
RAY SPACE TRANSFORM INTERPOLATION WITH CONVOLUTIONAL AUTOENCODER

L. Comanducci, F. Borra, P. Bestagini, F. Antonacci, A. Sarti, S. Tubaro

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

ABSTRACT

In this paper we propose an algorithm for the reconstruction of the
Ray Space Transform (RST) through the use of neural networks.
In particular, our aim is to reconstruct the magnitude of the RST
acquired from a linear microphone array, as if the array were com-
posed by a larger amount of microphones. This is useful for applica-
tions that need a higher RST resolution when only a limited amount
of microphones can be used due to practical constraints or physical
limitations. The proposed solution leverages recent advancements in
deep learning as it is based on a fully convolutional autoencoder. To
validate our method, we show through a simulative campaign that
it is possible to improve sound source localization using the recon-
structed RST compared to the use of the original RST.

Index Terms— Ray space, source localization, deep learning,
convolutional neural networks

1. INTRODUCTION

Space-time audio processing has gained large interest in the research
community for the applications in virtual reality, hands-free com-
munication, video-conferencing, as well as other fields. Within this
context, in this paper we propose a deep learning solution aimed
at interpolating the signals acquired by a linear microphone array
where some microphones are missing, to obtain the RST that would
have been estimated by the complete microphone array.

The Ray Space [1] is a space where a point corresponds uniquely
to an acoustic ray (i.e. a straight line along which acoustic energy
travels). If a proper parameterization of rays is adopted, rays de-
parting from an acoustic source are mapped in the Ray Space onto
linear patterns [2]. The parameters of these patterns are uniquely
determined by the source location and the array geometry. The Ray
Space Transform (RST) [3] is a linear operation that maps array data
on the Ray Space in a sub-band-wise fashion.

The intuition behind the proposed work is that, as rays coming
from the same acoustic object are naturally clustered in the ray space
onto linear patterns, magnitudes of RSTs can be considered as im-
ages showing characteristic shapes and patterns that can be easily
learned through Convolutional Neural Networks (CNNs). It is then
possible to reconstruct RSTs by exploiting CNNs principles used to
solve interpolation or super-resolution problems in the image pro-
cessing literature.

The use of learning-based procedures for space-time process-
ing is not novel in the literature. In one of the first applications of
neural networks to the problem of source localization [4], the au-
thors estimate the direction of a sound source from the signals de-
tected by two directional, spatially separate receivers. In [5], the
authors use an architecture based on deep neural networks (DNN)
to localize a source in a room, possibly also keeping into account
audio captured in other rooms. The input provided to the network
consists of the Generalized Cross Correlations of the microphones

within the arrays in use. In [6], the authors feed the phase compo-
nent of the short-time Fourier transform coefficients of the received
microphone signals into a CNN to estimate the broadband Direction
Of Arrival (DOA). More in general, learning-based procedures are
used, as an example, also in [7], where authors address the problem
of single source localization in ad-hoc microphone networks through
a Bayesian inference approach.

In this work, we aim at recovering the magnitude of the Ray
Space Transform of a complete array (in the following complete
RST) from the corrupted Ray Space Transform obtained from an ar-
ray with missing microphones (undercomplete RST). This is useful
for applications based on RST analysis, whenever a complete micro-
phone array cannot be deployed in the environment due to physical
limitations or cost constraints. We adopt a specific CNN architec-
ture known as fully convolutional autoencoder [8, 9]. During train-
ing, the network receives as input pairs of images representing the
magnitude of a simulated complete and undercomplete RSTs, and
learns the correspondence between the two inputs for a set of train-
ing source positions. During training, only one source is active at
any time. During test, the network is fed with the undercomplete
RST where more than one source is active, and produces an estimate
of the complete RST. The ability of the network to estimate the RST
of multiple sources even if training has been conducted with only a
single source active, demonstrates the capability of the network to
generalize.

In order to evaluate the effectiveness of the proposed system,
we show that by using the proposed RST reconstruction method it
is possible to achieve higher localization accuracy than using the
original RST acquired with fewer microphones.

2. SIGNAL MODEL AND PROBLEM STATEMENT

In this section we first define the array signal model adopted, then
we review the Ray Space Transform and finally we formulate the
problem.

