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Abstract 13 

We focus on the joint application of local and global sensitivity analyses (SA) to characterize 14 

propagation of model parameter uncertainties to outputs of subsurface water geochemical models. The 15 

latter typically involve uncertain inputs, including environmental conditions, mineral rock composition 16 

and flow/transport features. In this context, implementation of sensitivity analysis techniques enables us 17 

to grasp the relative role of each model input. Here, we focus on the application of several sensitivity 18 

approaches to the assessment of Cr(VI) geogenic leakage due to water-rock interactions. We specifically 19 

target the impact of uncertain environmental conditions on the chemical composition of spring waters 20 

following water transfer through a host rock system with given mineral composition. We employ a 21 

reaction path modeling approach and represent uncertainties of environmental conditions through three 22 

parameters, i.e., oxygen fugacity (fO2), CO2 fugacity (fCO2), and temperature, which we consider as 23 

random quantities. We consider three diverse methodologies, i.e., (a) the Scatter Plots sensitivity analysis 24 

(SP) (b) the Distributed Evaluation of Local Sensitivity Analysis (DELSA); and (c) a moment-based 25 

global sensitivity analysis. Our results suggest that (a) the relative importance of a given model parameter 26 

in driving the uncertainty of the spring water composition may display remarkable variations across the 27 

sampled parameter space, and (b) parameter ranking through sensitivity metrics for geochemical 28 

applications in subsurface water resources requires a joint assessment of local and global sensitivity. 29 

  30 



1 Introduction 31 

Appropriate approaches to modeling of groundwater geochemistry can contribute to improved 32 

data-driven understanding of (field- and laboratory- scale) processes and long term behavior of 33 

geochemical systems (e.g., Bethke, 2007; Crawford, 1999). In this sense, geochemical models can be 34 

perceived as (intentionally) streamlined representations of reality (Crawford, 1999) and are subject to 35 

uncertainty. The latter stems from incomplete knowledge of the physics controlling the evolution of a 36 

real subsurface system and their transposition into mathematical formulations, as well as from difficulties 37 

of properly defining and characterizing input parameters embedded in such mathematical models (e.g., 38 

Bethke, 2007; Neuman, 2003a, 2003b; Tartakovsky, 2013; Ye et al., 2005; Zhu & Anderson, 2002 and 39 

references therein). Parameter estimation is typically performed, in an inverse problem framework, 40 

through model calibration against data sampled in field or laboratory settings (e.g. Carrera & Neuman, 41 

1986; Dai & Samper, 2004; Yang et al., 2014), a procedure that can be demanding and expensive, 42 

especially when dealing with subsurface systems. In this broad context, identifying priorities for the 43 

characterization of model parameters and optimizing data acquisition during sampling campaigns for 44 

model application should be considered as critical elements associated with modern geochemical model 45 

developments and engineering within an application-oriented framework. Robust sensitivity analyses 46 

and uncertainty quantification for a given model are key to accomplish these objectives (e.g., Iooss & 47 

Lamaitre, 2015; Razavi & Gupta, 2015; Saltelli et al., 2008 and references therein). 48 

A variety of approaches to sensitivity analysis have been proposed. These are essentially framed 49 

within the context of local or global sensitivity analysis. Local sensitivity analysis (LSA) techniques 50 

allow quantifying the sensitivity of a model output to small perturbations of input parameter values. 51 

Results of such analyses are informative of the system behavior in the proximity of the perturbed input 52 

parameter value (Razavi & Gupta, 2015; Saltelli et al., 2005). Otherwise, global sensitivity analysis 53 

(GSA) approaches provide a general framework to characterize sensitivities of model outputs across the 54 



entire (user-defined) range of variability of model input parameters (e.g., Dell’Oca et al., 2017; Razavi 55 

& Gupta, 2015). GSA approaches are relatively recent, as compared to LSA analyses, and have already 56 

found promising implementations in diverse fields of environmental and Earth sciences (e.g., Ciriello et 57 

al., 2013a, 2013b, 2015; Dell’Oca et al., 2017; Formaggia et al., 2013; Riva et al., 2015; Saltelli et al., 58 

