
Influence of mitral valve elasticity on flow development in the left
ventricle
Chiara Celotto, Luigino Zovatto, Dario Collia, Gianni Pedrizzetti ∗

Department of Engineering and Architecture, University of Trieste, Italy

a r t i c l e i n f o

 Accepted 12 November 2018

Keywords:
Left ventricle
Mitral valve
Immersed boundary method
flow–tissue interaction

a b s t r a c t

TheMitral valve of the human heart has a great relevance for numerous cardiac pathologies; however, the
knowledge of relationships between valvular properties and cardiac function is still limited. On one side,
this is partly due to the limited resolution of clinical imaging technologies that do not allow routinely
visualization of the valve during its motion. On the other, its modeling presents serious challenges
either due to the strong flow–tissue interaction or because the mechanical properties of its constitutive
elements are complex and not measurable in vivo. This work introduces a parametric model of the Mitral
valve where the interaction with the blood flow obeys global balances and the overall elastic properties
are summarized into a single functional parameter. This is integrated into a numerical model of left
ventricular fluid dynamics with the aim to study the effect of varying the valvular stiffness. Results
show that the elasticity of the valve influences the amplitude of the mitral opening, while the timings
of opening/closure are driven by the transmitral blood flow due to the ventricular dynamics. In addition,
the increase of stiffness increases the transvalvular pressure gradients required to ensure the same flow.
These results are discussed in relation to parameters for monitoring valvular stiffness that are accessible
through clinical imaging.

1. Introduction

Understanding the dynamics of the Mitral valve (MV) repre-
sents an important problem of fluid–tissue interaction (FTI) for
its close link to the development and the progression of several
cardiac diseases. Most common valvular diseases are MV prolapse,
which causes blood regurgitation in the atrium chamber, and MV
stenosis, which causes the leaflets to become stiff, resulting in a
narrowed valve opening and reduced blood flow from the atrium
to the ventricle. Computational models of theMV dynamics within
the left ventricle (LV) permit to better understand the interaction
between the blood flow and the valvular elements. However, mod-
eling the dynamics of a natural MV is an open challenge and a
complete description of the mitral dynamics during its interaction
with the incoming flow is still lacking. In fact, time/space resolution
of the in-vivo heart scans is still insufficient to provide a valid
recording of the valve geometry during its motion. Furthermore,
the mechanical properties of the valvular tissue, neither homoge-
neous nor isotropic, are known only approximately and on average
terms.

To overcome these problems, some authors dealing with car-
diac fluid motion treated the presence of the MV without an
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explicit modeling but, for example, imposing kinematic bound-
ary conditions at the inlet orifice, varying the inclinations of the
transmitral velocity or changing the inlet profile [1,2]. Although
those procedures may be able to reproduce the principal charac-
teristics of the intraventricular blood flow, they cannot provide
a description of the FTI phenomena associated with MV motion.
The first attempts to simulate and analyze the dynamics of a nat-
ural MV was made using the Immersed Boundary Method (IBM),
a finite difference method that couples an Eulerian description
for the blood flow to a Lagrangian description for the immersed
structure [3,4]. The most recent and advanced IBMmodels include
hyperelastic constitutive material models, finite strain deforma-
tions and geometries derived from in vivo experimental data [5–
9]. Most of these presented fully integrated MV–LV models, in
which the geometry is derived from clinical images and takes into
account left ventricle contraction, nonlinear soft tissue mechanics
as well as the fluid–structure interaction between the MV, LV and
the blood and probably represent the most accurate FTI solution
available to date [10]. However, the uncertainty of patient-specific
parameter identification, the uncertainties in MV geometry recon-
struction from imaging data and the limited information available
on properties of the differentMVelements do not ensure a superior
accuracy of a complete MV modeling with respect to carefully
designed inlet boundary conditions for LV fluid dynamics.

Physically, the MV leaflets are almost passive structures that
open with the flow with minimal resistance (mainly due to their
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elastic response to bending, which involves slight deformations),
with a geometric configuration that cannot vary much for a given
degree of opening.

