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Highlights 
 

 Slow heating of amorphous PBN leads to cold-crystallization following Ostwald’s 

rule of 

 stages. 

 Cold-crystallization proceeds via formation of liquid crystals which then transform to 

crystals. 

 The transition of liquid crystals into crystals is not connected with a change of the 

 superstructure. 

 

Abstract 

Melt-crystallization of poly (butylene 2,6-naphthalate) (PBN) at temperatures lower than 

about 160 °C follows Ostwald’s rule of stages, leading first to formation of a transient 

smectic liquid crystalline phase (LC) which then may convert in a second step into 

crystals, controlled by kinetics. In the present work, the PBN melt was cooled at different 

rates in a fast scanning chip calorimeter to below the glass transition temperature, to obtain 

different structural states before analysis of the cold-crystallization behavior on heating. It 

was found that heating of fully amorphous PBN at 1000 K/s leads to a similar two-step 

crystallization process as on cooling the quiescent melt, with LC-formation occurring 

slightly above T g and their transformation into crystals at their stability limit close to 200 

°C. In-situ polarized-light optical microscopy provided information that the transition of 

the LC-phase into crystals on slow heating is not connected with a change of the 

micrometer-scale superstructure, as the recently found Schlieren texture remains 

unchanged. 

 

 

 

Keywords: Poly (butylene 2,6-naphthalate); Crystallization; Ostwald’s rule of stages; 

Morphology; Fast scanning chip calorimetry 

 

Poly(butylene 2,6-naphthalate) (PBN) is a linear crystallizable polyester which shows a 

distinct crystal polymorphism. Cooling the melt slower than about 10 K/min (0.17 K/s) 

leads to formation of triclinic ’-crystals with an equilibrium melting temperature of 281 

°C. If the cooling rate is higher than 0.1 K/min (0.017 K/s), or if crystallization occurs 

below 230 °C, then ’-crystals are increasingly replaced by triclinic -crystals with a 20 K 
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lower equilibrium melting temperature; crystallization at temperatures lower than about 

200 °C yields -crystals only [1–4]. Both the formation of ’- and -crystals occurs at 

temperatures higher than about 160 °C directly from the melt. If the melt, however, is 

supercooled to below about 160 °C, by cooling faster than about 1 to 10 K/s, then the 

crystallization process involves an intermediate formation of a monotropic liquid 

crystalline (LC) mesophase [5–8], following Ostwald’s rule of stages [9]. The 

thermodynamics behind the one- and two-step crystallization process of PBN at 

temperatures higher and lower than about 160 °C, respectively, is schematically illustrated 

in Figure 1 which shows the temperature-dependence of Gibbs enthalpy of the melt 

(black), of the monotropic mesophase (blue) and of the crystal phase (red). At temperatures 

above the stability-limit of the mesophase, indicated with the blue circle, crystallization 

occurs directly from the melt while at lower temperatures formation of crystals proceeds 

according to Ostwald’s rule of stages via intermediate formation of liquid crystals. 

 

 

 

 

 

 

 

 

 

Figure 1: Temperature-dependence of Gibbs enthalpy of the melt (black), of the 

monotropic liquid-crystalline mesophase (blue), and of the crystal phase (red). Different 

isothermal crystallization routes below and above the stability limit of the mesophase (blue 

circle) are indicated with the vertical arrows. 
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The conversion of the LC phase into crystals, so far, has only been detected between 160 

and 130 °C [6, 7]. At temperatures lower than about 130 °C, the transformation of the LC 

phase into crystals apparently is kinetically suppressed or proceeds slow, leading to 

vitrification of the LC phase on cooling to below its glass transition temperature T g, LC of 

about 65 °C [5]. Note that it was reported in the literature that the glass transition 

temperature of the LC phase is higher than the glass transition temperature T  g of the 

amorphous phase (42 °C) [5, 8]. A non-equilibrium phase diagram showing the cooling-

rate dependence of temperatures of the various phase transitions of PBN is available in the 

literature (see Figure 1 in [7]). 

