
1.1	Introduction
The	enzyme	L-asparaginase	(ASNase)	 is	a	key	chemotherapeutic	agent	 for	the	treatment	of	acute	 lymphoblastic	 leukemia	(ALL)	and	other	hematopoietic	malignancies	[1].	ASNase	 is	an	amidohydrolase	belonging	to	the	N-

terminal	nucleophile	 family,	which	requires	autocleavage	between	Gly167	and	Thr168	to	become	catalytically	competent.	This	behavior	differentiates	 it	 from	other	similar	enzymes,	 in	which	the	serine	residue	acts	as	 the	primary

nucleophile.	The	enzyme	produced	by	Escherichia	coli	 is	a	homotetramer	with	a	molecular	weight	of	about	142 kDa	[2].	 Its	catalytic	action	 leads	 to	asparagine	 (Asn)	deamidation,	 resulting	 in	 the	 formation	of	aspartate	 (Asp)	and

ammonia	as	a	by-product	[3].	Since	leukemic	cells	are	auxotrophic	for	Asn	[4],	a	reduction	in	the	blood	concentration	of	this	amino	acid	resulting	from	ASNase	action	is	an	effective	therapy	for	ALL,	because	under	these	conditions	the

cell	cycle	arrests	in	the	G1	phase	leading	to	apoptosis	[5].

However,	immunogenic	reactions	and	pharmacokinetic	limitations	are	responsible	for	early	clearance	of	ASNase	from	blood	plasma,	i.e.	for	a	short	half-life	[6].	To	reduce	these	problems,	new	biotechnological	alternatives	for
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Abstract

L-Asparaginase	(ASNase)	 is	an	amidohydrolase	used	as	a	chemotherapeutic	agent	 for	 the	 treatment	of	acute	 lymphoblastic	 leukemia	 (ALL).	The	nanoencapsulation	of	 this	enzyme	 is	strategic	 to	avoid	 its	 immediate

immunogenic	effects	that	lead	to	a	decrease	in	the	enzyme	half-life.	In	this	work,	ASNase-containing	nanoparticles	(NPs)	were	prepared	by	double	emulsification,	through	an	ultrasonic	sonicator	or	an	Ultra-Turrax,	using	two

copolymers	of	50:50	(w/w)	poly	(lactic-co-glycolic	acid)	(PLGA)	with	different	ranges	of	molecular	weight	(24‐–38 kDa	and	30‐–60 kDa)	and	varying	the	concentration	of	polyvinyl	alcohol	(PVA)	as	a	stabilizer	(0.5,	1.0,	1.5	and

2.0%)	as	well	as	 the	emulsification	time	(30	and	60 s).	Using	24‐–38 kDa	PLGA	and	1.0%	PVA,	we	obtained	by	cavitation	NPs	with	hydrodynamic	diameter	of	384 nm,	polydispersity	 index	of	0.143	and	Zeta	potential	of	 ‐

−16.4 mV,	whose	ASNase	encapsulation	efficiency	was	as	high	as	87 ± 2%.	The	encapsulated	enzyme	showed	an	activity	22%	higher	than	that	of	the	free	enzyme,	and	no	conformational	changes	were	detected	by	circular

dichroism.	The	enzyme	release	from	NPs	entrapped	in	dialysis	bags	(500 kDa	molecular	weight	cut-off)	allowed	selecting	a	controlled	system	able	to	release	about	60%	of	the	enzyme	within	14 days,	for	which	the	Korsmeyer-

Peppas	model	provided	the	best	correlation	(R2 = 0.966).

Keywords:	L-Asparaginase;	eEnzyme	encapsulation;	pPoly	(lactic-co-glycolic	acid);	dDouble	emulsification;	cCavitation



ASNase	production	by	different	microbial	sources	or	recombinant	forms	have	been	described,	as	well	as	the	employment	of	pegylation	or	immobilization	methods	through	nanoencapsulation	[7].

Until	now,	the	first	pharmaceutical	technological	innovation	in	the	nanomedicine	field	concerning	ASNase	was	the	pegylation	with	the	approval	of	Oncaspar®	in	2006,	but	this	therapeutic	enzyme	has	been	used	since	1994

when	Escherichia	coli	ASNase	was	approved.	Over	20 years,	some	studies	have	reported	ASNase	nanoencapsulation	into	liposomes	[8]	and	polymersomes	[9]	that,	however,	have	some	limitations.	The	main	drawback	of	liposomes	is	the

chemical	instability	of	lipid	vesicles,	while	that	of	polymersomes,	which	are	tough	vesicles,	is	the	complexity	of	their	self-assembly	that	may	result	in	low	macromolecule	encapsulation	yields	[10].	The	encapsulation	in	nanospheres

could	be	a	strategy	able	to	lower	clearance	of	this	enzyme	through	its	confinement	in	a	polymeric	matrix		[11,12].

An	example	of	biodegradable	and	biocompatible	polymer	widely	accepted	for	drug	delivery	systems	like	nanospheres	is	poly	(lactic-co-glycolic	acid)	(PLGA)	[13].	In	reason	of	theseits	suitable	characteristics	for	pharmaceutical

applications,	 PLGA	 is	 approved	 by	 the	 Food	 and	Drug	 Administration	 (FDA)	 and	 European	Medicines	 Agency	 (EMA).	 Currently	 14	 PLGA-based	 drug	 products,	 approved	 by	 FDA,	 are	 available	 in	 the	United	 States	market.	 It	 is

noteworthy	in	this	respect	that	FDA	imposes	that,	to	register	new	products	with	nanotechnological	application,	they	must	have	physical	or	chemical	properties	or	biological	effects	that	can	be	attributed	to	their	size,	even	in	a	range

exceeding	the	nanometer	scale,	i.e.	above	1 	micrometerμm	(1000 nm).

Dispersion	of	PLGA	nanoparticles	within	a	hydrogel	matrix	allows	for	their	localization	at	the	site	of	formulation	injection	[14],	but	in	ASNase-based	therapy	of	leukaemialeukemia,	which	is	a	nonsolid	cancer	of	the	blood	and

bone	marrow,	there	is	not	requirement	for	enhanced	permeation	and	retention	effect;	therefore,	in	this	case	an	effective	nanoparticle	treatment	classically	relies	on	long-circulating	nanoparticles	[15].

Based	on	 this	background,	we	developed	PLGA	nanoparticles	 for	 the	encapsulation	of	ASNase.	Two	different	methods	of	producing	NPs	by	double	emulsification	were	studied,	namely	ultrasonic	cavitation	and	dispersion.

Cavitation	allowed	preparing	a	promising	system	of	PLGA-containing	NPs	with	a	loading	capacity	of	more	than	>80%	of	ASNase.

