically 13C enriched during progressive 

trophic cycles (DeNiro and Epstein, 1978). In contrast to the key primary producers, 

heterotrophic bacteria (i) do not contribute significantly to bulk marine organic matter 

(Sinninghe Damsté and Schouten, 1997) and (ii) are typically small (e.g. Palumbo et al., 

1984; Wang, 2008), making them sink slowly and be more susceptible to renewed 

degradation by other microbial heterotrophs. These heterotrophs do however biosynthesize 

abundant fatty acids, which can be preserved in sediments as n-alkanes. Under conditions of 
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strong heterotrophic forcing, the summed alkanes will be increasingly dominated by those 

derived from heterotrophs, and thus displaying increasingly more elevated stable carbon 

isotopic values relative to the original food source, i.e. the primary producing community. 

Hence, the isotopic offset between the δ13C value of kerogen and alkanes (Δδ13CALK–KER) can 

be taken as a qualitative and semi-quantitative indicator for the intensity of heterotrophy. This 

offset was generally more prominent during the Proterozoic (Logan et al., 1995), which has 

been attributed to a variety of factors that could indirectly enhance heterotrophic reworking 

of primary produced biomass, such as e.g. a reduced organic sedimentation rate due to the 

scarcity of large eukaryotic algae amongst the primary producing community and the absence 

of zooplanktonic grazers and their fecal pellets (Logan et al., 1995; Close et al., 2011) (see 

for more details Paragraph 1.3; Chapter 4). We here show a change from a large (~7 ‰) to a 

small (~1 ‰) offset is synchronous with the gammacerane–BNG transition. A large Δδ13CA-K 

is attributed to isotopically constant bulk organic matter that represents a mixture of 

photoautotrophic and heterotrophic biomass, whereas an increasing contribution of 

heterotroph-derived fatty acids becomes progressively enriched in δ13C through enhanced 

trophic cycling (DeNiro and Epstein, 1978; Close et al., 2011). This implies that BNG forms 

through intense heterotrophic reworking of primary produced biomass, where BNG appears 

to represent the relatively most degradation-resistant molecule. Its strength thus lies in 

Figure 3.7 | Heterotrophic 

origin of 25,28-

bisnorgammacerane. In the 

~750 Ma Chuar Group BNG 

derives through intense 

heterotrophic recycling from 

the common gammacerane 

precursor tetrahymanol, which 

is produced by heterotrophic 

ciliates, as indicated by the 

anti-correlative relationship of 

BNG and gammacerane that is 

paralleled by the offset in δ13C 

values between kerogen and 

alkanes (Δδ13CA-K; here 

normalized to kerogen). 
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settings where heterotrophic reworking was so pervasive that too low abundances of remnant 

alkanes prohibit determining Δδ13CA-K.  

 

3.5  Dolomite and heterotrophy 

The mineral dolomite, CaMg(CO3)2 consists of equivalent proportions of calcium and 

magnesium carbonates, leading to a 54.35 : 45.65 proportion. Given that pure dolomite is rare 

in nature due to frequent siliceous or clay impurities, or through metal replacement, its 

deposits are typically referred to as dolostones. The occurrence and formation of these 

minerals has been surrounded by controversy since shortly after its discovery in 1781 by 

Dolomieu (von Morlot, 1847). Already in these early days, primary deposition theories (e.g. 

Boué, 1831) were vividly discussed against those favoring dolomite formation through 

secondary alteration (e.g. Dana, 1843). Here the reader is referred to van Tuyl (1914) for a 

detailed discussion of the early questions surrounding the formation of dolomite. Today we 

know that dolostones can form both as primary deposits, as well as through alteration e.g. by 

percolating fluids. Yet a large question remains surrounding stratified dolostone sequences 

that were not deposited under conditions of elevated salinities. Here it should be mentioned 

that the idea of biologically-induced dolomite precipitation is also not a recent innovation 

(e.g. Forchhammer, 1850), with particularly Ludwig and Theobald (1852) having discussed 

the role of algae in the precipitation of limestone and dolomite already long ago. The issue of 

a ‘dolomite problem’ was first raised by Daly (1907; 1909) who recognized systematically 

varying Ca/Mg ratios in carbonates throughout Earth history, with a significantly elevated 

proportion of dolostones deposited prior to the Devonian (Figure 1.1). He pointed out that 

during the Precambrian, ‘the scavenger system of the ocean was not yet developed, the seas 

must have been depleted in lime and magnesia due to the precipitating effect of (NH4)2CO3 

generated from decaying mechanisms on the sea bottom’.  

While the dolomite problem sensu Daly still stands unanswered in detail, the more 

recently recognized ‘dolomite problem’ involves chemical studies that have revealed the 

kinetic inhibition of dolomite precipitation under normal marine conditions, despite the ocean 

being supersaturated in Mg2+ (Hänchen et al., 2008), which has been attributed to kinetic 

effects of sulfate ions (Budd, 1997) or the hydration of the Mg2+ ion (Markham et al., 2002). 

This non-precipitation from a supersaturated solution was additionally shown over a 32-year 

experiment by Land (1998) leading to the big question: where does all the dolomite come 
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from? This includes the dolostone lithology of the cap carbonates deposited in the direct 

aftermath of the Neoproterozoic Snowball Earth events.  

Over the last decades laboratory and field experiments have shown an important role for 

biology in the precipitation of primary dolomite (e.g. Power et al., 2011; Sánchez-Román et 

al., 2011; Roberts et al., 2013). Under hypersaline conditions primary dolomite can be 

precipitated under the influence of sulfate-reducing bacteria (Sánchez-Román et al., 2007) 

and in multiple laboratory experiments sulfate-reducing bacteria (Vasconcelos et al., 1995; 

Warthmann et al., 2000; Van Lith et al., 2003) and methanogenic bacteria (Roberts et al., 

2004; Roberts et al., 2013) have shown the microbial nucleation of Mg-rich dolomite by 

modification of the microenvironment around their bacterial cell (Vasconcelos et al., 2005). 

Under open marine salinity conditions, the only route of dolomite precipitation appears to 

involve aerobic heterotrophic bacteria (Sánchez-Román et al., 2011). Font et al. (2006) 

hypothesized that potentially sulfate-reducing bacteria, living in the anoxic sediments, would 

have microbially mediated the formation of dolomite. In addition, Font and colleagues (2010) 

modeled that this would take > 105 years to form the meters thick cap carbonates, however 

evidence to support this mechanism remains to be observed. 

  The exceptionally large abundances of BNG in the Araras cap dolostone testify of 

intensely elevated heterotrophy during the deposition of this unit, both in the form of 

tetrahymanol-producing bacterivorous ciliates—possibly thriving at the halocline between 

saline deep waters and less-dense surface waters derived from the Marinoan deglaciation 

(Shields, 2005)—and heterotrophic bacteria converting tetrahymanol to BNG. The high BNG 

values in the Araras cap carbonate drop rapidly at 16.4 m, coincident with a lithological 

transition from dolostone to limestone, thereby yielding the first evidence that cap carbonates 

were precipitated as primary dolostones by biological forcing through intense heterotrophy. A 

positive correlation between BNG abundances and elevated δ15N values (Figure 3.4; Ader et 

al., 2014) suggesting the onset of strong denitrification (Sigman et al., 2009). At this stage, it 

is likely that heterotrophy proceeded with a nitrate, rather than an oxygen electron acceptor. 

The respiration of organic matter via microbial nitrate reduction would have resulted in 

similar CO2 outgassing (Drtil et al., 1995) but produces significantly more OH– per carbon 

than aerobic heterotrophy (0.8 vs. 0.5). 

 

(3.1) 5C6H12O6 + 24NO3
-  12N2 + 30CO2 + 24OH– + 18H2O  (Nitrate reduction of glucose) 
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3.6  Accelerated deposition of carbonates  

  The balance between autotrophy and heterotrophy is a key factor regulating CO2 and 

O2 concentrations in the atmosphere and affects Earth’s overall redox balance (Hügler and 

Sievert, 2011). This heterotrophic formation of OH– increases pH and allows the generated 

CO2 to dissolve into solution, thereby forming CO3
2– at alkaline pH and leading to enhanced 

carbonate precipitation (Knorre and Krumbein, 2000). Additionally, the intense post-

Marinoan heterotrophy would have had significant environmental consequences by reducing 

the marine carbon sink for primary produced biomass. When accounting for the possibility of 

a significant glaciogenic input of detrital organic matter (Hoffman, 2016) the oceans were 

likely supersaturated in CO2 but carbonate precipitation is not limited by alkalinity, enhanced 

heterotrophy will not only lead to (i) enhanced and accelerated precipitation of dolostones, 

but also (ii) the enhanced respiration could have even made the ocean become a net source of 

CO2 in the aftermath of the Marinoan glaciation (Duarte and Prairie, 2005). Less drawdown 

of atmospheric CO2 in the immediate aftermath of the Marinoan Snowball Earth glaciation 

would have intensified carbonate and silicate weathering on land and led to increased fluxes 

of alkalinity to the marine realm (Higgins and Schrag, 2003). Intense oxygen- or nitrate-

consuming heterotrophy drives the carbonic acid equilibrium towards CO3
2- by locally 

increasing the pH value through production of OH- (Power et al., 2011).   

  This may not only explain the fast return to more reducing conditions on the Araras 

Platform (Figure 3.1; Sansjofre et al., 2014) but more importantly, the very rapid deposition 

of cap carbonates, estimated at 2–10 kyr by sedimentary observations and climate models 

(Hyde et al., 2000; Higgins and Schrag, 2003; Shields, 2005). A generally higher prevalence 

of heterotrophic metabolism during the Precambrian (Close et al., 2011) is evident from 

carbon isotope studies. Coupled with the here reported data, enhanced heterotrophy may 

provide a solution to the longstanding ‘dolomite problem’. 
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Abstract  

The stable carbon isotopic (δ13C) relationship between different organic carbon pools in 

sediments is typically inherited from the primary producing community. A ‘modern’ 

offset between bulk organic matter (kerogen), n-alkanes, and photosynthetically derived 

hydrocarbons is found in the vast majority of Phanerozoic (542–0 Ma) sediments, but 

older rocks frequently exhibited inverse carbon isotope relationships. Such inverse δ13C 

offsets are considered unique to the Precambrian and were attributed to an enhanced 

heterotrophic reworking of sinking biomass before the evolutionary rise of metazoan 

grazers. We here show that no ‘characteristic Precambrian’ δ13C offset exists: isotope 

systematics are primarily driven by depositional redox and the bacterial-vs.-eukaryotic 

composition of the primary producing community. Evaluating the frequent 

Precambrian carbon isotope anomalies in this new context may reveal their mechanistic 

drivers and provide a record of eukaryotic contribution to past primary productivity. 

 

4.1  Introduction  

  The stable carbon isotopic composition of sedimentary organic matter (OM) can hold 

valuable clues about the dominant metabolism of the original primary producers (Hayes et 

al., 1992), as well as on the utilized carbon substrate (Des Marais, 2001). This is particularly 

true if the compound-specific δ13C value of biologically-diagnostic molecules can be 

determined since the isotopy of bulk sedimentary organic matter—or kerogen—represents a 

composite of summed primary productivity. In live extant phototrophic cells, membrane-

incorporated fatty acids are on average more depleted in 13C compared to pigment-bound 

lipids such as phytol, while both compound classes are relatively more depleted in carbon-13 

relative to the bulk whole cell (Figure 4.1; Hayes, 1993). This specific pattern of carbon 

isotopic ordering is maintained during diagenesis and transferred to the sedimentary remnants 

of biomass, where the phytol-derived compounds pristane and phytane, are more enriched in 

13C than fatty-acid derived n-alkanes while both are more isotopically depleted compared to 

the δ13C values of the bulk organic matter (Figure 4.1). Such ‘normal’ isotopic ordering is 

characteristic for the majority of sediments that were deposited during the last ~550 Myr of 

Earth history (Hayes, 1993), ever since the Cambrian radiation of complex life marked the 

onset of a modern Earth system (Xiao and Laflamme, 2008; Erwin et al., 2011; Knoll, 2011). 

A fundamentally different isotope pattern had been frequently observed in Precambrian 

deposits, where kerogen appeared to be significantly depleted in δ13C compared to extractable 

hydrocarbons (Figure 4.1; Logan et al., 1995; Logan et al., 1997; Spangenberg and Frimmel, 

2001; Brocks et al., 2003; Williford et al., 2011), and with alkanes being isotopically more 

enriched in 13C relative to pristane and phytane (Logan et al., 1995; Logan et al., 1997; 



L. M. van Maldegem (2017)                                       Chapter IV: Protorezoic carbon isotopic ordering 

64 

 

Brocks et al., 2003).   

 In particular the latter signature was attributed to overall enhanced heterotrophic 

reworking of sinking biomass during the Precambrian: the isotopic signature imparted to fatty 

acids and pigments by the photoautotrophic primary producers can be gradually changed by 

sequential rounds of heterotrophic cycling, where the biomass of degrading heterotrophs 

becomes progressively isotopically enriched in 13C (DeNiro and Epstein, 1978: ‘you are what 

you eat plus 2 permil’). Additionally, heterotrophs will contribute fatty acids with 

increasingly higher carbon-13 values—compared to the δ13C of their food source—to the 

pool of sinking biomass but no pigments (i.e. phytol or pristane/phytane) and only negligible 

amounts of degradation-resistant biomacromolecules that contribute to the bulk biomass and 

kerogen pool.   

 

Figure 4.1 | Proterozoic δ13C signatures. (a.) Isotopic signatures of alkyl (dark green bar indicates average 

δ13C, light green background indicated range of δ13CALK) and phytyl lipids (purple bar) relative to kerogen 

(black dotted line) during biosynthesis (Hayes, 2001) (b.) Hypothesized preservation of carbon isotopic values 

of organic matter during the Proterozoic (Pt.) (blue) and Phanerozoic (PhZ.) (yellow, on the right side) organic 

matter (Logan et al., 1995). The letters c, d, e, f and g represent the isotopic signatures preserved in the (c.) 1.64 

Ga McArthur Basin, Australia (Williford et al., 2011), (d.) 1.37 Ga Xiamaling Formation, China(Luo et al., 

2015), (e.) 1.11 Ga Touirist Formation, Mauritania (Blumenberg et al., 2012), (f.) 0.75 Ga Chuar Group, USA 

(This study; Appendix C.1), (g.) 0.55 Ga Ara Formation, Oman (Grosjean et al., 2012) shaded green background 

indicated range of n-alkanes. 

 

4.2  Proterozoic carbon isotopic offsets 

  The systematic transition of such typical Precambrian isotope ordering to a modern 

signature occurred at the turn of the Phanerozoic and was initially interpreted as a 

consequence of the evolutionary advent of eukaryotic grazers (Logan et al., 1997), which 

increased the export velocity of primary produced biomass through fecal pellets and/or 

biomineralization, thereby limiting the heterotrophic reworking of OM in the water column 
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(DeNiro and Epstein, 1978). A systematic reorganization of biogeochemical cycles was 

suggested. The key relevance of this model lies in the Precambrian/Phanerozoic dichotomy of 

the carbon cycle, implying that differing mechanisms were at work prior to the advent of 

predation and evolution of digestive systems, implemently suggesting that the frequent and 

severe stable carbon isotope anomalies that mark the Neoproterozoic Era cannot be explained 

by models based on modern carbon cycle dynamics.   

  An alternative explanation was provided by Close et al. (2011), whose model 

suggested that the observed carbon isotope pattern can be easier explained by a 

heterogeneous community of primary producers, where the presence of eukaryotes, which are 

rich in degradation resistant polymers, allowed for a more primary produced biomass to be 

preserved, resulting in significantly smaller carbon isotopic differences within the preserved 

organic matter. While the mechanisms differ, both models imply significant ecological 

change just prior to the onset of the Phanerozoic: either through the advent of predatory 

grazing eukaryotes (Logan et al., 1995) or by the rise of eukaryotic algae to become the 

principal primary producers, thereby taking over this role from cyanobacteria.   

  Some aspects that have received yet little attention involve the veracity of the 

Precambrian inverse carbon isotope ordering signal, as well as its pervasiveness. Enhanced 

contamination awareness has significantly changed the geological record of unambiguously 

uncontaminated biomarker hydrocarbons—for example, apparent strong δ13C offsets between 

n-alkanes and kerogen (Δδ13CA-K), of up to 20 ‰ in Archean rocks, disappear when the 

kerogens are compared to hydrocarbons released through cracking by hydropyrolysis (Brocks 

et al., 2003).   

   Although the recently enhanced awareness of pervasive contamination in select 

Precambrian rocks and studies (Brocks et al., 2008; Brocks, 2011; French et al., 2015) might 

explain a certain number of isotopic mismatches by the absence of a genetic relationship, the 

observation of a general inverse isotopic offset remains valid for Precambrian rocks such as 

the 1.64 Ga McArthur Basin (Williford et al., 2011), 1.37 Ga Xiamaling Formation (Luo et 

al., 2015), 1.11 Ga Touadeni basin (Blumenberg et al., 2012), 0.75 Ga Chuar Group (This 

study; Appendix C.1) and 0.55 Ga Nafun Formation (Grosjean et al., 2012). However, on a 

sample to sample basis, these studies reveal large variability in isotopic ordering, with both 

positive and negative offsets present throughout the Proterozoic (Figure 4.1), raising 

questions about the underlying factors of carbon isotopic systematics during the early Earth.  
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4.3 Changing redox conditions in the Tonian Chuar Group 

 Some of the most pristine Proterozoic OM is preserved in sedimentary deposits of the 

Chuar Group (Nankoweap Butte, Grand Canyon, USA), having witnessed moderate thermal 

alteration (TMAX ~435°C; Paragraph 6.4.1; Appendix E.1). Elaborate investigation towards 

potential contamination (Paragraph 2.2), suggests the extracted organic material presented in 

this study to be indigenous to the host rocks (Paragraph 6.4.1). The unique strata of the Chuar 

Group yields some on the oldest eukaryotic biomarkers (Summons et al., 1988; Brocks et al., 

2016) while preserving a large variety of microfossils, displaying a complex biological 

ecosystem (Porter, 2016; Porter and Riedman, 2016; Paragraph 6.4) during the deposition 

under changing transgressive conditions (Nagy et al., 2009; Johnston et al., 2010; Paragraph 

6.4.7).   

  The lower Galeros Formation has been described as a restricted lacustrine environment 

(Elston, 1989) overlain by the Kwagunt Formation comprising out of the Awatubi and 

Walcott Member. The grey shales of the Awatubi Member were described to be deposited 

under nearshore restricted and evaporitic conditions (Horodyski, 1993), while the Walcott 

Member represents a shallow marine depositional basin with more reducing conditions near 

the top likely due to more open marine conditions (Nagy et al., 2009; Johnston et al., 2010). 

 

4.4  Redox influence on the kerogen-alkyl isotopic offset 

 Throughout the Kwagunt Formation, a systematic change in δ13C is observed which 

correlates with several organic geochemical parameters (Figure 4.2). In the Galeros and lower 

Kwagunt Formation a typical “Proterozoic” Δδ13CALK-KER signature is observed, with the 

carbon isotopic values for the n-alkanes (∑nC15–nC33) being ~7 ‰ (±3 ‰) more enriched 

compared to the kerogen, this offset is significantly reduced from the top of the Awatubi 

Member onwards to ~1 ‰ (±2 ‰) (Figure 4.2; Appendix C.1). The diminishing δ13CALK-KER 

offset is paralleled by increasing preservation of phytane (Ph) over pristine (Pr), resulting in a 

decrease of the pristane / phytane (Pr/Ph) ratio (Figure 4.2). Both phytyl lipids have been 

biosynthesized from a common precursor molecule, yet under more reducing conditions 

phytane is predominantly formed while under more oxidizing conditions pristine is generated 

in higher abundances (Didyk, 1978). The Pr/Ph ratio is commonly used as an indicator for 

redox conditions during deposition (Peters et al., 2005). Furthermore, as Pr and Ph derive 

from the same precursor molecule (i.e. chlorophyll), no isotopic offset is expected if they 
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were biosynthesized by the same organism in fixating carbon from the same carbon pool. 

However, in several Chuar Group samples the Δδ13CPR-PH varies significantly, suggesting a 

mixture between different carbon pools (e.g. detrital input, water column stratification) 

(Figure 4.2), however due to the large error bars (± 0.5 ‰ for each individual compound), the 

majority of the samples display no statistically significant offset (> 1 ‰) between δ13CPR and 

δ13CPH. The correlation between Pr/Ph and δ13CALK-KER (Figure 4.3) implies that redox 

significantly affects the Δδ13CALK-KER during deposition. As conditions become more 

reducing—as indicated by low Pr/Ph values—remineralization of alkyl lipids reduces, 

resulting in decrease of δ13CALK-KER.    

 

 

 Figure 4.2 | Geochemical properties throughout the 0.75 Ga Chuar Group. Stratigraphy of the Tonian 

Chuar Group, Grand Canyon, USA; (a.) Carbon isotopic offset of n-alkanes (green circles, weighted average of 

∑nC15–nC33, error bar ±0.5 ‰) relative to δ13CKEROGEN (black line); (b.) δ13CPRISTANE (purple diamonds, error bar 

±0.5 ‰) versus δ13CALKANES (black line); (c.) Pr (pristane) / Ph (phytane) ratio (Didyk, 1978); (d.) relative 

abundance (in %) of steranes (blue), hopanes (yellow) and tricyclic terpanes (red); (e.) δ13CPRISTANE (purple 

diamonds, error bar ±0.5 ‰) versus δ13CPHYTANE (black line).  
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4.5  Community composition affecting the alkyl-phytyl isotopic offset 

  Interestingly, the ΔδALK-KER throughout the Walcott Member remain consistent, while 

molecular biomarkers indicate a distinct shift from a mixed bacterial and eukaryotic 

community to a bacterial dominated community in the upper part of the Walcott Member (> 

318 m; Figure 4.2; see further Paragraph 6.4.5). Yet, in accordance to the mixed community 

model (Close et al., 2011), this community shift is paralleled by a systematic change in 

isotopic offset between alkyl and pristane lipids. Throughout the Carbon Canyon, Awatubi 

and the upper Walcott Member phytyl lipids are significantly more isotopically depleted (~3 

‰) compared to co-occurring alkyl lipids, while during the lower Walcott Member (215–318 

m) the Δδ13CPR-ALK dwindles (Figure 4.2). This anomaly is paralleled by a relative increase of 

eukaryotic derived sterane biomarkers (Figures 4.2, 6.17; Mackenzie et al., 1982; Summons 

et al., 1988). A direct comparison of Δδ13CPR-ALK and percentage steranes (Figure 4.3) reveals 

two distinct cluster, one with relatively low abundances of steranes (< 7 %) and depleted 

ΔδPR-ALK values (~3 ‰) and one with higher abundances of steranes (> 7 %) and a diminished 

ΔδPR-ALK offset (Figure 4.3, Appendix C.1). This carries the potential to investigate the 

presence and influence of eukaryotic organisms, in Proterozoic depositional basins, deprived 

of microfossils and/or molecular biomarkers. However, it is important to note that the 

preservation of the ΔδPR-ALK lipids, might not only be steered by redox and community but 

could also be influenced by water column stratification and/or detrital input (Hayes, 1994; 

Close et al., 2011; Williford et al., 2016). 

 

 

Figure 4.3 | Cross plots between molecular biomarker and stable isotopes values. (a.) Correlation between 

Pr/Ph ratio versus ΔδK-A (n: 29, R2: 0.61, p-value: 6.32*10-6), (b.) Relationship between Δδ13CA-Pr compared to 

the relative sterane abundance (n: 15, ∑(C27 steranes + diasteranes)). (c.) Cluster dendrogram of cholestane to 

ΔδPR-ALK relationship. 
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4.6  Conclusions 

  Our results imply that there is no characteristic Proterozoic carbon isotopic offset, but 

rather a combination of primary producing community composition, microbial reworking and 

redox conditions influencing the isotopic signature. Where the ΔδALK-KER displays a 

significant correlation with changes in redox conditions, the ΔδPR-ALK parallels with 

alterations in the eukaryotic community composition. These findings provides us with 

potential new tools to investigate ancient ecosystems and greatly enhances our understanding 

of past life on Earth. 
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Abstract  

Carbon isotopic values (δ13C) are an important tool for reconstructing the biological 

activity on the Proterozoic Earth. In general, phototrophic organisms fix carbon via the 

ribulose-1,5-biphosphate (RuBP) carbon pathway resulting in an average depleted 

isotope fractionation (-28 ‰) relative to the inorganic carbon. However, in specific 

microbial environments, a significantly smaller fractionation is observed as organisms 

use diffusion to fix carbon. In the Chuar Basin, Grand Canyon, USA (0.75 Ga) an 

anomaly of more enriched δ13Corg (~-15 ‰) is observed throughout the Awatubi 

Member (78–180 m), that co-occurs with a significant depletion of total organic carbon. 

Lithological features and geochemical data indicate that the deposition of the Awatubi 

Member occurred in an evaporitic basin, where the fixing of carbon likely occurred 

through the assimilatory carbon diffusion. These results emphasize that local 

mechanisms need to be considered using isotopic signatures in the reconstruction of the 

ancient carbon cycle. 

 

5.1  Introduction 

 Life on Earth, before the rise of metazoa (Xiao and Laflamme, 2008; Narbonne, 2010; 

Knoll, 2011), is suggested to have been consisting out of (cyano-) bacterial communities 

(Pawlowska et al., 2013; Blumenberg et al., 2015). Modern analogs of these hypothesized 

ancient microbial systems have been mainly evaporitic hypersaline settings, where the 

environmental conditions limit the influence of metazoan and stimulate the growth of (thick) 

mats (Wieland et al., 2008; Houghton et al., 2014). Oxygen-producing cyanobacterial mats, 

located in restricted settings during the late Neoproterozoic (1000-541 Ma), have been 

hypothesized to be the evolutionary birthplace of the first mobile animals, as the oxygen 

fluctuation during daily cycles would have favored mobile oxygen-utilizing organisms 

(Gingras et al., 2011). The emergence of metazoa in the late Neoproterozoic has been 

suggested to have diminished these same microbial communities through the emergence of 

predation and digestive systems (Logan et al., 1995), causing a reduction in trophic forcing 

and carbon respiration, overall resulting in increased preservation of lipid biomarkers 

(Pawlowska et al., 2013) and primary produced stable isotope signatures (Logan et al., 1995; 

Chapter 4).   

  Generally, the stable carbon isotopic composition (δ13C) of organic and inorganic 

carbon displays a systematic offset, yet occasionally distinct anomalies have been recorded in 

the rock record, which provides insight into the controls of Earth’s carbon cycle (Des Marais, 

2001; Halverson et al., 2005). Isotopic decoupling in the Proterozoic between inorganic and 

organic carbon (carbonates versus kerogen) as well as the isotopic decoupling between 
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individual organic carbon-based molecules, has led to a wide array of hypotheses. Overall the 

δ13Ccarb record of the Neoproterozoic is characterized by a positive anomaly (~5 ‰) 

interrupted by several severe negative carbon isotope excursions (Halverson et al., 2005). 

However, these anomalies are not paralleled by the carbon isotopic signature of associated 

organic matter (OM), leading to a variety of hypotheses including de-novo production of 

authigenic carbonates in sediment pore fluids during early diagenesis (Schrag et al., 2013), 

mixing of low-productivity biomass with inert detrital OM (Johnston et al., 2012) and 

buffering of the primary produced organic signal by a massive deep-marine pool of dissolved 

organic matter (DOM) (Rothman et al., 2003). But while the majority of Neoproterozoic 

carbon isotope studies have focused on negative carbonate-based anomalies seen in the 

Shuram, Wonoka, Doushantuo and Johnnie Formations (McFadden et al., 2008; Le Guerroué, 

2010; Lee et al., 2015), little attention has been paid to enriched δ13C excursions in the 

Proterozoic kerogens, akin to those observed during Phanerozoic oceanic anoxic events 

(OAEs) (Kuypers et al., 2002), although understanding the behavior of organic matter forms 

a crucial part of comprehensively understanding mechanisms underlying the entire 

Proterozoic carbon cycle. 

 

5.2  Transgressive conditions during the deposition of the Chuar Group 

A organic δ13C anomaly, covering a shift of ~15 ‰ to more enriched values, is 

observed in the Tonian Chuar Group (Nankoweap Butte, Grand Canyon, USA, 36°16’22” N, 

111°53’ 29” W) (Karlstrom et al., 2000; Dehler et al., 2005; Chapter 4). The strata of the 

Chuar Group (~0.75 Ga) is among the best preserved sedimentary rocks deposited prior to the 

Snowball Earth events (Hoffman et al., 1998), with Rock-Eval values ~435°C indicating only 

moderately thermal alteration (Appendix E.3). The Chuar Group is a conformable, 

fossiliferous, unmetamorphosed succession, predominantly composed of mudrock 

interbedded with centimeter to meter thick sandstone and carbonate beds. The lower Chuar 

Group, the Galeros Formation has been described as a non-marine depositional basin (Elston, 

1989), the overlying Awatubi Member (AM), part of the Kwagunt Formation, was described 

as an evaporitic basin deposited under elevated salinity as suggested by the observation of 

salt pseudomorphs (Ford and Breed, 1973) and gypsum crystals (Horodyski, 1993). The 

Walcott Member (WM) is noted to be deposited in a marine environment (Ford and Breed, 

1973; Dehler et al., 2005; Johnston et al., 2010) under transgressive redox conditions (Nagy 
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et al., 2009; Johnston et al., 2010). Using inorganic and organic geochemical methods, 

outlined in detail in Chapter 2, we analyzed the environmental parameters influencing the 

elevated δ13Corg values seen throughout the Awatubi Member.   

 

Figure 5.1 | Composite stratigraphic column of the Chuar Group, Grand Canyon, USA (0.75 Ga). (a.) 

carbon isotope values for bulk organic matter (orange) and carbonates (blue), grey dots are fitted δ13Corg values 

after Dehler et al., 2005; (b.) Total Organic Carbon (TOC) over Aluminum (Al); (c.) comparisons of lipids 

distributions (pristane + phytane) / (nC17 + nC18) displaying a relative enrichment of n-alkanes; (d.) Iron 

speciation figure modified after Johnston et al., 2010, where values below 0.38 indicate oxidizing conditions; 

(e.) BNG abundances (ng/g TOC; note the log scale) throughout the Chuar Group (Chapter 3). 

 

 

  The δ13Corg record of the Chuar Group shows a significant excursion to more enriched 

values throughout the AM, corresponding to carbon isotopic observations shown by Dehler 

and colleagues (2005; Figure 5.1; Appendix D.1). The Carbon Canyon Member (CCM) of the 

Galeros Formation displays a large δ13CORG variability of -25 ‰ (±5 ‰), where near the top 

the most elevated values are observed (Zone II). The stromatolite bed at the bottom of the 

AM records 13C values from -35 ‰ to -30 ‰ after which a δ13Corg anomaly of ~-15 ‰ is 

observed between 78 m and 180 m (Zone I), that diminishes near the top of the AM (Figure 

5.1). Throughout the WM δ13Corg values of -28 ‰ to -26 ‰ have been observed (Dehler et 



L. M. van Maldegem (2017)                                       Chapter V: Awatubi carbon-13 anomaly 

74 

 

al., 2001; Nagy et al., 2009; This study). The δ13Ccarb varies between -3 and +2 ‰ throughout 

the Chuar strata, unfortunately throughout the shale dominated Awatubi Member, no 

carbonate isotopic values are available (Dehler et al., 2005; This study). Previously, using an 

simplistic empirical correlation method by extrapolation the average -28 ‰ (±2 ‰) depletion 

commonly observed between organic and inorganic carbon (Hayes, 1992), it was estimated 

δ13Ccarb would likely have been highly enriched (> 10 ‰) during the deposition of the 

Awatubi Member (Karlstrom et al., 2000; Dehler et al., 2005). This is suggested to have been 

caused by a severe increase of the global carbon burial flux (Dehler et al., 2005). However, 

thus far, no chemostratigraphic study has observed such severely positive δ13Ccarb values in 

sediments of similar age (Halverson et al., 2005; Swanson-Hysell et al., 2015), raising 

questions about the mechanisms hypothesized to have caused the Awatubi δ13Corg anomaly 

and about the legitimacy to extrapolate δ13Ccarb for δ13Corg to interpret the global carbon cycle. 

We here propose an alternative scenario for the Awatubi anomaly which is decoupled from 

the δ13C of carbonates.  

  

5.3  Modern carbon limiting ecosystems 

  Similar elevated δ13C values in the bulk OM, as seen in the AM, are observed in 

specific modern microbial hypersaline ecosystems such as Gavish Sabkha, Egypt 

(Schidlowski et al., 1984; Schidlowski et al., 1994), Solar Lake, Egypt (Schidlowski et al., 

1994), Guerrero Negro, Mexico (Houghton et al., 2014), Salin-de-Giraud, France (Wieland et 

al., 2008), Kiritimati, Kiribati Republic (Trichet et al., 2001) and Al Dubaiya, Emirate of Abu 

Dhabi (Scherf and Rullkötter, 2009) with 13C values between ca. -15 to -5 ‰ (Figure 5.2). 

Generally, in restricted, low latitude and elevated saline environments, productivity is 

significantly increased. The high rate of productivity and decrease of solubility of CO2 in 

saline ecosystems (Figure 1.9; Duan and Sun, 2003), are indicated to limit carbon in the water 

column and potentially make it a limiting nutrient. All modern carbon limited ecosystems 

described above consist out of a dense microbial mat in which the primary producers are 

predominantly (cyano-) bacterial organisms (Schidlowski et al., 1984). Most photoautotrophs 

sequester carbon via the ribulose-1,5-biphosphate (RuBP) pathway that converts CO2 to 

HCO3
- directly into the Calvin-Benson-Bassham cycle as phosphoglycerate. This carbon 

fixation typically leads to an isotopic fractionation in δ13C around -28 ‰ relative to the 

inorganic carbon pool (Hayes et al., 1999). The extreme shortage of CO2 and increased 
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productivity drives the biological community to sequester carbon via diffusion rather than the 

RuBP pathway (Schouten et al., 2001), leading to significantly decreased carbon isotopic 

fractionation in autotrophs, consequently leading to more enriched OM in carbon-13, yet not 

influencing the inorganic carbon isotope values (Schidlowski et al., 1984). Although unlikely 

due to the presence of abundant organic remains (Horodyski, 1993), alternatively the shift in 

δ13Corg could also be reflective of detrital OM being introduced in a basin with limited 

primary productivity (Johnston et al., 2012). 

 

 

5.4  Proterozoic organic carbon anomalies 

 Previous studies toward the AM reported evaporitic minerals (Ford and Breed, 1973; 

Horodyski, 1993), abundant filamentous OM (Horodyski, 1993; Junium, 2010), as well as 

Figure 5.2 | Organic and carbonate δ13C systematics in evaporitic depositional basins (a.) δ13CORG 

(orange) and δ13CCARB (blue) values for modern marine sediments after Schidlowski et al., 1984, (b.) Organic 

and carbonate δ13C values in modern heliothermal pools Kiritimati (Trichet et al., 2001), Zubaiya, Abu Dhabi 

(Scherf and Rullkotter, 2009) Salin-de-Giraud (Wieland et al., 2008) Gavish Sabkha and Solar Lake 

(Schidlowski et al., 1984) and Guerrero Negro (Houghton et al., 2014), (c.) Organic and carbonate isotopic data 

from the Chuar Group, USA where the Awatubi Member represents data between 78 m to 180 m. (d.) δ13C data 

from Jhamarkotra Formation, Aravalli Supergroup, India (Banerjee et al., 1986).  
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biomarkers indicating severe heterotrophic reworking (Chapter 3). In addition, Johnston et 

al., (2010) analyzed the speciation of iron throughout the Chuar Group and indicated that the 

AM was deposited under oxidizing conditions (Figure 5.1). These observations, combined 

with the tropical location of Chuar basin during deposition, suggest that similar mechanisms 

indicated to generate δ13C enriched OM in modern heliothermal system, caused the Awatubi 

δ13C anomaly. Organic matter fixed through assimilatory diffusion has already been proposed 

to have influenced the organic carbon signature of the phosphatic stromatolites deposits (-14 

‰) in the Paleoproterozoic Jhamarkotra Formation, India (1.77 Ga; Figure 5.2; Banerjee et 

al., 1986; Sreenivas et al., 2001). These phosphatic stromatolites have been deposited in a 

lagoonal or tidal shallow marine environment during the closing of the Aravalli Epeiric Sea 

(Roy and Paliwal, 1981). Furthermore, the AM also displays a relative increase of n-

alkanes—derived from fatty acids produced by both heterotrophs and phototrophs—

compared to the phototrophically derived isoprenoids (pristane and phytane; Figure 5.1; 

Didyk, 1978). This can be achieved via continues mixing of heterotrophically derived alkyl 

lipids (nC17 and nC18), further supporting the hypothesis of severe heterotrophy during 

deposition.  

  The elevated microbial activity likely limited preservation of OM through increased 

respiration, as more enriched δ13C values and depletion of isoprenoids are paralleled by a 

decrease of total organic carbon (TOC) to values < 1 % (Figure 5.1; Appendix D.1). When 

TOC is normalized against aluminum (Al), a clear negative anomaly is seen, while generally 

in marine environments the adsorption of OM correlates with the siliciclastic input as it is 

controlled by mineral surface area (Kennedy, 2002; Kennedy et al., 2014). Indicating carbon 

was seemingly limited during the depositions of the AM, resulting in autotrophs (partly) 

fixing carbon via assimilatory diffusion rather than the RuMP pathway. Additionally, 25,28-

bisnorgammacerane a suggested molecular marker for extensive microbial reworking during 

deposition (Figure 5.1, Chapter 3 and 6) has only been observed in the interval with elevated 

δ13C values. This all suggests the environment likely witnessed significant reworking of 

organic material by heterotrophic organism, this trophic recycling was potentially severe 

enough that during the deposition of the Awatubi member respiration was significantly 

increased, limiting preservation and carbon as a nutrient source, and potentially turned the 

basin in a net carbon source (Duarte and Prairie, 2005).  
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5.5  Conclusions 

  Our results suggest that the enriched δ13Corg anomaly within the Awatubi Member 

does not represent a global signature, but most likely reflects a localized setting in which 

microbes use assimilatory diffusion due to severe carbon limitation during deposition. The 

observation of carbon limiting conditions during the Proterozoic Era adds a further layer of 

complexity to the carbon cycle on the early Earth, especially as microbial mats have been 

hypothesized to been significantly more prominent during the Proterozoic (Pawlowska et al., 

2013; Blumenberg et al., 2015).  
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Abstract  

Marine eukaryotes have diversified during the Tonian period, as indicated by a 

quantitative increase of acritarch microfossils as well as in the diversity between the 

microfossils. Yet their ecological role of eukaryotes prior to the Neoproterozoic 

Snowball Earth events (717–635 Ma) remains unknown. Generally, low abundances of 

eukaryotic derived steranes are observed in pre-Cryogenian rocks, which has been 

interpreted as that eukaryotes likely only played a marginal ecological role. Here we 

investigate the transgressive sedimentary sequence preserved in the late Tonian Chuar 

Group (~742 Ma), which was deposited just prior to the onset of the Sturtian glaciation. 

