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NORMALITY AND GAP PHENOMENA IN OPTIMAL

UNBOUNDED CONTROLI

Monica Motta1,*, Franco Rampazzo1 and Richard Vinter2

Abstract. Optimal unbounded control problems with a�ne control dependence may fail to have

minimizers in the class of absolutely continuous state trajectories. For this reason, extended impulsive

versions – which cannot be of measure-theoretic type – have been investigated, in which the domain

is enlarged to include discontinuous state trajectories of bounded variation, and for which existence of

minimizers is guaranteed. It is of interest to know whether the passage from the original optimal control

problem to its extension introduces an infimum gap. This paper provides su�cient conditions for the

absence of an infimum gap based on normality of extremals. In certain cases, the normality conditions

reduce to simple verifiable criteria, which improve on earlier, directly-derived su�cient conditions for

no infimum gap.
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1. Introduction

It is well known in Optimization Theory that the infimum cost is ‘stable’ under structural changes, if the
optimization problem considered is normal, i.e. Lagrange multiplier rules are valid in a form that requires the
cost multiplier to di↵er from zero (see, e.g., [6, 16]). Likewise in Optimal Control Theory, it has been shown
that, under normality-type hypotheses, the infimum cost will not decrease when we enlarge the class of state
trajectories to include relaxed state trajectories, i.e. trajectories whose derivatives lie in the convexified velocity
set, a procedure that can be interpreted as a (infinite-dimensional) structural change to the domain of the
optimal control problem under consideration. When there is no such decrease, we say ‘there is no infimum gap’
(see [26, 27, 34, 35]). We remark that no infimum gap can occur when the right endpoint of state trajectories
is free, in consequence of the Relaxation Theorem which tells us that the set of state trajectories is ‘C0-dense’
in the set of relaxed state trajectories. But infimum gaps may arise when the right endpoint is constrained.

Similar considerations come into play in connection with the following class of optimal control problems, in
which the original dynamics are unbounded and the customary coercivity hypotheses, which have the e↵ect of
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excluding optimal trajectories that are discontinuous, are no longer invoked.

(P )

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Minimize h(t1, x(t1), t2, x(t2), v(t2))

over t1, t2 2 R, t1 < t2, (x, v, u) 2 W 1,1([t1, t2];Rn ⇥ R⇥ Rm) satisfying

dx

dt
(t) = f(t, x(t)) +

mX

j=1

gj(t, x(t))
duj

dt
(t) a.e. t 2 [t1, t2]

dv

dt
(t) =

����
du

dt
(t)

���� a.e. t 2 [t1, t2]

du

dt
(t) 2 C a.e. t 2 [t1, t2],

v(t1) = 0, v(t2)  K,
�
t1, x(t1), t2, x(t2)

�
2 T ,

(1.1)

where K > 0 is a fixed constant (possibly equal to +1), C ✓ Rm is a closed convex cone, and the end-point
constraint T ✓ R⇥Rn ⇥R⇥Rn is a closed subset. Notice that for every t 2 [t1, t2], v(t) is nothing but the total
variation of u on [t1, t]. In particular, the choice K = +1 means that there are no constraints on the total

variation of the controls u. Since the derivatives
du

dt
– here playing the role of controls – are not L1 uniformly

bounded, in general, due to a lack of coerciveness, minima do not exist in the set of W 1,1 trajectories, even if
one assumes the control cone C to be convex. So, in general, minimizing sequences of trajectories do not even
converge to a continuous path. This is why we call these problems impulsive. We remark that the occurrence
of impulses (i.e. discontinuities of (x, u, v)(·)) is not ruled out by the weak coerciveness assumption K < +1.
However, through a time-reparameterization t = t(s) based on the total variation map v(·) one can reformulate
problem (P) as the following equivalent space-time minimum control problem, having the same form but with
bounded control derivatives.

(Pe)

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

Minimize h(y0(0), y(0), y0(S), y(S), ⌫(S))

over S > 0, (y0, y, ⌫,'0,') 2 W 1,1([0, S];R⇥ Rn ⇥ R⇥ R⇥ Rm) satisfying

dy0

ds
(s) =

d'0

ds
(s) a.e. s 2 [0, S] ,

dy

ds
(s) = f(y0(s), y(s))

d'0

ds
(s) +

mX

j=1

gj(y
0(s), y(s))

d'j

ds
(s) a.e. s 2 [0, S] ,

d⌫

ds
(s) =

����
d'

ds
(s)

���� a.e. s 2 [0, S] ,
✓
d'0

ds
,
d'

ds

◆
(s) 2 C a.e. s 2 [0, S] ,

⌫(0) = 0, ⌫(S)  K,
⇣
y0(0), y(0), y0(S), y(S)

⌘
2 T ,

(1.2)

where

C :=
�
(w0, w) 2 R+ ⇥ C : w0 + |w| = 1

 

and '0 : [0, S] ! [t1, t2] is a surjective, non-decreasing, parameterization of [t1, t2]. The controls ('0,') verify
d'0

ds (s) +
���d'ds (s)

��� = 1 a.e., so they are 1-Lipschitz continuous. The embedding of the problem (1.1) into the
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standard control problem (1.2) is obtained by setting

s(t) :=

Z t

t1

✓
1 +

����
du

d⌧
(⌧)

����

◆
d⌧ ('0,') := (id, u) � t (y0, y) := (id, x) � t, (1.3)

where t = t(s) denotes the inverse function of s. To further elucidate the relation between the two problems,
we observe that, for a given control function u, the preceding change of independent variable, expressible in

infinitesimal form as ds =
⇣
1 +

���dudt (t)
���
⌘
dt, replaces the di↵erential equation for x in (1.1) by the di↵erential

equation for y(s) := x(t(s))

dy

ds
(s) =

dx

dt
· dt
ds

(s) = f(t(s), x(t(s)))
1

1 +
���dudt (t(s))

���
+

mX

j=1

gj(t(s), x(t(s)))
duj

dt (t(s))

1 +
���dudt (t(s))

���
.

We see that, according to the embedding, (d'
0

ds , d'
ds ) and u have the identifications

d'0

ds
(s) =

1

1 +
���dudt (t(s))

���
,

d'j

ds
(s) =

duj

dt (t(s))

1 +
���dudt (t(s))

���
.

We point out that by allowing the time-maps '0
to be constant on non-degenerate intervals

1, we arrive at
parameterized limits of trajectory graphs – here called extended sense trajectories – which are not graphs
of trajectories of the original problem. For a selective bibliography on this subject, we refer the reader to
[3, 4, 7, 14, 15, 18, 20–25, 29, 30, 33, 36], and to the references therein. In particular, the state trajectories y
may happen to be non-constant on s-subintervals where the real time t = y0 is constant. On the other hand, it
is known that s 7! ('0,')(s) coincides with the reparameterization s 7! (id, u)(t(s)) of the graph t 7! (id, u)(t)

of some strict sense (i.e. absolutely continuous) control u if and only if
d'0

ds
> 0 almost everywhere.

Since the set of embedded strict sense trajectories2 is C0-dense in the set of extended sense trajectories, it is
natural to address the infimum gap issue, as has previously been done in the context of relaxation for optimal
control problems [26, 27, 34, 35]. That is, one can question whether the infimum value of the functional among
the strict-sense trajectories happens to be greater than the corresponding infimum among the extended-sense
trajectories. Such infimum gaps may actually occur, as shown by simple examples. In the present paper we aim
to explore the connection between ‘normality’ of a minimizer of problem (Pe) and the occurrence of an infimum
gap. In this case, normality means that if (p0, p,⇡,�) is an arbitrary set of ‘multipliers’ (the adjoint component
paths and cost multiplier) appearing in the Maximum Principle,3 then � > 0. Omitting some details concerning
the precise hypotheses we impose on the data, our main result (see Thm. 4.2) may be summarized as follows:

Theorem 1.1. Consider the optimal control problem (1.1) and its extended sense formulation (1.2). Assume

that some minimizer for (Pe) is a normal extremal. Then there is no infimum gap.

As we shall see, this relation is proved by means of a topological argument concerning the properties of so-
called isolated extended sense feasible trajectories (see Thm. 4.4). We point out that our normality hypotheses
are of more theoretical than practical interest. Indeed to check them requires knowledge of all sets of Lagrange
multipliers (p0, p,⇡,�) in the Maximum Principle, associated with some minimizer. Yet, this drawback may be

1A distributional, or measure-theoretical, approach is out of question here, in view of the fact that the vector fields gi are allowed
to be non-commutative, see [7, 19].

2Namely, the extended sense trajectories associated to graph reparameterizations of strict-sense controls.
3The adjoint component p0 corresponds to the time variable y0, while ⇡ corresponds to the variable ‘total variation’, ⌫ (see

below).
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overcome in certain situations in which verifiable condition on the data can be identified, guaranteeing that
every set of multipliers is normal. Such considerations are the motivation for the last part of the paper (see
Sect. 5), where several su�cient conditions for normality are provided in terms of quite reasonable assumptions
on the end-point constraints and the vector fields f, g1, . . . , gm.

A ‘no gap condition’ is clearly desirable, in particular when numerical schemes are employed to solve specific
problems. We point out that consideration of impulsive systems is crucial in many applications (see, e.g. [5, 12,
17]). Instances in mechanics are situations where some state parameters (u1, . . . , um) are regarded as controls
[9–11]. The fact that the derivatives of these controls appear linearly in the dynamical equations (rather than
quadratically) is an intrinsic, metric property of the foliation u = c, c 2 Rm, when the space of states is endowed
with the kinetic energy metric. Examples where this property is verified include a swing where the length of the
swing is regarded as the control input, and a multiple pendulum where the control inputs are identified with
the mutual angles between adjacent single pendulums (see e.g. [8, 31]).

The paper is organized as follows: in Section 2 we describe how the original problem is embedded in the
extended problem; Section 3 concerns a Maximum Principle for the extended problem, which, compared with
the standard version, includes an improved non-triviality condition. In Section 4 we prove that an isolated

extended-sense extremal cannot be normal and, as a corollary, we deduce the main result. In Section 5 we identify
some classes of problems where normality – hence the non occurrence of gap-phenomena – can be established a

priori, without any knowledge of the multipliers associated with the given extended-sense minimizer, as earlier
anticipated. Finally, in Section 6, we present some instructive examples – including one where normality is
shown to be not necessary to rule out gap phenomena.