Therefore in this work, and with the perspective of potential
clinical applications, we follow an intermediate approach between
the complete modeling of FTI, which would require information
about tissue properties that are not available at an individual level,
and the usage of valveless orifices with given boundary conditions,
which do not include any FTI effect. In this approach, the valve
geometry is assumed as known and itsmotion ismodeledwith just
one degree of freedom, the valvular opening (ϕ), while its dynamic
equations are derived from integral balances. This MV model is
included in a numerical solution of fluid mechanics based on the
Immersed Boundary Method, with the blood modeled as a Newto-
nian incompressible fluid. The LV is described as a set of prescribed
moving boundaries obtained from Magnetic Resonance Imaging
(MRI) and its imposedmotion represents the inner kinematic forc-
ing condition of the system. The geometry of the MV, following a
previouswork [11], is here described by amathematicalmodel and
its one-degree-of-freedommotion description allows a substantial
simplification of the structural part in the FTI problem.

Whereas a completemodeling of tissuemechanics is best suited
to uncover general physical/physiological phenomena of FTI in MV
dynamics, this kind of models is potentially more adequate for
clinical applications. The valve geometry can be evaluated from
imaging in a few instants (typically in the fully-open and fully-
closed configurations, that last little longer) and then its time-
varying geometry reconstructed for various degrees of opening.
The global elastic parameters can thus be estimated to ensure
the functional congruence with few observable information about
valve motion without requiring explicit knowledge of inaccessible
tissue properties.

The proposed simplified approach is used here to better under-
stand the role of elasticity, or stiffness, in the dynamics of the valve,
to understand how it influences either the timing or the amplitude
of MV motion. The analysis will be performed in the case of both a
healthy and a pathological ventricle and the results are discussed
in relation of clinical observables.

2. Methods

2.1. Mathematical definition of the mitral valve geometry

The mitral valve presents two distinct asymmetric leaflets: a
larger one on the anterior side of the heart and a smaller posterior
one. The geometry of the valve is described here by an analytical
model as a two-dimensional surface [11]:

Xv (ϑ, s) = Rcosϑ (1 − scosϕ) − εRscosϕ ,

Yv (ϑ, s) = Rsinϑ (1 − skcosϕ) ,

Zv (ϑ, s) = −s2
(
1 + k
2

+ ε cosϑ +
1 − k
2

cos 2ϑ
)
Rsinϕ .

(1)

In this representation, s represents the longitudinal parametric
coordinate, from the annulus to the trailing edge, and ϑ is the
circumferential parametric coordinate as sketched in Fig. 1. The
parameters R, ε and k are three characteristic parameters of the
valve, whose values are fixed to a realistic set. R = 1.1 cm is
the radius of the mitral annulus, ε = 0.3 is a dimensionless
parameter representative of the asymmetry of the valve leaflets
and k = 1/3 is a dimensionless parameter giving the degree
of the ellipticity of the mitral orifice. The opening angle of the
valve, ϕ, is the parameter describing the movement of the valve
in a one-degree-of-freedom formulation; it normally spans from 0
(closed) to π/2 (fully open) and, for each intermediate value, the
geometrical configuration of the valve is given by Eq. (1).

Fig. 1. Three-dimensional view of the valve with indication of the parametric
coordinates. The longitudinal coordinate s spans from the annulus (s = 0) to the
trailing edge (s = 1). The circumferential coordinate ϑ originates from the anterior
side in the anti-clockwise direction (seen from top). The anterior leaflet is centered
at ϑ = 0 while the posterior leaflet is centered at ϑ = π . Graph refers to ϕ = π/4.