2.2	Materials	and	methods
2.1.2.1	Materials

L-Asparaginase	was	obtained	from	Changzhou	Qianhong	Bio-Pharma	Co.	Ltd.	(Changzhou,	Jiangsu,	China).	50:50	(w/w)	poly	(lactic-co-glycolic	acid)	(PLGA)	with	average	molecular	weight	(Mw)	of	24‐–38 kDa	and	30‐–60 kDa,

designated	as	PLGA	1	and	PLGA	2,	respectively,	polyvinyl	alcohol	(PVA)	(Mw	of	31–50 kDa),	bicinchoninic	acid	(BCA)	assay	kit,	asparagine	and	trichloroacetic	acid	were	purchased	from	Sigma	Aldrich®	(São	Paulo,	SP,	Brazil),	while	the

Nessler	reagent	was	obtained	from	Merck	Millipore®	(Barueri,	SP,	Brazil).	All	the	other	analytical	grade	reagents	were	purchased	from	Synth®	(São	Paulo,	SP,	Brazil),	while	water	was	purified	using	a	Milli-Q	water	purification	system

(MilliPore,	Bedford,	MA,	USA).

2.2.2.2	Nanoparticles	preparation
Table	1	 shows	 the	variables	analyzed	 for	NPs	preparation	by	 the	water-in-oil-in-water	 solvent	evaporation	 technique.	Briefly,	250 μl	of	0.1 M	phosphate	buffered	 saline	 (PBS),	 pH 7.4,	was	emulsified	 in	2.5 ml	of	chloroform

containing	50 mg	of	PLGA.	This	 primary	water/oil	 (W1/O)	 emulsion	was	 obtained	 by	 either	 a)	 cavitation	 on	 ice	 bath	with	 a	 750-watt	 ultrasonic	 probe,	model	 Vibra-Cell	 VC	 750	 (Sonics	&	Materials,	Newtown,	CT,	USA),	with	 the

sonication	intensity	set	at	an	amplitude	of	50%	of	the	total	power,	or	b)	emulsification	with	Ultra-Turrax	disperser,	model	T18	basic	(IKA,	Wilmington,	NC,	USA),	at	4000 rpm.	The	second	double	(W1/O/W2)	emulsion	was	prepared	by

addition	of	the	first	W1/O	emulsion	into	10 ml	of	0.5,	1.0,	1.5	or	2.0%	aqueous	PVA	solution	for	three	cycles	of	30	or	60 s	under	the	conditions	described	above.	The	final	preparation	was	magnetically	stirred	at	450 rpm	for	24 h	at	room

temperature	(25 ± 1 °C)	until	completion	of	the	organic	solvent	evaporation.

Table	1.Table	1	Variables	investigated	in	the	first	emulsification	to	obtain	nanoparticles	with	low	polydispersity	index	using	50:50	(w/w)	PLGA	(average	molecular	weight	of	24‐–38 kDa	and	30‐–60 kDa)	and	PVA
(31–50 kDa)	as	a	stabilizer.
alt-text:	Table	1

Systema PVA	concentration	(%) Emulsification	technique Time	of	3-cycle	homogenization	(s)

1 0.5 US	Cb 30

2 0.5 US	Cb 60

3 1.0 US	Cb 30

4 1.0 US	Cb 60



5 1.5 US	Cb 30

6 1.5 US	Cb 60

7 2.0 US	Cb 30

8 2.0 US	Cb 60

9 0.5 U-T	Dc 30

10 0.5 U-T	Dc 60

11 1.0 U-T	Dc 30

12 1.0 U-T	Dc 60

13 1.5 U-T	Dc 30

14 1.5 U-T	Dc 60

15 2.0 U-T	Dc 30

16 2.0 U-T	Dc 60

a Each	nanoparticle	system	was	prepared	using	either	PLGA	1	or	PLGA	2.
bUltrasonic	cavitation.
cDispersion	with	Ultra-Turrax	disperser.

2.3.2.3	Dynamic	light	scattering	analysis
Dynamic	light	scattering	(DLS)	analysis	of	NPs	was	carried	out	at	25 °C	and	a	detector	angle	of	90°	in	a	Zetasizer,	model	Nano	ZS	(Malvern	Instruments,	Worcestershire,	UK),	equipped	with	a	He-Ne	laser	(λ = 633 nm).	For	this

analysis,	 samples	were	prepared	without	 filtration	 (to	ensure	 that	 large	populations	were	not	discarded)	and	1:100	diluted	 in	PBS.	The	polydispersity	 index	 (PDI)	was	obtained	 from	the	correlation	 function	by	using	a	cumulative

analysis.	PDI	values	greater	 than	∼0.7	were	assumed	 to	 indicate	 systems	with	broad	 size	distribution.	Assuming	non-interacting	particles,	 the	hydrodynamic	diameter	 (Df)	was	expressed	either	as	DLS	Size	 Intensity	or	DLS	Size

Number,	from	intensity-weighted	or	number-weighted	distribution,	respectively,	through	the	Stokes-Einstein	equation:

where	kB	is	the	Boltzmann	constant	(1.3806 × 10−23 J/K),	T	the	temperature,	η	the	absolute	viscosity	of	PBS	and	Rh	the	NP	hydrodynamic	radius.

2.4.2.4	Transmission	electron	microscopy
For	transmission	electron	microscopy	(TEM),	5.0 μl-aliquots	of	each	NP-containing	sample	were	diluted	in	distilled	water,	and	a	drop	of	the	resulting	dispersion	was	placed	onto	a	carbon-coated	copper	grid.	The	grid	was	then

observed	by	a	transmission	electron	microscope,	model	Tecnai	Spirit	Biotwin	G2,	FEI	(Hillsboro,	Oregon,	USA),	operating	at	an	accelerating	voltage	of	200 kV.

2.5.2.5	Stability	of	encapsulated	enzyme
To	evaluate	the	ASNase	secondary	structure,	Far-UV	circular	dichroism	(CD)	analysis	was	performed	on	free	protein	and	encapsulated	protein	recovered	from	the	NPs.	Data	were	collected	on	a	CD	Spectrometer,	model	J-1500

(Jasco,	Oklahoma	City,	OK,	USA),	in	the	180–260 nm	range	using	a	cell	path	length	of	10 mm	at	25 °C	and	a	protein	concentration	of	10.0 mg/ml.	Spectra	were	corrected	for	PBS	contribution	and	expressed	as	mean	residue	ellipticity

(mdeg)	as	a	function	of	wavelength	(nm).

2.6.2.6	Enzymatic	activity	assay

(1)



ASNase	activity	was	measured	according	 to	 the	Nessler	method,	by	determining	 the	quantity	 of	 ammonia	 released	 from	Asn	hydrolysis	 catalyzed	by	 this	 amidohydrolase.	The	 reaction	was	performed	 in	 two	 steps.	Tubes

containing	500 μl	of	50 mM	Tris–HCl	(pH 8.8),	450 μl	of	water,	50 μl	of	189 mM	Asn	and	50 μl	of	enzyme	solution	were	first	incubated	at	37 °C	for	30 min.	After	stopping	the	reaction	with	50 μl	of	1.5 M	trichloroacetic	acid	(TCA),	100 μl-

aliquots	 from	 the	 former	 step	were	 diluted	 in	 2.15 ml	 of	 water,	 and	 250 μl	 of	Nessler’'s	 reagent	 were	 added.	 The	 results	 were	 recorded	 spectrophotometrically	 at	 λ = 436 nm	 using	 a	 SpectraMax	 Absorbance	Microplate	 Reader

(Molecular	Devices,	São	Paulo,	SP,	Brazil)	after	1 min.	One	unit	of	ASNase	activity	was	defined	as	the	amount	of	enzyme	required	to	release	1 μmol of ammonia	per	minute/min	at	pH 8.6	and	37 °C.	To	this	purpose,	we	used	a	standard

curve	of	ammonium	sulfate	with	amount	ranging	from	0	to	1.2 μmol.

