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Abstract— This paper deals with the design of an intelligent
self-configuring control scheme for robot manipulators. The
scheme features two control structures: one of centralized type,
implementing the inverse dynamics approach, the other of
decentralized type. In both control structures, the controller
is based on Integral Sliding Mode (ISM), so that matched
disturbances and uncertain terms, due to unmodeled dynamics
or couplings effects, are suitably compensated. The use of the
ISM control also enables the exploitation of its capability of
acting as a ‘“perturbation estimator” which, in the considered
case, allows us to design a Deep Reinforcement Learning (DRL)
based decision making mechanism. It implements a switching
rule, based on an appropriate reward function, in order to
choose one of the two control structures present in the scheme,
depending on the requested robot performances. The proposed
scheme can accommodate a variety of velocity and acceleration
requirements, in contrast with the genuine decentralized or cen-
tralized control structures taken individually. The assessment
of our proposal has been carried out relying on a model of the
industrial robot manipulator COMAU SMART3-S2, identified
on the basis of real data and with realistic sensor noise.

I. INTRODUCTION

Motion control of robot manipulators is considered a
classical topic in robotics. Depending on the type of joints,
their natural mechanical decoupling properties, and the
performances required by the control problem, there are
generally two possible approaches: the decentralized or
the centralized approach [1], [2]. The decentralized control
scheme is typically used when manipulator joints present
high transmission ratios, and high performances in terms
of velocity and acceleration are not required. With this
approach, the manipulator is seen as a composition of linear
and decoupled Single-Input-Single-Output (SISO) systems,
one for each joint of the robot, where nonlinearities and
coupling effect are regarded as disturbances acting on the
single joint. In contrast, the centralized control approach is
used when manipulators, considered as Multi-Input-Multi-
Output (MIMO) systems, do not present gear boxes at the
joints and/or higher performances in terms of velocity and
acceleration are required, which implies that nonlinearities
and coupling effects among the joints are not negligible
and need to be taken into account explicitly during control
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design. The centralized control approach is typically based
on the so-called inverse dynamics control method, which
performs a global feedback linearization and a decoupling of
the controlled system [2].

In classical scenarios, having joints with a non negligible
transmission ratio, the decision whether one should use the
decentralized or the centralized approach must be taken a
priori. However, it is possible that the performances in terms
of velocity and acceleration required during the working
cycle of the robot can vary, passing from low to very high
demand, thus resulting in a loss of efficiency of the chosen
control approach. Then, it may be advantageous to allow
the control system to autonomously reconfigure itself at run-
time, depending on the performances required during the
different phases of the robot operation. This means moving the
decision-making online, by conferring to the control system
the capability of evaluating which control structure is more
suitable at a given time instant. A similar approach has been
presented in [3], exploiting a switching mechanism based
on the estimate of the perturbation compared to a manually
preset threshold.

The main contribution of the present paper is the design of
the decision-making mechanism which makes the online self-
configuration possible. Our proposal is to adopt a mechanism
that relies on machine learning: specifically, the logic behind
the switching between the decentralized control structure
and the centralized one that we propose is based on the
training of a neural network via a DRL algorithm. The idea
is to seek for an optimal solution to guarantee the required
performances while avoiding abrupt changes between the
control structures present in the scheme, which may stress
the mechanical system. The elements considered for the
training phase are the torques, the tracking errors and the
estimate of the term that accounts for coupling and matched
disturbances. This estimate is suitably provided by exploiting
the so-called “perturbation estimator” property of the Integral
Sliding Mode (ISM) controllers [4] used to realize both the
decentralized and centralized control structures present in the
overall motion control scheme. Note that ISM, apart from
providing the online estimation capability which is the key
feature upon which the proposed self-configuring scheme is
based, possesses several other appreciable properties, which
will be suitably revised in this paper. A notable example of
the advantages of ISM can be observed, for instance, when it
is used in combination with Model Predictive Control (MPC),
as in [5], [6], or in a Second Order Sliding Mode framework
[7]. As for Sliding Mode Control (SMC) [8]-[10], it was
already applied to solve control problems in robotics (see,
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Fig. 1.