Preliminaries and notation. In an Euclidean space of dimension N , the norm |x| of a vector x is defined as

|x| :=
 

NX

i=1

(xi)2
!1/2

,

and the closed unit ball {x | |x|  1} is denoted by BN . The surface of the unit ball {x | |x| = 1} is written @BN .
R+ := [0,+1). dD(x) denotes the Euclidean distance of the point x 2 RN to the given closed set D. Given
a, b 2 R, we write a _ b := max {a, b}.

Some standard constructs from nonsmooth analysis are employed in this paper. Background material may
be found in a number of texts, examples of which include [13, 28, 32].

Definition 1.2. Take a closed set D ⇢ Rk and a point x̄ 2 D. The limiting normal cone ND(x̄) of D at x̄ is
defined to be

ND(x̄) :=

(
p | 9 xi

D�! x̄, pi �! p s.t. lim sup
x

D!xi

pi · (x� xi)

|x� xi|
 0 for each i

)
,

in which xi
D�! x̄ is notation conveying the information ‘xi ! x̄’ and ‘xi 2 D for all i’.

Definition 1.3. Take a lower semicontinuous function f : Rk ! R and a point x̄ 2 Rk. The limiting

subdi↵erential of f at x̄ is

@f(x̄) =

(
⇠ | 9 ⇠i ! ⇠ and xi ! x̄ s.t. lim sup

x!xi

⇠i · (x� xi)� f(x) + f(xi)

|x� xi|
 0 for each i

)
.

We take note, for future use, of the following facts about the limiting subgradient of the distance function
dD from an arbitrary closed set D (see, e.g., [32], Sect. 4.8):
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(i) if x̄ /2 D and ⇠ 2 @dD(x̄) then |⇠| = 1;
(ii) @dD(x̄) = ND(x̄) \ Bk whenever x̄ 2 D.

2. The optimal control problem and its impulsive extension

2.1. The optimal control problem

Fix K 2 (0,+1], a closed, convex cone C ✓ Rm and a closed set T ✓ R ⇥ Rn ⇥ R ⇥ Rn, and consider the
optimal control problem (P ) formulated in the Introduction. We shall invoke the following hypothesis

(H1): (i) the vector fields f : R⇥Rn ! Rn, gj : R⇥Rn ! Rn, j = 1, . . . ,m, are of class C1 and for some constant
A > 0, verify

x · f(t, x)  A(1 + |x|2) for every x 2 Rn,
x · gj(t, x)  A(1 + |x|2), for every x 2 Rn and j = 1, . . . ,m;

(ii) the function h : R ⇥ Rn ⇥ R ⇥ Rn ⇥ R ! R is of class C1 and for every (t1, x1, t2, x2), the map v 7!
h(t1, x1, t2, x2, v) is monotone non-decreasing.

Remark 2.1. By means of the addition of the trivial equations
dx̃

dt
(t) =

du

dt
(t), where x̃ = (xn+1, . . . , xn+m),

we can allow h, f , gj , j = 1, . . . ,m to depend on u as well as on (t, x).

Definition 2.2 (Strict sense processes). Let t1, t2 2 R verify t1 < t2. We call a function u 2 W 1,1([t1, t2];Rm)

a strict sense control on [t1, t2] if
du

dt
(t) 2 C a.e. in [t1, t2]. A strict sense process is a five-tuple (t1, t2, x, v, u),

t1 < t2, in which u is a strict sense control on [t1, t2] and (x, v) is a W 1,1([t1, t2];Rn ⇥ R) function satisfying

8
>>><

>>>:

dx

dt
(t) = f(t, x(t)) +

mX

j=1

gj(t, x(t))
duj

dt
(t) a.e. t 2 [t1, t2]

dv

dt
(t) =

����
du

dt
(t)

���� a.e. t 2 [t1, t2].

(2.1)

If (t1, t2, x, v, u) is a strict sense process, the four-tuple (t1, t2, x, v) 2 R2 ⇥W 1,1([t1, t2];Rn ⇥ R) is called the
(strict sense) trajectory corresponding to (t1, t2, x, v, u). If a strict sense process (t1, t2, x, v, u) also satisfies
v(t1) = 0, v(t2)  K and

�
t1, x(t1), t2, x(t2)

�
2 T , we say it is feasible.

Let us observe that there is a trivial one to one correspondence between trajectories (t1, t2, x, v) and the four-
tuple one obtains by extending continuously (x, v) to R in such a way that both of them are constant outside
the original domain [t1, t2]. In order to define a metric on strict sense trajectories we shall always consider their
extension to R. Let us define the distance

d1
⇣
(t1, t2, x, v), (t̄1, t̄2, x̄, v̄)

⌘
:= |t1 � t̄1|+ |t2 � t̄2|+ k(x, v)� (x̄, v̄)kL1(R). (2.2)

Definition 2.3 (Local and global strict sense minimizers). We say a feasible strict sense process (t̄1, t̄2, x̄, v̄, ū)
is a strict sense L1

local minimizer if there exists � > 0 such that

h(t̄1, x̄(t̄1), t̄2, x̄(t̄2), v̄(t̄2))  h(t1, x(t1), t2, x(t2), v(t2)) (2.3)

for all feasible strict sense processes (t1, t2, x, v, u) verifying

d1
⇣
(t1, t2, x, v), (t̄1, t̄2, x̄, v̄)

⌘
 �,
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If relation (2.3) is satisfied for all strict sense feasible processes (t1, t2, x, v, u), we say that (t̄1, t̄2, x̄, v̄, ū) is a
strict sense L1

(global) minimizer.

2.2. The extended system

Let (t1, t2, x, v, u) be a strict sense process. If we reparameterize time in the graph-equation

8
>>>>>>>>><

>>>>>>>>>:

dx0

dt
(t) = 1

dx

dt
(t) = f(x0(t), x(t)) +

mX

j=1

gj(x
0(t), x(t))

duj

dt
(t) a.e. t 2 [t1, t2],

dv

dt
(t) =

����
du

dt
(t)

���� a.e. t 2 [t1, t2],

x0(t1) = t1 ,

(2.4)

through a bi-Lipschitz increasing, surjective map '0 : [0, S] ! [t1, t2], we obtain the equivalent di↵erential
system on [0, S]

8
>>>>>>>>>>><

>>>>>>>>>>>:

dy0

ds
(s) =

d'0

ds
(s) a.e. s 2 [0, S] ,

dy

ds
(s) = f(y0(s), y(s))

d'0

ds
(s) +

mX

j=1

gj(y
0(s), y(s))

d'j

ds
(s) a.e. s 2 [0, S] ,

d⌫

ds
(s) =

����
d'

ds
(s)

���� a.e. s 2 [0, S] ,
✓
d'0

ds
,
d'

ds

◆
(s) 2 C a.e. s 2 [0, S] ,

(2.5)

where

C :=
�
(w0, w) 2 R+ ⇥ C : w0 + |w| = 1

 
.

If, however, we allow the map '0 merely to be non-decreasing, we arrive at a new, impulsive, system, in which
the s-intervals where '0 is constant represent the arcs of (nonlinear) instantaneous evolution of both the control
and the state:

Definition 2.4 (Extended sense processes). An extended sense process (S, y0, y, ⌫,'0,') comprises S � 0 and
Lipschitz continuous functions (y0, y, ⌫,'0,') : [0, S] ! R⇥ Rn ⇥ R⇥ R⇥ Rm satisfying (2.5).

Remark 2.5. We observe that system (2.5) is rate independent. Indeed, if one considers a bi-Lipschitz increasing
map � : [0, S] ! [0, S̃], then (y0, y, ⌫) � ��1 is a solution of (2.5) on [0, S̃] corresponding to the control ('0,') �
��1 if and only if (y0, y, ⌫) is a solution of (2.5) on [0, S] corresponding to the control ('0,'). Thus, imposing
the condition on controls

d'0

ds
(s) +

����
d'

ds
(s)

���� = 1 a.e. s 2 [0, S] (2.6)
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is a convenient, but arbitrary, choice.4

There is a natural embedding I of the family of strict sense processes into the family of extended sense
processes, which is expressed by

I(t1, t2, x, v, u) := (S, y0, y, ⌫,'0,'),

where

�(t) :=

Z t

t1

✓
1 +

����
du

d⌧
(⌧)

����

◆
d⌧ , S := �(t2),

(y0, y, ⌫,'0,')(s) :=
�
id, x, v, id, u)(��1(s)

�
8s 2 [0, S].

Notice, in particular, that

⌫(S) = v(t2). (2.7)

Observe also that the map '0(= ��1) : [0, S] ! [t1, t2] is increasing and 1-Lipschitz continuous. Furthermore it

verifies d'0

ds (s) > 0 for almost every s 2 [0, S]. Actually, such mappings provide a characterization of extended
sense controls ('0,') that are graphs of absolutely continuous, strict sense controls u:

Lemma 2.6. The embedding I is injective.
5
Moreover, the image space of the embedding I comprises the

subclass of extended sense processes (S, y0, y, ⌫,'0,') that satisfy
d'0

ds (s) > 0 almost everywhere. In fact, for

every extended sense process in this sublass the map '0
is invertible with inverse ('0)�1

absolutely continuous.

The map I�1
is defined (on the image of I) by

I�1(S, y0, y, ⌫,'0,') = (t1, t2, x, v, u) :=
�
'0(0),'0(S), y � ('0)�1, ⌫ � ('0)�1,' � ('0)�1

�
.

See e.g. [1] for a proof of this standard result.

