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Abstract We consider the numerical solution of boundary value problems for general
neutral functional differential equations. The problems are restated in an abstract form
and, then, a general discretization of the abstract form is introduced and a convergence
analysis of this discretization is developed.
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1 Introduction

Let V be the space of the continuous functions [a, b] → R
d and let U be a Banach

space of integrable functions [a, b] → R
d . We deal with the numerical solution of the

functional differential equation boundary value problem (BVP)

{
y′(t) = F

(
t, y, y′, p

)
, t ∈ [a, b],

B
(
y, y′, p

) = 0,
(1)

where the functionals F : [a, b]×V×U×R
d0 → R

d and B : V×U×R
d0 → R

d×R
d0

are given and the pair (y, p) ∈ V × R
d0 is unknown.

The reason to include p ∈ R
d0 as an unknown of the problem (1) is that, in many

real applications, there are parameters to be determined along with the solution y.
For example, the determination of periodic solutions for an autonomous functional
differential equation reduces to a BVP, where the unknown period of the periodic
solution appears as a parameter.
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526 S. Maset

The general functional differential equation

y′(t) = F(t, y, y′, p), t ∈ [a, b], (2)

in (1) includes the two particular and important cases of differential equations with
deviating arguments

y′(t) = f (t, y(t), y(θ1(t)), . . . , y(θk(t)), y
′(ϑ1(t)), . . . , y

′(ϑl(t)), p), t ∈ [a, b],
(3)

and integro-differential equations

y′(t) = f

⎛
⎜⎝t, y(t),

β(t)∫
α(t)

k
(
t, s, y(s), y′(s)

)
ds, p

⎞
⎟⎠ , t ∈ [a, b]. (4)

In order to restate (3) and (4) in the form (2), it is necessary to have

θr (t), ϑs(t) ∈ [a, b], t ∈ [a, b] and r = 1, . . . , k and s = 1, . . . , l, (5)

for (3) and
α(t), β(t) ∈ [a, b], t ∈ [a, b]. (6)

for (4). However, one often encounters Eq. (3), or Eq. (4), where the condition (5),
or the condition (6), is not fulfilled. For example, this happens when some θr (t) or
ϑs(t) in (3), or one of α(t) and β(t) in (4), has the form t ± τ , where τ > 0. For such
equations, we need to specify the solution y and its derivative y′ outside the interval
[a, b] by the side condition

y(t) = φ(t) and y′(t) = ϕ(t), t < a or t > b, (7)

where φ, ϕ : (−∞, a)∪(b,+∞) → R
d are given functions (of course, it makes sense

take ϕ = φ′). Then, the equation can be still restated in the form (2) by incorporating
the side condition in the functional F : we write the Eq. (3) as

y′(t) = f
(
t, y(t),Θ (y, t;φ) ,Θ

(
y′, t;ϕ

)
, p

)
, t ∈ [a, b],

where

Θ(y, t;φ) := (
Θ (y, t;φ)1 , . . . , Θ (y, t;φ)k

)

Θ (y, t;φ)r :=
{
y (θr (t)) if θr (t) ∈ [a, b]
φ (θr (t)) if θr (t) < a or θr (t) > b

, r = 1, . . . , k,

Θ(y′, t;ϕ) := (
Θ

(
y′, t;ϕ

)
1 , . . . , Θ

(
y′, t;ϕ

)
l

)

Θ
(
y′, t;ϕ

)
s :=

{
y′ (ϑs(t)) if ϑs(t) ∈ [a, b]
ϕ (ϑs(t)) if ϑs(t) < a or ϑs(t) > b

, s = 1, . . . , l,
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and the Eq. (4) as

y′(t) = f

⎛
⎜⎝t, y(t),

θ2(t)∫
θ1(t)

K
(
t, s, y, y′;φ, ϕ

)
ds, p

⎞
⎟⎠ , t ∈ [a, b],

where

K (t, s, y, y′;φ, ϕ) :=
{
k(t, s, y(s), y′(s)) if s ∈ [a, b]
k(t, s, φ(s), ϕ(s)) if s < a or s > b.

Observe that the side condition (7) is considered as a part of the functional differential
equation (2), not as a boundary condition.

We recall here that a particular and important case of the Eq. (3) is given by delay
differential equations, where

θr (t), ϑs(t) ≤ t, t ∈ [a, b] and r = 1, . . . , k and s = 1, . . . , l,

and two particular and important cases of the Eq. (4) are given by Fredholm integro-
differential equations, where

α(t) = a and β(t) = b, t ∈ [a, b],

and Volterra integro-differential equations, where

α(t) = a and β(t) = t, t ∈ [a, b].

We also remark that the general form (2) includes integro-differential equations

y′(t) = f

⎛
⎜⎝t, y(t), y(θ(t)),

β(t)∫
α(t)

k
(
t, s, y(s), y′ (ϑ(s))

)
ds, p

⎞
⎟⎠ , t ∈ [a, b],

which cannot be seen as Eq. (4).
The general boundary condition

B(y, y′, p) = 0 (8)

in (1) includes the classical boundary condition

g(y(a), y(b), p) = 0

and the more general multipoint boundary condition

g(y(a), y(b), y(t1), . . . , y(tq), p) = 0, (9)
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where ti ∈ (a, b), i = 1, . . . , q , and integral boundary condition

g

⎛
⎝y(a), y(b),

b∫
a

w(t, y(t))dt, p

⎞
⎠ = 0. (10)

Note that, in general, boundary conditions for first order differential equation do
not involve the derivative y′. In this paper, we consider boundary conditions involving
y′ since our theory can deal with this situation without any further complication.

By following the usual terminology, the functional differential equation (2) can be
called neutral since, in general, the values F(t, y, y′, p) depend on y′.

Of course, the neutral equation (2) also includes the case where the values of F do
not depend on y′. In this case, we say that the Eq. (2) is non-neutral. Similarly, we say
that the boundary condition (8) is non-neutral if the values of B do not depend on y′
and that the BVP (1) is non-neutral if both (2) and (8) are non-neutral.

1.1 Numerical literature on BVPs for functional differential equations and aim
of the paper

The papers dealing with the numerical solution of functional differential equation
BVPs, apart from [13,30] described below, address special cases of the problem (1).
Table 1 collects such papers according to the special case considered.

Instead, the papers [13,30] deal with BVPs for general non-neutral second order
functional differential equations. The paper [13] deals with BVPs{

y′′(t) = g (t, y(t)) + F (y) (t), t ∈ [0, 1],
y (0) = y(1) = 0,

where F is an operator acting on y, and considers a discretization of the second
derivative by a central difference. As a consequence, amethod of order two is obtained.
The paper [30] deals with BVPs{

y′′(t) = F (
y, y′) (t), t ∈ [a, b],

y (a) = α, y (b) = β,

where F is an operator acting on y and y′, and uses special continuous (dense output)
methods for second order differential equations. Suchmethods can reach an arbitrarily
high order, if F (

y, y′) is independent of y′, and have order two at most, otherwise.
Regarding the theoretical (non-numerical) literature on BVPs for functional differ-

ential equations, among many papers, we mention here the monograph [26], which
contains a collection of articles dealing with many aspects of the theory of such prob-
lems, and the book [2], which considers only the non-neutral case.