2.7.2.7	Encapsulation	efficiency	assay
ASNase-loaded	NPs	were	submitted	to	three	cycles	of	centrifugation	at	3220	g	for	15 min	and	resuspended	in	5.0 ml	of	PBS,	pH 7.4,	to	remove	any	non-encapsulated	molecule	of	the	enzyme.	The	pellet	was	dissolved	in	1.0 ml	of

50%	dimethyl	sulfoxide	(DMSO)	in	PBS	(v/v).	and	the	enzyme	concentration	quantified	as	total	proteins	using	a	BCA	Kit.	ASNase	encapsulation	efficiency	(EE%)	was	calculated	according	to	the	equation:

where	mp0	 is	 the	 initial	mass	 of	 protein	 and	mp	 the	mass	 of	 protein	 in	 the	 pellet	 solution.	 The	 pellet	 solution	was	 also	 subjected	 to	 sodium	 dodecyl	 sulfate-polyacrylamide	 gel	 electrophoresis	 (SDS-PAGE)	 in	 a	Mini-PROTEAN	 II

Multiscreen	apparatus	(Bio-Rad	Laboratories,	Hercules,	CA,	USA)	and	the	gel	stained	with	Coomassie	blue.	The	protein	molecular	weight	marker	was	acquired	from	Bio-Rad	Laboratories	(Hercules,	CA,	USA).	Another	electrophoretic

separation	with	retention	of	native	properties	(Native-SDS-PAGE)	was	performed	to	evaluate	the	enzymatic	activity	in	this	pellet	solution	through	zymogram	according	to	the	L-aspartyl-β-hydroxamic	acid	method.	According	to	this

method,	L-aspartyl-β-hydroxamic	acid	is	hydrolyzed	by	ASNase,	producing	aspartic	acid,	hydroxylamine	and	red	hydroxamic	acids	complexes	with	ferric	chloride	absorbing	at	490 nm.

2.8.2.8	In	vitro	ASNase	release
The	in	vitro	release	of	ASNase	from	the	NPs	was	investigated	by	dialysis	at	37 °C	under	gentle	magnetic	stirring	at	100 rpm.	Briefly,	1.0 ml	of	protein-encapsulated	NPs	dispersion	in	PBS,	pH 7.4,	was	added	to	a	dialysis	bag

(500 kDa	molecular	weight	cut-off)	 immersed	in	100 ml	of	PBS	(release	medium).	At	selected	time	 intervals,	70 μl	of	 release	medium	were	withdrawn	and	replaced	with	an	equal	volume	of	 fresh	medium.	The	amounts	of	 released

proteins	as	well	as	proteins	remaining	in	the	dialysis	bag	were	determined	by	the	BCA	method.	The	release	experiments	were	carried	out	 in	triplicate,	and	the	results	expressed	as	mean	values ± standard	deviations.	The	percent

release	of	ASNase	at	time	t	was	calculated	according	to	the	equation:

where	Mt	is	the	cumulative	absolute	amount	of	enzyme	released	at	time	t	during	dialysis	and	M0	the	absolute	amount	of	enzyme	encapsulated	within	the	system	at	the	beginning	(t = 0).

As	extensively	reviewed	by	Ma	et	al.	(2018),	enzyme	release	from	nanospheres	can	follow	different	kinetics	depending	on	the	phenomenon	limiting	the	process	and	the	presence	or	not	of	a	lag	period	preceding	the	release.

Because	the	release	of	ASNase	in	this	work	has	occurred	since	the	beginning,	we	tested	only	the	main	release	models	available	in	the	literature	without	any	effort	to	take	into	account	such	a	lag	period.

Among	them,	the	first-order	model	can	be	described	by	the	equation	(Ma	et	al.	2018) (It	is	the	same	reference	as	for	Query	8	(see	four	lines	before).	Therefore,	the	same	reference	number	should	be	used.):

where	M∞	 is	 the	 absolute	 cumulative	 amount	 of	 enzyme	 released	 at	 infinite	 time	 that	 should	 be	 equal	 to	M0	 in	Eq.	 (3),	Mt/M∞	 the	 fraction	 of	 enzyme	 released	 at	 time	 t	 (h),	 and	 k1	 the	 first-order	 kinetic	 constant	 (h‐−1)	 [16].	 This

kinetic	constant	was	estimated	as	the	slope	of	the	straight	line	obtained	plotting	the	log10	of	the	Percent	Cumulative	Retention	of	the	enzyme	versus	time.

The	Korsmeyer-Peppas	model	is	expressed	by	the	equation	(Korsmeyer	et	al.	1983):

where	n	 is	 the	 release	 exponent	 pointing	 out	 the	 mechanism	 of	 enzyme	 release	 and	 kK	 a	 constant	 incorporating	 structural	 and	 geometric	 characteristics	 of	 the	 enzyme	 dosage	 form.	 These	 parameters	 were	 estimated	 as	 the

slope	and	the	intercept	on	the	ordinate	axis,	respectively,	of	the	straight	line	obtained	plotting,	in	a	log-log10	plot,	the	Percent	Cumulative	Release	of	the	enzyme	versus	time.

Almost	all	the	remaining	release	models	can	essentially	be	thought	of	as	special	cases	of	the	last	one.	So,	when	n = 1,	the	system	shows	a	non-Fickian	release	with	characteristic	zero-order	kinetics,	and	Equation.	(5)	simplifies

(2)

(3)

(4)

(5)



to:

where	k0	is	the	zero-order	kinetic	constant,	which	was	estimated	as	the	slope	of	the	straight	line	obtained	by	simply	plotting	the	Percent	Cumulative	Release	of	the	enzyme	versus	t.

When	n = 0.5,	the	release	takes	place	by	Fickian	diffusion	with	negligible	relaxation	coefficient,	and	Equation.	(5)	simplifies	to	the	so-called	Higuchi	model	(Higuchi	1961;	Haidar	et	al.	2008):

where	kH	 is	 the	Higuchi	constant	 that	depends	on	 the	diffusion	coefficient,	 the	enzyme	solubility	 in	 the	dissolution	medium,	 the	porosity,	and	 the	enzyme	concentration	 in	 the	NP.	This	kinetic	constant	was	estimated	as	 the	slope

of	the	straight	line	obtained	by	plotting	the	Percent	Cumulative	Release	of	the	enzyme	versus	the	square	root	of	time.

The	Origin	 Pro-8	 software	 (Origin	 Lab	Corporation,	Wellesley	Hills,	MA,	USA)	was	 used	 to	 perform	 the	 linear	 regression	 considering	 the	 determination	 coefficient	 (R2),	 while	 the	 Akaike	 Information	 Criterion	 (AIC)	was

determined	according	to	Eltayeb	et	al.	[17].