4For instance, one could have used also controls verifying

✓
d'0

ds
,
d'

ds

◆
(s) 2 C with

C :=
�
(w0, w) 2 R+ ⇥ C : |(w0, w)| = 1

 
or C :=

�
(w0, w) 2 R+ ⇥ C : |w0|+ |w1|+ . . .+ |wm| = 1

 

or even C :=
�
(w0, w) 2 R+ ⇥ C : ↵ < w0 + |w|  �

 
, with any ↵, � such that 0 < ↵ < � (with the latter choice, di↵erent pairs

may well represent the same control u).
5Notice that the injectivity is a consequence of the fact that we require ('0,') to verify d'0

ds (s) +
���d'

0

ds (s)
��� = 1 a.e. in [0, S].
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2.3. The extended optimal control problem

Consider the extended optimal control problem

(Pe)

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

Minimize h(y0(0), y(0), y0(S), y(S), ⌫(S))

over S > 0, (y0, y, ⌫,'0,') 2 W 1,1([0, S];R⇥ Rn ⇥ R⇥ R⇥ Rm) satisfying

dy0

ds
(s) =

d'0

ds
(s) a.e. s 2 [0, S] ,

dy

ds
(s) = f(y0(s), y(s))

d'0

ds
(s) +

mX

j=1

gj(y
0(s), y(s))

d'j

ds
(s) a.e. s 2 [0, S] ,

d⌫

ds
(s) =

����
d'

ds
(s)

���� a.e. s 2 [0, S] ,
✓
d'0

ds
,
d'

ds

◆
(s) 2 C a.e. s 2 [0, S] ,

⌫(0) = 0, ⌫(S)  K,
⇣
y0(0), y(0), y0(S), y(S)

⌘
2 T .

Definition 2.7. We say that an extended sense process (S, y0, y, ⌫,'0,') is feasible for (Pe) if

⌫(0) = 0, ⌫(S)  K,
⇣
y0(0), y(0), y0(S), y(S)

⌘
2 T .

Definition 2.8. A feasible extended sense process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is said to be an extended sense L1
local

minimizer for (Pe) if there exists � > 0 such that:

h(ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄))  h(y0(0), y(0), y0(S), y(S), ⌫(S)) (2.8)

for all extended sense feasible processes (S, y0, y, ⌫,'0,') satisfying

d1
⇣
(y0(0), y0(S), y, ⌫), (ȳ0(0), ȳ0(S̄), ȳ, ⌫̄)

⌘
 �.6 (2.9)

If (2.8) is satisfied for all extended sense feasible processes (S, y0, y, ⌫,'0,'), we say that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄)
is an extended sense L1

(global) minimizer.

Let us remark that the notion of extended sense L1 local minimizer for (Pe) is consistent with the definition
of L1 local minimizer for problem (P). To be precise, it is not di�cult to prove the following result.

Lemma 2.9. A process (t̄1, t̄2, x̄, v̄, ū) is a L1
local minimizer for problem (P) if and only if

(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) := I(t̄1, t̄2, x̄, v̄, ū)

is an extended sense L1
local minimizer for problem (Pe) among embedded strict sense feasible processes.

Moreover, these equivalent properties imply

h(ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) = h(t̄1, x̄(t̄1), t̄2, x̄(t̄2), v̄(t̄2)).
6As in the strict sense case, we mean that (ȳ, ⌫̄) and (y, ⌫) are continuously extended to R so that they are constant outside the

original domains [0, S̄] and [0, S], respectively. Let us observe, incidentally, that

S = '0(S)� '0(0) + ⌫(S) = y0(S)� y0(0) + ⌫(S).
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Remark 2.10. Although the question of existence is not addressed in this paper, we point out that the existence
of an optimal extended sense feasible process has been established in several cases. For instance, when either
K < +1 or h(t1, x1, t2, x2, v) �  (v) with lim

v!+1
 (v) = +1 and the target is of the form T = {(t̄1, x̄1, t̄2)}⇥ T̃

for a given closed set T̃ ⇢ Rn, one can establish existence by compactness and the continuity – in suitable
topologies – of the input–output map7 (see, e.g., [7, 18, 21, 22]). These include so-called weakly coercive problems,

namely those problems where the cost has the form J(t1, t2, x, v, u) =
R t2
t1
[`0(t, x(t)) + `1(t, x(t))|u̇(t)|] dt, with

`1(t, x) � C for some constant C > 0.

3. Necessary conditions for the extended optimal
control problem

This section provides necessary conditions, in the form of a Pontryagin Maximum Principle (PMP), for
extended sense L1 local minimizers.

Theorem 3.1. Take an extended sense L1
local minimizer for (Pe), (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄). Assume hypothesis

(H1) is satisfied. Then the following conditions are verified: there exist (p0, p) 2 W 1,1
�
[0, S̄];R1+n

�
and real

numbers ⇡, �, with ⇡  0 and � � 0, such that

(p0, p,�) 6= (0, 0, 0), (3.1)

8
>>>><

>>>>:

dp0
ds

(s) = �p(s) ·
✓
@f

@t
(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

@gj
@t

(ȳ0(s), ȳ(s))
d'̄j

ds
(s)

◆
a.e. s 2 [0, S̄] ,

dp

ds
(s) = �p(s) ·

✓
@f

@x
(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

@gj
@x

(ȳ0(s), ȳ(s))
d'̄j

ds
(s)

◆
a.e. s 2 [0, S̄] ,

(3.2)

p(s) ·
✓
f(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

gj(ȳ
0(s), ȳ(s))

d'̄j

ds
(s)

◆
+ p0(s)

d'̄0

ds
(s) + ⇡

����
d'̄

ds

���� (s) =

max
(w0,w)2C

⇢
p(s) ·

✓
f(ȳ0(s), ȳ(s))w0 +

mX

j=1

gj(ȳ
0(s), ȳ(s))wj

◆
+ p0(s)w

0 + ⇡|w|
�

= 0

(3.3)

a.e. s 2 [0, S̄] and

(p0(0), p(0),�p0(S̄),�p(S̄),�⇡) 2

�rh(ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) +NT ⇥[0,K](ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) .

(3.4)

Moreover, additional ‘multiplier’ information is available in the following special cases:

(i) if � @h
@v (ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) = 0 and ⌫̄(S̄) < K then

⇡ = 0;

(ii) if ȳ0(0) < ȳ0(S̄), inequality (3.1) can be strengthened to

(p,�) 6= (0, 0). (3.5)

7Of course one has to assume that the set of feasible extended sense trajectories is non-empty.
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Definition 3.2 (Normal and abnormal extremals). A feasible extended sense process
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄), is said to be an extended sense extremal if there exists a set of multipliers (p0, p,⇡,�) such
that (p0, p,⇡,�) and (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) satisfy the conditions listed in Theorem 3.1. An extended sense extremal
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is said to be normal if the only possible choices of multiplier sets (p0, p,⇡,�) associated with
it are such that � > 0. If there exists at least one set of multipliers such that � = 0, we say that the extended
sense extremal is abnormal.

Remark 3.3. The standard PMP applied to the extended problem tells us that there exists a non-trivial
multiplier set (p0, p,⇡,�) satisfying conditions (3.2)–(3.4). The novelty of Theorem 3.1 consists in the stronger
non-triviality condition (3.1) and the additional information concerning the multipliers non-triviality in some
cases of interest.

Proof of Theorem 3.1. (Pe) is a standard optimal control problem, to which the ‘free end-time’ PMP is appli-
cable (see, e.g., [32], Thm. 8.7.1), with reference to the L1 local extended sense minimizer (S̄, ȳ0, ȳ, '̄0, '̄). This
yields the existence of (p0, p) 2 W 1,1

�
[0, S̄];R1+n

�
and ⇡ 2 R, � � 0 satisfying (3.2)–(3.3), the transversality

conditions (3.4) and the non-triviality condition

(p0, p,⇡,�) 6= 0 . (3.6)

Since @h
@v (ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) � 0 and N[0,K](v) = {0} for v < K, N[0,K](K) = [0,+1), it follows

from (3.4) that ⇡ = 0 as soon as �@h
@v (ȳ

0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) = 0 and ⌫̄(S̄) < K, while ⇡  0 in the other
cases. So the proof concerning the sign of ⇡, and also relation (i), is complete.

Next, we show that (p0, p,�) 6= (0, 0, 0). Indeed, if this were not true, it would follow from (3.6) that ⇡ 6= 0.
But then ⌫̄(S̄) = K. Integrating the first equation in (3.3), one obtains ⇡K = 0. This is not possible, since
K > 0.

Finally, we consider relation (ii). Suppose then that ȳ0(0) < ȳ0(S). We must show that (p,�) 6= (0, 0). If this
were not true, we would be able to deduce from (3.2) and (3.3) that p0(·) is a constant function and

p0(s)
d'̄0

ds
(s) + ⇡

����
d'̄

ds
(s)

���� = max
(w0,w)2C

⇢
p0(s)w

0 + ⇡|w|
�

= 0 a.e. s 2 [0, S̄].

If ⇡ < 0, it would follow from this relation that p0(s) = 0 for all s 2 [0, S̄]. This cannot be true since, as we
have shown, (p0, p,�) 6= (0, 0, 0). If, on the other hand, ⇡ = 0, it would follow from the preceding relation that

p0(s) < 0 a.e. s 2 [0, S̄]. But then we would have d'̄0

ds (s) = 0 a.e., which would imply

ȳ0(S)� ȳ0(0) =

Z S̄

0

d'̄0

ds
(s) ds = 0.

This is not possible since, as we have assumed, ȳ0(0) < ȳ0(S̄). From this contradiction we deduce relation
(ii).

4. ‘No infimum gap’ and normality

Write J(t1, t2, x, v, u) for the cost of a strict sense process (t1, t2, x, v, u) in problem (P ), namely,

J(t1, t2, x, v, u) := h(t1, x(t1), t2, x(t2), v(t2)),

and Je(S, y0, y, ⌫,'0,') for the cost of an extended sense process (S, y0, y, ⌫,'0,') in problem (Pe):

Je(S, y
0, y, ⌫,'0,') := h(y0(0), y(0), y0(S), y(S), ⌫(S)).
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Let us also write A and Ae for the class of feasible strict sense processes (in problem (P )) and for the class of
feasible extended sense processes (in problem (Pe)), respectively.

Definition 4.1. We shall say that

(i) there is no infimum gap if

inf
n
Je(S, y0, y, ⌫,'0,') | (S, y0, y, ⌫,'0,') 2 Ae

o

= inf{J(t1, t2, x, v, u) | (t1, t2, x, v, u) 2 A}.
(4.1)

Furthermore, if (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is an extended sense L1 local minimizer, we shall say that

(ii) there is no local infimum gap at (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) if, for some � > 0,

Je(S̄, ȳ
0, ȳ, ⌫̄, '̄0, '̄) = inf

(
J(t1, t2, x, v, u) | (t1, t2, x, v, u) 2 B�

h
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄)

i)

where we have set

B�

h
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄)

i
:=

(
(t1, t2, x, v, u) 2 A | (S, y0, y, ⌫,'0,') = I(t1, t2, x, v, u)

and d1
⇣
(ȳ0(0), ȳ0(S̄), ȳ, ⌫̄), (y0(0), y0(S), y, ⌫)

⌘
< �

)
.

