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Abstract
One of the challenges our society faces is the ever increasing amount of data. Among existing
platforms that address the system requirements, Hadoop is a framework widely used to store and
analyze “big data”. On the human side, one of the aids to finding the things people really want
is recommendation systems. This paper evaluates highly scalable parallel algorithms for recom-
mendation systems with application to very large data sets. A particular goal is to evaluate an
open source Java message passing library for parallel computing called MPJ Express, which has
been integrated with Hadoop. As a demonstration we use MPJ Express to implement collabor-
ative filtering on various data sets using the algorithm ALSWR (Alternating-Least-Squares with
Weighted-λ-Regularization). We benchmark the performance and demonstrate parallel speedup
on Movielens and Yahoo Music data sets, comparing our results with two other frameworks: Ma-
hout and Spark. Our results indicate that MPJ Express implementation of ALSWR has very
competitive performance and scalability in comparison with the two other frameworks.
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1 Introduction

Over the last decade Apache Hadoop has established itself as a pillar in the ecosystem of
software frameworks for “big data” processing. As an open source, mostly Java-based Apache
project with many industrial contributors, it retains a commanding position in its field.

When first released Hadoop was a platform primarily supporting the MapReduce program-
ming model, and other projects built on top of MapReduce. Around 2014 with the release
of Hadoop 2.0 the platform was re-factored into a separate YARN (Yet Another Resource
Negotiator) resource allocation manager, with MapReduce now just one of multiple possible
distributed computation frameworks that could be supported on top of YARN. Several other
major big data projects rapidly migrated to allow execution on the Hadoop YARN platform
(for example Apache Spark [19], Apache Giraph [2], Apache Tez [13], and Microsoft Dryad
[9]). Around the same time the present authors envisaged adding our existing MPJ Express
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4:2 Comparison of Platforms for Recommender Algorithm on Large Datasets

framework for MPI-like computation in Java to that distinguished group, and developed a
version of our software that could also run under Hadoop YARN [17].

MPJ Express is a relatively conservative port of the standard MPI 1.2 parallel program-
ming interface to Java, and is provided with both “pure Java” implementations (based on
Java sockets and threads) and “native” implementations exploiting specific interconnect
interfaces, or implementations on top of standard MPI. The vision was thus to support MPJ
as one computational framework among many largely Java-based or JVM-based frameworks
that could be mixed and matched for different stages of complex big data processing, with
Hadoop and HDFS (the Hadoop Distributed File System) as the “glue” between stages.
More details on MPJ Express and Hadoop can be found in appendix A.

The main goal of the present paper is to provide evidence that such a scenario can be
realized and that it may be advantageous. We concentrate on one particular computationally
intensive “big data” problem - generating product recommendations through the collaborative
filtering algorithm ALSWR (Alternating Least Squares with Lambda Regularization). A
version of this algorithm is developed and evaluated using MPJ running under Hadoop. We
then go on to compare our implementation with two existing implementations of ALSWR that
can run under Hadoop – one taken from the Apache Mahout project using MapReduce, and
one using Apache Spark. Results suggest the MPJ approach can provide useful performance
gains over these other established Big Data frameworks on suitable compute-intensive kernels.

The rest of the paper is organized as follows. Section 2 gives an overview of the
collaborative filtering technique. Section 3 describes how we implement the collaborative
filtering with ALSWR in MPJ. The Section 4 evaluates and compare our results with Mahout
and Spark. Section 5 concludes the paper and discusses future work.

2 Collaborative Filtering Techniques

Recommender systems are software tools and techniques that provide suggestions to users to
help them find and evaluate items likely to match their requirements. Collaborative filtering
systems are based on users’ purchases or decisions histories. Assuming two individuals share
the same opinion on an item, they are also more likely to have similar taste on another
item. In our experiments we have opted for a model based approach and we specifically use
Alternating-Least-Squares with Weighted-λ-Regularization (ALSWR) algorithm.

In this section, we will often refer to items as “movies” due to the fact that one of our
datasets consist of ratings on movies. Assuming we have nu users and nm movies, and R is
the nu × nm matrix of input ratings. Usually each user can rate only few movies. Therefore
the matrix R will initially have many missing values or loosely speaking it will be sparse.
The problem is to predict the unknown elements of R from the known elements.

