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Abstract 

Slotless machines equipped with surface permanent magnet 

(SPM) rotor are used in such applications where the torque 

ripple and the additional losses, due to the slotting effect, are 

critical issues. This kind of machine allows to find an accurate 

and analytical solution for the magnetic fields in every machine 

cross section domain. This paper derives an analytical 

expression for the magnetic field distribution inside the stator 

core of a SPM slotless machine during general load condition. 

The case of different rotor magnetization pattern is also 

considered. All the results are assessed with finite element 

analysis showing a very good accordance.  

1 Introduction 

In conventional PM machines, windings are fixed to a slotted 

stator core and retained usually with non-conductive wedges. 

This kind of arrangement is known to produce several parasitic 

phenomena like cogging torque or additional eddy currents 

losses in the magnets. There are several works (like [1]) in 

literature dealing with the air gap magnetic field evaluation in 

this kind of machines. In some applications, like wind power 

generation [2] or gas compression [3], it is necessary to 

overcome these issues in order to achieve very high efficiency 

and negligible torque ripples. One possible solution is to use 

the slotless stator structure. In this kind of electrical machines, 

the stator winding is completely distributed along the bore of 

an annular stator core and usually retained though a resin cast 

encapsulation.  

Most of the literature dedicated to slotless machines focuses on 

the air-gap magnetic field evaluation for the performance 

prediction [4], [5], [6] and little or no attention is paid to the 

machine core. Actually, a previous work has focused on the 

magnetic field prediction inside the stator core, but limiting the 

scope of the treatment to the no load operation and to the use 

of a radially magnetized rotor [7]. The aim of this work is to 

extend the investigation proposed in [7] to find an analytical 

expression for the total magnetic field (due to both stator and 

rotor) in the stator core of a generic SPM slotless machine, 

equipped with a permanent magnet rotor with a generic 

magnetization pattern (parallel, radial, Halbach) . The 

availability of an explicit analytical magnetic field 

computation formula makes it possible to quickly estimate the 

iron core losses (using for example the Bertotti’s formulation 

[8]-[11]). An analytical expression for the magnetic field (both 

radial and tangential components) in the iron core is possible 

through the solution of Poisson and Laplace differential 

equations in the machine domains of interest (core, air gap, 

magnets). In this paper, the explicit formulation for the total 

magnetic field is derived covering the case of SPM rotor 

topologies with different possible magnetization patterns: 

parallel, radial segmented and halbach magnetization. The 

accuracy of the proposed magnetic field expressions is then 

successfully assessed by comparison against Finite Element 

Analysis (FEA) for different numbers of poles and 

magnetization patterns. 

2 Problem definition and model assumptions  

Surface permanent magnet machines may be equipped with 

both slotted or slotless stator.  The slotless structure allows to 

find a solution for the magnetic field distribution inside every 

machine domain solving the Laplace/Poisson differential 

equations ([4]). The rotor magnetization topologies addressed 

in this work are shown in Figure 1, where the arrows represent 

the magnetization direction inside the magnets region.   

 

The rotor types being covered are: the parallel magnetization 

pattern Figure 1a; the segmented radial magnetization pattern 

Figure 1b, where each pole is composed by 𝑁𝑠𝑒𝑔 parallel 

magnetized magnets blocks; halbach magnetization pattern 

where each pole is composed again by 𝑁𝑠𝑒𝑔 parallel 

magnetized magnet blocks. This kind of rotor architectures are 

often used in permanent magnet machines ([12]). 

Stator and rotor cores are assumed to have infinite magnetic 

permeability; the relative magnetic permeability of permanent 

magnets is supposed equal to unity. 

 

Figure 1: Rotor types considered in the analysis. a) Parallel 

magnetization, b) radial segmented magnetization, c) halbach array 

magnetization. 
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End effects are disregarded, hence the vector potential is 

everywhere parallel to the rotational axis, so that its axial 

component is always considered as a scalar quantity. 

3 Magnetic field evaluation in the slotless 

machine stator core 

The aim of this section is the total magnetic field distribution 

evaluation in the stator core superimposing the contribution of 

the stator currents and the contribution of the magnets. 

