
MQTT+: Enhanced Syntax and Broker Functionalities for Data
Filtering, Processing and Aggregation

Riccardo Giambona
DEIB - Politecnico di Milano

Milano, Italy
riccardo.giambona@mail.polimi.it

Alessandro E. C. Redondi
DEIB - Politecnico di Milano

Milano, Italy
alessandroenrico.redondi@polimi.it

Matteo Cesana
DEIB - Politecnico di Milano

Milano, Italy
matteo.cesana@polimi.it

ABSTRACT
In the last few years, the Message Queueing Telemetry Transport
(MQTT) publish/subscribe protocol emerged as the de facto stan-
dard communication protocol for IoT, M2M and wireless sensor
networks applications. Such popularity is mainly due to the extreme
simplicity of the protocol at the client side, appropriate for low-
cost and resource-constrained edge devices. Other nice features
include a very low protocol overhead, ideal for limited bandwidth
scenarios, the support of different Quality of Services (QoS) and
many others. However, when an edge device is interested in per-
forming processing operations over the data published by multiple
clients, the use of MQTT may result in high network bandwidth
usage and high energy consumption for the end devices, which
is unacceptable in resource constrained scenarios. To overcome
these issues, we propose in this paper MQTT+, which provides
an enhanced protocol syntax and enrich the pub/sub broker with
data filtering, processing and aggregation functionalities. MQTT+
is implemented starting from an open source MQTT broker and
evaluated in different application scenarios.

CCS CONCEPTS
• Networks → Application layer protocols; Network simula-
tions; • Computer systems organization → Sensor networks;

KEYWORDS
MQTT; publish/subscribe; data aggregation
ACM Reference Format:
Riccardo Giambona, Alessandro E. C. Redondi, and Matteo Cesana. 2018.
MQTT+: Enhanced Syntax and Broker Functionalities for Data Filtering,
Processing and Aggregation. In 14th ACM International Symposium on QoS
and Security for Wireless and Mobile Networks (Q2SWinet’18), October 28-
November 2, 2018, Montreal, QC, Canada. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3267129.3267135

1 INTRODUCTION
The Internet of Things (IoT) is day by day becoming a reality. Tiny
and cheap devices equipped with sensors and wireless communica-
tion capabilities are being used more and more frequently in several

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Q2SWinet’18, October 28-November 2, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5963-4/18/10. . . $15.00
https://doi.org/10.1145/3267129.3267135

application scenarios, such as wireless sensor networks, environ-
mental monitoring, e-health, etc. Regardless of the specific scenario,
all IoT applications are characterised by common requirements:
sensor nodes operate with low-bandwidth wireless transceivers to
transmit/receive data to/from a common data concentrator (sink
node) or other IoT nodes. Such data may be then processed, accord-
ing to the application’s needs, either at the sink node or onboard
other sensor nodes using low-power and energy-efficient micro-
controllers. Such a resource-constrained environment stimulated
in the last few years a vast body of research to design and optimise
existing protocols at all layers of the communication stack. For
what concerns the application layer, several efforts have been per-
formed: protocols such as the Message Queue Telemetry Protocol
(MQTT)[1], the Constrained Application Protocol (COAP)[2] and
the Extensible Messaging and Presence Protocol (XMPP)[10] are
the results of such efforts.

Among the existing solutions, MQTT is certainly the one that
has received the greatest attention in the last few years, practically
becoming the standard de-facto in M2M and IoT applications. As
a matter of fact, MQTT is becoming the most popular protocol to
connect resource constrained devices to the major cloud platforms
(e.g., AmazonAWS,Microsoft Azure, IBMWatson), which all expose
their services throughMQTT. The reasons of such popularity derive
from MQTT’s incredible simplicity client-side, which nicely fits in
resource-constrained applications, yet supporting reliability and
several degrees of quality of service (QoS). MQTT is based on
the publish/subscribe pattern, and all communications between
nodes are made available by a broker. The broker accepts messages
published by devices and forwards them to clients subscribed to
those messages, ultimately controlling all aspects of communication
between devices.

There is however a set of common IoT and M2M applications
scenarios where the use of MQTT causes an inefficient use of the
available network and computing resources. Those are all cases
where data consumers (subscribers) are interested in only a subset
of the data produced (published) by sensor devices, while the broker
still forwards the entire data available. Examples include clients
interested in receiving data only if it respects some condition, clients
interested in certain aggregation functions (e.g., cumulative sum,
average) over a set of data published, or clients interested in the
result of some processing task over such data, rather than the data
itself. In all these case, two main drawbacks can be identified: (i),
the data forwarded by the broker may potentially be discarded by
subscribers, wasting network resources and (ii) subscribers need to
perform additional processing operations, consequently decreasing
their available computational and energy resources.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/185552816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3267129.3267135
https://doi.org/10.1145/3267129.3267135

To mitigate those issues, we propose in this paper an advanced
MQTT broker (MQTT+) able to deal with such situations. MQTT+
allows a client to subscribe to advanced functionalities on the data
published, including rule-based data filtering, spatial and tempo-
ral data aggregation and data processing. All functionalities are
provided reusing as much as possible the original MQTT protocol
logical and syntactical rules and minimally modifying the client-
side procedures. As a proof of concept, MQTT+ is implemented
starting from a publicly available MQTT broker and evaluated in
different application scenarios.