We model the preferences of users by assuming they have simple numeric level of preference
for each of a number nf of features to be found in movies; thus the behaviour of user i is
modelled by a vector ui of length nf . Similarly each movie is assumed to have each these
features to a simple numeric degree so each movie j is modelled by a vector mj of the
same size. The predicted preference of user i for movie j is the dot product ui ·mj . The
vectors are conveniently collected together in matrices U and M of size nu×nf and nm×nf

respectively. To fit the model to the known elements of R we use a least squares approach,
adding a regularization term parameter λ to the sum of square deviations to prevent the
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model from overfitting the data. The penalty function ALSWR strives to minimize is:

f(U,M) =
∑
i,j

(rij − ui ·mj)2

+ λ

∑
i

nui
u2

i +
∑

j

nmj
m2

j

 (1)

where the first sum goes over i, j values where the element rij of R is known in advance, nui

is the number of items rated by a user i, and nmj is the number of users who have rated a
given movie j.

ALSWR is an iterative algorithm. It shifts between fixing two different matrices. While
one is fixed, the other one is updated hence solving a matrix factorization problem. The
same process goes through a certain number of iterations until a convergence is reached
which implies that there is little or no more change on either users and movies matrices. The
ALSWR algorithm as explained by Zhou et al [20] is as follows:

Step 1: Initialize matrix M in a pseudorandom way.
Step 2: Fix M , Solve U by minimizing the objective function (the sum of squared errors);
Step 3: Fix U , Solve M by minimizing the objective function similarly;

Steps 2 and 3 are repeated until a stopping criterion is satisfied. Step 2 is implemented by
Equation 2 where MIi

is the sub matrix of M , representing the selection of any column j in
the set of movies rated by a user i, H is a unit matrix of rank equal to nf and R(i, Ii) is the
row vector where columns j are chosen

ui = (MIi
MT

Ii
+ λnui

H)−1MIi
RT (i, Ii) (2)

Step 3 is implemented by a similar formula exchanging the roles of U and M .

3 MPJ Implementation of ALSWR

The basic strategy for distributing the ALSWR algorithm to run in parallel was already
described by the original proposers in [20]. All nodes of a cluster contain a certain subset of
the large, sparse, recommendations array, R. In particular it is convenient for the R array to
be stored in two ways across the cluster as a whole – divided across nodes by columns and
also by rows. This is illustrated in figure 1, where i is the subscript identifying users and j is
the subscript identifying items, and the two different forms of decomposition of R are used
in the two different steps. Step 2, as defined in equation 2, conveniently uses locally held R
decomposed by i to update locally owned elements ui of the user model. B is a block size
for the locally held subset of elements, approximately constant across the cluster for good
load balancing.

Because update of ui potentially involves any element of the item model m, to simplify
this step all elements of m should be stored locally, in globally replicated fashion. Step 2 has
a complementary structure, but now update of mj may require access to any element of u.
So between steps 1 and 2 all the locally computed elements of u must be gathered together
and broadcast to processing nodes. Similarly between step 2 and step 3 in the next iteration
of the algorithm, the locally computed elements of u must be gathered and broadcast. A
great benefit of the MPI style of programming is the use of collective communication This
is embodied here in the use of MPI_Allgather, that allows data to be gathered from each
process then to be distributed to all processes. In our program the data that we used for the
implementation of the ALSWR code consists of a sparse matrix of ratings, partitioned by
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Figure 1 Visualization of an iteration of distributed ALSWR algorithm. “Processor space”
runs across the page, processes are labelled p0, p1, . . . and so on. Time runs down the pages with
distributed computational steps labelled as on page 3. Between computational stages there are
collective synchronizations in the form of “allgather” operations.

user or by item. Figure 6 in the appendices section illustrates the organization of the data.
In order to solve the symmetric positive definite matrix we use Cholesky decomposition from
the Intel Data Analytics Acceleration Library (DAAL) [8].

The code assumes each node holds numLocal elements of the distributed user model.
Within a node we run NUM_THREADS long lived threads (they are started at the beginning of
the program), where the NUM_THREADS parameter will be related to the number of cores on
the node. The variable me identifies a thread within the local node (not to be confused with
the MPI rank which identifies a node). Threads will be synchronized before MPI collective
operations using barriers implemented by java.util.concurrent.CyclicBarrier. The
MPI operations themselves are only executed by the me = 0 thread.

The ratings data for our MPJ code are read from the same HDFS text files as used by
the third party implementations of ALS discussed below. We use HDFS API to determine
the blocks that have replicas on nodes running MPJ processes. A heuristic is used to choose
a load balanced set of local replicas to read. The locally read ratings are then partitioned to
destination nodes using a variant of the CARI communication schedules introduced in [1].