2.9.2.9	Haemolysis	assay
The	haemolysis	assay	was	performed	for	NPs	with	or	without	ASNase.	NPs	were	previously	lyophilized	at	−50 °C	on	a	freeze	drier,	model	L101	(Liotop,	São	Carlos,	SP,	Brazil).	After	lyophilization	NPs	were	kept	at	−80 °C	in	an

ultrafreezer,	model	MDF-U72 V	(Sanyo,	Osaka,	Japan),	and	then	resuspended	in	0.9%	NaCl	salt	solution,	pH = 7.4,	for	the	haemolysis	assay.	The	systems	were	prepared	mixing	1.0 mLml	of	the	sample	and	50 μLl	of	sheep	red	blood	cells,

stirring	for	1 h	at	37 °C,	and	then	centrifuging	at	1788	g	for	3 min.	Haemoglobin	release	upon	haemolysis	was	read	in	a	UV‐–Vis	spectrophotometer	(SpectraMax	Absorbance	Microplate	Reader,	Molecular	Devices,	São	Paulo,	SP,	Brazil)

at	540 nm.	The	absorbance	of	each	sample	(As)	was	compared	with	those	of	saline	solution	taken	as	negative	control	(Ab)	and	water	as	positive	control	(Aw).	The	haemolytic	effect	was	expressed	as	%	haemolysis	by	the	equation:

2.10.2.10	2.9.	Statistical	analysis
Results	are	given	as	means	of	triplicates	(n = 3)	and	standard	deviation	(SD),	while	a	p	value < 0.05	was	considered	to	be	indicative	of	statistical	significance.	Statistical	comparisons	were	performed	by	one-way	Analysis	of

Variance	(ANOVA),	and	the	Tukey’'s	post	hoc	test	was	used	to	compare	all	the	results	among	them	by	means	of	the	Origin	Pro-8	software	(Origin	Lab	Corporation,	Wellesley	Hills,	MA,	USA).

3.3	Results
3.1.3.1	Screening	of	a	system	for	ASNase	encapsulation

Size	distribution	by	intensity	of	NPs	prepared	using	either	PLGA	1	(30‐–60 kDa)	or	PLGA	2	(24‐–38 kDa)	(Table	2)	indicated	that	some	of	the	systems	(system	12	with	PLGA	1;	systems	14	and	16	with	either	PLGA	1	or	PLGA	2)	had

a	hydrodynamic	diameter	in	the	micrometric	range	(>	1000 nm)	with	main	population	composed	of	micro-	rather	than	nanoparticles.

Table	2.Table	2	Hydrodynamic	diameters	by	intensity	(HDI)	and	by	number	(HDN)	of	nanoparticles	prepared	using	either	PLGA	1	(30‐–60	K kDa)	or	PLGA	2	(24‐–38 kDa).
alt-text:	Table	2

Systema
PLGA	1 PLGA	2

HDI	(nm) HDN	(nm) HDI	(nm) HDN	(nm)

1 n.d.b n.d. n.d. n.d.

2 n.d. n.d. n.d. n.d.

3 n.d. n.d. n.d. n.d.

4 400	(100%)c 414	(100%) 389	(100%) 410	(100%)

(6)

(7)

(8)



400	(100%)c

5 808	(100%) 627	(100%) n.d. n.d.

6
615	(99.1%), 131	(20.1%), 485	(99.5%), 548	(92%),

147	(0.6%),	5288	(0.3%) 486	(79.9%) 4831	(0.4%) 5078	(8.0%)

7 697	(99.2%),	5513	(0.8%) 619	(100%) n.d. n.d.

8 608	(100%) 510	(100%) 593	(99.2%),	5262	(0.8%) 690	(85.9%),	154	(1.1%)

9 n.d. n.d. n.d. n.d.

10 n.d. n.d. n.d. n.d.

11 n.d. n.d. n.d. n.d.

12
1023	(89.5%), 1173	(46%), 678	(100%) 648	(100%)

5105	(8.4%),	277	(2.1%) 5390	(53.6%),	276	(0.4%)

13 n.d. n.d. n.d. n.d.

14
1234	(78.3%),	5330	(19.1	%), 1432	(30.5%),	5446	(45.6%), 670	(72.7%),	1262	(27.3%) 646	(71.3%),	174	(28.7%)

324	(2.6	%) 350.8	(0.7%)

15 n.d. n.d. n.d. n.d.

16
1350	(80.6	%), 1251	(53.7%), 562	(100%) 536	(100%)

5124	(14.7%),	345	(4.8%) 5326	(45.6%),	351	(0.7%)

a All	nanoparticles	were	prepared	under	the	conditions	listed	in	Table	1	using	either	PLGA	1	or	PLGA	2.
b n.d. = not	determined	because	of	phase	separation.
c Percentages	do	refer	to	size	distribution	of	heterogeneous	systems.

Regarding	the	emulsification	time,	systems	prepared	using	either	PLGA	1	or	PLGA	2	as	copolymers	for	a	homogenization	time	of	30 s	showed	overall	phase	separation	soon	after	preparation.	The	only	exceptions	were	systems	5

and	7	prepared	with	PLGA	1	that	emulsified	even	by	ultrasonic	cavitation,	likely	because	the	simultaneous	use	of	PVA	at	high	levels	(1.5	and	2.0%)	and	cavitation	prevented	the	immediate	phase	separation.	Systems	made	with	PLGA	1

using	Ultra-Turrax	disperser	for	60 s	resulted	in	large	NPs	with	size	in	the	micrometric	range	(1000‐–5000 nm),	while	cavitation	for	the	same	time	could	ensure	narrower	nanoparticles.	On	the	other	hand,	using	PLGA	2	only	the	longer

time	of	ultrasonic	cavitation	allowed	obtaining	NPs	with	acceptably	small	hydrodynamic	diameters.

PVA	concentration	did	not	interfere	in	the	hydrodynamic	diameter	of	NPs	prepared	by	cavitation	with	PLGA	1,	whereas	the	size	of	those	prepared	by	Ultra-Turrax	disperser	increased	with	the	increase	in	PVA	concentration.	At

the	highest	PVA	concentration	(2.0%),	PLGA	2	resulted	in	NPs	with	hydrodynamic	diameter	about	100 nm	larger	than	those	prepared	with	lowest	PVA	concentrations,	which,	however,	did	not	imply	any	change	in	their	nanometric	scale.

These	results	 taken	together	suggest	 that	 the	use	of	cavitation	 for	60 s	and	1.0%	PVA	are	necessary	requirements	 to	produce	stable	NPs	with	both	polymers.	However,	a	monomodal	size	distribution	profile	was	observed	for	NPs

prepared	with	PLGA	2	rather	than	with	PLGA	1,	by	both	intensity	and	number.	In	general,	PLGA	2	resulted	in	particles	in	the	nanometric	scale	with	smaller	in	size	compared	with	PLGA	1,	while	some	of	the	particles	obtained	with	the

latter	polymer	exhibited	hydrodynamic	diameters	even	in	the	micrometric	scale.