The remainder of this work is structured as follows: Section
2 briefly discuss the MQTT protocol, highlighting its main fea-
tures. Section 3 introduces MQTT+ and the proposed enhance-
ments, while Section 4 evaluates it in different scenarios. Section 5
summarises related works dealing with MQTT enhancements and
in general in the area of publish/subscribe middlewares. Finally,
Section 6 concludes the paper and discusses future work directions.

2 MQTT PROTOCOL OVERVIEW
The Message Queuing Telemetry Transport is a lightweight pub-
lish/subscribe protocol whose design principles are to minimise
both the end-devices requirements and the utilised network re-
sources, still ensuring reliability and some degree of quality of
service.

MQTT follows a traditional publish/subscribe pattern in which
a client device publishes information relative to a particular topic,
i.e., a multilevel string describing the data being published (e.g.
kitchen/temp). Other clients interested in such information sub-
scribe to that topic. Information forwarding from the publishers to
the subscribers is made possible by a broker, which is the core part
of the system and is in charge of receiving data from the publishers
and forwarding it to the subscribers. Such designs allow to decouple
the publishing and subscribing processes: clients interested in a
particular topic do not need to knowwho the publishers are, neither
have they to be synchronised to the publishing operations.

Before being able to publish data or subscribe to any topic, each
client needs to connect to a broker. Such connection is based on
TCP/IP and implemented through a simple message exchange be-
tween the client and the broker. During this process, a client com-
municates several information to the broker such as its client iden-
tifier, the connection keep alive time interval and other optional
parameters (authentication, last will topic and message, etc).

After the connection a client may directly start publishing data
or subscribing to a certain topic using specific MQTT messages
with minimal transport overhead (the fixed-length header is just 2
bytes). For both operations, clients have the possibility of choosing
a Quality of Service (QoS) value, which impact on the way the
broker handles the messages from/to the clients. Three QoS levels
are defined: (i) at most once (fire-and-forget), which relies on the
underlying TCP connection; (ii) at least once, where the sender will
retransmit a message until an ACK is received and (iii) exactly once,
where it is guaranteed that a message transmitted is received only
once by the counterpart. Optionally, a client may publish retained
messages, by setting the retain flag to true during publication. Such
messages will be stored internally by the broker and forwarded

to any client subscribing to that message topic immediately after
subscription.

For what concerns the syntax of topic strings, the latest MQTT
standard specifications1 allow to use single or multilevel case-
sensitive topics, where each level is separated by a forward slash.
Each topic must have at least one character to be valid and a broker
accepts each valid topic without and prior initialisation. A client
may subscribe to a specific topic by using the exact topic string, or
subscribe to multiple topics at once by using a single-level (+) or
multi-level (#) wildcard. The broker will then forward to the client
all messages whose topic matches the subscription topic, including
the wildcard. As an example, a client subscribing to kitchen/#
will receive messages published on both the kitchen/temp and
kitchen/hum topics, while a client subscribing to +/humwill receive
messages published on both the bathroom/hum and kitchen/hum
topics. Additionally, the standard specifies that topics beginning
with the character $ are reserved for special uses and cannot be
utilised by client applications for publishing data. In particular,
$SYS/ has been widely adopted by most of the publicly available
MQTT broker implementations as a prefix to topics that contain
broker-specific information. As an example, a client may subscribe
to $SYS/broker/clients/connected to receive the number of cur-
rently connected clients.

3 MQTT+ ENHANCED FUNCTIONS
As explained in Section 2, one important feature of the MQTT proto-
col is to be notably lightweight client-side. This is mainly due to the
presence of the broker, which is responsible of the most intensive
operations of the protocol. The proposal of this work is to take an-
other step in this direction, by adding several functionalities to the
broker in order to further decrease the computational complexity
of the clients and the overall network resources utilisation. Sev-
eral additional functionalities are provided by MQTT+: rule-based
subscriptions, temporal/spatial data aggregation and intensive data
processing. All these functions are oriented at decreasing the com-
putational load on clients and on the network segment from the
broker to the subscribers, at the cost of a slight increase in the
complexity of the broker implementation. In order to leverage such
functions, an enhanced syntax is introduced. The new syntax is
nicely integrated with the original MQTT syntactic rules by making
use of leading $ characters followed by several specific keywords
and requires optional modifications of negligible impact on clients.
Indeed, MQTT+ is completely backward compatible with standard
MQTT devices.

3.1 MQTT+ rule based subscription
In many cases, a client is interested in a topic only if the data pub-
lished on it respect some condition. As an example, consider an
automatic alarm device which needs to fire only if the measurement
provided by a temperature sensor (say sens123) is greater than
a certain threshold. Of course, the alarm device may subscribe to
the sens123/temp topic and than process internally the received
data to decide when to react. However, the same behaviour can be
more efficiently achieved if the broker knows at which condition
a message should be forwarded and operates accordingly. In this
1http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

Table 1: MQTT+ rule based operators

Rule-based subscription Value Type Description
$EQ;value/topic numeric,string Forwards data to subscriber if data published on topic is equal to value

$NEQ;value/topic numeric,string Forwards data to subscriber if data published on topic is different from value

$GT;value/topic numeric Forwards data to subscriber if data published on topic is greater than value

$GTE;value/topic numeric Forwards data to subscriber if data published on topic is greater than or equal to value

$LT;value/topic numeric Forwards data to subscriber if data published on topic is less than value