We show that the Chuar depositional basin displays an environmental change from 

restricted marginally-marine to likely open anoxic marine conditions. This observation 

is supported by microfossil, stable isotopic, trace elemental and biomarker data. We 

reconstructed the ecology during deposition and we observed that eukaryotic organisms 

likely already thrived in localized settings prior to their global rise to ecological 

significance during the early Neoproterozoic. 

 

6.1  Introduction 

  Sterane molecules, the hydrocarbon remnant of sterols after diagenesis, have been 

proposed as a powerful tool to trace the emergence of eukaryotes in the early Earth rock 

record (Summons et al., 2006). Although several bacterial pathways for protosterol 

biosynthesis have been observed (Pearson et al., 2003; Wei et al., 2016), the majority of 

preserved steranes in the rock record have been suggested to derive from eukaryotic 

organisms (Mackenzie, 1984). However, the source of ancient sterane hydrocarbon molecules 

has triggered many debates over the years, especially concerning anthropogenic 

hydrocarbons overprinting the Precambrian biomarker signatures (Brocks et al., 2008; 

Rasmussen et al., 2008). Over the last decade numerous studies have rigorously investigated 

the syngenicity of biomarkers and thoroughly assessed hydrocarbon contamination on 

Precambrian sedimentary deposits (e.g. Sherman et al., 2007; Brocks et al., 2008; Hallmann 

et al., 2011; Jarrett et al., 2013; French et al., 2015; Leider et al., 2016). Resulting that the 

oldest indigenous bacterial hopanes have been observed in the 1.64 Ga Barney Creek 

Formation (Brocks et al., 2005), whereas the oldest indigenous, eukaryotic derived steranes 

were first recognized in several sedimentary sequences deposited during the Tonian (1000–

717 Ma) (Summons et al., 1988; Brocks et al., 2016; Hoshino et al., 2017; Schinteie et al., 

2017).  

  The timing of the detection of the oldest sterane molecules, coincides with the 

hypothesized diversification and radiation of eukaryotic organisms (Sperling et al., 2010; 
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Knoll, 2011), which likely occurred prior to the onset of the Cryogenian global glaciations 

(717–635 Ma) (Hoffman et al., 1998; Schrag et al., 2002; Rooney et al., 2014). Over the last 

decade an increasing amount of studies regarding the diversification of more complex 

eukaryotic sterols (e.g. ergosterol, stigmasterol and others) have revealed a systematic and 

stepwise change in the distribution of sterane molecules after the Snowball Earth events 

(Love et al., 2009; Brocks et al., 2016; Hoshino et al., 2017), which was suggested to reflect 

the diversification of eukaryotic phyla and emergence of metazoa in the Ediacaran (635–541 

Ma) (Xiao and Laflamme, 2008).  

  One important inhibitor for suppressing the radiation of more complex eukaryotic life 

prior to the Cryogenian glaciations was the limited availability of free molecular oxygen in 

the deep ocean during this Period. It is suggested that biologically produced molecular 

oxygen would have already accumulated in coastal surface waters, restricted basins and 

lacustrine environments (Brocks et al., 2005; Knoll et al., 2006; Strother et al., 2011) 

allowing eukaryotes—which utilizes oxygen during their biosynthesis (Nes, 2011)—to 

occupy these ecological niches. The biodiversification after the Snowball Earth events is 

linked with the increase of O2 levels in the atmosphere and ocean, resulting in the 

oxygenation of the deep ocean allowing eukaryotic organisms to inhabit both the shallow and 

deep ocean (Johnston et al., 2010; Narbonne, 2010; Sahoo et al., 2012; Lyons et al., 2014). 

 Yet, due to the limited amount of thermally well-preserved Tonian sedimentary 

records, as well as the absence of eukaryotic macrofossils prior to the Ediacaran, the 

distribution and ecological role of early eukaryotes is still poorly understood. We here 

investigate the preserved hydrocarbon biomarkers throughout the transgressive sedimentary 

sequence of Chuar Group, Grand Canyon, USA (~750 Ma) and compare the biomarker 

distribution with lithological, inorganic geochemical, stable isotopic, and palynological data 

to (i) uncover the biomarker distribution before the Snowball Earth events, (ii) using a 

multiproxy approach to conduct a paleo-environmental reconstruction of the Chuar Group, 

and (iii) assess the role of eukaryotic organisms in relationship to the Tonian environment. 
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6.2  Geology of the Chuar Group, USA 

  The strata of the Chuar Group is one of the best preserved Neoproterozoic records to 

investigate the distribution of life (Vidal and Ford, 1985; Summons et al., 1988; Porter and 

Knoll, 2000; Brocks et al., 2016; Porter, 2016) as well as the climatic and environmental 

conditions (Nagy et al., 2009; Johnston et al., 2010), during the break-up of Rodinia and prior 

to the first Neoproterozoic low latitude glaciation (Paragraph 1.1.4). During a field campaign 

in May 2014, we collected almost 60 carbonate and shale samples from the upper Chuar 

Group, exposed for > 700 meters at Nankoweap Butte, Grand Canyon, USA (36°16’22” N, 

111°53’ 29” W; Figure 6.1). The Chuar group has been previously defined as a transgressive 

shallow marine depositional basin (10–100 m deep) (Ford and Breed, 1973; Vidal and Ford, 

1985; Dehler et al., 2001; Dehler et al., 2005), although other researchers have challenged 

this classification by stating the lower members of the Chuar Group were deposited in a 

restricted lacustrine environment that periodically witnessed evaporitic conditions (Elston, 

1989; Horodyski, 1993; Chapter 5). Geochemical records of the Chuar Group combined with  

 

 

Figure 6.1 | Geological map of the Chuar Group exposed at Nankoweap Butte, North East Grand 

Canyon, Arizona, USA. (a.) Geological map after Ford and Breed 1973; green color indicates Galeros 

formation with different shaded representing each member; blue shading reflects the overlying Kwagunt 

Formation. Capital letters indicate measured sections during the 2014 field campaign (b.) Satellite overview of 

Nankoweap Butte, North East Grand Canyon, Arizona, USA. Image modified after Google Earth. 

a. 
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earlier data of sedimentary structures (Dehler et al., 2001), microfossils (Porter and Knoll, 

2000; Porter et al., 2003; Porter and Riedman, 2016) and cyclostratigraphy suggests that the 

Chuar basin likely had a connection with the open ocean (Dehler et al., 2005). In-depth 

analysis of the facies and stratigraphy indicate a wave- and tide-influenced depositional 

system within an intracratonic basin formed in response to the break-up of Rodinia (Dehler et 

al., 2001; Timmons et al., 2001).  

  Paleomagnetic data indicates that the Chuar Group was deposited near equatorial 

latitudes (2–18°N) on the north side of Laurentia (Figure 1.2; Weil et al., 2004; Li et al., 

2013). Using detrital zircon analysis of centimeter-thick tuff near the top of the Chuar Group, 

the age was determined to 742 ±6 Ma (Karlstrom et al., 2000). The Chuar Group is 

subdivided into the Kwagunt Formation and Galeros Formation. The latter is comprised of 

the Tanner Member, Jupiter Member, Carbon Canyon Member, and Duppa Member, of 

which only the last two are exposed at Nankoweap Butte (Figure 6.2). The Kwagunt 

Formation consists out of the Carbon Butte Member, Awatubi Member and Walcott Member 

(Ford and Breed, 1973).  

 

Figure 6.2 | Overview of the northern flank of the Chuar Group outcropping at Nankoweap Butte, 

Grand Canyon, Arizona, USA. Meter scale on the side displays the stratigraphic height for each 

member. Green highlighted text indicates Galeros formation members, blue background reflects 

members from the Kwagunt Formation. White lines display the sampling transect during the 2014 field 

campaign (Picture taken May 2014) 
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  The Carbon Canyon Member is characterized by red, green and grey shales 

interbedded with cm to meter thick carbonate and sandstone layers. At the bottom of the 

measured section, a centimeter-thick gypsum layer was observed and ~10 meter higher 

paleosol-like features were observed (Figure 6.3). Some carbonate samples of the Carbon 

Canyon Member display bipolar cross bedding suggestive of wave influenced deposition 

(Dehler et al., 2001). The Duppa Member, which is not exposed at Nankoweap Butte, is 

described as a mudstone dominated succession interbedded with calcareous siltstone, 

carbonate and sandstone beds (Ford and Breed, 1973). The Kwagunt Formation (overlaying 

the Galeros Fm.) is separated in the Carbon Butte Member, Awatubi Member, and Walcott 

Member. The Carbon Butte Member is defined by a ±10 m thick sandstone bed at the base 

followed by a green and grey mudstone succession. On top of the Carbon Butte member, the 

Awatubi Member begins with a 2 m thick stromatolitic carbonate layer succeeded by grey 

shales interbedded with cm thick sandstone layers. From halfway until the top the Awatubi 

Member is characterized by black shales. The Walcott member starts with a meter’s thick 

carbonate layer followed by black shales. The black shales in the Walcott Member are 

interbedded by several oolitic dolomites, bituminous calcite, and carbonate layers. The 

Walcott Member is succeeded by the Sixty Mile Formation, a sandstone and breccia 

interbedded succession which caps the Chuar Group at Nankoweap Butte (Ford and Breed, 

1973). 
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6.3  Results  

 Eighty-six carbonate and shale samples from Nankoweap Butte Canyon, Chuar 

Group, USA were collected during a field campaign in May 2014. In total 58 samples (L.1-

L.58) were collected for organic geochemical analysis (26 Carbon Canyon, 10 Awatubi 

Member and 22 Walcott Member samples; Appendix E.1) and 28 samples (GC.14-01–

GC.14-28) were collected for palynological analysis (11 Carbon Canyon Member, 8 Awatubi 

Member and 10 Walcott Member). A detailed explanation of all methods and instruments 

used to acquire the data here presented is outlined in Chapter 2 of this document.  

 

6.3.1  Lithology 

  Our general observation of the Chuar lithology concurs with the detailed description 

provided by both Ford and Breed (1973) and Dehler et al. (2001). With the Carbon Canyon 

Member (-305.6– -63 m) displaying green, grey and red shales frequently interbedded by cm 

to meter thick sandstone or laminated carbonate beds with occasional stromatolitic features. 

A black shale and dark carbonate horizon was observed between -172.8 and -175 m (L.7–

L.12). Additional to earlier studies, we also observed paleosol-like features and 

pseudomorphs after gypsum in the Galeros Formation (L.55–L.56; Figure 6.3). No carbonate 

or shales outcrops of the overlying Duppa Member (-63–0 m), as well as the majority of 

Carbon Butte Member (0–32 m), were not exposed at the north flank of Nankoweap Butte. 

The top of the Carbon Butte Member is marked by a ~2 meter thick stromatolite bed (L.22). 

The Awatubi Member (32–216 m) is dominated by finely laminated shale deposits which 

display a transition from grey to green shales, progressing to black shales around 165 m  

(L.27). The Awatubi Member is capped by a ~4 meter thick dolomite layer (L.30–L.31). The 

Figure 6.3 | Lithological features in the Carbon Canyon Member. (a.) Paleosol-like features at -265.6 

m (L.55); (b.) Centimeter thick layer of pseudomorphs after gypsum at -276.6 m (L.56). 

a. b. 
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Walcott Member (216–432 m) predominantly comprised out of black shales interrupted by 3 

pisolitic chert beds in the lower Walcott Member and 3 dolomite horizons in the upper 

Walcott Member of which the most elevated bed was capped by a layer of bituminous 

dolomite (L.48).   

 

6.3.2  Bulk geochemical and lithological observations  

Thermal maturity analysis via Rock-Eval pyrolysis indicates TMAX values of ~434°C 

throughout the Chuar Group (n: 31; Table 6.1; Appendix E.2). δ13Ccarb values observed from -

3.73–3.29 ‰ (n: 27, mean -0.31 ‰), with no systematic trend throughout the Chuar Group, 

while δ18Ocarb displays a continuous depleting trend up section with values in the Galeros 

Formation between -0.64 ‰ and -5.76 ‰ (n: 19, mean -2.46 ‰) and in the Kwagunt 

Formation between -2.61 ‰ and -11.07 ‰ (n: 8, mean -7.21 ‰) (Figure 6.4; Table 6.1; 

Appendix E.1). Significant systematic patterns are observed throughout the Chuar Group for 

 

Figure 6.4 | Lithology and bulk geochemical parameters of the Tonian Chuar Group. Acronyms in the 

first stratigraphic column stand for CCM: Carbon Canyon Member; AM: Awatubi Member; LWM: Lower 

Walcott Member, UWM: Upper Walcott member. δ13Ccarb (in ‰ VPDB) displays no systematic variation, 

δ18O (‰ SMOW) shows more depleted values further up the section. δ13Corg (‰ VPDB) shows a positive 

δ13Corg anomaly (< -15 ‰) throughout the Awatubi Member. TOC increases throughout the section; CaCO3 

indicates the % CaCO3 for each analyzed sample; the ∑n-alkanes (μg/g rock) show a systematic increase 

throughout the Chuar basin. 
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TOC, δ13Corg, δ
15N, and the carbon to nitrogen (C/N) ratio (Figure 6.4). The variation seen 

throughout the Chuar Group can be clustered in four distinct subsections (the Carbon Canyon 

Member, Awatubi Member, Lower Walcott Member, and Upper Walcott Member; Figure 

6.4). The Carbon Canyon Member (henceforth referred to as CCM; -310 to -63 m) is 

characterized by highly variable values for all parameters mentioned above (Table 6.1; 

Appendix E.1). The TOC values vary between 0.01 % and 1.65 % (n: 24, mean 0.61 %), 

δ13Corg values between -19.73 ‰ and -29.93 ‰ (n: 23), C/N ratios between 3.0–93.2 (n: 24, 

mean 21.64) and the δ15N from 1.92 ‰ to 6.47 ‰ (n: 9, mean 4.37 ‰) (Table 6.1; Appendix 

E.1). The overlying Awatubi Member (AM; 32–216 m) has an average TOC content of 0.63 

% (n: 10), furthermore the AM is characterized by a distinct δ13Corg anomaly which moves 

from -30.96 ‰ at the base to -14.67 ‰ midway, shifting back to -25.42 ‰ at the top of the 

formation (Figure 6.4, Chapter 5). C/N ratios are between 2.2 and 12.6 (n: 10) and δ15N move 

between 3.68 ‰ and 5.43 ‰ (n: 8). The lower Walcott Member (LWM; 216–318 m) displays 

relative elevated TOC values compared to the CCM and AM with an average of 1.4 %, a 

mean δ13Corg of -26.09 ‰ (n: 13), a C/N average of 14.15 (n: 12), and δ15N around 3.75 ‰ (± 

0.8 ‰; n: 9) (Table 6.1; Appendix E.1). The upper Walcott Member (UWM; 319–432 m) 

shows elevated TOC values in comparison to the other members, averaging 2.83 % (n: 9), 

δ13Corg observed average is -27.52 ‰ (n: 9), mean C/N 12.95 (n: 10) and δ15N shows more 

depleted values in comparison to the underlying members with values between 1.09–4.53 (n: 

8) (Table 6.1; Appendix E.1).  

 

6.3.3  Alkanes and isoprenoids 

  n-Alkanes patterns display a dominance of medium molecular weight compounds 

ranging between nC14–nC25 with no significant odd-even carbon preference (Table 6.1). The 

most abundant n-alkanes in the CCM are in the range of nC19–nC25, for the AM: nC14–nC20, 

LWM: nC20–nC25 and UWM nC15–nC22. The pristane (Pr) over phytane (Ph) ratio, a common 

parameter to investigate redox changes (Didyk, 1978), displays depleting values upwards the 

Chuar Group with a maximum at 7.04 (sample L.9) in the lower Galeros Fm. and a minimum 

of 0.55 (sample L.41) near the top of the Kwagunt Fm. (Table 6.1; Appendix E.1). The 

(Pr+Ph)/(nC17+nC18) ratio of the AM are on average ~0.01 which is significantly lower than 

the average values in the CCM (0.13), LWM (0.18) and UWM (0.16) (Table 6.1; Appendix 

E.1).   
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Table 6.1: Compilation of geochemical information and parameters throughout the Chuar Group 

Member Carbon Canyon Awatubi Lower Walcott Upper Walcott 

Abbreviation CCM AM LWM  UWM  

Height (m) -305– -63 m 32–216 m 216–318 m 318–432 m 

Samples (n) 25 10 12 10 

Sample names L.1–21, L.52–56  
L.22–29, GC-14-10, 

GC-14-12 
L.30–41 L.42–51 

Dominant  

n-alkanes range 
nC19–nC25 nC14–nC20 nC20–nC25 nC15–nC22 

Dominant 

Tricyclic 
C20 and C21 C19 and C20 C23 C23 

 Range Mean Range Mean Range Mean Range Mean 

TOC (%) A 0.01 – 1.65 0.61 0.02 – 1.99  0.63 0.06 – 2.73 1.40 0.62 – 7.78 2.83 

δ13Corg (‰) -19.7 – -29.9 -25.6 -14.7– -31.0 -20.8 -24.7 – -27.6 -26.1 -24.8 – -29.2 -27.5 

δ15N (‰) 1.92 – 6.47 4.37 3.68 – 5.43 4.83 2.96 – 4.47 3.75 1.09 – 4.53 2.69 

C/N ratio 3.0 – 93.2 21.6 2.2 – 12.6 6.9 5.4 – 26.2 14.2 5.9 – 29.1 13.0 

δ13Ccarb (‰) -3.62 – 2.56  -0.26 -0.69   -3.73 – 3.29  -1.19 -2.51 – 2.71 -0.53 

δ18Ocarb (‰) -4.13 – -0.95  -2.49 -6.47   -11.07 – -2.61 -7.00 -8.98 – -6.58  -7.73 

CPI(1) B 0.82 – 1.28 0.99 0.77 – 1.00 0.94 0.95 – 1.04 0.99 0.99 – 1.16 1.06 

Pr/Ph C 3.25 – 7.04 4.53 1.99 – 4.21 2.90 0.55 – 2.47 1.69 0.73 – 1.82 1.25 

(Pr+Ph) /  

(nC17+nC18) 
0.01 – 0.28 0.13 0.005 – 0.02 0.01 0.04 – 0.31 0.18 0.05 – 0.25 0.16 

TMAX (°C) 436 – 477 448 432 – 445 439 427 – 439 431 427 – 435  432 

Ts/(Ts+Tm)  0.82  1.00 1.00 0.90 -1.00 0.95 1.00 1.00 

C27 S/S+R D 0.35   0.50 – 0.53 0.52 0.53 – 0.64 0.58 0.37 – 0.69 0.49 

C31 S/S+R E No data  No data  0.46 – 0.61 0.54 0.50 – 0.62 0.54 

MPI-1 F 0.02 – 0.80 0.34 0.01 – 0.22 0.09 0.02 – 0.83 0.45 0.07 – 0.90 0.44 

Ster/(Ster+ 

Hop)G  
No data  0.16 – 0.53 0.35 0.05 – 0.26 0.16 0.01 – 0.22 0.06 

% Steranes H No data  6.9 – 13.0  9.5 7.3 – 24.4  14.3 1.5 – 6.3 3.0 

% Hopanes I No data  2.8 – 7.6 5.4 15.0 – 46.7 20.9 10.9 – 38.3 23.2 

% Tricyclics J No data  6.4 – 57.5 32.4 22.4 – 74.3 45.5 55.0 – 76.3 66.4 

% BNG K No data  4.7 – 78.8 30.2 No data  No data  

Gammacerane L No data  0.25 – 0.82 0.45 0.15 – 3.59 0.79 0.04 – 0.14 0.08 

S27 D/D+R M 0.54  0.69 – 0.79  0.74 0.49 – 0.85 0.73 0.35 – 0.77 0.64 

S27 ββ/αα+ββ N 0.49  0.51 – 0.56 0.53 0.47 – 0.60 0.55 0.32 – 0.59 0.46 

C19 ratio O No data  0.63 – 0.69 0.66 0.13 – 0.72 0.37 0.13 – 0.30 0.20 

C29/C30
 P No data  No data  1.08 – 6.32 2.82 3.01 – 8.01 6.53 

Dia-Hop/Hop Q No data  0.70 – 1.21 0.96 0.02 – 0.57 0.30 0.01 – 0.06 0.03 

HHI (%) R No data  No data  6 – 22 12 11 – 25 20 

C35S/C34S S No data  No data  0.68 – 1.38 0.69 1.11 – 2.09 1.63 

(C20+C21)/ 

(C23+C24) T 
1.34 – 2.49 1.90 1.71 – 1.95 1.80 0.28 – 2.04 0.99 0.64 -1.08 0.87 

Diamondoid 

Ratio U 
67 – 85 74 No data  58 – 65 61 59 – 76 67 

UCM (%)V 4 – 24  10 4 – 20 11 13 – 40  21 27 – 57  43 

BNT/Phen W 0.01 – 0.21 0.08 0.01 – 0.05 0.02 0.01 – 0.21 0.06 0.05 – 2.26 0.59 

U (ppm) 1.06 – 8.61 4.15 2.10 – 7.89 4.54 2.46 - 3.95 3.16 2.89 – 8.54 4.21 

Mo (ppm) 2.15 – 6.25 4.31 1.75 – 3.84 4.50 2.06 – 4.81 3.37 2.74 – 16.64 8.01 

(Mo+Cu)/Zn 0.13 – 0.80 0.50 0.17 – 0.75 0.42 1.36 – 4.20 2.32 2.13 – 8.01 4.58 

V/Sc 6.16 – 9.64  8.07 4.53 – 5.85 5.12 3.97 – 5.50  4.51 5.16 – 8.91  6.66 

Th/U 1.15 – 3.60  2.27 3.41 – 5.58 4.63 3.48 – 5.71  4.91 1.63 – 4.63  3.23 

V/V+Ni 0.47 – 0.66 0.57 0.44 – 0.95 0.80 0.74 – 0.91 0.82 0.65 – 0.94 0.80 

V/Cr 0.48 – 1.20 0.79 1.17 – 1.62 1.36 0.51 – 0.83 0.68 0.42 – 1.12 0.79 

Ni/Co 2.36 – 12.79 6.44 4.15 – 16.02 7.07 3.81 – 14.43 8.23 4.94 – 20.48 14.78 

Ba/Al  0.15 – 0.38 0.24 0.10 – 0.24 0.15 0.14 – 0.32 0.26 0.36 – 0.45 0.40 

Raw data is presented in Appendix E.1–E.10 
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(A.) Total organic carbon;   (B.) 2*(nC23+nC25+nC27+nC29) / nC22+nC30 + 2*(nC24+nC26+nC28);   (C.) Pristane / 

Phytane;   (D.) C27 ααα S/(S+R) cholestane;   (E.) C31 αβ 22 S/(S+R) hopane;   (F.) 1.5 *(2-mPhen+3-mPhen) / 

(Phen + 1-mPhen + 9-mPhen);   (G.) (∑ C27 βα-20(S+R)-diacholestanes, ααα- and ββ-20(S+R)-cholestanes) / (∑ 

C27 βα-20(S+R)-diacholestanes, ααα- and ββ-20(S+R)-cholestanes) + (∑Ts, Tm, C29 αβ, C30 αβ, C31–C35 αβ-

22(S+R), C30 17α, C31–C35 17α diahopanes (S+R)));   (H.) % Steranes relative to (†) (Steranes =∑C27 βα-

20(S+R)-diacholestanes, ααα- and αββ-20 (S+R) cholestanes, C26 21-nor-cholestane, C26 27-nor-cholestanes);   

(I.) % Hopanes relative to (†) (Hopanes = ∑Ts, Tm, C29 αβ, C30 αβ, C31–C35 αβ-22(S+R), C30 17α, C31–C35 17α-

diahopanes(S+R));   (J.) % Tricyclic terpanes (∑C19–C26) relative to †;   (K.) % 25-28-bisnorgammacerane 

relative to (†);   (L.) Gammacerane / C30αβ hopane;   (M.) Diasteranes (C27 βα-20(S+R)-diacholestanes) / 

(diasteranes + (C27 ααα- and αββ-20(S+R)-cholestanes);   (N.) C27 αββ (S+R) / αββ(S+R) + ααα (S+R);   (O.) 

C19C/ (C19A + C19B) nor-androstane;   (P.) C29αβ hopane / C30αβ hopane;   (Q.) Diahopanes (C30 17α + ∑C31–

C35 17α-diahopanes(S+R)) / hopanes (C30 αβ + C31–C35 αβ-22(S+R));   (R.) HHI (C35 αβ 22S + 22R / (∑ C31–

C35 αβ 22S + 22R)* 100;   (S.) C35 αβ 22S hopane / C34 αβ 22S hopane;   (T.) Tricyclic terpanes (C20+C21)/ 

(C23+C24)   (U.) methyl adamantane diamondoids ratio (1MA/ (1MA+2MA))*100;   (V.) relative percentage of 

UCM underlying nC20;   (W.) Benzo-naphtho-thiophene / phenanthrene   (†)= ∑(steranesH, hopanesI, 

tricyclicsJ, BNGK, gammacerane, C24 tetracyclic terpane, pregnane, androstane and nor-androstanes (C19A, C19B 

and C19C))  

 

6.3.4  Hopanes and gammacerane 

  Besides sample L.9 yielding trace amounts of C27 18α-22,29,30-trisnorneohopane 

(Ts) and C27 17α-22,29,30-trisnorhopane (Tm), hopanes are only detected in samples above 

165 m (Appendices E.6, E.7). Analysis via GC-MS-MS revealed hopanes in these samples 

range from C27 to C35, with generally C29 17α,21β-hopane being the most abundant. The 

C29αβ/C30αβ ratio provided values between 1.08 and 6.32 in the LWM and 3.01–8.01 for the 

UWM (Table 6.1). Ts/(Ts+Tm) values vary between 0.65–1.00 (Table 6.1). The C31 

22S/(22S+22R) ratio in the AM and LWM are between 0.46–0.68 and the UWM 0.22–0.35. 

The homohopane index (HHI), shows a range between 7–25 % with higher values up section. 

Average hopane percentages (∑Ts, Tm, C29–C35 17α,21β-hopanes and C30–C35 17α-

diahopanes) relative to all quantified triterpanes shows increasing values throughout, with 

~5.4 % in the AM, 20.9 % in the LWM and 23.2 % in the UWM (Table 6.1; Appendix E.4). 

The diahopanes (C30–C35 17α-diahopanes) versus hopanes (∑C30–C35 17α,21β-hopanes) ratio 

displays on average depleted values for the UWM (0.03) relative to the AM (0.96) and the 

LWM (0.30) (Table 6.1; Appendix E.4). Additionally, 2α-methylhopanes are predominantly 

observed in samples L.45, L.46, and L.47 from the UWM.  

  Gammacerane is observed in all samples above 165 m. The gammacerane index 

(Gammacerane/C30 17α,21β-hopane), a biomarker ratio which indicates stratification 

(Sinninghe Damsté et al., 1995), shows generally slightly elevated levels throughout the 

LWM with a spike in sample L.41 (Appendix E.1). 25,28-bisnorgammacerane (BNG) is only 
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observed throughout the AM, where in some samples it makes up to < 75 % of all quantified 

triterpanes (Chapter 3; Appendix E.4). 

 

6.3.5 Steranes 

  Abundant C27 steranes are detected in all samples above ~165 m, alongside lower 

abundances of 26-methyl-cholestane (i.e. cryostane (Brocks et al., 2016)). In the underlying 

Galeros Formation only small quantities of C27 steranes are observed in sample L.4, but in a 

selection of the CCM samples (L.4, L.6, L.9, L.11, L.13, L.14, and L19), abundant 

concentrations of homopregnane and cholane are observed with regular configuration as well 

as alteration on the A-ring. The steranes / (steranes + hopanes) ratio (Ster/(Ster+Hop)), an 

index used to interpret community composition in a depositional basin, displays values from 

the AM ranging between 0.16–0.53 (mean 0.35) (Table 6.1; Appendix E.4). The overlying 

LWM displays values between 0.05–0.26 (mean 0.16), while the UWM displays values 

between 0.01–0.22 (mean 0.06) (Table 6.1; Appendix E.4). Similar to the Ster/(Ster+Hop) 

ratio the percentage of steranes relative to all quantified triterpanes displays higher values in 

the AM (mean 9.5 %) and CCM (mean 14.3 %) relative to the samples analyzed in the UWM 

with 3 % (Table 6.1). The C27 diasterane ratio (diasteranes/(diasterane+steranes)) throughout 

the Kwagunt Formation shows highly variable values between 0.38 and 0.85 (Table 6.1; 

Appendix E.4). Additionally androstane, pregnane as well as 21- and 27-norsteranes are 

observed in the Chuar Group. The nor-androstane ratio (C19C/(C19A+C19B)) (Kelly, 2009) 

shows values between 0.13 and 0.72 throughout the Kwagunt Formation. In addition, in the 

UWM abundant C27 secosteranes were observed. 

 

6.3.6  Tricyclics, bicyclics and diamondoids 

  Tricyclic terpanes, are commonly detected aside hopane and sterane biomarkers in 

organic matter (OM). Tricyclics in the Chuar Group are sporadically observed in the Galeros 

Formation (L.4, L.9, L.14, and L.19) and in all samples from the Kwagunt Formation. In the 

samples from the CCM and AM C19, C20 and C21 are the most dominant tricyclic terpanes, 

while samples from the Walcott Member display a domination of C23 tricyclic terpanes 

(Table 6.1). The tricyclic terpanes parameter (C20+C21)/C23+C24) (Shi et al., 1988), shows 

depleting averages throughout the sample set with values of 1.90 (CCM), 1.80 (AM), 0.99 

(LWM) and 0.87 (UWM). In the samples from the AM, tricyclics on average make up ~32.4 
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% of all quantified triterpanes, in the LWM the mean value increases (45.5 %) and the 

highest relative percentage of tricyclics (66.4 %) are observed in the UWM (Table 6.1; 

Appendix E.2). Additionally the most abundant saturated hydrocarbon observed in the UWM 

is 8β-homodrimane (C16H30). The diamondoid hydrocarbon ratio, using the relative 

abundance of methyl adamantanes (1-MA/(1-MA/2-MA))*100 (Chen et al., 1997), ranges 

between 67–85 in the CCM, does not record any values for the AM and displays values 

between 58–73 for the Walcott Member. 

 

6.3.7  Aromatic hydrocarbons 

  The most abundant polycyclic aromatic hydrocarbons (PAHs) observed in the 

samples are naphthalene, phenanthrene (Phen) and benzo-anthracene as well as their 

methylated forms (Appendix E.8). Four stable methylphenanthrenes (mPhen) isomers (1-

mPhen, 2-mPhen, 3-mPhen, and 9-mPhen) have been commonly observed in organic matter. 

The methylphenanthrene index (MPI-1) is estimated to reflect thermal stability of the organic 

matter (Radke et al., 1986). The MPI-1 ratio for the Chuar samples does not show any clear 

systematic variability, with values between 0.02–0.80 (CCM), 0.01–0.22 (AM), 0.02–0.83 

(LWM), and 0.07–0.90 (UWM) (Table 6.1). The organosulfur compound Benzo-naphtho-

thiophene (BNT) is detected in elevated abundances in UWM (Appendix E.9). This become 

particularly clear when compared to the conservative phenanthrene compound (BNT/Phen). 

Where the CCM, AM and LWM all display values between 0.01 and 0.21, the UMW shows a 

significant enrichment between 0.05–2.26 (Table 6.1). 

 

6.3.8  Trace elemental analysis 

  Redox-sensitive trace elements were investigated for 28 samples across the Chuar 

Group (Appendix E.3). The proposed redox-sensitive parameter vanadium (V) over scandium 

(Sc) displays values between 3.97 and 9.64, with generally the highest values observed in the 

CCM. Similar to the V/Sc ratio, the thorium–uranium ratio (Th/U) is used for redox analysis 

of ancient depositional basins. The Th/U generates the most depleted values in the CCM 

samples (~2.27), while the samples from the overlying Kwagunt Formation record on average 

higher values (~4.29) (Table 6.1). The vanadium/chromium (V/Cr) ratio (Jones and Manning, 

1994) shows averages of 0.79, 1.36, 0.68 and 0.79 for respectively the CCM, AM, LWM and 

UWM (Table 6.1; Appendix E.3). The relative relationship between nickel and cobalt 
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(Ni/Co) has also been proposed to reflect redox conditions (Jones and Manning, 1994). The 

CCM records the lowest value (~6.44) which increases throughout the measured section, with 

average values for the AM at 7.07, LWM 8.23 and UWM 14.78 (Table 6.1; Appendix E.3). 

The V/(V+Ni) ratio is a redox proxy used to demonstrate oxic, anoxic and euxinic 

depositional conditions (Hatch and Leventhal, 1992). Analysis of the V/V+Ni ratio through 

the Chuar Group shows significantly lower values for the CCM (~0.57) relative to the 

members from the Kwagunt Formation (~0.80) (Table 6.1; Appendix E.3). Additionally 

Hallberg (1978) proposed that molybdenum (Mo) and copper (Cu) divided by zinc (Zn) 

would reflect changes in redox. The (Mo+Cu)/Zn ratio shows increasing values with 

stratigraphic height. The CCM shows values between 0.13–0.63, AM: 0.17–0.75, LWM: 

1.36–4.20 and UWM: 2.13–8.01 (Table 6.1; Appendix E.3). Potential changes in 

paleoproductivity have been estimated to be recorded by the relative abundance of barium 

(Ba) compared to aluminum (Al) (Klump et al., 2000; Kuypers et al., 2002). The Ba/Al ratio 

throughout the Chuar basin shows the most elevated values in the UWM with average values 

of 0.40 while the CCM, AM, LWM record 0.24, 0.15 and 0.26 (Table 6.1). Throughout the 

Chuar Group, general trace elemental abundance for uranium (U) are between 1.06 and 8.61 

ppm (mean 3.98), with molybdenum (Mo) ranging between 1.8 and 16.6 ppm (mean 4.6 

ppm) (Table 6.1; Appendix E.3). 

 

6.3.9  Microfossils 

  Microfossils were investigated for comparison purposes with geochemical and 

elemental data. More extensive analysis of the Chuar microfossils have been reported by 

Porter and Riedman (2016) and references therein. We analyzed a selection of samples spread 

across the measured section; we observed a variety of eukaryotic derived microfossils 

predominantly present in AM, among them: Leiosphaeridia crassa, L. Jacutica, L. 

minitissima, Stictosphaeridium, sp., Cerebrossphaera Buickii, Valeria lophostriata, and 

Photosphaeridium, as well as some unaccountable calcite clusters (Figure 6.5).  
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6.4  Discussion 

6.4.1  Syngenicity of lipid biomarkers 

  The utmost precaution was taken 

to avoid any contamination of 

anthropogenic hydrocarbons (e.g. 

grease, plastics or pollen) during the 

collecting, shipping and work up of the 

Chuar samples. The samples were 

displaced from the outcrop using a 

geological hammer and were 

immediately wrapped in multiple layers 

of pre-combusted aluminum foil before 

being placed in a cotton bag for 

transport. Once in the laboratory, the 

exterior of each sample was removed 

via a lapidary trim saw equipped with a 

diamond saw blade. For each sample the interior and exterior were processed alongside. For 

each batch (5 samples), 2 procedural blanks were added to assess any contamination added 

throughout the laboratory process. In the procedural blanks, trace amounts of n-alkanes were 

observed from nC11–nC27, with nC11 as the most abundant hydrocarbon. The maximum 

individual n-alkane peak in all the blanks was 0.007 μg/g rock, where the maximum sum of 

n-alkanes was 0.078 μg/g rock. On average the blanks contained 0.037 μg/g rock (Figure 

6.6). In 7 blanks trace amounts of isoprenoids (pristane and phytane) were detected with a 

maximum concentration of 0.0006 μg/g rock. In no samples (both interior and exterior) were 

plastics derived 3,3- or 5,5- branched alkanes with quaternary carbons (BAQCs) detected 

(Brocks et al., 2008; Leider et al., 2016). Additional GC-MRM analysis did not detect any 

polycyclic triterpanes in any of the blanks. In total 11 samples (9 CCM, 2 AM) yielding 

conspicuous n-alkanes distributions similar to the blanks where nC11 and nC12 are the most 

dominant compounds, as well as an overall low yield of n-alkanes (< 0.2 μg/g rock) and/or 

isoprenoids (< 0.002 μg/g rock) were excluded from the organic geochemical portion of this 

study as a precaution to avoid any false positive interpretation of molecular signatures. From 

the remaining samples, the sum of n-alkanes was compared between the interior and exterior 

to investigate any external contamination. The work-up protocol (collection, shipping, 

 

Figure 6.6 | n-Alkane abundance (μg/g rock) in 

procedural blanks and Chuar samples. Trace amounts of 

n-alkanes are observed in the blanks (~0.037 μg/g rock). The 

dashed line indicates the minimum amount of preserved n-

alkanes (0.2 μg/g rock) for the sample to be used in this 

study. 
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processing; see for more details Chapter 2), together with the trace amounts of hydrocarbons 

in the blanks, versus general high abundances in the samples (Figure 6.7), the increased 

hydrocarbon yield of the sample interior relative to the exterior, the absence of BAQCs, as 

well as the exclusion of any sample yielding little to no organic matter from the organic 

geochemical part of the study, makes us confident that the herein presented biomarker data is 

indigenous to the Chuar Group. From here onwards the presented data will only focus on 

sample interiors. 

 

 

6.4.2  Thermal maturity of preserved organic matter 

Molecular thermal maturity parameters throughout the Chuar Group provide some 

inconsistent results. The TMAX values, all except for one outlier (L.9: 477°C), ranges between 

427–455°C indicating the OM witnessed moderate thermal stress and placing it in the mature 

oil window (Figure 1.6), with the Galeros Formation having witnessed relatively more 

thermal stress (~448°C) compared to the overlying Kwagunt Formation (~433°C; Figure 6.8; 

Table 6.1; Appendix E.2; Peters et al., 2005).   

