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Abstract
We perform a detailed analysis of the C++ implementation of the Cluster Affiliation Model
for Big Networks (BigClam) on the Stanford Network Analysis Project (SNAP). BigClam is a
popular graph mining algorithm that is capable of finding overlapping communities in networks
containing millions of nodes. Our analysis shows a key stage of the algorithm – determining
if a node belongs to a community – dominates the runtime of the implementation, yet the
computation is not parallelized. We show that by parallelizing computations across multiple
threads using OpenMP we can speed up the algorithm by 5.3 times when solving large networks
for communities, while preserving the integrity of the program and the result.
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1 Introduction

Networks can represent many systems including social interactions, transport systems,
financial transactions, communications infrastructure and biological functions. In all cases
they describe interactions (edges) between dependent entities (nodes). One of the most
important and best studied fields of network science is community detection [8, 13, 14]. A
community can be thought as a group of nodes having a higher density of internal than
external connections [4]. Early community detection algorithms partitioned small networks
into disjoint regions, assigning each node to a single community [1, 17]. Later algorithmic
advances both relax the disjointness requirement (allowing overlapping communities) and
scale to much larger networks. Overlapping community detection algorithms are more general
than partitioning methods, which they include as special cases [3, 18, 22]. Methods that
focus on scaling community detection have allowed communities to be detected in networks
with millions or even billions of nodes [2, 16, 24].

The Cluster Affiliation Model for Big Networks (BigClam), proposed by Yang and
Leskovec [26] is both scalable and discovers overlapping communities. Under BigClam, nodes
can be in multiple communities, and affiliation weight between a node and a community is
modeled as a positive continuous number. The right half of Figure 1 shows the affiliation
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Figure 1 Illustration of community detection in a graph in terms of non-negative matrix factoriz-
ation. (Left half) It is common to represent a network graph by a large, sparse adjacency matrix.
(Right half) Yang and Leskovec proposed modeling community affiliations with a bipartite graph
between communities and nodes, with affiliation weights represented by a small, dense, non-negative
matrix [26]. (Middle two panels) By finding the most likely non-negative matrix, which when
multiplied with its transpose best resembles the given adjacency matrix, we can obtain the most
likely community affiliation w.r.t. the given network graph.

weights for seven nodes to two communities. This can be represented as a bipartite graph,
or an affiliation weights matrix. The graph of a network is usually represented by a sparse
binary adjacency matrix (left half). BigClam infers the affiliation weights matrix by applying
non-negative matrix factorization [6] to the adjacency matrix. The algorithm learns the
affiliation weights matrix that is best able to reconstruct the underlying adjacency matrix
subject to the constraints of positivity and local optimality.

BigClam is a popular and highly cited method that features in a number of lectures and
tutorials [10, 19]. The related software project [11] has attracted hundreds of GitHub stars.
Due to the popularity of this model amongst both researchers and practitioners, we perform
a rigorous analysis of the C++ implementation provided on the Stanford Network Analysis
Project (SNAP) [11]. Our analysis of the BigClam source code reveals that the algorithm
has three stages. In particular, the final Community Association (CA) stage, which makes
assignments of nodes to communities, generally dominates the runtime, yet its computation
is not parallelized across CPU threads. The runtime domination of CA is especially true
for networks with large numbers of communities, which is common in real networks (see
[9]). Not parallelizing computation where available results in lengthened runtime and wastes
available hardware resources as they are put on idle.

This motivates our work in parallelizing computation in the CA stage to speed up the
BigClam implementation on SNAP. Our major consideration is the parallelization must not
introduce race condition on shared objects that compromise the integrity of the results. We
parallelize the CA stage with OpenMP, a specification for high-level parallelism in C++
programs, and we show that the parallelization achieves as much as 5.3 times speed up
and saves as much as 12.8 hours when solving networks by Leskovec and Krevl [9] using an
eight-thread machine (Intel i7-4790 @ 3.60 GHz CPU).