$LTE;value/topic numeric Forwards data to subscriber if data published on topic is less than or equal to value

$CONTAINS;text/topic string Forwards data to subscriber if data published on topic contains value

case, the broker acts as a data filter, avoiding to forward unnec-
essary data and thus saving bandwidth. MQTT+ allows a client
to perform a rule-based subscription using ad-hoc operators: re-
ferring to the previous example, the alarm device may subscribe
to the $GT;value/sens123/temp topic and receive only messages
published on the sens123/temp topic whose payload contains a
value greater than value. Similarly, operators for greater than or
equal ($GTE;value), less than ($LT;value) and less than or equal
($LTE;value) are defined. All these operators require the data pub-
lished on the topic subject of the subscription to be numeric: an
MQTT+ broker will accept any numeric rule-based subscription
but will ignore it if the value published is not numeric. At the same
time, we observe that MQTT messages are often used to carry
non-numeric data such as JSON or XML documents. MQTT+ al-
lows rule-based operation also on such non-numeric payloads: the
$CONTAINS;text operator is defined, which searches in the payload
of the published message the string text. The broker will forward
such a message only if the string is found. Finally, the equality
($EQ;value) and inequality ($NEQ;value) operators are defined for
both numeric values and string. MQTT+ rule-based operators are
summarised in Table 1.

3.2 MQTT+ data TTL
Upon data publication from a client on a topic, a traditional MQTT
broker checks the list of subscribers to the topic and forwards the
data to them. After a successful forwarding, according to the QoS
set during publication, the original message is deleted, unless it was
published with the retain flag set. In that case, the message is kept
in memory in order to be forwarded to any new subscriber to that
topic. In MQTT+, we propose to slightly modify this paradigm and
include in each published message a data Time To Live (TTL) infor-
mation, a timestamp value (e.g., dd/mm/yyyy HH:MM:SS) which
explicitly informs the broker of how long the data published should
be considered valid, and therefore stored in the broker internal
memory. Operatively, two options are available for communicating
the TTL field to the broker:

(1) Explicit TTL: the TTL field may be inserted in the variable
part of the PUBLISH message header, which already carries
important information such as the topic name, the QoS value
and themessage ID. The addition of a newfield in the variable
part of the header causes no issues since the length of the
variable header is carried in the fixed part of the header.

(2) Implicit TTL: in case no explicit TTL is provided during
publication, a default TTL (e.g. 1 hour from the publication
timestamp) may be automatically assigned by the broker.

As we shall see later, the TTL field is crucial for allowing correct
data aggregation functionalities at the broker.

3.3 MQTT+ temporal data aggregation
In many applications, a device is interested in obtaining data at
a much lower frequency compared to the publication rate. As an
example, a device for optimising the residential energy consump-
tion may be interested only in the daily current consumption of
certain household appliances, rather than obtaining a fine-grained
time series from each one of them. Again, the broker could be ex-
ploited to provide temporal aggregation functionalities. For each
topic, the MQTT+ broker not only stores the last published data
with its TTL, but also keeps in memory K tuples of the form (NTk ,
STk ,ATk ,UTk ,LTk), as illustrated in Table 2. Each tuple stores, for
the last Tk minutes, the number of publish events NTk , the cu-
mulative sum of the data value published STk , the average value
AT = STk /NTk and the maximum and minimum value received,
UTk ,LTk . Although the intervals Tk can be chosen arbitrarily, a
reasonable choice could be to have K = 3 and the corresponding
k = {1440, 60, 15}. In that case, the broker would store the daily,
hourly and quarter-hourly statistics for each numeric topic2. A sin-
gle timer expiring every D minutes, where D is the lowest common
denominator among the Tk periods, is needed to periodically reset
such fields (e.g., the T15 tuple is reset every time the timer fires
while the T60 tuple every four times). Also, note that the memory
complexity of such structure is linear in the number of published
topics.

With the proposed data structure, several types of temporal data
aggregation subscriptions may be enabled. A client interested in
receiving temporally aggregated data for the topic topic may sub-
scribe to $<TIME><OP>/topic, where according to the proposed
time granularities, TIME = {DAILY,HOURLY,QUARTERHOURLY} and
OP = {COUNT,SUM,AVG,MIN,MAX} maps to the defined tuples. As
an example, a client interested in subscribing to the daily aver-
age of the current consumption of a certain household, published
e.g.. on sens123/currcons, can inform the MQTT+ broker of such
intention by subscribing to $DAILYAVG/sens123/currcons. The
broker will react to such a subscription by publishing the value
AT1440 on the $DAILYAVG/sens123/currcons topic, each time the

2In case a non-numeric data is published on a topic, it is not considered valid for
aggregation and only the last published value is stored

Table 2: MQTT+ broker internal memory structure

Topic Last Value TTL NT1440 ST1440 AT1440 LT1440 UT1440 NT15 ST15 AT15 LT15 UT15
/sens1/temp 22.5 2018-05-24T15:36:25 62 1063 17.14 12.3 24.1 2 45.3 22.65 22.5 22.8
/sens2/temp 13.8 2018-05-24T15:33:42 38 386 10.15 6.2 11.8 · · · 3 34.2 11.4 11.2 11.6
/sens1/hum 89.1 2018-05-24T15:36:26 61 4758 71 69 89.1 2 178 89 88.9 89.1

/sens1/status {status: ok} 2018-05-24T15:36:27 - - - - - - - - - -
$CNTPPL/image1 12 2018-05-24T15:32:12 10 103 10.3 8 12 1 12 12 12 12

corresponding timer fires (in this case every 96D minutes, i.e., once
per day).