 

Figure 6.7 | Comparisons between total ion chromatograms of the interior, exterior and associated 

procedural blank of sample L.4 (m/z 50–550). The recovery standard (r.s.) is 1 ng of d40-nonadecane, the 

internal standard (i.s.) (1 ng) is the d62-triacontane. No significant differences are observed between the 

interior and exterior, whereas the blank yields only trace amounts of n-alkanes. 
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  In support of thermal maturity analysis by Rock-Eval TMAX values, certain biomarker 

ratios have been reported to also indicate thermal stress (Peters et al., 2005). One is these 

proposed proxies is the C27 ββ/(ββ+αα) sterane ratio which reaches thermal equilibrium ~0.70 

(Seifert and Moldowan, 1986). The Chuar samples display values between 0.32 and 0.60, 

thus suggesting the OM did not reach thermal equilibrium yet (see also Figure 1.6). However, 

the C31 22S/(22S+22R) parameter—based on the isomerization of C31 homohopane at the C-22 

position—display values between 0.46–0.62, placing the preserved OM in the upper oil 

window as thermal equilibrium is reached around ~0.60 (Peters et al., 2005).   

  

 

  Additionally, the sterane based C27 ααα S/(S+R) and hopane based Ts/(Ts+Tm) 

maturity parameters proxies have reached their thermal equilibrium (respectively at 0.55 and 

1.0), suggesting the OM in the Chuar Group to be overmature. Although it should be noted 

that the relative proportion between Ts and Tm can be influenced by lithological and 

environmental factors (Peters et al., 2005), redox (Moldowan et al., 1986) and hypersaline  

 

Figure 6.8 | Maturity parameters throughout the Chuar Group. Rock-Eval pyrolysis provided TMAX 

values which systematically decrease; the methylphenanthrene index (Radke et al., 1982) displays severe 

variability; The Ts/(Ts+Tm) parameter shows values > 0.9 The C31 22S/(22S+22R) and C27 ααα S/(S+R) 

ratios provides values of ~0.54 and ~0.53 placing them close to their respective thermal equilibrium (0.60 

and 0.55); the C27 ββ/(ββ+αα) has not reached its thermal maximum (~0.70)  



L. M. van Maldegem (2017)                                   Chapter VI: Paleo-environmental reconstruction Chuar Group 

95 

 

  

Figure 6.9 | Total ion chromatograms of the saturated hydrocarbon fraction (m/z50-550) throughout the 

Chuar Group. The top sample (L.45) represents an average chromatogram for samples above 338 m. The large 

UCM, depletion of n-alkanes, increase of C29hopanes and the presence of des-A-cholestane (C27-seco) and 

homodrimane (C16/2) suggest the organic matter to have witnessed severe biodegradation. Sample 

L.39(representing the lower Walcott Member) yields n-alkanes up to nC34, no biodegraded steranes or hopanes. 

The Awatubi Member is seen in sample L.28. Compared to samples from the overlying Walcott Member, the 

greatest observation difference lies in the relatively small amount of preserved phytol lipids and hopanoids. The 

Carbon Canyon Member is represented by L.4and L.19. L.4shows close comparisons to sample L.28. Sample 

L.19is characterized by little preservation, short n-alkanes and an absence of any polycyclic triterpane. 

 

conditions (Rullkötter and Marzi, 1988). The aromatic based methylphenanthrene index 

(MPI-1) ratio, also proposed to reflect thermal stress, shows a seemingly random variation 

throughout the Chuar Group which does not seem to reflect thermal history but rather some 

other hitherto unknown effect. The 1-MA/(1-MA+2-MA) diamondoids ratio has also been 

suggested as a stable indicator for OM ranging between immature to overmature (Shen et al. 

1996). Here we observe values between 67–85 in the CCM, and between 58–76 in the LWM 

and UWM, showing a weak correlation with TMAX (Figure 6.10; R2: 0.48, n: 20). 

Additionally, the overall preservation of abundant indigenous medium to long chained n-

alkanes (Figure 6.9) throughout the majority of the Chuar Group suggests the OM has 

witnessed moderate thermal stress as indicated by the TMAX, C27 ββ/(ββ+αα) and diamondoid 
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proxies. It does appear that the CCM has witnessed relatively more thermal stress compared 

to the Kwagunt Formation. This observation corresponds to a relative increase of the n-alkane 

chain length throughout the CCM, AM and LWM suggesting less thermal cracking up section 

(Figure 6.9; Peters et al., 2005; note: the alkane pattern of the UWM is likely affected by 

other factors, further outlined in Paragraph 6.4.4).   

  After assessing potential contamination and thermal maturity, we interpret the OM 

matter within the Chuar Group to yield well-preserved indigenous lipid hydrocarbons which 

have the potential to disclose a valuable insight into the biomarker distribution during the 

Tonian. The observed disconnect between the molecular maturity indicators and the 

indigenous OM suggests potential alternative factors controlling the biomarker ratios besides 

maturity. 

 

 

Figure 6.10 | Correlation plots between different thermal maturity parameters for the Chuar Group. 

Symbols represent different members, CCM: yellow diamonds, AM: orange circle, LWM: inverse green 

triangle, UWM: blue triangle. Letters indicate cross plots of (a.) TMAX (ºC) versus C31 hopane S/(S+R) (R2: 0.09, 

n: 16), (b.) TMAX (ºC) against C27 sterane S/(S+R) (R2: < 0.01, n: 19), (c.) TMAX (ºC) compared with diamondoids 

1-MA/(1-MA/2-MA) ratio (Shen et al., 1996) (R2: 0.48, n: 18), (d.) C27 sterane S/S+R versus C31 hopane 

S/(S+R) (R2: 0.20, n: 16), (e.) C27 sterane S/(S+R) against C27 sterane ββ/(ββ+αα) (R2: 0.47, n: 19), (e.) 

diamondoids 1-MA/(1-MA/2-MA) ratio compared with MPI-1 (R2: 0.07, n: 21). 
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6.4.3  Transgressive conditions throughout the Chuar Group 

 The Chuar Group is indicated to have been deposited under increasing transgressive 

conditions (Dehler et al., 2001; Nagy et al., 2009), with potential euxinic conditions during 

the deposition of the UWM (Johnston et al., 2010). The transgressive conditions are 

paralleled by generally elevated TOC concentrations in the upper member (Table 6.1; 

Appendix E.1). Trace elements can be valuable indicators for redox conditions as they 

display different behavior under changing redox conditions (e.g. Tribovillard et al., 2006) and 

reference therein). The redox-sensitive elemental proxies V/Sc, V/(V+Ni), V/Cr, Ni/Co, Th/U 

and (Mo+Cu)/Zn (Hallberg, 1976; Hatch and Leventhal, 1992; Jones and Manning, 1994; 

Wignall and Twitchett, 1996; Kimura and Watanabe, 2001) as well as the organic-based 

Pr/Ph ratio (Didyk, 1978) were used to investigate the redox conditions of the Chuar Group.

 V/(V+Ni) is indicated to reflect the Eh potential as V is soluble as vanadate V(V) in 

oxic environments, while under moderately reducing conditions, vanadate is reduced from 

V(V) to V(IV) (Tribovillard et al., 2006). When the conditions become even more reducing 

(i.e. euxinic) vanadium is reduced further to the insoluble V(III) (Tribovillard et al., 2006). 

Ni, in contrast, predominantly gets scavenged by OM, yet this provides a smaller sedimentary 

increase relative to V making it possible, by comparing them, to investigate the redox 

conditions during sedimentation. V/(V+Ni) values between 0.46 and 0.60 have been indicated 

to reflect oxic conditions, 0.60–0.84 anoxic and > 0.84 reflects euxinic environments (Hatch 

and Leventhal, 1992). This suggests that the CCM (0.57) was deposited under oxidizing 

conditions, whereas the majority of the Awatubi and Walcott Member were deposited under 

dysoxic and in some parts even euxinic conditions (Figure 6.11).  

  V/Cr is also suggested to indicate paleo-redox conditions, as V gets preferentially 

preserved over Cr with reducing Eh conditions (Algeo and Maynard, 2004). Values for the 

V/Cr below 2.00 have been indicated to reflect oxic conditions, where values of 2.00–4.25 

suggests dysoxic settings, and values above 4.25 are indicative of anoxic depositional 

conditions (Jones and Manning, 1994). The Chuar samples all display values between 0.42–

1.62 suggesting that they were all deposited under oxic conditions (Figure 6.11).  

  Jones and Manning (1994) also proposed the Ni/Co ratio where they stated that oxic 

environments display values below 5.00, dysoxic between 5.00 and 7.00 and values above 

7.00 anoxic conditions. The Chuar samples shows a significant sample to sample variability 

(2.36–20.48), but overall a trend is observed from values suggesting more oxygenated 

conditions in the CCM (~6.44) to more reducing conditions in the UWM (~14.78; Figure 

6.11).  
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  Another proposed proxy looks at the enrichment of V relative to the conservative 

element scandium (Sc). Kimura and Watanabe (2001) suggested that any increase of the V/Sc 

ratio above the crustal value (between 4.70 and 9.10 (Taylor and McLennan, 1985)) would 

indicate more reducing conditions. Throughout the CCM elevated values (8.04) are observed 

relative to the samples from the Kwagunt Formation (5.39), but in the UWM several 

enrichments are observed potentially suggesting periodically more reducing conditions, 

although none of the values are significantly elevated above the crustal values (Figure 6.11).

 The Th/U ratio is shown to correlate with the V/Sc ratio (Kimura and Watanabe, 

2001). By comparing the redox-sensitive U, which gets reduced from the soluble U(VI) to the 

insoluble U(IV) in anoxic conditions (Tribovillard et al., 2006), with the conservative 

thorium (Th), it has been indicated that raised values correspond with increased Eh 

conditions. When the values of the Th/U are below 2.0 it is estimated to reflect anoxia, while 

 

Figure 6.11 | Redox parameters throughout the Chuar Group. Black bars indicate the average for each 

individual parameter through each member (CCM, AM, LWM and UWM); Thick grey dotted lines indicate 

redox boundary values for each individual parameter. V/(V+Ni) indicates oxidizing conditions for the 

Galeros Formation (~0.57), and anoxic to euxinic conditions for the Kwagunt Formation (Hatch and 

Leventhal, 1992); all samples show V/Cr values below 2 suggestive of deposition under oxidizing 

conditions (Jones and Manning, 1994); the Ni/Co ratio displays a systematic trend to reducing conditions 

(Jones and Manning, 1994); V/Sc values shows minor enrichment relative to the baseline in the upper 

Walcott but no clear enrichment from the crustal average (4.7–9.1) (Kimura and Twitchett, 2001). The 

(Mo+Cu)/Zn parameter suggests the Chuar basin witnessed more reducing conditions throughout the 

Walcott Member (Hallberg, 1978). The Pr/Ph ratio also indicates that conditions changed from oxidizing (< 

3) to reducing (>1) throughout the sedimentary sequence.  
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oxic conditions are found to have values between 2.00 and 8.00 (Wignall and Twitchett, 

1996). Samples from the CCM display the lowest values (~2.27), with 4 samples recording 

values below 2.00. In the overlying members, all but one sample (L.42), display values 

suggestive of oxic conditions (~4.29; Figure 6.11).  

  Hallberg (1976) recognized that the (Mo+Cu)/Zn ratio also parallels with changes in 

redox conditions, with increasing values suggesting more reducing environments. Mo has 

been described to have a similar behavior as V under reducing conditions (Algeo and 

Maynard, 2004; Tribovillard et al., 2006), whereas Cu is reduced from Cu(II) to Cu(I) under 

anoxic conditions (Algeo and Maynard, 2004). Zn has been described as predominantly 

forming complexes with humic and fulvic acids and under reducing conditions may be 

incorporated as ZnS in pyrite (Tribovillard et al., 2006). The (Mo+Cu)/Zn shows a steady 

increase throughout the Chuar basin, with relatively low values in the CCM (~0.50) and AM 

(~0.42), which significantly increase throughout the lower (~2.32) and upper Walcott 

Member (~4.58; Figure 6.11).   

  Besides redox-sensitive trace elements being used as redox indicators, organic 

molecules also can be used to interpret the redox conditions during the time of deposition. 

More specifically, the hydrocarbon remnants from the phytol-side chain of a chlorophyll 

molecules can be used to infer the oxidation state during deposition as oxic conditions, phytol 

is first converted to phytenic acid, which after diagenesis will be preserved as pristane, yet 

when the phytol side chain is deposited under reducing conditions it will be preserved as 

phytane after diagenesis. Therefore the relative relationship between pristine (Pr) and phytane 

(Ph) has been indicated to reflect redox conditions (Didyk, 1978). A Pr/Ph ratio above 3 is 

indicative of OM derived from oxidizing conditions where values below 1 imply the OM to 

have been deposited under reducing conditions (Peters et al., 2005). The Chuar samples show 

severely elevated values in the CCM, which gradually reduce throughout the Kwagunt 

formation with a minimum of 0.55 in sample L.41 (Figure 6.11).  

 Taken all the parameters together reveals some inconsistencies between the different 

redox proxies, on the one hand the V/(V+Ni), Pr/Ph, (Mo+Cu)/Zn and Ni/Co indices suggest 

the basin to experience increasing reducing conditions with anoxic (euxinic) conditions in the 

UWM, while on the other hand, the V/Cr and Th/U suggest that the basin witnessed 

consistently oxic conditions. It should be noted that individual elements can also be moved 

after deposition and burial, have different sources and can be more sensitive to alterations. 

Alternatively, the difference between the parameters could also be explained by an 

oxygenated upper water column overlying an anoxic water body where potential seasonal 
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cycles could have drawn down oxic water towards the sediment of the restricted shallow 

Chuar basin.   

 Although the redox parameters all have a different response factors the overall trend 

suggests that the CCM and AM were deposited under oxic conditions, whereas conditions in 

the LWM became more reducing and were the UWM was predominantly deposited under 

anoxic conditions. An interesting relationship is observed between the redox indicators Pr/Ph 

and (Mo+Cu)/Zn which was supported through an End Member Mixing Analysis (EMMA) 

(Figure 6.12). The relationship suggests that in environments preserving relatively abundant 

pristane hydrocarbons (i.e. oxidizing conditions); relatively high abundances of Zn compared 

to Cu and Mo are present while in reducing marine conditions this is inverted.  

 

Figure 6.12 | Cross plot between Pr/Ph and (Mo+Cu)/Zn. Figure highlights the relationship between the 

redox proxies Pr/Ph and (Mo+Cu)/Zn (Hallberg 1976). Grey shaded line reflects end-member mixing analysis 

(EMMA). Symbols represent different members, CCM: yellow diamonds, AM: orange circle, LWM: inverse 

green triangle, UWM: blue triangle. 

  

 Although the Chuar basin reflects a transgressive depositional history, general 

abundances of Mo (~5 ppm) and U (~4 ppm) (Table 6.1) are significantly lower than the 

average Mo (~24 ppm) and U (>10 ppm) observed in sediments throughout the Meso- and 

Neoproterozoic (Anbar, 2007; Scott et al., 2008; Partin et al., 2013). This can possibly be 

attributed to the marine realm during the late Tonian being severely depleted in redox 

elements due to extensive euxinic conditions (Dahl et al., 2011; Reinhard et al., 2013), and 

therefore the potential intruding marine waters were depleted in Mo and U. Yet it should be 

noted that the absolute abundance of trace elements in the Proterozoic ocean could have been 

different. In a study toward the 1.1 Ga Nonesuch Formation, USA, it was indicated that Zn, 

Ni, Cu, Co, and V showed decreased abundances in marine associated sediments (relative to 
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the crustal values), whereas Mo, As and Se show enrichment, providing a new layer of 

complexity to the interpretation of trace elemental signatures (Stueeken et al. 2017).  

 Secondary evidence of changing redox conditions is provided by bulk δ15N values. 

On average δ15N values in oxygenated marine waters are ~5 ‰, these are suggestive of 

denitrification as the isotopic fractionation associated with denitrification ranges between 3–

15 ‰ (Sigman et al., 1999). However, in lower Eh environments, the majority of the oxidized 

nitrogen species are reduced (i.e. NO3
- and NO2

-) limiting denitrification (Higgins et al., 

2012). While denitrification is suppressed, diazotrophic organisms (i.e. cyanobacteria) have 

no problem in surviving as they can fixate nitrogen themselves (Kuypers et al., 2004). 

Biological N2 fixation is observed to cause a significantly smaller isotopic fractionation (-

2.0–0.5 ‰) relative to the atmospheric δ15N (Kuypers et al., 2004). Therefore it is 

hypothesized that a decrease in δ15N values below denitrification values reflect a significant 

 

Figure 6.13 | Miscellaneous geochemical parameters, throughout the Chuar Group, suggesting 

alteration in degradation, community and environment. The δ15N show a negative anomaly at 352 m, 

potentially suggesting a change from denitrification to nitrogen fixation; unresolved complex matrix (UCM, 

relative to nC20) shows a significant increase in the UWM; Ba/Al displays more elevated values near the 

top. (Pr + Ph) / (nC17 + nC18) shows significant depleted values throughout the AM; The UWM displays an 

elevation of the organosulfur compound BNT relative to phenanthrene; an overall relative increase   

tricyclic terpanes (versus all quantified triterpanes) is observed. 
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change in the microbial community (Bauersachs et al., 2009). Often these observations have 

been paralleled with severely reducing conditions such as the ocean anoxic events (OEAs), 

where it is hypothesized that anaerobic nitrogen-fixing cyanobacteria have been more 

ecologically dominant (Kuypers et al., 2004; Higgins et al., 2012). In addition, depleted δ15N 

values are associated with the presence of 2α-methyl hopanes, initially these molecular 

biomarkers were suggested to be mainly biosynthesized by cyanobacteria (Summons et al., 

1999), however Doughty et al. (2009) showed a wide variety of organisms are able to 

produce these lipid biomarkers, with additional studies hypothesizing these lipid biomarkers 

rather reflect environmental stress conditions (Ricci et al., 2016).   

 

 

Figure 6.14 | Correlation plots between carbon and nitrogen in the Chuar Group. Symbols represent 

different members, CCM: yellow diamonds, AM: orange circle, LWM: inverse green triangle, UWM: blue 

triangle. (a.) δ15N (‰ air) versus C/N (R2: 0.01, n: 34), (b.) δ15N (‰ air) against TOC (R2: 0.02, n: 34); (c.) δ15N 

(‰ air) versus δ13CORG (‰ VPDB) (R2: 0.03, n: 34); (d.) TOC versus C/N (R2: 0.01, n: 56).  

 

  Throughout the Chuar Group on average we observe an average δ15N signature of ~5 

‰, yet between 352 and 368.5 m a severe drop in δ15N is observed to values of ~1.3 ‰ 

(Figure 6.13). This decrease coincides with the observation that conditions were significantly 

reduced near the top, shown by the redox proxies. Interestingly, we observe abundant 2α-

methyl-hopanes during the interval where δ15N is depleted, yet we did not observe them in 

the strata above or below.   
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  Modern oceans have an average carbon to nitrogen (C/N) ratio of ~6 (Redfield ratio), 

Phanerozoic black shale samples typically display elevated values of 20–60 (Junium and 

Arthur, 2007), while in Precambrian sediments even more elevated values between 25–500 

are observed (Beaumont and Robert, 1999; Godfrey and Falkowski, 2009; Kump et al., 

2011). Increased C/N values in organic-rich sediments are suggested to be caused by early 

diagenesis favoring the release of N in the form of ammonium (Freudenthal et al., 2001), yet 

thermal maturation is also indicated to increase the C/N ratio (Beaumont and Robert, 1999). 

Junium and Arthur (2007) observed that generally C/N values correspond with elevated TOC 

values, this is explained as under reducing conditions, organic reworking is significantly 

diminished, resulting in the preservation of OM reflecting the C/N value of the water column 

during deposition more closely. Yet, throughout the Chuar Group, no correlation is observed 

between TOC and C/N (Figure 6.14). The CCM shows highly variable values (3–93), while 

samples in the AM have surprisingly low C/N values with an average of 6. One explanation 

for these consistently low values could be found in the carbon limitation scenario 

hypothesized in Chapter 5 of this thesis (Figure 5.1). This could have potentially driven C 

values down, resulting in the C/N ratio to decrease. In the Walcott Member, values of ~14 are 

observed, placing them in the lower spectrum of what on average is observed in the 

Proterozoic sediments (Godfrey and Falkowski, 2009; Kump et al., 2011). It has been 

demonstrated that δ15N and C/N ratios correlate with a change in community of nitrogen-

fixing cyanobacteria, implying that a more significant community of diazotrophs would 

increase overall N concentrations and lower 15N values (Junium, 2010), yet here we do not 

observe such a correlation (Figure 6.14).   

  An investigation into the relative amount of preserved barium (Ba) can be used to 

determine an overall change in productivity. It has been demonstrated that Ba is incorporated 

in live phytoplankton which upon decay can be preserved as barite. This allows Ba, compared 

to the conservative element aluminum (Al), to be used an indicator for increased productivity 

(Dehairs et al., 1991; Dymond et al., 1992). However it should be noted that barite 

concentration can also be influenced by either sulfate-reducing bacteria, or through pore 

water interactions (Torres et al., 1996; McManus et al., 1998). Barite can also be influenced a 

shift from terrigenous to marine conditions caused a change in weathering influx (Klump et 

al., 2000). The lowest values for the Ba/Al ratio in the Chuar Group are recorded in the AM 

after which the values systematically increase, parallel with the implied transgressive and 
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environmental change throughout the basin. Yet due to the inconsistent behavior of Ba in the 

Chuar Group, we are unable to unravel the precise controls on this parameter.  

 

 To assess if a sample is deposited under marine conditions, the relative abundance of 

the organosulfur compound di-benzo-thiophene (DBT) can be compared to phenanthrene 

(Phen). DBT and Phen have no known biological source but rather are formed through 

catagenesis, diagenesis, and metagenesis of OM (Hughes et al., 1995). DBT and generally 

organosulfur compounds are likely formed through the interaction of reduced sulfur species 

(e.g. hydrogen sulfide) with an organic substrate. The marine realm is relatively enriched in 

these species compared to general freshwater settings (Hughes et al., 1995), allowing the 

elevated DBT/Phen values to be used to indicate marine conditions (Peters et al., 2005). Yet 

within our samples set we observe little to no DBT, instead, we detect elevated abundances of 

a different organosulfur compound, benzo-naphtho-thiophene (BNT) (C16H10S; Figures 6.11, 

 

Figure 6.15 | Mass spectra of unusual molecular compounds observed in the Chuar Basin. a.) 25,28-

Bisnorgammacerane (L.24) suggested to indicate severe heterotrophy (Chapter 3), b-d. are all 

predominantly observed between 338 and 376 m of the Chuar Basin, b.) Benzo-naphtho-thiophene (L.46), 

c.) Des-A-cholestane (L.45) and d.) 8β-(H)-homodrimane (L.45).  
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6.15). The unusual observation of elevated BNT concentrations rather than DBT might 

suggest the samples have witnessed some form of degradation (Kropp et al., 1994). Kropp et 

al. (1994) showed microbial oxidation of benzothiophenes results in benzothiophene-

sulfoxide molecules which form–via the abiotic Dietler-Adler-type condensation –the 

relatively more degradation resistant BNT molecule. By comparing the observed BNT with 

the unambiguous Phen (BNT/Phen) it is shown that the UWM displays elevated values 

(Figure 6.13; Table 6.1), implying more reduced sulfur species were present, likely due to the 

presence of more marine waters (Nagy et al., 2009; Johnston et al., 2010). 

 

6.4.4  Degraded organic matter in the upper Walcott Member 

 Tricyclic terpanes are relatively biodegradation resistant molecules (Aquino Neto et 

al., 1983; Peters et al., 2005). In severely biodegraded organic matter, where the steranes and 

hopanes are already removed, tricyclic terpanes are still observed (Figure 1.7; Seifert and 

Moldowan, 1979; Connan et al., 1980). In the investigated samples an increase of tricyclics 

terpanes, relative to all classified terpanes, from 6.4 to 76.7 % is observed throughout the 

Kwagunt Formation. Especially, the UWM contains consistently elevated concentrations of  

tricyclic terpanes suggesting potentially severe biodegradation during its deposition.   

 The 30-norhopane/hopane (C29αβ/C30αβ) ratio is an organic geochemical parameter 

used to indicate biodegradation (Peters et al., 2005), although elevated concentrations (>1) 

are also associated with OM deposited under high evaporitic conditions (Subroto et al., 1991) 

as well as elevated thermal maturity (Peters et al., 2005). GC-MS/MS analysis of the samples 

reveals all samples (which yield hopanes) to have 30-norhopanes/hopanes values above 1, 

with a consistent trend towards more elevated values up section (~8). The increase of the 

C29αβ/C30αβ ratio does not correlate with any maturity indicator, but it does show a 

statistically significant correlation with the relative percentage of tricyclic terpanes (Figure 

6.14; R2: 0.51, n: 19), implying a relationship with biodegradation.   

  Corresponding with the increase of tricyclic terpanes we also observe an increase in 

the unresolved complex matrix (UCM) underlying the individual hydrocarbon molecules in 

the chromatograms of the UWM (Figure 6.9). To quantify the UCM a ratio was formed 

between the relative abundance of the overlying n-alkane nC20 compared to the relative 

height of the underlying UCM. Each of these factors are affected by biodegradation, as alkyl 

lipids are observed to be preferentially degraded over other compounds such as isoprenoids, 

while the UCM is observed to increase with increasing biodegradation (Paragraph 1.2.4). In a 
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comparison between the UCM (% relative to nC20) and tricyclic terpanes, a roughly linear 

relationship is observed (Figure 6.16; R2: 0.41, n: 26). In the samples between 338 and 376 m 

(UWM), the most abundant compound detected in the saturated fractions is 8β-homodrimane 

(C16H30; Figure 6.15). This bicyclic triterpane has been described as an degradation product 

of bacteriohopanoids (Alexander et al., 1984; Yang et al., 2009). The presence of 8β-

homodrimane is paralleled by the detection of des-A-cholestanes (C27H52). These C27 

secosteranes (Figure 6.15) have also been attributed to biodegraded OM (Trendel et al., 1982; 

Zhusheng et al., 1990). All of the above observations, as well as the observation of BNT, 

suggest that the UWM witnessed severe biodegradation.  

 

Figure 6.16 | Cross plots of organic matter degradation parameters throughout the Chuar Group. 

Symbols represent different members, CCM: yellow diamonds, AM: orange circle, LWM: inverse green 

triangle, UWM: blue triangle. Letters indicate cross plots of (a.) Tricyclics (%) versus C29αβ/C30αβ (R2: 0.47 n: 

17); (b.) Tricyclics (%) against UCM (% relative to nC20) (R2: 0.41, n: 26); (c.) Uranium (ppm) versus UCM (% 

relative to nC20) (R2: 0.19, n: 23); (d.) C29αβ/C30αβ versus TMAX (ºC) (R2: 0.03, n: 17); (e.) C29αβ/C30αβ against 

C31 S/(S+R) (R2: 0.0.1, n: 17); (f.) C29αβ/C30αβ compared with C30 αβ/C31 22R (R2: 0.44, n: 17).   

 

 However, we cannot exclude potential radiolytic effects on the OM of the UWM. 

Increased redox conditions, as well as a general elevation of TOC, are indicated to 

concentrate overall U concentration in sediments (Dahl et al., 1988). The majority of 

preserved U is the form of the radioactive 238U (> 99 %) with a half-life of ~4.47 Ga. The α-
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decay emitted from U has been indicated to crack open C-C bonds at temperature < 50 °C, 

which can have profound ramifications for the preservation of intact hydrocarbon molecules 

over long time scales (Jaraula et al., 2015; Cumberland et al., 2016). In irradiated OM, often 

similar degraded hydrocarbon molecules are observed as those associated with 

biodegradation, including the presence of secosteranes (Larter et al., 2012). We here observe 

a weak correlation between U (ppm) and UCM (in %) (Figure 6.16; R2: 0.19, n: 23), 

providing inconclusive results towards radiolytic degradation in the UWM.  

 

6.4.5  Community responses in the Kwagunt Formation 

 Besides tricyclic terpanes being used as a biodegradation indicator, they are also 

suggested to be able to differentiate between terrestrial and marine depositional basins. 

Tricyclic terpanes are typically observed in a range between C19 and C26 with generally C23 

being the most abundant in marine associated sediments (Connan et al., 1980; Aquino Neto et 

al., 1983). Reed (1977) observed that elevated concentrations of the shorter tricyclic terpanes 

(C19–C20–C21) are commonly found in OM derived from terrestrial and/or lacustrine sources 

although Zumberge et al. (1983) reported that elevated C19 and C20 tricyclic terpanes would 

be generated through thermal cleavage of larger triterpanes.   

  In the here analyzed samples we observe a shift from C19–C20–C21 domination in the 

Carbon Canyon and Awatubi Member, to C23 domination in the Walcott Member (Table 6.1). 

As thermal maturity throughout the basin remains relatively constant it is unlikely the shift in 

tricyclic terpanes is caused through thermal cleavage. To investigate if the tricyclic terpanes, 

as well as the associated OM, were deposited under non-marine or marine conditions, Shi et 

al. (1988) proposed the tricyclic terpane ratio (C20+C21)/(C23+C24) where elevated values 

imply OM derived from lacustrine/terrestrial environments and depleted values marine 

conditions. We observe elevated values for the CCM and AM, relative to the LWM and 

UWM. Interestingly we observe a rough correlation between (C20+C21)/(C23+C24) and the 

Pr/Ph ratio (Figure 6.17; R2: 0.60, n: 25), supporting the idea that a shift occurred from 

terrestrial to marine conditions during the deposition of the Chuar Group (Horodyski, 1993; 

Nagy et al., 2009). Additionally similar to the Pr/Ph ratio, the (C20+C21)/(C23+C24) ratio 

shares a relationship with the (Mo+Cu)/Zn redox parameter (Figure 6.17).  

 The samples yielding sterane biomarkers are dominated by the cholestane based 

steranes (m/z 217) with minor abundances of nor-cholestanes (C26), which is in accordance 

with previous observations (Summons et al., 1988; Brocks et al., 2016). But where Summons 
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et al. (1988) observed small additional quantities of C28 and C29 steranes, likely due to 

contamination (Brocks et al., 2008; French et al., 2015), Brocks et al. (2016) observed the 

unusual 26-methyl-cholestane hydrocarbon. The results presented in this thesis underline the 

observations presented by Brocks et al. (2016), as we observe abundant cholestane molecules 

and smaller quantities of 21- and 27-nor-cholestanes and 26-methyl-cholestane, yet no 

regular C28 or C29 steranes (Figure 6.18).  

 

 

Figure 6.17 | Correlation plots between tricyclic terpanes and redox proxies. Symbols represent different 

members, CCM: yellow diamonds, AM: orange circle, LWM: inverse green triangle, UWM: blue triangle. (a.) 

Tricyclics terpanes (C20+C21)/(C23+C24) versus Pr/Ph (R2: 0.60, n: 25); (b.) Tricyclic terpanes 

(C20+C21)/(C23+C24) against (Mo+Cu)/Zn (n: 21), grey curve represents EMMA analysis.  

 

 The observation of only conventional C27 steranes is highly unusual as in typical 

Phanerozoic sediments C27, C28 and C29 are commonly observed side by side (Huang and 

Meinschein, 1979; Peters et al., 2005; Kodner et al., 2008). Cholestane dominated OM is so 

far only observed in Tonian sediments (i.e. Visingsö Group, Kanpa Formation and Chuar 

Group (Summons et al., 1988; Brocks et al., 2016)) and in one Ediacaran sequence deposited 

in the direct aftermath of the Marinoan Snowball Earth (Elie et al., 2007; Sousa Júnior et al., 

2016) (see also Chapters 3, 7). In a study regarding the sterol composition of modern plants 

and algae, it was observed that individual species seldom biosynthesize one single sterol, but 

rather a combination of C27, C28, and C29 (Kodner et al., 2008). Generally, most eukaryotic 

primary producers are observed to predominantly biosynthesize C29 sterols, with the 

exception of a few clade, including red algae (Rhodophyta), which predominantly 

biosynthesizes C27 sterols (Patterson, 1971; Kodner et al., 2008). Eumetazoa (heterotrophic 

eukaryotes) are also observed to predominantly yield cholesterol in their cell membrane 

(Brocks and Summons, 2003). Yet due to the lack of convincing evidence for the presence of 
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metazoa before the rise of Ediacaran biota (~580 Ma) (Narbonne, 2005), there is little to no 

evidence to suggest the dominance of cholestanes in the Tonian sediments is reflecting the 

presence of eumetazoa.   

  The observation of microfossils reassembling ancient lineages of Rhodophyta in 1.2 

Ga old sedimentary rocks (Knoll, 1992; Butterfield, 2000), and the hypothesis that red algae 

would have survived the Neoproterozoic glaciations by inhabiting cryoconites (Hoffman et 

al., 1998; Cameron et al., 2012; Hoffman, 2016), resulting that the hypothesized red algae 

were likely one of the major contributors towards the C27 dominated OM in middle 

Neoproterozoic sediments, and thus perhaps playing a significant ecological role (Summons 

 

Figure 6.18 | GC-MS-MS analysis of the Chuar Group sterane distribution (sample L.39, Lower 

Walcott Member). Each chromatogram of a sterane trace (m/z 217) is overlying a NSO oil reference 

standard, where the conventional steranes are marked red. The results show that C26 norsteranes and regular 

cholestanes  are abundantly present in the Lower Walcott Member of the Chuar Group, yet no regular C28 or 

C29 steranes are observed but traces of later eluting 26-methylcholestanes (marked blue) are observed 

(Brocks et al., 2016).  
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et al., 1988; Elie et al., 2007). For instance, Elie et al. (2007) hypothesized that the C27 

dominated signatures, observed in elevated abundances in the sediments of the post-Marinoan 

Araras Group, would be suggestive of a severe red algae bloom in the direct aftermath of 

Snowball Earth. In our Chuar samples, we observe a dynamic shift in the relative abundance 

of steranes compared to other triterpanes (Figure 6.19; Table 6.1). The AM and LWM display 

elevated values (6.9–24.4 %) while the UWM shows significantly lower values (1.5–6.4 %) 

(Figure 6.19).  

 

 Although bacterial organisms are observed to biosynthesize protosterols (Pearson et 

al., 2003; Wei et al., 2016), sterane biomarkers are commonly derived from eukaryotic 

biomarkers (Mackenzie et al., 1982). By comparing the steranes to the relative abundance of 

bacterial derived hopanes (Ster/Ster+Hop), the community composition during deposition can 

be investigated (Peters et al., 2005). In a previous study towards the Kwagunt Formation 

(using a different sample set), the Ster/(Ster+Hop) ratio was observed to range between 0.06–

0.25 with no systematic trend (Brocks et al., 2016). While Nagy et al. (2009) did observe that 

steranes were more dominant in the lower part of the Chuar Group and hopanes more 

significant in the upper section, however, they did not provide any quantitative information 

on the sterane to hopane ratio.   

  In this study we also observe a systematic trend in the Ster/Ster+Hop ratio throughout 

 

Figure 6.19 | Lipid biomarker ratios throughout the Kwagunt Formation. C29/C30 αβ hopanes show an 

increasing trend, throughout the Walcott Member; the diahopanes / hopanes shows a significant decrease 

towards the top; the gammacerane index (Sinninghe Damsté et al., 1995), shows a spike (L.41) in the top of 

the LWM;  The C19C/A+B(Kelly, 2009), ratio shows generally decreasing values towards the top; the 

diasterane/(diasterane+sterane) ratio does not display a clear trend throughout the measured section; the 

Ster/(Ster+Hop) ratio indicates significant depleted abundances of steranes over hopanes in the UWM, 

relative to the underlying LWM and AM; the triterpanes stratigraphic plot shows the change in relative % of 

steranes (red), hopanes (blue), tricyclics (green) and BNG (orange) throughout the Kwagunt Formation. 
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the Kwagunt Formation, with elevated values for the AM (~0.35) which gradually decrease 

in the LWM (~0.16) and are severely reduced in the UWM (~0.06) (Figure 6.19), indicating a 

change in community from a mixed eukaryotic and prokaryotic community to a bacteria 

dominated community in the upper section. This observation coincides with changes in redox 

conditions seen throughout the Kwagunt Formation (Paragraph 6.4.3). Interestingly the 

change to a more (hopanoids producing) bacterial community correlates with the δ15N values 

suggesting a thriving cyanobacterial community (Figure 6.20; R2: 0.75, n: 20), and supporting 

the notion of the presence of a more significant diazotrophic community during the 

deposition of the UWM (Paragraph 6.4.3).    

  The gammacerane ratio is reported to show more elevated values as the water column 

becomes stratified (Sinninghe Damsté et al., 1995). Interestingly a severe spike (3.59) is 

observed at the boundary between the LWM and UWM in sample L.41 (316.5 m) potentially 

suggesting that the basin experienced stratified conditions just prior to becoming fully anoxic 

(Johnston et al., 2010). Although speculative, this severe stratification during this interval 

could explain the peculiar significant isotopic offset between the bulk organic carbon and 

phytol lipids in sample L.41 (> 5 ‰; Appendix C.1). 

 Besides gammacerane, the nor-androstane ratio (C19C/C19A+C19B) has been proposed 

as an additional proxy for stratification and/or elevated salinities (Kelly, 2009). Although the 

gammacerane spike coincides with the most elevated value in the nor-androstane ratio, 

overall a weak correlation is observed between the two parameters (Figure 6.20; R2: 0.34, n: 

18), the androstane ratio shows statistically a more significant correlation with the diahopane 

ratio (Figure 6.20; R2: 0.77, n: 18), and δ15N (Figure 6.20; R2: 0.44, n: 16), suggesting the 

nor-androstane ratio does not only reflect stratification but is potentially also influenced by 

community and redox changes.  