The formation of the LC phase in PBN likely is related to the presence of the naphthalene 

group which is considered mesogenic [10]. The LC phase in PBN is monotropic and is 

characterized by a smectic periodicity with a layer distance of 1.43 nm [5], being 

approximately the length of the chain repeat unit, and by appearance of a distinct Schlieren 

texture at the micrometer length scale [7]. Analysis of the bulk enthalpy of its formation 

showed that the transition of the melt into the LC phase contributes to only about 20% to 

the total enthalpy of crystallization, confirming it smectic nature since in case of a nematic 

phase the enthalpy of formation would be much lower [11, 12]. 

The formation of crystals and LC phase is fully suppressed on cooling the melt to below 

the glass transition temperature of the amorphous phase (T g) at 6000 K/s, or faster [8]. 

Moreover, it was found that a cooling rate higher than 30,000 K/s is needed to avoid the 

development of homogeneous nuclei. Both LC-phase formation and crystallization on 

heating the glass to above T g is hindered if the heating rate is higher than 7000 K/s, even if 

nuclei are present. A detailed analysis of structural changes on heating PBN of different 

initial structure, from fully amorphous to samples containing mainly LC phase and samples 

containing mainly crystals, was performed at a heating rate of 2000 K/s. In case of initially 

fully amorphous PBN, heating at 2000 K/s allowed LC-phase formation at around 135 °C 

followed by its disordering at about 180 °C, without prior transformation into crystals. 

Suppression of the transition of LC phase into crystals on heating faster than 1000 K/s was 

then confirmed in an independent study, which focused on analyses of the enthalpy of LC-

phase formation and the LC-disordering temperature in isothermally ordered PBN [12]. 

In the present work we report about the cold-ordering and cold-crystallization behaviors of 

PBN of different initial structure, controlled by variation of the rate of prior cooling the 

melt. In contrast to previous work, the analysis was done using a lower rate of 1000 K/s, 

ACCEPTED M
ANUSCRIP

T



purposely applied to possibly detect conversion of the LC phase, formed after 

devitrification of the glass, into crystals and with that validating of Ostwald’s rule of stages 

in a heating experiment. In addition, we attempted gaining information about the 

morphology of the LC phase as well as of the semicrystalline structure forming in 

sequence on heating the glass. 

Due to the high cooling rates needed to obtain glassy PBN, we employed a fast scanning 

chip calorimeter (FSC) Flash DSC 1 (Mettler-Toledo, Switzerland) for preparation of PBN 

of different structure and for their subsequent calorimetric analysis during heating. General 

information about the instrument design and performance is provided elsewhere [13, 14]. 

In the specific setup used for fast cooling experiments in this work, the FSC was connected 

to a Huber intracooler TC 100, and the sample environment was purged with dry nitrogen 

gas at a flow rate of 40 mL/min. Samples were prepared using a microtome to obtain thin 

sections with a thickness of less than 20 µm which then were further reduced in their 

lateral width to about 50–100 µm using a scalpel and a stereomicroscope. Before loading 

the specimens onto the heatable area of the chip membrane, sensors were conditioned and 

temperature-corrected according the instrument specification. 

A slow-cooling experiment was conducted with a conventional differential scanning 

calorimeter DSC 820 from Mettler-Toledo. Temperature-resolved analysis of the 

morphology of amorphous PBN and PBN containing the LC phase at room temperature 

was performed by polarized-light optical microscopy (POM), using an external chip 

sample holder connected to the FSC main device, by wire-extension of the electrical pin-

connectors of the main device (Functional Materials Rostock e.V., Germany). In that case, 

the instrument was operated without using the intracooler, with the sensor-support 

temperature being room temperature. The external sample holder was placed onto the 

sample stage of a Kern OPN-184 reflection mode POM with the PBN sample monitored 

between crossed polarizers while subjected to specific heating and cooling steps. Note that 

despite an external cooling device was not used, it was possible to linearly cool samples at 

1000 K/s to temperatures below T g; to obtain amorphous PBN at ambient temperature a 

ballistic rapid-cooling experiments was designed allowing cooling in the crystallization-

relevant temperature range at a rate >5000 K/s. Video recording was done with an 

Imaging-Source DFK 33UX252 camera, used in conjunction with the IC Capture software. 