3.4 MQTT+ spatial data aggregation
Besides temporal aggregation, a client may be interested in spatially
aggregating several topics at once. As an example, the device for op-
timising residential energy consumption mentioned in the previous
section may be interested in obtaining the sum of the energy con-
sumption of the single appliances directly from the broker, rather
than computing it onboard. MQTT+ allows a client to subscribe to
several aggregating functions over multiple topics. The topics to be
aggregated can be specified either using standard MQTT wildcards
or with an explicit syntax.

3.4.1 Spatial aggregation with wildcards. In case a client is inter-
ested in aggregating all data matching a certain topic name, it may
subscribe to $<OP>/topic/, where OP can assume the same values
defined for temporal aggregation and /topic/ contains one ormore
wildcards, according to the original MQTT rules. Only messages
published with numeric data will be considered, and the aggrega-
tion function will be executed each time a new data is published
on any topic matching the subscription. As an example, consider
two temperature sensors publishing on the room1/sens1/temp and
room1/sens2/temp topics. A client interested in computing the
average of the two values may subscribe to $AVG/room1/+/temp.
Every time a new data is published by any sensor, the broker will
perform the average of the last published values of all topics match-
ing room1/+/temp. Note that each client publishes a message asyn-
chronously and independently of each other. To prevent that data
with referring to different time instants is aggregated, the MQTT+
broker considers only those entries whose TTL is valid. Note also
that, as long as data is numeric and has a valid TTL, the broker will
compute the aggregation function as requested, without any further
check on the topics being aggregated. As an example, considering
the published topics room1/temp and room1/hum, the subscription
to $AVG/room1/# will produce a valid value, although meaningless.
The correct use of the aggregation functions is therefore left to the
final user.

An issue that occurs when subscribing to a spatial aggregation
topic with wildcards is the choice of which topic to use for publica-
tion. In standard MQTT, a subscription to a topic with wildcards
is equivalent to subscribing to all matching topics and the broker
will forward data to the subscriber on each individual topic. In
case of an aggregated subscription, one single topic must be used
for publishing the aggregation results. One cannot use the same
topic used for subscription, as MQTT rules do not allow to use a
wildcard in a publication topic. Therefore, we propose two different

possibilities for choosing such a topic. The two options differ in
how the wildcard is replaced:

(1) Single keyword replacement (SKR):wildcards may be replaced
with the unique keyword $AGGREGATE during the forwarding
process to the broker. Referring to the previous example,
subscribing to $AVG/room1/+/temp will trigger the broker
to reply on $AVG/room1/$AGGREGATE/temp.

(2) Replacement with participating topics (RPT): in case of sin-
gle keyword replacement, the subscribers is unable to un-
derstand which topics participated in the aggregation. An
alternative possibility is for the broker to explicit insert such
participating topics during the publish process. In this case,
wildcards are replaced with the string t1;t2;...;tn, ob-
tained concatenating all the topics participating to the aggre-
gation. Referring again to the previous example, the broker
will reply on $AVG/room1/sens1;sens2/temp if both values
have valid TTL. The main drawback of this approach is that
the length (in bytes) of the topic forwarded by the broker
increases with the number of topics aggregated, therefore
decreasing the aggregation efficiency.

The choice of which option to use is left to the client during sub-
scription and encoded into the subscribe messages payload.

3.4.2 Explicit spatial aggregation. MQTT+ also supports a differ-
ent spatial aggregation operation, where the topics to be aggregated
are explicitly communicated to the broker during subscription. In
this case, a client uses the concatenation of all topics to be aggre-
gated (e.g., t1;t2;...;tn) during subscription. Referring to the
previous example, subscribing to $AVG/room1/sens1;sens2/temp
will trigger the broker to average data coming from the two sen-
sors. Also in this case, only the messages with valid TTL will be
considered for aggregation and the broker will reply indicating
only the topics corresponding to the considered ones (similar to
the replacement with participating topics case in the case with
wildcards).

3.5 MQTT+ data processing
One of the main features of MQTT is that practically any type
of data can be transferred with publish and subscribe messages.
With a maximum payload size of 256 MB, MQTT paves the way
to advanced applications in which more complex data, rather than
just numbers, are transmitted. An interesting case study which
particularly fits in this scenario is the one of wireless surveillance
cameras, which are nowadays more and more used. Consider one
or more cameras that take images at specific time interval and
transmit them over MQTT to a broker. We focus on the case where
subscribers to such image topics are interested in the content of