The analytic geometry (1) was chosen for its simplicity and for
reproducibility; however, any more realistic geometry Xv (ϑ, s),
either analytical [6,12] or extracted from images, could be used.
The simple shape (1) has several limitations. The mitral annulus
is modeled with a circular planar profile and constant dimen-
sion, whereas, from an anatomical point of view, it has a three-
dimensional saddle shape that relaxes during diastole, slightly
increasing its area compared to systole. Furthermore, the commis-
sure of the Mitral valve, which is here modeled as a straight seg-
ment, is rather a more C-shaped line. From an anatomical point of
view the leaflets are connected to the LVwalls by chordae tendinae,
tendons that originate from the papillary muscles at the base of
the ventricle and have the function to prevent the eversion of the
flaps in presence of high ventricular pressure during systole. Those
tendons are not modeled in this work but their role is simulated
imposing that the valve cannot move beyond the complete closure
ϕ = 0.

2.2. Left ventricle geometry

The LV geometry is reconstructed from clinical MRI recordings
as previously described [13], which provided the coordinates of
some material points during the heartbeat. The LV surface is de-
scribed by the position vector X (ϑ, s) that depends on the para-
metric coordinate ϑ along the circumference and the longitudinal
one s from the annulus to the LV apex, as sketched in Fig. 2.

The analysis is performed in correspondence to two different
LV geometries, one from a healthy subject and one from a patient
with a dilated cardiomyopathy. The tele-diastolic volume of the
normal ventricle is 113.48 ml while that of the dilated ventricle
is 199.30 ml. The ejection fractions of the normal ventricle and of
the dilated ventricle are equal to 59% and to 29% respectively; Fig. 3
shows the geometry of the two LVs and the volumetric profiles.

A portion of the aortic artery and a portion of the atrium, mod-
eled as tubular structures, are included for avoiding the formation
of jets and mixing in the open space external to the ventricle
(Fig. 4). Finally, the circular aortic valve (with radius 0.75 cm)
is modeled simply as a plane wall which is either fully opened
(systole) or fully closed (diastole).
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Fig. 2. Three-dimensional view of the healthy LV wall with indication of the
parametric coordinates. The longitudinal coordinate s spans from the apex (s = 0)
to the valvular plane (s = 1). The circumferential coordinate ϑ starts from 0 on the
positive x axis in the anti-clockwise direction.

2.3. Mathematical definition of the mitral valve motion

The motion of the valve leaflets is described by deriving a
differential equation for the opening angle. Extending a previous
formulation [11], the mitral valve motion is driven by the blood
flow and it is hampered by the resistance to deformation due to its
small stiffness.

The contribution due to the flow is determined, instant by
instant, by imposing the conservation of mass at an integral level
assuming a valve that would move without any resistance other
thanmaintaining its own shape. For this purpose, we first consider
the rate of volume of fluid crossing the valve

If (t, ϕ) =

∫
SMV

(v · n) dS; (2)

where v is the local fluid velocity, SMV is the surface of the MV and
n is the unitary normal to the surface. For mass conservation, the
integral (2) should be equal to the rate of volume of fluid spanned

Fig. 4. Three-dimensional view of the complete geometrical model used in the
simulation in the case of healthy ventricle.

by the moving valve

Iv (t, ϕ) =

∫
SMV

(V v · n) dS; (3)

where V v is the velocity of the valvematerial points. Recalling that
the valve geometryXv (ϑ, s) is described in function of the valvular
opening then the velocity can be expressed in general as

V v (ϑ, s) =
dXv

dϕ
dϕ
dt

; (4)

proportional to dϕ/dt . Therefore, the integral (3) can be rewritten
as

Iv (t, ϕ) = I0 (ϕ)
dϕ
dt

; (5)

where I0 is the integral (3) computed with velocity for unitary rate
of opening, V v = dXv/dϕ.