To summarize, our contributions are as follow: (1) We profile the runtime of the BigClam
implementation on SNAP in terms of its three stages. (2) We show that the CA stage
dominates the runtime in current BigClam implementation on SNAP when solving networks
with large numbers of communities, which is common in real networks. (3) We provide a
detailed description, and the code implementation of how we parallelize computation on the
CA stage, with a comprehensive discussion on avoiding race conditions. We also provide
experimental results showing that the speed up is statistically significant, and preserves the
result’s integrity. 2

2 All code and experiment data are available on https://github.com/liuchbryan/snap/tree/master/
contrib/ICL-bigclam_speedup.

https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup
https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup
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Table 1 The average-case runtime complexity for the three stages of the BigClam community
detection algorithm. |V |, |E|, |C|, r, k, t∗ represents the number of nodes, edges, communities,
community affiliations per node, epochs, and the speed-up multiple achieved by parallelizing
computation across threads respectively. Derivations of the complexity are detailed in Appendix B.

Stage Conductance Test Gradient Ascent Community Association

Complexity O

(
|V |
(

|E|
|V |

)2
)

O

(
|V | kr

t∗

(
|E|
|V |

)2
)

O(|V ||C|)

Table 2 Number of nodes (|V |), communities (|C|), edges (|E|), and the average number of
affiliations (r) recorded in the networks by Leskovec and Krevl [9].

|V | |C| |E| r

Amazon product co-purchase network 334,863 75,149 925,872 6.78
DBLP collaboration network 317,080 13,477 1,049,866 2.27

LiveJournal online social network 3,997,962 287,512 34,681,189 1.79
Youtube online social network 1,134,890 8,385 2,987,624 0.113

2 SNAP Implementation: The Bottleneck

We first examine the BigClam community detection algorithm and identify the bottleneck(s)
in its implementation on SNAP. The core idea of BigClam is to find the affiliation weights
matrix F that maximizes the log-likelihood function.3 The mathematical formulation is
detailed in Appendix A.

By examining its implementation on SNAP, we observe that the community detection
algorithm has three stages: Conductance Test (CT), which initializes the affiliation strength
matrix; Gradient Ascent (GA), which finds the optimal affiliation weights matrix; and
Community Association (CA), which determines if an affiliation exists between a community
and a node based on the value of affiliation weight recorded under the said matrix in relation
to a pre-specified threshold.

We show the average-case runtime complexity of the three stages in Table 1. The full
derivation is available in Appendix B. It can be seen that the CA stage will dominate the
runtime if the number of communities is large, which we formalize as: |C| � kr

t∗

(
|E|
|V |

)2
,

where |V |, |E|, |C|, r, k, t∗ represents the number of nodes, edges, communities, community
affiliations per node, epochs, and the speed-up multiple achieved by parallelizing computation
across threads respectively (see Appendix A.1).

Networks satisfying the inequality above are common. For example, all networks with
ground-truth communities featured in Leskovec and Krevl [9] (shown in Table 2) satisfy
the inequality when k = 100 and t∗ = 4.4 We confirm this by running the BigClam
implementation on the networks shown in Table 2 using an eight-thread machine (Intel i7-
4790 @ 3.60 GHz CPU), and measure the proportion of runtime spent in each of the three
stages. Figure 2 shows the results of these experiments. While the time spent on the CT

3 The (u, c)th entry of F represents the strength of the community affiliation between user u and
community c in a network (see Figure 1 for an illustration).

4 A conservative estimate of the speed up achieved by parallelizing the GA stage across eight threads.
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Figure 2 Average proportion of time spent on the three stages of the BigClam community
detection algorithm (From left to right: Conductance Test (red), Gradient Ascent (green), and
Community Association (blue)) in Leskovec and Sosič’s implementation [11] for the four networks
shown in Table 2. The implementation is tested on an eight-thread machine (Intel i7-4790 @
3.60 GHz CPU), with the number of communities to detect for each network set to that recorded in
Table 2.

stage is negligible, the time spent on the CA stage generally accounts for more than half of
the entire runtime.5

Thus, the CA stage is usually the bottleneck in the algorithm. We notice that unlike the
GA stage, in which computation is parallelized, the CA stage is not parallelized. Therefore, the
majority of the CPU resources and man-time is wasted by idling. Parallelizing computation
in the CA stage will better utilize available resources and hence improve scalability.

3 Speeding Up BigClam Via Parallel Computing

In this section we describe how to speed up BigClam with the use of OpenMP, a specification
for parallel programming [15] that is supported in C++ and currently used in SNAP. The
goal is to speed up the CA stage while ensuring that the input to output mapping is identical
to the non-parallelized version.

3.1 Requirements in Result Correctness

As with any parallel computing application, it is important to prevent race conditions between
threads from undermining the correctness of the result. In the context of speeding up the
CA stage of BigClam, this means that the parallelized version must produce the same set of
community affiliations as the unparallelized version given the same input F .