4 Performance Evaluation and Comparison of MPJ Express, Mahout,
and Spark

This section details our experiments focusing on the comparative performance evaluation
of MPJ Express against well-known platforms including Hadoop, Mahout and Spark. The
performance evaluation compares their parallel speedup. More information on Apache
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(b) MPJE vs Spark.

Figure 2 Frameworks Performance Comparison MPJ Express with MovieLens dataset.

Mahout and Spark is provided in appendix B. For the purpose of performance evaluation,
we acquired our datasets from public domains. These consist of anonymous user ratings
from two different sources: MovieLens and Yahoo Music. Details on our datasets and test
environment are provided in Appendix C.

4.1 MovieLens 20M Ratings Experiments

Our ALSWR code is tested with 50 features, 10 iterations, 0.01 for the regularization
parameter lambda λ and 0.01 for the parameter epsilon ε that is used in the initial guess
for the item model. MPJ Express and Spark have both a good performance and parallel
speed up: as the number of cores increases the time decreases; Mahout does not show much
variances from four cores and above. Refer to Figure 5 in the Appendices section which
compares the performances between MPJ Express, Spark and Mahout on different number
of processes. Figure 2b focus on MPJ and Spark. MPJ Express has the best performance
amongst the 3 frameworks. It is, on average, 13.19 times faster than Mahout and on average
1.4 faster than Spark. Figure 2a represents the parallel speedup of MPJ Express and Spark.
With sixteen cores MPJ Express is almost 10 times faster than when it is run in sequence
while Spark is just about 4.5 times faster than its result with one process.

4.2 Yahoo Webscope 700M Ratings Experiments

Mahout was unable to cope with the large Yahoo dataset. For this reason, we have evaluated
only MPJ Express and Spark versions of the code for this dataset. Figure 3b shows a pattern
quite similar to figure 2b although this time our dataset is about 35 times bigger. A closer
look at figure 3a demonstrates a significant improvement regarding the parallel speedup of
MPJ Express which now runs more than 10.5 times faster on 16 cores than its sequential
time. The parallel speedup of Spark has also improved. It implements the ALS on Yahoo
dataset 7.5 times faster with 16 cores than when it is run in sequence. However from 16
cores onwards, the performance of the Spark version starts decreasing.

ICCSW 2018
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Figure 3 Frameworks Performance Comparison MPJ Express with Yahoo dataset.

4.3 Analysis of the results

The Mahout implementation of ALS – not necessarily representative of the wider Mahout
project – is based on MapReduce. The performance limitations of MapReduce on iterative
algorithms are well documented, see for example [5]. According to pseudocode given in [19],
the Spark implementation uses a combination of its parallelize and collect operations to
reproduce the communication operation called MPI_Allgather here. We assume that the
MPI collective algorithms can implement this pattern more efficiently. There is a discussion
of efficient implementations of Allgather in [14] for example. Additionally there may be some
degradation of the performance of Spark when there is not enough memory (RAM) as the
storage has to be on disk when the program is running out of space.

5 Conclusion

Various computational frameworks have been adopted over the last few years for running
compute-intensive kernels of recommender algorithms on Hadoop platforms. These include
Apache Mahout, Apache Spark and Apache Giraph. In this paper we have added our
MPJ Express framework to this list, and provided evidence that it can outperform other
implementations of the central optimization algorithm. This additional performance certainly
comes at some cost in terms of programming complexity. For example the MPJ programmer
has to spend more time orchestrating communication between Hadoop nodes. Nevertheless
we argue that for some intensive and often used kernels, the extra investment in programming
may be justified by the potential performance gains. We see MPI-based processing stages as
one more resource in the armoury of big data frameworks that may be used in processing
pipelines run on Hadoop clusters. We also suggest that in this setting MPJ Express may be
a natural choice of MPI-like platform, given that many other such processing stages will be
coded in Java or JVM-based languages. On our future work we need to evaluate alternative
parallel organizations of the recommender code, like the rotational hybrid approach described
in [10]. Preliminary analysis suggests that implementation of similar schemes in MPI style
may benefit from extensions to the standard set of MPI collectives, currently embodied in
MPJ Express. Again such an extended library could form part of a future data centric version
of MPJ Express that builds on experiences of MPI processing in the Hadoop environment.
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A Description of Hadoop and MPJ Express

A.1 Hadoop Overview
Hadoop is a framework that stores and processes voluminous amounts of data in a reliable,
fault-tolerant manner [15].