PBN was synthesized by a two-stage polycondensation reaction, starting from 2,6-

dimethylnaphthalate and 1,4-butanediol, using titanium tetrabutoxide as a catalysts, with 
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details of the synthesis published elsewhere [15]. The number-average molar mass and 

polydispersity were 23 kDa and 2.13, respectively, and the intrinsic viscosity of 0.94 dL/g 

was determined at 30 °C using a mixture of phenol and 1,1,2,2-tetrachloroethane 60:40 

w/w. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Rate-normalized FSC cooling curves, recorded at different rates between 50 K/s 

(top curve) and 3000 K/s (bottom curve). The inset at the top shows a DSC cooling scan, 

recorded at 0.33 K/s (20 K/min). 

Non-isothermal cold-ordering/-crystallization experiments were performed on PBN 

samples of largely different initial structure, with the latter obtained by variation of the 

cooling conditions. Figure 2 is a plot of FSC cooling curves recorded at rates between 50 

and 3000 K/s and of a DSC scan obtained during cooling at 0.33 K/s (20 K/min) (inset at 

the top of the Figure). As expected, slow cooling at 0.33 K/s is connected with a single 

crystallization event at a temperature higher than 200 °C, that is, with direct conversion of 

the melt into crystals, confirmed by XRD data in former work [7]. Observation of direct 

conversion of the melt into crystals is maintained up to cooling rates of about 10 K/s, 

however, if cooling is performed at rates between 50 and about 200 K/s then a two-step 

crystallization process is detected, with the high- and low-temperature peaks attributed to 
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formation of LC phase and transformation of the LC phase into crystals, respectively. As in 

case of an earlier investigated different PBN-grade [6, 7], cooling faster than about 100 K/s 

leads to partial suppression of the transformation of the LC phase into crystals, and on 

cooling faster than 300–400 K/s it cannot be detected anymore. Then only a single 

ordering peak is seen which diminishes with increasing cooling rate, to be almost 

completely absent on cooling at 3000 K/s. As such, according to Figure 2, it is possible to 

obtain fully amorphous PBN (after cooling at 3000 K/s, or faster), and PBN containing 

different amounts of LC phase (after cooling at rates between about 400 and 2000 K/s), 

and PBN containing crystals (after cooling at rates lower than about 300 K/s). Naturally, 

within certain cooling-rate ranges, LC phase and crystals co-exist, together with 

amorphous structure. 

Without in-between annealing, the samples of different cooling history were immediately 

re-heated at a rate of 1000 K/s, in order to possibly detect cold-ordering/-crystallization 

events. The corresponding FSC heating curves are shown in Figure 3, with the color-

coding of data being in accord with that of the cooling curves of Figure 2, for easy 

assignment; the bold curves in each of the four groups of curves refer to the respective 

highest cooling rate in prior solidification. Most important is the observation of two 

exothermic peaks in the heating curves of initially fully or almost fully amorphous samples 

(lower three curves, obtained on samples solidified at 3000, 4000, and 5000 K/s). 