To prove Theorem 4.2, it will be convenient to introduce the subset A+
e ⇢ Ae defined by

A+
e :=

�
(S, y0, y, ⌫,'0,') | (S, y0, y, ⌫,'0,') = I(t1, t2, x, v, u) and (t1, t2, x, v, u) 2 A

 
.

Using the same notation of Definition 4.1, by Lemma 2.6 we have:

inf{J(t1, t2, x, v, u) | (t1, t2, x, v, u) 2 A} = inf{Je(S, y0, y, ⌫,'0,') | (S, y0, y, ⌫,'0,') 2 A+
e }

and

inf
n
J(t1, t2, x, v, u) | (t1, t2, x, v, u) 2 B�

⇥
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄)

⇤o

= inf{Je(S, y0, y, ⌫,'0,') | (S, y0, y, ⌫,'0,') 2 A+
e and

d1
⇣
(ȳ0(0), ȳ0(S̄), ȳ, ⌫̄), (y0(0), y0(S), y, ⌫)

⌘
< �}.

Theorem 4.2. Assume Hypothesis (H1) is satisfied.

(i) Suppose that there exists an extended sense L1
minimizer for (Pe) which is a normal extremal. Then

there is no infimum gap.

(ii) Take an extended sense L1
local minimizer (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) for (Pe). Suppose that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is

a normal extremal. Then there is no local infimum gap at (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄).

Theorem 4.2 will be proved in Section 4.2 as a consequence of Theorem 4.4, which relates ‘isolated processes’
and normality.
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4.1. Isolated extended sense feasible processes

Notice that, on the one hand, the trajectory of any extended sense process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) can be approx-
imated by the trajectory of an embedded strict sense process, that is, for any � > 0 we can find an embedded
strict sense process (S, y0, y, ⌫,'0,') such that

d1
⇣
(ȳ0(0), ȳ0(S̄), ȳ, ⌫̄), (y0(0), y0(S), y, ⌫)

⌘
< �, (4.2)

where d1 is the metric defined in (2.2). On the other hand, the presence of endpoint constraints could make
such an approximation unachievable, if we keep the requirement that approximating embedded strict sense
processes have to be feasible as well.8 This is because the perturbation that changes (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) into a
close embedded strict sense process might violate either the end-point constraints or the total variation bound.
The phenomenon is captured in the following definition (of topological nature):

Definition 4.3. [Isolated feasible extended sense processes] We say that a feasible extended sense process
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is isolated if, for some � > 0, there does not exist a feasible embedded strict sense process
(S, y0, y, ⌫,'0,') such that (4.2) is satisfied.

A feasible extended sense process having the properties described in this definition is called ‘isolated’ because
the state trajectory component (ȳ0, ȳ, ⌫̄) : [0, S̄] ! R ⇥ Rn ⇥ R is not in the closure (w.r.t. the metric defined
by the left side of (4.2)) of the set of state trajectories arising from embedded strict sense processes, whose
endpoints lie in the target set and satisfy the total variation constraint.

In this section we give a necessary condition for a feasible extended sense process to be isolated. The relevance
of this condition, which will be explored in subsequent sections, is the insights that it will provide into possible
di↵erences between the infimum cost of the optimal control problem (P ) and its extension (Pe).

The following result relates isolated extended sense processes and abnormality, from which the main result
(Thm. 4.2) will follow.

Theorem 4.4. If a feasible extended sense process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is isolated, then it is an abnormal extremal

for (Pe).

Proof. We may assume, without loss of generality, that (H1) (i) is replaced by the stronger hypothesis:

(H1)*: (i) the vector fields f : R ⇥ Rn ! Rn, gj : R ⇥ Rn ! Rn, j = 1, . . . ,m are of class C1, Lipschitz
continuous and bounded.

(If only (H1) (i) is satisfied, we consider an optimal control problem related to (P), in which f and the gj ’s are
modified outside a ball in R⇥Rn containing Graph{(ȳ0, ȳ)} in its interior, by truncation and mollification. Since
the analysis involves consideration of extended sense trajectories with graphs arbitrarily close to Graph{(ȳ0, ȳ)}
in the Hausdor↵ sense and the relations appearing in the statement of the theorem concern properties of the
data ‘near’ Graph{(ȳ0, ȳ)}, it su�ces to prove the assertions for only the modified problem.)

Let (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) be an arbitrary isolated extended sense feasible process. Define the map � : R⇥ Rn ⇥
R⇥ Rn ⇥ R ! R, given by

�(y00 , y0, y
0
1 , y1, v) := max

�
dT (y00 , y0, y

0
1 , y1), (v �K) _ 0

 
(4.3)

8 Actually, such a requirement seems minimal if one wishes feasible extended processes to retain the physical meaning of limits
of actual – i.e. strict sense feasible – processes.
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(see the notational conventions in Sect. ). Take a sequence ✏i & 0. For each i 2 IN, let us consider the free
end-point optimal control problem

(P̂i)

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

Minimize �

✓
y0(0), y(0), y0(S̄), y(S̄), ⌫(S̄)

◆

over (y0, y, ⌫) 2 W 1,1([0, S̄];R⇥ Rn ⇥ R) and measurable functions d ,w satisfying

dy0

ds
(s) = (1 + d(s))(1� |w(s)|) a.e. s 2 [0, S̄] ,

dy

ds
(s) = (1 + d(s))

✓
f(y0(s), y(s))(1� |w(s)|) +

mX

j=1

gj(y
0(s), y(s))wj(s)

◆
a.e. s 2 [0, S̄] ,

d⌫

ds
(s) = (1 + d(s))|w(s)| , a.e. s 2 [0, S̄] ,

w(s) 2 (1� ✏i)(C \ Bm) , a.e. s 2 [0, S̄] ,

d(s) 2 [�0.5,+0.5] , a.e. s 2 [0, S̄] ,

k(0) = 0

We call a collection of functions (y0, y, ⌫, d, w) satisfying the constraints in this problem a feasible process for

problem (P̂i). (Notice that, to simplify the notation, we use here w for the s-derivative of ', and express the
variable (w0, w) satisfying the constraint (w0, w) 2 C, as (1� |w|, |w|) where w 2 (1� ✏i)(C \ Bm)).

The idea behind the subsequent analysis is to show that a minimizer, which is ‘near’ the given isolated
point (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄), can be found for a perturbation of problem (P̂i), that depends on the parameter ✏i;
furthermore, applying the PMP to (P̂i) (with reference to this minimizer), we obtain, in the limit as i ! 1, an
extremal for the extended problem (Pe) with cost multiplier � = 0. The assumption that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is
isolated is crucial because it permits us to show that the extremal satisfies the non-triviality condition (3.1).

The reason for including the control like variable d(·) in (P̂i) is to generate variations, with the help of which
we can derive one of the extremality conditions, namely that the maximized Hamiltonian vanishes along the
extended sense process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄). (See condition (3.3).)

For every i 2 IN, let (S̄, ŷ0i , ŷi, ⌫̂i, '̂
0
i , '̂i) be the extended sense process in which

(ŷ0i , ŷi, ⌫̂i, '̂
0
i , '̂i)(0) = (ȳ0, ȳ, ⌫̄, '̄0, '̄)(0)

and, for a.e. s 2 [0, S̄],

✓
d'̂0

i

ds
,
d'̂i

ds

◆
(s) :=

8
>><

>>:

⇣
✏i, (1� ✏i)

d'̄
ds (s)

���d'̄
ds (s)

��
⌘

if d'̄0

ds (s) < ✏i,

⇣
d'̄0

ds (s), d'̄
ds (s)

⌘
if d'̄0

ds (s) � ✏i.

Notice that for each i 2 IN, on the one hand,
d'̂i

ds
(s) 2 (1� ✏i)(C \Bm) a.e. s 2 [0, S̄], so that (ŷ0i , ŷi, ⌫̂i, 0,

d'̂i

ds ) is

a feasible process for problem (P̂i); on the other hand,
d'̂0

i

ds
(s) � ✏i > 0 a.e. s 2 [0, S̄], so that (S̄, ŷ0i , ŷi, ⌫̂i, '̂

0
i , '̂i)

is an embedded strict sense process for problem (Pe). Moreover,

����

✓
d'̂0

i

ds
,
d'̂i

ds

◆
�
✓
d'̄0

ds
,
d'̄

ds

◆����
L1(0,S̄)

! 0 as i ! 1, (4.4)
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which implies that the ('̂0
i , '̂i) converge uniformly to ('̄0, '̄). Noting Hypothesis (H1)* (i) and also the

continuity properties of the input–output map, proved e.g. in [22], we obtain:

k(ŷ0i , ŷi, ⌫̂i)� (ȳ0, ȳ, ⌫̄)kL1(0,S̄) ! 0, as i ! 1. (4.5)

Since � is non-negative valued and vanishes at (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)), and in view of (4.5), there exists
a sequence ⇢i & 0 such that, for each i, (ŷ0i , ŷi, ⌫̂i, 0,

d'̂i

ds ) is a ⇢2i -minimizer for (P̂i), i.e. is a process whose cost

exceeds the infimum cost for (P̂i) by an amount not greater that ⇢2i .
Problem (P̂i) can be regarded as an optimization problem with continuous cost over elements

(d, w, y0(0), y(0)) in a closed subset of L1([0, S̄];R) ⇥ L1([0, S̄];Rm) ⇥ R ⇥ Rn. In consequence of Ekeland’s
Principle ([32], Thm. 3.3.1), there exists, for each i, a feasible process for (P̂i),
(y0i , yi, ⌫i, di, wi), such that

|(ŷ0i , ŷi)(0)� (y0i , yi)(0)| ! 0, kŵi � wikL1(0,S̄) ! 0 and kdikL1(0,S̄) ! 0 as i ! 1 , (4.6)

and (y0i , yi, ⌫i, di, wi) is a minimizer for

(Pi)

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Minimize �
�
y0(0), y(0), y0(S̄), y(S̄), ⌫(S̄)

�
+

⇢i ·
✓
|(y0, y)(0)� (y0i , yi)(0)|+

Z S̄

0
|w(s)� wi(s)|+ |d(s)� di(s)|ds

◆

over (y0, y, ⌫) 2 W 1,1([0, S̄];R⇥ Rn ⇥ R) and measurable functions

d : [0, S̄] ! R , w : [0, S̄] ! Rm satisfying

dy0

ds
(s) = (1 + d(s))(1� |w(s)|) a.e. s 2 [0, S̄] ,

dy

ds
(s) = (1 + d(s))

✓
f(y0(s), y(s))(1� |w(s)) +

mX

j=1

gj(y
0(s), y(s))wj(s)

◆
a.e. s 2 [0, S̄] ,

d⌫

ds
(s) = (1 + d(s))|w(s)|

w(s) 2 (1� ✏i)(C \ Bm) , a.e. s 2 [0, S̄] ,

d(s) 2 [�0.5,+0.5] a.e. s 2 [0, S̄] ,

⌫(0) = 0.