2008). While many studies confined to LSA approaches implementation on chemical and geochemical 59 

models can be found in the literature (see Saltelli et al., 2005, 2012 and reference therein), an increasing 60 

interest into GSA approaches in chemistry and geochemistry has been recorded in the last decade (Ferretti 61 

et al., 2016). 62 

In this study we analyze the way the implementation of a variety of sensitivity analysis tools 63 

(local and global) can assist quantification of (a) the relative importance of uncertain model parameters 64 

and (b) the ensuing uncertainty of model outputs in the context of relevant environmental geochemical 65 

scenarios. As a test bed, we target the occurrence of hexavalent chromium (Cr(VI)) in spring water 66 

associated with fractured and partially altered ophiolitic rock settings. The latter stands as a scenario of 67 

concern in the framework of studies aimed at identifying natural background levels of given chemicals 68 

in groundwater bodies (e.g., Runnells et al., 1992; Zhu & Anderson, 2002). The relevance of the setting 69 

considered is supported by the observation that non-negligible concentrations of dissolved Cr(VI) in 70 

groundwater bodies are documented in diverse geographical regions. For example, alarming 71 

concentrations of Cr(VI) are registered in Countries such as Italy, USA (California), Greece, Mexico, 72 

Japan and Indonesia, Brazil, Australia (e.g., Apollaro et al., 2011; Bourotte et al., 2009; Fantoni et al., 73 

2002; Gray, 2003; Kaprara et al., 2015; Lelli et al., 2013; Mills et al., 2011; Morrill et al., 2013; Robles-74 

Camacho & Armientac, 2000; Saputro et al., 2014; Kazakis et al., 2015, 2017). It is now well-established 75 

that the presence of Cr(VI) in natural waters can be linked to anthropogenic pollution and/or geogenic 76 

origins. Anthropogenic pollution stems from diverse manufacturing processes that can produce wastes 77 

containing chromium (e.g., Jacob & Testa, 2005; Kazakis et al., 2017; Vengosh et al., 2016). Relevant 78 



concentrations of Cr(VI) are also found in natural waters for which anthropogenic causes are unlikely 79 

(e.g., Kaprara et al., 2015; Kazakis et al., 2015, 2017). In these cases, the origin of Cr(VI) can be traced 80 

to the progressive weathering due to interaction of ophiolitic and ultramafic outcrops and meteoric water. 81 

Note that an ophiolitic outcrop exposed to rain water may be partially or totally serpentinized even before 82 

getting in contact with meteoric water as a consequence of a different weathering process. According to 83 

Barnes and O’Neil (1978), the contact between ophiolitic outcrops and meteoric water at low temperature 84 

is however a feasible process that may lead to serpentinization and formation of lizardite/chrysotile 85 

minerals. Ophiolitic and ultramafic rocks are formed in igneous environments under very high 86 

temperature and pressure conditions and may contain a significant amount of chromium, mainly in the 87 

form of chromite (FeCr2O4; e.g., Ivarsson et al., 2011; Kazakis et al., 2015; Oze et al., 2004). When 88 

uplifted by geological processes and exposed to reduced temperature and oxygen and CO2 partial 89 

pressures of shallow subsurface systems, these rocks progressively weather according to an irreversible 90 

kinetic process (Bethke, 2007; Styles et al., 2014). Depending on the composition of the parent igneous 91 

rock, the weathering process leads to the formation of a variety of secondary phases. When rainwater 92 

percolates through the rocks, its composition may be enriched by major, minor and trace elements 93 

released during weathering. After residing for some time within the weathering outcrops, the percolated 94 

water typically gushes out as a spring or feeds an alluvial aquifer (Kaprara et al., 2015; see Fig. 1 for a 95 

depiction of the hydrogeological setting considered). Several factors can control the chemical 96 

composition of the spring water, including, e.g., (i) the length of the flow path undertaken by the meteoric 97 

water in the subsurface, (ii) the associated residence time across the rock matrix system, (iii) the depth 98 