such images, rather than in the pixel-domain based representation
of the images. As an example, a subscriber may be interested in
counting how many people are present in an image, if a certain per-
son is there or what kind of objects are present. All these operations
require image analysis algorithms to be run on the subscriber de-
vices after the broker has forwarded the images from the cameras.
This has two important drawbacks: (i) a huge amount of band-
width is used for transmitting the raw images to the subscribers
even though such subscribers are only interested in their semantic
content and (ii) the image analysis on the subscriber devices is in
general computationally-eager and thus should be optimised. The
proposed enhanced MQTT+ allows to overcome such drawbacks by
enabling data processing directly at the broker. We focus here only
on image processing, although the framework can be extended
to any other type of data and processing operations (video and
data compression, signal processing, etc.). In particular, we focus
on the scenario in which one camera is available (e.g., publishing
on /room1/image), and subscribers are interested in counting how
many people are present in the published images. To do this, the
broker allows to subscribe to $CNTPPL/room1/image. When an im-
age is published on that topic, the broker runs a human detection
algorithm and returns the number of estimated people to the sub-
scriber. Note that the data processing functions depend only on
what image analysis algorithms the broker is able to run. In princi-
ple, a broker may be even connected to a cloud-based web service
enabling such processing functions (e.g., Amazon AWS Rekogni-
tion3 or any other service).In any case, a client willing to connect
to a broker should know which processing functions are available.
We propose to use one of the MQTT system topics (the one start-
ing with $SYS, e.g., $SYS/capabilities) so that the broker can
advertise its available processing functions. Upon subscription on
such a topic, the MQTT+ broker replies with a JSON containing all
available functions and a corresponding description (see Figure 1).

3.6 MQTT+ composite subscriptions
One of the strengths of MQTT+ is the capability of allowing com-
posite subscriptions, by properly chaining the operators introduced
so far thus enabling even more advanced functions. In particular
MQTT+ allows the following composite subscriptions:

(1) Spatio-temporal aggregations: any temporal aggregation can
be also aggregated spatially. As an example, when subscrib-
ing to SUMDAILYAVG/+/temp, theMQTT+ broker performs
the following operations when the daily timer expires: (i) it
identifies all matching topics after the operators (e.g., the
ones matching +/temp); (ii) it fetches the daily average of
such topics from the internal buffer and (iii) it publishes
the aggregate using the spatial aggregator (sum in this case)
and using either single keyword replacement or replace-
ment with participating topics (according to the subscriber’s
choice). Note that a spatio-temporal aggregation to a single
topic is equivalent to a temporal aggregation over that topic
(SUMDAILYAVG/room1/temp and $DAILYAVG/room1/temp
produce the same effect). Also, subscriptions in which the
temporal aggregator appears before the spatial aggregator
(e.g., $DAILYAVG$SUM/+/temp) are not permitted, since they

3https://aws.amazon.com/rekognition

1 [{ "keyword": "$CNTPPL",
2 "desc": "counts people in an image",
3 "returns": "value"
4 },
5 {"keyword": "$CNTMALE",
6 "desc": "counts males in an image",
7 "returns": "value"
8 },
9 {
10 "keyword": "$CNTFEMALE",
11 "desc": "counts females in an image",
12 "returns": "value"
13 },
14 {
15 "keyword": "$RECOGNIZE",
16 "desc": "recognizes objects in an image",
17 "returns": "json"
18 }]

Figure 1: Example of MQTT+ broker reply to a subscription
on the capabilities topic

would produce meaningless results. In this case, according to
the original MQTT specifications, the broker returns a sub-
scription acknowledgement (SUBACK) message reporting a
failure.

(2) Spatio-temporal aggregation of processed data: similarly, any
data produced by a processing function may be aggregated
spatially, temporally or spatio-temporally. As an example,
subscribing to SUMDAILYAVG$CNTPPL/+/image has the fol-
lowing effect: (i) all images published on the matching topics
are processed by the broker to extract the number of peo-
ple present and stored as standard entry in the buffer, so
that the temporal statistics can be updated (see last row of
2); (ii) when the daily timer expires, the daily averages are
aggregated using the $SUM operators and forwarded to the
subscribers.

(3) Rule-based spatio-temporal aggregation finally, any type of
aggregation (spatial,temporal or spatio-temporal) may be
subject to rules. Such rules may appear either before or after
the aggregation operator, thus working on the input or out-
put of the aggregation functions. The following examples are
valid subscriptions: (i) $GT;value$SUM$DAILYAVG/+/temp,
which forwards to the subscribers the sum of the average of
all temperature sensors only if it is greater than value; (ii)
SUMGT;value$DAILYAVG/+/temp, which aggregates daily
averages only if they are greater than value. Subscriptions in
which the rule-based operator comes after the temporal ag-
gregator (e.g., SUMDAILYAVG$GT;value/+/temp) are not
permitted and result in a SUBACK message reporting a fail-
ure.

4 IMPLEMENTATION AND EXPERIMENTS
We implemented the proposed MQTT+ broker syntax and func-
tionalities starting from the HiveMQ4 3.4 broker implementation,
which offers a free and open source Java SDK to modify the broker
functionalities via plugins. The plugin SDK provides to the devel-
oper several callbacks, which can be linked to user-defined logics.
This allows to modify the general system behaviour depending on
specific events. As an example, the OnPublishReceivedCallback is
executed whenever an MQTT PUBLISH message arrives at the bro-
ker. The MQTT+ implementation of such a callback is responsible
to add the published topic to the internal buffer shown in Table 2
or, if already present, to update the topic statistics. Similarly, the
OnSubscribeCallback is called whenever a subscription is performed
by a client connected to the broker. The implementation of such
callback is therefore responsible of understanding and validating
the advanced syntax used in the subscription, eventually managing
it in a proper way.