Figure.	1	shows	the	values	of	the	polydispersity	index	(PDI)	for	systems	obtained	with	both	copolymers	that	did	not	exhibit	any	phase	separation.	The	analysis	of	variance	indicated	a	statistically	significant	difference	between

PDI	values	obtained	with	each	copolymer	(p < 0.05).	Both	PLGA	1	and	PLGA	2	under	the	above	conditions	(cavitation	for	the	longer	emulsification	time	using	1.0%	PVA)	ensured	the	best	size	distribution	of	nanoparticles	with	the	lowest

PDI	values.



The	system	with	the	smallest	particle	size	and	the	lowest	PDI,	i.e.,	the	system	4	prepared	with	PLGA	2,	was	chosen	to	encapsulate	ASNase.	One	can	see	in	Figure.	2,	curve	A,	the	dynamic	light	scattering	profile	of	NPs	without

enzyme,	which	 indicates	 a	 hydrodynamic	diameter	 of	 384 ± 14 nm	and	 low	 polydispersity	 index	 (PDI = 0.14 ± 0.03).	 Although	 the	 incorporation	 of	 the	 enzyme	 did	 not	 significantly	 alter	 the	 size	 of	NPs	 (curve	B),	which	 showed	 a

hydrodynamic	diameter	of	332 ± 18 nm,	it	significantly	increased	the	degree	of	polydispersity	(PDI = 0.92 ± 0.05).	Curve	C,	which	refers	to	the	solution	of	ASNase	in	PBS,	pH 7.4,	points	out	an	initial	peak	(magnified	in	inset	D)	referring

to	the	non-aggregated	enzyme	with	hydrodynamic	diameter	of	9.1 ± 0.0 nm,	and	another	peak	that	may	be	ascribed	to	aggregates.	The	values	of	Zeta	potential	of	NPs	without	and	with	enzyme	were	negative	and	statistically	coincident

(‐−16.9 ± 0.1 mV	and		‐− 16.7 ± 0.2 mV,	respectively),	thus	suggesting	that	the	enzyme	was	mainly	confined	within	them.

3.2.3.2	Encapsulated	ASNase	stability
The	presence	of	encapsulated	enzyme	within	the	NPs	was	confirmed	by	the	presence	of	a	band	at	37 kDa,	corresponding	to	the	enzyme	monomer,	 in	the	SDS-PAGE	of	the	solution	resulting	from	the	dissolution	of	ASNase-

containing	NPs	in	DMSO/PBS	(Fig.	3A).	The	absence	of	any	other	evident	band	in	this	electrophoretic	profile	is	a	proof	of	the	purity	of	encapsulated	ASNase	and	confirms	the	effectiveness	of	the	proposed	protocol	for	NP	preparation.

Figure	1.Fig.	1	Polydispersity	index	of	nanoparticles	prepared:	A)	with	PLGA	1	(30‐–60 kDa)	and	B)	with	PLGA	2	(24‐–38 kDa).

alt-text:	Fig.	1

Figure	2.Fig.	2	Dynamic	light	scattering	profiles	of	nanoparticles	and	ASNase	by	intensity:	A)	nanoparticle	without	enzyme,	B)	nanoparticle	with	enzyme,	C)	ASNase	solution	in	PBS,	pH 7.4.	D)	Inset	showing	magnification	of	the	former	peak	of	ASNase	solution	in	its	form	without

aggregates.	E)	Profile	by	number	of	ASNase	in	PBS,	pH 7.4.

alt-text:	Fig.	2



The	non-denaturing	gel	zymogram	of	Fig.	3B	shows	a	band	at	140 kDa	that	qualitatively	confirmed	the	encapsulated	ASNase	activity	as	well	as	the	molecular	weight	of	the	homotetrameric	enzyme	reported	by	Sanches	et	al.	[2].

The	circular	dichroism	spectra	of	free	and	encapsulated	enzyme	illustrated	in	Fig.	4	indicates	preservation	of	the	secondary	structure	of	a	homotetramer	belonging	to	α/β	class	of	proteins	like	a	α-helical	structure	even	after	the

encapsulation	process,	thus	confirming	the	stability	of	encapsulated	ASNase.

3.3.3.3	Transmission	electron	microscopy
As	shown	in	Fig.	5,	individual,	dispersed	nanosphere-like	particles	with	no	evidence	of	aggregation	were	observed.	The	mean	diameter	of	particles	measured	using	the	Image	J	program	was	390 ± 88 nm.

Figure	3.Fig.	3	A)	SDS-PAGE	profile	under	denaturing	conditions	of	ASNase-containing	NPs	dissolved	in	DMSO/PBS.	B)	Non-denaturing	gel	zymogram	qualitatively	confirming	the	activity	of	encapsulated	ASNase.

alt-text:	Fig.	3

Figure	4.Fig.	4	Circular	dichroism	spectra	of	free	and	encapsulated	ASNase.

alt-text:	Fig.	4



3.4.3.4	ASNase	activity
As	 can	 be	 seen	 in	 Table	 3,	 the	 values	 of	 both	 volumetric	 and	 specific	 activities	 of	 encapsulated	 ASNase	 were	 significantly	 higher	 than	 those	 of	 the	 free	 enzyme,	 which	 suggests	 enzyme	 concentration	 induced	 by	 the

encapsulation	process.

Table	3.Table	3	Values	of	volumetric	and	specific	activities	of	both	free	and	encapsulated	ASNase.	Results	are	expressed	as	means	of	three	replicates	(n = 3) ± standard	deviations.
alt-text:	Table	3

Activities Free	ASNase Encapsulated	ASNase

Volumetric	activity	(U/ml) 1.5 ± 0.1 1.9 ± 0.1

Specific	activity	(U/mg) 213 ± 5 265 ± 6

3.5.3.5	In	vitro	ASNase	release
Fig.	6	shows	a	comparison	between	the	profiles	of	in	vitro	release	from	dialysis	bags	of	the	free	enzyme	and	the	enzyme	contained	in	PLGA	nanoparticles.	As	expected,	the	encapsulated	enzyme	release	was	slower;	in	fact,	about

56	and	60%	of	ASNase	was	released	from	NPs	within	7	and	14 days,	respectively,	while	more	than	>61	and	66%	releases	were	observed	for	free	enzyme	after	the	same	time	intervals.