Since Hadoop 2, YARN (Yet Another Resource Negotiator) has been integrated in
the infrastructure as the resource manager, enabling many other distributed frameworks
besides MapReduce to process their data on Hadoop cluster. YARN depends on three main
components to complete a task: a Resource Manager (RM), Node Managers (NMs), and an
Application Master (AM). The RM is responsible for managing and allocating the resources
across the cluster. NMs run on all nodes available in a cluster and report all the tasks to the
RM such as the number of cores and memory space. Each job that is started has an AM
specific to the processing framework that manages operation within containers and ensures
there are sufficient containers for the task. The communication between the master nodes
and slave nodes is achieved through the Heart Beat Mechanism [7].

A.2 MPJ Express
MPJ Express [12] is an open source Java MPI-like library that allows application developers
to write and execute parallel applications on multicore processors and compute clusters.
The MPJ Express software can be configured in cluster or multicore. Under the cluster
configuration, the MPJ Express software provides different communication devices that are
suitable for the underlying interconnect. Currently, there are four communication devices
available:
1. niodev - uses Java New I/O (NIO) Sockets
2. mxdev - uses Myrinet eXpress (MX) library for Myrinet networks
3. hybdev - for clusters of multicore processors
4. native - uses a native MPI library (like MPICH, MVAPICH, OpenMPI)

Since 2015, the MPJ Express software provides a YARN-based runtime that exploits the
niodev communication device to execute parallel Java code on Hadoop clusters. Under this
setting, HDFS is used as the distributed file system where application datasets, MPJ Express
libraries, and application programs are loaded to allow all processes to access the material.

B Description of Apache Mahout and Spark

Apache Mahout is a distributed linear algebra framework [3], widely used for its distributed
implementation on Apache Hadoop. This essentially means that datasets are stored on
the HDFS and various machine learning algorithms such as collaborative filtering can be

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
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Figure 4 MPJ Express Integrated in YARN- 1) Submit YARN application- 2) Request container
allocation for AM- 3) AM generates a CLC and allocates container to each node- 4) Each mpj-yarn-
wrapper send outputs and error streams of the program to the MPJYarnClient.
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Figure 5 MPJ Express, Spark and Mahout on MovieLens Dataset.
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Figure 6 Sparse data structure to represent locally held ratings. This whole structure is duplicated,
once for ratings distributed by user and once for ratings distributed by items. In the “by user” case
the size of the base and num arrays is the total number of locally held users, with num[i] being the
number of ratings by user i; targets elements hold a global index of the rated item (index in the
gathered array of item models). In the “by item” case the size of the top arrays is the number of
locally held items, with num holding the number of ratings per item; a target element now holds
the global index of the user who made the rating.

applied to the data. The ALSWR implementation with Apache Mahout is done through
its machine learning library and more specifically the map-reduce implementation of ALS.
This last consists of two stages: a parallel matrix factorization phase followed up by some
recommendations. Both phases are detailed in [11].

Apache Spark is an open-source cluster-computing framework suitable for large scale data
processing. Since Hadoop 2, Spark has been integrated with Hadoop allowing its programs to
run on YARN. Spark can use memory and disk processing through its Resilient Distributed
Datasets (RDD). As explained in [18], the default is to keep the RDD in memory; when
there is no more space in the RAM, Spark stores the rest on disk. Shared variables and
parallel operations available in Spark are detailed in [19] and [4]. We have implemented ALS
on Spark through its standard machine learning library (MLlib).

C Description of Datasets and testing environment

The dataset obtained from MovieLens contains 20, 000, 263 ratings for 27, 278 movies, created
by 138, 493 users [6]. The dataset from Yahoo Music – that is much larger – contains over
717 millions ratings for 136 thousands songs rated by 1.8 million users [16]. The data from
Yahoo has been separated in training and test datasets. Our test environment includes a
Linux cluster composed of 4 nodes with 20 cores in total. The software used for the tests
consist of:

Java 1.7
Apache ant 1.6.2
Hadoop-2.7.3
MPJ Express (version 0.44), Mahout (version 0.12.2), and Spark (version 2.2.0)
Intel Data Analytics Acceleration Library (DAAL) 2017


	Introduction
	Collaborative Filtering Techniques
	MPJ Implementation of ALSWR
	Performance Evaluation and Comparison of MPJ Express, Mahout, and Spark
	MovieLens 20M Ratings Experiments
	Yahoo Webscope 700M Ratings Experiments
	Analysis of the results

	Conclusion
	Description of Hadoop and MPJ Express
	Hadoop Overview
	MPJ Express

	Description of Apache Mahout and Spark
	Description of Datasets and testing environment