  Chapter 3 details the characterization of the novel biomarker 25,28-

bisnorgammacerane (BNG) (Figure 6.15). It shown that BNG in the Chuar basin has an anti-

correlative behavior with gammacerane, implying a mechanistic relationship between them 

(Figure 3.7). Supported by carbon isotope systematics, it was hypothesized that that BNG is 

likely formed under severe heterotrophic conditions. In the Chuar Group BNG is only 

observed in the AM, yet within one sample it constitutes 78 % of all quantified triterpanes 

(Figure 6.17), suggesting the basin witnessed some intense microbial recycling during 

deposition. 
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Figure 6.20 | Cross plots of biomarker correlations throughout the Chuar Group. Symbols represent 

different members; AM: orange circle, LWM: inverse green triangle, UWM: blue triangle. Letters indicate 

correlation plots between (a.) steranes (%) versus diahopanes/hopane (R2: 0.51, n: 23); (b.) δ15N (‰ Air) and 

hopanes (%) (R2: 0.75, n: 20) (c.) nor-androstane ratio C19C/(C19A+C19B) against gammacerane index (R2: 0.34, 

n: 18) (d.) Cross plot between nor-androstane ratio and diahopanes/hopanes (R2: 0.77, n: 18) (e.) nor-androstane 

ratio and δ15N (R2: 0.44, n: 16) (f.) diasteranes / (diasteranes/steranes versus diahopanes/hopanes (R2: 0.09, n: 

21).  

  

  All AM and LWM samples yield unusually high values of rearranged 17α-diahopanes 

(Figure 6.19; Table 6.1). Previously it was thought that high diahopanes abundance was 

indicative of clay catalysis of regular hopanoids during diagenesis (Moldowan et al., 1991) or 

of terrigenous OM (Telnaes et al., 1992). Recently elevated diahopane concentrations were 

recognized in the Proterozoic ~1.4 Ga Xiamaling Group (Luo et al., 2015) and ~1.1 Ga Atar 

Group (Blumenberg et al., 2012) where no direct correlation was observed between, on the 

one hand, diahopanes, and on the other thermal maturity and/or microbial degradation. 

Blumenberg et al. (2012) observed a relative increase of diahopanes in the samples which 

were deposited under more oxidizing conditions.   

  The Chuar samples support these observations, the diahopane/hopane ratio shows a 

rough correlation with percentage steranes (relative to all quantified triterpanes) (Figure. 

6.20; R2: 0.51, n: 20), suggesting diahopanes are potentially derived from specific biogenic or 

abiogenic aerobic processes rather than post-depositional alternation. Luo et al. (2015) stated 
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that the unsaturated bacteriohopanoid precursor found in distinct bacterial organisms 

(Rohmer and Ourisson, 1986; Talbot et al., 2007), carry the potential to be preserved as 

diahopane. Additionally, diasteranes are detected. The diasteranes ratio (C27 diasteranes / 

(diasteranes + steranes)) is hypothesized to be influenced by both clay catalysis (Rubinstein 

et al., 1975; Van Kaam-Peters et al., 1998), redox (McKirdy et al., 1983) and thermal 

maturity (Peters et al., 1990; Peters et al., 2005). The Chuar samples display variable values 

between 0.35 and 0.85 with no systematic trend or correlation with thermal maturity, redox, 

lithology or community (Figure 6.19; Table 6.1). Surprisingly, there is also no correlation 

observed with diahopanes (Figure 6.19; R2: 0.09, n: 21), as they are suggested to be generated 

through similar processes (Moldowan et al., 1991, Rubinstein et al., 1975, Peters et al., 2005). 

One explanation for this observation might be that low abundances of steranes in the reduced 

UWM derive from detrital OM, whereas the regular hopanes are in-situ produced.  

 

6.4.6  Sterane homologs with degraded side chains in the Galeros Formation 

  Where the Kwagunt Formation yields abundant concentrations of conventional 

polycyclic triterpanes (i.e. hopanes, steranes, tricyclics), the Galeros Formation, besides 

sample L.4, does not. However, the difference in thermal maturity between L.4 and the other 

samples is not significant, suggesting other factors are controlling the preservation of the OM 

in these settings. Interestingly, several samples in the Galeros Formation do preserve 

abundant series of shorter sterane compounds, which are not observed in the Kwagunt 

Formation (Figure 6.21). GC-MS-MS analysis implies the preserved compounds have shorter 

side chains. Sample L.4 contains small amount of C27 regular steranes but yields abundant 

steranes with C-22 (homopregnane) and C-24 (cholane) side chain configurations (Figure 

6.21). In other Galeros samples, which yield these unusual sterane series (L.9, L.11, L.13, 

and L.19), no cholestane, hopanes or tricyclics are observed and the sterane series with the C-

22 sidechain are more abundant relative to the cholane configuration (Figure 6.21). 

Interestingly samples yielding abundant C22 and C24 steranes display elevated Pr/Ph values 

(3.5–7.0), with samples containing relatively more C22 steranes generally registering the 

highest Pr/Ph values. This implies that samples from more oxidizing environments, which 

previously where indicate to not yield any conventional steranes, could preserve steranes with 

shorter side chains. We did not observe any relationship between concentrations of cholane 

and homopregnane, with either thermal maturity and/or lithology.  
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Figure 6.21 | Composite GC-MS-MS chromatograms showing the steranes distribution versus 

stratigraphic height throughout the Chuar Group, USA. Steranes (m/z 217) displayed ranging from C21 to 

C30, colors indicate cholestane (blue), Cholane (orange), homopregnane (green), and pregnane (purple); * 

indicates internal standard (d4-5α-cholestane; m/z 217). Three distinct patterns emerge with each their own 

abundant sterane distribution (I), (II) and (III). The top chromatogram (sample L.30; Walcott Member; 216 m) is 

reflective of an average sample in the Kwagunt Formation (I); the middle GC trace (sample L.4; Carbon Canyon 

Member, -115 m) displays minor amounts of cholestanes and no pregnanes, but a significant presence of C24 

cholane (II) as well as some C22 homopregnane. The lower chromatogram (sample L.13; Carbon Canyon 

Member; -179 m) is reflective of multiple samples between -155 and -242.5 and reveal a predominance of 

homopregnane (III) with the presence of cholane, yet no traces of cholestanes are present. (see for more details 

Figure 6.23) 

   

  One potential scenario that explains the observation of the shorter sterane series in the 

CCM is through microbial degradation of the cholesterol side chain. A wide variety of 

Actinobacteria, commonly observed in soils and aquatic environments (Ventura et al., 2007), 

are able to perform sterol catabolism through oxidation of the sterol side chain (Murohisa and 

Iida, 1993; Kreit, 2017) prior to the rupture of the steroidal ring structure (Donova and 

Egorova, 2012). The microbial degradation of sterols has been demonstrated to occur with 

organisms using cytochromes P450 or Cyp125 oxidizing the C-26 to a carboxyl group 

(Rosloniec et al., 2009; Wilbrink et al., 2012). After which, through a β-oxidation-like  
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reaction, the side chain is cleaved at C-24 before further oxidation and metabolic processes 

can cleave the side chain at C-22 and finally at C-17 before the breakdown of the ring 

structure (Figure 6.22; Murohisa and Iida, 1993; Kreit, 2017). The observation of abundant 

C22 and C24 steranes in the CCM likely reflects microbial oxidative degradation of the 

cholesterol side chain in strongly oxidizing environments. This observation provides the 

potential to search for steroidal remnants in environments which witnessed severely oxidizing 

conditions. 

 

 In the Galeros formation not only are more shortened regular steranes observed, but 

also an increase in steranes with an alteration on the A-ring. These alterations include 19-nor 

(m/z 203), as well as the addition of an alkyl group at the C-3 position (m/z 231; m/z 245; 

Figure 6.23). The observation of 3β-alkyl steranes is unusual, but not unique in 

Neoproterozoic OM as they have previously been observed in the depositional rocks of the 

Siberian Platform (Fowler and Douglas, 1987), Amadeus Basin (Summons and Powell, 

1992), Amazon Craton, (Sousa Júnior et al., 2016) and Siva oil reservoir (Dahl et al., 1995). 

Although no biological sources for 3β-alkyl steranes are known thus far, it is hypothesized 

that 3β-alkyl steranes are potentially formed by the bacterial addition of a ribose sugar to a 

sterene molecule (Dahl et al., 1992; Dahl et al., 1995). It is further expressed that this 

alkylation would likely occur in environments which are rich in sterol degradation products  

 

Figure 6.22 | Aerobic microbial side chain degradation of cholesterol. a.) molecular structure of 

cholesterol structure, b.) Oxidative microbial degradation pathway of a cholesterol side chain. (I) unaltered 

cholesterol side chain, (II) organisms (i.e. Actinobacteria) using cytochromes P450 or Cyp125 enzyme are 

shown to carboxylate the methyl group at C26. (III) via a β-oxidation reacting with the carbon atoms at 25, 

26 and 27 which are released as propionic acid, the remaining side chain is carboxylated at C24. (IV) 

Further degradation of the side chain releases a molecule of acetic acid leaving behind a side chain 

carboxylated at the C22 position. (V) Later stages of degradation release one more mole of propionic acid, 

resulting in the formation of 17-ketones, (VI) before ring catabolism. After Muroshia and Iida, 1993; Kreit, 

2012. 
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(Dahl et al. 1992). Furthermore, it was implied that bacteria potentially who alter the 

eukaryotic biosynthesized sterene use it as a hopane substitutes in their membranes (Dahl et 

al. 1992), although direct evidence for this hypothesis remains absent. 

 

 

 

Figure 6.23 | Overview of unusual steranes series in the Chuar Group, USA. Composite GC-MS-MS 

chromatograms showing the accumulated sterane mass transitions from C21 to C30, for m/z 203 (norsteranes), 

m/z 217 (steranes), m/z 231 (3β-methylsteranes) and m/z 245 (3β-ethylsteranes). Colors in the figure 

represent the tentative side chain configuration. Numbers above the peaks display the molecular mass of the 

parent ion, * indicates internal standard (d4-5α-cholestane). (a.) Sample L.30 (Walcott Member, 216 m) is 

reflective of sample in the Kwagunt Formation; it shows predominantly high abundances of C27 cholestanes 

(green) and C21 pregnanes (purple). (b.) displays the tentative configuration of the hydrocarbon ring skeleton 

for each mass transition; (c.) shows the likely tentative side chain configuration with the corresponding 

colors to the peaks. (d.) Sample L.4 (Carbon Canyon Member, -115 m) has minor amounts of cholestanes 

and no pregnanes but yields significant abundances of steranes with a shorter sidechain in the mass ranges 

203, 217 , 231 and 245; (e.) Sample L.13 (Carbon Canyon Member, -179 m) displays no traces of 

cholestanes and relative more C22 over C24 steranes.  
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6.4.7  Paleo-environmental reconstruction of the Chuar deposits 

 One overarching scenario to interpret the environmental conditions of the Chuar 

Group using geochemical, lithological and biological Chuar data is that the basin was 

deposited under transgressive conditions as previously reported (Nagy et al., 2009; Johnston 

et al., 2010). In contrast to Dehler et al. (2001), we interpret the Galeros Formation to reflect 

a restricted environment with oxidizing conditions, similar to the interpretation by Elston 

(1989) and Horodyski (1993). This hypothesis is supported by elevated Pr/Ph values (> 3.5; 

Figure 6.11), paleosol-like features and evaporitic minerals (Figure 6.3) as well as the 

presence of eukaryotic microfossils (Figure 6.5), including the observation of suggested 

lacustrine derived Valeria Lophostriata (Wellman and Strother, 2015; Porter and Riedman, 

2016). The depleted TOC values (Figure 6.4), redox-sensitive proxies (Figure 6.11) and the 

steroidal side chain degradation (Figures 6.21, 6.23) underline this observation.   

  The overlying AM likely witnessed variable conditions, indicated by the stromatolites 

and depleted δ13Corg values (-31.0 ‰) at the bottom of the AM (Figure 6.4) followed by 

evaporitic conditions between (78–180 m, Chapter 5), which is supported by the observation 

of salt pseudomorphs (Ford and Breed, 1973) and gypsum minerals (Horodyski, 1993). 

Additionally, this section contains severely enriched δ13Corg OM (< -15 ‰; Figure 5.1), which 

has been proposed to reflect primary producers who fix carbon via carbon diffusion as carbon 

became limited, like what is observed in several modern sabkha systems (Figure 5.2; Chapter 

5). The decrease of primary productivity relative to heterotrophs is also suggested to be 

expressed (i) in the depleted phytol values relative to n-alkanes (Figure 6.4; Chapter 5) and 

(ii) the preservation of BNG over gammacerane (Figure 3.7; Chapter 3). Above 165 m the 

AM displays more reducing conditions, potentially due to an influx of open marine waters 

which would have also brought in nutrients (Dehler et al., 2005; Johnston et al., 2010). The 

reducing conditions increased organic preservation, resulting in generally increased TOC 

values (Figure 6.4), a change from green to black shales (Figure 6.4), the preservation of 

conventional polycyclic triterpane (hopanes and steranes) (Figure 6.18), a dramatic decrease 

in the δ13Calk-ker (Chapter 4) and lowering Pr/Ph values (> 4  < 2; Figure 6.4). Interestingly, 

parallel to our observation in changing redox conditions, Porter and Riedman (2016) 

observed the marine associated VSMs first in second half of the AM and further throughout 

the entire Walcott Member.,  

 The overlying LWM displays similar organic, elemental and lithological features as 

the top of the AM. The abundant presence of eukaryotic derived steranes in certain samples 
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(> 24.4 %; Figure 6.19), as well as most of redox proxies (Figure 6.11), suggest that the 

LWM had a partly to fully oxygenated water column. While the restricted Chuar basin 

deepened (Dehler et al., 2001), more reduced marine waters intruded into the basin. 

Interesting at 316.5 m a spike in the gammacerane index is observed (Figure 6.19) suggesting 

a stratified water column during deposition (Sinninghe Damsté et al., 1995). This occurred 

just before conditions became fully anoxic in the UWM as indicated by a previous iron 

speciation study (Johnston et al., 2010). This change in redox is also paralleled by our 

observation in the Pr/Ph ratio (Figure 6.11), redox-sensitive proxies (Figure 6.11), δ15N 

signatures (Figure 6.9), TOC values (Figure 6.4) and increase of organosulfur compounds 

(Figure 6.13). 

 

6.5  Conclusions 

The rocks preserved in the Chuar basin are among the best preserved pre-Sturtian 

sedimentary deposits. Rock-Eval pyrolysis indicates that the organic matter in the Chuar 

Group witnessed moderate to low thermal alteration, with maturity decreasing up section. 

Using organic geochemical, biological, elemental and lithological parameters, we observe a 

constant transgressive change throughout the Chuar Group. We postulate that the lowest 

member (CCM) was deposited under oxidizing restricted conditions which was succeeded by 

a playa-like environment between 78 and 180 m in the AM, followed by the deepening of the 

basin, sequentially allowing more reducing marine waters to intrude into the basin and 

lowering the Eh conditions during the deposition of the LWM before reaching anoxic 

conditions in the UWM (> 318 m). Parallel with the more reducing conditions, we observe a 

general increase in the abundance of preservation of organic matter as well as a shift in the 

hydrocarbon distribution.   

  The CCM generally preserves little OM and besides sample L.4, lacks the 

preservation of any conventional polycyclic triterpanes, but it does preserve eukaryotic 

derived microfossils. But interestingly, throughout the seemingly oxidized CCM an abundant 

cholane (C24) and homopregnane (C22), homologous series are observed. One scenario to 

explain the observation of these shorter side chained steranes involves the reduction of the 

side chain as an effect of oxidative microbial demethylation through a similar process as 

observed in modern Actinobacteria. Additionally, the shorter chained steranes are observed to 

have an alkyl group added on the A-ring. The observation of abundant concentrations of 

homopregnane and cholane carries the potential to investigate the eukaryotic community in 



L. M. van Maldegem (2017)                                   Chapter VI: Paleo-environmental reconstruction Chuar Group 

119 

 

oxidizing environments which are devoid of any regular polycyclic terpanes.   

  Lipid biomarker distribution from the overlying AM displays an initial dominance of 

25,28-bisnorgammacerane, a biomarker recently suggested to derive from tetrahymanol and 

be indicative of intense heterotrophic reworking. From halfway into the AM, when conditions 

became more reducing as indicated by the redox proxies, indigenous regular polycyclic 

terpanes are preserved. Similar to previous studies on the organic geochemistry of the Chuar 

Group, we observe steranes to be dominated by C27 cholestanes with smaller quantities of 26-

methyl-cholestanes being present. Relative abundance between steranes and hopanes indicate 

a significant shift in community from a mixed community during the deposition of the LWM, 

to a prokaryotic dominated one in the UWM. This trend is correlated by a decrease of δ15N, 

suggesting a more ecological abundant diazotrophic community in the UWM. Interesting 

observations are seen in the C19-nor-sterane ratio, which is a suggested indicator of 

stratification, yet here we see strong a relationship with the relative abundance of diahopanes. 

Further research needs to be conducted to understand the factors influencing the nor-

androstane ratio. Generally, the diahopanes in the Chuar Group provide some unusual 

observations as they do share a correlation with the overall percentage of steranes, but not 

with the relative fraction of diasterane over regular steranes. Potentially the disconnect 

derives from a mixing of organic matter during the deposition of the UWM, with the majority 

of steranes and diahopanes derived from nearshore conditions mixing in with in situ produced 

hopanes. In addition, the UWM also displays signs of severe organic matter degradation, seen 

by the decrease of n-alkane abundances, increase of UCM, enrichment of more stable 

bicyclic and tricyclic terpanes, and the observation of C27 secosteranes and BNT.   

  The preserved biosignatures in the Chuar Group provide a detailed insight on the lipid 

biomarker distribution prior to the Snowball Earth event, and displays that eukaryotic 

organisms already played a significant ecological role in near coastal oxidizing environments 

during the late Tonian.  
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Abstract 

The influence of complex eukaryotic life prior to Neoproterozoic Snowball Earth events 

(717–635 Ma) has indicated that these Precambrian ancestors to all eukaryotic life on 

the modern Earth already had a major environmental influence in distinct ecological 

niches. It is also reasonably well established that during the Ediacaran (635-541 Ma) 

eukaryotic life diversified significantly seen by the emergence of macrofossils. However, 

significantly less is known about how eukaryotes survived the Neoproterozoic global 

glaciation, as well as, how life recovered in the direct aftermath of these significant 

climatic events. Here we investigate the organic matter of the cap carbonate deposits of 

the Araras Group, Amazon Craton, Brazil (~635 Ma) to reconstruct the response of 

biology in the direct aftermath of the Snowball Earth events. The thermally well-

preserved organic matter displays some unusual signatures, including abundant 

concentrations of 25,28-bisnorgammacerane (BNG) and 25-nor hopanes as well as a 

novel sterane series with an extended side chain. Previous studies have suggested that 

the presence of BNG and 25-nor compounds in thermally well-preserved sediment is 

reflective of severe heterotrophy during deposition. Additionally, investigation into the 

redox conditions using inorganic geochemical parameters indicates a (partly) oxidized 

water column during deposition of the cap carbonates. Overall the organic matter 

preserved in the Araras Group reveals that heterotrophic organisms thrived during the 

Marinoan deglaciation.  

 

 

7.1  Introduction 

  The late Neoproterozoic is characterized by severe changes in geological, biological 

and environmental conditions. Most notable were the occurrence of the two global glaciation 

events during the Cryogenian (717–635 Ma) (Hoffman et al., 1998; Hoffman and Schrag, 

2002; Rooney et al., 2014), which have been suggested to have triggered significant changes 

in the global biogeochemical cycles setting the stage for life as we know it now to evolve 

(Xiao and Laflamme, 2008). Although it should be pointed out that already well before the 

first Neoproterozoic global glaciation, the Sturtian (~717–650 Ma; Rooney et al., 2014), 

eukaryotic diversification and radiation occurred (Knoll et al., 2006; Cohen and Macdonald, 

2015). Some authors—using lipid biomarkers and molecular clock studies—have even 

suggested metazoa, in the form of sponges, would have already emerged prior or during the 

Neoproterozoic glaciations events (Love et al., 2009; Sperling et al., 2010), although this still 

remains debated as the oldest confident sponge fossils have been only reported in 

Phanerozoic sediments (Antcliffe, 2015). The deglaciation the Marinoan glaciation (~635 

Ma) has been suggested as a trigger for the oxygenation of the deep ocean, causing a 
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significant nutrient influx resulting in a bloom of oxygenic phototrophs (Elie et al., 2007), 

although the general consensus is that the oxygenation occurred stepwise throughout the 

Ediacaran (Pogge von Strandmann et al., 2015; Sahoo et al., 2016). Also, the direct effect of 

the deglaciation on the environment remains unclear. It has been suggested that the large 

influx of glacial meltwater would have capped the saline marine waters causing a severe 

stratified water column, as well as the glacial meltwater,  would be transporting significant 

amounts of additional nutrients and alkalinity to the marine realm (Shields, 2005). The 

transition from the Cryogenian to Ediacaran is marked by a distinct globally observed 

lithological layer consisting out of meters (< 10 m) thick pink dolostone deposits overlying 

glacial diamictite (Hoffman, 2013). These so-called cap dolomites have been commonly 

observed to yield little to no indigenous organic matter (OM), yet they almost all preserve 

distinct lithological features in a consecutive order (i.e. cross-lamination, geoplumb 

stromatolites, giant wave ripples, and seafloor barite fans), which has been reported to be 

suggestive of a rising sea level during deposition (Hoffman, 2013). Inorganic geochemical 

analysis of these cap carbonate deposits display that the first few meters were deposited under 

oxidizing conditions after which conditions became gradually more reducing towards the top 

of the dolomite succession (Huang et al., 2009; Ader et al., 2014; Sansjofre et al., 2014), 

likely caused by rising sea levels allowing reduced marine water to intrude in the basin, or 

alternatively, reflecting a severe depletion of oxygen caused by microbial O2 consumption in 

the water column (Chapter 3). In current marine environments, the precipitation of dolomite 

is inhibited, even with the supersaturation of Mg2+ in the modern ocean. Over the last 

decades, it has been observed, in both laboratory and natural environments, that certain 

predominantly heterotrophic bacteria can overcome this barrier and nucleate dolomite 

minerals on their cell wall (Vasconcelos et al., 1995; Sánchez-Román et al., 2009; Roberts et 

al., 2013). Font et al. (2006) hypothesized a potential biogenic origin for the cap carbonates. 

Recently this hypothesis found support using the newly classified 25,28-bisnorgammacerane 

(BNG) hydrocarbon biomarker—an indicator for intense microbial reworking—which was 

found in elevated concentrations in the cap dolostones, suggesting intense heterotrophy 

during the dolomite precipitation (Chapter 3). This molecule was observed in the cap 

dolomite deposits of the Mirassol d’Oeste Formation, Araras Group, Brazil (Elie et al., 2007; 

Sousa Júnior et al., 2016; Chapter 3). The hydrocarbon fraction in the Araras Formation 

contains some unusual organic signatures besides the presence of BNG (Chapter 3), allowing 

a potential insight at the ecological composition in the direct aftermath of the Marinoan. For 

instance, Elie et al. (2007) observed a dominance of C27 steranes preserved in the cap 



L. M. van Maldegem (2017)                                       Chapter VII: Araras biomarker taphonomy 

123 

 

carbonate. Recently extended tricyclic terpanes (up to C39), cholestanes with an alkylation at 

position C-3 and 25-nor hopanes have been observed in the Araras cap carbonates, however, 

regular hopanes remain undetected (Sousa Júnior et al., 2016). These observations, combined 

with the detection of BNG, suggest that the preserved lipid signatures have potentially 

witnessed severe post-depositional alteration. We here investigate the OM preserved in the 

cap dolostones of the Mirassol d’Oeste and overlying calcite-rich Guia Formation to 

understand the response of life and especially investigate the role of heterotrophic organisms 

in the direct aftermath of the Snowball Earth. 

 

7.2  Geology of the Araras Group, Brazil 

 The Araras Group, Amazon Craton, Brazil is one of the premier sedimentary archives 

for post-Marinoan deposits (Figure 7.1; Nogueira et al., 2003; Elie et al., 2007; Sansjofre et 

al., 2011; Sansjofre et al., 2014). The Araras Group overlies the diamictite of the Cryogenian 

Puga Formation. The sedimentary sequence of the lowest Araras Group, the Mirrasol d’Oeste 

Formation, corresponds to similar carbonate successions observed in the direct aftermath of 

the Marinoan global glaciation (Hoffman et al., 2011; Paragraph 1.1.5). This was supported 

by direct Pb–Pb dating on the Mirrasol d’Oeste Formation reporting a depositional age of 627 

± 32 Ma (Babinski et al., 2006) as well as by 87Sr/86Sr values around 0.7078 (Nogueira et al., 

2003; Sansjofre et al., 2011). Investigation of the paleolatitude of the Araras Group indicated 

that the Araras platform was deposited at low paleolatitudes (22°S ±5°; Nogueira et al., 2003, 

Li et al., 2013).  

 The entire sedimentary sequence of the Araras Group is ~700 m thick and outcrops in 

several quarries throughout the Amazon Craton (Sansjofre et al., 2014). Contact between the 

Puga Formation and Mirassol d’Oeste Formation is only observed in the Terconi quarry 

(15°40'42.23"S, 58°4'32.67"W). The base is formed by the ~15 m thick cap carbonate 

sequence of the Mirassol d’Oeste Formation which, from the base until ~11 m, consists out of 

pinkish dolomitic carbonates. The pink dolomite sequence exhibits microbial laminate 

features succeeded by tube-like structures (Figure 7.2). The pink dolomite is overlain by a ~4 

m thick grey dolomite sequence indicated as a transition zone from oxic conditions to more 

reducing conditions (Sansjofre et al., 2011; Ader et al., 2014). The grey dolomite displays 

lithological features of megaripples and fan structures. Near the top pyrobitumen has been 

observed between the cracks of the carbonates (Elie et al., 2007; Sansjofre et al., 2011). The 

Mirassol d’Oeste formation is overlain by the Guia Formation, a fine-grained grey limestone 
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succession with occasional aragonite crystal fans (Sansjofre et al., 2011). The pyrobitumen 

observed in the cracks of the grey dolomite provided similar characteristic organic signatures 

compared to the organic matter extracted from the rock matric, indicating the bitumen is 

derived from the associated rocks (Sousa Júnior et al., 2016).  

 

 

Figure 7.1 | Geological map of the post-Marinoan Araras Group, Amazon Craton, Brazil. Samples 

collected from the Terconi quarry southeast of Mirrasol d’Oeste. Figure after Sansjofre et al., 2014 

 

 

7.3  Results 

 To generate an understanding of the lipid distribution in the aftermath of the 

Marinoan, 11 outcrop samples from the Terconi quarry, Araras Group, Amazon Craton, 

Brazil were analyzed. Prior to the sample work up all glassware, sand, silica gel, saw blades 

and aluminum foil were combusted between 350 and500°C for 8 h to remove any traces of 

anthropogenic carbon. In Chapter 2 a detailed description of all methods and instruments 

used is further presented. Molecular structures for the majority of the polycyclic terpanes 

referred to in this chapter can be found in Appendix A.  
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7.3.1  Bulk geochemical data 

  From the 11 samples investigated, the lowest 8 samples were collected from the 

dolomite-rich Mirassol d’Oeste Formation (< 15.5 m; Figure 7.2), whereas the remaining 3 

samples were collected from the calcite deposits of the overlying Guia Formation (> 15.5 m, 

Figure 7.2). Bulk δ13C values for the samples ranges between -29.15 and -27.96 ‰ and total 

organic carbon (TOC) for the lowest four samples is < 0.006 %, while the 7 overlying 

samples ranges between 0.036–0.390 % (Figure 7.2; Table 7.1).  

 

 

Figure 7.2 | Overview of bulk geochemical parameters throughout the Araras Group. Total organic carbon 

(TOC) is insignificant near the bottom and increases up section, organic carbon isotopes (δ13CORG) show little 

variation; pristane (Pr) / phytane (Ph) values decrease up section; the preserved amount of n-alkanes (μg/g rock) 

displays a general increase (note the log scale); CaCO3 displays the percentage carbonate for each analyzed 

sample. 

 

7.3.2  Alkanes and isoprenoids 

In the lowest four analyzed samples (Te.S 2, 6, 10 and 17) no indigenous alkyl lipids are 

detected (Figure 7.3). Sample Te.S 19 and 20 yield some alkyl hydrocarbons ranging between 

nC15– nC25. The overlying samples (Te.S 22, 27, 30, 33, 47) preserve alkyl lipids in a range 

between nC11 to nC36, with a dominance between nC14 and nC20 (Figure 7.3). Phytyl lipids 

(i.e. pristane and phytane) are observed from Te.S 19 onwards. The relative ratio between 
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pristane and phytane (Pr/Ph), a common redox indicator (Didyk, 1978) displays values 

between 0.84 and 1.05 (Table 7.1). To assess primary productivity versus heterotrophy the 

alkyl and phytyl lipids are compared using the (Pr+Ph)/(nC17+nC18) ratio. Te.S 19 and 20 

provided significantly lower values of 0.32 and 0.21 whereas the overlying samples register 

values between 0.58–0.87 (Table 7.1).     

 

 

Figure 7.3 | GC-TOF-MS total ion chromatograms (TIC) of the saturated hydrocarbon fraction (m/z 50-

550) throughout the Terconi quarry, Araras Group, Brazil. Te.S 10 is representative of lower Mirassol 

d’Oeste Formation with no preservation of indigenous hydrocarbons. Te.S 20 displays the first indigenous 

hydrocarbon molecules with 25,28-BNG being the most prominent compound. In Te.S 22 more alkyl and phytyl 

lipids are preserved as well as relatively more steranes compared to the unusual 25,28-BNG. Chromatograms of 

Te.S 30 and Te.S 47 of the Guia Formation display significantly more alkyl and phytyl lipids relative to the 

triterpanes.  

 

7.3.3  Steranes 

  The majority of steranes preserved in the Araras Group are cholestane molecules 

(C27H48; Figure 7.4). The m/z 358217 trace reveals the presence of 21-nor- and 27-nor-

cholestanes (C26H46) with 21-nor-cholestane being the most abundant norsterane. The 

relative relationship of C26 versus C27 steranes (C26/C26+C27) provides values between 0.09 
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and 0.23. Comparing regular steranes with diasteranes (C27 (dia/(dia+reg)) shows a 

significant difference between the samples from the dolomite-rich Mirassol d’Oeste 

Formation (0.20–0.32) and calcite dominated Guia Formation (0.56–0.75). The relative ratio 

between αααR- and αααS-cholestane (C27 ααα S/(S+R)) ranges between 0.40–0.56 and has 

been proposed to reflect preservation with increased αααS being observed in more mature 

sediments (Summons et al., 1988). The nor-androstane ratio (C19C/A+B) (Kelly, 2009) 

ranges between 0.50–0.89. Additionally, the Mirassol d’Oeste Formation is reported to yield 

3β-alkyl cholestane molecules (Sousa Júnior et al., 2016). Here we also observe an unusual 

series of steranes with four isomers on the C27 to C34 sterane traces, which do not correspond 

with the conventional steranes.   

 

 

Figure 7.4 | Molecular structures of common triterpanes referred to in this study. Numbers indicate carbon 

position referred to in this chapter. Letters indicate; (a.) Cholestane; (b.) C30 hopane; (c.) gammacerane; and (d.) 

C26 tricyclic terpane. Additional structures can be found in Appendix A. 

 

7.3.4  Hopanes and gammacerane 

  The OM of the Araras Group exposed in the Terconi quarry yields relatively low 

hopane abundances (< 10 %) compared to all triterpanes (Table 7.1). Regular 17α,21β-

hopanes (C29–C35) are absent or below detection limit in all samples, yet 17α-diahopanes are 

observed up to C35 (Figure 7.5). Additionally, abundant nor-, bisnor-, and trisnor-hopanes are 

observed. Alongside BNG, the most abundant polycyclic hydrocarbons preserved in the 

Terconi section are tetranorgammacerane(m/z 366  177) and 25-nor-des-E-gammacerane 

(m/z 316  177) (Table 7.1). We observe an abundant series of 25-norhopanes (m/z 177) 

ranging between C26–C33 (Figure 7.6). The ratio between 18α-22,29,30-trisnorneohopane 

(Ts) and 17α-22,29,30-trisnorhopane (Tm) has been demonstrated to reflect thermal maturity, 

with Ts being more resistant to degradation. All samples yielding hydrocarbons display 

Ts/(Ts+Tm) values above 0.87 (Table 7.1). Similar to 17α,21β-hopanes, gammacerane—

another common pentacyclic molecule often preserved in sedimentary deposits—was not 

detected. However, the demethylated forms norgammacerane and bisnorgammacerane 
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(BNG) are detected (Figure 7.5). With 25,28-BNG being the most abundant compound 

preserved in the samples Te.S 19 and 20 (Table 7.1; Appendix F.1). 

7.3.5  Tricyclic terpanes 

  Regular tricyclic terpanes (C19–C26) are observed in all samples that yield 

hydrocarbons. In most of the samples, the most dominant tricyclic terpane is C23 with only 

sample Te.S 27 showing a dominance of C20 (Table 7.1; Appendix F.1). The general 

abundance of tricyclic terpanes relative to all common triterpanes varies significantly in the 

OM preserved in the Terconi quarry. With a relatively low concentration of tricyclics in the 

Mirassol d’Oeste Formation (1.6–22.6 %) and more abundant terpanes in the overlying Guia 

Formation (29.5–44.5 %) (Table 7.1). 

7.3.6  Aromatic hydrocarbons 

  The dibenzothiophene–phenanthrene ratio (DBT/Phen) displays values between 0.31 

and 1.02. Additional the MPI-1, an organic maturity parameters based on the relative 

relationship of methylphenanthrene (Radke et al., 1986), recorded a wide range of values 

(0.40–1.72). The most abundant aromatic compounds observed in the Araras group were 

phenanthrene, benzo[a]anthracene, benzo[e]pyrene, methylated chrysene, and 4-methyl-DBT. 

There were no triaromatic steranes observed. (Appendix F.3). Relatively low abundances (< 

10 ng/g rock) of 2,3,6-aryl-isoprenoids ranging between C14–C17 are observed (Appendix 

F.2). 
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Sample Te.S 19 Te.S 20 Te.S 22 Te.S 27 Te.S 30 Te.S 33 Te.S 47 

Formation Md’O Md’O Md’O Md’O Guia Guia Guia 

Height (in m) 11.2 11.7 12.7 15.2 16.4 17.7 31.2 

Lithology Dolomite Dolomite Dolomite Dolomite Calcite Calcite Calcite 

% Carbonate 93.19 96.95 95.23 82.19 71.39 90.63 85.65 

TOC (%)A 0.390 0.034 0.320 0.217 0.269 0.128 0.217 

δ13Corg -28.02 -29.15 -28.58 -28.03 -27.96 -28.03 -28.21 

Dominant Alkanes C16-C17 C16-C17 C16-C20 C16-C19 C15-C20 C14-C20 C13-C18 

∑Alkanes (ng /  

g rock) 
0.11 0.53 150.80 22.59 30.88 14.01 42.21 

Alkanes (in:out) B 5:95 13:87 69:31 51:49 62:38 53:47 65:35 

Pr/Ph C 0.96 0.95 0.97 1.05 0.89 0.84 0.87 

(Pr+Ph)/(C17C18) 0.32 0.21 0.87 0.63 0.65 0.76 0.58 

C19 C/(A+B) D 0.50 0.63 0.50 0.50 0.75 0.60 0.89 

C27 D/(D+Reg) E No data 0.32 0.23 0.20 0.56 0.63 0.75 

C27 S/(S+R) F 0.40 0.45 0.56 0.56 0.55 0.55 0.55 

C27 ββ/(αα+ ββ) G 0.42 0.33 0.6 0.57 0.58 0.62 0.59 

C26/(C26+C27) H No data 0.09 0.19 0.23 0.15 0.16 0.12 

BNG/C27+BNG I 0.966 0.993 0.997 0.837 0.589 0.491 0.478 

BNG (in:out) J 55:45 47:53 66:34 57:43 64:36 52:48 64:36 

Ts/(Ts+Tm) K 1.00 1.00 0.87 1.00 1.00 1.00 1.00 

(C20+C21)/(C23C24)L 1.04 1.03 1.19 1.33 0.76 0.78 0.73 

% BNG M 81.6 85.4 27.1 28.0 11.9 11.6 12.0 

% Steranes N 4.2 1.1 27.6 29.8 32.2 48.8 46.0 

% Hopanes O 9.9 3.9 7.5 6.7 6.5 3.4 5.2 

% Tricyclics P 1.6 4.4 22.6 18.1 44.9 29.5 32.5 

356 % Q 1.5 2.0 7.8 11.0 2.7 4.8 2.2 

316 % R 0.9 2.8 6.9 6.1 1.2 1.6 1.9 

DBT/phen S 0.62 0.27 1.02 0.31 0.16 0.56 0.19 

MPI-1 T No data 0.45 1.35 0.63 1.20 1.72 1.31 

Raw data is presented in Appendix F. 

(A.) Total organic carbon;    (B.) ∑interior n-alkanes versus ∑n-alkanes on the exterior;   (C.) Pristane / Phytane;   

(D.) C19C/ (C19A + C19B) nor androstane;   (E.) Diasteranes (C27 βα-20(S+R)-diacholestanes) / (diasteranes + 

(C27 ααα- and αββ-20(S+R)-cholestanes);   (F.) C27 ααα S/(S+R) cholestane;   (G.) C27 αββ (S+R)/ αββ(S+R) + 

ααα(S+R);  (H.) ∑C26 21-norcholestane, C26 27-norcholestanes / (∑C26 21-norcholestane, C26 27-norcholestanes 

+ ∑ C27 βα-20(S+R)-diacholestanes, ααα- and ββ-20(S+R)-cholestanes);   (I.) BNG / (BNG + ∑C27 βα-

20(S+R)-diacholestanes, ααα- and ββ-20(S+R)-cholestanes);   (J.) ∑interior BNG versus ∑exterior BNG;   (K.) 

18α-22,29,30-trisnorneohopane / (18α-22,29,30-trisnorneohopane + 17α-22,29,30-trisnorhopane); (L.) 

Tricyclic terpanes (C20+C21)/ (C23+C24);   (M.) % 25-28-bisnorgammacerane relative to (†);   (N.) % Steranes 

relative to (†) (Steranes =∑C27 βα-20(S+R)-diacholestanes, ααα- and αββ-20 (S+R) cholestanes, C26 21-

norcholestane, C26 27-norcholestanes);   (O.) % Hopanes relative to (†) (Hopanes = ∑Ts, Tm, Tris, 25,30-BNH, 

25-NH);   (P.) % Tricyclic terpanes (∑C19–C26) relative to †;   (Q.) % Tetranorgammacerane relative to †;   (R.) 