 

3.1 Computation of the flux density in the stator core due 

to stator currents 

In order to evaluate the stator currents contribution at the total 

magnetic field, it has been necessary to solve the Laplace 

equation (1) in the domain named as “Stator region” (Figure 

2). This region is bounded with two circumferences whose 

radii are R2 and R3 for the inner and outer bound respectively. 

In a cylindrical coordinate system (𝑟, 𝜃, 𝑧) centered in the 

machine rotational axis, the vector potential (𝐀) in the stator 

region is governed by Laplace differential equation as follows: 

∇2𝐀 =
1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕

𝜕𝑟
A𝑧 +

1

𝑟2

𝜕2

𝜕𝜃2
A𝑧 = 0 

for 𝑅2 ≤ 𝑟 ≤ 𝑅3 

(1) 

   Using the Fourier expansion, this kind of partial differential 

equation it is known to have solutions like (2). 

Az(𝑟, 𝜃, 𝑡) = ∑ (Vkp

+ 𝑟𝑘𝑝 + Vkp

− 𝑟−𝑘𝑝) cos(𝑘𝑝𝜃+𝜔𝑡)

∞

𝑘𝑝=5𝑝,11𝑝...

 

(2) 

+ ∑ (Vkm

+ 𝑟𝑘𝑚 + Vkm

− 𝑟−𝑘𝑚) cos(𝑘𝑘𝑚
𝜃 − 𝜔𝑡)

∞

𝑘𝑚=1𝑝,7𝑝...

 

Where Vn
+ and Vn

− are constants that have to be determined 

defined for 𝑘𝑝 and 𝑘𝑚. Thanks to the relationship between the 

magnetic vector potential and the flux density in a planar 

domain, the flux density produced by the coil currents in the 

stator region can be obtained as: 

𝐵𝑟
𝑠𝑡(𝑟, 𝜃) =

1

𝑟

𝜕Az(𝑟, 𝜃)

𝜕𝜃
 (3) 

𝐵𝜃
𝑠𝑡(𝑟, 𝜃) = −

𝜕Az(𝑟, 𝜃)

𝜕𝑟
 (4) 

This said, it has been possible to determine the constants Vn
+ 

and Vn
− imposing the following boundary conditions:  

𝐵𝑟
𝑠𝑡(𝑅3, 𝜃) =

1

𝑟

𝜕Az(𝑅3, 𝜃)

𝜕𝜃
= 0   

along Γ4 in Figure 3 

(5) 

𝐵𝑟
𝑠𝑡(𝑅2, 𝜃) =  

1

𝑟

𝜕Az(𝑅2, 𝜃)

𝜕𝜃
= 𝐵𝑆𝑟 

𝑏.𝑐.(𝜃, 𝑡)  

along Γ3 in Figure 2  

(6) 

The boundary condition (5) is due to the fact that we want to 

impose the homogenous Dirichelet condition along the outer 

machine border. The second boundary condition (6) represents 

the radial magnetic field continuity between the winding region 

and the stator region Figure 2. The 𝐵𝑆𝑟 
𝑏.𝑐.(𝜃, 𝑡) function can be 

expressed using the results obtained in [4] as follows: 

𝐵𝑆𝑟 
𝑏.𝑐.(𝜃, 𝑡) =  ∑

𝑘𝑝

𝑟
 w(𝑟, 𝑘𝑝) sin(𝑘𝑝𝜃 + 𝜔𝑡)

𝑘𝑝

+ ∑
𝑘𝑚

r
w(𝑟, 𝑘𝑚) sin(𝑘𝑚𝜃 − 𝜔𝑡)

𝑘𝑚

 

(7) 

Where the function w(𝑟, 𝑛) is the part that accounts for the 

dependency on r and can be expressed as follows for a generic 

n:  

w(𝑟, 𝑛) = {

𝑊𝑛
+𝑟𝑛 + 𝑊𝑛

−𝑟−𝑛 − 𝑊𝑛
∗𝑟2 if 𝑛 ≠ 2

𝜇0𝐽2

4
[

A + B(𝑟)𝑟4

4𝑟2(𝑅𝑖
4 − 𝑅2

4)
]           if 𝑛 = 2 

.  (8) 