Aim of the present paper is to study the numerical solution of problems (1). We
restate such problems in an abstract form and, then, we introduce a general type of
discretization of the abstract form and develop a convergence analysis of this dis-
cretization.
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Table 1 Numerical literature on functional differential equations BVPs

Special cases of (1) Papers

BVPs for non-neutral delay differential equations [8,12,28,29,37,38,49,52]

BVPs for non-neutral differential equations with
deviating arguments

[1,3,9–11,19,20,50,51,53]

BVPs for non-neutral differential equations with a
state-dependent deviating argument θ(t, y(t))

[4]

BVPs for non-neutral singularly perturbed differential
equations with deviating arguments

[31–35]

BVPs for the determination of periodic solutions of
non-neutral delay differential equations

[15,16,18,39,54]

BVPs for the determination of periodic solutions of
non-neutral delay differential equations with a
state-dependent delay

[40]

BVPs for the determination of periodic solutions of
non-neutral differential equations with deviating
arguments

[6,7]

BVPs for non-neutral Fredholm integro-differential
equations

[21,22,45]

BVPs for non-neutral Fredholm integro-differential
equations with weakly singular kernels

[46–48]

BVPs for non-neutral Volterra integro-differential
equations

[23]

BVPs for the determination of periodic solutions of
neutral delay differential equations

[5,17]

BVPs for neutral differential equations with
state-dependent deviating arguments arising in
Wheeler–Feynman electrodynamics

[14]

BVPs for neutral Fredholm integro-differential
equations

[25,27,55,56]

BVPs for neutral Volterra integro-differential equations [24]

The general discretization studied in this paper includes the two particular dis-
cretizations of the problem (1) given by collocation method and the Fourier series
method. However, in order to avoid having a very long paper, here we do not deal with
these two discretizations. They are the subject of the papers [41,42] and the forthcom-
ing papers [43,44]. The present paper contains the theoretical bases for the numerical
solution of functional differential equations BVPs.

When compared to the current literature, the research started in this paper and
continued in [41–44] contains the following advances.

1. The general form (1) of BVP has not ever been studied in literature, even confining
to the non-neutral case.Also the abstract form and the general type of discretization
considered in this paper are a novelty.

2. By confining to the non-neutral case, we consider a more general situation than
that dealt in the papers [13,30]. Moreover, the methods that we introduce have

123
5



530 S. Maset

arbitrarily high order of convergence, unlike the methods in [13,30] which have
order two only.

3. The study of the numerical solution of BVPs for neutral differential equations
with deviating arguments is at a seminal stage. On this subject, there are only
the three papers [5,14,17], where [17] introduces and proves the convergence of
a method of order one and [5,14] are experimental works without convergence
proofs. Moreover, regarding BVPs for neutral integro-differential equations, the
literature is confined to Volterra and Fredholm equations. In our research, we
introduce methods for general neutral functional differential equations BVPs of
arbitrarily high order of convergence.

The plan of the paper is the following. In Sect. 2, we introduce the abstract form of
the problem (1). In Sect. 3, we introduce the general type of discretization used for the
abstract form. In Sect. 4, we analyze the convergence of this general discretization. In
Sect. 5, we specialize the results obtained in Sect. 4, in preparation for their application
in [41–44] to the problem (1) discretized by the collocation method and the Fourier
series method.

1.2 Notations

We finish this section giving a list of conventions and notations used throughout the
paper.

• The norm of a space Y is denoted by ‖ · ‖Y .
• Cartesian product spaces are equipped with the norm given by the sum of the
norms of the factor spaces.

• In the space Y , the closed ball of center y ∈ Y and radius r ≥ 0 is denoted by
B(y, r).

• The identity operator of a space Y is denoted by IY .
• The norm of a bounded linear operator L from the space Y to the space Z is
denoted by ‖L‖, without any reference to the domain Y and the codomain Z .

• The Fréchet-derivative of the operator A at the point y is denoted by DA(y).
• For an operator A : Y → Z1 × · · · × Zk , we define the operators AZi : Y → Zi ,
i = 1, . . . , k, by

A(y) = (AZ1(y), . . . , AZk (y)), y ∈ Y,

and call them the components of A.

2 The abstract form

We assume that the functional F in (1) is such that F(·, v, u, β) ∈ U , for any
(v, u, β) ∈ V × U × R

d0 . This assumption permits to introduce the operator
F : V ×U × R

d0 → U given by

F (v, u, β) = F(·, v, u, β), (v, u, β) ∈ V ×U × R
d0 ,
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and write the functional differential equation (2) as

y′ = F(y, y′, p),

which is an equation in the space U .
The BVP (1) is now restated in abstract form,wherewe use the derivative y′, instead

of y, as the actual unknown of (1).
Consider the very simple linear differential equation

v′(t) = u(t), t ∈ [a, b], (11)

where u ∈ U is given and v ∈ V is the unknown. Each solution of this equation is
determined by a parameterα ∈ R

d . Thus, we introduce a linear operatorG : U×R
d →

V such that, for any u ∈ U ,

{v ∈ V : v is a solution of (11)} = {G(u, α) : α ∈ R
d}.

By following the usual terminology of the differential equations, the linear operator
G can be called a Green operator for the Eq. (11). Of course, examples of a Green
operator for (11) are

G(u, α)(t) =
t∫

c

u(s)ds + α, t ∈ [a, b] and (u, α) ∈ U × R
d ,

where c ∈ [a, b].
The abstract form of the BVP (1) is based on the interpretation of the Eq. (11) as

v = G(u, α) for some α ∈ R
d .

In other words, we replace the derivative operator with the Green operator.
Once a Green operator for (11) is given, the abstract form is introduced by defining

what we mean for a solution of (1). Let (y, p) ∈ V × R
d0 . We say that (y, p) is a

solution of (1) if y = G(u, α) for some u ∈ U and α ∈ R
d such that

{
u = F(G(u, α), u, p)
B (G(u, α), u, p) = 0.

Hence, we reach the following abstract form of the problem (1).
PAF (Problem in Abstract Form). Given:

• a normed space V and Banach spaces U, A and B;
• operators F : V × U × B → U and B : V × U × B → A × B;
• a linear operator G : U × A → V;
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find a pair (v, β) ∈ V×B such that v = G(u, α) for some u ∈ U and α ∈ A satisfying

{
u = F(G(u, α), u, β)

B (G(u, α), u, β) = 0.

Clearly, the BVPs (1) are in the form PAFwithV = V ,U = U ,A = R
d ,B = R

d0 ,
F = F , B = B and G = G.

2.1 Other instances of the abstract form

Besides the BVPs (1), PAF includes other types of BVPs.
For example, consider a second order problem (not restated as a first order problem)

{
y′′(t) = F(t, y, p), t ∈ [a, b],
B(y, p) = 0

(12)

where F : [a, b] × V ×R
d0 → R

d and B : V ×R
d0 → R

d ×R
d ×R

d0 , V being, as
above, the space of the continuous function [a, b] → R

d .
Let U be a Banach space of integrable function [a, b] → R

d and consider the
differential equation

v′′(t) = u(t), t ∈ [a, b], (13)

where u ∈ U is given and v ∈ V is the unknown. A Green operator for (13) is the
linear operator G : U × R

d × R
d → V given by

G(u, α1, α2) = solution of

{
v′′(t) = u(t), t ∈ [a, b],
v(a) = α1, v(b) = α2,

(u, α1, α2) ∈ U × R
d × R

d ,

i.e.