% 25-nor-des-E-hopane relative to †;   (S.) Dibenzothiophene / phenanthrene; (T.) 1.5 *(2-mPhen+3-mPhen) / 

(Phen + 1-mPhen + 9-mPhen).  

(†)= ∑( BNGM + steranesN + hopanesO + tricylicsP + TNG + 25NDEG + C24 tetracyclic terpane + pregnane + 

norandrostanes (C19A, C19B and C19C))  
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Figure 7.5 | MRM-GC-MS/MS chromatograms of hopane traces (m/z 191) in sample Te.S 22 overlying a 

reference standard (NSO oil). The specific mass transition is given on the left-hand side, with the relative 

abundance on the right-hand side of each chromatogram. No regular (17α,21β-) hopanes are observed in the 

Mirassol d’Oeste Formation, but 17α-diahopanes are detected up to C35. Both norgammacerane and 

bisnorgammacerane are observed yet no regular gammacerane. The BNG peak in the m/z 384  191 traces are 

a crossover from the strong m/z 384  177 trace (1.57 E7, Figure 7.6). 
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Figure 7.6 | MRM-GC-MS/MS chromatograms of 25-norhopanes (m/z 177) in the Mirassol d’Oeste 

Formation. The specific mass transition is given on the left-hand side, with the relative abundance on the right-

hand side of each chromatogram. The most abundant triterpane in Mirassol d’Oeste samples is 25,28-BNG (m/z 

384  177). Although no regular (17α-21β) hopanes are observed (Figure 7.5) an extended series of 25-

norhopanes is witnessed throughout the samples collected from the Terconi quarry. Including the observation of 

elevated concentrations of 25-nor-des-E-gammacerane (m/z 316  177) and 25,28,29,30 tetranorgammacerane 

(m/z 356  177). The mass trace (m/z > 398) display multiple peaks in the chromatograms, suggesting the 

preservation of 17α,21β-norhopanes as well as the thermally less stable 17β,21β-, and 17β,21α- norhopanes in 

the Araras OM for each transition (Paragraph 7.4.4). 
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7.4  Discussion 

7.4.1 Syngeneity of Araras hydrocarbons 

  For each sample, the organic matter preserved within the interior was compared to the 

exterior in order to assess any overprint by anthropogenic hydrocarbons (i.e. plastics, drilling 

fluids) (Brocks et al., 2008; French et al., 2015; Leider et al., 2016). BAQCs were analyzed 

as the samples were stored in plastic bags after collection. The lowest samples from the 

Mirassol d’Oeste Formation (Te.S 2, 6, 10 and 17) yield alkyl and phytyl lipids as well as 

3,3- and 5,5-BAQCs in the exterior (Brocks et al., 2008). Whereas the interior yields trace 

concentrations of alkyl lipids (< 0.2 ng/g rock), similar to the abundance observed in the 

procedural blanks suggesting little to no indigenous organic matter is preserved in these 

samples (Figure 7.7). The overlying two samples (Te.S 19 and 20) yield more n-alkanes and 

phytyl lipids in the exterior compared to the interior. While the interior contained 

significantly less n-alkanes, isoprenoids and a lower unresolved complex matrix (UCM), the 

relative ratio of “BNG inside to BNG outside” remained the same as the interior indicating 

the preserved triterpanes to be indigenous (Figures 7.7, 7.8). In the overlying five samples 

(Te.S 22, 27, 30, 33 and 47) no significant differences were observed between the abundance 

of lipids in the inside and outside of the samples, which is paralleled by the overall increase 

of lipid preservation (Figure 7.7). This suggests that any potential hydrocarbon contamination 

likely had little influence on the overall lipid inventory of those samples. However, for this 

further study, we have only used the hydrocarbon fraction from the interior of the samples 

which yielded indigenous hydrocarbons.  

 
Figure 7.7 | Total ion GC-MS chromatograms (TIC, m/z 50–550) comparing the procedural blank, 

interior and exterior of two selected samples from the Mirassol d’Oeste Formation. Sample Te.S 20 (11.7 

m) has relatively low organic matter and displays overprint by BAQCs (grey triangles) only on the outside, 

sample Te.S 22 (12.7 m) is relatively rich and does not display external contamination. 
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Figure 7.8 | Hydrocarbon distribution between the interior and exterior of samples from the Terconi 

quarry. Dark blue color indicates hydrocarbons preserved in the interior, light blue the exterior. Sample Te.S 19 

and 20 yield significantly more (a.) alkyl and (b.) phytyl lipids in the exterior compared to the interior. (c.)Yet 

the abundances of BNG in the interior and exterior do not significantly differ suggesting it is indigenous to the 

host rock. The overlying samples all preserve similar ratio of BNG, alkyl and phytyl lipids in the interior and 

exterior.  

 

7.4.2  Thermal maturity of the Araras organic matter 

  The OM in the Araras group has been described as immature to slightly mature, with 

Rock-Eval TMAX values ~425°C (n: 18) (Ro%: < 0.5) (Sansjofre et al., 2014; Sousa Júnior et 

al., 2016). Several organic geochemical parameters have also been suggested to reflect 

thermal maturity. For instance, the hopane ratios of C31 22S/(22S+22R) and Ts/(Ts+Tm) 

have been observed to reach thermal equilibrium (respectively at values ~0.6 and ~1.0) when 

OM matter is indicated to have witnessed moderately to severe thermal stress (Seifert and 

Moldowan, 1986). Unfortunately, due to the absence of C31 αβ–hopanes (see further 

Paragraph 7.4.4), this parameter fails to provide any meaningful information, while the values 

for the Ts/(Ts+Tm) ratio (~1.0) imply the preserved OM has seen elevated thermal stress. 

However, several studies have noted that this parameter could also be influenced by other 

factors such as lithology, salinity, redox and biodegradation (Moldowan et al., 1986; 

Rullkötter and Marzi, 1988; Peters et al., 2005).  

  Several sterane based maturity parameters have also been proposed to indicate 

increased thermal alteration. The C27 ββ/(αα+ββ) ratio was suggested to reach thermal 

equilibrium ~0.7 (Seifert and Moldowan, 1986), whereas the values for the C27 ααα S/(S+R) 

ratio reaches its maximum at ~0.55 (Summons et al., 1988). The biomarker-based maturity 

parameters display a similar pattern suggesting more immature OM in the lowest 2 samples, 

while the overlying samples showing little variety (Figure 7.9). The C27 S/(S+R) ratio has 

reached its thermal equilibrium indicating a mature OM, but the C27 ββ/(αα+ββ) has not 
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reached its thermal maximum yet with values at 0.62 (Figure 7.9). Although the ββ/(αα+ββ) 

ratio can also be influenced by hypersaline environments (de Leeuw and Sinninghe Damsté, 

1990).  

  The methylphenanthrene ratio (MPI-1) is another suggested maturity parameter. 

Radke et al. (1982) suggested that for samples in the immature to mature oil window, values 

of 0.4 reflect immature OM whereas values of above 1.5 imply overmature OM. The Araras 

samples display some significant variability between 0.45–1.72 (Figure 7.9) and is likely 

affected by other factors (Cassani et al., 1988).   

  Oddly enough, most of the thermal maturity indicators imply that the OM in the 

Araras Group is mature to overmature, yet the observation of long-chained indigenous n-

alkanes (Figure 7.3) and TMAX values of ~425, suggests that the OM has witnessed moderate 

thermal stress this might imply that the biomarker maturity parameters are altered by 

additional factors (i.e. redox, salinity, lithology, biodegradation, and community (Moldowan 

et al., 1986; Rullkötter and Marzi, 1988; Peters et al., 2005)).  

 

 

Figure 7.9 | Organic maturity and redox parameters throughout the Terconi quarry, Araras Group. the 

sterane based C27 ααα S/(S+R) displays values between 0.40–0.56 indicating the most elevated samples have 

reached thermal equilibrium (~0.55); the C27 ββ/(αα+ ββ) ratio is indicated to reach thermal maturity at ~0.70, 

yet the Araras samples are still observed to be underneath these values; the methylphenanthrene maturity 

parameter (MPI-1) (Radke et al., 1986) ranges between 0.45–1.72; Ts/(Ts+Tm) displays values > 0.84, 

dibenzothiophene (DBT) divided by phenanthrene displays low to moderate values (≥ 1) for all samples, C27 
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dia/(dia+reg) shows low values for dolomite associated samples and elevated values in the overlying calcite 

dominated Guia Formation. 

7.4.3  Organic matter preservation in relationship to redox conditions 

  In a study by Sansjofre et al. (2014), the Araras redox conditions were reconstructed 

using inorganic geochemical proxies. They observed a limited preservation of redox-sensitive 

trace elements (U, Pb, Mo, Zn) in the lower Mirassol d’Oeste Formation and hypothesized 

that this is due to oxidizing conditions during deposition. This observation is paralleled with 

the limited preservation of total organic carbon (TOC) in these sedimentary rocks (≤ 0.005 

%; Figure 7.2). Although no OM is preserved, this does not imply there was none deposited, 

as oxic respiration causes the overall majority of organic carbon under oxic conditions to be 

respired as CO2 rather than to be preserved. It has been hypothesized that during the 

deglaciation of Snowball Earth an elevated community of heterotrophs were active (Chapter 

3), presumably depleting the available OM in the depositional basin through respiration. As 

expected, in this bottom zone, no indigenous hydrocarbons were detected.    

 The upper Md’O Fm. is suggested to have witnessed more reducing conditions, as 

indicated by the sudden enrichment in Pb (Sansjofre et al., 2014) which is paralleled by 

elevated δ15N values (> 10 ‰), which are interpreted to indicate an increased contribution by 

nitrate reducers (Figure 7.10; Ader et al., 2014). This sudden precipitation of Pb is succeeded 

by an increase of FeS2 (%) as well as uranium (U) concentrations (Figure 7.10). The increase 

of FeS2 is estimated to be caused through the dissimilatory reduction of iron by sulfate-

reducing bacteria (Figure 7.10; Sansjofre et al., 2014), whereas the elevation in U is 

interpreted to be caused by generally lower Eh conditions as U(VI) gets reduced to the 

insoluble U(IV) under reducing conditions (Tribovillard et al., 2006). In this section more 

OM is preserved (TOC values of ~0.240 %), and it also yields the first indigenous extractable 

hydrocarbons (Elie et al., 2007; Sousa Júnior et al., 2016; Chapter 3). The redox-sensitive 

parameter vanadium (V) over nickel (Ni) is often used to investigate Eh conditions of a 

depositional basin. Under reducing conditions, V is reduced from V(V) to the insoluble 

V(IV). Values < 0.60 have been reported to be indicative of oxic conditions whereas values 

between 0.60–0.84 are suggested to reflect anoxic depositional conditions (Hatch and 

Leventhal, 1992). Sedimentary rocks from the Terconi Quarry—all but one—display values 

below 0.60 (n: 34; Figure 7.10; Appendix F.3), suggesting the presence of free molecular 

oxygen in the water column during deposition. Generally, a trend is observed with values of 

~0.30 in the lower Md’O Fm. and ~0.50 in the upper Md’O and overlying Guia Formation. 

The paleo-environmental reconstruction indicates that the Guia Fm. was deposited in a more 
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marine-like environment with an oxygenated water column.   

  The organic geochemical parameter pristane (Pr) over phytane (Ph) is anticipated to 

be reflecting redox conditions during deposition. Both pristane and phytane are derived from 

the phytol chain of a chlorophyll molecule. Under oxidizing conditions, this side chain gets 

converted to phytenic acid, which after diagenesis is preserved as pristane, while under 

reducing conditions, diagenesis alters phytol to phytane (Didyk, 1978). The relative 

relationship between Pr/Ph has been proposed to reflect reducing marine conditions < 1 and 

oxidizing terrestrial conditions > 3 (Peters et al., 2005). Pr/Ph values throughout the Terconi 

quarry, Araras Group, ranges between 0.96–1.05 in the Md’O Fm. and 0.84–0.89 in the Guia 

Fm. implying that all samples were likely deposited under marine conditions, with the 

samples of the Guia Fm. witnessing slightly lower Eh conditions (Figure 7.2). 

 

Figure 7.10 | Redox indicators throughout the Araras Group. The redox parameters reported by Sansjofre et 

al. (2014) and Ader et al. (2014). FeS2 (%) shows an enrichment throughout the upper Md’O Fm. and lower 

Guia fm., Uranium (U) (in ppm) displays increased concentrations from the onset of the Guia Fm., vanadium 

against nickel (V/(V+Ni)) displays generally values < 0.6 (black bar), suggestive of an oxidizing depositional 

basin (Hatch and Leventhal, 1992), authigenic lead (PbAUT) shows a severe enrichment in samples between the 

pink and grey dolomite, this spike is paralleled with a severe increase in δ15N values. 

 

  Another proposed redox indicator is the dibenzothiophene (DBT) against 

phenanthrene (Phen) ratio. Both aromatic hydrocarbons have been suggested to derive 

through both catagenesis and diagenesis of OM (Hughes et al., 1995). The formation of 
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organosulfur compounds is suggested to be generated by an organic substrate reacting with 

reduced sulfur species such as hydrogen sulfide. As generally the marine realm yields more 

reduced sulfur species, it is hypothesized organosulfur compounds would be relatively 

enriched compared to the unambiguous phenanthrene. However, the DBT/Phen ratio can be 

affected by moderate biodegradation or water washing (Peters et al., 2005). The samples from 

the Araras Group show a weak trend, with decreasing values upwards with generally 

relatively low values ranging between 0.16 and 1.02 (Figure 7.9). 

 

7.4.4  25-nor hopanes 

The preserved OM in the Terconi quarry displays some of the most unique lipid 

distributions in early Earth’s rock record and allows speculation about the thriving biological 

communities in the aftermath of the Snowball Earth events. The OM preserved in the Md’O 

Fm. and Guia Fm. is characterized by the presence of bisnorgammacerane (BNG) which is 

especially abundant (> 80 % of all triterpanes) in the upper section of the Mirassol d’Oeste 

Formation (Figure 7.3, 7.11). As outlined in great detail in Chapter 3, BNG likely derives 

from the same source as gammacerane.  

  Gammacerane is the molecular remnant of the membrane lipid tetrahymanol, and 

elevated concentrations have been associated with a depositional basin witnessing 

stratification (Sinninghe Damsté et al., 1995) and/or hypersaline conditions (Chen and 

Summons, 2001). The relationship between gammacerane and BNG suggests that the latter 

derives from the same biological source, most likely ciliates living under the chemocline 

(Ourisson et al., 1987).   

  The stratification in the Araras Basin has been indicated by the observation of 2,3,6-

trimethyl aryl isoprenoids (Elie et al., 2007), which have been suggested to derive from green 

sulfur bacteria (GSB) commonly found in the anoxic photic zone (Brocks et al., 2005). In our 

analysis we did observe 2,3,6-aryl isoprenoids, however only in low quantities (< 10 ng/g 

rock; Table 7.1; Appendix F.2) as well as only in the short-chained configurations, ranging 

between C14 and C17. Friedrich et al. (2014) indicated that the preferential removal of long 

chained over short chained aryl isoprenoids is suggestive of oxic degradation. Ocean 

stratification in the direct aftermath of the Marinoan glaciation is hypothesized to have been 

widespread. The severe influx of glacial freshwater into the elevated saline oceans likely 

caused a strong stratification, with models suggesting over 50 Kyr before both water bodies 

would be mixed (Shields, 2005).   
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Figure 7.11 | Community indicators throughout the Araras Group. The relative percentage of BNG (versus 

all triterpanes) displays a strong decrease throughout the top of the Md’O Fm.; steranes (% relative to all 

quantified triterpanes) show a significant increase; Hopanes display no systematic trend throughout the sample 

set, yet it should be noted no regular hopanes were observed only diahopanes or demethylated hopanes (i.e. Ts, 

Tm, bisnorhopane) are observed (see further Paragraph 7.4.4); tricyclic terpanes become significantly more 

common in the higher samples; the isoprenoids (Pr+Ph) versus alkyl lipid (nC17+nC18) ratio shows an increase 

of alkyl over isoprenoids between samples from the lower Md’O Fm. compared to the overlying samples; the 

nor-androstane ratio (C19C/A+B) (Kelly, 2009) displays the highest values in the most elevated sample; and the 

tricyclic ratio (C20+C21)/(C23+C24) (Shi et al., 1988) shows an increase throughout the Md’O Fm. after which a 

drop is recorded to values < 1.  

 

  The preferential preservation of BNG over the more common gammacerane is 

suggested to reflect intense heterotrophic recycling during deposition, where via microbial 

demethylation the carbons at position 25 and 28 of a tetrahymanol molecule are removed to 

form bisnortetrahymanol, which eventually would be preserved as BNG (Figure 7.12; 

Chapter 3). The molecular structure of BNG has been indicated to be relatively resistant to 

further degradation, making it a good indicator to investigate heterotrophic reworking 

(Chapter 3). Another organic parameter used to investigate heterotrophy is by the comparison 

the relative abundance of phytyl (Pr+Ph) and alkyl lipids (nC17+nC18) (Chapter 5). Phytyl 

lipids mainly derive from the chlorophyll side chains of phototrophic primary producers, 

whereas alkyl lipids derive from fatty acids and are biosynthesized by both primary producers 

and heterotrophs. With increased trophic cycling the OM will contain elevated 

heterotrophically derived alkyl lipids relative to phytyl lipids. We observe here a significant 

correlation between BNG (relative to all quantified triterpanes) and the (Pr+Ph)/(nC17+nC18) 

ratio (Figure 7.13; R2: 0.73, n: 7).   
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Figure 7.12 | Suggested pathway to form bisnorgammacerane from tetrahymanol. 

 

  Besides BNG, an abundant series of tentatively identified 25-nor-hopanes (m/z 177; 

C23, C27-C33; Figure 7.6) are observed in the Araras OM. The observation of these triterpanes 

with a demethylation at C-10 (see Figure 7.4 for carbon numbering) have been generally 

observed in biodegraded oils (Noble et al., 1985; Peters et al., 2005; Bennett et al., 2006) as 

the C-10 site is the preferred methyl group for microbial degradation (Rullkötter and 

Wendisch, 1982). However, one study reported elevated 25-nor compounds in oils which 

seemingly did not shows sign of severe biodegradation (Bao, 1997), although a potential 

mixing scenario between a biodegraded and a non-biodegraded oil cannot be excluded 

(Volkman et al., 1983). The OM in the Araras deposits—which have been demonstrated to be 

indigenous (Sousa Júnior et al., 2016)—does not display the common characteristics of 

biodegraded oils (i.e. loss of alkyl lipids, increased UCM), yet the hydrocarbon fraction does 

contain 25-nor compounds. Blanc and Connan (1992) observed a statically significant 

relation between 25-nor-triterpanes and depositional environments with limited oxygen 

availability, potentially suggesting that the demethylation of C-10 occurred in-situ on the 

functionalized lipids (bacteriohopanoids and tetrahymanol) rather than after diagenesis.  

 

 

Figure 7.13 | Cross plot between BNG (%) and (Pr + Ph) / (nC1 7 + nC18). Purple circles indicate Mirassol 

d’Oeste formation, green triangles represent Guia Formation. 
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  Interestingly, up to 6 peaks are observed in the 25-norhopanes mass transitions 

(Figure 7.6). In most oils and source rocks hopanes above C31 preserve in 2 configurations 

(22S- and 22R-17α,21β-hopanes; see Figure 7.4 for carbon numbering) as these are the most 

thermally stable (Nytoft and Bojesen-Koefoed, 2001). However, the initial configuration of 

hopanes are predominantly 17β,21β-hopanes which can be converted to both 17α,21β- and 

17β,21α-hopanes (Killops and Killops, 2005). The additional peaks in the hopane mass traces 

of Figure 7.6 might reflect immature organic material by the preservation of 17β,21β-, 

17α,21β- and 17β,21α-(25-nor)hopane configuration, yet without verification, via either 

standards or NMR the exact structure remains speculative.  

  This scenario suggests that the OM was severely reworked by a heterotrophic 

microbial community. The preservation of abundant concentrations of BNG under these 

conditions seems to be due to its molecular structure providing a greater resistance for further 

degradation, whereas the poor preservation of hopanes might be due to continuous post-

depositional microbial reworking. Although alternatively, bacteriohopanoids could have 

already been removed, before sedimentation, by the bacterivorous ciliate community (Harvey 

and Mcmanus, 1991). However, the high resistance of BNG makes it a valuable indicator for 

intense heterotrophic conditions (Chapter 3).   

 

 

Figure 7.14 | Cross plot between bisnorgammacerane (BNG), tetranorgammacerane (TNG) and 25-nor-

des-E-hopane (25NDEG). Purple circles indicate Mirassol d’Oeste formation, green triangles represent Guia 

Formation. (a.) BNG (%) against TNG (%) (R2: 0.13, n: 7); (b.) BNG (%) versus 25NDEG (%) (R2: 0.02, n: 7); 

(c.) 25NDEG (%) compared with TNG (%) (R2: 0.74, n: 7). 

 

  Beside the preservation of BNG, significant amounts of 25,28,29,30-

tetranorgammacerane (TNG; m/z 356177) and 25-nor-des-E-gammacerane (25NDEG; m/z 

316177) are detected (see mass spectra in Figure 3.6; Chapter 3). However, the relative 
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abundance of both TNG and 25NDEG does not correlate with BNG, yet TNG and 25NDEG 

do share a significant linear correlation (Figure 7.14; R2: 0.74, n: 7). One explanation for 

these responses might be that they reflect different levels of heterotrophic reworking, with 

BNG being more resistant to microbial degradation compared to further demethylated TNG 

and 25NDEG. 

7.4.5  Unusual hopane distribution 

  Aside from a series of 25-nor-hopanes, a series of 17α-diahopanes are also observed 

up to C35 yet no 17α,21β-hopanes are detected in the sample set (Figure 7.5). Diahopanes have 

initially been associated with regular bacteriohopanoids which witnessed clay mediated 

acidic catalysis under oxidizing conditions (Moldowan et al., 1991; Peters et al., 2005). 

Zhang et al. (2007) proposed an alternative scenario, they observed abundant C30 17α-

diahopanes in source rocks which—using petrographic and molecular observations—were 

shown to preserve specific eukaryotic algae allowing them to hypothesize certain eukarya 

might biosynthesize diahopanes, although direct evidence for this idea has not been provided. 

Additionally, diahopanes have been indicated to be more stable with increasing thermal 

maturity relative to regular hopanes (Kolaczkowska et al., 1990; van Duin et al., 1997). The 

diahopane/hopane ratio is therefore suggested to potentially reflect thermal stress (Moldowan 

et al., 1991; Peters et al., 2005)   

  However, a recent studies did not observe a relationship diahopanes and thermal 

maturity or clay catalysis (Liu et al., 2014; Chapter 5). Liu et al., (2014) did observe a 

significant correlation between the increased concentrations of extended tricyclic terpane 

(C28, C29) and diahopanes suggesting they might derive from specific environments. 

Extended tricyclic terpanes have been hypothesized to be biosynthesized by prokaryotes 

living in moderately saline, anoxic, alkaline lakes (Kruge et al., 1990) and in a stratified 

water column (Liu et al., 2014). Interestingly, the OM of the Mirassol d’Oeste and Guia 

Formation was reported to preserve extended tricyclics up to C39 (Sousa Júnior et al., 2016). 

Together with the likely stratified conditions during deposition, as indicated by the presence 

of aryl isoprenoids and elevated abundance of tetrahymanol derived compounds, a potential 

specific biological origin for the diahopanes in the Araras group cannot be excluded. 

However as pointed out earlier, the Araras OM show signs of severe heterotrophic alteration, 

it is therefore also a possibility that the preservation of only diahopanes is due to the fact that 

they are more resistant to microbial degradation (similar as 25-nor hopanes). 
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7.4.6  Tricyclic terpanes 

Whereas BNG is especially abundant in the lower samples, the overlying samples 

preserve relatively more steranes and tricyclic terpanes. Between 30–50 % of all quantified 

triterpanes in samples above 12.7 m are tricyclic terpanes. Tricyclic terpanes are suggested to 

be derived from bacteria and have been generally observed in a range between C19-C26 (Peters 

et al., 2005), yet can be extended up to C39 (Kruge et al., 1990). In marine depositional basins, 

C23 is generally observed to be the most abundant, whereas in terrestrial and/or lacustrine 

settings shorter terpanes (i.e. C19, C20, and C21) are commonly observed to be dominant 

(Peters et al., 2005). Several scenarios are proposed, one hypothesis suggests that shorter 

tricyclic terpanes were derived through the thermal cleavage of longer terpanes (Zumberge, 

1983), while others have proposed that they derive from non-marine organisms (Reed, 1977). 

Yet up to this point the exact origins remains unclear, thermal cleavage does not seem to have 

influenced the OM of the Araras significantly, however, no organism has been observed thus 

far which possesses the pathway to biosynthesize tricyclic terpanes. Nevertheless, the ratio 

between (C20 + C21) relative to (C23 + C24) has been suggested to reflect the depositional 

environment, with values > 1 indicating marine-derived OM and < 1 nonmarine (Shi et al., 

1988). Samples from the Md’O Fm. record values ranging between 1.04–1.31, whereas the 

Guia Fm. samples displays values around ~0.80 (Figure 7.11), implying the Guia Fm. likely 

witnessed more marine conditions compared to the underlying Md’O Formation. 

 

7.4.7  Sterane biomarkers in the Araras Group 

As stated above, together with the increase of tricyclic terpanes also steranes are 

found to be become enriched up section from 4 % to a maximum of 50 % (Figure 7.11). The 

steranes preserved in the Araras Group show some unusual configurations. Elie and 

colleagues (2007) first observed the dominant preservation of predominantly cholestanes in 

the Araras Group, hypothesizing the C27 dominance to reflect a bloom of Rhodophyceae (red 

algae) in the aftermath of the Snowball Earth, that have been known to biosynthesize almost 

exclusively C27 steranes (Patterson, 1971). The detection of almost solely C27 steranes is a 

characteristic signature in the lipid inventory of sedimentary deposits of middle 

Neoproterozoic age (~800–635 Ma) (Summons et al., 1988; Brocks et al., 2016; Hoshino et 

al., 2017). Whereas older sediments (> ~800 Ma) do not preserved any indigenous eukaryotic 

sterol remnants (Pawlowska et al., 2013; Brocks et al., 2016; Hoshino et al., 2017), thus 

making C27 steranes the first convincing biomarker evidence for the presence of eukaryotes in 
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the rock record. During the Ediacaran C27 steranes were replaced by C29 steranes as the 

dominant steranes in almost all depositional basins (Love et al., 2008; Grosjean et al., 2009; 

Kelly et al., 2011; Grosjean et al., 2012; Hoshino et al., 2017), and from that point in time 

onwards all the way until the present day a combination of C27, C28 and C29 steranes in any 

natural environment (Huang and Meinschein, 1979; Peters et al., 2005). As previously stated 

the presence of only C27 steranes is linked with red algae organism during the middle 

Neoproterozoic as microfossil evidence indicates red algae had already evolved by this time 

(Butterfield, 2000) and could have survived in cryoconites throughout the Cryogenian 

(Hoffman et al., 2016). The shift from C27 to C29 dominance throughout the Ediacaran is 

suggested to reflect the radiation of more complex organisms such as green algae (Hoshino et 

al., 2017). To biosynthesize a common C29 sterol, organisms use a different pathway (detailed 

in Paragraph 1.2.1). Because C29 sterols have been reported to provide more stability to a cell 

membrane under varying temperature (Dufourc, 2017), Hoshino et al., (2017) suggested a C29 

sterol biosynthesizing organism (i.e. green algae) would be able to better adept to the severely 

fluctuating Ediacaran climate. However it should be noted that in research towards modern 

eukaryotic primary producers (i.e. plants and algae), individual species rarely only make one 

sterol compound, but rather a range of C27, C28, and C29 (Kodner et al., 2008). Therefore, the 

C27 dominance in middle Neoproterozoic sediments is unique and likely reflects an early 

stage of eukaryotic evolution.   

  Parallel to the cholestane, C26 21- and 27-nor-cholestanes are identified. The exact 

origin of 21 and 27-nor-cholestanes remains debated. Some specific organisms are observed 

to biosynthesize 27-nor-cholestanes, such as the sponge Axinella cannabina (Itoh et al., 

1983) and the starfish Archaster typicus (Riccio et al., 1986), however the majority of 21- and 

27-nor-cholestanes have been hypothesized to derive through bacterial oxidation and/or 

thermal cleavage (Peters et al., 2005). Although thermal alteration seem unlikely as the OM 

preserved in the sedimentary deposits of the Araras Group has witnessed little alteration, 

indicated by the relatively low Rock-Eval TMAX values ~425°C (n: 18) (Sansjofre et al., 2014; 

Sousa Júnior et al., 2016).  

  Diasteranes have been hypothesized to generally be formed through clay catalysis, 

and therefore more elevated concentrations of diasteranes, compared to regular steranes, has 

been suggested as a parameter to distinguish between different lithology’s (Rubinstein et al., 

1975; Van Kaam-Peters et al., 1998; Peters et al., 2005). Interestingly, the dolomite-rich 

Md’O formation has depleted values (0.20–0.32) compared to the overlying calcite Guia 

Formation (0.56–0.75), one scenario to explain this occurrence is that likely the cap 
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dolostones were deposited with less siliclastic influence relative to the overlying calcite 

deposits.  

  The nor-androstane ratio (C19C/A+B) is hypothesized to reflect stratification and/or 

elevated salinity (Kelly, 2009). However, in a previous study towards the Chuar Group 

(Chapter 6), no significant relationship between the gammacerane ratio and nor-androstane 

ratio was observed (Figure 6.20). The Araras Group nor-androstane ratio displays values 

between 0.50–0.89, yet unfortunately does not yield any gammacerane to compare against. 

However, as previously described in Chapter 6, the nor-androstane ratio shows a strong 

correlation with diahopanes, commonly hypothesized to derive through clay catalysis. 

Unfortunately, due to the absence of regular hopanes, the ratio diahopanes versus hopanes 

cannot be determined for the samples from the Terconi quarry. Yet diasteranes were 

suggested to have a similar origin as they are mainly associated with being formed through 

clay catalysis (Rubinstein et al., 1975). We here observe a correlation between the relative 

abundance of C27 diasteranes (dia/(dia+reg)) with C19C/(A+B) (Figure 7.15; R2: 0.72 n: 7), 

allowing speculation that the nor-androstane ratio is influenced by factors such as clay 

catalysis.  

 

 

Figure 7.15 | Cross plot of nor-androstane ratio C19C/(A+B) versus diasteranes. Purple circles indicate 

Mirassol d’Oeste formation, green triangles represent Guia Formation.  

 

   In a previous study towards the OM compositions of the Araras Group, Sousa et al. 

(2016) observed a 3β-alkyl-cholestane series, up to the addition of a pentyl group at the C-3 

position (see Figure 7.4 for carbon numbering). 3β-alkyl-steranes have been linked with 

oxidative environments, however, the exact nature of these compounds remains obscure as 
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only a hand full of studies have reported about them (Fowler and Douglas, 1987; Dahl et al., 

1992; Summons and Powell, 1992). Dahl et al. (1992) hypothesized that the 3β-alkyl steranes 

were generated by the bacterially mediated addition of a C5 sugar, and potentially served as 

surrogates for bacteriohopanoids in the bacterial membrane, although any biological evidence 

for this hypothesis remains absent. Alternatively, Schouten et al. (1998b) reported the 

addition of a thiophene molecule at the C-3 position in sulfur-rich, reducing environments, 

which has the potential after desulfurization to be preserved as an alkylation at position C-3. 

 

7.4.8  Novel sterane series  

  Although no regular C28, C29 or C30 steranes are observed in the Araras Group (Elie et 

al., 2007; Sousa Júnior et al., 2016), we here observe some unusual sterane isomers that do 

not correspond to the regular sterane isomers (Figure 7.16). First off in the cholestane trace 

(m/z 372  217) abundant unknown compounds are observed eluting between the 

diasteranes and the regular hopanes (Figure 7.16). In an isomerization study to recreate 

sterols during thermal alteration, it was observed that besides the common ααα and αββ 

configuration other sterane peaks were formed, eluting before the ααα-S, however, the exact 

stereochemistry of these peaks remains unknown (Moldowan et al., 1990). It should be 

pointed out that OM preserved in the Md’O and Guia Fm. yields almost exclusively 

cholestane. One potential scenario, supported by the elution pattern, might be that the 4 

unknown peaks in the cholestane trace are additional sterane isomers derived from 

cholesterol, although further research is needed to verify their molecular configuration.   

  Additionally, an unknown sterane homolog series (C27–C34) is observed eluting after 

the regular steranes (Figure 7.16). Interestingly in the same pre-Sturtian sediments which 

were found to be dominated by C27 steranes, Brocks et al. (2016) described the presence of an 

uncommon C28 sterane molecule which—supported by a synthesis and NMR study—was 

indicated to be 26-methylcholestane (i.e. cryostane; (Adam et al., 2017a)).   

  Interestingly, comparing the elution pattern of the 26-methylcholestanes with the 

unknown C28 steranes observed in the Araras basin shows a high similarity (Figure 7.17). 

Thus far the C29 and C30 homolog for of the 26-methyl-cholestane molecules have never 

before been reported, leaving speculation on their molecular structure, with C29 potentially 

having a 24,26-methyl, or 26-ethyl side chain and the C30 homolog possibly yielding a 24-

methyl-26-ethyl; 24-ethyl-26-methyl or 26-propyl sidechain (Figure 7.17).   

  However, the homologs series seems to correspond with 3 visible, unknown isomers 
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in the m/z 372  217 as well as with the 27-nor-cholestanes in the m/z 358  217 (Figure 

7.16), suggesting that the molecular skeleton in the cholestane (m/z 372) trace might reflect 

26-methyl-27-nor-cholestane. 27-nor-steranes have been generally implied to be breakdown 

products of larger steranes (Peters et al., 2005), and therefore making it highly unusual to 

observe 27-nor-steranes with an extended side chain.  

 

 

Figure 7.16 | MRM-GC-MS/MS chromatogram of steranes (m/z 217) in the Mirassol d’Oeste Formation 

overlying a reference standard (NSO oil). The specific mass transition and relative abundance are displayed 

on the right-hand side of each chromatogram. The most abundant steranes observed are the C27 cholestanes 

(red), whereas regular C28, C29, and C30 steranes are absent. An uncommon series of steranes is observed in the 

386, 400 and 414 traces (blue peaks) which corresponds with unknown peaks (blue peaks) in the 372217 

mass transition as well as 27-nor steranes (blue peaks) suggesting a homolog series with a different side chain 

configuration from regular steranes. Additional 4 other unknown sterane peaks (green) are observed which elute 

before the regular steranes.  

  Potentially the extended sidechain reflects a direct biological origin, yet no organisms 

are known to biosynthesize such lipids, alternatively, the side chain alteration could have 
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occurred during diagenesis. One speculative alternative scenario to explain the formation of 

the extended side chains is through the same mechanisms proposed for the methylation of A-

ring at the C-3 position by the addition of a sugar or thiophene group (Dahl et al., 1992; 

Schouten et al., 1998b). The Araras OM has been shown to yield extensive 3β-alkyl-steranes 

which has been proposed to be formed through diagenetic effects (Dahl et al., 1995; Schouten 

et al., 1998b; Sousa Júnior et al., 2016). Generally, the addition of a secondary molecular 

structure occurs on a functional hydroxyl group at position C-3, as the cholesterol side chain 

originally does not possess a hydroxyl or any other functionalization, making it unfavorable 

for the additional of a carbohydrate molecule. Yet certain heterotrophic bacteria (i.e. 

Actinobacteria) are able to add a carboxyl group at position C-26 of a sterol side chain 

(Rosloniec et al., 2009; Wilbrink et al., 2012).   

 

 

 

Figure 7.17 | MRM-GC-MS/MS chromatograms of C28 steranes (m/z 386217). (a.) MRM chromatogram 

of C28 cryostane (m/z 386  217) extracted from Brocks et al., (2015) overlying; (b.) Unknown C28 steranes 

(m/z 386  217) observed in the Araras Group and (c.) Reference standard (NSO oil) of C28 ergostane (m/z 386 

 217).  

 

  The majority of Actinobacteria are aerobic heterotrophic organisms commonly found 

in soil and aquatic systems (Ventura et al., 2007). Additionally, they have also been observed 

to be one of the most significant symbionts for organisms such as sponges. Bacterial biomass 

is reported to make up to 40 % of the total sponge biomass (Friedrich et al., 2001), while 
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other studies have observed 46 % of the bacterial community in certain sponges to consist of 

Actinobacteria (Selvin et al., 2009). Furthermore, Actinobacteria were reported to be a 

significant source for secondary metabolites in most environments, providing chemical 

defense against predators through biological active compounds (Bull, 2011). 

 

 

Figure 7.18 | Possible side chain configuration for the usual sterane series. The column (a.) displays the 

common side chain configuration for C27 to C30 steranes. Column (b.) displays 27-nor sterane side chains 

homolog. Column (c.), (d.) and (e.) shows the potential side chain configurations with additional methylations at 

position 24 and 26; (f.) sterane ring structure.  

 

  Actinobacteria have been reported to either use the P450 or Cyp125 pathway to alter 

the side chain of sterols and by initially adding a carboxyl group at position C-26 (Rosloniec 

et al., 2009; Wilbrink et al., 2012). The carboxyl group, together with the isopropyl group at 

C-26, can be removed via a β-oxidation in the form of propionic acid (Figure 7.19; Murohisa 

and Iida, 1993; Kreit, 2017). The remaining side chain can be further demethylated as 

described in Paragraph 6.4.6 (Figure 6.22), yet with the addition of a carboxyl group at C-25, 

there is potential for both biotic and abiotic addition of additional molecules.   