In formula (8), coefficients A and B(r) are given by:  

A = 𝑅1
4𝑅2

4 - 𝑅2
4𝑅𝑖

4 + 4𝑅2
4𝑅𝑖

4 ∙ ln (
R1

R2

) 

B(r) = 𝑅1
4- 2𝑅2

4 + 𝑅𝑖
4 + 4𝑅𝑖

4 ∙ ln (
𝑅1

𝑟
) + 4𝑅2

4 ∙ ln (
𝑟

𝑅2

)    
(9) 

and coefficients 𝐽𝑛,𝑊𝑛
+, 𝑊𝑛

− and 𝑊𝑛
∗ can be found in [4] at 

formulas (4), (15), (16) and (17). 

As already said, in the Laplace equation solution (2), two 

constants must be determined. Substituting the equation (2) in 

the boundary conditions (3) and (4) two different equations are 

derived in the variables Vn
+ and Vn

−. Solving this liner system 

with two equations and two variables we can obtain: 

𝑉𝑛
− =

𝑅2
𝑛𝑅3

2𝑛 ∙ w(𝑅2, 𝑛)

𝑅2
2𝑛 − 𝑅3

2𝑛  (10) 

𝑉𝑛
+ =

𝑅2
𝑛 ∙ w(𝑅2, 𝑛)

𝑅3
2𝑛 − 𝑅2

2𝑛  (11) 

 

Figure 2: Characteristic dimensions of the machine cross-section. 

Stator s-axis and rotor d-axis are also represented. 

 



Thanks to these expressions, it is possible to express the 

magnetic field radial and tangential components due to only the 

stator currents as follows: 

𝐵𝑟
𝑠𝑡(𝑟, 𝜃, 𝑡) = 

− ∑ 𝑘𝑝(Vn
+𝑟𝑘𝑝−1 + Vn

−𝑟−𝑘𝑝−1) sin(𝑘𝑝𝜃 + 𝜔𝑡)

∞

𝑘𝑝=

5𝑝,11𝑝…

 

− ∑ 𝑘𝑚(Vn
+𝑟𝑘𝑚−1 + Vn

−𝑟−𝑘𝑚−1) sin(𝑘𝑚𝜃 − 𝜔𝑡)

∞

𝑘𝑚=
1𝑝,7𝑝…

 

(12) 

𝐵𝜃
𝑠𝑡(𝑟, 𝜃, 𝑡) = 

− ∑ 𝑘𝑝(Vn
+𝑟𝑘𝑝−1 − Vn

−𝑟−𝑘𝑝−1) cos(𝑘𝑝𝜃 + 𝜔𝑡)

∞

𝑘𝑝=

5𝑝,11𝑝…

 

− ∑ 𝑘𝑚(Vn
+𝑟𝑘𝑚−1 − Vn

−𝑟−𝑘𝑚−1) cos(𝑘𝑚𝜃 − 𝜔𝑡)

∞

𝑘𝑚=
1𝑝,7𝑝…

 

(13) 

3.2 Computation of the flux density in the stator core due 

to the magnets 

The aim of this section is to evaluate the magnetic field 

component in the stator core due to only the magnets mounted 

on the rotor. For this purpose, it is observed that, according to 

all the magnetization patterns taken into account (Figure 1), the 

rotor permanent magnets are arranged into uniformly-

magnetized blocks. In order to simplify the computations, it 

has been necessary to consider a group of 2p magnet blocks 

displaced by π/p mechanical radians apart (Figure 3). As it can 

be deduced from Figure 3, regardless of the magnetization 

pattern, the magnetization vectors of magnet blocks displaced 

by /p mechanical radians are shifted by 180°.  

For the sake of simplicity, we shall also introduce a new 

angular coordinate 𝜑 measured from the axis of the first block 

of the group, so that a generic point p, in the rotor reference 

frame (Figure 3), will be identified with the couple of polar 

coordinates (𝑟, 𝜑). This angular coordinate can be expressed 

as a function of 𝜃 as follows: 

𝜑 = 𝜃 − Θ where Θ =
ωt

p
+ γ so: 𝜑 = 𝜃 −

ωt

p
− γ (14) 

where 𝜔 is the stator electric pulsation and 𝛾 is the angular shift 

between the stator s-axis and the rotor d-axis (Figure 2). 