It follows from (4.4) and (4.6) that

����wi �
d'̄

ds

����
L1(0,S̄)

! 0 and k(y0i , yi, ⌫i)� (ȳ0, ȳ, ⌫̄)kL1(0,S̄) ! 0, as i ! 1 . (4.7)

By extracting subsequences, we can arrange that

wi(s) !
d'̄

ds
(s) and di(s) ! 0 a.e. s 2 [0, S̄], as i ! 1 . (4.8)
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Now, apply the PMP to (Pi) with reference to the minimizer (y0i , yi, ⌫i, di, wi). This yields (p0i, pi) 2
W 1,1([0, S̄];Rn) and ⇡i 2 R such that the adjoint equations

dp0i
ds

(s) = �pi(s) ·
✓
@f
@t

(y0
i (s), yi(s))(1� |wi(s)|) +

mX

j=1

@gj
@t

(y0
i (s), yi(s))w

j
i (s)

◆
(1 + di(s)), (4.9)

dpi
ds

(s) = �pi(s) ·
✓
@f
@x

(y0
i (s), yi(s))(1� |wi(s)|) +

mX

j=1

@gj
@x

(y0
i (s), yi(s))w

j
i (s)

◆
(1 + di(s))

are verified (on [0, S̄]), inequality

Z S̄

0

(
pi(s) ·

✓
f(y0i (s), yi(s))(1� |w(s)|) +

mX

j=1

gj(y
0
i (s), yi(s))w

j(s)

◆

+p0i(s)(1� |w(s)|) + ⇡i|w(s)|
�
(1 + d(s)) + ⇢i (|w(s)� wi(s)|+ |d(s)� di(s)|)

)
ds


Z S̄

0

(
pi(s) ·

✓
f(y0i (s), yi(s))(1� |wi(s)|) +

mX

j=1

gj(y
0
i (s), yi(s))w

j
i (s)

◆

+p0i(s)(1� |wi(s)|) + ⇡i|wi(s)|
�
(1 + di(s))

)
ds (4.10)

holds true for all measurable selectors w and d of (1� ✏i)(C \Bm) and [�0.5, 0.5] respectively, and, furthermore,
one has the transversality relation

(p0i(0), pi(0),�p0i(S̄),�pi(S̄),�⇡i)

2 @
⇣
�(y0i (0), yi(0), y

0
i (S̄), yi(S̄), ⌫i(S̄)) + ⇢i|(y0, y)(0)� (y0i , yi)(0)|

⌘

✓ @�
�
y0i (0), yi(0), y

0
i (S̄), yi(S̄), ⌫i(S̄)

�
+ ⇢iB1+n ⇥ {01+n}⇥ {0} . (4.11)

Notice that we have set the cost multiplier equal to 1, as is permitted, since (Pi) has free right endpoint. It
can be deduced from (4.9) and (4.11) that {(p0i, pi)} is an equi-bounded sequence of functions in W 1,1 with
equi-integrable derivatives and {⇡i} is bounded. It follows that there exist (p0, p) 2 W 1,1 and ⇡ 2 R such that,
along some sequence (we do not relabel)

k(p0i, pi)� (p0, p)kL1(0,S̄) ! 0, ⇡i ! ⇡ as i ! 1 . (4.12)

Notice next from (4.7) that

|(y0i (0), yi(0), y0i (S̄), yi(S̄), ⌫i(S̄))� (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄))| ! 0 as i ! 1 .

Let ('0
i ,'i) 2 W 1,1([0, S̄];R⇥ Rm) be defined by

'0
i (s) := '̄0(0) +

Z s

0
(1 + di(r)) (1� |wi|(r))dr

'i(s) := '̄(0) +

Z s

0
(1 + di(r))wi(r)dr

8s 2 [0, S̄].
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By the rate independence of the system

dy0i
ds

(s) = (1 + di(s))
d'0

i

ds
(s)

dyi
ds

(s) = (1 + di(s))

✓
f(y0i (s), yi(s))

d'0
i

ds
(s) +

mX

j=1

gj(y
0
i (s), yi(s))

d'j
i

ds
(s)

◆

d⌫i
ds

(s) = (1 + di(s))

����
d'i

ds
(s)

���� ,

by considering the reparameterization �i(s) =

Z s

0
(1 + di(s

0))ds0,

(ỹ0i , ỹi, ⌫̃i, '̃
0
i , '̃i)(�) := (y0i , yi, ⌫i,'

0
i ,'i)(�

�1
i (�)), 0  �  S̃,

where S̃i := �i(S̄), we obtain – see Remark 2.5 – that (ỹ0i , ỹi, ⌫̃i) satisfies the di↵erential system

dỹ0i
ds

(s) =
d'̃0

i

ds
(s) a.e. s 2 [0, S̃i] ,

dỹi
ds

(s) = f(ỹ0i (s), ỹi(s))
d'̃0

i

ds
(s) +

mX

j=1

gj(ỹ
0
i (s), ỹi(s))

d'̃j
i

ds
(s) a.e. s 2 [0, S̃i]

d⌫̃i
ds

(s) =

����
d'̃i

ds
(s)

���� a.e. s 2 [0, S̃i]. (4.13)

We observe that, for each i, we have

d'̃0
i

ds
(s) = 1�

����
d'̃i

ds
(s)

���� ,
d'̃i

ds
(s) 2 (1� ✏i) (C \ Bm) a.e. s 2 [0, S̃i], (4.14)

(ỹ0i (0), ỹi(0), ỹ
0
i (S̃i), ỹi(S̃i), ⌫̃i(S̃i)) = (y0i (0), yi(0), y

0
i (S̄), yi(S̄), ⌫i(S̄)) . (4.15)

Therefore, we deduce from (4.7) that, for i su�ciently large,

d1
⇣
(ỹ0i (0), ỹ

0
i (S̃i), ỹi, ⌫̃i), (ȳ

0(0), ȳ0(S̄), ȳ, ⌫̄)
⌘
< �, (4.16)

where � > 0 is the constant appearing in Definition 4.3, with reference to the isolated extended sense feasible
process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄). Relations (4.13) and (4.14) tell us that (S̃i, ỹ0i , ỹi, ⌫̃i, '̃

0
i , '̃i) is an embedded strict

sense process. But taking note of the conditions imposed on the process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) in the theorem
statement (namely, the fact that it is an isolated feasible extended sense process), we deduce from (4.16) that
(S̃i, ỹ0i , ỹi, ⌫̃i, '̃

0
i , '̃i) cannot be a feasible embedded strict sense process. We conclude that it must violate the

endpoint constraints. By (4.15), also (S̄, y0i , yi, ⌫i,'
0
i ,'i) must violate these constraints. Therefore,

max{dT (y0i (0), yi(0), y0i (S̄), yi(S̄)), (⌫i(S̄)�K) _ 0} > 0 . (4.17)

Inequality (4.17) provides the important information that, if the maximum in

�(y0i (0), yi(0), y
0
i (S̄), yi(S̄), ⌫i(S̄)) = max{dT (y0i (0), yi(0), y0i (S̄), yi(S̄)), (⌫i(S̄)�K) _ 0}
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is achieved at dT (y0i (0), yi(0), y
0
i (S̄), yi(S̄)) then dT (y0i (0), yi(0), y

0
i (S̄), yi(S̄)) > 0, and if the maximum is

achieved at (⌫i(S̄)�K) _ 0, then ⌫i(S̄)�K > 0. Note also that (see, e.g., [32], Lem. 4.8.3)

@dT (y0i (0), yi(0), y
0
i (S̄), yi(S̄)) ✓ @B1+n+1+n if (y0i (0), yi(0), y

0
i (S̄), yi(S̄)) /2 T ,

@(⌫i(S̄)�K) _ 0) = 1 if ⌫i(S̄) > K.

Making use of these facts, we can deduce from the ‘max’ rule of subdi↵erential calculus (see, e.g., [32], Thm.
5.5.2) the following estimate: if ⇠ 2 @�(z) at z = (y0i (0), yi(0), y

0
i (S̄), yi(S̄), ⌫i(S̄)) then

⇠ 2 ↵i

✓�
@dT (y

0
i (0), yi(0), y

0
i (S̄), yi(S̄)) \ @B1+n+1+n

�
⇥ {0}

◆
+ (1� ↵i)

✓
{01+n+1+n}⇥ {1}

◆

with ↵i 2 [0, 1]. It follows then from (4.11) that

(p0i(0), pi(0),�p0i(S̄),�pi(S̄)) 2

↵i (@dT (y0i (0), yi(0), y
0
i (S̄), yi(S̄)) \ @B1+n+1+n) + ⇢iB1+n ⇥ {01+n}

(4.18)

and

⇡i = �(1� ↵i). (4.19)

By extracting further subsequences, we can arrange that ↵i ! ↵ as i ! 1, for some ↵ 2 [0, 1]. Passing to the
limit in (4.9) (in ‘integral’ form), in (4.10) and in (4.11), as i ! 1, with the help of (4.7), (4.8) and (4.12), we
arrive at

�dp0
ds

(s) = p(s) ·
✓
@f

@t
(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

@gj
@t

(ȳ0(s), ȳ(s))
d'̄j

ds
(s)

◆
, (4.20)

�dp

ds
(s) = p(s) ·

✓
@f

@x
(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

@gj
@x

(ȳ0(s), ȳ(s))
d'̄j

ds
(s)

◆
a.e. s 2 [0, S̄],

Z S̄

0
p(s) ·

✓
f(ȳ0(s), ȳ(s))(1� |w(s)|) +

mX

j=1

gj(ȳ
0(s), ȳ(s))wj(s)

◆
(1 + d(s))ds

+

Z S̄

0

✓
p0(s) (1� |w(s)|) + ⇡|w|

◆
(1 + d(s))ds


Z S̄

0
p(s) ·

✓
f(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

gj(ȳ
0(s), ȳ(s))

d'̄j

ds
(s)

◆
ds (4.21)

+

Z S̄

0

✓
p0(s)

d'̄0

ds
(s) + ⇡

����
d'̄0

ds
(s)

����

◆
ds ,

for all selectors w of C \ Bm and d of [�0.5, 0.5], (4.22)

(p0(0), p(0),�p0(S̄),�p(S̄) 2 ↵(@dT (ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) \ @B1+n+1+n) , (4.23)

|⇡| = 1� ↵. (4.24)
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We deduce from (4.21) with the help of a measurable selection theorem that, for a.e. s 2 [0, S̄],

p(s) ·
✓
f(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

gj(ȳ
0(s), ȳ(s))

d'̄j

ds
(s)

◆
+ p0(s)

d'̄0

ds
(s) + ⇡

����
d'̄0

ds
(s)

����

= max
(w0,w)2C, d2[�0.5,0.5]

n⇥
p(s) ·

�
f(ȳ0(s), ȳ(s))w0 +

Pm
j=1 gj(ȳ

0(s), ȳ(s))wj
�
+ p0(s)w0 + ⇡|w|

⇤
(1 + d)

o
.