Immediately after devitrification of the amorphous glass, the melt transforms into the LC 

phase at around 120 °C and then, on further heating, the LC phase crystallizes well above 

160 °C. While the temperature of LC-phase formation seems independent on the prior 

cooling rate, the peak area decreases with decreases cooling rate. Supported by close 

inspection of the cooling scan obtained on solidifying the sample at 3000 K/s (bottom 

curve in Figure 2), it is obvious that small amount of LC phase formed already on cooling, 

leading then to a smaller cold-ordering peak on subsequent heating. In contrast, the 

crystallization peak shifts with decreasing rate of solidification to lower temperature which 

translates to faster crystallization if the LC phase was partially formed already during prior 

cooling, perhaps due to generation of first nucleation sites for the transition of the LC 

phase into crystals during the longer time of its presence. Both trends are observed also for 

samples cooled between 1000 and 2000 K/s (blue curves). In this cooling-rate range, with 

decreasing cooling rate LC-phase cold-ordering diminishes due to LC-phase formation 

already during cooling, leading to a shift of the temperature of cold-crystallization to lower 

temperature; again, the latter observation is believed related to the formation of nucleation 
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sites for the specific phase transformation, being kinetically controlled and being therefore 

enhanced on lowering the cooling rate. With decreasing rate of cooling between 900 and 

200 K/s, transformation of the LC phase into crystals is increasingly permitted on cooling. 

In the heating scans of Figure 3 (red curves), the area of the cold-crystallization peaks 

decreases though there is no further shift to lower temperatures. Obviously, LC-phase 

formation during cooling is not anymore a function of the cooling rate and completes 

during cooling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: FSC heating curves PBN solidified on cooling at different rates (see Figure 2), 

recorded at a rate of 1000 K/s. Color-coding of curves is in accord with that of the cooling 

curves of Figure 2. 

Finally, cooling at rates between 100 and 50 K/s allows complete reorganization of the LC 

phase into crystals on cooling which explains the absence of a large exothermic peak on 

subsequent heating. With decreasing cooling rate the transition of the LC phase into 

crystals occurs at higher temperature, producing crystals of higher stability. Accordingly 

there is observed a slight shift of the onset of melting toward higher temperature in the 

heating scans (see arrow), with the melting event masked by classical crystal 

reorganization, followed by melting at around 220 °C. Susceptibility of PBN crystals to 

reorganization on heating, however, is also confirmed with the observation of melting at a 
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temperature which is almost independent on the thermal history. Regardless the initial state 

of structure of the PBN samples, the final melting temperature is about constant which is a 

strong indication of a process of melting of unstable crystals, melt-recrystallization, and 

remelting, with its extent controlled by the heating rate [16–19]. 

 

 

 

 

 

 

 

 

 

Figure 4: POM micrographs of PBN placed on an FSC chip sensor after rapid cooling to 

below T g faster than 5000 K/s (left) and after cooling at 1000 K/s (right). 

Analysis of the semicrystalline morphology of numerous polymers revealed that 

transformation of ordered phases of low metastability (conformationally disordered 

crystals; small crystals) into crystals of higher stability during heating occurs at a local 

length scale without prior global melting [20–23]. In such case the density of nuclei 

evident on initial formation of the mesophase is preserved, and the superstructure of the 

ordered domains/crystals within the amorphous surrounding is unchanged. While for melt-

crystallization of PBN at cooling rates which enforce intermediate formation of the LC-

phase the absence of formation spherulites and conservation of the specific orientation of 

birefringent crystals, as predefined by the Schlieren texture of the LC phase, has been 

confirmed (see bottom left image of Figure 6 in [7]), in this work an in-situ POM analysis 

of structure evolution on heating initially fully amorphous PBN and PBN containing 

mainly LC phase has been performed. These samples were prepared in the FSC, which is 

required to subject the samples to the needed high cooling rates. Figure 4 shows the POM 

structure of PBN which was cooled at a rate higher than 5000 K/s (left image) and at a rate 

of 1000 K/s (right image) to below T g. The left image confirms that on cooling ordering 

was almost completely suppressed and that the sample is nearly amorphous. However, 

careful inspection of the image reveals a slight haze or brightening, indicating that 

orientation of mesogens was not fully suppressed, requiring faster cooling and more 
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advanced instrumentation. The right image reveals the expected Schlieren texture of the 

LC phase, with the corresponding FSC cooling scan in Figure 2 proving that crystallization 

of the LC phase was suppressed on cooling at 1000 K/s since showing only a single 

ordering peak. 