Figure	5.Fig.	5	Transmission	electron	microscopy	images	of	nanoparticles	prepared	with	PLGA	2	(24‐–38 kDa).	Accelerating	voltage = 200 kV.	In	micrographs	A	and	D	it	is	possible	to	notice	fields	with	several	nanospheres.	Micrograph	A	of	five	nanospheres	allowed	measuring	the

mean	diameter	(390 nm)	and	standard	deviation	(SD = 88 nm)	by	the	Image	J	program.	In	micrographs	B	and	C	it	is	possible	to	identify	individual	nanostructures	with	a	difference	in	size	of	around	100 nm.

alt-text:	Fig.	5



The	experimental	data	of	the	cumulative	release	of	ASNase	from	NPs	vs.	time	were	then	processed	using	the	zero-order	(Eq.	(6)),	first-order	(Eq.	(4)),	Higuchi	(Eq.	(7))	and	Korsmeyer-Peppas	(Eq.	(5))	kinetic	models.	Only	the

Korsmeyer-Peppas	model	was	able	to	satisfactorily	fit	the	experimental	data	with	a	correlation	coefficient	(R2)	of	0.966	(Table	4)	and	a	value	of	the	release	exponent < 0.5	(n = 0.291)	(Fig.	7),	while	all	the	other	models	showed	poorer	or

unsatisfactory	correlation.	As	expected,	the	Korsmeyer-Peppas	model	also	showed	the	lowest	value	of	the	AIC	(‐−50.72)	(Table	4),	confirming	its	best	fitting	compared	with	the	others.

Table	4.Table	4	Model	parameters	for	L-asparaginase	release	from	nanoparticles.

alt-text:	Table	4

Model R2a Radj
2b AICc

Zero-order 0.845 0.812 46.63

First-order 0.860 0.841 ‐−43.49

Higuchi 0.961 0.956 33.55

Korsmeyer-Peppas 0.966 0.961 ‐−50.72
aDetermination	coefficient.
b Adjusted	determination	coefficient.
c Akaike	Information	Criterion.

Figure	6.Fig.	6	Cumulative	release	of	free	and	encapsulated	ASNase	from	dialysis	bags.

alt-text:	Fig.	6



3.6.3.6	Haemocompatibility	of	nanoparticles	by	haemolysis	assay
As	expected,	no	haemolytic	effect	was	observed	for	PLGA	nanoparticles	with	or	without	ASNase	(Supplementary	material,	Table	S1).

4.4	Discussion
The	main	parameters	influencing	formation	and	stability	of	PLGA	NPs	have	been	extensively	studied	[18]	(Vandervoort	and	Ludwig	2002;	Dillen	et	al.,	2004;	Carraro	et	al.	2014;	Akl	et	al.	2016).	However,	when	the	aim	is	to

prepare	NPs	for	protein	encapsulation,	other	insights	are	needed,	since	the	preparation	conditions	can	lead	to	protein	instability.

NPs	size	distribution	by	DLS	was	evaluated	in	this	study	under	three	aspects:	the	distribution	by	intensity,	the	distribution	by	number	and	the	polydispersity	index.	Comparison	of	distributions	by	intensity	and	by	number	is

fundamental	for	choosing	between	one	NPs	system	or	another,	since	it	allows	identifying	possible	peaks	due	to	sample	impurity,	which	are	visible	in	the	distribution	by	intensity	but	do	not	appear	in	that	by	number	(Dionzou	et	al.,

2016).	In	the	case	of	NPs	investigated	in	the	present	study,	some	of	the	peaks	in	the	micrometric	scale	were	apparent	even	when	analyzed	by	number,	indicating	that	they	were	not	related	to	dusts,	but	to	the	system	itself.	In	other

words,	some	conditions	resulted	in	micrometric	particle	aggregation,	what	is	not	adequate	for	ASNase	intravenous	administration.

Phase	separation	occurred	in	systems	prepared	with	PLGA	1	with	a	homogenization	time	of	30 s,	except	for	systems	5	and	7	prepared	with	the	highest	PVA	concentration.	This	can	be	explained	by	the	simultaneous	effects	of

cavitation	and	PVA	that	reduced	the	surface	tension	and	stabilized	the	phases	during	the	emulsification	process	(Lawrence	and	Rees	2000).	According	to	Sharma	et	al.	(2016),	the	concentration	of	stabilizer	used	to	prepare	NPs	is	of

fundamental	 importance,	 because	 in	 suitable	 concentration	 it	 can	 avoid	 the	 system	 coalescence.	 In	 fact,	 the	 same	 authors	 observed	 that	 low	PVA	 concentrations	 did	 not	 allow	 the	 formation	 of	 a	 stable	 emulsion	 and	 that	 phase

separation	occurred	after	a	few	hours	of	the	emulsification	process,	leading	to	the	formation	of	polymer	aggregates.

The	concentration	of	stabilizer	plays	a	significant	role	in	the	protection	of	droplets,	because	it	can	avoid	the	coalescence	of	globules	in	the	double	emulsion–solvent	evaporation	technique	[18].	As	a	confirmation	of	this,	the

lowest	PVA	concentration	(0.5%)	caused	phase	separation	with	both	copolymers	even	in	systems	prepared	with	stirring	time	of	60 s,	regardless	of	the	technique	used;	thus,	higher	PVA	concentrations	are	necessary	to	allow	stabilization

of	the	system.

In	addition	to	the	PVA	concentration,	the	homogenization	time	was	shown	to	be	another	important	factor	to	be	controlled	in	the	preparation	of	nanoparticles	for	protein	encapsulation,	in	relation	either	to	the	stress	caused	by

agitation	or	sonication	(Maruyama	et	al.,	2015)	or	to	the	large	interface	between	aqueous	and	organic	phases,	while	shear	stress	is	primarily	responsible	for	protein	instability	[19].	In	this	study,	a	homogenization	time	of	60 s	was	the

one	that	led	to	the	greatest	number	of	systems	with	no	phase	separation,	because	kinetic	energy	is	a	fundamental	step	for	NPs	elaboration	and	influences	the	NPs	shape	and	size	distribution	[18].

In	general,	a	concentration	of	PVA	higher	than	0.5%	and	an	emulsification	time	of	60 s	resulted	in	stable	systems	either	with	PLGA	1	or	PLGA	2.	However,	PDI	was	lower	for	systems	prepared	by	ultrasonic	cavitation	compared

with	Ultra-Turrax	dispersion.	Ultrasonic	cavitation	proved	to	be	more	advantageous	because	it	allowed	for	immediate	emulsification	of	phases	as	well	as	reduction	in	the	size	and	polydispersity	of	NPs	made	either	with	PLGA	1	or	with

PLGA	2.	This	can	be	explained	by	the	fact	that	during	cavitation	sequential	formation	(increase	and	decrease)	of	vapor	bubbles	takes	place	in	the	liquid,	whose	collapse	or	implosion	generates	high	local	temperatures	and	pressures	in	a

very	short	time,	thereby	in	turn	generating	very	high	shear	stress	(Gilca	et	al.	2015).	These	results	are	in	accordance	with	those	of	Hashtjin	and	Abbasi	[20],	who	observed	that	cavitation	provides	smaller	droplet	size,	 lower	NPs

polydispersity	and	greater	stability	of	final	product	compared	with	Ultra-Turrax	homogenization.