The proposed multi-loop switching ISM control scheme with the signals needed to the DRL switching block (dashed red line) and the generated

control torques signals (solid red line) generated by the centralized (blue blocks) and decentralized (gray block) architectures, respectively

e.g., [11]-[13]) in a classical setting. Coming to Artificial
Intelligence (AI) methodologies, they have been used to solve
a motion control problem for robot manipulators, for instance
in [14], [15].

The present paper is organized as follows. In Section II
some preliminary elements on Sliding Mode Control and
DRL are reported. In Section III the proposed control scheme
is described alongside the switching strategy adopted for
the decision making, while in Section IV the ISM control is
discussed and theoretically analyzed. Training results obtained
relying on the model of a real robot manipulator COMAU-
SMART3-S2 are illustrated in Section V. Some conclusions
are reported in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, preliminaries about the elements in the
control structure and the machine learning framework adopted
are illustrated, leading to the problem formulation.

A. Preliminary on Sliding Mode Control

In order to formulate the control problem, it is convenient
to make reference to a canonical form frequently used in
the design of SMC laws. Consider a SISO perturbed double
integrator given by

x1(t) = x(1)
X2(t) =v(t) +h(r)
y(t) = o(x(1))

where x € Q C R? is the state vector with x(f9) = xo, v(t) € R
is the input and A(f) € R is a bounded matched uncertainty
such that |A(r)| € H, with H being a compact set containing
the origin, and H*'P = sup,c4{|h|}. The output function
o(x) : Q— Ris of class C(Q) and is called “sliding variable”
in the following, that is the variable to steer to zero in a finite

(D

time in order to solve the control problem, according to
classical SMC theory [8], [10]. The sliding variable o (x)
has to be selected such that if v(¢) is designed so that, in a
finite time # (ideal reaching time), o (x(#)) =0 Vxo € Q and
o (x(t)) =0Vt > t,, then V' > 1, the origin is an asymptotically
stable equilibrium point of (1) constrained to o (x(¢)) = 0.
In the following sections the robot control problem under
consideration will be formulated taking into account the
structure (1), in order to be solved via a SMC law.

B. Elements of Reinforcement Learning

The main idea behind Reinforcement Learning (RL) is that
an agent, relying on the knowledge acquired through past
experience, understands which actions will lead to maximize
a reward in a given time horizon, for any given situation
(state) [16]. At each time step ¢, the agent and environment
can be modeled as a state s, € S with S being the state space,
containing all the relevant information needed. Starting from a
given state, the agent performs an action g, € A with A being
the action space, that affects the environment by changing
its state. Before advancing to the next time step 7+ 1 , the
agent receives a reward r € R, and moves to the new state
S+1, according to the dynamics indicated as a probability
distribution P(s;41|s;, a;). A reward r; is a scalar feedback
signal that indicates “how well” an agent has done at step ¢.
The agent’s goal is to maximize the (expected) cumulative
reward it receives in the long run. In case of episodic tasks
with finite horizon T, the expected cumulative reward R; is
defined as

T
R = Z J/(”z+k+1
k=0

where the term 0 <y < 1 is the discount rate, used to prioritize
earlier rewards over later ones. Given the current state s, action
a and the next state s', the expected value of the next reward
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is defined as:

r(s,a,s/) = ]E[ri+l|st>afasl+1] . (3)

A policy m(als) is the probability that the agent will perform
action a while in state s (i.e., the mapping from states to
action). The expected, discounted cumulative reward the agent
can accumulate in the long run, starting from a certain state
and following the policy =, is called value function. For
a given control task, the learning process is divided into
episodes, where the agent interacts with the environment
for a fixed number of time-steps before being reset. One of
the main advantages of the RL method is that it does not
rely on an annotated dataset like other supervised methods
like SVMs, thus freeing the experiments from the burden of
annotating time series of data.

C. Deep Reinforcement Learning

If the model of the environment (i.e., the transition
probability) is not completely observable, which is usually the
case of complex systems, a model-free approach is typically
used. To this end, Q-learning is an off-policy algorithm that
directly approximates the optimal action-value function (or
Q-function) Q* independently of the policy being followed.
In case of continuous action problems with a large number
of states, a parametric approximator of the Q-function is
generally used; one way to build such approximator is a
Deep Neural Network (DNN), i.e., a parametric function that
can model complex non-linear relationships. The term deep
refers to the level of composition of the parameters and the
use of multiple hidden layers between the input and output
ones.