The signal received at the lth microphone of the array can be
modeled, in the frequency domain, as

P (rl, ω) =

N∑
n=1

G(rl, r
′
n, ω)Sn(ω) + el(ω), (1)

where ω is the angular frequency, rl = [xl, yl]
T is the position of

the lth microphone, r′n = [x′n, y
′
n]
T and Sn(ω) are the position

and the signal emitted by the nth source, respectively, N is the to-
tal number of sources, el(ω) is the lth microphone additive noise,
and G(rl, r

′
n, ω) is the channel frequency response between the lth

source and the nth microphone. The signals acquired by an uniform
linear array, can be conveniently mapped in a domain known as ray
space through the Ray Space Transform [3]. The ray space consists
in the (m, q) coordinates of lines on which acoustic rays lie, where
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Fig. 1: Example of the representation of a point source r′n in the
geometric space (a) and in the ray space (b)

m and q are the slope and intercept of the line on the y axis, respec-
tively. In a dual fashion, acoustic rays departing from a point (x′, y′)
in the geometric space are mapped onto the line q = −mx′ + y′ in
the ray space, as shown in Fig. 1. If we have a uniform linear ar-
ray of L sensors spaced by d and displaced along the y axis (i.e
xl = 0 ∀l, yl = (l − (L − 1)/2)d), the Ray Space Transform is
defined as

[Y]i,w(ω) = d

L−1∑
l=0

P (rl, ω)e
−j ω

c

ylmw√
1+m2

w e
−π (yl−qi)

2

σ2 , (2)

where [·]i,w indicates the (i, w)th element of a matrix, c is the speed
of sound, while qi = q̄(i − (I − 1)/2), i = 0, . . . , I − 1, mw =
m̄(w−(W−1)/2), w = 0, . . . ,W−1 denote the samples on them
and q axes, respectively, I and W are the number of samples in the
Ray Space and σ is the width of the Gaussian window. As we can see
from (2), the RST employs a sliding Gaussian window modulated by
a complex exponential to map the microphone array signal onto the
(m, q) ray space domain. When dealing with wide-band signals, it
is useful to define a wide-band extension Y ∈ RI×W of the RST.
In particular, it is computed as the geometric mean, over all the K/2
frequency bins, of the magnitude of the RSTs |Y(ωk)| [3].

In this paper, we deal with uniform linear array where random
missing microphones are present. In this scenario, if we defineP and
M as the set of present and missing microphone index, respectively,
the signal at the lth microphone is given by

P (rl, ω) =

{
0 l ∈M∑N
n=1G(rl, r

′
n, ω)Sn(ω) + el(ω) l ∈ P.

(3)

Given the model in (3), the RST and its wide-band extension are
modified accordingly. In particular, let us call Ỹ the wide-band un-
dercomplete RST. As an example, Fig. 2a) and Fig. 2b show the
absolute value of complete and undercomplete wideband RSTs, re-
spectively. Our goal is to find an operator U that, given as input Ỹ
is able to reconstruct an estimate Ŷ of the complete RST Y , as in
Fig. 2c, i.e Ŷ = U

(
Ỹ
)

. In the following we propose a solution to
find the operator U that adopts a learning-based approach.

3. PROPOSED SOLUTION

In order to reconstruct the information lost in the undercomplete
RST, we propose a solution based on a specific CNN known as con-
volutional autoencoder, inspired by the application of such archi-
tecture to many image restoration problems [8, 10]. Other types of

techniques, such as low-pass filtering, simply extrapolate from the
available information, but in any case they do not take advantage of
a-priori knowledge as reconstruction through CNNs does. In the fol-
lowing, we report all the details about the autoencoder architecture,
its training strategy, and we explain how to deploy it at testing time.

3.1. CNN Architecture

We propose a CNN whose input is a 64 × 64 sample image repre-
senting the magnitude of a wide band undercomplete RST Ỹ . The
CNN output is a 64 × 64 sample image representing the estimated
magnitude of the complete RST Ŷ . This complete RST estimate
can then used for source localization, as well as for other problems
tackled in the Ray Space.

The CNN we propose is a fully convolutional autoencoder [9].
This means that only convolutional layers and non-linear activations
are used. As any autoencoder, the proposed architecture can be split
into two parts known as encoder and decoder. The proposed encoder
is composed by a series of five 2D convolutional layer with the fol-
lowing parameters: i) 256 filters of size 6 × 6 and stride 1 × 1; ii)
128 filters of size 5× 5 and stride 2× 2; iii) 128 filters of size 4× 4
and stride 2 × 2; iv) 64 filters of size 4 × 4 and stride 2 × 2; v) 32
filters of size 3× 3 and stride 2× 2.