An application of mass balance in global terms results in the
equality between the volume of fluid crossing the valve and that
allowed by valvular displacement. Therefore, equating Eqs. (2) and
(5), gives the differential equation that governs the motion of a

Fig. 3. Two-dimensional longitudinal section of a healthy ventricle (a) and a dilated ventricle (b) at the end of systole (t = 0) on a plane parallel to the z-axis passing
containing both valves; and (c) corresponding time profiles of the LV volume.
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valve completely driven by the blood flow, without any additional
resistance
dϕ
dt

=
If (t, ϕ)

I0(ϕ)
= I (t, ϕ) . (6)

This equation represents the equation ofmotion for a valvewith
no elastic recall. Since the density of the valve is comparable to
the one of the fluid it is immersed in, the valve is here considered
massless, thus the absence of the acceleration term.

The elastic resistance due to the deformation of the valve in-
duces a second term to be added in Eq. (6) that depends on the
tissue elasticity and can be estimated from global considerations.

To describe the tissue behavior in global termswe have adopted
a neo-Hookean, homogeneous isotropic and incompressible ma-
terial model, therefore the elastic energy stored in the deformed
body is given by the strain energy function (SEF)

SEF = C ∗ W = C ∗ (I − 3) ; (7)

whereW = (I−3) is the dimensionless strain energy function, and
I = λ1

2
+ λ2

2
+ λ3

2 is the first invariant of the deformation tensor
(where λi are the principal deformations). In this formulation,
the value J = 3 represents the reference zero corresponding to
the absence of deformation (all λi = 1). Finally, C represents a
dimensional elasticity constant that globally characterizes all the
unknown properties of the leaflets material. When dealing with
continuous medium subjected to large deformations, the restoring
force can be derived by the differential of the strain energy function
with respect to the appropriate measures of deformations. In this
case, any deformation depends on a single parameter, the open-
ing angle ϕ, therefore, the elastic restoring force can be formally
written

R (ϕ) =
d(SEF)
dϕ

= C
(
dW(ϕ)
dϕ

)
= CF(ϕ); (8)

where C also depends on the adopted deformation tensor in the
evaluation of the strain energy function.

The equation that governs the motion of the massless valve
is thus obtained by combination of the forcing term (6) and the
resistance term (8) which is added to include the elastic recall
dϕ
dt

= I (t, ϕ) − CF (ϕ) ; (9)

In this formulation all the material and geometrical properties
of the valve are included in the coefficient C; which becomes, di-
mensionally, the inverse of a characteristic time of elastic closure.

The equation of motion (9) does not include the inertia of
the valve that is assumed with no added mass with respect of
the surrounding fluid; differently, the fluid inertia is implicitly
accounted in the formulation (6) or (9). In fact, while in a complete
fluid–structure interaction model the fluid inertia is included by
fluid pressure, in this formulation the valve moves accordingly to
the fluid velocity, and the dynamics of the fluid is dictated by the
complete Navier–Stokes equations. Therefore, the velocity values
of the fluid that surrounds the valve and that drives its motion
evolve following dynamic equations that include the inertia of the
fluid itself.

Eq. (9) requires to evaluate the function W (ϕ) that is obtained
from the first invariant of the deformation tensor I. Since the
valve is modeled as a two-dimensional spatial surface (1), the
deformations can be described for each value of the opening angle
ϕ by a symmetric 2 × 2 tensor, starting from the undeformed
configuration at ϕ = 0. The generic strain tensor is evaluated
through the integration over time of the strain rate tensors. The
strain rate tensor SR(s, ϑ, t) is the symmetrical part of a tensor
S(ξ, t) which is the time derivative of the deformation gradient
tensor F

S (ξ, t) =
∂F
∂t

=
∂

∂t

[
∂Xv (X, t)

∂ξ

]
=

∂

∂ξ

[
∂Xv (X, t)

∂t

]

=
∂

∂ξ
[vv (X, t)] ; (10)

where ξ stands formally for the physical spatial coordinates of
the material points on the valvular surface. Thus the individual
component of SR (s, ϑ, t) can be expressed

SRij =
1
2

(
Sij + Sji

)
=

1
2

(
1
hj

∂V v

∂xj
τi +

1
hi

∂V v

∂xi
τj

)
; (11)

where the indices i and j take the value s orϑ . The τ i(s, ϑ, t) are the
local unit tangent vectors and hi(s, ϑ, t) are themetric coefficients,
the physical lengths of the unit coordinates increment [14].