D. The Robot Model

Consider now the dynamical model of a n-joints robot,
given by

B(q)j+n(q,q) =7 “)
n(q,q) = C(q.4)q+Fvg+ Fosgn(q) +g(q) ()
where B(g) € R™" is the inertia matrix, C(g,g) € R""

the centripetal and Coriolis torques, Fy € R"*" the viscous
friction matrix, Fy € R"*" the static friction matrix, g(g) € R"
the vector of gravitational torques, and T € R" the motor
torques. The system (4)-(5) represents a MIMO nonlinear
coupled model. In the following, the time dependence of the
control variables has been omitted for the sake of simplicity

(q=q(t) and g = ¢(1)).
E. Problem Formulation

Given the robot manipulator model in (4)-(5), assume that
gref and grer € R" are the reference signals for the joint
variables and their first time derivative, specified a priori. It
is assumed that the components of gr are bounded and gyt
is Lipschitz continuous. The tracking errors are defined as

€1 = dqref — ¢ (6)
€2 = gref — 4 N

1T T .
so that e=[e; ¢é1] = [e1 ez] . In the following, let
ej= [e1 ;e ].] be the position error and the velocity error of
joint j, j=1,...,n, with n number of joints in the manipulator.
The control problem solved in this paper is a classical robot
motion control problem, where the joints have to follow a

given trajectory [2].

III. THE PROPOSED ISM BASED
SELF-CONFIGURING CONTROL SCHEME

In this work the control problem formulated in the previous
section is solved with the control architecture in Figure
1. Note that, without loss of generality, a control scheme
designed in the joint space is considered. The first loop is
characterized by a decentralized control structure (Mode 1) as
described in Subsection III-A; the second loop, is based on the
inverse dynamics based control structure (Mode 2) illustrated
in Subsection III-B. The ISM controller in both structures
is fed with errors e;, e>, which then provides the control
signal Udecigyy; (1) and ucenygy () to the so-called switching
block or decision maker based on the NAF learning algorithm,
described hereafter.

A. Decentralized Control Structure

Let K; € R™" be the matrix of the gear ratios on the motor
shafts such that the motor positions are K.q = gn, and let
K; € R™" be the matrix containing the torque constants,
so that the shaft torques are K;7T = 7. Moreover, let F, =
K~ 'F,K~! be the matrix of the viscous friction coefficients
referred to the motor shafts, and consider the inertia matrix
B(g) composed of a nominal component B and an unknown
term AB(q), such that B(¢) = B+ AB(q). The dynamic model
(4)-(5) is now expressed as

G§=(K:B™'K:) T — (KB~ ' Ki)Fng — (K:B ' K:)d (9,4, ) (8)
where the term that accounts for nonlinearities and coupling
is
d =K 'AB(q)K 4+ K 'Cla.9)K 4+ K '8(q) - 9)
We can introduce and write the error model as

€2 = Gref — ¢ - (10)

By posing hgec = et + (KB 'K, )qu+ (Krg_lKr)d(%q'aq)
and vgee = —(K:B~'K;) T, one has

é1,(t) = e, (1)
ezl(l)—Vdec/ >+hdeC/()
YJ(I) Gj(ej( ))

with Vdec; and hgec; being the j-th component of the vectors
Vdec and hgec, respectively. In (11), the generated torque will
be also indicated as vgec = Tgec. NOte that one can assume
hdec € Hec, With Hgee being a compact set containing the
origin and My = sup,, teeEHaee 1| hdec| } being known.

(1)

B. Centralized Control Structure

The second architecture considered in this work is the
so-called inverse dynamics based centralized control scheme.