4.1 Simulation scenarios
In order to test the correct functionalities of the system, a sim-
ulation environment is created. The framework allows to create
several MQTT Clients based on the Eclipse Paho project5, acting
either as data publishers (sensors) or subscribers. Upon start up, (i)
the MQTT+ broker is booted up, (ii)m sensors and n subscribers
are created and (iii) the publishing process is started according to
specific time parameters. Each sensor can publish a specific type
of data on an individual topic, with a deterministic rate of lambda
messages/second and the simulation runs for T seconds. During
this time window, the simulator monitors continuously three main
performance figures:

(1) Total downlink traffic: the testing environment uses tshark
(the command line tool of the popularWireshark packet anal-
yser software) to monitor continuously the traffic outgoing
the broker on the TCP port 1883, used by MQTT. Both the
broker and the clients are executed on the same physical ma-
chine (an Intel i7-6700@3,4 GHz with 8 GB of RAM, running
Windows 10): to simulate realistic conditions of operation,
all TCP traffic outgoing port 1833 is first rerouted to a Wi-Fi
access point (through manipulation of the routing tables).

(2) Normalised CPU Load: the Windows PowerShell GetProcess
tool (similar to the Unix top tool) is used to keep track of
the CPU load on the broker. Let Cm,n be the average CPU
load of a broker whenm clients publish on individual topics
and n clients are subscribed to such topics. We take C1,1 as
a reference load value and define the Normalised CPU Load
as:

Cm,n =
Cm,n

C1,1
(1)

(3) Average RAM Consumption: the framework also keeps track
of the average RAM memory usage (in MB) of the broker
during its different working phases.

The first performance figure is crucial to understand the benefits
of MQTT+ on the network resources, while the latter two perfor-
mancemeasures are utilised to analyse the impact that the advanced
4https://www.hivemq.com/
5http://www.eclipse.org/paho/

functions of MQTT+ have on the complexity of the broker. This is
important, considering that in many IoT and M2M application the
broker may be implemented on low cost and low-power hardware
platforms (e.g., Raspberry PI).

Two different application scenarios are considered, where sen-
sors publish different types of data and subscribers are interested in
different functions over such data: (i) spatio-temporal aggregation
of scalar measurements and (ii) processing of image data.

4.1.1 Spatio-temporal aggregation of scalar measurements. In
this scenario, them sensors publish periodically scalar data (e.g.,
temperature) while the n subscribers are interested in a spatio-
temporal aggregation of such data, rather than the individual mes-
sages. As an example, subscribers may be interested in averaging
over all sensors the 15-min average of the corresponding temper-
ature values. If the standard MQTT is used, each subscriber will
receive all messages from each one of them clients, and perform
the spatio-temporal aggregation onboard. Over a period of T sec-
onds, the total downlink traffic from the broker B (in bytes) can be
approximated as:

BMQTT = λT (mnP) (2)
where P is the length of each publish message (which includes the
header H , the topic length J and the length of the data published K ,
i.e. P = H + J + K). Conversely, in case MQTT+ is used, the traffic
forwarded by the broker can be approximated as:

BMQTT+ = λAT (nQ) (3)

where λA is the requested temporal aggregation in messages/sec-
onds (e.g., 1 message every 900 seconds for the 15-min average),
and

Q ≈

P +O if SKR is used
P +O +Wm if RPT is used

(4)

whereO is the length of the advanced operator used for performing
aggregation. Note that in case of Replacement with Participating
Topics, the downlink traffic still depends partially on the number
of publishing sensors, since each individual topic level identifying
each sensor (each of lengthW) must be concatenated in the payload
forwarded by the broker to subscribers.

It is trivial to show that in case of spatio-temporal aggregation
with Single Keyword replacement,

BMQTT
BMQTT+

≈m
λ

λA

P

P +O
(5)

i.e., the downlink traffic of an MQTT+ broker ism λ
λA

times lower
compared to standard MQTT, with a correction factor that depends
on the additional bytes used by the operator O compared to the
original topic P .

Conversely, if RPT is used, we have
BMQTT
BMQTT+

≈m
λ

λA

P

P +O +Wm
(6)

therefore the efficiency of spatio-temporal aggregation is even more
decreased as the ratio between the length of the topic level used to
identify sensor nodesWm and the original topic P increases.

Figure 2 show the performance of MQTT and MQTT+ with
SKR or RPT, measured simulating different numbers of sensors
m and subscribers n. Sensors publish numeric data (P = 44) on

0 20 40 60 80 100
Number of subscriptions

10-4

10-2

100

102

104

D
ow

nl
in

k
tra

ffi
c

[k
B]

MQTT - 1 sensor
MQTT - 50 sensors
MQTT - 100 sensors
MQTT+ (RPT) - 1 sensor
MQTT+ (RPT) - 50 sensors
MQTT+ (RPT) - 100 sensors
MQTT+ (SKR) - 1 sensor
MQTT+ (SKR) - 50 sensors
MQTT+ (SKR) - 100 sensors

(a)

0 20 40 60 80 100
Number of subscriptions

0

1

2

3

4

5

6

7

8

C
PU

 lo
ad

MQTT - 1 sensor
MQTT - 50 sensors
MQTT - 100 sensors
MQTT+ (RPT) - 1 sensor
MQTT+ (RPT) - 50 sensors
MQTT+ (RPT) - 100 sensors
MQTT+ (SKR) - 1 sensor
MQTT+ (SKR) - 50 sensors
MQTT+ (SKR) - 100 sensors

(b)