The theoretical representation of the communities returned by the algorithm is a set of
sets: M = {M1,M2, ...,Mc} where each community is itself a set Mc = {u1, u2, ....uk}. Two
runs of BigClam produce the same output if M (1) = M (2). However, the BigClam SNAP
implementation uses vectors of vectors (implemented as C++ STL-like objects) instead of
sets of sets and enforces additional ordering that is not present theoretically. We denote
the vector of vectors representation asM. Using this representation it is possible to have
M (1) = M (2) andM(1) 6=M(2) (see Figure 3).

5 The Youtube network is an exception: we believe the average number of affiliations per node estimated
by the BigClam algorithm is far greater than that recorded in the ground-truth (over 90% of the nodes
do not have any community affiliations). This results in a far greater value of r than that reported in
Table 2, which violates the inequality.
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Figure 3 The two representations of the community affiliations. (Left) the underlying bipartite
graph. (Middle) the theoretical representation as a set of sets. (Right) the SNAP C++ STL-like
vector of vectors representation. In the theoretical representation the ordering is exchangeable, in
the SNAP representation it is not.

As the ordering of values in the inner vectors and the single outer vector does not matter,
we can allow race conditions between threads when performing append operations into these
vectors, and thus increase the degree of parallelism in our implementation.

3.2 Methodology
Algorithm 1 outlines the existing CA stage implementation. The algorithm is simplified
to include only operations related to scanning the matrix F and extracting community
affiliations.6 The algorithm is rewritten in pseudocode to enhance readability.

Algorithm 1 The existing implementation of the CA stage, simplified and rewritten in
pseudocode. F is the affiliation weights matrix, and δ is the minimum affiliation strength
threshold for a node to be considered a member of a community.
1: InitializeM as an empty vector
2: for all c ∈ C do
3: InitializeMc as an empty vector
4: for all u ∈ V do
5: if Fuc ≥ δ then
6: Append u toMc

7: end if
8: end for
9: AppendMc toM

10: end for
11: return M

As discussed in Section 3.1, we can spread the task of scanning a particular column of F
over multiple threads while maintaining correctness – all node IDs will be added to the correct
community vector, and with the proper synchronization mechanism (see discussion below)
all community vectors will be present in the final result. In the terminology of OpenMP, we
can parallelize the outer for loop over all communities, covering operations in lines 3–8 of
Algorithm 1.

To prevent unintended race conditions while maintaining the highest level of parallelism,
we declare a critical operation as any operation that involves objects that are shared between
threads. Each critical operations is controlled by a mutex that prevents multiple threads
from simultaneously writing to an object. It is safe to parallelize operations that involve only

6 We exclude operations such as 1) sorting the vector
(∑

u
Fuc

)
c∈C

and scan columns which have a
higher total affiliation strength first, and 2) excluding communities if it does not have enough members
from being included, as they are less computationally expensive than scanning the matrix.

ICCSW 2018
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Table 3 Average time taken, in seconds, to run a) the community association (CA) stage b) the
entire BigClam community detection algorithm, without and with parallelization of the community
association stage. The implementations are tested on eight-thread machines with the same CPU
specifications (Intel i7-4790 @ 3.60 GHz CPU).

Networks CA stage Overall
Unparallelized Parallelized Unparallelized Parallelized

Amazon 1077.58 203.74 1505.38 610.23
DBLP 160.39 30.00 312.47 180.69

LiveJournal 55363.22 9233.02 100146.81 55259.48
Youtube 213.62 43.07 2965.12 2717.85

objects used by a single thread (a.k.a. private objects/variables) and read-only objects that
are shared between threads. In our case, the only object that is shared between threads and
involves write operations is the set of community affiliationsM. All other objects are either
shared and read-only, or private to a thread.

The affiliation weights matrix F is read-only by all threads
The lower affiliation weight threshold δ is defined as a C++ constant (which is unmodifiable
once defined), and hence is read-only
The vector / list used to keep track of current community’s members (Mc) is local in the
scope of the outer for loop, and hence is private to a thread according to the OpenMP
specification [15].

Therefore, the only operation that needs to be declared as critical is the append toM
in line 9 of Algorithm 1. Only one thread can appendMc toM at a time while all other
operations can be parallelized.

4 Experiments

We run a number of experiments to validate the methodology described in Section 3. We
show that parallelizing computation of the CA stage over multiple threads 1) reduces the
runtime in the CA stage (and hence the overall BigClam implementation), and 2) retains
the result correctness.