 The Araras Group is reported to yield cholestane with a 3β-alkylation (Sousa Júnior et 

al., 2016), as stated in the paragraph 7.4.7, it is hypothesized that this alkylation is generated 

by the addition of a ribose sugar (Dahl et al., 1992; Dahl et al., 1995). Schouten et al. (1998b) 

indicated that thiophene molecules in sulfur-rich environments can also form a molecular 

bond with sterols at the C-3 position. Schouten et al. (1998b) further suggested the addition 

of isopentyl pyrophosphate, however emphasizing it is merely speculation as long as 

biological evidence is lacking.  
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Figure 7.19 | Potential speculative scenarios for cholesterol side chain alteration. (a.) Cholesterol sidechain 

(I) microbial demethylation by the addition of a carboxyl group through the P450 or Cyp125 pathway (II) 

(Rosloniec et al., 2009) and removal of propionic acid via a β-oxidation (III) (Murohisa and Iida, 1993; Kreit, 

2017), (b.) microbial additional of a ribose sugar (here a C5 sugar is used) at C-26 (IV) which has the potential 

to generate a 26-alkyl-cholestane series (V); (Note: that (IV) can hypothetically undergo additional extension at 

the ketone group), Alternatively if (III) is indeed able to react with a ribose sugar, perhaps other molecules—

which have been reported to bonds with steranes, yet normally at the C-3 position—can potentially also bond 

with the side chain. These molecular additions at C-26 (noted with a black dot in the figure) include (c.) 3,4-

dimethyl thiophene (VI) (Schouten et al., 1998b) which after desulfurization and diagenesis can be preserved as 

(VII), (d.) 2,3-dimethyl thiophene (VIII) (Schouten et al., 1998b) which after desulfurization and diagenesis can 

be preserved as (IX) and (e.) isopentyl pyrophosphate (X) (Schouten et al., 1998b) which after diagenesis can 

hypothetically be preserved as (XI). Alternatively, these molecular additions could theoretically also bond to 

(III) or (IV) (f.) Hypothesized sterane ring structures during biosynthesis, alteration, and preservation. 

 If there is indeed a functional group added at position C-26 the potential exists that 

compounds can be added at this location either through abiotic of biotic ways. If indeed a C5 

ribose sugar is added, as suggested by Dahl et al. (1992), the side chain will be extended with 

a pentyl group leading to a 26-pentyl-cholestane with 32 carbons (Figure 7.19). However, 
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ribose sugars have also been commonly observed with more carbon atoms, as well as that the 

ketone group of the added sugar has the potential to form a bond with an additional sugar 

group. After diagenesis, the altered sterol can be preserved as a homolog series of 26-alkyl 

steranes.   

  If instead of a sugar a thiophene is added to the sidechain, the side chain configuration 

will be different. Schouten et al. (1998b) observed that the most common thiophene 

molecules to react are 3,4-dimethyl thiophene and 2,3-dimethyl thiophene. If a 3,4-dimethyl 

thiophene is added to the side chain—after diagenesis and desulfurization—it potentially can 

be extended with a 2,3-dimethylbutyl group, and in the case of 2,3-dimethyl thiophene, with a 

3-methylpentyl group (Figure 7.19). Thiophene addition is linked with severely reducing 

environments rich in reduced sulfur species, which are also observed to yield thiophenic 

steroids (Sinninghe Damste et al., 1989; de Leeuw and Sinninghe Damsté, 1990; Schouten et 

al., 1998b). In the Araras group, we do not observe sulfur containing steroidal compounds. If 

the hypothesized isopentyl pyrophosphate is added, then after diagenesis it can have an 

additional 2-metylbutyl group.  

 Theoretically, the carboxylation at the C-26 position can form bonds with other 

molecules though either biogenic or abiogenic pathways, this explain the presence of a 26-

alkyl-cholestanes, implying 26-methyl steranes (i.e. cryostane) could be generated through 

diagenetic processes rather than biological. Interestingly, sedimentary deposits yielding 

compounds with extended sidechains have been predominantly observed in middle 

Neoproterozoic sediments which can either imply they derive from (i) an extinct biological 

lineage, (ii) the presence of specific environmental conditions (i.e. severe heterotrophic 

reworking) with or without the combination of the addition of carbohydrate molecules or (iii) 

the observation of these sterane molecules in the m/z 217 trace are accentuated as they are not 

masked by regular C28, C29, and C30 steroidal compounds. However, until more evidence is 

provided the origin and environmental distribution of sterols with an extended sidechain will 

remain nothing more than speculation.  

 

7.5  Conclusions  

  The well-preserved OM in the Araras group provides the unique opportunity to 

reconstruct the response of biology in the direct aftermath of the Snowball Earth events. The 

preserved OM reveals a complex interplay between community and redox conditions. The 
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lower M’dO Fm. does not yield any indigenous biomarkers and generally low TOC values. In 

the upper part of the M’dO Fm. the first biomarkers are preserved. In the first few meters, a 

predominantly abundant concentration of 25,28-BNG was detected, indicating severe 

heterotrophic reworking (Chapter 3).   

  Analysis of redox-sensitive elements reveals that during the lower M’dO Fm. the 

conditions were highly oxidizing, limiting the preservation of carbon. Sediments of the upper 

M’dO Fm. witnessed relatively more severe reducing conditions as indicated by preservation 

of FeS, a redox-sensitive element and a spike in δ15N, although the (upper) water column was 

still well oxygenated. The Araras Group deposited in the Terconi quarry probably witnessed 

stratified conditions during deposition from halfway up the M’dO Formation. One likely 

scenario is that this is caused by the large influx of oxidized glacial meltwater on top of 

dysoxic saline marine water (Shields, 2005). The glacial meltwater would have also 

transported a surplus of nutrients from the continent into the upper water column, providing 

organisms the opportunity to flourish. However, the OM was likely severely reworked during 

deposition as suggested the presence of 25-nor triterpanes and absence of any regular 

hopanes or gammacerane.   

 Additionally, a novel sterane series with an extended side chain is observed in the 

upper M’dO Formation which likely reflects cholestane with an alkylation at position 26, and 

point towards a diagenetic origin rather than a biological one. Based on a previous study 

which highlighted the presence of extended tricyclic terpanes and 3β-alkylated steranes in the 

Araras OM, as well as the severe heterotrophic reworking the OM likely witnessed, we 

speculate this extension is potentially generated through diagenetic processes involving 

heterotrophic organisms rather than a primary biological source. Although throughout the 

Guia Fm. no regular hopanes or gammacerane hydrocarbons are observed, the OM does 

display an increased preservation of primary produced phytyl lipids (relative to alkyl lipids) 

as well as more abundant cholestane lipids.   

  Overall the Araras Group provides a unique inside towards the initial biological 

response to the deglaciation of Snowball Earth and especially reveals that the ecological 

balance between heterotrophic and autotrophic organisms was severely favoring heterotrophs 

in the direct aftermath of the Marinoan. 
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8.1  Conclusions  

  As outlined in Paragraph 1.4, three research goals have been formulated for this study 

to characterize the molecular and isotopic signatures of life surrounding the Snowball Earth 

events. The following discussion examines how the specific research goals were addressed in 

this thesis (Paragraph 8.1.1–8.1.3), and how the combined conclusions of the research goals, 

strengthen each other when interpreting the influence of eukaryotic life during the 

Neoproterozoic (Paragraph 8.1.4). 

 

8.1.1 Research goal 1  

  The first goal in this study was to: “Study the organic matter preserved in the post-

Marinoan cap carbonate deposits of the 635 Ma Araras Group, Amazon Craton, Brazil to 

identify how life recovered and influenced the environment in the direct aftermath of 

Snowball Earth”. Using a detailed lipid biomarker analysis—supported by inorganic proxies 

and lithological studies—this thesis revealed a connection between unusual biomarkers and 

microbial reworking of organic material, suggesting the presence of a thriving heterotrophic 

community during the Marinoan deglaciation (Chapter 3). The observation and identification 

of the earliest preserved organic lipid in the post-Marinoan sediments, 25,28-

bisnorgammacerane (BNG), tentatively indicates that heterotrophic protists, such as ciliates, 

were likely abundant during the deposition of the Mirassol d’Oeste Formation (Md’O). No 

direct biological precursor is known, but BNG can be formed by known microbial 

degradation pathways from tetrahymanol, a cell membrane lipid that substitutes for sterols in 

many ciliates and is ubiquitous in sediments deposited under stratified conditions. The 

presence of almost exclusively BNG, relative to other triterpanes, in the lower Md’O samples 

is interpreted that BNG has a likely elevated resistance to microbial degradation, allowing the 

molecule to be used as a novel biomarker to indicate heterotrophic conditions (Chapter 3).

 Intriguingly, the elevated BNG abundances are observed in elevated abundances 

within the organic matter preserved in the cap dolostones of the Md'O Formation, whereas 

the overlying calcite-rich Guia Formation yields relatively small abundances of BNG 

compared to n-alkanes, phytyl lipids, and steranes, indicating the dolostones were likely 

precipitated under intense heterotrophic conditions (Chapters 3, 7). The origin of primary 

dolomite deposits throughout time has raised many questions for well over a century already, 

mainly because dolomite precipitation is kinetically inhibited in the modern ocean. However, 
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several studies on modern dolomite forming settings shows heterotrophic bacteria can 

nucleate dolomite on their cell wall. The observation of elevated BNG in the post-Marinoan 

cap dolostones highlight the role of heterotrophic organisms precipitating Mg-rich carbonates 

and provides a viable solution for the enigmatic origin of primary dolomite deposits 

throughout Earth’s history.   

 Additionally, the lipid biomarkers and redox parameters indicate that the entire Araras 

Group witnessed a (partly) oxidized water column with conditions becoming more reducing 

in the overlying Guia Formation, Araras Group (Chapter 7). Besides demethylated 

gammacerane molecules, also the majority of the hopanes (ranging between C26 and C35), 

lack a methyl group at the C-10 position, forming so-called 25-norhopanes. As previously 

reported, the Araras Group sterane composition is near quantitatively dominated by C27 

cholestanes (Elie et al., 2007; Sousa Júnior et al., 2016), similar to observations in other 

middle Neoproterozoic basins (Summons et al., 1988; Brocks et al., 2016; Hoshino et al., 

2017). However, we also find minor abundances of an unusual pseudo-homolog series of 

extended steranes (C27–C34), which are tentatively described as an extended cholestane-series 

with alkylation’s at position C-26. One potential scenario outlined in Chapter 7 involves the 

microbial alteration of cholesterol via heterotrophic bacteria allowing the possible side chain 

extension. However, further research needs to be conducted to support this hypothesis. 

 

8.1.2 Research goal 2  

  The second research goal was to: ”Reconstruct the paleo-environmental conditions 

and assess the lipid inventory throughout the ~750 Ma Chuar Group, Grand Canyon, USA 

to reveal the ecological communities prior to the Sturtian glaciation”. The Chuar Group, 

Grand Canyon, USA reflects transgressive conditions during deposition that can be 

subdivided into four characteristic environmental clusters, each preserving a specific lipid 

inventory (Chapter 6).   

  The first, the Carbon Canyon Member (CCM), is suggested to represent oxidizing 

conditions; this is indicated by elevated pristine/phytane values, redox-sensitive trace metal 

proxies and paleosol-like lithological features. The CCM preserves alkyl and phytyl lipids but 

no regular steranes or hopanes, however steranes with a shortened side chain (C22 

homopregnane and C24 cholane) are observed in abundance (Chapter 6). Additionally, the 

shortened steranes are observed to have both demethylated (19-nor) and methylated (3β-

alkyl) core structures, suggested to be generated through aerobic microbial reworking. The 
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detection of side-chain degraded steranes in ancient sediments provides a new opportunity to 

the search for steroid remnants in Proterozoic sediments for potential eukaryotic life, as these 

may be preserved in formations that lack intact steranes.   

  The CCM is succeeded by the Awatubi Member (AM), which is characterized by a 

severe enriched carbon isotope anomaly in the organic matter δ13Corg (~-15‰) between 78-

180 m. Lithological features (i.e. evaporitic minerals) and geochemical information (i.e. 

lowering of TOC, decoupling between carbon and trace elements) imply that the AM was 

deposited under evaporitic conditions and witnessed intense microbial reworking (Chapter 5). 

It is demonstrated that under specific evaporitic conditions, carbon becomes a limiting 

nutrient, triggering in autotrophic organisms to fix carbon through the carbon diffusion 

assimilatory ways rather than the conventional RuBisCo pathway, resulting in OM which is 

significant enriched in 13C space. Parallel to the isotope anomaly, the lipid biomarker BNG is 

observed in elevated abundance. Interestingly, when the isotope anomaly diminished halfway 

the AM (~180 m), the relative abundance of BNG also decreases, yet steranes, hopanes, 

tricyclics terpanes, and gammacerane increase. This transition in biomarkers coincides with 

redox-sensitive parameters, suggesting conditions become generally more reducing up 

section, this further supports that BNG is likely related to specific aerobic environments with 

severe microbial reworking.  

  The lipid distribution observed in the top of the AM continues throughout the 

overlying Lower Walcott Member (LWM) and is estimated to reflect a marine system with an 

(partly) oxygenated water column. From halfway the Walcott Member (318 m) conditions 

become severely reduced, as indicated by an increase in TOC as well as a higher relative 

amount of bacterial derived biomarkers. This change in biomarker composition is paralleled 

by lower δ15N values, suggesting a shift in community to more nitrogen-fixing organisms (i.e. 

cyanobacteria) (Chapter 6). The change in lipid biomarkers coincided with redox-sensitive 

parameters, suggesting the depositional basin became more reducing, likely as an effect of 

more reduced water entering the basin. Additionally, the OM in the Upper Walcott Member 

(UWM) displays signs of severe post-depositional biodegradation, implied by diminished 

abundances of alkyl and phytyl lipids, elevated unresolved complex matrix (UCM), and a 

relative increase of bicyclic and tricyclic terpanes (Chapter 6).   

 Overall the Chuar Group provides unique insights into the ecological role of 

eukaryotes in the late Tonian, demonstrating that eukaryotic life already played a prominent 

role in nearshore environments. In addition, our research shows that several of the preserved 

hydrocarbon signatures in the oxidized part of the Chuar Group displays unusual 
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configurations, of which many are suggested to be caused through microbial alterations, 

highlighting the potential importance in understanding the influence of heterotrophic 

organisms on environment prior to the Cryogenian. 

8.1.3 Research goal 3  

  The third research goal of this thesis was to: “Investigate the controls of the isotopic 

systematics between bulk and compound-specific carbon isotopes throughout the middle 

and late Proterozoic (1.64–0.54 Ga)”. The carbon isotopic (δ13C) ordering of bulk organic 

matter and individual lipids, preserved in Phanerozoic sediments, generally display the same 

isotopic ordering: alkyl lipids < phytyl lipids < kerogen (bulk organic matter). However, in 

the absence of metazoa and fecal pellets throughout the majority of the Proterozoic, it has 

been indicated that heterotrophic reworking of organic matter played a more significant role, 

as the residence time of organic matter in the water column would have been extended. This 

increased trophic cycling is suggested to have predominantly enriched the alkyl lipids in 

carbon-13, suggested to be reflected in a characteristic Proterozoic isotopic ordering (phytyl 

≤ kerogen < alkyl lipids) (Logan et al., 1995).  

 In Chapter 4, no typical Proterozoic isotopic offset is recognized. Analysis of several 

Proterozoic depositional basins between 1.64–0.54 Ga, resulted in highly variable isotopic 

offsets between alkyl lipids and kerogen. In-depth analysis of the transgressive Chuar Group 

(~750 Ma), revealed a systematic trend in the isotopic relationship between n-alkanes and 

kerogen (δ13Calk-ker). Generally, high values for the δ13Calk-ker (~7 ‰), suggestive of severe 

heterotrophic reworking during deposition, are observed in samples from the CCM and lower 

AM (< 180 m), while the upper AM and entire Walcott Member displays an isotopic offset 

which is significantly smaller (~1 ‰). Comparisons with geochemical parameters reveal that 

the δ13Calk-ker offset shows a strong correlation with depositional redox conditions. 

Additionally, the isotopic relationship between phytyl and alkyl lipids (δ13Cpr-alk) corresponds 

to the relative abundance of eukaryotic sterane molecules, suggesting the δ13Cpr-alk to 

potentially be used as a novel community indicator in ancient depositional basins.  

  Chapter 5 investigated the carbon isotopic anomaly (δ13C: ~-15 ‰) observed in the 

organic matter of the Awatubi member. Using lithological, geochemical and biomarker data, 

it is inferred that the δ13Corg anomaly reflects a local signature, as carbon likely became 

limited through increase of salinity and/or productivity, lowering the available dissolved 

inorganic carbon pool causing microorganisms to fix inorganic carbon through assimilatory 

diffusion (Chapter 5). Similar mechanisms are observed in modern heliothermal 
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environments, causing a significantly diminished isotopic offset between carbonate and 

organic matter isotopes (Schidlowski et al., 1984; Wieland et al., 2008; Houghton et al., 

2014). This implies that local effects can have significant impact on organic carbon isotopic 

signatures, resulting in an isotopic decoupling with δ13Ccarb, and need to be considered prior 

to any inference is made about the global carbon cycle. 

 

8.1.4 Overarching conclusions 

Overall, this thesis presents an overview of the lipid biomarker distribution in relation 

to the redox conditions, surrounding the Neoproterozoic Snowball Earth events. A 

comparison of two different depositional groups (i.e. Chuar and Araras Group) reveals some 

interesting similarities. Both settings preserve relatively high abundances of cholestane, 26-

methyl-cholestane, bisnorgammacerane, 25-nor-des-E-gammacerane and 

tetranorgammacerane of which especially the latter four raises questions in regard to the 

source and mechanisms involved to generate these compounds. Half of the organic matter 

preserved in the Chuar Group (CCM and AM) and all of the Araras Group OM displays signs 

of severe heterotrophic reworking, suggesting that heterotrophic organisms played a 

significant role in oxidized nearshore environments during the middle Neoproterozoic. The 

observation of elevated BNG abundances in the dolomitic deposits of the Araras Group 

implies a potential heterotrophic origin for primary dolomite deposits. Additionally, both 

settings yield some uncommon sterane lipids, with the Chuar Group preserving steranes with 

demethylated side chains (Chapter 6), while the Araras Group yields steranes with extended 

side chains, and A-ring modifications (Chapter 7). Both series are tentatively linked with 

alteration by aerobic heterotrophic organisms. The lipid biomarker distributions observed in 

this study provides evidence for a proliferation of eukaryotes in well oxygenated, mid-

Neoproterozoic nearshore environments with a high degree of trophic cycling. This implies 

that the ecological balance between heterotrophic and autotrophic organisms was severely 

favoring heterotrophs prior to the rise of metazoa, and highlights the importance to unravel 

the influence of heterotrophs on nearshore environments as these settings are the suggested 

ecological niche inhabited by eukaryotic life during the Proterozoic. 
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8.2  Outlook 

 Despite the important contributions of this thesis to a better understanding of the 

distribution of biomarkers surrounding the Neoproterozoic Snowball Earth events, several 

questions and theories arise from this work that need to be addressed in future research. One 

main outcome of this thesis is the uncovering of a relationship between altered lipid 

biomarkers and isotopic ordering which suggests intense heterotrophic reworking. This 

indicates that heterotrophic communities severely influenced the OM in oxidized Proterozoic 

(Chapters 3–7). However, as common for deep-time ecological reconstructions, many 

interpretations remain tentative and awaiting confirmation. The discoveries of modern 

analogs or laboratory culture experiments are required for future confirmation. Although I am 

confident that the strongly altered lipid signatures, observed in this thesis, reflect a high 

degree of heterotrophic reworking, we are only beginning to understand these complex 

relationships. Just like the classical Dunning-Kruger effect—showing a typical temporal 

trend in the confidence when a scientific discovery or concept is proposed (Figure 8.1)—time 

will tell to what extent the here proposed hypotheses will need to be modified or rejected. 

Future research can test the main hypotheses as outlined below.  

 

 

Figure 8.1 | The Dunning-Kruger effect. An initial increase in confidence (honeymoon phase), is followed by 

a drop in confidence (valley of despair), as more information is gathered on the hypothesis (sloop of 

enlightenment) a new, more robust, understanding is generated (plateau of sustainability).  

 

8.2.1  Modern analog study 

 One way to test the here reported relationships, between BNG and dolomite, Δδ13Cpr-

alk and community, Δδ13Calk-org and redox, demethylated triterpanes and in-situ heterotrophy, 

is to analyze analogous modern environments. For instance, bisnorgammacerane (BNG) is 
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observed in a variety of settings throughout the last ~800 Myr (Chapter 3; Appendix B.7), yet 

BNG and its suspected intermediate form bisnortetrahymanol, have thus far not been reported 

in any recent environments. Modern analogs, which are reported to display increased trophic 

cycling of OM include evaporitic and hypersaline depositional basins. Thus, in order to 

elucidate the origin of this valuable heterotrophic marker, it would be interesting to conduct a 

study towards the lipid composition in these sediments with a focus on demethylated forms of 

hopanes and gammacerane, as well as steranes with and without side chain and/or A-ring 

alterations. A modern analog study provides the opportunity to analyze the active microbial 

community through biological tools. This information could then be used to answer 

unresolved questions of biological and diagenetic processes involved in the formation of the 

unusual lipids described in this thesis (Figure 8.2). Additionally, the isotopic relationship 

between n-alkanes, phytyl lipids, and bulk organic matter can also be elucidated using these 

modern analogs. This may help understanding the controls and stability of both the δ13CKER-

ALK and δ13CPR-ALK proxy as a tool for assessing respectively heterotrophy, community 

composition and redox conditions in ancient depositional basins. 

 

Figure 8.2 | Unknown biological and diagenetic processes generating the altered lipids observed in this 

study. 

  

8.2.2  Laboratory based culture experiments  

  Besides analyzing recent analogs, laboratory-based culture experiment will also 

provide new insights to the lipid distribution throughout the middle Neoproterozoic, a pivotal 

interval in Earth’s history. I propose dietary experiments, where an assortment of lipid 
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substrates (e.g. tetrahymanol, hopanes and sterols) are fed a variety of aquatic, heterotrophic, 

cultured organisms (e.g. actinobacteria, ciliates, among others), under different; redox, 

dissolved organic carbon (DOC), and salinity conditions. After incubation, the resulting lipid 

signatures should be extracted and investigated, to assess the influence of substrate, 

community, redox and salinity with potentially heterotrophically altered lipids. 

 

8.2.3  Synthesis experiments  

  Additionally, it would be valuable to synthesize the tentative sterane side chain 

configurations as hypothesized in Chapter 7. This would open up the opportunity to perform 

co-injection experiments, between the natural and synthesized compounds, to better identify 

the unusual observed sterane series. Other compounds which would be interested to 

biosynthesize and verify the configuration through co-elution experiments are 25,28,29,30-

tetranorgammacerane and 25-nor-des-E-gammacerane (both observed in the Chuar and 

Araras Group), as the low biomarker abundances make it impossible for structural elucidation 

by NMR analysis. By unraveling the structure of these compounds, it will strengthen our 

understanding about the alteration of lipid biomarkers. 

 

8.2.4  Investigate additional ancient sedimentary deposits 

The hypotheses proposed in this study would greatly benefit by acquiring more data 

points. In regard to the isotopic ordering of bulk and compound-specific carbon isotopes, it 

will be valuable to analyze more Proterozoic depositional basins to improve our 

understanding of the factors influencing them. Additionally, the observation of sterane 

molecules with a demethylated side chains (Chapter 6), provides the opportunity to re-assess 

well-preserved, oxidized late Proterozoic sediments that were previously reported to be 

devoid of indigenous conventional sterane hydrocarbons.   

  Furthermore, analyzing additional sedimentary rocks, deposited under evaporitic 

conditions, throughout the last billion years will strengthen our overall understanding of the 

specific lipid inventory associated with such environments. Finally, the discovery of a novel 

biomarker suggestive of intense heterotrophy in the Araras cap dolostones (Chapter 3), opens 

the opportunity to assess more post-Snowball Earth cap dolostones as well as other ancient 

primary dolomite deposits in the light of a heterotrophic origin.  
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Appendix A.1 

 

Figure A.1 | Molecular structures of cholesterol and steranes commonly referred to in this study. Green 

lines indicate an addition of an alkyl group, red dotted lines and numbers highlight a demethylation. (a.) 

cholesterol (C27H48O); (b.) cholestane (C27H48); (c.) diacholestane (C27H48); (d.) ergostane (C28H50); (e.) 

stigmastane (C29H52); (f.) cryostane (C28H50); (g.) n-propyl-cholestane (C30H54); (h.) iso-propyl-cholestane 

(C30H54); (i.) 21-nor-cholestane (C26H46); (j.) 27-nor-cholestane (C26H46); (k.) cholane (C24H42);(l.) 19-nor-

cholane (C23H40); (m.) 3β-alkyl cholanes; (n.) homopregnane (C22H38); (o.) 19-nor-homopregane (C21H36); (p.) 

3β-alkyl homopregnane; (q.) pregnane (C21H36); (r.) androstane (C19H32); (s.) 19-nor-androstane (C18H30); (t.) 

des-A-cholestane (C27H50); (u.) 3β-alkyl-cholestanes. 
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Appendix A.2 

 

Figure A.2 | Molecular structures of non-sterane cyclic hydrocarbon commonly referred to in this study. 

Green lines indicate an addition of an alkyl side chain, red dotted lines and numbers highlight a demethylation. 

(a.) C30 17α-21β-hopane (C30H52); (b.) homohopanes; (c.) 30-norhopane (C29H50); (d.) 25-norhopane (C29H50); 

(e.) 25,30-bisnorhopane (C28H48); (f.) 22,29,30-trissnorhopane (C27H46); (g.) 17α-22,29,30-trisnorhopane (Tm) 

(C27H46); (h.) 18α-22,29,30-trisnorneo-hopane (Ts) (C27H46); (i.) 22,25,29,30-tetranorhopane  (C26H44); (j.) 25-

nor-des-E-hopane (C23H40); (k.) 2α-methyl-hopane (C31H54); (l.) tetrahymanol (C30H52O); (m.) gammacerane 

(C30H52); (n.) 25,28-bisnorgammacerane (BNG) (C28H48); (o.) tricyclic terpanes (here shown C-26, C26H48); (p.) 

homodrimane (C16H30); (q.) phenanthrene (C14H10); (r.) di-benzo-thiophene (C12H8S); (s.) benzo-naphtho-

thiophene (C14H10S); (t.) adamantane (C10H16); (u.) 2,3,6-aryl isoprenoid (C14H21)  
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Appendix B.1 

 

  

 

 

Figure | 1H NMR spectrum (CDCl3, 800 MHz) of 25,28-bisnorgammacerane. 
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Appendix B.2 

 

Figure | 1H-1H COSY spectrum (CDCl3, 800 MHz) of 25,28-bisnorgammacerane. 
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Appendix B.3 

 

Figure | 1H-13C HSQC spectrum (CDCl3, 800 MHz) of 25,28-bisnorgammacerane. 
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Appendix B.4 

 

Figure | 1H-13C HMBC spectrum (CDCl3, 800 MHz) of 25,28-bisnorgammacerane. 
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Appendix B.5 

 

Figure | NOESY spectrum (CDCl3, 800 MHz) of 25,28-bisnorgammacerane. 

  



L. M. van Maldegem (2017)                                       Appendix B: Supplement for Chapter III 

207 

 

Appendix B.6 

Table: NMR spectroscopic data for 25,28-bisnorgammacerane (CDCl3, 800 MHz). All 

chemical shifts were referenced to CHCl3 (δH = 7.26 ppm, δC = 77.16 ppm). 

Position δC
a δH (mult., J in Hz) HMBCb 

1 30.8, CH2 α, ax. 0.63c 2,10 

  β, eq. 1.84 3, 5 

2 21.7, CH2 α, eq. 1.49c 4 

  β, ax. 1.37 (qt, 13.6, 3.7) 1, 3 

3 41.6, CH2 α, ax. 1.13c 2, 4, 24 

  β, eq. 1.31 5, 1 

4 32.5, qC – – 

5 51.3, CH α, ax. 0.66c 4, 6, 10, 24 

6 20.8, CH2 α, eq. 1.50c 5, 8, 10 

  β, ax. 1,15c 5 

7 31.3, CH2 α, ax. 1.27c 8, 26 

  β, eq. 1.42 (dt, 12.4, 3.4) 5, 9, 14, 26 

8 38.8, qC – – 

9 43.2, CH α, ax. 1.19c 11 

10 36.0, CH β, ax. 1.13c  

11 24.4, CH2 α, eq. 1.69 (dd, 8.7, 2.6) 8, 13 

  β, ax. 0.84c 12 

12 24.4, CH2 α, ax. 0.84c 11 

  β, eq. 1.69 (dd, 8.7, 2.6) 9, 14 

13 43.2, CH β, ax. 1.19c 12 

14 38.8, qC – – 

15 31.3, CH2 α, eq. 1.42 (dt, 12.4, 3.4) 8, 13, 17, 27 

  β, ax. 1.27c 14, 27 

16 20.8, CH2 α, ax. 1,15c 17 

  β, eq. 1.50c 14, 17, 18 

17 51.3, CH β, ax. 0.66c 16, 18, 22, 30 

18 36.0, CH α, ax. 1.13c  

19 30.8, CH2 α, eq. 1.84 17, 21 

  β, ax. 0.63c 18, 20 

20 21.7, CH2 α, ax. 1.37 (qt, 13.6, 3.7) 19, 21 

  β, eq. 1.49c 22 

21 41.6, CH2 α, eq. 1.31 17, 19 

  β, ax. 1.13c 20, 22, 30 

22 32.5, qC – – 

23 30.1, CH3 α, eq. 0.844 (s) 3, 4, 5, 24 

24 19.5, CH3 β, ax. 0.800 (s) 3, 4, 5, 23 

26 13.8, CH3 β, ax. 0.840 (s) 7, 8, 9 

27 13.8, CH3 α, ax. 0.840 (s) 13, 14, 15 

29 30.1, CH3 β, eq. 0.844 (s) 17, 21, 22, 30 

30 19.5, CH3 α, ax. 0.800 (s) 17, 21, 22, 29 
aδC values determined from HSQC and HMBC spectra. 
bHMBC correlations are from proton(s) stated to the indicated carbon. 
cOverlapped signals in 1H NMR spectrum, δH values determined from HSQC spectrum. 
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Appendix B.7  

Table: Investigated samples to establish the temporal, environmental and geographic 

distribution of BNG throughout the past ca. 800 Myr. 

Geological Unit Location1 Geological Period (n) Source2 BNG3 

Gamma-

cerane 

values4 

Carbon Canyon Mb. Nankoweap Butte, USAA Upper Tonian 22 RockF  n.a. 

Awatubi Mb. Nankoweap Butte, USAA Upper Tonian 9 RockF 1.00 0.32 ±0.18 

Walcott Mb. Nankoweap Butte, USAA Upper Tonian 21 RockE  0.36 ±0.31 

Visingsö Fm. Lake Vattern Basin, SwedenA Upper Tonian 11 RockE  0.03 ±0.02 

Minyar Fm. Karatau Group, Urals, RussiaA Upper Tonian 12 RockE  n.a. 

Ungoolya Fm. Empress-1 well, AustraliaA Upper Tonian 8 Rock F  < 0.01 

Mirassol d’Oeste Fm. Terconi quarry, Araras Group, BrazilA Lower Ediacaran 8 RockE 1.00 n.a. 

Guia Fm. Terconi quarry, Araras Group, BrazilA Lower Ediacaran 3 RockE 1.00 n.a. 

Taseeva Group Western Siberian Craton, RussiaA Middle Ediacaran 20 RockE  n.a 

Shuram Fm. South Oman Salt Basin, OmanB Upper Ediacaran 1 OilF  0.17 

Athel Fm. South Oman Salt Basin, OmanB Ediacaran/Cambrian 1 OilF 0.37 0.19 

Dhahaban Fm. South Oman Salt Basin, OmanB Lower Cambrian 1 OilF 0.29 0.20 

Soltanieh Fm. Elburz Mountain Range, IranB Ediacaran/Cambrian 2 RockE  0.05 

U’solye Basin Kulindinski-1 well, Siberian Craton, 

RussiaA 

Middle Cambrian 6 RockF 0.65 ±0.05 0.07 ±0.01 

Proprietary North AmericaC Ordovician 3 OilE  0.07 ±0.02 

Variku Fm. Ristikula-174 core, East European Craton, 

EstoniaB 

Ordovician 11 RockE  n.a. 

Proprietary North AfricaC Lower Silurian 1 OilE  0.15 

Proprietary Middle EastC Lower Silurian 1 OilE  0.15 

Proprietary Southern EuropeC Silurian 1 OilE  0.04 

Proprietary North AfricaC Silurian 1 OilE  0.04 

Proprietary South AmericaC Devonian 1 OilJ  n.a. 

Proprietary Northern North AmericaC Devonian 1 OilE  0.11 

Zadonsk Horizon Pripyat River Basin, East European 

Craton, BelarusB 
Devonian 8 OilE  0.27 ±0.10 

Proprietary Northern North AmericaC Upper Devonian 1 OilE  0.06 

Proprietary Western AfricaC Upper Devonian 1 OilE  0.04 

Domanik Fm. South Uralian Basin, RussiaA Upper Devonian 1 RockI 0.21 n.a. 

Reservoir Mb. Bathgate, Petershill Fm., ScotlandA Lower Carboniferous 11 RockF 0.82 ±0.05 0.12 

Silvermine Mb. Bathgate, Petershill Fm., ScotlandA Lower Carboniferous 5 RockE  n.a. 

Proprietary Western EuropeC Upper Carboniferous 1 OilE  0.07 

Proprietary Western EuropeC Upper Carboniferous 1 OilH  0.06 

Zechstein North East German Basin, GermanyB Upper Permian 1 OilF 0.09 0.14 

Zechstein North East German Basin, GermanyB Upper Permian 1 OilF 0.15 0.18 

Proprietary Western EuropeC Upper Permian 1 OilH  0.28 

Proprietary South AmericaC Upper Permian 1 OilE  0.06 

Proprietary AustralasiaC Upper Permian 1 CoalG  0.06 

Proprietary North AmericaC Middle Triassic 1 OilG 0.85 0.38 

Proprietary Western EuropeC Upper Triassic 1 OilE  0.08 

Proprietary Western EuropeC Lower Jurassic 3 OilE  0.07 ±0.02 

Proprietary Southern EuropeC Lower Jurassic 1 OilE  0.12 

Proprietary North AfricaC Middle Jurassic 1 OilG  0.17 

Proprietary Western EuropeC Upper Jurassic 15 OilE  0.05 ±0.02 

Proprietary Northern North AmericaC Upper Jurassic 1 OilH  0.33 

Proprietary Middle EastC Upper Jurassic 2 OilE  0.04 

Proprietary Middle EastC Lower Cretaceous 2 OilE  0.05 ±0.03 

Proprietary Southeast AtlanticC Lower Cretaceous 2 OilH 0.33 0.33 

Proprietary Southeast AtlanticC Lower Cretaceous 2 OilH 0.21 0.16 

Proprietary South AmericaC Lower Cretaceous 2 OilE  0.08 ±0.02 

Proprietary Western EuropeC Lower Cretaceous 1 OilD  0.11 

Proprietary Western EuropeC Lower Cretaceous 1 OilJ  0.06 

Proprietary Southwest AtlanticC Middle Cretaceous 1 OilF 0.49 0.18 

Livello Bonarelli Gubbio-4 core, ItalyB Middle Cretaceous 9 RockE  0.16 

ODP-site 1049 C ODP-1049C, North AtlanticB Middle Cretaceous 2 RockE  0.17 

Proprietary South AmericaC Upper Cretaceous 2 OilE 0.79 0.24 
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Proprietary South AmericaC Upper Cretaceous 2 OilE 0.34 0.12 

Proprietary North AmericaC Upper Cretaceous 5 CoalG  0.17 ±0.05 

Proprietary Western AfricaC Upper Cretaceous 2 OilE  0.05 ±0.01 

Proprietary North AfricaC Upper Cretaceous 1 OilH  0.05 ±0.01 

Proprietary AustralasiaC Upper Cretaceous 1 OilH  0.03 

Proprietary Middle EastC Upper Cretaceous 1 OilE  0.07 

Proprietary Northern South AmericaC Upper Cretaceous 2 OilE  0.09 ±0.02 

Pucisca Fm. Brac Group, CroatiaB Upper Cretaceous 3 RockE  0.03 

Proprietary Central AsiaC Lower Paleogene 2 CoalG  0.05 

Proprietary Central AsiaC Lower Paleogene 2 OilH  0.01 

Proprietary AustralasiaC Middle Paleogene 1 OilE 0.66 0.11 

Proprietary AustralasiaC Middle Paleogene 2 CoalG  0.02 ±0.01 

Green River Fm. Greater Green River Basin, USAB Middle Paleogene 1 OilI  0.36 

Proprietary Eastern AsiaC Upper Paleogene 1 OilE  n.a. 