After the magnetic field computation for this “magnet group” 

the resultant flux density, for all the magnetization patterns, 

can be computed extending the result using a finite sum of 

elements.  

In a similar way as already done in the previous section, the 

vector potential in the stator core due to a magnet block group 

only (𝚽), can be expressed by the Laplace equation: 

∇2𝚽 =
1

𝑟

𝜕

𝜕𝑟
𝑟

𝜕

𝜕𝑟
Φ𝑧 +

1

𝑟2

𝜕2

𝜕𝜑2
Φ𝑧 = 0 

for 𝑅2 ≤ 𝑟 ≤ 𝑅3 

(15) 

It is known that this kind of partial derivative differential 

equation has solutions that can be expressed also as follows: 

  

Φz(𝑟, 𝜑, 𝛼, 𝛽) = 

∑ (Gn
+(𝛼, 𝛽)𝑟𝑛𝑝 + Gn

−(𝛼, 𝛽)𝑟−𝑛𝑝) sin(𝑛𝑝𝜑) +

∞

𝑛=1,3.5…

 

∑ (Hn
+(𝛼, 𝛽)𝑟𝑛𝑝 + Hn

−(𝛼, 𝛽)𝑟−𝑛𝑝) cos(𝑛𝑝𝜑)  

∞

𝑛=1,3.5...

 

(16) 

Where the parameters Gn
+(𝛼, 𝛽), Gn

−(𝛼, 𝛽), Hn
+(𝛼, 𝛽) and 

Hn
−(𝛼, 𝛽) are function of the magnet block semi opening angle  

𝛽 and function of the magnetization vector orientation 𝛼. These 

parameters can be determined by imposing the following 

boundary conditions:  

𝐵𝑟
𝑟𝑜𝑡(𝑅3, 𝜑, 𝛼, 𝛽) =

1

𝑅3

𝜕Φz(𝑅3, 𝜃, 𝛼, 𝛽)

𝜕𝜑
= 0   

along Γ4 in Figure 3 

(17) 

𝐵𝑟
𝑟𝑜𝑡(𝑅2, 𝜑, 𝛼, 𝛽) =  

1

𝑅2

𝜕Φz(𝑅2, 𝜑, 𝛼, 𝛽)

𝜕𝜑
= 𝐵𝑅𝑟 

𝑏.𝑐.(𝜑, 𝛼, 𝛽)  

along Γ3 in Figure 3 

(18) 

In the same way as the previous section, the condition (17) is 

due to the fact that we want to impose the nullity of the 

magnetic field radial component along the circumference Γ4. 

The other condition reported in (18) represents the continuity 

of the magnetic field radial component along the circumference 

Γ3. The 𝐵𝑅𝑟 
𝑏.𝑐.(𝜃, 𝑡) function can be expressed using the results 

obtained in [4] as follows: 

𝐵𝑅𝑟 
𝑏.𝑐.(𝜑, 𝛼, 𝛽) = 

∑ (Xn
+(𝛼, 𝛽)𝑟𝑛𝑝 + Xn

−(𝛼, 𝛽)𝑟−𝑛𝑝) cos(𝑛𝑝𝜑) −

∞

𝑛=1,3.5…

 

∑ (Yn
+(𝛼, 𝛽)𝑟𝑛𝑝 + Yn

−(𝛼, 𝛽)𝑟−𝑛𝑝) sin(𝑛𝑝𝜑)

 ∞

𝑛=1,3.5…

 

(19) 

 

Figure 3: Two magnet blocks displaced by one pole pitch. The set of 2p 

magnet blocks displaced by 𝜋/𝑝 mechanical radians around the rotor 
surface is referred to as a “group” of magnet blocks. 

 

 



Where the coefficients Xn
+(α, β), Xn

−(α, β), Yn
+(α, β) and 

Yn
−(α, β) can be found in the paper [4] at formulas (91)-(101).  