The strain rate tensor SR(s, ϑ, t) is proportional to the gradient
valvular velocity, and the latter can be expressed as proportional
to ∂ϕ/∂t with a proportionality constant that depends on the
differential deformation associated to the different geometric con-
figuration expressed by the angle ϕ. Therefore, in analogy to (5),
the strain rate tensor can be expressed as

SR (s, ϑ, t) = SR0 (s, ϑ, ϕ)
dϕ
dt

; (12)

where SR0 is the unitary strain rate tensor, computed from (11)
with unitary rate of opening, V v = dXv/dϕ, that expresses the
changes in valvular deformation when varying the parameter ϕ.
The strain tensor St (s, ϑ, t) is therefore obtained by time inte-
gration of the strain rate tensor function, that can be recast as
an integration of the unitary tensor over ϕ, from the undeformed
configuration to the generic position ϕ(t)

St (s, ϑ, ϕ) =

∫ t

0
SR (s, ϑ, t) dt =

∫ ϕ

0
SR0 (s, ϑ, ϕ) dϕ; (13)

Fig. 5 shows the 3 terms of the deformation tensor (13) for
ϕ = 0,ϕ = π/4,ϕ = π/2 through a chromatic scale on the surface
of the valve for providing a perception of the deformation pattern
in the model.

The principal deformations, λ1 and λ2, are then evaluated as
the eigenvalues of the strain tensor St while the third principal
deformation in the direction normal to s and ϑ is obtained by
incompressibility constrain as λ3 = 1/(λ1λ2). From these, the
strain energy function W (s, ϑ, ϕ) is evaluated at each point and
its surface integral gives the global strain energy functionW (ϕ, t).
Eventually, the function F (ϕ) to be inserted in the evolution equa-
tion (9) is the derivative ofW (ϕ, t) with respect to ϕ. The resulting
function is shown graphically in Fig. 6.

2.4. Physical interpretation of the mitral valve parameter

The global elastic coefficient, C , has the dimensions of a fre-
quency. In order to investigate its physical meaning, the elastic
recall leading to valvular closure was first analyzed in the absence
of blood flow starting from the fully open configuration. In this
case, the equation that regulates the valve motion is

dϕ
dt

= −CF (ϕ) ; (14)

with initial condition ϕ (0) = π/2.
When C > 0 the valve tends to close; the results of Fig. 7

show that the larger is C and the quicker is the elastic closure. The
link between the constant C and the characteristic closing time is
found by comparing the instants tϕ in which the opening angle
of the valve is reduced to a certain amount ϕ. Fig. 8 shows the
results for reaching a closure ϕ = π/4,π/6 andπ/10 respectively,
as C varies, and the bi-logarithmic representation demonstrates
that the time to reach the prescribed degree of closure has the
form tϕ = AϕC−1 where the coefficient Aϕ depends on the chosen
closure angle while the exponential behavior does not.
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Fig. 5. Valve strain values for ϕ = 0, ϕ = π/4, ϕ = π/2 represented through a chromatic scale on the surface of the valve. The reference color scale for the strain
values is reported on the right. For simplicity, the valve is always represented in its undeformed closed configuration while the colors are used to represent the value of the
components of the strain tensor in the different material points of the valve surface. The first column displays the strain along the (radial) direction s, the second column the
strain along (circumferential) direction ϑ and the third column displays the shear deformations. The three rows correspond to different degree of opening from undeformed
configuration (top row), where all strain values are equal to zero, to opening angle of π/4 (mid row), to complete opening angle π/2 (bottom row).

In conclusion, by scaling the time with the parameter C , all
the curves in Fig. 7 collapse in a single curve. Therefore, the pa-
rameter C is inversely proportional to the valve closure time in
absence of blood flowand represents, fromaphysical point of view,
the characteristic response frequency of the valve. This simple
parametrization of valvular elasticity was designed to provide an
initial understanding of the influence of elastic recall to valvular
dynamics.