Besides	double	emulsion,	other	methods	could	be	used	to	produce	PLGA	drug	delivery	systems.	Core/shell	microcapsules	were	successfully	prepared	by	co-axial	electrohydrodynamic	atomization,	in	which	needles	are	infused

with	drug	and	polymer	solutions,	a	high	voltage	is	applied	to	generate	charges,	a	jet	is	formed	that	breaks	into	smaller	droplets,	droplets	undergo	further	reduction	in	size	due	to	solvent	evaporation	and,	finally,	particles	with	defined

size	and	shape	are	produced	[21].	Advantages	of	this	method	are	the	precise	control	of	particle	size	and	distribution,	high	reproducibility	and	suitability	for	both	hydrophobic	and	hydrophilic	drugs.	It	offered	yields	ranging	between	50

and	70	%	in	the	encapsulation	of	drugs	with	different	water	solubility	such	as	paracetamol	and	indomethacin	[22].

As	can	be	seen	in	Table	2,	the	hydrodynamic	diameter	of	NPs	was	larger	using	PLGA	1	rather	than	PLGA	2.	In	addition,	no	particles	in	the	micrometer	size	range	with	more	than	>90%	of	distribution	by	intensity	were	observed

using	the	latter	copolymer.	These	results	confirm	that	the	size	of	PLGA	NPs	increases	proportionally	with	the	molecular	weight	of	this	polymer	(Mittal	et	al.	2007).

In	some	cases,	 the	key	factor	 in	NPs	efficacy	 is	their	ability	to	selectively	target	the	tissue	of	 interest	whilste	avoiding	potential	off-target	effects	on	other	 tissues.	To	this	purpose,	Fullstone	et	al.	 (2015)	demonstrated	the

possibility	to	increase	NPs	specificity	for	tumors	by	testing	the	ability	of	NPs	with	different	size	to	cross	fenestrations	with	pore	size	corresponding	either	to	normal	vessels	(60 nm)	or	to	those	associated	with	tumors	(240 nm).	Herein,

Figure	7.Fig.	7	Bi-log	plot	of	percent	cumulative	release	of	ASNase	from	nanoparticles	versus	time,	expressed	in	h.

alt-text:	Fig.	7



we	selected	the	system	4,	prepared	with	PLGA	2	to	encapsulate	ASNase	considering	both	the	size	and	PDI	of	the	NPs.	This	choice	was	based	on	the	fact	that	the	treatment	of	non-solid	cancers	such	as	leukaemialeukemia	needs	longer

circulation	 times,	 just	 like	 those	 expected	 with	 this	 nanoscale-based	 strategy.	 In	 addition,	 to	 avoid	 clearance	 in	 kidneys,	 nanostructures	 with	 size	 larger	 than	 8 nm	 are	 desirable	 [23].	 So,	 in	 accordance	 with	 FDA	 guidance,	 a

nanotechnological	approach	was	employed	for	this	protein	drug	delivery.

The	particle	size	of	system	4	after	incorporation	of	ASNase	(332 ± 18 nm)	shows	that	enzyme	encapsulation	did	not	alter	NPs	size,	although	an	increase	in	PDI	was	observed	up	to	0.92 ± 0.05.	Such	an	increase	can	be	explained

by	the	residual	presence	of	enzyme	aggregates,	already	detected	by	DLS	analysis	of	the	free	enzyme.	Observing	the	ASNase	size	distribution	by	number,	one	can	see	that	these	aggregates	represent	a	small	fraction	of	the	total	sample,

nonetheless	the	distribution	by	intensity	indicates	that	even	a	few	large	particles	may	have	been	enough	to	generate	a	light	scattering	signal	[24,25].

The	NPs	Zeta	potential	was	negative	either	with	(‐−16.9 ± 0.1 mV)	or	without	(‐−16.7 ± 0.2 mV)	encapsulated	enzyme,	and	its	values	agree	with	those	reported	in	other	studies	for	PLGA	NPs	(Panyam	et	al.and	 Labhasetwar

20023).	For	instance,	Rodriguez-Nogales	et	al.	[26]	reported	a	practically	coincident	Zeta	potential	for	PLGA	NPs	(‐−16 ± 2 mV),	which	was	ascribed	to	the	acid	functional	groups	of	the	copolymer	in	NPs	polymer	matrix.

The	presence	of	the	enzyme	in	the	system	was	qualitatively	proven	by	electrophoresis	(Fig.	3Fig.	4,	panel	A),	and	its	activity	shown	in	the	ASNase	zymogram	obtained	after	NPs	dissolution	with	50%	DMSO	(Fig.	4Fig.	3,	panel

B).	The	occurrence	of	an	active	ASNase	band	indicates	that	active	ASNase	was	encapsulated	even	under	conditions	capable	of	altering	the	enzyme	structure	such	as	sonication	and	organic	solvent	exposure	(Fonte	et	al.	2015).

The	circular	dichroism	spectra	of	ASNase	illustrated	in	Fig.	4	suggest	that	there	were	no	conformational	changes	in	the	encapsulated	enzyme.	The	negative	peaks	at	208	and	220 nm	corresponding	to	the	π → π*	and	n → π*

transitions	of	the	α-helix	peptide	bond	were	in	fact	preserved,	while	the	slight	decrease	in	intensity	was	the	likely	result	of	the	different	enzyme	concentrations	before	and	after	encapsulation,	taking	in	mind	that	the	enzyme	was	not

fully	encapsulated.	These	results	also	suggest	that	the	presence	of	PVA	and	PLGA	in	the	ASNase-containing	medium	during	the	emulsification	may	have	protected	it	against	the	stress	conditions	of	the	process.

The	morphology	of	NPs	was	observed	by	transmission	electron	microscopy	and	their	size	measured	with	the	help	of	the	Image	J	program.	TEM-based	average	size	was	only	slightly	greater	(390 ± 88 nm)	than	that	measured	by

the	DLS	method.	It	is	worth	emphasizing	the	similarity	of	these	NPs	with	other	PLGA	NPs	prepared	according	to	other	conventional	elaboration	methods	[26–28].

Encapsulation	of	proteins	in	nanostructures	such	as	nanoemulsions,	liposomes,	polymersomes,	single-protein	nanocapsules	and	hydrogel	nanoparticles	has	been	a	challenge,	especially	to	allow	for	protein	stabilization	[29].	In

this	study,	the	encapsulation	of	ASNase	in	the	system	with	the	best	characteristics	from	the	size	and	polydispersity	viewpoints	resulted	in	an	encapsulation	efficiency	(EE)	of	87 ± 2%.	In	a	study	with	50:50	(w/w)	PLGA	NPs	made	by

double	emulsification	for	ASNase	encapsulation,	Wolf	et	al.	[12]	produced	nanospheres	with	EE%	between	26	and	70%	depending	on	the	aqueous	phase	used	(pluronic,	trehalose,	glycerol,	water,	Tris	buffer).	In	general	this	parameter

varied,	in	the	case	of	ASNase	encapsulated	in	nanostructures,	in	the	range	of	30	to	80%	[30,31].