By substituting (16) into (17) and putting to zero the 

coefficients of sin(𝑛𝑝𝜑) and cos(𝑛𝑝𝜑), two linear equations are 

obtained in the unknowns variables Gn
+(𝛼, 𝛽), Gn

−(𝛼, 𝛽), 

Hn
+(𝛼, 𝛽) and Hn

−(𝛼, 𝛽). Substituting (16) and (19) into (18) 

and equalling the coefficients of sin(𝑛𝑝𝜑) and cos(𝑛𝑝𝜑) two 

more linear equations are obtained in the same variables. Now, 

solving this linear system we can obtain the desired variables 

and express them as follows: 

Gn
+(𝛼, 𝛽) =

𝑅2
2𝑛𝑝

∙ X𝑛
+(𝛼, 𝛽) + X𝑛

−(𝛼, 𝛽)

𝑅2
2𝑛𝑝

− 𝑅3
2𝑛𝑝  

Gn
−(𝛼, 𝛽) =

𝑅3
2𝑛𝑝

(𝑅2
2𝑛𝑝

∙ X𝑛
+(𝛼, 𝛽) + X𝑛

−(𝛼, 𝛽))

𝑅3
2𝑛𝑝

− 𝑅2
2𝑛𝑝  

Hn
+(𝛼, 𝛽) =

𝑅2
2𝑛𝑝

∙ Y𝑛
+(𝛼, 𝛽) + Y𝑛

−(𝛼, 𝛽)

𝑅2
2𝑛𝑝

− 𝑅3
2𝑛𝑝  

Hn
−(𝛼, 𝛽) =

𝑅3
2𝑛𝑝

(𝑅2
2𝑛𝑝

∙ Y𝑛
+(𝛼, 𝛽) + Y𝑛

−(𝛼, 𝛽))

𝑅3
2𝑛𝑝

− 𝑅2
2𝑛𝑝  

(20) 

Thanks again to the relationship between the magnetic vector 

potential and the flux density vector it is possible to derive the 

final expression for the magnetic field (radial and tangential 

components) in the stator core due to only a group of 2p 

magnets: 

𝐵𝑟
𝑟𝑜𝑡(𝑟, 𝜃, 𝑡, 𝛼, 𝛽, 𝛾) = 

∑ (Gn
+(𝛼, 𝛽)𝑟𝑛𝑝−1+Gn

−(𝛼, 𝛽)𝑟−𝑛𝑝−1) cos(𝑛𝑝𝜃-𝑛𝜔𝑡-𝑛𝑝𝛾) -

∞

𝑛=1,3.5…

 

∑ (Hn
+(𝛼, 𝛽)𝑟𝑛𝑝−1+Hn

−(𝛼, 𝛽)𝑟−𝑛𝑝−1) sin(𝑛𝑝𝜃-𝑛𝜔𝑡-𝑛𝑝𝛾)

 ∞

𝑛=1,3.5…

 

(21) 

𝐵𝜃
𝑟𝑜𝑡(𝑟, 𝜃, 𝑡, 𝛼, 𝛽, 𝛾) = 

∑ (Gn
+(𝛼, 𝛽)𝑟𝑛𝑝−1+Gn

−(𝛼, 𝛽)𝑟−𝑛𝑝−1) sin(𝑛𝑝𝜃-𝑛𝜔𝑡-𝑛𝑝𝛾) -

∞

𝑛=1,3.5…

 

∑ (Hn
+(𝛼, 𝛽)𝑟𝑛𝑝−1+Hn

−(𝛼, 𝛽)𝑟−𝑛𝑝−1) cos(𝑛𝑝𝜃-𝑛𝜔𝑡-𝑛𝑝𝛾)

 ∞

𝑛=1,3.5…

 

(22) 

where 𝜑 is substituted using formula (14). 