0 20 40 60 80 100
Number of subscriptions

322

324

326

328

330

332

334

Av
er

ag
e

R
AM

 u
sa

ge
 (M

B)

MQTT - 1 sensor
MQTT - 50 sensors
MQTT - 100 sensors
MQTT+ (RPT) - 1 sensor
MQTT+ (RPT) - 50 sensors
MQTT+ (RPT) - 100 sensors
MQTT+ (SKR) - 1 sensor
MQTT+ (SKR) - 50 sensors
MQTT+ (SKR) - 100 sensors

(c)

Figure 2: MQTT vs MQTT+ spatio-temporal aggregation of scalar measurements: (a) Downlink traffic, (b) CPU Load and (c)
RAM usage

0 20 40 60 80 100
Number of subscriptions

10-6

10-4

10-2

100

102

104

D
ow

nl
in

k
tra

ffi
c

[M
B]

MQTT - 1 sensor
MQTT - 50 sensors
MQTT - 100 sensors
MQTT+ - 1 sensor
MQTT+ - 50 sensors
MQTT+ - 100 sensors

(a)

0 20 40 60 80 100
Number of subscriptions

100

101

102

103

104

C
PU

 lo
ad

MQTT - 1 sensor
MQTT - 50 sensors
MQTT - 100 sensors
MQTT+ - 1 sensor
MQTT+ - 50 sensors
MQTT+ - 100 sensors

(b)

0 20 40 60 80 100
Number of subscriptions

250

300

350

400

Av
er

ag
e

R
AM

 u
sa

ge
 (M

B)

MQTT - 1 sensor
MQTT - 50 sensors
MQTT - 100 sensors
MQTT+ - 1 sensor
MQTT+ - 50 sensors
MQTT+ - 100 sensors

(c)

Figure 3: MQTT vs MQTT+ processing of image data: (a) Downlink traffic, (b) CPU Load and (c) RAM usage

numeric/polimi/deib/room1/sensorID, where sensorID is an 8
bytes identifier unique for each sensor (W = 8). The subscribe topic
is AVGQUARTERHOURLYAVG/numeric/polimi/deib/room1/+,
(O = 21, λA = 1/900 message/s) and the publishing rate of sensors
is λ = 1/20 message/s. As one can see from Figure 2(a), spatio-
temporal aggregation allows great savings in terms of the downlink
network usage. The best solution is provided by MQTT+ with SKR,
for which the downlink traffic from the broker is comparable with
the traffic of 1 single sensor, regardless of the number of actual
publishing sensors. From a computational point of view, the ag-
gregation of numerical values does not impose a high load on the
broker. Indeed, MQTT+ also allows to decrease the computational
effort of a broker compared to MQTT. This is due to the fact that,
in case of numerical data, the most intensive operation performed
by the broker is checking the list of matching topics for each pub-
lished message, in order to understand the addresses of the clients
interested in data forwarding. When temporal aggregation is used,
such operations are performed less frequently therefore decreas-
ing the overall computational effort as illustrated in Figure 2(b).
In terms of memory usage, as shown in Figure 2(c), the MQTT+
broker minimally increases the used resources, with an increment
limited to 1-2% compared to the standard MQTT broker.

4.1.2 Processing of image data. In the second scenario, we focus
on an application in whichm camera sensors publish images to the
broker, and the n subscribers are interested in knowing the number
of people present in each image. An image processing engine is
therefore implemented on the MQTT+ broker and can be invoked
by subscribers using the $CNTPPL operator. Each sensor publish
an image of size I on image/polimi/deib/room1/sensorID topic,
and clients subscribe to $CNTPPL/image/polimi/deib/room1/+
to receive a numeric value corresponding to the number of people
found. In this case the decrease in traffic of MQTT+ compared to
MQTT is roughly I/P with P the size of a message with a numeric
payload. Figure 3(a) show the downlink traffic ofMQTT andMQTT+
when I/P ≈ 102. Observing Figure 3(b) and (c), it is clear that
in this case, the CPU load and memory usage on the broker is
greatly affected by the intensive processing to be performed on the
published images. There is therefore a tradeoff between network
and computational resources, which should be carefully designed
depending on the application scenarios: this may open to interesting
future research directions in which the broker automatically decides
whether to accept or not a data processing subscription, or rely on
external resources (e.g. cloud services) to perform such processing,
leading to non-trivial business model among subscribers and the
owners of the broker.

5 RELATEDWORK
In the last ten years, many research studies have proposed mod-
ifications and enhancements to the MQTT protocol. One of the
most popular works is the one from Hunkeler et. al which pro-
pose MQTT-SN [6], a version of MQTT focused particularly on
constrained wireless sensor networks. MQTT-SN do not require
clients to connect to the broker through a TCP/IP connection, there-
fore greatly simplifying their design. Other interesting features of
MQTT-SN are the possibility of using an encoded format for pub-
lishing and subscribing topics (so as to save bandwidth) and the
support for clients working according to a duty cycle. Other solu-
tions have been proposed that tackle different weaknesses of MQTT:
the work in [7] tackles client mobility using memory buffers on
publishers; in [11] a lightweight encryption technique based on
Elliptic Curve Cryptography is proposed to increase the security
of both MQTT and MQTT-SN protocols; in [5], authors analyse
the end-to-end reliability of MQTT-SN considering several system
parameters. Two very recent works show contact points with what
proposed in this paper: the work in [3], authors propose MQTT-CV
(MQTT for communicating vehicles), in which vehicles publish
sensor data and a control infrastructure is subscribed to such data.
The main difference compared to MQTT is that the broker may
accept some rule from the control infrastructure (e.g., forward only
vehicle speed data greater or lower than a threshold). This is similar
to the rule-based subscription available in the proposed MQTT+,
although no details are given on how such rule-based subscriptions
can be integrated in the MQTT syntax. Finally, the work in [7]
proposes MQTT-NEG (Near-user Edge Gateway), a broker imple-
mentation that is able to interconnect different groups of sensors
(i.e., content islands) and manage the published messages either lo-
cally (within each content island) or globally (distributing messages
among different islands).