G(u, α1, α2)(t) =
t∫

a

s∫
a

u(σ )dσds − t − a

b − a

b∫
a

s∫
a

u(σ )dσds + b − t

b − a
α1 + t − a

b − a
α2

t ∈ [a, b].

Under the assumption that F(·, v, β) ∈ U for any (v, β) ∈ V ×R
d0 , the problem (12)

can be restated in the form PAF by introducing the operator F : V ×R
d0 → U given

by

F(v, β) = F(·, v, β), (v, β) ∈ V × R
d0 .

The BVPs (12) are in the form PAF with V = V , U = U , A = R
d × R

d , B = R
d0 ,

F = F , B = B and G = G (of course, here U , F , B and G are those defined for the
problems (12)).
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Clearly, PAF also includes BVPs for general differential equations obtained by
replacing the second derivative y′′(t) in (12) with a general linear differentiation
operator.

PAF even includes BVPs for partial functional differential equations. In fact, con-
sider the problem {

�v(x) = F(x, v), x ∈ �,

B(v) = 0
(14)

where � is an open set ofRd with boundary ∂�, � is the Laplacian operator, F : �×
V → R, with V the space of the continuous function � = � ∪ ∂� → R, and
B : V → A, with A the space of the continuous function ∂� → R.

Given aBanach spaceU of integrable functions� → R,we consider the differential
equation

�v(x) = u(x), x ∈ �, (15)

where u ∈ U is given and v ∈ V is unknown. A Green operator for (15) is the linear
operator G : U × A → V given by

G(u, α) = solution of

{
�v(x) = u(x), x ∈ �,

v(x) = α(x), x ∈ ∂�,
, (u, α) ∈ U × A.

Under the assumption that F(·, v) ∈ U for any v ∈ V , the problem (14) can be restated
in the form PAF (without the space B), by introducing the operator F : V → U given
by

F(v) = F(·, v), v ∈ V .

The BVPs (14) are in the form PAF with V = V , U = U , A = A, F = F , B = B
and G = G.

Note that BVPs (14) have the space A = A of infinite dimension. However, in the
particular and important case of Dirichlet boundary conditions

B(v) = v|∂� − g, v ∈ V,

where g ∈ A, we can consider V = {v ∈ V : v|∂� ∈ span(g)}, instead of V = V , and
A = span(g), instead of A = A, where span(g) = {kg : k ∈ R}, so to have the space
A of finite dimension.

2.2 The abstract form as a fixed point problem

From now on we consider the problem PAF with A and B of finite dimension, rather
than its particular instance (1). By introducing the product Banach space

X := U × A × B,
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PAF can be seen as the search for fixed points of the operator Φ : X → X given by

Φ (x) = (F (G(u, α), u, β) , (α, β) − B (G(u, α), u, β)) , x = (u, α, β) ∈ X.

We have that (v, β) ∈ V×B is a solution of PAF if and only if v = G(u, α) for some
fixed point (u, α, β) ∈ X of Φ.

Regarding the operators F and B and the linear operator G, we do the following
assumptions.

AFB (AssumptionFB). The operators F andB are Fréchet-differentiable at any
point (v0, u0, β0) ∈ V × U × B.
AG. The linear operator G is bounded.

Since AFB and AG hold, Φ is Fréchet-differentiable at any point x0 =
(u0, α0, β0) ∈ X and the Fréchet-derivative DΦ (x0) is given by

DΦ (x0) x = (DF(v0, u0, β0) (v, u, β) , (α, β) − DB(v0, u0, β0) (v, u, β))

x = (u, α, β) ∈ X,

where v0 = G (u0, α0) and v = G(u, α).

3 Discretization of the abstract form

Our aim is to numerically solve PAF and, in this section, we describe an its quite
general discretization. In the following, the positive integer K denotes the level of the
discretization: the larger K , the higher is the “quality” of the discretization.

There are two types of discretizations involved in the numerical solution of PAF,
that we call secondary discretization and primary discretization.

3.1 The secondary discretization

Consider the BVP (1). In some cases, the values of the functional F cannot be exactly
computed. For example, in case of integro-differential equation (4), F involves an
integral which has to be replaced with a quadrature rule. Therefore, for any positive
integer K , we have to replace F with a suitable functional FK : [a, b]×V×U×R

d0 →
R
d , whose values can be exactly computed. If the values of F can be exactly computed,

as in case of differential equations with deviating arguments (3), we consider FK = F .
As done for F , we require FK (·, v, u, β) ∈ U , for any positive integer K and

(v, u, β) ∈ V × U × R
d0 . Hence, for any positive integer K , we can replace the

operator F with the operator FK : V ×U × R
d0 → U given by

FK (v, u, β) = FK (·, v, u, β) , (v, u, β) ∈ V ×U × R
d0 .

Analogously, for any positive integer K , we replace the functional B with a suitable
functional BK : V ×U ×R

d0 → R
d ×R

d0 , whose values can be exactly computed. If
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An abstract framework in the numerical solution of boundary… 535

the values of B can be exactly computed, as in case of multipoint boundary conditions
(9), we consider BK = B.

The secondary discretization of PAF consists in replacing, for any positive integer
K , the operatorsF andBwith operatorsFK : V×U×B → U andBK : V×U×B →
A×B, respectively, whose values can be exactly computed. As done for F andB, we
assume what follows.

AFKBK . For any positive integer K , the operators FK and BK are Fréchet-
differentiable at any point (v0, u0, β0) ∈ V × U × B.

For any positive integer K , the operator Φ is then replaced with the operator
ΦK : X → X given by

ΦK (x) = (FK (G(u, α), u, β) , (α, β) − BK (G(u, α), u, β))

x = (u, α, β) ∈ X.

Since AFKBK and AG hold, ΦK is Fréchet-differentiable at any point x0 =
(u0, α0, β0) ∈ X and DΦK (x0) is given by

DΦK (x0) x = (DFK (v0, u0, β0) (v, u, β) , (α, β) − DBK (v0, u0, β0) (v, u, β))

x = (u, α, β) ∈ X, (16)

where v0 = G (u0, α0) and v = G(u, α).

3.2 The primary discretization

The primary discretization consists in the discretization of the space X into a finite
dimensional space and of the operator Φ, actually replaced with ΦK by the secondary
discretization, into an operator acting on this finite dimensional space.

Let K be a positive integer (level of discretization). Given a finite dimensional
space ÛK and linear bounded operators πK : ÛK → U and ρK : U → ÛK , called pro-
longation to U and restriction to ÛK , respectively, we consider the finite-dimensional
product space

X̂K := ÛK × A × B

and the linear bounded operators PK : X̂K → X and RK : X → X̂K defined by

PK x̂ = (πK û, α, β), x̂ = (̂u, α, β) ∈ X̂K ,

and

RK x = (ρK u, α, β), x = (u, α, β) ∈ X.

Note that if the spaces A and B were not finite-dimensional, restrictions and pro-
longations also for these spaces had to be introduced.

The finite-dimensional space X̂K is considered as the discretization of level K of
X and the operator
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Φ̂K := RKΦK PK : X̂K → X̂K

is considered as the discretization of level K of Φ. We have

Φ̂K (̂x) = (ρKFK (G (πK û, α) , πK û, β) , (α, β) − BK (G (πK û, α) , πK û, β))

x̂ = (̂u, α, β) ∈ X̂ . (17)

Given a fixed point x̂∗
K = (̂

u∗
K , α∗

K , β∗
K

) ∈ X̂K of Φ̂K , which can be found by a
standard numerical method for solving nonlinear systems of algebraic equations, we
consider

PK x̂
∗
K = (

πK û
∗
K , α∗

K , β∗
K

) ∈ X (18)

as an approximation of a fixed point of Φ and

(v∗
K , β∗

K ), where v∗
K = G(πK û

∗
K , α∗

K ), (19)

as an approximation of a solution of PAF.
The papers [41–44], for the particular instance of PAF given by aBVP (1), deal with

two types of primary discretization falling in the previous abstract general description,
namely the collocation method and the Fourier series method.