2.5. Mathematical definition of the fluid problem and numerical
method

The fluid–tissue interaction is here simulated using the Im-
mersed Boundary Method. The IBM is a finite difference method
which couples a Eulerian description for the blood flow, which is
heremodeled as a Newtonian incompressible fluid, to a Lagrangian
description for the immersed structure. The Eulerian computa-
tional domain is a three-dimensional square box described by a
Cartesian coordinate system x, y, z. The geometric models of the
left ventricle and of the valvular plane containing the mitral and
aortic valves are immersed in the computational Cartesian box.
The moving surfaces are described by the Lagrangian coordinates
of their material points X(s, ϑ, t), whose velocities therein are
dX/dt . This velocity is imposed at the corresponding position of

the Cartesian grid, thus putting in relation Lagrangian and Eulerian
descriptions as extensively described in previously works [15,16].

The initial instant corresponds to the beginning of the diastole
phase, here the MV starts from the closed configuration and im-
mediately opens while the aortic valve is closed. The flow starts
from rest and the simulation is performed for several heartbeats
to ensure the periodicity of the solution and avoid an influence
from the initial conditions. For each instant t the position and the
velocity of the LV wall are imposed as derived from MRI data. The
velocity boundary conditions are imposed on all the solid walls,
including the MV leaflets.

The fluid velocity is advanced over time by the Navier–Stokes
and continuity equations, written on the Cartesian system of coor-
dinates
∂v
∂t

+ (v · ∇)v = −∇p + ν∇
2v

∇ · v = 0
; (15)

where t , v, p, and ν are the time, velocity, kinematic pressure,
and kinematic viscosity (3, 3 x 10−6 m2/s) respectively. The above
system of equations is solved in a computational bi-periodic box
with a standard fractional step method using a mixed spectral-
finite differences scheme, with the LV wall and the MV immersed
therein. The Navier–Stokes equation is solved on a 3D staggered
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Fig. 6. Graphical representation of the function F (ϕ) for this mitral valve model.

Fig. 7. Opening angle over time as C varies, in the absence of blood flow.

grid with a third order Runge–Kutta method for the temporal
advancement. Second order centered finite differences are used for
the spatial discretization. The mass conservation is then satisfied

solving the Poisson’s equation for the instantaneous irrotational
correction of the pressure field, which is performed in a x–y Fourier
space, allowing fast solutions. At the boundaries along the z direc-
tion, free-slip, impermeable boundary conditions are enforced. In
parallel to the flow advancement, the motion of the mitral valve
is advanced in time using Eq. (9) for the angle ϕ(t). Extensive
descriptions of the numerical method and of its validation are
given in previous works and they are omitted here [11,17,18].
For reference, in this case simulations are performed on a box of
dimension 12× 8× 8 cm using a numerical grid 128× 128× 160.
The time step has been fixed equal to T/2048 s, a typical value
to satisfy the stability conditions, where T is the heartbeat period
assumed equal to 1 s.

3. Results

Complete numerical solutions are performed in correspon-
dence of different values of the MV elastic parameter C with the
objective of uncovering the phenomena that are influenced by the
mechanical properties of the valve. To this aim, the results relative
to the following set of 5 values C = [0, 0.1, 0.5, 1, 3] are analyzed
in correspondence of both healthy and dilated LVs.