We use the datasets featured in Leskovec and Krevl [9] (see Table 2 for details of the
datasets), which are widely used to benchmark the runtime of overlapping community
detection algorithms [20, 22, 25, 27], including by BigClam itself [26].

4.1 Runtime Reduction
To demonstrate that parallelization reduces the algorithmic runtime, we run the unparallelized
and parallelized variants of BigClam on multiple machines with Intel i7-4790 @ 3.60 GHz
CPU (eight threads) for 100 epochs. Each machine runs only one of the variants at any time
to ensure all CPU threads are dedicated to one variant. For each run, the program detects
communities in the networks specified in Table 2, with the number of communities to detect
set to that specified by the table. We measure the runtime of each stage of the BigClam for
both the parallelized and unparallelized implementations across multiple runs.

The average runtime is reported in Table 3 and we perform a Welch’s t-test to determine
if the parallelized implementation achieves a significantly lower runtime for a) the CA stage,
and b) the entire BigClam program. We visualize the results of this experiment in Figure 4.
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Figure 4 Box plot of the time taken, in seconds, to run the community association stage on
different networks with ground-truth communities, without and with parallelization on the stage.
The time taken with parallelization on the stage is significantly lower.

It is clear from Table 3 and Figure 4 that our implementation produces a significant runtime
reduction in the CA stage for all networks shown in Table 2. With an eight-thread machine,
we achieve a 5.3 times speed up in the CA stage, and subsequently a 2.5 times speed up
in the overall BigClam algorithm for the Amazon product co-purchase network. For the
LiveJournal network the runtime of the CA stage is reduced by 46,130 seconds (or 12.8 hours)
on average.7

On the other hand, parallelizing the CA stage does not bring massive improvements
in runtime on networks with low numbers of communities (those that do not satisfy the
inequality in Section 2). We only achieve a 1.1 times speed up on the overall runtime solving
the Youtube network, despite achieving a 4.96 times speed up on the CA stage. The speedup
is not apparent in networks where the algorithm is dominated by the GA stage, where
parallelizing the computation in the CA stage brings only marginal improvements.

4.2 Verification of Result Correctness
To confirm that parallelization of the CA stage produces the same set of community affiliation
predictions as the unparallelized version we create a utility program. The program sorts the
node IDs in a community and the communities in the program output in lexicographical
order before comparing (strict) equality. This is necessary as common approaches to compare
program outputs (e.g. diff or MD5 check sum) will fail even if two sets of communities are
equal, as discussed in Section 3.1.

Our utility does not report any discrepancies between the program outputs produced by
the parallelized and unparallelized variants, hence we conclude that our parallelization in the
CA stage produces the same output, backed by a theoretical discussion in Section 3.2 and
experimental verification.

5 Conclusion

In this work we profile the runtime of the BigClam implementation on SNAP, a popular
overlapping community detection algorithm on an extensively used network analysis platform.
We are able to split the runtime of the algorithm into three stages – the conductance test

7 Yang and Leskovec state that, “with 20 threads, it takes about one day to fit BigClam to the LiveJournal
network” [26] – we are able to fit this network with only eight threads in less than 16 hours.

ICCSW 2018



1:8 Speeding Up BigClam Implementation on SNAP

(initialization) stage, the gradient ascent (optimization) stage and the community association
(extraction) stage – and provide an average-case runtime complexity for each stage.

We show the community association stage is dominating the runtime in the current
implementation when solving real networks, and parallelize its implementation to speed up
BigClam. We show the speed up is both statistically significant and of practical utility,
including a 5.3 times speed up on the community association stage (and 2.5 times overall)
when solving the Amazon product co-purchase network, and saving 12.8 hours on the
community association stage with an eight-thread machine. We release all relevant code and
experimental data on our GitHub repository so that the research community can immediately
benefit from our work and replicate our results.8
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A Key Formulation of BigClam Community Detection Algorithm

In this section we first introduce the nomenclature of networks, before moving on to the
specifics of the BigClam community detection algorithm.

A.1 Network Preliminaries
A network is a data structure that contains a graph and a set of attributes. A graph G(V,E)
is composed of a set of nodes V and a set of edges E = (vi, vj) where vi, vj ∈ V that connect
two nodes. The graph can be represented by an adjacency matrix A ∈ {0, 1}|V |×|V | where
Aij is one if (vi, vj) ∈ E and zero otherwise. Attributes can apply to either edges or nodes.