The structure of the decoder is the same one of the encoder
where the numbers and sizes of the filters are reversed, and trans-
posed convolutions are used instead of normal convolution. The only
exception is the last layer, which makes use of a single filter followed
by rectified linear unit (ReLU) non-linearity in order to return a one-
channel 64×64 sample image. In preliminary simulations we tested
that ReLU performs better with respect to other smoother activations
functions such as the sigmoid.

The whole architecture implementing the operator U is the con-
catenation of the encoder and decoder. In order to choose the pre-
sented model, we preliminarily tested the performance of different
types of architectures. In particular, we considered the same archi-
tecture presented here and all the possible combinations given by the
addition of both a batch normalization and a ReLU layer after each
convolutional one. The results showed that the chosen architecture
exhibits the best trade-off between performance and simplicity.

Notice that, even by fixing the input resolution to 64 × 64, it is
still possible to apply the proposed architecture to RSTs of different
size. Indeed, in our experiments, we resize slightly larger RSTs to
64 × 64 sample using bilinear interpolation [11]. Then we re-scale
the output back to its original size. However, working with a network
with such a small input enables to greatly reduce training time, as
well as the amount of needed training data.

3.2. Training strategy

In order to properly train the proposed architecture, we need a set
of RST pairs representing Ỹ and Y for different source positions.
To this purpose, we consider a set of source positions S (train) =
{r(train)
n |n = 1, . . . , N (train)}. For each one of these sources, we gen-

erate two images: i) Ỹ (train)
n , which represents the wide band exten-

sion of the undercomplete RST; ii) Y (train)
n , which represents the wide

band extension of the complete RST. To generate the input RSTs, we
consider a reverberant environment where additive noise is present
at the microphones. The setting used to acquire the desired out-
put images is a free-field environment where no additive noise is
present at the microphones, allowing us to perform some kind of
super-resolution reconstruction of the images.
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Fig. 2: Example of the wideband extension of the RST obtained with a uniform array without missing microphones Y (a), with missing
microphones Ỹ (b) and the decoded image Ŷ (c), when two sources are present in the acoustic scene. Dashed lines represent the theoretical
position of lines due to the sources.
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Fig. 3: Representation of the training and test procedures.

In order to train the network, we use as loss function the mean-
squared error between the output of the autoencoder Ŷ (train)

n and the
ideal version of it Y (train)

n . Training is performed using Adam opti-
mizer with default parameters given in [12]. The number of epochs
(i.e the amount of times the optimizer iterates over the whole training
set) is empirically set to 500 in order to ensure network convergence.
The best model is picked as the one minimizing the loss over a small
validation set of data. CNN convergence is typically reached before
100 epochs, though. Notice that, in order to ensure numerical stabil-
ity in the optimization process, we normalize all input images in the
range [0, 1].

3.3. System deployment

Once the network is trained, we can use it to process new RSTs.
Given a RST Ỹ (test)

n acquired with missing microphones, we scale
it using bilinear-interpolation to a size of 64 × 64 sample. Then,
we normalize its sample values to span the range [0, 1]. We finally
feed this modified RST to the CNN. The output is a 64× 64 sample
image that can be resized and rescaled back to the original size, thus
obtaining Ŷ (test)

n .
Notice that, even though training is performed considering the

presence of a single source in the environment, test conditions can
be different. Fig. 3 shows the training and test pipeline in case one
source is considered in training, and two sources are considered for
testing (i.e., the challenging scenario considered in our experiments).
However, to augment the reconstruction capabilities of the network,
it is better, but not strictly necessary, to use the same configuration

of missing microphonesM both during training and test.

4. SIMULATION RESULTS

In this section we present the simulation results regarding the devel-
oped model, in order to show its effectiveness. First we present the
evaluation metrics, then we show the setup of the simulated acous-
tic scenes used for the tests. We finally present results regarding the
reconstruction capabilities of our network, also in terms of source
localization.

4.1. Evaluation metrics

In order to evaluate the quality of the reconstructed images we use
the Structural Similarity Index (SSIM) as defined in [13]. This mea-
sures the similarity between two images, and ranges between 0 (i.e.
very dissimilar images) and 1 (i.e. identical images).

As for the localization, we adopt the Root Mean Square Error
(RMSE) between the localized and actual source positions. More
specifically, let us consider N sources. The RMSE between the true
sources position rn and the estimated ones r̂n is defined as

RMSE =

√∑N
n=1 ||rn − r̂n||2

N
. (4)

4.2. Simulation setup

The setup considered in order to generate the train and test images is
shown on the left of Fig. 4. In particular we consider N (train) = 432
train sources and N (test) = 9 test sources. Notice that training and
test source positions never overlap.