A more general body of research focuses on enhancing the ca-
pabilities of publish/subscribe systems. Li and Jacobsen propose
PADRES, a pub/sub system which allows expressive and composite
subscriptions tailored to the world of workflow management and
business process execution. PADRES allow a subscriber to be noti-
fied when particular events (jobs in a workflow) happen in parallel,
or in sequence, or repeat periodically. On the same line, Demers et
al. propose Cayuga [4] a pub/sub system allowing a user to express
subscriptions spanning multiple events and supporting aggregation
and parametrisation of subscriptions. The system is based on a non-
deterministic finite automata and an event algebra which provides
expressiveness and maps to the state of the automata. Other recent
works relative to aggregation of data in generic pub/sub systems
are the ones from Pandey et al. In [8] and in [9] the authors propose
a solution to aggregate data in a distributed way, among several

brokers, together with an optimisation problem to minimise the
communication cost of such distributed aggregation.

6 CONCLUSION
We have proposed MQTT+, an advanced version of MQTT which
allows clients to use an enhanced syntax to exploit a broker’s com-
putation power to perform different operations. MQTT+ supports
rule-based subscriptions, spatio-temporal aggregation of data and
advanced data processing tasks. Such basic operations can also
be combined together with composite subscriptions. The MQTT+
broker is implemented starting from an existing broker implemen-
tation and tested in two different realistic scenarios, confirming
the benefits of such an approach. Future research directions will
further explore enhanced functionalities to be added to the broker,
as well as considering the implementation of MQTT+ on top of
recently proposed version of MQTT (such as MQTT-SN).

7 ACKNOWLEDGEMENT
The authors would like to thank dc-square GmbH for the support
received in using the HiveMQ broker.

REFERENCES
[1] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1. 1. OASIS standard 29

(2014).
[2] Carsten Bormann, Angelo P Castellani, and Zach Shelby. 2012. Coap: An applica-

tion protocol for billions of tiny internet nodes. IEEE Internet Computing 16, 2
(2012), 62–67.

[3] Samir Chouali, Azzedine Boukerche, and Ahmed Mostefaoui. 2017. Towards a
Formal Analysis of MQtt Protocol in the Context of Communicating Vehicles. In
Proceedings of the 15th ACM International Symposium on Mobility Management
and Wireless Access. ACM, 129–136.

[4] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. 2006. Towards expressive publish/subscribe systems. In International
Conference on Extending Database Technology. Springer, 627–644.

[5] Kannan Govindan and Amar Prakash Azad. 2015. End-to-end service assurance in
IoT MQTT-SN. In Consumer Communications and Networking Conference (CCNC),
2015 12th Annual IEEE. IEEE, 290–296.

[6] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S
- A publish/subscribe protocol for Wireless Sensor Networks. In Communica-
tion systems software and middleware and workshops, 2008. comsware 2008. 3rd
international conference on. IEEE, 791–798.

[7] Pietro Manzoni, Enrique Hernández-Orallo, Carlos T Calafate, and Juan-Carlos
Cano. 2017. A Proposal for a Publish/Subscribe, Disruption Tolerant Content
Island for Fog Computing. In Proceedings of the 3rd Workshop on Experiences with
the Design and Implementation of Smart Objects. ACM, 47–52.

[8] Navneet Kumar Pandey, Kaiwen Zhang, Stéphane Weiss, Hans-Arno Jacobsen,
and Roman Vitenberg. 2014. Distributed event aggregation for content-based
publish/subscribe systems. In Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems. ACM, 95–106.

[9] Navneet Kumar Pandey, Kaiwen Zhang, Stéphane Weiss, Hans-Arno Jacobsen,
and Roman Vitenberg. 2015. Minimizing the communication cost of aggregation
in publish/subscribe systems. In Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on. IEEE, 462–473.

[10] Peter Saint-Andre, Kevin Smith, Remko Tronçon, and Remko Troncon. 2009.
XMPP: the definitive guide. " O’Reilly Media, Inc.".

[11] Meena Singh, MA Rajan, VL Shivraj, and P Balamuralidhar. 2015. Secure mqtt
for internet of things (iot). In Communication Systems and Network Technologies
(CSNT), 2015 Fifth International Conference on. IEEE, 746–751.

	Abstract
	1 Introduction
	2 MQTT protocol overview
	3 MQTT+ enhanced functions
	3.1 MQTT+ rule based subscription
	3.2 MQTT+ data TTL
	3.3 MQTT+ temporal data aggregation
	3.4 MQTT+ spatial data aggregation
	3.5 MQTT+ data processing
	3.6 MQTT+ composite subscriptions

	4 Implementation and Experiments
	4.1 Simulation scenarios

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References