We denote the set of communities C = {c1, c2, ..., cn}, where ci indexes the ith community.
The set of community affiliations is defined as a set of sets M = {Mc : c ∈ C}, where
Mc = {u1, u2, ..., uk} is a set containing the nodes affiliated to community c ∈ C.

We also denote N (u) as the set of neighbours of a node u in G, and the neighborhood
containing u and its neighbors N(u).

Part of our runtime analysis involves the average number of communities a node is
affiliated with, which we formally define as:

I Definition 1. Let Du = {c : u ∈ Mc} be the set of communities that node u ∈ V is
affiliated with. Then the average number of community affiliations for all nodes r is

r = 1
|V |

∑
u∈V

|Du| , (1)

where |Du| is the number of communities that node u is affiliated with.

A.2 BigClam Community Detection Algorithm
The core idea of the BigClam community detection algorithm is to find the community
affiliation weights matrix F = (Fuc)u∈V,c∈C , where the (u, c)th entry represents the strength
of the community affiliation between user u and community c in a network (see Figure 1
for an illustration), that maximizes the log-likelihood function. Yang and Leskovec [26] use
an iterative approach, where at each iteration they fix the affiliation weights for all but
one node (say u), and perform a gradient ascent on the affiliation weights for node u. The
log-likelihood for the corresponding row ~Fu = (Fuc)c∈C of F is specified as:

l( ~Fu) =
∑

v∈N (u)

log
(

1− exp(− ~Fu
~Fv

T
)
)
−

∑
v 6∈N (u)

~Fu
~Fv

T
. (2)

We follow the original BigClam notation and so ~Fu
~Fv

T
is an inner product.

Differentiating Equation (2) w.r.t. ~Fu gives the gradient:

Ol( ~Fu) =
∑

v∈N (u)

Fv
exp(− ~Fu

~Fv
T

)

1− exp(− ~Fu
~Fv

T
)
−

∑
v 6∈N (u)

~Fv (3)

=
∑

v∈N (u)

Fv
exp(− ~Fu

~Fv
T

)

1− exp(− ~Fu
~Fv

T
)
−

∑
v∈V

~Fv − ~Fu −
∑

v∈N (u)

~Fv

 . (4)

In Equation (4)
∑

v∈V
~Fv can be precomputed, and

∑
v∈N (u)

~Fv is computed on each gradient
evaluation. This results in a more computationally efficient formulation as network graphs
are usually sparse (i.e. |N (u)| � |V |).
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The BigClam community detection algorithm initializes F as:

F(u′)(N(u)) =


1 if u′ ∈ N(u) and N(u) is a locally

minimal neighborhood [5] of u
0 otherwise

, (5)

where N(u) represents u and its neighbours in G, and regards u ∈ V as a member of c ∈ C
from the most likely affiliation weights matrix F if:

Fuc ≥ δ =
√
− log(1− ε) , (6)

where ε = 2|E|
|V |(|V |−1) is the background probability for a random edge to form in the graph.

B SNAP Implementation: A Runtime Complexity Analysis

We observe the BigClam community detection algorithm has three stages: Conductance Test,
Gradient Ascent, and Community Association. Here we derive the runtime complexity for
each of the three stages.

B.1 The Conductance Test Stage

The algorithm begins by testing each node to see if it belongs to a locally minimal neigh-
borhood as defined by Gleich et al. [5]. The initial / seed communities are chosen to be the
locally minimal neighborhoods.

For each node u ∈ V we calculate the conductance of its neighborhood. The conductance
of an neighbourhood N(u) is the fraction of edges from nodes within N(u) to nodes in the
same neighborhood over that to nodes outside the neighborhood [7]. This involves traversing
each neighbor v ∈ N (u) and finding out how many members of N (v) are not in N(u). Hence
there are

∑
u∈V

∑
v∈N (u) |N (v)| operations involved.

We simplify the expression above by replacing |N (u)| ∀u ∈ V with the average number
of neighbors, and using the fact that it is by definition the average degree of the network
graph (|E|/|V |). This leads to an average-case complexity of O

(
|V | |E||V |

|E|
|V |

)
.

B.2 Gradient Ascent Stage

After initialization, the algorithm optimizes the affiliation weights matrix F to maximize the
log-likelihood function (see Equation (2)) using gradient ascent. To understand the runtime
complexity of the GA stage, we first look at the two building blocks – calculating the dot
product and summing ~Fv – and their runtime complexity in the implementation.