3.3  Computation of the stator core total magnetic field for 

every rotor magnetization pattern  

The total magnetic field distribution evaluation in the stator 

iron core it is possible superimposing the stator current 

contribution with the rotor magnet contribution. As already 

said in the first part of the paper, three different rotor 

magnetization patterns are considered for the total flux density 

evaluation. For this purpose, it is worth to notice that each 

magnetization pattern differs from the other only for the rotor 

contribution at the total magnetic field. The magnetic field 

component in the stator, due to the stator currents, is the same 

for each architecture. This said, it is possible to write the total 

magnetic field for the SPM slotless machine with a parallel 

magnetized rotor as follows (Figure 1a): 

𝐵𝑟
𝑝𝑎𝑟(𝑟, 𝜃, 𝑡, 𝛾) = 𝐵𝑟

𝑠𝑡(𝑟, 𝜃, 𝑡) + 𝐵𝑟
𝑟𝑜𝑡(𝑟, 𝜃, 𝑡, 𝛼, 𝛽

𝑝𝑎𝑟
, 𝛾) (23) 

𝐵𝜃
𝑝𝑎𝑟(𝑟, 𝜃, 𝑡, 𝛾) = 𝐵𝜃

𝑠𝑡(𝑟, 𝜃, 𝑡) + 𝐵𝜃
𝑟𝑜𝑡(𝑟, 𝜃, 𝑡, 𝛼, 𝛽

𝑝𝑎𝑟
, 𝛾) (24) 

where: 

𝛽𝑝𝑎𝑟 = 𝑆𝑚
𝜋

2𝑝
 ,  𝛼 = 0 (25) 

The equation (25) means that, in a parallel magnetized rotor, 

each pole is composed by only one parallel magnetized block 

so there is no sum to perform. The magnet block magnetization 

direction is the same as the block symmetry axis (25). Sm is the 

permanent magnet span over the pole pitch ratio. 

For the machine with the radial segmented SPM rotor (Figure 

1b), the total flux density distribution in the stator core domain 

can be written as follows: 

𝐵𝑟
𝑠𝑒𝑔(𝑟, 𝜃, 𝑡, 𝛾) = 

𝐵𝑟
𝑠𝑡(𝑟, 𝜃, 𝑡) + ∑ 𝐵𝑟

𝑟𝑜𝑡(𝑟, 𝜃 − 𝜏(2𝑏+1), 𝑡, 𝛼, 𝛽𝑠𝑒𝑔, 𝛾)

𝑁𝑠𝑒𝑔−1

b=0

 

(26) 

𝐵𝜃
𝑠𝑒𝑔(𝑟, 𝜃, 𝑡, 𝛾) = 

𝐵𝜃
𝑠𝑡(𝑟, 𝜃, 𝑡) + ∑ 𝐵𝜃

𝑟𝑜𝑡(𝑟, 𝜃 − 𝜏𝑠𝑒𝑔(2𝑏+1), 𝑡, 𝛼, 𝛽𝑠𝑒𝑔, 𝛾)

𝑁𝑠𝑒𝑔−1

b=0

 

(27) 

where 𝑁𝑠𝑒𝑔 is the number of blocks composing a pole, 

𝜏𝑠𝑒𝑔 = 𝑆𝑚(𝜋 2𝑝⁄ ) and 𝛽𝑠𝑒𝑔 = 𝑆𝑚𝜋/(2𝑝𝑁𝑠𝑒𝑔)  (28) 

Looking at equations (26) and (27), it is clear that a pole of the 

radial segmented rotor is composed by Nseg parallel magnetized 

blocks each with the magnetization direction correspondent to 

the block symmetry axis (𝛼̅=0).  

In the end, for the machine with the halbach array SPM rotor 

(Figure 1c), the total flux density distribution in the stator core 

domain can be expressed as: 

𝐵𝑟
ℎ𝑎𝑙(𝑟, 𝜃, 𝑡, 𝛾) = 

𝐵𝑟
𝑠𝑡(𝑟, 𝜃, 𝑡) + ∑ 𝐵𝑟

𝑟𝑜𝑡(𝑟, 𝜃 − 𝜏ℎ𝑎𝑙(2𝑏+1), 𝑡, 𝛼(𝑏), 𝛽ℎ𝑎𝑙, 𝛾)

𝑁𝑠𝑒𝑔−1

b=0

 

(29) 