Proprietary Eastern AsiaC Upper Paleogene 1 OilH  0.07 

Proprietary Western EuropeC Upper Paleogene 2 OilE  0.06 ±0.01 

Proprietary North AmericaC Upper Paleogene 2 OilH  0.04 

Proprietary North AmericaC Middle Neogene 2 OilE  0.14 ±0.01 

Proprietary Southern EuropeC Middle Neogene 1 OilE  0.05 

Proprietary North AmericaC Unassigned 5 OilH  0.51 ±0.12 

Proprietary Western EuropeC Unassigned 2 OilG  0.27 

Proprietary Western EuropeC Unassigned 2 OilE  0.13 

 

1Sample repository: A) Paleobiogeochemistry Group, Max Planck Institute for Biogeochemistry, Bremen, 

Germany B) Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea 

Research (NIOZ), Den Burg, The Netherlands, C) Shell Global Solutions International B.V., Rijswijk, The 

Netherlands  
2Environment during deposition of the material: D) Hypersaline, E) Marine, F) Restricted Marine, G) Fluviodeltaic, 
H) Lacustrine, I) Terrigenous, J) Unassigned  
3(25,28-bisnorgammacerane/(gammacerane + 25,28-bisnorgammacerane) 
4(Gammacerane / (C30αβ Hopane + gammacerane)) 
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Appendix C.1  

Table: Bulk and compound specific carbon isotope, and selected geochemical 

parameters throughout the Chuar Group   

 

# 
Height 

(m) 
δ13Corg 

δ13Calk 

weighted 
δ13CPr δ13CPh 

δ13Cpr-

ph avg. 

weighted 

Δδ 

Pristane -

Phytane 

Δδ 

Kerogen 

– alkanes 

Δδ 

Pristane - 

Alkanes 

Δδ 

Phytane-

alkanes 

Pr/Ph 

% 

C27 

 

L4 -115 -29.07 -20.89 n/a n/a n/a n/a -8.2 n/a n/a 3.53 n/d 

L6 -155 -25.91 -20.63 n/a n/a n/a n/a -5.3 n/a n/a 4.45 n/d 

L9 -173.5 -28.44 -23.81 n/a n/a n/a n/a -4.6 n/a n/a 7.04 n/d 

L11 -173.1 -27.94 -24.09 -26.88 -25.73 -26.64 -1.2 -3.8 -2.8 -1.6 3.74 n/d 

L13 -179 -29.91 -23.00 -26.65 -24.39 -26.35 -2.3 -6.9 -3.6 -1.4 6.56 n/d 

L19 -242.3 -27.81 -17.68 n/a n/a n/a n/a -10.1 n/a n/a 5.71 n/d 

L24 145 -15.73 -9.16 n/a n/a n/a n/a -6.6 n/a n/a 3.23 n/d 

L25 153 -22.86 -16.58 n/a n/a n/a n/a -6.3 n/a n/a 3.32 n/d 

L26 155 -16.48 -11.70 n/a n/a n/a n/a -4.8 n/a n/a 2.38 n/d 

L27 165 -18.72 -12.25 n/a n/a n/a n/a -6.5 n/a n/a 2.54 13.0 

L28 180 -22.27 -19.22 -23.51 -20.66 -22.68 -2.8 -3.0 -4.3 -1.4 2.43 6.9 

L29 192 -25.42 -20.62 n/a n/a n/a n/a -4.8 n/a n/a 1.99 8.62 

L30 215 -25.37 -26.91 n/a n/a n/a n/a 1.5 n/a n/a 2.02 10.9 

L31 217.5 -26.43 -23.83 n/a n/a n/a n/a -2.6 n/a n/a 1.66 11.4 

L32 218 -26.69 -25.66 -27.72 -27.37 -27.60 -0.3 -1.0 -2.1 -1.7 2.03 n/a 

L33 250.5 -25.72 -24.38 -24.25 -25.64 -24.65 1.4 -1.3 0.1 -1.3 1.84 8.11 

L34 262 -27.08 -25.37 -24.74 -25.36 -25.05 0.6 -1.7 0.6 0.0 2.47 7.3 

L35 280 -25.91 -24.84 n/a n/a n/a n/a -1.1 n/a n/a 1.02 12.0 

L36 287.8 -26.14 -26.46 -27.20 -27.09 -27.16 -0.1 0.3 -0.7 -0.6 1.74 19.5 

L37 287.5 -25.77 -26.14 -26.65 -25.64 -26.28 -1.0 0.4 -0.5 0.5 2.1 24.4 

L38 296 -25.50 -25.46 -25.92 -26.79 -26.23 n/a 0.0 n/a n/a 1.81 15.7 

L39 301.8 -24.65 -26.04 n/a n/a n/a n/a -0.6 n/a n/a 1.79 12.3 

L41 316.5 -27.57 -23.55 -22.73 -22.01 -22.26 -0.7 -4.0 0.8 1.5 0.55 21.5 

L42 332 -24.80 -25.09 n/a n/a n/a n/a 0.1 n/a n/a 1.44 1.5 

L43 338 -26.69 -25.38 -27.27 -25.19 -26.53 -2.1 -3.7 -4.2 -2.2 1.82 6.3 

L45 352 -27.20 -25.16 -27.37 -25.78 -26.78 -1.6 -2.0 -2.2 -0.6 1.67 1.7 

L46 362 -27.55 -26.38 n/a n/a n/a n/a -1.2 n/a n/a 1.42 2.0 

L47 368.5 -29.21 -27.50 -29.00 -29.34 -29.17 0.3 -1.7 -1.5 -1.8 1.01 2.3 

L48 371 -29.10 -26.54 -30.96 -30.17 -30.60 -0.8 -2.6 -4.4 -3.6 1.2 2.2 

L49 376 -28.13 -27.18 n/a n/a n/a n/a -0.9 n/a n/a 1.18 3.2 

L50 395 -28.01 -27.00 -30.90 -29.73 -30.22 -1.2 -1.0 -3.9 -2.7 0.73 4.4 

L51 412 -26.96 -24.33 n/a n/a n/a n/a -2.6 n/a n/a 0.81 3.4 

L52 -271 -26.91 -22.02 n/a n/a n/a n/a -4.9 n/a n/a n/a n/d 

n/a: not available; n/d: not detected; 
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Appendix C.2   

Table of δ13C for individual n-alkanes  

Sample δ13CC16 δ13CC17 δ13CC18 δ13CC19 δ13CC20 δ13CC21 δ13CC22 δ13CC23 δ13CC24 δ13CC25 δ13CC26 δ13CC27 δ13CC28 δ13CC29 δ13CC30 δ13CC31 δ13CC32 

L4 -21.26 -20.99 -20.85 -20.74 -20.51 -20.61 -20.84 -21.19 -20.45 -20.67 -20.60 -20.44 -21.13 -20.94 -21.04 -20.98 -20.89 

L6 -20.60 -20.58 -20.56 -20.55 -20.61 -20.72 -20.77 -20.70 -20.55 -20.90 -20.56 -20.62 -20.60 -20.38 -20.91 -21.20 -21.15 

L9 -23.88 -24.33 -24.24 -24.28 -24.15 -24.03 -23.79 -24.09 -23.57 -23.12 -23.80 -22.70 -23.39 -26.93    

L11 -23.60 -24.07 -24.08 -24.07 -24.06 -24.06 -24.12 -24.54 -23.82 -23.95 -24.28 -23.86 -24.30 -24.08 -24.18 -25.32 -25.59 

L13 -24.77 -24.47 -24.16 -24.38 -24.35 -24.18 -23.89 -23.93 -23.69 -23.88 -24.40 -23.78 -25.87 -25.21 -26.30 -27.96  

L19 -17.75 -18.12 -18.28 -18.44 -18.31 -18.68 -19.09 -19.17 -19.78 -18.57 -19.94 -18.73 -20.75     

L24 -9.19 -9.56 -9.11 -8.68 -8.87 -9.19 -9.25 -9.48 -9.70 -9.30 -9.62 -10.12 -11.08     

L25 -16.94 -16.91 -16.59 -16.23 -16.22 -16.75 -16.90 -17.06 -17.06 -16.79 -17.58 -17.51 -17.02     

L26 -12.05 -12.19 -11.61 -11.40 -11.53 -11.67 -11.28 -12.04 -12.16 -11.37 -11.37 -11.35 -10.10 -12.36 -12.49 -10.92  

L27 -12.32 -12.64 -12.42 -12.25 -12.42 -12.19 -12.66 -12.57 -12.73 -11.69 -12.05 -11.10 -12.48     

L28 -19.67 -19.77 -19.33 -19.06 -19.15 -18.96 -19.17 -19.40 -19.00 -18.58 -18.87 -19.05 -18.98 -20.34    

L29 -20.57 -20.69 -20.14 -20.12 -20.08 -20.73 -21.39 -21.57 -21.56 -20.79 -21.45 -21.41 -21.97 -22.95 -23.06   

L30 -27.49 -27.12 -27.12 -26.95 -27.04 -26.62 -26.34 -26.88 -26.46 -25.97 -27.58 -25.43 -26.17 -25.40 -28.09 -25.82 -24.89 

L31 -26.46 -25.55 -25.14 -25.20 -25.09 -25.60 -24.62 -25.77 -24.67 -24.62 -24.97 -25.10 -24.95 -25.15 -26.16 -26.43 -25.55 

L32 -26.37 -26.43 -26.06 -26.06 -25.77 -25.19 -25.09 -25.36 -25.09 -25.19 -25.81 -24.63 -25.23 -25.52 -25.06 -25.75  

L33 -25.29 -25.19 -25.07 -25.25 -24.24 -24.36 -24.54 -24.48 -23.99 -23.87 -24.35 -24.06 -23.92 -24.12 -23.86 -23.33 -22.98 

L34 -26.14 -26.01 -26.00 -25.71 -25.60 -25.38 -25.30 -25.91 -25.17 -24.64 -24.82 -24.92 -24.58 -24.70    

L35 -25.60 -25.45 -25.68 -25.34 -25.46 -24.78 -24.73 -25.11 -24.66 -24.39 -26.65 -23.34 -24.98 -23.50 -24.62 -23.47 -23.61 

L36 -27.55 -26.37 -26.84 -26.49 -26.23 -26.49 -26.34 -26.49 -26.12 -25.54 -25.88 -25.85 -25.14 -26.20 -26.57 -24.89 -34.64 

L37 -26.40 -26.52 -26.41 -26.36 -26.31 -26.07 -26.43 -26.01 -25.96 -25.75 -25.91 -26.27 -25.94 -25.77 -25.57 -25.54 -25.67 

L38 -25.28 -26.05 -26.03 -25.56 -25.81 -25.49 -25.83 -25.66 -25.20 -25.01 -25.10 -25.32 -25.22 -24.53 -24.44 -24.94 -25.84 

L39 -24.48 -24.55 -24.35 -24.05 -24.23 -23.75 -23.80 -24.25 -23.42 -23.36 -23.67 -23.37 -23.48 -23.21 -23.23 -23.49 -24.37 

L41 -24.03 -24.47 -25.11 -24.14 -24.17 -23.42 -23.11 -23.38 -23.21 -22.91 -26.45 -21.71 -23.93 -21.84 -23.63 -22.05 -21.03 

L42 -25.62 -25.78 -25.54 -25.82 -25.40 -25.44 -25.07 -24.85 -24.91 -24.5 -24.66 -24.59 -24.45 -24.46    

L43 -25.32 -25.78 -25.63 -25.39 -25.30 -25.50 -25.60 -25.24 -24.62         

L45 -25.71 -25.69 -25.94 -25.74 -25.71 -25.57 -25.37 -25.53 -25.42 -25.11 -25.31 -25.14 -25.57 -24.87 -25.96 -24.77 -23.96 

L46 -26.79 -26.89 -26.73 -26.35 -26.47 -26.22 -26.89 -26.09 -25.55 -25.79 -26.01 -25.89 -25.08 -25.12 -25.38 -25.52 -24.81 

L47 -28.21 -27.65 -27.85 -27.25 -27.33 -26.97 -27.82 -27.38 -27.09 -27.37 -27.33 -27.25 -27.77 -27.69 -27.71 -27.90 -27.23 

L48 -27.67 -27.44 -26.78 -26.60 -26.44 -26.57 -26.70 -26.80 -26.41 -26.00 -26.07 -26.12 -25.90 -25.69 -26.66 -24.86 -25.41 

L49 -28.22 -28.37 -28.11 -27.23 -27.16 -26.35 -27.49 -26.82 -27.44 -26.34 -26.15 -25.95 -26.13 -26.27 -26.90 -24.61 -26.56 

L50 -27.00 -27.87 -27.73 -27.38 -27.31 -27.03 -27.19 -26.99 -27.24 -26.55 -27.08 -26.69 -26.74 -27.09 -26.35 -26.88 -27.10 

L51 -27.03 -26.29 -26.72 -33.09 -25.86 -25.26 -25.65 -25.84 -25.93 -25.35 -25.08 -25.32 -24.96 -25.79 -24.81 -23.92 -25.50 

L52 -22.39 -23.53 -23.27 -23.10 -22.98 -22.84 -22.12 -22.79 -22.45 -22.99 -23.22 -22.90 -24.77 -23.18 -23.09   
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Appendix D.1 

Table D.1: Supplementary isotopic, organic and elemental data for the Chuar Group  

 

# 
Height 

(m) 

Mem- 

ber 

TOC 

wt% 

δ13C 

org 

δ13C 

carb 

Pr+Ph / 

C17+C18 

Al 

(ppm) 
Al / C† 

L.1 -63 CCM 0.06 -23.01 -0.14 n/a n/a n/a 
L.2 -93.5 CCM 0.36 -19.73 n/a 0.017 1.3 E5 51.70 

L.3 -106.7 CCM 0.35 -29.12 -3.62 n/a n/a n/a 

L.4 -115 CCM 5.30 -29.07 n/a 0.033 6.9 E4 1.36 
L.5 -127 CCM 0.07 n/a -0.27 n/a n/a n/a 

L.6 -155 CCM 2.48 -25.91 -1.74 0.108 n/a n/a 

L.7 -175 CCM 0.21 -22.56 0.23 0.057 n/a n/a 
L.8 -174.5 CCM 0.16 -24.79 0.15 n/a n/a n/a 

L.9 -173.5 CCM 6.39 -28.44 n/a 0.013 1.8 E4 1.10 

L.10 -173.7 CCM 0.31 -24.58 0.45 n/a n/a n/a 
L.11 -173.1 CCM 3.92 -27.94 -1.10 0.283 n/a n/a 

L.12 -172.8 CCM 0.15 -25.75 0.51 0.278 n/a n/a 

L.13 -179 CCM 5.06 -29.91 -0.71 0.145 n/a n/a 

L.14 -183.3 CCM 1.36 -27.18 n/a 0.164 1.2 E5 8.87 

L.16 -221.5 CCM 1.09 -26.51 -0.85 n/a n/a n/a 

L.17 -231.8 CCM 0.15 -20.43 2.56 0.075 n/a n/a 
L.18 -239.4 CCM 0.22 -22.50 1.60 n/a n/a n/a 

L.19 -242.3 CCM 2.59 -27.81 n/a n/a n/a n/a 

L.20 -242.5 CCM 0.53 -26.96 -1.96 0.164 6.5 E4 2.59 
L.21 -251 CCM 1.54 -26.27 0.70 0.178 n/a n/a 

L.22 32 AM 0.50 -24.79 -0.69 n/a n/a n/a 

L.23 78 AM 0.44 -16.24 n/a n/a n/a n/a 
L.24 145 AM 0.76 -15.73 n/a 0.024 1.7 E5 42.29 

L.25 153 AM 0.30 -22.86 n/a 0.020 9.4 E4 12.66 

L.26 155 AM 0.56 -16.48 n/a n/a 1.9 E5 67.29 
L.27 165 AM 0.76 -18.72 n/a 0.009 1.5 E5 26.76 

L.28 180 AM 2.12 -22.27 n/a 0.005 1.1 E5 15.71 

L.29 192 AM 0.32 -25.42 n/a 0.010 1.0 E5 5.02 
L.30 215 LWM 0.68 -25.37 -0.71 0.020 1.2 E5 38.27 

L.31 217.5 LWM 2.04 -26.43 3.29 0.177 n/a n/a 

L.32 218 LWM 2.98 -26.69 n/a 0.139 n/a n/a 
L.33 250.5 LWM 2.17 -25.72 n/a 0.304 5.5 E4 2.11 

L.34 262 LWM 2.07 -27.08 n/a 0.097 8.2 E4 3.96 

L.35 280 LWM 1.38 -25.91 n/a 0.039 9.7 E4 4.93 

L.36 287.8 LWM 0.64 -26.14 -3.60 0.086 7.5 E4 5.69 

L.37 287.5 LWM 0.87 -25.77 n/a n/a n/a n/a 

L.38 296 LWM 2.15 -25.50 n/a 0.201 9.1 E4 11.24 
L.39 301.8 LWM 2.38 -24.65 n/a 0.299 6.1 E4 2.95 

L.40 318 LWM 0.19 -26.24 -3.73 0.150 7.9 E4 3.49 

L.41 316.5 LWM 2.94 -27.57 n/a 0.164 n/a n/a 
L.42 332 UWM 0.67 -24.80 n/a 0.311 8.3 E4 3.05 

L.43 338 UWM 8.07 -26.69 n/a 0.053 5.9 E4 9.52 
L.45 352 UWM 3.87 -27.20 n/a 0.139 9.9 E4 1.28 

L.46 362 UWM 3.49 -27.55 n/a n/a n/a n/a 

L.47 368.5 UWM 4.31 -29.21 -1.78 0.098 7.1 E4 1.93 
L.48 371 UWM 28.95 -29.10 -2.51 0.066 6.3 E4 1.98 

L.49 376 UWM 3.90 -28.13 n/a 0.259 n/a n/a 

L.50 395 UWM 0.68 -28.01 n/a 0.196 n/a n/a 
L.51 412 UWM 1.92 -26.96 n/a 0.135 5.9 E4 1.59 

L.52 -271 CCM 0.89 -26.91 1.95 0.265 6.3 E4 9.56 

L.53 -305.4 CCM 0.45 -23.90 0.87 0.224 5.6 E4 3.00 
L.54 -303.7 CCM 0.62 -27.70 -0.15 n/a n/a n/a 

L.56 -276.6 CCM 0.31 -22.83 n/a 0.017 4.9 E4 8.34 

GC.14-10 34 AM 0.17 -30.96 n/a n/a n/a n/a 

GC.14-12 109 AM 0.30 -14.67 n/a n/a n/a n/a 

CCM= Carbon Canyon Member, AM=Awatubi Member, LWM =Lower Walcott Member, UWM = Upper 

Walcott Member, n/a = not available, † C (ppm) = TOC *10,000 
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Appendix E.1  

Table: Chuar bulk geochemical parameters 

# 
Height 

in m 

Mem

-ber 
Lithology 

CaCO3 

% 

TOC 

wt% 

δ13C 

org 

δ13C 

carb 

δ18O 

carb 
δ15N 

C/N 

ratio 

Pr/Ph 

ratio 

L.1 -63 CCM Carbonate 71.9 0.06 -23.01 -0.14 -2.15 n/a 3.0 n/a 
L.2 -93.5 CCM Black Shale 32.0 0.36 -19.73 n/a n/a n/a 10.2 3.86 

L.3 -106.7 CCM Carbonate 76.0 0.35 -29.12 -3.62 -1.61 n/a 19.6 n/a 

L.4 -115 CCM Dark Grey Shale 3.9 5.30 -29.07 n/a n/a 5.67 27.7 3.53 
L.5 -127 CCM Carbonate 88.4 0.07 n/a -0.27 -2.61 n/a n/a n/a 

L.6 -155 CCM Carbonate 81.2 2.48 -25.91 -1.74 -1.99 1.92 35.4 4.45 

L.7 -175 CCM Carbonate 69.7 0.21 -22.56 0.23 -2.92 n/a 10.8 3.11 
L.8 -174.5 CCM Carbonate 62.8 0.16 -24.79 0.15 -2.12 n/a 7.5 n/a 

L.9 -173.5 CCM Green/Grey Shale 74.2 6.39 -28.44 n/a n/a 4.86 36.9 7.04 
L.10 -173.7 CCM Carbonate 61.2 0.31 -24.58 0.45 -1.56 n/a 20.9 n/a 

L.11 -173.1 CCM Black Carbonate 83.7 3.92 -27.94 -1.10 -4.12 n/a 93.2 3.74 

L.12 -172.8 CCM Carbonate 70.0 0.15 -25.75 0.51 -2.05 n/a 7.2 3.25 
L.13 -179 CCM Carbonate 85.4 5.06 -29.91 -0.71 -5.76 5.17 52.2 6.56 

L.14 -183.3 CCM Blue/Grey Shale 3.5 1.36 -27.18 n/a n/a 6.47 15.8 n/a 

L.16 -221.5 CCM Carbonate 60.2 1.09 -26.51 -0.85 -3.40 n/a 26.7 3.71 
L.17 -231.8 CCM Carbonate 75.4 0.15 -20.43 2.56 -1.14 n/a 10.9 n/a 

L.18 -239.4 CCM Carbonate 74.8 0.22 -22.50 1.60 -2.10 n/a 15.6 n/a 

L.19 -242.3 CCM Green Shale 3.3 2.59 -27.81 n/a n/a 5.74 27.0 5.71 
L.20 -242.5 CCM Carbonate 74.0 0.53 -26.96 -1.96 -0.95 n/a 35.3 4.89 

L.21 -251 CCM Carbonate 86.2 1.54 -26.27 0.70 -1.65 2.82 6.1 n/a 

L.22 32 AM Carbonate 96.0 0.50 -24.79 -0.69 -6.46 6.22 n/a n/a 
L.23 78 AM Green Shale 6.2 0.44 -16.24 n/a n/a n/a 11.0 4.21 

L.24 145 AM Dark Shale 3.1 0.76 -15.73 n/a n/a 4.06 10.6 3.23 

L.25 153 AM Dark Grey Shale 8.6 0.30 -22.86 n/a n/a 5.31 3.9 3.32 
L.26 155 AM Dark Grey Shale 3.8 0.56 -16.48 n/a n/a 5.43 6.9 2.38 

L.27 165 AM Black Shale 4.8 0.76 -18.72 n/a n/a 5.27 6.2 2.54 

L.28 180 AM Black Shale 6.0 2.12 -22.27 n/a n/a 5.11 12.6 2.43 
L.29 192 AM Black Shale 5.9 0.32 -25.42 n/a n/a 5.16 2.2 1.99 

L.30 215 LWM Dolomite 91.0 0.68 -25.37 -0.71 -8.54 n/a n/a 2.02 

L.31 217.5 LWM Carbonate 81.4 2.04 -26.43 3.29 -2.61 3.78 19.4 1.66 
L.32 218 LWM Black Shale 11.5 2.98 -26.69 n/a n/a 4.05 22.0 2.03 

L.33 250.5 LWM Black Shale 5.0 2.17 -25.72 n/a n/a 3.33 11.8 1.84 

L.34 262 LWM Black Shale 4.9 2.07 -27.08 n/a n/a 3.28 9.0 2.47 
L.35 280 LWM Black Shale 4.4 1.38 -25.91 n/a n/a 2.96 8.5 1.02 

L.36 287.8 LWM Pisolitic Chert 25.1 0.64 -26.14 -3.60 -11.07 n/a 20.5 1.74 

L.37 287.5 LWM Black Shale 7.6 0.87 -25.77 n/a n/a 4.39 5.4 2.10 
L.38 296 LWM Black Shale 3.8 2.15 -25.50 n/a n/a 4.47 11.9 1.81 

L.39 301.8 LWM Black Shale 5.0 2.38 -24.65 n/a n/a 3.16 16.0 1.79 

L.40 318 LWM Dolomite 70.7 0.19 -26.24 -3.73 -5.80 n/a 4.8 1.19 
L.41 316.5 LWM Black Shale 7.1 2.94 -27.57 n/a n/a 4.30 14.3 0.55 

L.42 332 UWM Black Shale 7.4 0.67 -24.80 n/a n/a 4.53 5.9 1.44 

L.43 338 UWM Black Shale 3.6 8.07 -26.69 n/a n/a 3.58 14.6 1.82 
L.45 352 UWM Black Shale 4.3 3.87 -27.20 n/a n/a 1.59 11.5 1.67 

L.46 362 UWM Black Shale 9.2 3.49 -27.55 n/a n/a 1.49 11.0 1.42 

L.47 368.5 UWM Bituminous calcite 90.5 4.31 -29.21 -1.78 -7.62 n/a n/a 1.01 
L.48 371 UWM Bituminous calcite 87.7 28.95 -29.10 -2.51 -6.58 n/a n/a 1.20 

L.49 376 UWM Black Shale 3.8 3.90 -28.13 n/a n/a 3.18 12.9 1.18 

L.50 395 UWM Black Shale 3.3 0.68 -28.01 n/a n/a 2.95 13.7 0.73 
L.51 412 UWM Black Shale 3.1 1.92 -26.96 n/a n/a n/a 8.7 0.81 

L.52 -271 CCM Carbonate 85.4 0.89 -26.91 1.95 -3.82 n/a 22.9 n/a 

L.53 -305.4 CCM Carbonate 78.9 0.45 -23.90 0.87 -2.57 n/a 16.6 n/a 
L.54 -303.7 CCM Black Shale 5.2 0.62 -27.70 -0.15 -0.64 6.12 7.0 n/a 

L.56 -276.6 CCM Salt Pseudomorph 94.4 0.31 -22.83 n/a n/a n/a n/a n/a 

GC.14-

10 
34 

AM 
Dark Shale 

9.3 
0.17 n/a n/a 

n/a 
n/a n/a 2.81 

GC.14-

12 
109 

AM 
Dark Shale 

3.6 
0.30 n/a n/a 

n/a 
n/a n/a 3.22 

CCM= Carbon Canyon Member, AM= Awatubi Member, LWM= Lower Walcott Member, UWM= Upper 

Walcott member, n/a= not available 
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Appendix E.2 

Table: Chuar maturity and preservation parameters 

Sample 

# 

CPI 

(1) 

∑alkanes 

ng/g rock 
MPI-1 

Pr/ 

C17 

Ph/ 

C18 

Pr+Ph/ 

C17+C18 

UCM 

(%) 
TMAX PI 

BNT/ 

Phen 

L.1 0.95 0.17 n/a n/a n/a n/a n/a n/a n/a 0.15 
L.2 0.95 0.05 0.02 0.03 0.01 0.017 n/a n/a n/a 0.11 

L.3 0.82 0.10 0.05 n/a n/a n/a n/a n/a n/a 0.21 

L.4 0.93 13.49 0.34 0.05 0.02 0.033 11 451 0.04 0.06 
L.5 1.08 0.10 0.03 n/a n/a n/a n/a n/a n/a 0.03 

L.6 1.01 21.89 0.04 0.17 0.04 0.108 7 444 0.13 0.01 

L.7 1.14 0.16 0.25 0.08 0.03 0.057 n/a n/a n/a 0.02 
L.8 1.06 0.04 0.40 n/a n/a n/a n/a n/a n/a 0.02 

L.9 0.96 1.2 E4 0.52 0.02 0.004 0.013 5 455 0.05 0.04 

L.10 0.90 0.07 0.41 n/a n/a n/a n/a n/a n/a 0.02 
L.11 1.05 6.0 E3 0.60 0.48 0.11 0.283 4 434 0.15 0.10 

L.12 0.99 0.44 0.23 0.53 0.11 0.278 8 n/a n/a 0.02 

L.13 0.99 1.2 E3 0.80 0.24 0.04 0.145 n/a 443 0.17 0.08 
L.14 0.96 0.12 0.12 0.12 0.03 0.164 n/a 450 0.51 0.24 

L.16 0.95 0.30 n/a n/a n/a n/a 12 450 0.70 0.21 

L.17 1.05 0.03 n/a n/a n/a n/a n/a n/a n/a 0.46 
L.18 1.10 0.30 n/a n/a n/a n/a n/a n/a n/a 0.08 

L.19 0.97 5.84 0.56 0.26 0.05 0.164 24 477 0.11 0.10 

L.20 0.92 0.37 0.71 0.29 0.06 0.178 n/a n/a n/a 0.05 
L.21 0.97 0.04 0.35 n/a n/a n/a n/a 436 0.10 2.40 

L.22 0.92 0.09 0.02 n/a n/a n/a n/a n/a n/a 0.00 

L.23 0.88 0.17 0.01 0.04 0.01 0.024 n/a n/a n/a 0.05 
L.24 0.94 290.6 0.02 0.23 0.08 0.020 4 445 0.47 0.00 

L.25 0.97 47.87 0.22 0.89 0.32 n/a 17 n/a n/a 1.58 

L.26 0.99 75.91 0.19 0.01 0.01 0.009 10 440 0.51 0.01 
L.27 0.97 127.7 0.08 0.01 0.003 0.005 7 440 0.40 0.03 

L.28 1.00 1.0 E3 0.06 0.02 0.01 0.010 9 432 0.09 0.00 

L.29 1.00 27.04 0.07 0.94 0.52 0.020 20 n/a n/a 0.01 
L.30 0.91 44.89 0.71 0.23 0.12 0.177 35 n/a n/a 0.21 

L.31 0.98 1.0 E3 0.75 0.17 0.11 0.139 20 434 0.23 0.15 

L.32 1.01 4.9 E3 0.83 0.39 0.21 0.304 40 439 0.07 0.11 
L.33 1.01 102.6 0.02 0.13 0.07 0.097 21 434 0.19 0.01 

L.34 1.00 811.1 0.05 0.05 0.02 0.039 10 430 0.16 0.00 
L.35 1.02 240.9 0.11 0.11 0.07 0.086 24 428 0.18 0.00 

L.36 0.96 91.73 0.55 0.32 0.19 n/a 23 430 0.23 0.06 

L.37 0.99 429.0 0.30 0.34 0.11 0.201 13 432 0.20 0.01 
L.38 0.98 3.4 E3 0.79 0.38 0.22 0.299 19 431 0.03 0.08 

L.39 0.95 1.9 E3 0.44 0.19 0.11 0.150 10 429 0.08 0.02 

L.40 1.00 1.85 0.29 0.18 0.15 0.164 13 n/a n/a 0.06 
L.41 1.04 299.5 0.58 0.33 0.30 0.311 29 427 0.10 0.05 

L.42 1.02 187.2 0.12 0.06 0.05 0.053 40 427 0.21 0.15 

L.43 0.99 1.5 E3 0.41 0.17 0.10 0.139 27 435 0.04 0.85 
L.45 1.05 206.6 0.09 0.12 0.08 0.098 42 435 0.04 0.63 

L.46 1.06 90.09 0.24 0.07 0.06 0.066 51 431 0.08 0.20 

L.47 1.01 96.71 0.86 0.26 0.25 0.259 41 434 0.24 0.57 
L.48 1.01 102.5 0.59 0.22 0.18 0.196 57 435 0.11 2.26 

L.49 1.16 425.9 0.67 0.14 0.13 0.135 48 433 0.05 0.37 

L.50 1.00 230.1 0.90 0.26 0.27 0.265 42 n/a n/a 0.74 
L.51 1.03 76.05 0.07 0.20 0.25 0.224 n/a 432 0.21 0.04 

L.52 0.94 1.36 0.10 n/a n/a n/a n/a 435 n/a 0.08 

L.53 0.98 0.33 0.04 n/a n/a n/a n/a n/a n/a 0.08 
L.54 0.95 0.15 n/a n/a n/a n/a n/a n/a n/a 0.18 

L.56 1.28 0.10 0.07 n/a n/a n/a n/a n/a n/a 0.08 

GC.14-10 0.77 1.32 n/a 0.28 0.10 n/a n/a n/a n/a n/a 

GC.14-12 0.88 1.46 n/a 0.22 0.08 n/a n/a n/a n/a n/a 
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Appendix E.3 

Table: Chuar redox sensitive trace element abundances and parameters 

Al 

(ppm) 

Ba 

(ppm) 

U 

(ppm) 

Mo 

(ppm) 

Cu 

(ppm) 

Zn 

(ppm) 

V 

(ppm) 

Cr 

(ppm) 

Co 

(ppm) 

Th 

(ppm) 

Sc 

(ppm) 

V/ 

V+Ni 
Ni/Co U/Th V/Cr V/Sc 

Cu+ 

Mo/Zn 
Ba/Al 

1.3E5 183.7 5.08 2.15 6.28 64.8 159.1 147.6 27.62 5.83 16.51 0.66 2.94 0.87 1.08 9.64 0.13 1.5E-3 

6.9E4 132.1 3.14 6.25 58.72 136.1 72.1 114.7 5.08 11.32 11.71 0.53 12.79 0.28 0.63 6.16 0.48 1.9E-3 

1.8E4 37.7 1.06 2.69 12.21 34.2 32.7 66.3 5.27 2.80 3.81 0.49 6.46 0.38 0.49 8.57 0.44 2.1E-3 

1.2E5 318.8 8.61 5.52 25.83 50.1 153.6 128.0 36.72 15.05 19.83 0.64 2.40 0.57 1.20 7.75 0.63 2.7E-3 

6.5E4 n/a 3.02 5.74 41.99 86.9 79.1 163.6 7.52 8.58 10.05 0.47 11.73 0.35 0.48 7.86 0.55 n/a 

1.7E5 229.9 7.89 2.02 2.00 23.6 136.7 115.7 5.27 26.89 30.19 0.80 6.40 0.29 1.18 4.53 0.17 1.3E-3 

9.4E4 222.7 4.28 3.84 9.98 20.0 98.2 60.5 1.31 18.41 17.60 0.95 4.15 0.23 1.62 5.58 0.69 2.4E-3 

1.9E5 188.0 4.79 1.75 27.31 109.3 129.4 103.0 10.22 22.28 26.65 0.44 16.02 0.21 1.26 4.86 0.27 1.0E-3 

1.5E5 192.6 4.41 1.87 8.36 37.6 145.1 93.4 2.63 21.19 26.60 0.85 9.85 0.21 1.55 5.45 0.27 1.3E-3 

1.1E5 149.5 4.43 2.89 16.87 35.6 132.7 84.1 2.33 21.21 22.68 0.89 6.79 0.21 1.58 5.85 0.56 1.3E-3 

1.0E5 233.2 3.88 2.63 23.65 35.1 92.3 77.6 4.07 18.97 20.15 0.85 4.01 0.20 1.19 4.58 0.75 2.3E-3 

1.2E5 113.5 2.10 n/a 17.63 68.8 96.7 82.5 7.82 11.70 19.44 0.85 2.25 0.18 1.17 4.97 0.26 9.8E-4 

5.5E4 159.0 3.00 4.56 19.66 9.6 54.8 68.5 2.31 10.42 9.97 0.86 3.81 0.29 0.80 5.50 2.53 2.9E-3 

8.2E4 225.6 3.95 4.21 36.69 13.4 75.9 137.2 1.44 19.34 18.36 0.80 13.26 0.20 0.55 4.13 3.05 2.8E-3 

9.7E4 n/a 3.33 2.36 28.69 22.8 88.1 119.3 2.05 19.01 21.67 0.91 4.33 0.18 0.74 4.06 1.36 n/a 

7.5E4 144.1 2.71 4.81 24.56 16.5 55.3 107.9 1.36 15.44 13.95 0.74 14.43 0.18 0.51 3.97 1.78 1.9E-3 

9.1E4 125.7 2.46 2.06 46.72 24.7 73.0 114.7 3.43 13.34 17.90 0.78 5.84 0.18 0.64 4.08 1.98 1.4E-3 

6.1E4 189.9 2.84 2.24 52.81 13.1 54.4 76.2 2.84 13.36 12.47 0.78 5.55 0.21 0.71 4.36 4.20 3.1E-3 

7.9E4 252.4 3.27 2.50 34.40 19.7 71.9 104.1 1.36 15.91 15.45 0.88 7.02 0.21 0.69 4.65 1.87 3.2E-3 

8.3E4 255.3 3.74 4.24 14.08 10.2 88.2 106.5 2.13 16.90 16.59 0.78 11.58 0.22 0.83 5.31 1.80 3.1E-3 

5.9E4 245.4 3.60 7.08 24.97 7.1 67.5 60.3 0.92 5.87 12.22 0.94 4.94 0.61 1.12 5.53 4.52 4.1E-3 

9.9E4 381.6 8.54 16.64 132.4 18.6 176.4 193.4 2.16 19.38 21.93 0.91 8.05 0.44 0.91 8.04 8.01 3.8E-3 

7.1E4 259.2 4.14 2.74 28.01 9.1 138.8 164.7 1.98 13.71 16.07 0.81 16.90 0.30 0.84 8.64 3.38 3.6E-3 

6.3E4 242.3 2.89 4.29 15.75 6.7 59.4 141.2 1.48 13.36 11.51 0.66 20.48 0.22 0.42 5.16 3.00 3.9E-3 

5.9E4 250.5 4.89 16.59 17.91 6.3 105.5 100.5 1.01 12.86 11.83 0.84 19.48 0.38 1.05 8.91 5.44 4.2E-3 

6.3E4 234.5 2.31 5.74 9.42 7.1 69.5 102.1 1.27 9.45 12.32 0.79 14.91 0.24 0.68 5.64 2.13 3.7E-3 

5.6E4 249.3 3.07 2.97 40.62 7.8 53.5 108.3 1.52 12.55 11.41 0.65 18.66 0.24 0.49 4.69 5.58 4.5E-3 

4.9E4 189.7 4.00 3.50 42.58 57.7 72.8 83.8 18.55 6.54 8.60 0.62 2.36 0.61 0.87 8.46 0.80 3.9E-3 
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Appendix E.4 

Table: Chuar organic geochemical parameters 

# 
Hop* 

/Hop 

Gamma-

cerane 

index 

BNG/ 

(BNG+ 

Gam) 

C29/ 

C30 

C31 

S/S+R 

C27 

d/d+reg 

Ts/ 

Ts+Tm 

Ster/ 

(Ster + 

Hop) 

C19C/ 

A+B 

BNG 

% 

C27 

% 

Hop 

% 

Tri-

cyclics 

% 

HHI  

% 

L.4 n/a n/a n/a n/a n/a 0.54 n/a n/a n/a 78.78 n/a n/a 6.4 n/a 
L.23 n/a n/a 1.0 n/a n/a n/a n/a n/a n/a 78.78 n/a n/a 6.4 n/a 
L.24 n/a n/a 1.0 n/a n/a n/a n/a n/a n/a 29.1 n/a n/a 30.6 n/a 
L.25 n/a n/a 1.0 n/a n/a n/a n/a n/a n/a 35.59 n/a n/a 15.0 n/a 
L.26 0.14 n/a 1.0 n/a n/a n/a 1.0 n/a n/a 22.48 n/a 2.8 30.3 n/a 
L.27 0.09 0.26 n/a n/a n/a 0.69 1.0 0.53 n/a 34.76 13.0 3.5 31.1 n/a 
L.28 0.36 0.82 n/a n/a n/a 0.79 1.0 0.16 0.63 6.2 6.9 7.5 57.8 n/a 
L.29 n/a 0.25 n/a n/a n/a n/a 1.0 n/a 0.69 4.7 8.6 7.6 56.6 n/a 
L.30 0.11 0.15 0.0 3.61 n/a 0.81 1.0 0.13 0.13 n/a 10.9 13.5 57.0 n/a 
L.31 0.37 1.29 n/a 2.99 0.52 0.74 1.0 0.10 0.29 1.5 11.4 25.4 42.5 0.16 

L.33 0.41 0.33 0.0 2.64 0.55 0.66 0.95 0.13 0.30 n/a 8.1 19.3 55.6 0.06 

L.34 0.39 0.39 0.0 4.13 0.46 0.85 0.97 0.05 0.46 n/a 7.3 21.9 54.0 0.07 

L.35 0.29 0.23 0.0 2.26 0.61 0.79 0.95 0.10 0.44 n/a 12.0 22.3 49.2 0.10 

L.36 0.18 0.82 0.0 1.55 0.63 0.49 0.90 0.18 n/a n/a 19.5 46.7 22.4 0.06 

L.37 0.29 0.19 0.0 1.91 0.53 0.84 0.94 0.21 0.45 n/a 24.4 14.2 44.2 0.10 

L.38 0.31 0.29 0.0 1.66 0.50 0.61 0.97 0.26 0.30 n/a 15.7 17.1 33.3 n/a 

L.39 0.19 0.63 0.0 6.32 0.53 0.71 0.98 0.19 0.22 n/a 12.3 15.0 49.0 0.18 

L.41 0.41 3.59 0.0 1.08 0.52 0.83 1.0 0.21 0.72 n/a 21.5 13.4 47.7 0.22 

L.42 0.02 0.06 0.0 7.59 0.59 0.61 1.0 0.03 0.30 n/a 1.5 20.7 74.5 n/a 
L.43 0.06 n/a n/a 3.01 n/a 0.35 1.0 0.22 0.29 n/a 6.3 14.3 71.0 n/a 
L.45 0.03 0.05 0.0 6.93 0.50 0.73 1.0 0.01 0.18 n/a 1.7 31.3 64.6 n/a 
L.46 0.02 0.04 0.0 8.01 0.62 0.77 1.0 0.01 0.21 n/a 2.0 31.6 62.7 0.18 