Remark 1 Note that, unlike the operatorsF andB,wedonot replace the linear operator
G with an approximationGK , whose values can be exactly computed. The reason for
this is that we assume, as it happens for the primary discretizations dealt in [41–44],
the possibility to compute exactlyG(u, α) for any u ∈ πK (ÛK ) and α ∈ A (see (17)).

4 Convergence analysis

Let x∗ = (u∗, α∗, β∗) be a fixed point of Φ and let (v∗, β∗), where v∗ = G(u∗, α∗),
be the relevant solution of PAF.

We set D∗Φ := DΦ(x∗) and we make the following two assumptions regarding
x∗.

Ax∗1. There exist r0 > 0 and L ≥ 0 such that

‖DΦ(x) − D∗Φ‖ ≤ L‖x − x∗‖X , x ∈ B(x∗, r0).

Ax∗2. The linear bounded operator IX −D∗Φ is invertible, i.e. for any (u0, α0, β0)

∈ X the linear problem

{
u = D∗F(G(u, α), u, β) + u0
D∗B(G(u, α), u, β) = (α0, β0),

where D∗F := DF(v∗, u∗, β∗) and D∗B := DB(v∗, u∗, β∗), has a unique solu-
tion (u, α, β) ∈ X .
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Observe that Ax∗2 says that x∗ is a simple zero of IX − Φ and implies that x∗ is
an isolated fixed point of Φ.

In this section, we study how x∗ and (v∗, β∗) can be approximated by the approx-
imations (18) and (19), respectively, obtained by some fixed point x̂∗

K of Φ̂K .
Our analysis is based on studying of how x∗ is approximated by fixed points of the

operator

PK RKΦK : X → X.

Unlike Φ̂K = RKΦK PK , this operator has the advantage to be defined on the space
X as Φ.

Clearly, the operator PK RKΦK is Fréchet-differentiable at any point x0 ∈ X and
its Fréchet-derivative at x0 is PK RK DΦK (x0), where DΦK (x0) is given in (16). We
set D∗ΦK := DΦK (x∗).

For notational convenience, we also introduce the operator

ΨK := IX − PK RKΦK ,

whose zeros are the fixed points of PK RKΦK . Note that ΨK is Fréchet-differentiable
at any point x0 ∈ X and

DΨK (x0) = IX − PK RK DΦK (x0).

We set
D∗ΨK := DΨK (x∗) = IX − PK RK D∗ΦK . (20)

Since we consider the operator PK RKΦK as an approximation of the operator Φ, it
is expected that ΨK x∗ has a small norm. We call ΨK x∗ the consistency error.

Now, we introduce the following two stability conditions.

CS1 (Condition Stability 1) There exist r1 > 0 and, for any positive integer K , LK ≥ 0
such that

‖DΨK (x) − D∗ΨK ‖ = ‖PK RK
(
DΦK (x) − D∗ΦK

) ‖ ≤ LK ‖x − x∗‖X
x ∈ B(x∗, r1) (21)

(compare with Ax∗1).

CS2. There exists a positive integer K2 such that, for any positive integer K ≥ K2,
D∗ΨK is invertible and

lim
K→∞

1

r2(K )
· ‖(D∗ΨK )−1‖ · ‖ΨK x

∗‖X = 0, (22)

where

r2(K ) := min

{
r1,

1

2‖(D∗ΨK )−1‖ · LK

}

with r1 and LK given in CS1.
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By using the Lemma 1 on the zeros of Fréchet-differentiable operators given in
Appendix, we obtain the next theorem.

Theorem 1 LetCS1andCS2hold. Then, there exists a positive integer K such that, for
any positive integer K ≥ K, PK RKΦK has a unique fixed point x∗

K in B (x∗, r2(K ))

and ∥∥x∗
K − x∗∥∥

X ≤ 2‖(D∗ΨK )−1‖ · ‖ΨK x
∗‖X (23)

holds. Moreover, we have the expansion

x∗
K − x∗ = −(D∗ΨK )−1ΨK x

∗ + δK , (24)

where
‖δK ‖X ≤ 4LK · ‖(D∗ΨK )−1‖3 · ‖ΨK x

∗‖2X . (25)

Here, LK is defined in CS1 and r2(K ) is defined in CS2.

Proof The proof is an application of the Lemma 1with Y = X , A = ΨK and y∗ = x∗.
Note that Y = X is a Banach space sinceU,A and B are Banach spaces. For K ≥ K2,
where K2 is defined in CS2, it is immediate to verify that

q(r2(K )) ≤ 1

2
,

where the quantity q(r) is defined in Lemma 1. Now, let K ≥ K2 be such that, for
K ≥ K ,

1

r2(K )
· ‖(D∗ΨK )−1‖ · ‖ΨK x

∗‖X ≤ 1

2
(26)

(recall (22)). For K ≥ K , we have

‖(D∗ΨK )−1ΨK x
∗‖X ≤ 1

2
· r2(K ) ≤ (1 − q(r2(K ))) · r2(K )

and so, since (71) in Lemma 1 is fulfilled for r = r2(K ), ΨK has a unique zero x∗
K in

B (x∗, r2(K )) and (23) holds by (72).
As for the second part of the theorem, for K ≥ K , take

r = 2‖(D∗ΨK )−1‖ · ‖ΨK x
∗‖X

in the second part of Lemma 1. Since r ≤ r2(K ) holds (recall (26)), we have

q(r) ≤ q(r2(K )) ≤ 1

2

and

‖(D∗ΨK )−1ΨK x
∗‖X ≤ 1

2
r ≤ (1 − q(r))r
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and so the condition (71) is fulfilled. Then, we obtain (24) by (73) and

‖δK ‖X ≤ 2q(r) · ‖(D∗ΨK )−1‖ · ‖ΨK x
∗‖X

by (74). Now, since

q(r) ≤ ‖(D∗ΨK )−1‖ · LK · r = 2LK · ‖(D∗ΨK )−1‖2 · ‖ΨK x
∗‖X

holds, we have (25). ��
Next result is a consequence of the Theorem 1 and says how x∗ and (v∗, β∗) can

be approximated by (18) and (19), respectively.