𝐵𝜃
ℎ𝑎𝑙(𝑟, 𝜃, 𝑡, 𝛾) = 

𝐵𝜃
𝑠𝑡(𝑟, 𝜃, 𝑡) + ∑ 𝐵𝜃

𝑟𝑜𝑡(𝑟, 𝜃 − 𝜏ℎ𝑎𝑙(2𝑏+1), 𝑡, 𝛼(𝑏), 𝛽ℎ𝑎𝑙, 𝛾)

𝑁𝑠𝑒𝑔−1

b=0

 
(30) 

where 𝑁𝑠𝑒𝑔 again the number of blocks per pole and: 

𝜏ℎ𝑎𝑙 = (𝜋 2𝑝⁄ ), 𝛽ℎ𝑎𝑙 = 𝜋/(2𝑝𝑁𝑠𝑒𝑔) (31) 

Each block magnetization vector direction with respect its 

symmetry axis is:  

𝛼(𝑏) = 𝑝[𝛽(2𝑏+1)] (32) 



3.4  Considerations about the stator core magnetic field 

evaluation 

In some core loss evaluation methods [9]-[11], it is necessary 

to derive the trajectory described by the flux density 

fundamental harmonic vector in any point of the iron core. In 

general, such trajectory is an ellipse (as already shown in [7]). 

Again, the availability of an analytical expression for the radial 

and tangential flux density distributions in the stator core gives 

the ellipse trajectory of the magnetic field at any point of the 

stator core almost instantaneously (unlike finite element 

analysis). In Figure 4C the trajectory is shown for the flux 

density vector in points P1 and P2 for every machine 

architecture taken into account.  All the derived equations 

underline the fact that the shape of the ellipse is strongly 

dependent only on the radial coordinate. 

4 Finite elements validations 

The final formulas for the flux density in the iron core are 

assessed by comparison with finite element results obtained on 

two different machines whose main data are reported in Table 

1. The validation is performed considering each machine 

equipped with all the considered rotor architectures.  

 Machine 1 Machine 2 

Ri 47.5 mm 47.5 mm 

Rm 57.5 mm 57.5 mm 

R1 58.5 mm 58.5 mm 

R2 62.0 mm 62.0 mm 

R3 90.0 mm 90.0 mm 

Hc 850  kA/m 850  kA/m 

𝜇𝑚𝑎𝑔 1 1 

𝑆𝑚 0.95 0.95 

p 2 3 
Table 1: SPM machine data used for finite element validations 

The comparison is made between the flux density computed 

analytically and with finite element along two different 

circumferences Γ1 and Γ2 Figure 5A and B.  In the same figure 

is also represented the flux density trajectory in two different 

stator core points P1 and P2 Figure 5C). Formulas from (23) to 

(32) allow us to represent in the cartesian plane also the flux 

density fundamental vector trajectory (taking 𝑛, and 𝑘𝑚 equal 

to 1 and excluding the part of the solutions (12) and (13) with 

𝑘𝑝). This trajectory, as already said before, is an ellipse and is 

represented in the figure with the dashed line. Looking at the 

Figure 4 and 5, it is clear that the proposed method is in a very 

good agreement with the results derived from the finite element 

for both the polarities taken into account. 

5 Conclusions 

In conclusion, the paper addressed the solution of the magnetic 

field inside the stator core of a slotless permanent magnet 

machine, taking into account both the armature reaction and 

the permanent magnet contribution. The case of different SPM 

rotor magnetization patterns was also considered. Results have 

been compared with finite element calculations showing a very 

good accordance. The most straightforward use of the 

formulations being presented is in the analytical computation 

of the core losses, including the eddy-current, hysteresis and 

other loss components. Further works will fully demonstrate 

this application and will compare the estimated iron core losses 

with measurements. 

 

Figure 4 A and B: comparison of the flux density components 

along the circumferences 𝛤1 and 𝛤2 for all the rotor magnetization 

patterns; C: Flux density trajectory in 𝑃1 and 𝑃2; D: Machine 
under analysis cross section. 
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Figure 5: A and B: comparison of the flux density components 

along the circumferences Γ_1 and Γ_2 for all the rotor 
magnetization patterns; C: Flux density trajectory in P_1and P_2; 

D: Machine under analysis cross section. 

 