 

 

 

 

Figure 5: Sets of POM micrographs of (A) initially almost fully amorphous/isotropic PBN 

and (B) of PBN containing LC phase at ambient temperature. The images were captured on 

heating at a rate of 1 K/s from 30 °C (left image in upper row) to 240 °C (right image in 

lower row). Micrographs shown were taken every 10 s, that is, after an increase of the 

temperature by 10 K. The circles refer to a temperature around T g, and the scale bars 

represent a distance of 50 µm. 

The samples of Figure 4 were then slowly heated at a rate of 1 K/s in the FSC while 

monitoring the POM-structure. Selected images of the initially almost fully isotropic 

sample and the sample containing the LC phase are shown in Figures 5 (A) and 5 (B), 

respectively. The set of images in each Figure needs to be read line-wise, with begin and 

end of the heating experiment represented with the left image in the upper row (taken at 30 

°C) and the right image in the lower row (taken at 240 °C), respectively; micrographs 

shown were taken every 10 s, that is, after an increase of the temperature by 10 K. The 

images of Figure 5 (A) reveal that amorphous PBN begins to form the LC phase 

immediately after devitrification at T g. The image containing the circle in the upper left 

corner was captured at 80 °C, that is, at a temperature around or slightly above T g, showing 

first signs of brightening; latest at 90 °C the LC-phase-characteristic texture is clearly 

visible. According to the lower three FSC scans of Figure 3 (gray curves), though 
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measured at a heating rate of 1000 K/s, the LC phase transforms to -crystals at around 

160 °C, which then further reorganize and increase their stability within the available time-

frame controlled by the heating rate. However, the POM-structure is not affected by both 

crystallization and subsequent crystal reorganization as the texture initially formed at 80–

90 °C is preserved until final melting slightly above 230 °C. Similarly, the images of 

Figure 5 (B) reveal that cold-crystallization of the LC-phase, which formed during cooling 

of the melt, has no effect on the POM-structure. When heating the LC phase at rates 

between 1000 and 2000 K/s then cold-crystallization occurred at around 160 °C (see blue 

curves in Figure 3), however, the images obtained around this temperature in the bottom 

row of Figure 5 (B) remain unchanged and keep the Schlieren texture until final melting 

slightly above 230 °C. 

In summary, the performed study of the cold-crystallization behavior of PBN permits the 

following conclusions: 

(i) Heating of glassy PBN at a rate of 1000 K/s allows formation of LC phase slightly 

above T g at about 120 °C and its transformation to crystals between 150 and 200 °C. In 

prior work it was furthermore shown that formation of the LC phase and its transformation 

into crystals is suppressed on heating faster than 7000 and 1000 K/s, respectively [7, 8]. At 

the cold-crystallization conditions applied here, Ostwald’s rule of stages is valid. It is 

assumed that ultra-fast heating (>7000 K/s) of amorphous PBN to temperatures higher than 

about 160 °C, followed by isothermal annealing below the equilibrium melting temperature 

is connected with direct transformation of the melt into crystals, though evidence is 

lacking. 

(ii) Cold-ordering of initially glassy PBN, yielding the LC phase, leads to observation of 

the same Schlieren texture as on cooling. The transformation of the LC phase into crystals 

has no effect on the 10 µm scale (macroscopic) birefringence pattern in POM. It may be 

assumed that the transition of the LC phase into crystals must only involve local molecular 

rearrangements if Ostwald’s rule of stages is valid, that is, a transition path via the melt, as 

in classical crystal reorganization processes, may be excluded in the two-stage 

crystallization process (as in case of the Form II/Form I transition in isotactic polybutene-1 

[24, 25]). It can therefore be anticipated that the transition of the LC phase into crystals 

only involves very local rearrangements of structural motifs at a length scale of neighbored 

chain segments, invisible in POM. 
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