The room configurations used in order to generate the input and
desired output images are summarized in Tab. 1. As source signal,
we used realizations of white Gaussian noise, considering a variance
of σ(train) = 0.05 for training and a variance of σ(test) = 1 for
test. In this way we show that our network is able to generalize to
signals not seen during the training phase. Moreover, test signals are
corrupted with a zero-mean Gaussian noise with fixed input signal-
to-noise ratio (iSNR) of 20 dB.

In all our experiments we considered that the index of the miss-
ing microphonesM is the same during training and test phase. In
particular we considered settings with a number of missing micro-
phone |M| ∈ {10, 20, 30, 40, 50}. The training was performed by
generating N (train) RSTs, each one of which is built considering
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Fig. 4: (Left) Simulation setup showing the array (•), training sources (◦) and test sources (�). (Right) RMSE and SSIM as a function of the
number of missing microphones. SSIM compares desired RSTs with input (◦) and decoded (•) ones.

Table 1: Room configurations used to generate the input and desired
output images.

Input Desired output
Room size (3× 6) ∞
Reflection coefficient ρ = 0.8 ρ = 0
iSNR 20dB ∞dB

only one emitting source placed in r
(train)
n . Conversely, in order

to generate the test RSTs, we considered the case of two acoustic
sources emitting at the same time, by enumerating all possible pairs
of N (test) sources that do not result in systematic errors in the ideal
case (e.g. aligned sources). For each configuration of missing micro-
phones, we considered 10 realizations of noise in order to generate
multiple RSTs for the same pair of sources.

4.3. SSIM results

On the bottom right of Fig. 4 we present results about RST es-
timation in terms of SSIM. Specifically, we compare the SSIM
obtained without using the undercomplete RST (i.e. Ỹ(test)

n com-
pared to Y(test)

n ), and the reconstructed RST (i.e. Ŷ(test)
n compared to

Y(test)
n )

The SSIM relative to the reconstructed images is higher if com-
pared to the SSIM relative to the input images, for all the number
of missing microphones considered. This shows that our network
is able to reconstruct images that are similar to the desired ones.
Clearly, as the number of missing microphones increases from 10 to
50, SSIM decreases. However, when the undercomplete RST shows
SSIM smaller than 0.1, the recovered RST still has SSIM greater
than 0.6.

4.4. Localization results

Source localization based on RST wideband extension is carried out
following the technique proposed in [14]. In a nutshell, localization
is accomplished by finding the peaks of the RST wideband extension
under analysis, and then performing a clustering operation followed
by linear regression. This enables to identify linear patterns corre-
sponding to the acoustic sources (see Fig. 2a). The number of lines

indicates the number of sources. The line equation is mapped into
a source position. We set the number of sought lines to two. As
proposed in [14], we used RANSAC algorithm [15] for fitting the
lines.

On the top right of Fig. 4, we show results in terms of local-
ization performances when using our network. We stress the fact
that for each test image we localize the two emitting sources in a
reverberant environment, which is a challenging task by itself. Both
source positions are considered in order to compute the RMSE.
Notice that the localization accuracy relative to the images recon-
structed by our network Ŷ(test)

n are similar to the ones relative to
the input images Ỹ(test)

n only if the number of missing microphones
is small. As the number of missing microphones increases, the re-
constructed results show increasing better performances. Compared
against the ideal case (complete RST), the localization error is al-
most constant, except for the very challenging case of 50 missing
microphones over 64.

5. CONCLUSIONS

In this paper we have proposed a methodology that applies convolu-
tional autoencoders to the Ray Space Transform, in order to recon-
struct the information lost when using arrays with missing micro-
phones for acquisition. The goal is to reconstruct the RST as if it
were acquired with the complete array. This enables to simulate the
RST of dense arrays in situations in which the only available micro-
phone array is composed by a limited amount of microphones (e.g.
due to costs, deployment limitations, array faults, etc.).

The capability of the network to reconstruct the RST both in
terms of image quality, and in terms of source localization informa-
tion demonstrate the feasibility of the presented approach. Indeed,
we showed that it is possible to localize acoustic sources using a
reconstructed RST with higher accuracy compared to the use of an
undercomplete RST. The network also generalizes when it is tested
on data unseen during training (i.e. multiple sources active at the
same time, and source positions never used for training).

Results contained in this paper are useful not only for the pre-
sented scenario, but stimulate us in applying learning architectures
for other more challenging RST reconstruction tasks. Future work
will be devoted to RST reconstruction using multiple sparse arrays.
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