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Abstract: We answer a question posed by S.G. Kim in [3] and show that some of the results
of his paper are immediate consequences of known results.
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The recent paper [3] deals with extreme multilinear forms and polynomials
and the constants of the Bohnenblust-Hille inequalities. In this note we answer
a question posed in [3] and show that two theorems stated in [3] are immediate
corollaries of well known results of this field.

Let K be R or C. The multilinear Bohnenblust-Hille inequality asserts
that, given a positive integer m, there is an optimal constant C'(m : K) > 1

such that
m+1
0o . 2m
> |Ulens e <C(m:K) U,
01 yeeyim=1
for all bounded m-linear forms U : ¢y X -+ X ¢g — K. The case of com-

plex scalars was first investigated in [1] and the case of real scalars seems to
have been just explored more recently. It is well known that the exponent
2m/ (m+ 1) is sharp, so one of the main goals of the research in this field is
to investigate the constants involved. The following result was proved in [4]:

THEOREM 1. ([4, COROLLARY 5.4], 2018) Let m > 2 be a positive inte-
ger. If the optimal constant C' (m : R) is attained in a certain T : coX---Xco —
R, then the quantity of non zero monomials of T' is bigger than 4™~ — 1.

As an immediate corollary we conclude that if Ny, ..., N, > 1 are positive
integers such that

m
Iy <am -1,
j=1

145


https://core.ac.uk/display/185560897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

146 D.M. SERRANO-RODRIGUEZ

then

m—+1
va"va 2m

sup Z T (eir, .-, €iy) miT <C(m:R),

ila---vimzl

where the sup runs over all norm one m-linear forms T': £31 x ... x ¢fm — R.
In particular,

[

sl

2
sup Z T (es, €5, ex)]

1,5,k=1

<C(3:R),

where the sup runs over all norm one m-linear forms T : £2, x 2 x 2, — R,
and this is the content of [3, Theorem 4.9].

The polynomial Bohnenblust-Hille inequality for real scalars asserts that,
given a positive integer m, there is an optimal constant Cp (m : R) > 1 such
that

m+1

(z raa|«5?”1> < Cp(m:R) Q)

|a|=m

for all N > 1 and for all m-homogeneous polynomials @ : £Y (R) — R given
by
Qz) = > anz”.
la|=m

To the best of our knowledge, the case of real scalars became unexplored
until the publication of the paper [2] in 2015, where it is proved that the
constants C), (m : R) cannot be chosen with a sub-exponential growth. More
precisely,

THEOREM 2. ([2, THEOREM 2.2], 2015)

oo (298)" "
Cp(m.R)><\/g> > (L.17mn)™,

for all positive integers m > 2.

The above result is, obviously, by far, rather precise than [3, Theorem 4.5],
which states that
Cp(m:R) > 2%m |
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for all positive integers m > 2. The only case that deserves a little bit more
of attention is the case m = 2, since

e 2
2V3) 5
V5
but in the case m = 2 a quick look at the proof of [2, Proof of Theorem 2.2]
shows that

W

3
Cp(2:R) > 5 ~1.8236 > 21,

1
and this answers in the negative the Question (2) posed by the author in
[3, Question (2)].
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