Themost representative parameter of the FTI is the time profile
of the opening angle ϕ(t). This is reported in Fig. 9 for the reference
case of no elasticity (C = 0) with the time profile of LV volume in
both the normal and dilated LVs. The valve presents a very rapid
opening at the onset of diastole and rapid closure at the onset of
systole, with a more irregular pattern in the case of pathological
ventricle (which is partly related to the irregularities observed in
the motion of the ventricle itself and partly to the weakness of the
transmitral flow). The results in Fig. 10 are extended for different
values of MV elasticity. They show that the amplitude of opening
decreaseswith increasing value of elastic parameter C , because the
valve becomes stiffer and has a larger recall to the undeformed
closed position. This behavior is analogous for both normal and
dilated ventricle. A remarkable difference between the two cases
can be noticed during the diastasis phase when the valve is able to
reach a complete closure only in the dilated case (about t = 0.5)
as C ≥ 0.1, because the limited transmitral flow is insufficient
for keeping the valve open. The opening of the valve during the
atrial systole phase is also smaller because the variation in volume
determined by the atrial contraction is less intense than in the case
of the healthy ventricle. In both cases the valve presents a lower
motility for increasing elasticity C .

The decrease of themaximumopening angleϕmax for increasing
stiffness C is shown in Fig. 11(a). It shows that the maximum

Fig. 8. Time required to reach, in absence of flow, a value of the opening angle equal to π /4, π /6 and π /10 as a function of the elastic parameter C . Linear scales (a) and (b)
bi-logarithmic representation.
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Fig. 9. Time profile of the mitral valve opening angle (left scale) and of the LV volume (right scale) in the reference case of no elasticity C = 0 for healthy (a) and dilated
ventricles (b).

Fig. 10. Time profile of the mitral valve opening angle with varying the parameter C in the case of healthy (a) and dilated ventricles (b).

opening is comparable between the normal and pathological con-
ditions, decreasing with C according to a non-linear law. It is
possible to explain this phenomenon considering that the effect
of R (ϕ), being proportional to the deformation, is greater in the
phase of maximum opening but smaller in the other phases. This
mitigates the overall effect of the increasing of the constant C .
Differently from before, the timings of mitral valve opening and
closure, reported in Fig. 11(b), differ between the case of normal
and dilated ventricle as these are dictated by the LV volume rate
while they are almost independent from C . These results suggest
that the maximum degree of MV opening depends essentially on
the mechanical characteristics of the valve and not much on the
motion of the ventricle; vice versa, the open/close timings are
weakly affected by C as they are driven by the transmitral flow.

The displacement rate, dϕ/dt , of the MV, shown in Fig. 12,
shows that the presence of C can either dampen or amplify the
fluctuations in the different phases of the cycle, depending on
the balance between flow-induced force and the energy stored
in the elastic potential when opening is large. The corresponding
maximum rate of opening, dϕ/dtmax, and of closure, dϕ/dtmin,
are shown in Fig. 13. As expected dϕ/dtmax during the opening
phase decreases with increasing C because of the additional re-
sistance given by the valve. The value dϕ/dtmin during closure
also decreases in absolute value with increasing C . In this case the
opposite would be expected since the closing phase is accelerated
by R (ϕ), however, since to a greater value of C corresponds a
smaller opening angle ϕmax, the elastic restoring forcing is weaker
and this effect is more relevant than the higher elastic recall.

Overall, these results suggest that a characterization of valvu-
lar stiffness could be obtained by regular imaging technologies,

like echocardiography, by simply reading the maximum degree
of opening (or analogous measures of MV opening amplitude)
without significant influence or confounding factors associated
to differences in LV flow rate. In particular, in the perspective
of clinical applications, measurements of MV opening amplitude
could reveal variations in stiffness within the same subject over
time, thus allow monitoring the progression of a valvular disease.