Assume to exactly estimate the inertia matrix B(g) and to
have a quite accurate replica of the vector n(q, ¢), such that
i(q, ¢) # n(q, ¢). Moreover, let v, be an auxiliary control
vector such that the control torque is selected as

Teen = —B(q)veen +17(q,q) - 12)
Substituting (12) into model (4)-(5), one obtains
B(q)§+n(q,q) = —B(q)veen +7(q,9) , (13)
If one writes again é; as in (10), one has
é1,(t) =ej (1)
é2,(t) = Veen; (1) + heen; (1) (14)

yj(t) = o;(e;(r))
with Veen; and hcenj being the j-th component of the vectors
Veen and heen = Giret — B(q) ™" (A(q,4) — n(q,q)), respectively.
Moreover, analogously to the decentralized case, one can
assume Agen € Heen, With Heen being a compact set containing
the origin and Heeh = sup;, ... {|hicen|} being known.

C. Online Decision-Maker

The decision to switch to the decentralized structure (Mode
1) or to the centralized one (Mode 2) is made by a DNN
trained using the Normalized Advantage Function algorithm.

The idea behind Normalized Advantage Function (NAF),
introduced and illustrated in [15], is to design the Q-function
in a way that computing argmax, Q(s;,a,) does not imply a
heavy computational load, which can be a critical requirement
in time-sensitive real-world application scenarios The main
advantage of the NAF algorithm is that it is suitable for
continuous variables, both observed and controlled, and does
not require discretization.

The observations, i.e., the states s;, used by the algorithm
are dynamical quantities retrieved from the control schemes,
namely the torques exerted by the joints generated alterna-
tively by both architectures (Tgec and Teen), the root mean
square of the position error signals ej;, and the coupling
terms hdecj and hcen;. The action, in this case, is only a flag
that determines on which control structure the scheme must
switch. Since the decision procedure must be transparent with
respect to the motion control problem that must be solved,
in the sense that it should not have a negative impact on the
robot performances, the reward function is defined in a way
that encourages the least possible tracking error and a smooth
transition between one scheme to the other, depending on
the status of the robot. The elements used for the training
process will be described with greater detail in section V.

IV. CONTROL DESIGN AND PERTURBATION ESTIMATION

Assuming that the robot manipulator is equipped with
sensors and solvers, and that the torque exerted by each joint
can be measured, in order to implement the proposed scheme,
crucial to obtain an effective estimate of the term which
accounts for the couplings and the unmodeled dynamics. To
this end, the design of the ISM controller and its capability
to estimate the uncertainties acting on a system, plays a
fundamental role, as it will be discussed in the following.

A. Design of the Control Law

Consider the j-th joint of the robot. The goal is to design
the ISM control laws to be used in the decentralized and
centralized case. ISM is typically characterized by a control
variable v;(¢) split into two parts, i.e.,

vj(t) = uj(t) +wism; (2) 5)

where u;(r) is generated by a suitable high level controller
designed relying on the nominal model (i.e., the model of the
plant - assuming that no uncertainty is present), and uism; (1)
is the sliding mode (typically discontinuous) control action,
designed in order to reject the uncertainties affecting the
system. Specifically, the latter is designed based on the errors
e1;, ey; previously defined. The error model describing the
dynamics of such errors can thus be written in compact form
as

¢j(t)=Aje;(t)+B;(v;(t) +h;t)) (16)

where matrices A;, B; can be easily deduced in the decen-
tralized and centralized cases making reference to (11) and
(14), respectively. In system (16), v;(r) and h;(r) contain the
COMpONents Vec; and hdecj O Veen; and hcen,, for j=1,...,n,
depending on the case.

The so-called integral sliding manifold is selected as
follows

Zj(t) = 0j(t) + 9;(t) = 0

where X; is the auxiliary sliding variable, 6; = me; ;e is
the actual sliding variable equal to the joint position error,
with m being a positive constant, and the integral term @; is
given by

0;() = —0;(10) — / mes, (0) +uy()dC

with the initial condition @;(t9) = —0cj(e;(to)). Then, the
discontinuous control law is defined as

uism; (1) = —Kjsgn (Z;(1)) -

a7

(18)

19)

B. Perturbation Estimation

As anticipated in III-C, it is important to present the
“perturbation estimator” property of ISM control. Note that the
ISM controller is able to estimate the uncertain and coupling
terms if the equivalent control is available [4]. As claimed
in [4], it is shown that an approximation of the equivalent
control can be obtained via a first order linear filter with the
real discontinuous control (19) as input signal, i.e.,

| B L
ﬁISMeqj(t):;/toe ul C)MISM,-(C)dC

where diswm,, (tp) =0 and  is the time constant of the filter,
that should be set such that the linear filter does not distort
the slow component of the switching action, which is UISMeq -

(20)



Furthermore, the integral term has to be redesigned as
¢;(1) = —0j(to)+
ot
—/ me; () +uj(8) + My, (§) —wism; (§)dE (21)
fo

with initial condition @;(fy) = oj(e(t)). It can be proved
that AISMeq ; = —hj, ie., ﬂISMqu, = hj. This quantity is used
as a "state" (i.e observation) for the reinforcement learning
algorithm described in subsection III-C, and will thus be a
part of the decision making unit trained by the neural network.