B.2.1 Dot Product Runtime Complexity

Calculating the dot product between two vectors ~Fu and ~Fv is required to calculate the
gradient given in Equation (3). This is performed on each pairs of connected nodes in G for
each epoch.

In a naïve implementation that sums the product of the corresponding (dense) vector
elements, the number of operations required scales with the length of ~Fu. Many such
operations in this context are unnecessary – a node u in real networks is likely to be affiliated
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with only a small number of communities,9 leading to a large number of entries in ~Fu being
set to zero (as u is unaffiliated to those communities).

The SNAP implementation stores ~Fu as a sparse vector, where only non-zero elements
are recorded along with its position. Using sparse vectors, the number of operations for a
dot product between Fu and Fv scales as:

dDP(u, v) , min (|Du|, |Dv|) , (7)

which is the minimum number of community affiliations possessed by the two nodes u and v.

B.2.2 Vector Sum Runtime Complexity
We then consider the number of elements to be traversed in each ~Fv when calculating the
sum of affiliation weights for all neighbors of a node u,

∑
v∈N (u)

~Fv. The sum is featured
in Equation (4) as part of the gradient calculation. Similar to the dot product calculation,
implementing ~Fv as sparse vectors means the algorithm need not consider all |C| affiliation
weights in ~Fv but only the weights associated with communities that the neighbor nodes are
a member of:

⋃
v∈N (u) Dv ⊆ C .

The cardinality of the set in the expression above is bounded above by

dVS(u) , |N (u)| max
v∈N (u)

(|Dv|), (8)

assuming all neighbors of node u belong to disjoint sets of communities.10

B.2.3 Overall Runtime Complexity of the GA Stage
We can now estimate the runtime complexity of the GA stage. In this stage the algorithm
iterates over the nodes multiple times, calculates the row gradient in Equation (3) and
updates the affiliation weights. This is done until the convergence criteria is met, or for a
pre-specified number of epochs.

Equation (3) shows that the gradient of the log-likelihood is the difference of two sum-
mations. The first summation involves calculating the vector sum and dot product over
each neighbor v ∈ N (u), and the second summation involves calculating the vector sum over
v /∈ N (u). This is made more efficient by Equation (4) as real graphs are sparse and so the
number of neighbors of a node is far less than the number of non-neighbors. The number of
operations required in calculating the row gradient is then bounded above by:

γ

 ∑
v∈N (u)

(dVS(u) + dDP(u, v)) +
∑

v∈N (u)

dVS(u)

 , (9)

where γ is a constant multiplier.
We notice that dVS(u) dominates dDP(u, v) ∀v ∈ N (u), and hence Expression (9) can be

further simplified to γ′ [|N (u)| dVS(u)], where γ′ is another constant multiplier.

9 Liu [12] has shown the the maximum number of affiliations for any node is 116 out of 75,149 possible
communities in the Amazon product co-purchase network, and 682 out of 957,154 possible communities
in the LiveJournal social network.

10 In practice the cardinality will be much smaller due to the “small world" phenomenon: a node’s neighbors
are likely to be connected themselves [21], which according to BigClam is due to them being mutual
members of one or more communities.
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We replace |N (u)| by |E|/|V |, just as we did in Section B.1. Furthermore we approximate
dVS(u) (see Equation (8)) in the average case by |E|/|V | × r.

We have to calculate the row gradient for all |V | nodes over k epochs (which we specify).
Moreover, the computation of the GA stage is parallelized onto t threads using OpenMP [15],
which will reduce the runtime by t∗ ≤ t folds due to synchronization overhead [23]. We arrive
at our average-case complexity of

O

(
k

t∗
|V | |E|
|V |
|E|
|V |

r

)
. (10)

Note that r in Expression (10) is the BigClam estimate of the average number of affiliations
per node, not the value realized in the ground-truth, and the two values can differ significantly.

B.3 Community Association Stage
The final stage of the algorithm takes the most likely community affiliation weights matrix F ,
and for each community c ∈ C and each node u ∈ V determines if u is affiliated to c by
examining the entry Fuc (see Equation (6)).

The implementation treats rows of F as dense vectors, and requires scanning through
all entries of F to determine all community affiliations. Hence, at least |C||V | comparisons
must be performed, leading to an average-case complexity of O (|C||V |).
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