The valvular elasticity is expected also to have a dynamic in-
fluence on the transvalvular pressure gradients between the left
heart chambers. The pressure gradient can be viewed as the force
required for driving the blood flow and to overcome any resistance
encountered by that. The graphs in Fig. 14 show the pressure dif-
ference during the diastolic filling phases at varying C values, both
for the healthy ventricle (a) and for the dilated one (b). Pressure
difference is evaluated between two points across the valve orifice,
one on the atrial side and one on the ventricular side at the end
of the valve, such that a negative gradient corresponds to a lower
ventricular pressure with respect to the atrium. In both cases and
for each value of C the gradient is higher during early diastole,
when the inlet flow is larger, then it decreases until the left atrium
contraction which causes a second peak. This behavior is more
evident in the healthy ventricle while the dilated case shows a
more irregular pattern due to the fusion between the two diastolic
waves. It can be seen how an increase in the value of C corresponds
to an increase in the pressure gradient, because the valve is stiffer
andmakes a higher resistance to flowing;moreover, themaximum
opening angle decreases, leading to a narrower mitral orifice that
opposes a further higher resistance to the flowing blood. These lead
to an increase in the inlet fluid velocity and in the atrium–ventricle
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Fig. 11. Maximum opening angle as a function of the parameter C in the case of a healthy ventricle (black) or a dilated ventricle (red) (a). Instants of the complete opening
and of complete closure of the valve as function of the parameter C in the case of a healthy ventricle (black) or a dilated ventricle (red) (b).

Fig. 12. Valve speed over time as a function of the parameter C in the case of the healthy ventricle (a) and in the case of the dilated ventricle (b).

Fig. 13. Maximum opening speed as a function of the parameter C in the case of a healthy ventricle (black) or a dilated ventricle (red) (a). Maximum closing speed as a
function of the parameter C in the case of a healthy ventricle (black) or a dilated ventricle (red) (b).

acceleration that in turn cause an increase in the downstream
kinetic energy. This increase in the ventricular blood kinetic energy
can then lead to a greater degree of turbulence.

4. Conclusion

This study presents a numerical model of LV fluid dynamics,
where the chamber’s motion is derived from magnetic resonance
images and a simplified fluid–structure interaction model is em-
ployed for the MV, with the only aim to understand the influence

of leaflets elasticity. An integral approach for MV dynamics is em-
ployed to reduce the problem of limited knowledge for individual-
specific mechanical properties of the MV tissues and an original
formulation of elasticity is introduced. Although a complete solid
model with flow–tissue interaction would represent a more rigor-
ous approach to valvularmotion, such a rigorous approach requires
the specification of material parameters that are not known and
not measurable, and introduces the uncertainty about the physical
representativeness of those parameters. Having this in mind, the
proposed simplified approach, with a valve that is functionally
characterized by a single parameter representative of its overall

8



118 C. Celotto, L. Zovatto, D. Collia et al. / European Journal of Mechanics / B Fluids 75 (2019) 110–118

Fig. 14. Pressure gradients across the MV as a function of the parameter C in the case of a healthy ventricle (a) or a dilated one (b), measured during the diastolic phase. The
segmented line represents the ventricle volume over time.

mechanical behavior, is used to provide general indications about
how an increase of elasticity alters the dynamics of the valvular
leaflets, giving a response to elastic recall not qualitatively influ-
enced by the model used.

Results show how the increase of the valvular stiffness has a
main influence in terms of reducing valve opening and its maxi-
mum velocity, while it does not affect – for a given LV volume rate
– the timings of opening and closure that are essentially driven by
the transmitral blood flow. The increase of valvular stiffness also
influences the transmitral pressure gradients causing significant
increases during the diastolic filling phase. This increased gradient
is accompanied by a rise in the inlet flow velocity which may give
rise to higher degrees of turbulence in the LV.

This is a preliminary study that presents several limitations. The
analytical description of the MV represents a first approximation
of a realistic anatomical geometry. The valve is also described by a
single degree of freedom, while at least two independent leaflets
should be considered for realistic models. This was a minimal
methodological approach; however, the same approach can ex-
tended with relative ease to conditions that are more realistic.

The developed valvular model included a number of simpli-
fications, for example it is characterized by a simple geometry
identified by a single degree of freedom. This representation is ob-
viously not entirely realistic, although it allows reproducibility in
future studies. On the other hand,models based on fewparameters
have the chance to allow reliable estimations in patient-specific
conditions from the few information effectively available from
imaging. These preliminary results suggest a mean for monitoring
the variation of valvular stiffness in clinical applications.
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