V. RESULTS

The experiments were carried out on a COMAU SMARTS3-
S2 identified on the basis of real data [17].

The aim of the learning process is to find an optimal
strategy for deciding which control structure present in the
scheme is most suitable for meeting the demands in terms
of tracking performances, while keeping into consideration
that frequent variations of the control structure may cause
excessive stress on the mechanical system. Nevertheless, it is
also worth considering that the decentralized structure is in
general less computationally expensive than the centralized
one.

The state space used for the training with the DRL consists
of the value of the coupling effects estimated by the ISM
controller, as illustrated in Section IV-B, the torque exerted
by each joint and the position, velocity and acceleration
errors for each joint. The action space consists of a single
value determining which control structure should be used at a
given time instant; more specifically, 1 for the decentralized
structure and -1 for the centralized one. The reward function
is defined as:

7' = Ciltorque 1+ C2te + C3¥¢ + Cats + cost 22)

where Fiorque, Tes 7o and r; are computed as the Euclidean
norm of the normalized values of the torques, the position
errors, the velocity errors and the acceleration errors of each
joint, respectively. The terms c¢; = 50, ¢; = 500, ¢3 = 1000
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Fig. 2. Example of trajectory followed by a joint during a training episode
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Fig. 3. Policy on a validation trajectory, with a null cost in the first case
and a cost of -200 in the second

and c4 = 100 are the weights associated to each component.
The set of weights described has been defined via repeated
experiments. As a matter of fact, the experiments showed that
velocity errors are relatively more relevant than others for the
overall performance. The cost parameter is representative of
the extra computational workload that the centralized scheme
may entail, due to the presence of the inverse dynamics
described in Section III-B. Clearly, such cost may well depend
on the specific application scenario considered, hence, the
values described here are just exemplificative. In other words,
in the DRL method proposed, the computational cost is a
parameter that can be adapted to the specific case study.

Each episode in the machine learning process consists of
100 steps of 0.05 s each. During each episode, the robot has
to track a pick-and-place trajectory in the operative space
defined by a random Trapezoidal Velocity Profile (TVP), such
as the one in Fig. 2. The control structure selected at the
initial time instant is chosen randomly as well. The policy
derived from a learning session is then validated using a
set of predefined trajectories, characterized by different TVP



profiles.

As expected, when the cost parameter of the centralized
scheme is set to zero, the policy obtained through DRL at the
end of a training session tends to that of a fixed centralized
approach, since such control scheme guarantees best perfor-
mances in terms of velocity and acceleration. With increasing
values of the cost parameter for the centralized approach,
the agent becomes more leaning towards a decentralized one,
thus entailing more switching actions, as reported in Fig. 3.
With all non-zero values of the cost parameter, the actual
amount of switching actions performed by the DRL agent
can be controlled by acting on the ¢ in Eq. (22), since each
switch between the two structures inevitably causes a peak
in the torques exerted by the joints.

VI. CONCLUSIONS

This paper presents an advanced motion control scheme
for robot manipulators, based on the switched use of a
decentralized control structure and a centralized inverse
dynamics based control. The scheme has a self-configuring
capability thanks to the presence of a smart decision making
mechanism which uses a switching rule to alternatively
activate one of the two control structures. The rule relies on a
DNN trained with the NAF algorithm for DRL. The proposal,
which is then a combination of classical control concepts
and Al elements, allows one to extend the operative velocity
and acceleration range in which the robot manipulator can
work. In this paper, the proposed approach has been validated
relying on a model of an industrial COMAU SMART3-S2
anthropomorphic robot manipulator identified on the basis of
real data.
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