Theorem 2 Let CS1 and CS2 hold. Then, there exists a positive integer K̂ such that,
for any positive integer K ≥ K̂ , the operator Φ̂K has a fixed point x̂∗

K and

∥∥PK x̂∗
K − x∗∥∥

X ≤ 2‖(D∗ΨK )−1‖ · ‖ΨK x
∗‖X (27)

and
PK x̂

∗
K − x∗ = −(D∗ΨK )−1ΨK x

∗ + δK , (28)

where δK is defined in (24) and satisfies (25), hold. Moreover, if x̂K is a fixed point of
Φ̂K different from x̂∗

K , then

‖PK x̂K − x∗‖X > r2(K ) (29)

and

‖x̂K − x̂∗
K ‖X̂K

>
r2(K )

2max{‖πK ‖, 1} . (30)

Here, r2(K ) is defined in CS2. Finally, regarding the approximation (v∗
K , β∗

K ) of
(v∗, β∗), we have

‖(v∗
K , β∗

K ) − (v∗, β∗)‖V×B ≤ 2max {‖G‖ , 1} · ‖(D∗ΨK )−1‖ · ‖ΨK x
∗‖X . (31)

Proof By recalling Theorem 1, for K ≥ K , let x∗
K be the unique fixed point of

PK RKΦK in B(x∗, r2(K )) . It is immediate to verify that x̂∗
K = RKΦK x∗

K is a fixed
point of Φ̂K . Moreover, we have

PK x̂
∗
K = PK RKΦK x

∗
K = x∗

K .

Therefore, (27) and (28) follow by (23) and (24) in Theorem 1, respectively.
Now, we prove the second part. Let x̂K be a fixed point of Φ̂K different from x̂∗

K . It
is immediate to verify that PK x̂K is a fixed point of PK RKΦK . Since x∗

K is the unique
fixed point of PK RKΦK in B (x∗, r2(K )), we have (29). As for the inequality (30),
observe that

‖PK x̂K − PK x̂
∗
K ‖X ≥ ‖PK x̂K − x∗‖X − ‖x∗

K − x∗‖X > r2(K ) − ‖x∗
K − x∗‖X .
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Since (22) and (23) hold, we have

lim
K→∞

1

r2(K )
· ‖x∗

K − x∗‖X = 0.

Hence, there exists K̂ ≥ K such that, for K ≥ K̂ , we have

‖x∗
K − x∗‖X ≤ r2(K )

2

and then

‖PK x̂K − PK x̂
∗
K ‖X >

r2(K )

2
. (32)

Now, (30) follows by (32),

‖PK x̂K − PK x̂
∗
K ‖X ≤ ‖PK ‖ · ‖x̂ − x̂∗

K ‖X̂K

and

‖PK ‖ = max{‖πK ‖, 1}.

Finally, the estimate (31) is obtained by

∥∥(
v∗
K , β∗

K

) − (
v∗, β∗)∥∥

V×B

= ∥∥G (
πK û

∗
K , α∗

K

) − G
(
u∗, α∗)∥∥

V
+ ∥∥β∗

K − β∗∥∥
B

≤ ‖G‖ (∥∥πK û
∗
K − u∗∥∥

U
+ ∥∥α∗

K − α∗∥∥
A

) + ∥∥β∗
K − β∗∥∥

B

≤ max {‖G‖ , 1} · ∥∥PK x̂∗
K − x∗∥∥

X .

��
In the next subsection, we will give an estimate of the error of the approximation

(v∗
K , β∗

K ), better than (31) in some situations.

Remark 2 Regarding the consistency error ΨK x∗, which appears in (27) and (31), we
have

‖ΨK x
∗‖X ≤ ‖(PK RK − IX )x∗‖X + ‖PK RK (ΦK − Φ)x∗‖X ,

where we have separated the contributions of the primary and secondary discretiza-
tions. If only a primary discretization is used, i.e. ΦK = Φ, then

−ΨK x
∗ = (PK RK − IX )x∗.
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Remark 3 Suppose there exists a sequence {̂xK } of fixed points of Φ̂K such that x̂K
is eventually different from x̂∗

K . By (29) and (30), we obtain

1

‖PK x̂K − x∗‖X = O

(
1

r2(K )

)
, K → ∞, (33)

and
1

‖x̂K − x̂∗
K ‖X̂K

= O

(
max{‖πK ‖, 1} · 1

r2(K )

)
, K → ∞, (34)

respectively. Note that, by (33), (27) and (22), we have

‖PK x̂∗
K − x∗‖X = o

(‖PK x̂K − x∗‖X
)
, K → ∞. (35)

The estimates (33)–(35) give informations on how much the fixed point x̂∗
K is isolated

from other fixed points of Φ̂K .

4.1 The simple case

Let us introduce the space

Z := V × A × B

and the linear operator Λ : X → Z given by

Λx = (G (u, 0) , α, β) , x = (u, α, β) ∈ X.

Clearly, the linear operator Λ is bounded and

‖Λ‖ = max {‖G (·, 0)‖ , 1}

holds.
In this subsection, we consider the situation where, for any x ∈ X , we can factorize

DΦ(x) as
DΦ(x) = Σ(x)Λ, (36)

and, for any positive integer K , DΦK (x) as

DΦK (x) = ΣK (x)Λ, (37)

where Σ(x),ΣK (x) : Z → X are linear bounded operators. We call this situation the
simple case.

In the following, we set Σ∗ := Σ(x∗) and Σ∗
K := ΣK (x∗).

Note that the simple case holds if F(v, u, β) = F(v, β), FK (v, u, β) = FK (v, β),
B(v, u, β) = B(v, β) andBK (v, u, β) = BK (v, β). In fact, for x0 = (u0, α0, β0) ∈
X , factorizations (36) and (37) hold with Σ(x0),ΣK (x0) : Z → X given by
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Σ(x0)z = (D0F(v + G(0, α), β), (α, β) − D0B(v + G(0, α), β))

ΣK (x0)z = (D0FK (v + G(0, α), β), (α, β) − D0BK (v + G(0, α), β))

z = (v, α, β) ∈ Z

where D0F := DF(v0, β0), D0FK := DFK (v0, β0), D0B := DB(v0, β0) and
D0BK := DBK (v0, β0), with v0 = G(u0, α0).

Therefore, the simple case holds for the particular instance of PAF given by a non-
neutral BVP (1). As it is shown in [43], the simple case can hold also in case of BVP
for neutral functional differential equations. In particular, it holds in case of BVPs for
neutral integro-differential equation (4) and non-neutral boundary conditions.

Now, we present two theorems for the simple case. The first result is a condition
under which the invertibility of the linear bounded operator D∗ΨK , and the uniform
boundedness with respect to K of the norm of its inverse, are guaranteed. We recall
that D∗ΨK is defined in (20) and the norm of its inverse appears in CS2 and in the
error estimates of Theorem 2.

Theorem 3 Assume the simple case. If

lim
K→∞ ‖(PK RKΣ∗

K − Σ∗)Λ‖ = 0, (38)

then there exists a positive integer K2 such that, for any positive integer K ≥ K2,
D∗ΨK is invertible and

‖(D∗ΨK )−1‖ ≤ 2‖(IX − D∗Φ)−1‖.

Note that the previous theorem implicitly requires the invertibility of IX − D∗Φ,
which is assumed in Ax∗2.

Proof By recalling (20), we have

D∗ΨK = IX − D∗Φ − (PK RKΣ∗
K − Σ∗)Λ.

The theorem now follows by an application of the Banach perturbation lemma. ��
Note that in (38) we can take advantage of the fact that the error operator

PK RKΣ∗
K − Σ∗ is applied to elements that have been regularized by the operator Λ.

Remark 4 By separating the contributions of the primary and secondary discretiza-
tions, we have that (38) holds if

lim
K→∞ ‖(PK RK − IX )Σ∗Λ‖ = 0

and

lim
K→∞ ‖PK RK (Σ∗

K − Σ∗)Λ‖ = 0.
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The second result for the simple case is an estimate of the error of
(
v∗
K , β∗

K

)
different

from (31).