Since 1 is interior to [0.5, 1.5], this implies

p(s) ·
✓
f(ȳ0(s), ȳ(s))

d'̄0

ds
(s) +

mX

j=1

gj(ȳ
0(s), ȳ(s))

d'̄j

ds
(s)

◆
+ p0(s)

d'̄0

ds
(s) + ⇡

����
d'̄0

ds
(s)

����

= max
(w0,w)2C

8
<

:p(s) ·
�
f(ȳ0(s), ȳ(s))w0 +

mX

j=1

gj(ȳ
0(s), ȳ(s))wj

�
+ p0(s)w

0 + ⇡|w|

9
=

; = 0 a.e. (4.25)

Furthermore, (4.23) and (4.24) imply that

(p0(0), p(0),�p0(S̄),�p(S̄)) 2 NT (ȳ
0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)). (4.26)

From (4.23) and (4.24) we deduce that (p0, p,⇡) 6= (0, 0, 0). Employing the same arguments as those in the proof
of Theorem 3.1 we deduce from the latter relation that

(p0, p) 6= 0. (4.27)

Surveying the relations satisfied by the absolutely continuous function (p0, p) and ⇡  0, namely (4.20), (4.25),
(4.26) and (4.27), we see that the proof is complete.

4.2. Proof of Theorem 4.2

It is convenient to prove the two assertons in reverse order.

(ii) Assume, contrary to the assertions of the theorem, that the L1 local minimizer
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) for (Pe) is a normal extended sense extremal while, at the same time, there is a local infimum
gap at (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄). We deduce from the latter property that there exists a number c > 0 such that

Je(S̄, ȳ
0, ȳ, ⌫̄, '̄0, '̄) < Je(S, y

0, y, ⌫,'0,') � c (4.28)

for every embedded strict sense feasible process (S, y0, y, ⌫,'0,') verifying (2.9) for the same � > 0 as in
Definition 2.8. Since (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is a normal extended sense extremal, we know from Theorem 4.4 that it
is not an isolated extended sense feasible process. This means that there exists a sequence of embedded strict
sense feasible processes {(Si, y0i , yi, ⌫i,'

0
i ,'i)} such that

|y0i (0)� ȳ0(0)|+ |y0i (Si)� ȳ0(S̄)|+ k(yi, ⌫i)� (ȳ, ⌫̄)kL1(R) ! 0 , as i ! 1 , (4.29)

(where (ȳ, ⌫̄) and (yi, ⌫i) are extended continuously to R by requiring them to be constant outside the original
domains [0, S̄] and [0, Si], respectively). This is simply shown to imply that lim

i!1
Si = S̄. But

Je(S, y
0
i , yi, ⌫i,'

0
i ,'i) = h(y0i (0), yi(0), y

0
i (Si), yi(Si), ⌫i(Si)) (4.30)
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and, since h is continuous, we deduce from (4.29) and (4.30) that

lim
i!1

Je(S, y
0
i , yi, ⌫i,'

0
i ,'i) = lim

i!1
h(y0i (0), yi(0), y

0
i (Si), yi(Si), ⌫i(Si))

= h(ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄), ⌫̄(S̄)) = Je(S̄, ȳ
0, ȳ, ⌫̄, '̄0, '̄) .

This is not possible, in view of (4.28). So there is no local infimum gap at (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄).

(i): Suppose that there exists a minimizer for (Pe) (write it (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) ) which is a normal extended sense
extremal. Then (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is certainly an extended sense L1 local minimizer. So by part (ii), there is no
local infimum gap at (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄). This means that, for some � > 0,

Je(z̄) = inf{Je(z) | z 2 A+
e s.t. d1(z, z̄)  �} � inf{Je(z) | z 2 A+

e } ,

in which z̄ := (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄). Since z̄ is a minimizer,

Je(z̄) = inf{Je(z) | z 2 Ae}

Bearing in that inf{Je(z) | z 2 Ae}  inf{Je(z) | z 2 A+
e }, we conclude that

inf{Je(z) | z 2 Ae} = inf{Je(z) | z 2 A+
e } ,

i.e. there is no infimum gap.

5. Verifiable conditions for no infimum gap

The su�cient condition of Theorem 4.2 for the absence of an infimum gap has the disadvantage, as a practical
test, that it is expressed in terms of some minimizer, detailed information about which might not be available.
The ‘normality’ test is of interest, nonetheless, because in certain special cases it can be replaced by simpler,
verifiable conditions, some examples of which we now provide. These involve two notions of controllability w.r.t.
the target set.

Definition 5.1. Consider the control system

(S)

8
>><

>>:

dx

dt
(t) = f(t, x(t)) +

mX

j=1

gj(t, x(t))
duj

dt
(t) a.e. t 2 [t1, t2],

du

dt
(t) 2 C a.e. t 2 [t1, t2],

(i) (S) is said to be quick 1-controllable w.r.t. the target set T at a point (t1, x1, t2, x2) 2 T if, for any covector
⇣ = (⇣t1 , ⇣x1 , ⇣t2 , ⇣x2) 2 NT (t1, x1, t2, x2) such that ⇣x2 6= 0, we have

inf
w2C

⇣x2 ·
mX

j=1

gj(t2, x2)w
j < 0. (5.1)

(ii) (S) is said to be drift-controllable w.r.t. the target set T at a point (t1, x1, t2, x2) 2 T if, for any covector
⇣ = (⇣t1 , ⇣x1 , ⇣t2 , ⇣x2) 2 NT (t1, x1, t2, x2) such that ⇣x2 6= 0, we have

⇣x2 · f(t2, x2) < 0. (5.2)
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Proposition 5.2. Consider the optimal control problem (P ) and its extended sense formulation (Pe). Let the
data satisfy hypothesis (H1). Assume that there exists an extended sense minimizer (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) such that

(i) ȳ0(S̄) > ȳ0(0) (that is, the t-time interval is non-degenerate),

(ii) ⌫̄(S̄) < K,

(iii) (S) is quick 1-controllable w.r.t. T at (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)).

Then (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is a normal extremal and, in consequence of Theorem 4.2, there is no infimum gap.

Remark: The role of 1-quick controllability as a no infimum gap su�cient condition was earlier identified in [2],
in the case when T takes the form

T = {0}⇥ {x0}⇥ {T}⇥ T̂ ,

for some closed set T̂ ⇢ Rn and some T > 0. Proposition 5.2 broadens the applicability of the earlier su�cient
condition by no longer requiring T to have this special structure.

Proof of Proposition 5.2. The proof involves showing that the given extended sense minimizer (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄)
is a normal extremal; it will follow immediately from Theorem 4.2 that there is no infimum gap. Suppose that
(S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is not a normal extremal. Since, by assumption, ⌫̄(S̄) < K and ȳ0(S̄) � ȳ0(0) > 0, we can
deduce from Theorem 3.1, there exists a set of multipliers (p0, p,⇡,�), with � = 0, p 6= 0 and ⇡ = 0. From (3.3)
and (3.4) in Theorem 3.1 it may be deduced that

(p0(0), p(0), p0(S̄), p(S̄)) = (⇣t1 , ⇣x1 ,�⇣t2 ,�⇣x2)

for some (⇣t1 , ⇣x1 ,�⇣t2 ,�⇣x2) 2 NT (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) with ⇣x2 6= 0.
From the almost everywhere condition (3.3) and the continuity of (p0, p) we deduce that

max
(w0,w)2C

⇢
� ⇣x2 ·

�
f(ȳ0(S̄), ȳ(S̄))w0 +

mX

j=1

gj(ȳ
0(S̄), ȳ(S̄))wj

�
� ⇣t2 w

0

�
= 0 (5.3)

and, choosing w0 = 0, we arrive at

min
w2C\@Bm

⇣x2 ·
mX

j=1

gj(ȳ
0(S̄), ȳ(S̄))wj � 0. (5.4)

This trivially violates the quick 1-controllability hypothesis. So (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is a normal extremal.

If we assume T has an epigraph structure, as made precise below, then the assertions of Proposition 5.2
remain valid, either when it is no longer assumed that the t-time interval is non-degenerate (condition (i)), or
when we replace (i)–(iii) by ‘slow controllability’.

Proposition 5.3. Consider the optimal control problem (P ) and its extended sense formulation (Pe). Let the
data satisfy hypothesis (H1). Assume that there exists an extended sense minimizer (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) such that

(i) T is an epigraph set on a neighborhood of e := (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)), in the sense that there exist ✏ > 0
and a lower semicontinuous function  : R⇥ Rn ⇥ Rn ! R such that

T \ (e+ ✏B1+2n) = {(t1, x1, t2, x2) | t2 �  (t1, x1, x2)} \ (e+ ✏B1+2n)

(ii) either (S) is drift-controllable w.r.t. T at (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) or ⌫̄(S̄) < K and system (S) is quick

1-controllable w.r.t. T at (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)).
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Then (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is a normal extended sense extremal and, in consequence of Theorem 4.2, there is no

infimum gap.