L.47 0.03 0.14 0.0 7.43 0.51 0.72 1.0 0.02 0.21 n/a 2.3 38.2 55.4 0.23 

L.48 0.01 0.06 0.0 7.58 0.55 0.62 1.0 0.03 0.17 n/a 2.2 26.7 65.8 0.18 

L.49 0.03 0.03 0.0 6.14 0.54 0.67 1.0 0.05 0.17 n/a 3.2 19.6 68.8 0.15 

L.50 0.01 0.09 0.0 5.62 0.53 0.61 1.0 0.13 0.15 n/a 4.4 10.9 57.9 0.25 

L.51 n/a 0.21 0.0 6.47 0.50 0.71 1.0 0.06 0.13 n/a 3.4 15.6 76.7 0.25 
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Appendix E.5 

Table: Chuar steranes and gammacerane abundances (ng/g rock) 
C19

A C19
B C19

C C21 ∑C26 
C27 

βαS 

C27 

βαR 

C27 

αβR 

C27 

αβS 

C27 

αααS 

C27 

αββR 

C27 

αββS 

C27 

αααR 

Gamma

cerane 
BNG 

∑356 

177 

316 

177 

n/d n/d 2.29 n/d n/d 0.39 0.26 n/d n/d 0.52 0.51 0.41 0.43 n/d n/d n/d n/d 
n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 2.13 0.00 0.29 

n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 1.34 1.30 0.37 

n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 0.22 0.26 0.26 

n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 1.08 1.80 0.23 

n/d n/d n/d n/d n/d 0.28 0.15 0.08 0.11 0.07 0.06 0.09 0.07 0.02 2.41 0.65 0.37 

5.91 4.02 5.36 0.70 n/d 2.90 1.77 0.42 0.82 0.38 0.42 0.49 0.33 0.90 6.79 7.42 0.92 

0.23 0.10 0.23 n/d n/d 0.09 0.03 0.03 0.02 n/d n/d n/d n/d 0.01 0.09 0.15 n/d 
0.34 1.78 0.92 1.77 0.83 1.15 0.82 0.25 0.32 0.18 0.15 0.17 0.11 0.04 1.10 0.27 n/d 
3.74 6.99 5.72 4.87 5.23 9.99 6.91 2.07 2.74 2.00 2.62 1.75 1.12 3.30 n/d 4.18 n/d 
7.11 13.86 10.14 6.60 5.02 9.29 5.44 1.88 3.33 2.41 3.15 2.82 2.01 1.22 n/d 2.65 n/d 

12.24 13.34 13.43 3.40 5.58 12.49 8.21 2.50 4.11 1.61 1.47 0.82 0.95 1.72 n/d 3.60 n/d 
15.98 23.15 13.17 9.68 9.21 22.59 13.91 5.24 10.58 3.58 4.25 3.07 2.70 1.29 n/d 4.30 n/d 
0.00 0.09 1.08 2.45 4.60 13.09 6.74 3.13 5.44 6.84 8.08 8.41 6.67 2.46 n/d 0.00 n/d 

22.13 35.37 14.28 12.67 17.71 53.17 34.64 14.78 23.38 5.43 7.72 6.11 4.11 1.13 n/d 2.19 n/d 
79.16 161.17 102.46 89.86 73.82 111.71 76.79 30.30 38.22 42.18 47.08 41.52 30.22 10.62 n/d 0.00 n/d 
27.71 55.86 68.73 30.63 29.96 32.88 22.97 7.85 12.20 6.66 9.25 9.07 5.41 5.44 n/d 2.44 n/d 
9.38 9.65 3.29 1.73 7.05 20.11 11.95 4.99 5.53 2.18 2.55 2.08 1.94 8.57 n/d n/d n/d 
1.84 4.14 1.98 2.47 3.21 1.26 0.80 0.32 0.41 0.51 0.38 0.27 0.64 0.19 n/d 2.28 n/d 

148.28 343.33 174.78 261.71 n/d 115.38 67.38 26.13 44.45 35.26 29.18 35.30 60.64 n/d n/d 106.0 n/d 
4.46 16.37 8.12 13.57 11.83 8.47 5.38 2.77 3.51 2.22 1.18 1.22 2.92 0.79 n/d 12.63 n/d 
5.15 18.64 6.24 14.72 15.44 8.31 5.59 2.64 2.73 1.48 1.27 1.03 2.06 0.47 n/d 10.73 n/d 
0.73 2.50 1.05 3.42 6.39 2.62 1.16 0.57 0.84 0.58 0.62 0.57 0.26 0.44 n/d 1.90 n/d 
3.01 12.26 4.99 15.90 17.90 5.56 2.98 1.17 1.48 1.73 1.86 1.33 1.82 0.52 n/d 5.59 n/d 
6.51 10.81 27.40 26.08 28.37 10.38 5.90 2.06 3.00 2.99 2.89 2.53 2.21 0.30 n/d 8.95 n/d 
2.77 5.50 13.42 12.68 15.83 7.69 5.01 1.41 1.86 2.09 3.15 2.68 2.16 0.51 n/d 2.00 n/d 
1.63 3.61 8.44 9.70 11.38 7.47 4.41 1.34 2.61 1.79 1.74 1.39 1.47 1.36 n/d 2.61 n/d 

 



L. M. van Maldegem (2017)                                       Appendix B: Supplement for Chapter VI 

221 

 

  

Appendix E.6 

Table: Chuar tricyclic terpane and (nor) hopane abundances (ng/g rock) 

19/3 20/3 21/3 22/3 23/3 24/3 25/3 ∑26/3 24/4 Ts Tm TNH H29* H29 H30* H30 

6.17 13.10 14.25 4.19 9.44 5.10 2.80 2.87 n/d n/d n/d n/d n/d n/d n/d n/d 

0.07 0.10 0.07 0.02 0.06 0.07 0.03 n/d n/d n/d n/d n/d n/d n/d n/d n/d 

0.68 1.02 0.96 0.30 0.51 0.29 0.16 n/d n/d n/d n/d n/d n/d n/d n/d n/d 

0.17 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 0.11 n/d n/d n/d 

0.24 0.34 0.29 0.09 0.21 0.14 0.09 n/d n/d n/d n/d n/d n/d n/d n/d n/d 

0.14 n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d n/d 

0.32 0.44 0.26 n/d 0.24 0.12 n/d 0.09 n/d 0.14 n/d n/d 0.17 n/d n/d n/d 

0.38 0.49 0.44 0.15 0.35 0.17 0.11 n/d 0.10 0.14 n/d n/d 0.24 n/d n/d 0.11 

14.95 13.08 11.59 2.44 10.16 4.09 3.34 3.24 0.53 6.53 n/d n/d 1.26 n/d 2.60 0.90 

0.36 0.22 0.24 n/d 0.18 0.09 0.11 n/d n/d 0.14 n/d n/d n/d n/d n/d 0.02 

4.48 4.04 1.43 0.41 1.76 0.92 0.63 0.55 2.09 2.63 n/d 0.20 n/d 0.70 0.10 0.19 

7.88 10.71 14.56 3.78 21.05 17.22 13.49 13.28 5.10 25.78 n/d 3.51 4.96 14.16 10.95 4.74 

25.69 32.35 40.99 7.83 40.35 22.94 15.11 13.98 8.48 32.19 1.57 4.42 6.63 12.84 12.48 4.86 

31.38 34.74 49.24 8.75 50.80 22.33 16.14 17.75 7.40 45.25 1.35 5.48 8.91 20.50 15.07 4.96 

29.24 37.56 51.82 11.54 57.93 29.40 21.89 20.38 11.09 44.65 2.26 5.31 9.41 26.85 14.81 11.87 

0.57 2.35 4.72 1.22 13.01 12.51 13.86 13.10 5.94 31.92 3.50 0.00 8.98 40.77 9.61 26.30 

36.61 37.71 51.59 10.04 54.04 28.12 21.39 20.71 8.27 26.98 1.72 3.32 7.35 18.03 7.95 9.43 

129.39 175.14 193.43 49.00 240.5 166.7 124.34 93.36 47.95 173.0 4.45 0.00 19.79 69.28 42.52 41.69 

51.82 53.91 70.30 17.75 87.26 61.61 40.25 29.14 13.21 44.93 1.03 5.29 5.24 46.75 9.16 7.40 

7.07 10.15 18.77 5.10 21.77 18.09 16.61 14.61 1.91 9.25 n/d 1.46 2.13 4.62 7.97 4.28 

35.01 39.13 34.31 9.54 42.54 30.42 18.25 18.32 5.08 42.37 n/d 4.64 0.98 10.43 0.57 1.37 

2117.3 632.4 1030.1 331.5 1417.4 1192.8 660.6 659.92 240.3 1445.9 n/d n/d 65.16 165.48 34.58 54.94 

138.36 212.40 143.89 39.63 201.81 126.7 77.22 78.13 48.98 3356.0 n/d 32.79 7.72 96.43 5.83 13.91 

116.33 148.46 99.09 33.21 153.55 90.95 61.84 56.54 44.14 237.7 n/d 23.96 6.00 100.56 3.12 12.55 

17.90 21.17 19.26 6.52 33.84 24.91 17.60 18.82 13.80 60.52 n/d 5.32 1.75 36.97 1.05 4.97 

75.93 91.13 72.82 23.01 106.09 63.29 40.53 35.68 37.66 139.2 n/d 13.67 3.22 45.15 1.92 5.95 

97.38 101.51 91.75 31.11 137.15 86.60 54.09 51.19 26.05 121.6 n/d 12.28 0.08 37.06 1.57 6.03 

26.74 44.70 50.71 16.50 81.68 46.50 30.44 30.04 12.29 34.61 n/d 3.82 1.47 16.21 0.68 2.99 

43.50 69.13 80.39 26.96 123.89 59.43 39.41 36.85 23.72 55.13 n/d 6.33 0.72 26.74 0.61 4.13 
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Appendix E.7 

Table: Chuar homohopanes (C31–C35) abundances (ng/g rock) 

∑C31* 
C31 

22S 

C31 

22R 
∑C32* 

C32 

22S 

C32 

22R 
∑C33* 

C33 

22S 

C33 

22R 
∑C34* 

C34 

22S 

C34 

22R 
∑C35* 

C35 

22S 

C35 

22R 

0.40 0.18 0.40 0.13 0.13 n/d n/d n/d n/d n/d n/d n/d n/d n/d 
1.95 1.77 0.00 1.92 1.24 1.62 0.95 0.96 1.15 1.05 0.85 1.24 1.14 0.83 

2.63 2.17 1.43 1.64 2.10 1.91 0.81 0.87 0.81 0.57 0.48 0.48 0.40 0.36 

1.91 2.29 2.17 2.36 2.42 3.29 1.24 1.29 1.41 0.90 0.68 0.66 0.61 0.42 

5.53 3.47 1.82 3.73 3.37 2.92 2.45 2.39 1.13 1.67 1.55 0.88 1.49 1.12 

11.09 6.43 0.00 6.97 3.63 0.00 2.46 1.59 0.00 1.72 1.20 0.00 1.48 0.83 

4.26 3.71 2.26 2.95 3.31 2.00 2.00 2.82 1.03 1.50 1.34 1.14 1.16 1.20 

19.01 21.30 21.09 10.01 22.46 19.31 12.35 15.62 15.26 11.67 11.51 11.52 14.13 15.83 13.53 

3.12 2.72 2.84 2.61 2.45 1.60 1.64 1.28 1.07 1.77 1.44 1.31 2.09 1.66 

1.14 1.04 2.02 1.10 1.00 1.46 1.43 0.85 1.32 1.25 0.93 1.05 1.37 1.08 

0.51 0.36 n/d 0.27 0.22 n/d n/d n/d n/d n/d n/d n/d n/d n/d 
1.38 3.49 n/d 1.04 1.23 n/d n/d n/d n/d n/d n/d n/d n/d n/d 
1.33 2.75 n/d 1.59 1.66 n/d n/d n/d n/d n/d n/d n/d n/d n/d 
0.93 0.89 n/d 0.85 0.39 n/d 0.70 0.46 n/d 0.45 0.50 n/d 0.94 0.81 

0.85 1.63 n/d 0.66 0.37 n/d 0.28 0.21 n/d 0.28 0.40 n/d 0.52 0.48 

1.26 1.05 n/d 1.91 1.39 n/d 0.40 0.34 n/d 0.31 0.20 n/d 0.34 0.47 

0.66 0.58 n/d 0.62 0.52 n/d 0.36 0.38 n/d 0.40 0.24 n/d 0.47 0.35 

0.67 0.68 n/d 0.78 0.72 n/d 0.51 0.48 n/d 0.35 0.31 n/d 0.67 0.40 
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Appendix E.8 

Table | Aromatic hydrocarbons preserved in the Chuar group (below m/z 194) (in ng/g 

rock) 

# Napth 
2-M-

Napth 

1-M-

Napth 
Bi-phenyl Phen 

3-M-

Phen 

2-M-

Phen 

9-M-

Phen 

1-M-

Phen 
DBT  

L.1 10.66 0.31 0.21 5.93 17.86 100.60 118.02 118.95 68.61 4.07 

L.2 212.50 0.90 1.57 169.28 708.13 2.14 1.93 4.05 1.86 114.54 

L.3 401.70 15.11 34.59 75.91 451.40 0.00 0.00 0.00 0.00 62.70 
L.4 855.32 48.53 39.77 601.31 6144.63 0.04 0.07 0.19 0.07 28.46 

L.5 13.38 2.86 2.66 8.22 16.20 833.76 1326.91 782.77 659.67 5.25 
L.6 7.91 0.79 1.04 6.62 101.81 84.70 79.89 92.51 53.77 0.73 

L.7 3.22 13.42 11.90 18.68 144.54 0.18 0.25 0.24 0.17 3.00 

L.8 2.41 61.95 46.41 22.48 119.95 0.00 0.02 0.01 0.01 5.17 
L.9 ● 147.83 112.59 106.77 67.55 312.82 0.43 0.90 0.50 0.35 1.33 

L.10 75.63 91.96 68.67 33.26 175.06 1.18 1.19 2.21 1.70 8.10 

L.11 521.81 565.22 663.51 203.27 1470.54 9.16 22.35 9.70 19.61 356.13 
L.12 10.90 10.77 9.23 9.17 72.05 4.23 10.28 6.75 10.10 0.57 

L.13 563.99 1572.17 1659.42 871.09 4806.56 15.34 18.99 24.31 25.46 172.42 

L.14 1579.57 11.61 30.26 1005.63 2659.11 305.20 674.44 456.71 837.10 1490.39 
L.16 6.32 0.26 0.27 206.25 1525.49 0.51 0.92 0.87 1.47 1174.15 

L.17 0.31 0.04 n/d 0.33 5.51 14.37 13.73 21.23 12.21 0.28 

L.18 2.79 0.34 0.21 3.02 55.72 29.95 29.31 51.31 34.73 8.44 
L.19 3770.33 285.05 232.52 1093.99 4317.84 93.90 89.89 138.84 92.57 66.76 

L.20 352.64 130.81 112.00 59.60 202.79 60.84 93.04 110.61 140.39 28.64 

L.21 1.05 0.33 0.24 0.29 1.44 74.47 67.72 141.79 132.01 0.31 
L.22 1.35 n/d n/d 0.56 2.17 97.85 182.42 167.95 272.86 0.20 

L.23 0.94 n/d n/d 1.80 200.43 16.77 15.63 33.25 17.48 0.11 

L.24 3.12 n/d n/d 4.47 160.97 101.73 192.00 128.02 213.35 0.24 
L.25 2.96 n/d n/d 453.48 181.66 20.78 32.36 38.49 32.30 0.10 

L.26 2.47 n/d n/d 0.72 96.61 1325.20 4792.19 2530.54 5332.70 0.12 

L.27 60.91 39.40 28.59 15.98 590.37 0.96 1.02 2.45 1.52 n/d 
L.28 90.58 1.002.54 88.86 41.02 22535.42 14.64 35.19 31.61 62.26 n/d 

L.29 0.24 0.23 0.07 0.19 28.10 11.74 35.28 17.66 27.50 n/d 

L.30 10.75 30.32 17.03 22.12 25.58 3.37 6.86 4.45 4.70 33.68 
L.31 10.81 14.70 11.60 1.74 32.53 11.79 32.44 13.99 20.34 2.41 

L.32 ● 1.90 14.14 18.75 2.48 101.21 10.77 33.62 15.95 25.19 0.87 

L.33 34.52 49.25 41.72 19.93 13688.70 22.82 32.73 33.80 22.17 3.70 

L.34 32.36 63.69 55.59 21.67 3931.63 22.36 38.42 54.56 27.91 2.62 

L.35 144.55 103.54 90.02 31.10 3251.69 172.37 464.42 336.51 381.17 0.00 

L.36 15.20 28.29 25.11 11.41 37.30 152.26 293.51 255.93 242.75 5.26 
L.37 78.51 71.33 61.28 36.52 1148.66 1.81 3.24 3.05 3.44 n/d 

L.38 ● 0.74 2.46 2.59 2.13 29.89 1.72 1.45 1.19 0.80 n/d 

L.39 104.19 168.11 209.18 165.89 12815.70 0.45 0.42 0.43 0.25 1.87 
L.40 9.44 7.43 5.93 1.56 6.34 0.12 0.12 0.16 0.12 0.86 

L.41 6.21 4.20 4.11 1.17 34.47 0.03 0.08 0.04 0.04 0.00 

L.42 6.83 9.94 9.42 7.22 548.72 100.60 118.02 118.95 68.61 6.45 
L.43 ● 103.12 6.72 1.91 10.77 28.63 2.14 1.93 4.05 1.86 0.14 

L.45 20.59 15.22 12.16 48.75 678.77 n/d n/d n/d n/d 11.56 

L.46 9.72 11.77 10.39 16.56 238.29 0.04 0.07 0.19 0.07 2.41 
L.47 41.18 121.08 76.25 3.62 40.81 833.76 1326.91 782.77 659.67 32.43 

L.48 22.50 51.33 35.30 1.11 73.01 84.70 79.89 92.51 53.77 9.30 

L.49 142.56 329.54 206.47 100.43 706.68 0.18 0.25 0.24 0.17 3.80 
L.50 23.78 86.80 72.39 21.31 242.87 0.00 0.02 0.01 0.01 30.77 

L.51 9.01 3.51 3.34 1.35 99.43 0.43 0.90 0.50 0.35 0.55 

L.52 67.42 1.62 1.14 115.62 44.14 1.18 1.19 2.21 1.70 5.78 
L.53 48.20 0.53 0.57 65.76 30.92 9.16 22.35 9.70 19.61 19.83 

L.54 6.15 1.17 0.76 4.62 134.01 4.23 10.28 6.75 10.10 13.19 

L.56 4.45 0.89 0.57 0.77 2.38 15.34 18.99 24.31 25.46 0.14 

● = values for these samples are in μg / g rock 
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Appendix E.9 

Table | Aromatic hydrocarbons preserved in the Chuar group (between m/z 194 -253) 

(in ng/g rock) 

# 4-M-

DBT 

3-,2-M-

DBT 

1-M-

DBT 

F-antra-

cene 
Pyrene BNT B[a]A B[e]Py B[a]Py 

L.1 n/d n/d n/d 0.61 1.10 2.60 3.78 0.66 0.58 

L.2 5.73 0.36 0.88 58.24 117.50 80.31 617.70 113.22 101.20 

L.3 6.68 0.77 1.01 12.03 44.84 95.46 405.33 19.68 66.04 
L.4 62.98 15.27 6.72 42.92 500.65 343.49 4307.61 488.10 1951.48 

L.5 0.31 0.00 0.00 0.24 0.97 0.54 1.25 0.15 0.21 
L.6 0.35 0.33 0.00 0.24 18.83 0.74 166.29 n/d 134.96 

L.7 3.40 0.77 0.01 1.21 7.84 3.36 70.79 2.29 11.29 

L.8 4.96 1.53 0.01 0.64 7.08 2.82 54.69 2.07 11.84 
L.9 ● 4.23 0.63 0.63 1.04 39.83 12.88 251.89 7.68 109.56 

L.10 8.08 2.63 0.42 1.18 11.29 3.60 75.44 3.75 17.11 

L.11 77.39 6.69 146.60 2.43 320.36 153.71 2099.14 43.85 2895.24 
L.12 0.59 0.08 0.14 0.52 4.59 1.17 32.31 1.35 5.55 

L.13 340.15 49.80 121.66 15.48 1495.84 400.00 7349.77 205.37 5112.80 

L.14 0.00 0.00 0.00 69.60 300.77 635.89 1508.06 191.39 381.64 
L.16 24.99 3.06 3.04 39.33 109.92 315.61 560.27 27.46 51.57 

L.17 n/d n/d n/d 2.57 4.47 2.54 63.41 11.07 9.45 

L.18 0.25 n/d n/d 1.37 4.26 4.39 51.87 1.35 2.86 
L.19 n/d n/d n/d 21.72 611.31 413.01 2602.29 237.99 1307.81 

L.20 18.50 4.40 0.87 0.88 27.31 9.53 137.89 3.56 41.38 

L.21 0.14 0.01 0.00 0.31 2.45 3.46 6.90 0.98 1.73 
L.22 n/d n/d n/d 0.12 0.35 n/d 0.21 0.01 0.02 

L.23 n/d n/d n/d 6.05 15.39 10.89 185.56 12.99 36.98 

L.24 n/d n/d n/d 1.80 1.26 0.00 179.36 4.01 24.40 
L.25 n/d n/d n/d 31.36 135.52 0.45 198.91 6.46 51.60 

L.26 n/d n/d n/d 2.14 4.28 0.52 262.54 9.15 55.54 

L.27 n/d 12.25 16.18 56.42 12.66 19.47 5060.98 194.62 685.03 
L.28 8.02 4.43 17.17 220.52 98.67 51.76 60977.11 1395.94 5884.60 

L.29 0.01 0.20 0.14 0.49 0.22 0.34 129.41 1.81 5.50 

L.30 23.62 15.08 0.21 0.27 1.61 5.38 13.23 1.74 3.03 
L.31 9.34 3.01 1.50 0.42 5.99 5.04 88.41 3.20 36.16 

L.32 ● 26.47 1.83 13.58 0.33 7.32 10.79 115.43 3.96 39.33 

L.33 7.94 0.81 17.69 200.01 75.42 70.97 24294.38 618.46 1481.24 

L.34 10.45 1.13 30.65 65.37 21.50 17.79 13463.41 176.49 530.48 

L.35 14.37 0.00 16.91 23.51 43.05 10.41 4415.45 61.51 327.64 

L.36 7.08 1.11 1.66 0.58 3.87 2.09 52.86 1.77 14.90 
L.37 13.10 0.00 14.48 18.48 27.84 7.70 2047.66 25.20 132.04 

L.38 ● 16.81 0.92 5.23 0.08 1.72 2.26 25.99 0.42 5.73 

L.39 166.03 15.86 55.58 70.25 368.95 282.69 12398.94 150.55 1398.44 
L.40 1.53 0.56 0.12 0.07 0.49 0.35 7.34 0.24 1.17 

L.41 0.71 0.19 2.19 0.61 12.10 1.75 71.73 1.57 19.90 

L.42 11.31 4.56 3.49 24.30 9.38 83.14 306.42 42.63 70.95 
L.43 ● 3.21 1.27 0.08 0.51 1.85 24.37 9.64 1.27 1.96 

L.45 15.64 12.68 0.32 74.51 46.36 431.01 385.63 213.01 292.05 

L.46 8.50 3.07 15.60 8.16 12.38 48.24 297.13 33.79 89.15 
L.47 87.59 68.06 8.07 0.48 5.16 23.34 27.56 2.93 12.94 

L.48 48.52 34.61 5.96 8.68 25.15 164.72 414.16 48.53 136.45 

L.49 75.96 31.56 25.35 6.49 82.02 262.93 367.12 0.00 37.82 
L.50 237.39 76.90 28.87 2.91 17.86 179.26 186.13 0.00 15.14 

L.51 0.73 0.24 1.40 2.63 2.87 4.38 152.78 4.29 13.04 

L.52 n/d n/d n/d 1.07 10.37 3.63 22.88 2.14 8.47 
L.53 n/d n/d n/d 1.40 7.96 2.38 10.05 2.57 5.70 

L.54 n/d n/d n/d 20.13 47.61 23.48 267.91 70.54 77.01 

L.56 n/d n/d n/d 0.34 0.59 0.20 1.66 0.92 0.64 

● = values for these samples are in μg / g rock 
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Appendix E.10 

Table | Aromatic hydrocarbons preserved in the Chuar group (above m/z 253) (in ng/g 

rock) 

# Bi-Napth (1) Bi-Napth (1) 
B[ghi] 

Perylene 
DB[a,h]A Coronene Zethrene  

L.1 0.00 0.00 0.00 0.00 0.00 0.00 
L.2 14.71 18.00 13.59 18.93 18.93 0.00 

L.3 9.90 6.22 13.42 0.00 0.00 0.00 

L.4 217.88 310.56 288.34 542.65 542.65 0.00 
L.5 0.00 0.00 0.00 0.00 0.00 0.00 

L.6 2.10 2.87 19.32 0.00 0.00 0.00 
L.7 0.97 1.23 1.40 0.00 0.00 0.00 

L.8 0.63 0.87 1.97 0.00 0.00 0.00 

L.9 ● 0.00 0.00 33.98 0.00 0.00 0.00 
L.10 1.18 1.53 2.28 0.00 0.00 0.00 

L.11 0.00 0.00 831.52 144.74 144.74 797.88 

L.12 0.35 0.45 0.71 0.00 0.00 0.00 
L.13 0.00 0.00 1873.68 450.02 450.02 921.39 

L.14 72.27 94.15 90.04 185.93 185.93 3.87 

L.16 6.49 10.17 5.56 14.08 14.08 0.00 
L.17 0.92 0.95 2.21 0.22 0.22 0.00 

L.18 0.00 0.00 0.00 0.00 0.00 0.00 

L.19 92.84 133.99 456.48 324.68 324.68 135.28 
L.20 0.97 1.33 7.18 0.00 0.00 0.00 

L.21 0.06 0.06 0.26 0.00 0.00 0.00 

L.22 0.00 0.00 0.00 0.00 0.00 0.00 
L.23 0.00 0.00 3.41 0.00 0.00 0.00 

L.24 3.16 4.97 0.96 1.81 1.81 0.00 

L.25 32.56 42.42 2.89 69.41 69.41 0.00 
L.26 5.60 8.79 2.50 5.95 5.95 0.00 

L.27 0.00 0.00 13.62 85.72 85.72 28.68 

L.28 0.00 0.00 103.24 511.80 511.80 340.25 
L.29 0.00 0.00 0.00 1.31 1.31 0.31 

L.30 0.00 0.00 0.76 0.00 0.00 0.00 

L.31 0.00 0.00 3.19 0.00 0.00 0.00 
L.32 ● 0.00 0.00 3.79 2.37 2.37 2.31 

L.33 0.00 0.00 17.83 226.44 226.44 0.00 

L.34 0.00 0.00 0.00 84.46 84.46 0.00 

L.35 0.00 0.00 9.97 87.08 87.08 0.00 

L.36 0.00 0.00 1.19 1.43 1.43 0.00 

L.37 0.00 0.00 0.00 21.31 21.31 0.00 
L.38 ● 0.00 0.00 0.00 0.00 0.00 0.00 

L.39 0.00 0.00 0.00 0.00 0.00 0.00 

L.40 0.16 0.30 0.32 0.00 0.00 0.00 
L.41 1.32 3.04 6.46 0.00 0.00 0.00 

L.42 22.06 14.39 0.00 0.00 0.00 0.00 

L.43 ● 0.00 0.00 0.00 0.00 0.00 0.00 
L.45 36.24 23.14 159.90 0.00 0.00 0.00 

L.46 11.79 8.83 0.00 0.00 0.00 0.00 

L.47 0.54 0.42 2.76 0.00 0.00 0.00 
L.48 5.34 6.33 7.25 0.00 0.00 0.00 

L.49 0.55 1.55 0.00 0.00 0.00 0.00 

L.50 0.57 6.87 0.00 0.00 0.00 0.00 
L.51 6.27 6.37 0.00 0.00 0.00 0.00 

L.52 0.47 0.70 3.74 2.20 2.20 0.00 

L.53 0.20 0.30 1.93 0.47 0.47 0.00 
L.54 6.40 7.68 15.89 7.61 7.61 0.00 

L.56 0.08 0.11 0.00 0.00 0.00 0.00 

● = values for these samples are in μg / g rock 
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Appendix F.1 

Table | Preserved saturated hydrocarbon compounds in the Terconi quarry, Araras 

Group (in ng/ g rock)  

Compound Te.S 19 Te.S 20 Te.S 22 Te.S 27 Te.S 30 Te.S 33 Te.S 47 

∑n-Alkanes 113.21 529.66 150804.79 22591.42 30883.51 14014.98 42217.37 

Pristane 5.62 24.71 11853.21 2319.62 1460.70 660.60 1398.59 

Phytane 5.86 25.99 12263.02 2212.60 1640.61 786.63 1606.45 

C19A 0.00 0.07 100.52 6.23 3.03 2.87 2.25 

C19B 0.13 0.69 774.90 48.54 21.36 19.92 18.94 

C19C 0.08 0.48 435.13 27.12 18.18 13.67 18.94 

Pregnane 0.40 1.09 806.55 41.34 9.64 8.67 3.88 

C26 (21-nor) n/d 0.38 246.08 12.42 4.53 4.23 3.40 

C27 (βα S) 1.29 0.88 187.76 4.80 9.24 7.84 10.60 

C27 (βα R) 0.84 0.34 42.22 3.44 4.83 5.48 6.81 

C27 (αβ S) 0.20 0.00 26.85 0.00 2.91 1.84 3.85 

C27 (αβ R) 0.25 0.00 25.43 0.00 3.13 1.96 4.38 

C27 (ααα S) 0.18 1.10 455.75 19.00 5.16 4.40 2.59 

C27 (αββ R) 0.18 0.69 602.54 22.17 7.22 6.55 4.15 

C27 (αββ S) 0.15 0.53 647.72 23.52 5.66 6.46 2.73 

C27 (ααα R) 0.28 1.33 361.26 14.91 4.01 3.54 2.09 

Tric (C19) 0.05 0.91 246.22 11.42 11.53 5.00 7.03 

Tric (C20) 0.30 6.51 986.01 36.74 21.19 7.60 7.65 

Tric (C21) 0.24 5.75 601.37 23.23 22.25 8.47 9.19 

Tric (C23) 0.32 7.98 669.55 25.42 33.94 11.45 13.25 

Tric (C24) 0.21 3.87 659.46 19.70 22.83 9.04 9.96 

Tric (C25) 0.31 2.31 352.47 9.56 12.15 5.47 5.89 

Tric (C26) 0.21 1.22 67.29 2.12 1.36 0.74 0.49 

Tetracylic (C24) 0.06 1.34 178.81 5.12 6.86 3.10 3.58 

25-NDEH 0.82 19.56 1184.98 45.82 3.87 2.78 3.41 

TKNH 1.45 13.68 1121.12 70.94 7.37 7.73 4.04 

BNG 76.97 572.28 4630.00 210.09 36.74 20.73 22.05 

Norgammacerane 0.37 1.72 32.49 0.91 1.42 0.44 0.68 

Ts 0.16 0.91 85.32 3.27 4.91 2.38 2.63 

Tm n/d n/d 13.24 n/d n/d n/d n/d 

Tris n/d 2.49 265.83 14.83 2.12 0.92 0.51 

25,30-BNH 9.14 25.07 1137.07 49.90 6.59 1.36 3.38 

C29 (dia hop) n/d 0.46 33.95 1.21 1.25 0.58 0.91 

C29Ts n/d n/d n/d n/d 1.05 0.63 0.76 

C30 (dia hop) n/d n/d 30.19 Trace 3.56 1.00 1.84 

C31S (dia hop) n/d n/d 6.73 Trace 1.12 0.27 0.42 

C31R (dia hop) n/d n/d 5.40 Trace 1.18 0.29 0.42 
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Appendix F.2 

Table | Preserved aromatic hydrocarbon compounds in the Terconi quarry, Araras 

Group (in ng/ g rock)  

Compound Te.S 19 Te.S 20 Te.S 22 Te.S 27 Te.S 30 Te.S 33 Te.S 47 

Naphthalene 2.95 0.63 8.42 57.88 0.76 4.89 2.57 

Phenanthrene 1.44 1.41 100.00 14.94 42.36 32.66 154.79 

3-M-Phenanthene n/d 0.14 98.30 4.03 111.53 37.07 195.40 

2-M-Phenanthene n/d 0.28 138.75 5.77 142.79 59.90 302.32 

9-M-Phenanthene n/d n/d 97.40 5.36 179.48 48.94 249.91 

1-M-Phenanthene n/d n/d 66.50 3.05 96.17 2.99 163.52 

DBT 1.17 0.51 105.03 4.61 6.92 18.32 28.95 

4-MDBT n/d 0.30 111.16 14.24 94.60 85.41 258.29 

2-,3- MDBT n/d 0.17 67.46 4.71 22.76 38.83 80.31 

1-MDBT n/d n/d 6.12 1.43 2.72 3.16 7.05 

BNT 9.87 0.06 159.25 2.52 2.26 5.69 7.27 

Pyrene n/d n/d 18.26 0.98 3.69 1.25 2.88 

B[a]anthracene 35.89 1.46 189.97 Trace 62.53 25.32 95.48 

M-B[a]anthracene (1) n/d n/d 265.37 Trace 128.51 51.98 188.40 

M-B[a]anthracene (2) n/d n/d 243.22 Trace 75.55 29.74 114.53 

B[e]pyrene 88.85 1.80 20.41 Trace 2.46 1.76 2.86 

B[a]pyrene 17.94 n/d 27.58 Trace 20.62 6.63 21.12 

2,3,6 Aryl isoprenoids 

(C14) 

n/d n/d 

0.66 0.27 0.65 2.02 3.83 

2,3,6 Aryl isoprenoids 

(C15) 

n/d n/d 

2.46 0.31 1.39 2.04 4.07 

2,3,6 Aryl isoprenoids 

(C16) 

n/d n/d 

3.85 0.34 2.88 1.86 3.34 

2,3,6 Aryl isoprenoids 

(C17) 

n/d n/d 

5.13 0.32 4.05 2.12 3.89 

B[e]pyrene 88.85 1.80 20.41 Trace 2.46 1.76 2.86 

B[a]pyrene 17.94 n/d 27.58 Trace 20.62 6.63 21.12 
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Appendix F.3 

Table | redox sensitive elements in the Terconi quarry, Araras Group (data from 

Sansjofre et al., 2014) 

Sample Height (m) Ni (ppm) Pb (ppm) U (ppm) V (ppm) FeS (%) V/(V+Ni) 

Te.S 1 0.1 8.29 6.25 0.70 4.04 0.00 0.33 

TR1 F 2.06 12.70 14.50 1.31 4.60 0.00 0.27 

Te.S 3 2.42 9.19 8.45 0.63 2.36 0.00 0.20 

Te.S 5 4.2 8.72 8.81 0.94 4.20 0.00 0.32 

TR2 E 4.56 15.40 15.10 1.15 5.20 0.00 0.25 

Te.S 7 5.2 7.54 6.82 0.84 2.72 0.00 0.27 

TR3 C 5.9 9.90 8.09 0.63 4.90 0.00 0.33 

Te.S 9 6.2 8.15 9.83 0.70 5.90 0.00 0.42 

TR4Q 6.21 8.84 9.07 0.96 3.75 0.00 0.30 

Te.S 11 7.2 11.19 13.76 0.89 7.23 0.00 0.39 

Te.S 12 7.7 10.35 12.13 0.71 4.63 0.00 0.31 

Te.S 13 8.2 8.99 8.25 0.62 4.09 0.00 0.31 

Te.S 15 9.2 8.67 90.03 0.77 9.22  n/a 0.52 

TR5E 9.6 6.42 147.65 0.69 6.38 0.00 0.50 

Te.S 16 9.7 9.49 128.13 0.85 10.94 0.00 0.54 

TR5I 10 6.56 109.27 0.68 5.96 0.00 0.48 

TR5J 10.2 9.05 50.87 0.86 9.55 n/a 0.51 

TR5L 10.3 6.76 125.95 0.53 7.33 n/a 0.52 

TR5Q 10.6 6.35 68.67 0.62 6.34 n/a 0.50 

Te.S 18 10.7 6.75 174.59 1.28 4.88 n/a 0.42 

Te.S 20 ● 11.7 6.71 27.48 0.62 6.02 n/a 0.47 

Te.S 22 ● 12.7 5.99 14.28 0.38 5.64 0.33 0.48 

TR5W 13.6 6.59 127.37 1.09 8.55  n/a 0.56 

Te.S 24 13.7 7.70 6.61 0.82 9.81 0.76 0.56 

Te.S 26 14.7 5.89 3.95 2.46 6.96 0.40 0.54 

Te.S 28 15.7 6.34 3.77 1.58 7.39 0.60 0.54 

Te.S 30 ● 16.4 10.90 5.43 2.92 24.38 0.81 0.69 

Te.S 32 17.2 8.09 4.55 3.78 7.72 0.69 0.49 

Te.S 34 18.2 7.73 7.42 2.42 7.50 0.64 0.49 

Te.S 36 19.2 8.94 3.37 3.16 7.34 0.71 0.45 

Te.S 38 20.7 8.13 3.55 3.44 8.98 0.60 0.52 

Te.S 40 21.7 8.30 2.92 2.59 9.12  n/a 0.52 

Te.S 42 27.2 9.09 3.54 1.14 12.88 0.01 0.59 

Te.S 44 28.2 11.52 3.43 1.30 11.99 0.00 0.51 

Te.S 46 30.7 8.68 2.39 3.08 10.13 0.23 0.54 

Te.S 48 31.7 7.15 2.03 2.26 8.71 0.18 0.55 

Te.S 50 32.7 9.89 3.53 0.92 11.84 0.13 0.54 

● Samples for which also organic geochemical information is available 
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