Theorem 4 Let CS1 and CS2 hold. Assume the simple case. We have

‖ (
v∗
K , β∗

K

) − (
v∗, β∗) ‖V×B

≤ max{‖G(0, ·)‖, 1} · (‖ΞK ‖ · ‖ΛΨK x
∗‖Z + ‖Λ‖ · ‖δK ‖X

)
, (39)

where
ΞK := IZ + Λ(D∗ΨK )−1PK RKΣ∗

K (40)

and ‖δK ‖X satisfies (25).

Proof Of course, all that is stated in Theorem 2 holds. Now, consider the expansion
(28):

PK x̂
∗
K − x∗ = −wk + δK ,

where we set

wK := (D∗ΨK )−1ΨK x
∗.

We have

∥∥(
v∗
K , β∗

K

) − (
v∗, β∗)∥∥

V×B

= ∥∥G (
πK û

∗
K , α∗

K

) − G
(
u∗, α∗)∥∥

V
+ ∥∥β∗

K − β∗∥∥
B

= ∥∥G (
πK û

∗
K − u∗, 0

) + G
(
0, α∗

K − α∗)∥∥
V

+ ∥∥β∗
K − β∗∥∥

B

≤ max{‖G(0, ·)‖, 1} · (∥∥G (
πK û

∗
K − u∗, 0

)∥∥
V

+ ∥∥α∗
K − α∗∥∥

A
+ ∥∥β∗

K − β∗∥∥
B

)
= max{‖G(0, ·)‖, 1} · ∥∥Λ

(
πK û

∗
K − u∗, α∗

K − α∗, β∗
K − β∗)∥∥

Z

= max{‖G(0, ·)‖, 1} · ‖Λ(−wK + δK )‖Z
≤ max{‖G(0, ·)‖, 1} · (‖ΛwK ‖Z + ‖Λ‖ ‖δK ‖X ). (41)

From (20), we obtain

Λ(D∗ΨK )−1 = Λ(D∗ΨK )−1(D∗ΨK + PK RK D∗ΦK )

= Λ + Λ(D∗ΨK )−1PK RK D∗ΦK

and then

ΛwK = Λ(D∗ΨK )−1ΨK x
∗

= ΛΨK x
∗ + Λ(D∗ΨK )−1PK RK D∗ΦKΨK x

∗.
Now, since D∗ΦK = Σ∗

KΛ holds, we have

ΛwK = ΞKΛΨK x
∗,

with ΞK defined in (40), and the estimate (39) follows by (41). ��
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This result is indeed useful since it can happen, as it is illustrated in [41] in case of
the collocation method (version finite element method), that ‖ΛΨK x∗‖Z has an order
of convergence to zero, as K → ∞, higher than ‖ΨK x∗‖X .
Remark 5 Regarding the regularized consistency error ΛΨK x∗, we have

‖ΛΨK x
∗‖Z ≤ ‖Λ(PK RK − IX )x∗‖Z + ‖ΛPK RK (ΦK − Φ)x∗‖Z ,

where we have separated the contributions of the primary and secondary discretiza-
tions. If only a primary discretization is used, i.e. ΦK = Φ, then

−ΛΨK x
∗ = Λ(PK RK − IX )x∗.

4.2 Invertibility of D∗ΦK

In the previous subsection, in Theorem 3, it has been presented a condition under
which the invertibility of D∗Φ is guaranteed in the simple case. In this subsection, we
study the invertibility of D∗Φ in the general case.

We consider a splitting
D∗Φ = Γ ∗ + Σ∗Λ (42)

of D∗Φ, where Γ ∗ : X → X and Σ∗ : Z → X are linear bounded operators. (Recall
that Z and Λ have been introduced at the beginning of the previous subsection).
Similarly, for any positive integer K , we consider a splitting

D∗ΦK = Γ ∗
K + Σ∗

KΛ, (43)

of D∗ΦK , where Γ ∗
K : X → X and Σ∗

K : Z → X are linear bounded operators.
Note that in the simple case, described in the previous subsection, we have splittings

(42) and (43) with Γ ∗ = Γ ∗
K = 0.

In this subsection, by using splittings (42) and (43), we give a theorem concerning
the invertibility of D∗ΨK and the norm of its inverse. This theorem is an extension of
the Theorem 3 (which is valid only for the simple case) and it is based on the Lemma 2
in Appendix.

Theorem 5 Assume that there exist a splitting (42) such that IX − Γ ∗ is invertible
and, for any positive integer K , a splitting (43) such that IX − PK RKΓ ∗

K is invertible.
If

lim
K→∞ ‖(IX − PK RKΓ ∗

K )−1‖ · ‖(PK RKΓ ∗
K − Γ ∗)(IX − Γ ∗)−1Σ∗Λ‖ = 0 (44)

and
lim

K→∞ ‖(IX − PK RKΓ ∗
K )−1‖ · ‖(PK RKΣ∗

K − Σ∗)Λ‖ = 0, (45)

then there exists a positive integer K2 such that, for any positive integer K ≥ K2,
D∗ΨK is invertible and

‖(D∗ΨK )−1‖ ≤ 2‖(IX − D∗Φ)−1(IX − Γ ∗)‖ · ‖(IX − PK RKΓ ∗
K )−1‖. (46)
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Proof The proof is an application of the Lemma 2 with Y = X , A = IX − D∗Φ
(recall Ax∗2), B = IX − Γ ∗, C = −Σ∗Λ and, for any positive integer K , AK =
D∗ΨK = IX − PK RK D∗ΦK , BK = IX − PK RKΓ ∗

K and CK = −PK RKΣ∗
KΛ. ��

The previous theorem reduces the invertibility of D∗ΨK = IX − PK RK D∗ΦK to
the invertibility of IX − PK RKΓ ∗

K . Note that in (44) and (45), we can take advantage
of the fact that the error operators PK RKΓ ∗

K − Γ ∗ and PK RKΣ∗
K − Σ∗ are applied

to elements that have been regularized by Λ.

Remark 6 By separating the contributions of the primary and secondary discretiza-
tions, we have that (44) holds if

lim
K→∞ ‖(IX − PK RKΓ ∗

K )−1‖ · ‖(PK RK − IX )Γ ∗(IX − Γ ∗)−1Σ∗Λ‖ = 0

and

lim
K→∞ ‖(IX − PK RKΓ ∗

K )−1‖ · ‖PK RK (Γ ∗
K − Γ ∗)(IX − Γ ∗)−1Σ∗Λ‖ = 0,

and (45) holds if

lim
K→∞ ‖(IX − PK RKΓ ∗

K )−1‖ · ‖(PK RK − IX )Σ∗Λ‖ = 0

and

lim
K→∞ ‖(IX − PK RKΓ ∗

K )−1‖ · ‖PK RK (Σ∗
K − Σ∗)Λ‖ = 0.

4.3 The nilpotency case and the splitting case

In view of Theorem 5, it remains to study the invertibility of IX − PK RKΓ ∗
K . To

this aim, we consider the situation where there exist a positive integer c, a splitting
(42) such that (Γ ∗)c = 0 and, for any positive integer K , a splitting (43) such that
(PK RKΓ ∗

K )c = 0. We call this situation the nilpotency case.

Remark 7 If the nilpotency case holds, then IX −Γ ∗ is invertible and, for any positive
integer K , IX − PK RKΓ ∗

K is invertible and

‖(IX − PK RKΓ ∗
K )−1‖ ≤

c−1∑
i=0

‖PK RK ‖i · ‖Γ ∗
K ‖i .

holds.