It	has	been	reported	that	the	encapsulation	of	bioactive	compounds	in	sub-microscopic	structures	like	nanoparticles	is	able	to	promote	their	stabilization	and	protection	against	alterations	and	agents	impairing	their	function

[29].	(Nagai	2005;	Tabata	2006).	When	applied	to	enzymes,	it	has	additional	advantages	such	as	the	possibility	of	recovering	them,	increasing	their	selectivity	and	protecting	them	against	degradation,	thus	keeping	their	active	form

while	circulating	in	the	body	(Cellesi	and	Tirelli	2006).	If	free	ASNase	has	some	tendency	to	aggregate,	the	greater	activity	of	the	encapsulated	enzyme	compared	to	the	free	enzyme	was	probably	the	result	of	its	immobilization	within

the	porous	polymer	structure,	which	prevented	its	aggregation	(Rodrigues	et	al.	2012)	and,	consequently,	improved	the	exposure	of	its	catalytic	site	(Mateo	et	al.	2007).

The	release	of	ASNase	from	the	nanospheres	was	slow,	since	about	30%	of	the	enzyme	was	released	within	48 h	(Figure.	6).	Xie	et	al.	(2008)	observed	slower	release	(16‐–28%	within	144 h)	of	BSA	and	lysozyme	from	PLGA

microparticles	likely	due	to	polymer	degradation.	According	to	Mundargi	et	al.	(2008),	PLGA	copolymers	have	been	widely	used	for	drug	encapsulation	not	only	because	of	their	biocompatibility,	but	also	because	their	degradation	rate

and	mechanical	properties	can	be	modulated	according	to	the	poly	lactic	acid	(PLA)	to	poly	glycolic	acid	(PGA)	ratio.	These	copolymers	are	broken	down	into	PLA	and	PGA,	which	are	easily	eliminated	in	the	form	of	CO2	and	water.	The

rate	at	which	degradation	occurs	is	of	fundamental	importance	for	determining	the	release	profile	of	a	bioactive	compound	and	depends	on	the	degree	of	crystallinity,	hydrophilicity	and	molar	mass	(Panyam	et	al.and	 Labhasetwar

20023).	In	a	study	devoted	to	ASNase	transport,	Gaspar	et	al.	[11]	observed,	after	14 days,	a	46%	in	vitro	release	of	the	enzyme	from	NPs	prepared	from	three	50:50	(w/w)	PLGA	copolymers	with	different	molecular	weights	(12 kDa

and	34 kDa	with	and	without	carboxyl-end	groups	in	the	polymer	chain).

The	Korsmeyer-Peppas	model	was	the	only	one	that	(Eq.	(5))	provided	a	satisfactory	correlation	(R2 = 0.966)	(Fig.	7).	The	value	of	the	release	exponent	estimated	by	linear	regression	using	Eq.	(5)	was	<	0.5	(n = 0.291),	which

indicates	 a	 pseudo-Fickian	 diffusion	 behavior	where	 sorption	 curves	 resemble	 Fickian	 curves,	 but	 the	 approach	 to	 final	 equilibrium	 is	 very	 slow	 [32].	 According	 to	Albisa	 et	 al.	 [33],	 pseudo-Fickian	 behavior	 predominates	when

additional	effects	of	swelling,	erosion,	degradation,	stresses,	structural	changes	and	relaxation	of	the	material	are	present.

This	result	can	be	explained	by	the	porosity	of	nanospheres,	which	may	have	enabled	the	diffusion	process	allowing	water	to	penetrate	into	the	system	forcing	the	protein	to	diffuse	out	to	the	dissolution	medium	[34].	However,

as	 the	 ASNase	 molecules	 are	 not	 sufficiently	 small	 to	 pass	 through	 the	 polymer	 meshes,	 the	 observed	 initial	 release	 may	 have	 been	 the	 result	 of	 partial	 protein	 adsorption	 onto	 the	 surface	 of	 nanospheres	 rather	 than	 of	 its

encapsulation	within	the	polymeric	mesh	[35].	This	hypothesis	agrees	with	the	results	of	Van	Dijkhuizen-Radersma	et	al.	[36],	who	observed	that	the	BSA	hydrodynamic	diameter	was	too	large	to	pass	the	initial	meshes	of	the	hydrogel



matrix;	even	though	no	initial	release	was	observed,	when	the	matrix	degraded	after	a	certain	time,	the	matrix	molecular	weight	decreased	to	such	an	extent	that	its	mesh	size	became	sufficiently	large	to	allow	BSA	diffusion	and

further	matrix	degradation	increased	the	release	rate.	In	other	words,	ASNase	may	have	been	released	initially	mainly	by	simple	desorption	and	then	by	actual	degradation	of	the	matrix.

Because	 ASNase	 is	 clinically	 administered	 into	 the	 bloodstream,	 a	 haemolysis	 assay	was	 performed	 since	 some	materials	 can	 harmfully	 disturb	 red	 blood	 cells	 and	 destroy	 their	 cell	membrane	 triggering	 the	 release	 of

haemoglobin	(Horakova	et	al.,	2018).	No	haemolytic	activity	of	PLGA	nanoparticles	with	or	without	ASNase	was	observed	irrespective	of	their	loading	(Supplementary	material,	Table	S1),	thereby	confirming	the	biocompatibility	of	the

selected	polymer.

5.5	Conclusions
In	this	work,	a	rational	route	allowed	elaborating	L-asparaginase-PLGA	nanoparticles	varying	the	stabilizer	concentration,	the	emulsification	technique	and	the	time	of	the	homogenization	cycle.	Although	the	optimal	ranges	of

these	variables	were	already	 reported	 in	 the	scientific	 literature,	 it	was	necessary	 to	consider	all	possibilities	 to	 find	 the	 least	 stressful	 conditions	 for	 the	enzyme,	 i.e.	 to	 reach	a	balance	between	 the	conditions	 for	nanoparticles

elaboration	and	those	for	stabilizing	L-asparaginase.	We	obtained	nanoparticles	wherein	the	encapsulated	enzyme	was	highly	active.	The	profile	of	enzyme	release	pointed	out	the	proposed	system	as	a	potential	one	to	increase	the	half-

life	of	encapsulated	L-asparaginase	compared	with	the	free	enzyme.

Supplementary	data	to	this	article	can	be	found	online	at	https://doi.org/10.1016/j.msec.2019.01.003.
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As	expected,	no	haemolytic	effect	was	observed	for	PLGA	nanoparticles	with	or	without	ASNase	(Supplementary	material,	Table	S1).

Because	ASNase	is	clinically	administered	into	the	bloodstream,	a	haemolysis	assay	was	performed	since	some	materials	can	harmfully	disturb	red	blood	cells	and	destroy	their	cell	membrane	triggering	the

release	of	haemoglobin	(Horakova	et	al.,	2018).	No	haemolytic	activity	of	PLGA	nanoparticles	with	or	without	ASNase	was	observed	irrespective	of	their	loading	(Supplementary	material,	Table	S1),	thereby	confirming

the	biocompatibility	of	the	selected	polymer.
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The	following	are	the	supplementary	data	related	to	this	article.
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Table	S1.Table	S1	Results	of	the	haemolysis	assay	performed	in	triplicate	to	check	the	nanoparticles	biocompatibility.
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• 	L-Asparaginase	is	encapsulated	in	24‐–38 kDa	poly(lactic-co-glycolic	acid)	nanospheres.

• The	encapsulated	enzyme	shows	an	activity	22%	higher	than	that	of	the	free	enzyme.
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