Proof. Once again, the proof involves showing that the given extended sense minimizer (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is
a normal extremal; the fact that there is no infimum gap will then follow from Theorem 4.2. Suppose in
contradiction that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is not a normal extremal. To start with, notice that, since, by assumption,
T is (locally) an epigraph set, we can deduce from Theorem 3.1 that there exists a set of multipliers (p0, p,⇡,�),
with � = 0 and p 6= 0. Indeed, if on the contrary (p,�) = (0, 0), then (3.1) in Theorem 3.1 implies that p0 6= 0.
By the first equation in (3.2) we derive that p0 ⌘ p̄0 is constant, from (3.3) it may be deduced that

p̄0  0, (5.5)

while (3.4) implies that (p0(0), p(0), p0(S̄), p(S̄)) = (⇣t1 , ⇣x1 ,�⇣t2 ,�⇣x2) for some (⇣t1 , ⇣x1 ,�⇣t2 ,�⇣x2) 2
NT (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)). Now, since T is (locally) an epigraph set, we know that ⇣t2  0. Hence p̄0 � 0,
which together with (5.5) implies that p̄0 = 0, in contrast with the hypothesis p0 6= 0. Thus there exists a set of
multipliers (p0, p,⇡,�), with � = 0 and p 6= 0.

At this point, from (3.3) and (3.4) in Theorem 3.1 it may be deduced that

(p0(0), p(0), p0(S̄), p(S̄)) = (⇣t1 , ⇣x1 ,�⇣t2 ,�⇣x2)

for some (⇣t1 , ⇣x1 ,�⇣t2 ,�⇣x2) 2 NT (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)) with ⇣x2 6= 0.
From (3.3) and the continuity of (p0, p) we deduce that

max
(w0,w)2C

⇢
� ⇣x2 ·

�
f(ȳ0(S̄), ȳ(S̄))w0 +

mX

j=1

gj(ȳ
0(S̄), ȳ(S̄))wj

�
� ⇣t2 w

0 + ⇡|w|
�

= 0 . (5.6)

Now, if (S) is drift-controllable w.r.t. T at (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)), choosing (w0, w) = (1, 0), we arrive at
�⇣x2 · f(ȳ0(S̄), ȳ(S̄))� ⇣t2  0, where ⇣t2  0. This yields the contradiction to (5.2):

⇣x2 · f(ȳ0(S̄), ȳ(S̄)) � 0.

In case ⌫̄(S̄) < K and system (S) is quick 1-controllable w.r.t. T at (ȳ0(0), ȳ(0), ȳ0(S̄), ȳ(S̄)), ⇡ = 0 by Theorem
3.1. So, choosing w0 = 0 in (5.6), we obtain the following contradiction to (5.1):

min
w2C\@Bm

⇣x2 ·
mX

j=1

gj(ȳ
0(S̄), ȳ(S̄))wj � 0.

Hence (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is a normal extremal in both cases.

The no infimum gap su�cient conditions derived up to this point arise from the properties of normal extremals
provided by Theorem 4.4. But normality-type conditions fail to cover some situations where we can demonstrate
the absence of an infimum gap by independent analysis. One such case is identified in the following proposition.

Proposition 5.4 (The case without drift). Consider the optimal control problem (P ) and its extended sense

formulation (Pe). Let the data satisfy hypothesis (H1). Assume that

f ⌘ 0 (‘no drift’).

Then there is no infimum gap.
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Of course, the relevance of this proposition is due to the fact that abnormal extremals can exist in the no-drift
case (see Exam. 6.3).

Proof of Proposition 5.4. This su�cient condition is an immediate consequence of the lemma below, which
yields directly the following information about systems with no drift: given an arbitrary extended sense process
(S, y0, y, ⌫,'0,'), we can find a strict sense process (t1, t2, x, v, u) with the same endpoints, that is

y0(0) = t1, y(0) = x(t1), y0(S) = t2, y(S) = x(t2) and ⌫(S) = v(t2).

For such systems, an extended process is feasible if and only if the corresponding strict sense process is feasible
and the costs (for problems (P ) and (Pe) respectively) are the same; an infimum gap cannot then arise.

Lemma 5.5. Let hypothesis (H1) be satisfied. Assume that

f ⌘ 0 .

Then, given any extended sense process (S, y0, y, ⌫,'0,') for (2.5), there exists a strictly increasing, onto,

absolutely continuous map � : [t1, t2] ! [0, S] such that the trajectory-control pair

(x, v, u)(t) :=
⇣
y, ⌫,'

⌘
� �(t) 8t 2 [t1, t2] (5.7)

is a strict sense process for (2.1).

Proof. Define

'̂0(s) := t1 +
t2 � t1

S
s 8s 2 [0, S].

Consider the bi-Lipschitz change of parameters r : [0, S] ! [0, S0]

r(s) :=

Z s

0

⇣d'̂0

ds0
(s0) +

����
d'

ds0
(s0)

����
⌘
ds0 8s 2 [0, S]

where S0 := r(S). Write the inverse mapping s := r�1. Now define the Lipschitz continuous functions

('̃0, '̃)(r) := ('̂0,') � s(r) 8r 2 [0, S0]. (5.8)

We can show, by means of straightforward calculations, that

(i)

✓
d'̃0

dr
(r),

d'̃

dr
(r)

◆
2 C for a.e. r 2 [0, S0];

(ii) '̃0(0) = t1, '̃0(S0) = t2;
(iii) the path (ỹ0, ỹ, ⌫̃) defined by

(ỹ0, ỹ, ⌫̃)(r) :=
�
'̃0(r), y � s(r), ⌫ � s(r)

�
8r 2 [0, S0] (5.9)

coincides with the unique solution to (2.5) corresponding to ('̃0, '̃) and initial state (y0, y, ⌫)(0).

(Note that, to establish (iii), we make use of our assumption that f ⌘ 0). Since
d'̃0

dr
(r) > 0 for a.e. r 2 [0, S0],

the extended sense process (S, ỹ0, ỹ, ⌫̃, '̃0, '̃) is an embedded strict sense process, i.e., (x, v, u) defined by

(x, v, u)(t) := (ỹ, ⌫̃, '̃) � ('̃0)�1(t) 8t 2 [t1, t2]
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is a strict sense process for (2.1) (in which f ⌘ 0). To complete the proof, we observe that (5.7) follows from
(5.8) and (5.9), when we choose � := s � ('̃0)�1.

6. Examples

We provide, in this section, a number of examples to illustrate the preceding theory.

Example 6.1. This example tells us that an infimum gap can actually occur when the su�cient condition of
Theorem 4.2 is violated.

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Minimize � x1(1)

subject to

dx1

dt
(t) =

du

dt
(t) a.e. t 2 [0, 1]

dx2

dt
(t) = x1(t) a.e. t 2 [0, 1]

dv

dt
(t) =

����
du

dt
(t)

���� a.e. t 2 [0, 1]

du

dt
(t) � 0 a.e. t 2 [0, 1]

v(0) = 0, v(1)  1, x1(0) = x2(0) = 0 and x2(1)  0.

In this special case of (P ), n = 2, m = 1, T = {0}⇥ {02}⇥ {1}⇥ T̂ , in which T̂ = R⇥ (�1, 0], C = [0,+1),
K = 1 and

f(x) =

✓
0
x1

◆
, g1 =

✓
1
0

◆
.

The extended problem is

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

Minimize � y1(S)

over S > 0, (y0, y, ⌫,'0,') 2 W 1,1([0, S];R⇥ R2 ⇥ R⇥ R⇥ R) satisfying

dy0

ds
(s) =

d'0

ds
(s) a.e. s 2 [0, S]

dy1

ds
(s) =

d'

ds
(s) a.e. s 2 [0, S] ,

dy2

ds
(s) = y1(s)

d'0

ds
(s) a.e. s 2 [0, S] ,

d⌫

ds
(s) =

����
d'

ds
(s)

���� a.e. s 2 [0, S] ,
✓
d'0

ds
(s),

d'

ds
(s)

◆
2 {(w0, w) 2 R+ ⇥ R+ : w0 + w = 1} a.e. s 2 [0, S] ,

⌫(0) = 0, ⌫(S)  1, (y0(0), y1(0), y2(0)) = (0, 0, 0), y0(S) = 1, y2(S)  0.
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It is straightforward to show that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) given by S̄ = 2,
d'̄0

ds
⌘ 1� w̄,

d'̄

ds
⌘ w̄, in which ȳ = (ȳ1, ȳ2),

ȳ2 ⌘ 0, ⌫̄ ⌘ ȳ1 and

ȳ1(s) =

⇢
0 for 0  s  1
s� 1 for 1 < s  2

, ȳ0(s) =

⇢
s for 0  s  1
1 for 1 < s  2

, w̄(s) =

⇢
0 for 0  s  1
1 for 1 < s  2

is a minimizer for the extended problem. Furthermore the infimum costs for the original and extended problems
are, respectively,

inf(P ) = 0 and inf(Pe) = �1 .

Since there is an infimum gap, all the su�cient conditions of the previous section, for non-occurrence of an
infimum gap, must be violated. In connection with Proposition 5.2 we note that the vector ⇣ = (0, 1) lies in
NT̂ (ȳ(S̄)) = {0}⇥ [0,1) and

⇣ · g1 w � 0

for every w 2 C, in violation of the the quick 1-controllability condition. (Also, condition ⌫̄(S̄) < K is violated).
Concerning the Proposition 5.3, we see that

⇣ · f(ȳ(S̄)) = 0

in violation of the drift controllability condition. Consider the normality condition. We can establish by simple
calculations that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is an extremal, and a possible Lagrange multiplier set is (p0, p1, p2,⇡,�), in
which

p0 ⌘ 0, p1 ⌘ 0, p2 ⌘ c, ⇡ = 0, � = 0,

for any constant c > 0. Notice that � = 0, so (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is an abnormal extremal. Since there is a unique
minimizer9 for the extended problem, we have shown that all minimizers for the extended problem are abnormal.
Thus, the su�cient condition of Theorem 4.2 is violated.