On the other hand,we call the splitting case themore general situation (including the
nilpotency case) described in the premise in Theorem 5, namely there exist a splittings
(42) such that IX − Γ ∗ is invertible and, for any positive integer K , a splitting (43)
such that IX − PK RKΓ ∗

K is invertible.

123
21



546 S. Maset

4.4 The operators PK RK and PK RK − IX

Regarding the primary discretization, the previous subsections have shown that the
role played by the linear operators PK RK : X → X and PK RK − IX : X → X given
by

PK RK x = (πKρK u, α, β), x = (u, α, β) ∈ X,

and
(PK RK − IX )x = ((πKρK − IU)u, 0, 0), x = (u, α, β) ∈ X, (47)

is crucial. In this subsection, we list some simple facts about them to be used in the
next section.

We have

‖(PK RK − IX )x‖X = ‖(πKρK − IU)u‖U, x = (u, α, β) ∈ X,

and, for a linear bounded operator A : X → X ,

‖(PK RK − IX )A‖ = ‖(πKρK − IU)AU‖, (48)

where AU is the U-component of A defined in Sect. 1.2.
Moreover, note that

λK := ‖PK RK ‖ = max{‖πKρK ‖, 1} (49)

and
‖(PK RK − IX )x∗‖X = ‖e∗

K ‖U, (50)

where x∗ = (u∗, α∗, β∗) is the fixed point of Φ and

e∗
K := (πKρK − IU)u∗ (51)

can be called the consistency error of the primary discretization (see Remark 2).

5 Specialization of the convergence results

In the convergence analysis presented above, we have considered the general situation
where, beside a primary discretization, also a secondary discretization is introduced.
This means that approximations FK of F andBK ofB are used and then the operator
Φ is actually replaced byΦK . However, in the papers [41,44], where the results of this
paper are specialized to the problem (1) for two particular primary discretizations, we
do not consider a secondary discretization, in order to avoid giving results with too
many assumptions and details.

As previously remarked, in case of the problem (1), approximations FK = FK

of F = F and BK = BK of B = B are used for integro-differential equation (4)
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and integral boundary conditions (10), respectively, where the involved integrals are
approximated by quadrature rules. Convergence results, when quadrature rules are
used in integro-differential equations BVPs, can be deduced from the general theory
given above and they are addressed in [43]. We also remark that the choice of con-
sidering the exact computation of integrals in integro-differential equations BVPs is
adopted in the papers [21,22,25,27].

The case of BVPs (1) for differential equations with deviating arguments (3) and
multipoint boundary conditions (9), where a secondary discretization is not necessary,
is dealt in [42].

In this section, for the situation where only a primary discretization is used (i.e.,
for any positive integer K , we have FK = F and BK = B and then ΦK = Φ), we
give two convergence theorems for the problem PAF, less abstract than Theorem 2.
The first is for the simple case and the second is for the splitting case, which includes
the nilpotency case. Such theorems are used in [41,44], in case of the problem (1),
for the two particular primary discretizations given by the collocation method and the
Fourier series method.

As already remarked, the simple case holds for non-neutral BVPs (1) and for BVPs
given by neutral integro-differential equation (4) and non-neutral boundary conditions.
Moreover, for the collocation method and the Fourier series method, the nilpotency
case holds for BVPs given by neutral differential equations with deviating arguments
(3) and non-neutral boundary conditions, whenever the neutral deviating arguments
ϑs , s = 1, . . . , l, are such that

ϑs(t) ≤ t − τ, s = 1, . . . , l and t ∈ [a, b],

or

ϑs(t) ≥ t + τ, s = 1, . . . , l and t ∈ [a, b],

for some τ > 0. This is shown in [42,44].
Below, since we are considering only a primary discretization, we have that:

• the simple case reduces to the sole factorization (36);
• the splitting case uses the sole splitting (42) and requires the invertibility of IX−Γ ∗
and, for any positive integer K , of IX − PK RKΓ ∗;

• the nilpotency case uses the sole splitting (42) and requires (Γ ∗)c = 0 and, for
any positive integer K , (PK RKΓ ∗)c = 0, for some positive integer c.

Moreover, we use diffusely the notation AU of the U-component of an operator A
introduced in Sect. 1.2. Finally, we remark that the quantities λK and ‖e∗

K ‖U (see
(49)–(51)) play a crucial role. In particular, we have

‖ΨK x
∗‖X = ‖(PK RK − IX )x∗‖X = ‖e∗

K ‖U (52)

(see Remark 2).
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5.1 The simple case

Here is the theorem for the simple case. Before to present it, we introduce the following
condition, which is formulated only for the simple case.

CSC (Condition Simple Case) There exist r2 > 0 and, for any positive integer K ,
σK ≥ 0 such that

‖(πKρK − IU)(DΦ(x) − D∗Φ)U‖ = ‖(πKρK − IU)((Σ(x) − Σ∗)Λ)U‖
≤ σK ‖x − x∗‖X , x ∈ B(x∗, r2),

and

σK = O(1), K → ∞.

Theorem 6 Assume that only a primary discretization is used. Moreover, assume the
simple case,

lim
K→∞ ‖(πKρK − IU)(D∗Φ)U‖ = lim

K→∞ ‖(πKρK − IU)(Σ∗Λ)U‖ = 0 (53)

and

lim
K→∞

{
λK · ‖e∗

K ‖U
‖e∗

K ‖U if CSC holds
= 0. (54)

(One has to read the lower row after {, instead of the upper one, if CSC holds). Then,
there exists a positive integer K̂ such that, for any positive integer K ≥ K̂ , Φ̂K has a
fixed point x̂∗

K such that

∥∥PK x̂∗
K − x∗∥∥

X = O(‖e∗
K ‖U), K → ∞. (55)

Moreover, for the approximation (v∗
K , β∗

K ) of (v∗, β∗), we have the two estimates

‖(v∗
K , β∗

K ) − (v∗, β∗)‖V×B = O(‖e∗
K ‖U), K → ∞, (56)

and

‖(v∗
K , β∗

K ) − (v∗, β∗)‖V×B

= O
(
λK · ‖G(e∗

K , 0)‖V
) +

{
O(λK · ‖e∗

K ‖2
U
)

O(‖e∗
K ‖2

U
) if CSC holds

, K → ∞. (57)

Finally, suppose there exists a sequence {̂xK } of fixed points of Φ̂K such that x̂K is
eventually different from x̂∗

K . Then

1

‖PK x̂K − x∗‖X =
{
O(λK )

O(1) if CSC holds
, K → ∞, (58)
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and

1

‖x̂K − x̂∗
K ‖X̂K

=
{
O(max{‖πK ‖, 1} · λK )

O(max{‖πK ‖, 1}) if CSC holds
, K → ∞. (59)

Note that, in CSC and (53), the error operator πKρK − IU is applied to elements
regularized by means of Λ.

Proof Since Ax∗1 holds, CS1 is fulfilled with a constant

LK =
{
O(λK )

O(1) if CSC holds
, K → ∞.

Now, we show that CS2 holds. By (53), (48), Remark 4 and Theorem 3, we obtain
that there exists a positive integer K2 such that, for any positive integer K ≥ K2,
D∗ΨK is invertible and

‖(D∗ΨK )−1‖ = O (1) , K → ∞. (60)

Now, we have
1

r2(K )
=

{
O(λK )

O(1) ifCSC holds
, K → ∞. (61)

By (61), (60), (52) and (54), we conclude that CS2 is fulfilled.
Then, Theorem2 says that there exists a positive integer K̂ such that, for any positive

integer K ≥ K̂ , Φ̂K has a fixed point x̂∗
K such that (55) and (56) hold: see (60) and

(52). Moreover, by Remark 3, we obtain (58) and (59): see (61).
It remains to prove (57). Since

‖ΛΨK x
∗‖Z = ‖Λ(PK RK − IX )x∗‖Z = ‖G(e∗

K , 0)‖V

(see Remark 5, (47) and (51)) and

‖ΞK ‖ = O(λK ), K → ∞,

(see (40) with Σ∗
K = Σ∗) and

‖δ‖X =
{
O(λK · ‖e∗

K ‖2
U
)

O(‖e∗
K ‖2

U
) if CSC holds

, K → ∞,

(see (25)), we obtain (57) by Theorem 4. ��
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5.2 The splitting case

Now, we give the theorem for the splitting case. If the splitting case holds, we set, for
any positive integer K ,

μK := ‖ (
IX − PK RKΓ ∗)−1 ‖

If the nilpotency case holds, then, by Remark 7, we have

μK = O
(
λc−1
K

)
, K → ∞.

Theorem 7 Assume that only a primary discretization is used. Moreover, assume the
splitting case,

lim
K→∞ μK · ‖(πKρK − IU)(Γ ∗(IX − Γ ∗)−1Σ∗Λ)U‖ = 0, (62)

lim
K→∞ μK · ‖(πKρK − IU)(Σ∗Λ)U‖ = 0, (63)

and
lim

K→∞μ2
KλK · ‖e∗

K ‖U = 0. (64)

Then, there exists a positive integer K̂ such that, for any positive integer K ≥ K̂ , Φ̂K

has a fixed point x̂∗
K such that

∥∥PK x̂∗
K − x∗∥∥

X = O(μK · ‖e∗
K ‖U), K → ∞. (65)

Moreover, for the approximation (v∗
K , β∗

K ) of (v∗, β∗), we have the estimate

‖(v∗
K , β∗

K ) − (v∗, β∗)‖V×B = O(μK · ‖e∗
K ‖U), K → ∞. (66)

Finally, suppose there exists a sequence {̂xK } of fixed points of Φ̂K such that x̂K is
eventually different from x̂∗

K . Then

1

‖PK x̂K − x∗‖X = O(μKλK ), K → ∞, (67)

and
1

‖x̂K − x̂∗
K ‖X̂K

= O (max{‖πK ‖, 1} · μKλK ) , K → ∞. (68)

Proof Since Ax∗1 holds, CS1 is fulfilled with

LK = O(λK ), K → ∞.

Now, we show that CS2 holds. By (62), (63), (48), Remark 6 and Theorem 5, we
obtain that there exists a positive integer K2 such that, for any positive integer K ≥ K2,
D∗ΨK is invertible and
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‖(D∗ΨK )−1‖ = O (μK ) , K → ∞. (69)

Now, we have
1

r2(K )
= O(μKλK ), K → ∞. (70)

By (70), (69), (52) and (64), we conclude that CS2 is fulfilled.
Then, Theorem2 says that there exists a positive integer K̂ such that, for any positive

integer K ≥ K̂ , Φ̂K has a fixed point x̂∗
K such that (65) and (66) hold: see (69) and

(52). Moreover, by Remark 3 we obtain (67) and (68): see (70). ��

6 Conclusions

In this paper we have studied the numerical solution of PAF, introduced in Sect. 2,
in case of spaces A and B of finite dimension. PAF has been discretized by a primary
discretization and a secondary discretization, as explained in Sect. 3. A convergence
analysis has been carried out in Sect. 4. In Sect. 4, we have also addressed the two
particular situations of the simple case and the splitting case (which includes the
nilpotency case). In Sect. 5, under the assumption that only a primary discretization is
used, the convergence results have been specialized to these two particular situations.

The functional differential equation BVP (1) is a particular instance of PAF. The
results of Sect. 5 are applied in [41,44] to this particular instance for the two particular
primary discretizations given by the collocationmethod and the Fourier series method.
The present paper provides the theoretical basis for the analysis of such methods.

We finish observing that PAF also includes BVPs for partial functional differential
equations, as it has been illustrated in Sect. 2.1. Apart from the possible infinite-
dimensionality of the space A, a numerical study of such problems in the context of
PAF has to take into account the use of approximations GK of the linear operator G.

Appendix

Lemma 1 Let Y be a Banach space with norm ‖ · ‖Y , let A : � ⊆ Y → Y , where
� is open, be a Fréchet-differentiable operator and let y∗ ∈ � such that DA (y∗) is
invertible. For any r > 0 such that B (y∗, r) ⊆ �, define

q (r) := sup
y∈B(y∗,r)

∥∥∥DA
(
y∗)−1 (

DA(y) − DA
(
y∗))∥∥∥ .

Now, let r > 0 be such that B (y∗, r) ⊆ � . If

q (r) < 1 and
∥∥∥DA

(
y∗)−1

Ay∗
∥∥∥
Y

≤ (1 − q (r)) r, (71)
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then A has a unique zero y∗ in B (y∗, r) and

∥∥y∗ − y∗∥∥
Y ≤

∥∥∥DA (y∗)−1 Ay∗
∥∥∥
Y

1 − q (r)
. (72)

Moreover, we have
y∗ − y∗ = −DA

(
y∗)−1

Ay∗ + δ, (73)

where

‖δ‖Y ≤
q (r)

∥∥∥DA (y∗)−1 Ay∗
∥∥∥
Y

1 − q (r)
. (74)

The proof of the first part is more or less similar to the proof of [36, Lemma 19.1,
page 293]. The proof of the second part (73) is clear once the proof of first part is
understood.

Lemma 2 Let Y be a Banach space with norm ‖ · ‖Y . Let A, B,C : Y → Y be linear
bounded operators such that A = B + C and B is invertible. Let {AK }, {BK } and
{CK } be sequences of linear bounded operators Y → Y such that, for any positive
integer K , AK = BK + CK and BK is invertible.

If A is invertible,

lim
K→∞ ‖B−1

K ‖ · ‖ (BK − B) B−1C‖ = 0 (75)

and
lim

K→∞ ‖B−1
K ‖ · ‖CK − C‖ = 0, (76)

then there exists a positive integer K2 such that, for any positive integer K ≥ K2, AK

is invertible and

‖A−1
K ‖ ≤ 2‖A−1B‖ · ‖B−1

K ‖.

Proof Assume that A is invertible and (75) and (76) hold. For any positive integer K ,
we have

AK = BK + CK = BK

(
IY + B−1

K CK

)

and then AK is invertible if IY + B−1
K CK is invertible. In this case, we have

A−1
K =

(
IY + B−1

K CK

)−1
B−1
K .
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Now, since

IY + B−1
K CK = IY + B−1C + B−1

K CK − B−1C

= IY + B−1C + B−1
K (CK − C) +

(
B−1
K − B−1

)
C

= IY + B−1C + B−1
K (CK − C) − B−1

K (BK − B) B−1C

and

IY + B−1C = B−1 (B + C) = B−1A

is invertible with inverse

(
IY + B−1C

)−1 = A−1B,

the thesis follows by the Banach perturbation Lemma. ��
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