Example 6.2. This example aims to demonstrate that the ‘no infimum gap’ su�cient condition of Theorem
4.2, based on normality, is distinct from those of Propositions 5.2 and 5.3, based on quick 1-controllability and
on drift controllability respectively. Consider the problem

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Minimize h(x(1))

over (x, v, u) 2 W 1,1([0, 1];R3 ⇥ R⇥ R2) satisfying

dx

dt
(t) = f(x(t)) + g1(x(t))

du1

dt
(t) + g2(x(t))

du2

dt
(t) , a.e. t 2 [0, 1],

dv

dt
(t) =

����
du

dt
(t)

���� , a.e. t 2 [0, 1],

du

dt
(t) 2 C := R2 a.e. t 2 [0, 1],

v(0) = 0, v(1)  K, x(0) = (1, 0, 0), x(1) 2 T̂ .

(6.1)

9 Of course, ‘unique’ here means ‘up to translations of ('0,')’.



NORMALITY AND GAP PHENOMENA IN OPTIMAL UNBOUNDED CONTROL 1669

in which n = 3, m = 2, K=2, h(x) := �x1, T̂ := {(x1, x2, x3) | x1  0, x2  0, x3  0}

g1(x) :=

0

@
1
0
x2

1

A , g2(x) :=

0

@
0
1
�x1

1

A , f(x) :=

0

@
0
x2

0

1

A , 8x 2 R3 . (6.2)

This is an example of problem (P ), in which the underlying control system is a modification of the nonholonomic
integrator, to include a non-zero drift term.

The extended problem is

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Minimize h(y(S))

over S > 0, (y0, y, ⌫,'0,') 2 W 1,1([0, S];R⇥ R3 ⇥ R⇥ R⇥ R2) satisfying

dy0

ds
(s) =

d'0

ds
(s) , a.e. s 2 [0, S],

dy

ds
(s) = f(y(s))

d'0

ds
(s) + g1(y(s))

d'1

ds
(s) + g2(y(s))

d'2

ds
(s) , a.e. s 2 [0, S],

d⌫

ds
(s) =

����
d'

ds
(s)

���� , a.e. s 2 [0, S],
✓
d'0

ds
(s),

d'

ds
(s)

◆
2 C :=

�
(w0, w) 2 R+ ⇥ R2 : w0 + |w| = 1

 
a.e. s 2 [0, S],

⌫(0) = 0, ⌫(S)  K, y(0) = (1, 0, 0), y0(0) = 0, y0(S) = 1, y(S) 2 T̂ .

(6.3)

It is straightforward to show that the feasible extended sense process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄), where S̄ = 2,

✓
d'̄0

ds
,
d'̄

ds

◆
=

✓
d'̄0

ds
,
d'̄1

ds
,
d'̄2

ds

◆
= (1, 0, 0)�[0,1] + (0,�1, 0)�[1,2] , (6.4)

and

(ȳ0, ȳ, ⌫̄) = (ȳ0, ȳ1, ȳ2, ȳ3, ⌫̄) = (s, 1, 0, 0, 0)�[0,1] + (1, 2� s, 0, 0, s� 1)�[1,2] , (6.5)

is the unique minimizer. By Theorem 3.1 there exists a set of multipliers (p, p0,⇡,�) with (p,�) 6= 0, where
� � 0, p0 2 R and ⇡ = 0, since @h

@v ⌘ 0 and ⌫̄(S̄) = 1 < 2. The costate trajectory p satisfies the di↵erential
system

8
>>>>>>>><

>>>>>>>>:

dp1
ds

(s) = 0,

dp2
ds

(s) = �p2(s)�[0,1](s) + p3(s)�[1,2](s) , a.e. s 2 [0, 2],

dp3
ds

(s) = 0 .

(6.6)

We see that p1 ⌘ p̄1 and p3 ⌘ p̄3 are constants. The triple (p, p0,�) verifies the transversality condition

� (p1, p2, p3)(2) 2 �(�1, 0, 0) +NT̂ (0, 0, 0), (6.7)
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and, for a.e. s 2 [0, 2], the relations

p0�[0,1](s)� p̄1�[1,2](s)

= max(w0,w)2C

⇢
p0 w0 + p̄1 w1 + p2(s) (ȳ2(s)w0 + w2) + p̄3

�
ȳ2(s)w1 � ȳ1(s)w2

��
= 0.

(6.8)

From the first relation in (6.8) we deduce that p0 = p̄1 = 0. Then, since ȳ2 ⌘ 0 and (w0, w1, w2) = (0, 0,±1) 2 C,
by the second relation in (6.8) we necessarily have

p2(s) = p̄3ȳ1(s) 8s 2 [0, 2]. (6.9)

Notice that NT̂ (0, 0, 0) = {(↵,�, �)} for any ↵, � and � � 0. Hence condition (6.7) implies

�(p1, p2, p3)(2) = (��+ ↵,�, �)

and we arrive to the equalities

� = ↵, p̄3 = ��, p2 = (� � �) e1�s �[0,1] +
�
�(2� s)� �

�
�[1,2],

It follows simply from (6.9) that � = � = 0, so that p̄3 = 0 and p2 ⌘ 0. This proves that (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) is a
normal extremal, since (p,�) 6= 0 if and only if � = ↵ > 0. We have shown that the conditions of Thm. 4.2 are
satisfied and, in consequence, there is no infimum gap.

It is a straightforward matter to check that the quick 1-controllability and drift controllability conditions
in Propositions 5.2 and 5.3, respectively, are both violated. We know from Propositions 5.2 and 5.3, that the
su�cient condition of Theorem 4.2 covers all cases when Proposition 5.2 and 5.3 exclude infimum gaps. This
example goes further, by showing that, in some cases, the su�cient condition of Theorem 4.2 excludes an
infimum gap, when the other two conditions fail to do so and therefore has broader potential application.

Example 6.3. The purpose of this example is to demonstrate that the ‘no infimum gap’ su�cient condition of
Theorem 4.2, based on normality, is not necessary. Consider the optimal control problem

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Minimize h(x(1))

over (x, v, u) 2 W 1,1([0, 1];R3 ⇥ R⇥ R2) satisfying

dx

dt
(t) = g1(x(t))

du1

dt
(t) + g2(x(t))

du2

dt
(t) , a.e. t 2 [0, 1],

dv

dt
(t) =

����
du

dt
(t)

���� , a.e. t 2 [0, 1],

du

dt
(t) 2 C := {(w1, w2) | w1 2 R, w2 � 0} a.e. t 2 [0, 1],

v(0) = 0, v(1)  K, x(0) = (1, 0, 0), x(1) 2 T̂ ,

(6.10)
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in which n = 3, m = 2, K = 2, h and g1, g2 and T̂ are as in the previous example. Note however that, now, the
drift term f ⌘ 0. The extended problem is

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Minimize h(y(S))

over S > 0, (y0, y, ⌫,'0,') 2 W 1,1([0, S];R⇥ R3 ⇥ R⇥ R⇥ R2) satisfying

dy0

ds
(s) =

d'0

ds
(s) , a.e. s 2 [0, S],

dy

ds
(s) = g1(y(s))

d'1

ds
(s) + g2(y(s))

d'2

ds
(s) , a.e. s 2 [0, S],

d⌫

ds
(s) =

����
d'

ds
(s)

���� , a.e. s 2 [0, S],
✓
d'0

ds
(s),

d'

ds
(s)

◆
2 C := {(w0, w) 2 R+ ⇥ C : w0 + |w| = 1} a.e. s 2 [0, S],

⌫(0) = 0, ⌫(S)  2, y(0) = (1, 0, 0), y0(0) = 0, y0(S) = 1, (y1, y2, y3)(S) 2 T̂ .

(6.11)

The minimizing extended sense process (S̄, ȳ0, ȳ, ⌫̄, '̄0, '̄) for the optimal control problem (6.10), studied in the
previous example, given by (6.4) and (6.5), is a minimizing extended sense process also for problem (6.11). The
multiplier set (�, p, p0,⇡), where (�, p) 6= 0, � � 0, p0 2 R, is such that ⇡ = 0, since @h

@v ⌘ 0 and ⌫̄(S̄) = 1 < 2.
The costate trajectory p satisfies

8
>>>>>>>><

>>>>>>>>:

dp1
ds

(s) = 0,

dp2
ds

(s) = p3(s)�[1,2](s) , a.e. s 2 [0, 2],

dp3
ds

(s) = 0

(6.12)

We see that p1 ⌘ p̄1 and p3 ⌘ p̄3 are constants. We also know that, for a.e. s 2 [0, 2],

p0�[0,1](s)� p̄1�[1,2](s) = max
(w0,w)2C

⇢
p0w0 + p̄1 w1 + p2(s)w2 + p̄3

�
ȳ2(s)w1 � ȳ1(s)w2

��
= 0. (6.13)

From (6.13) we deduce that p0 = p̄1 = 0 and, since ȳ2 ⌘ 0, ȳ1 = �[0,1] + (2 � s)�[1,2] and w2 � 0 for all
(w0, w) 2 C, also that

p2(s)  p̄3 8s 2 [0, 1], p2(s)  p̄3 (2� s) 8s 2 [1, 2]. (6.14)

We deduce from the transversality condition, as in the previous example, that

�(p1, p2, p3)(2) = (��+ ↵,�, �)

which implies � = ↵ p̄3 = �� and

p2 = (� � �)�[0,1] +
�
�(2� s)� �

�
�[1,2]. (6.15)
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(6.14) implies � � 2�. Choosing ↵ = 0, and any � > 0, � > 2�, we arrive at a multiplier set (p0 = 0, p1 ⌘
0, p2, p3 ⌘ ��,⇡ = 0,� = 0), in which p2 is given by (6.15). We have shown that the unique minimizer is not a
normal extremal, so the su�cient condition for no infimum gap of Theorem 4.2 is not applicable to this problem.

Recall that the optimal control problem of this example has no drift. For such problems, we know that there
can be no infimum gap. (See Prop. 5.4.) Consequently, the su�cient condition of Theorem 4.2 fails to eliminate
the possible occurrence of an infimum gap, in some circumstances when we can establish, by other means, that
there is no infimum gap. Let us observe, however, that the no-drift assumption is not necessary for the arguments
used in this example to work. Indeed, a similar example with a non-zero drift can be trivially constructed by
adding a fourth state state variable x4 verifying dx4

dt = x4, x4(0) = 0, and (x1, x2, x3, x4)(1) 2 T̂ ⇥ R.
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