of the flow path relative to the ground surface, (iv) temperature and acidity conditions of the environment 99 

and, notably, (v) the redox conditions of the system and the mobility of the diverse ions released by the 100 

weathering process. Note that chromium is highly mobile in the hexavalent form while being 101 

characterized by a very limited solubility in its trivalent form, i.e., the valence state influences the 102 



mobility of Cr, a feature observed for other commonly found chemical elements (e.g., As, Fe). Therefore, 103 

detectable amounts of chromium found in natural waters are typically in the form of the hazardous 104 

hexavalent form (Kaprara et al., 2015; Vengosh et al., 2016), while chromite-bearing rocks generally 105 

contain only the trivalent form (Cr(III); Fantoni et al., 2002).  106 

We perform sensitivity analyses according to three diverse sets of metrics and methodologies: (i) 107 

the Scatter Plots sensitivity analysis (SP, Saltelli et al., 2008); (ii) the Distributed Evaluation of Local 108 

Sensitivity Analysis (DELSA, Rakovec et al., 2014); and (iii) the moment-based global sensitivity 109 

analysis provided by Dell’Oca et al. (2017). We investigate the relative merits of the above illustrated 110 

set of approaches to sensitivity analyses of the target geochemical system. We also assess their ability to 111 

provide insights for geochemical model characterization and implementation, as well as for the 112 

optimization of the design of sampling campaigns, through the prioritization of the importance of model 113 

parameters according to multiple metrics. We do so by exploring and quantifying the sensitivity of the 114 

spring water speciation through a simplified geochemical model, i.e., upon relying on a reaction path 115 

modeling approach (Crawford, 1999; Zhu & Anderson, 2002). In this context, we analyze the impact of 116 

three input model parameters, i.e., (i) oxygen fugacity (fO2), (ii) CO2 fugacity (fCO2), and (iii) temperature 117 

(T). These parameters are considered as proxies of the environmental conditions under which Cr 118 

oxidation takes place. Our choice to rest on a simplified geochemical model stems from the observation 119 

that a comprehensive mechanistic model of Cr dynamics would require considering both kinetic and 120 

equilibrium (bio)geochemical processes coupled to local flow and transport dynamics (McClain et al., 121 

2017 and references therein). While considering such a modeling approach is fully compatible with our 122 

theoretical framework for uncertainty assessment, focusing on a setting associated with a limited number 123 

of uncertain parameters enables us to clearly illustrate and compare the salient points of the sensitivity 124 

analyses techniques we consider. 125 



The physical process, the reaction chain, and the kinetics through which Cr(III) is oxidized to 126 

Cr(VI) have been largely discussed in the literature. According to thermodynamics arguments, 127 

spontaneous oxidation of Cr(III) is characterized by slow kinetics (Apte et al., 2005) and needs to be 128 

catalyzed to take place in a natural system at a significant rate. A variety of possible catalysts have been 129 

suggested to act to this end, including manganese oxides (Ivarsson et al., 2011; Kaprara et al., 2015; 130 

McClain et al., 2017), microbial activity (Fendorf et al., 2000; Ivarsson et al., 2011), hydrogen peroxide 131 

or simply free oxygen (Fantoni et al., 2002; Lin, 2002). While these processes are not explicitly included 132 

in our simplified approach, we treat oxygen fugacity as an effective indicator of the redox state of the 133 

system. As stated above, we remark that the framework of analysis is general and can be readily 134 

employed to analyze any geochemical model. 135 

2 Conceptual model, uncertain parameters and focused outputs 136 

2.1 Conceptual model 137 

We summarize here a conceptual model of weathering of an outcrop of partially altered Cr-138 

bearing ophiolites upon relying on the hydrogeological setting schematically depicted in Fig. 1 and 139 

illustrating the diverse water flow paths of meteoric water infiltrating into the subsurface.  140 

The spring water composition is modeled upon taking into account the interaction between 141 

meteoric water and subsurface minerals. We consider the meteoric water chemical composition listed in 142 

Table 1. The latter has been derived through the procedure proposed by Boschetti and Toscani (2008) 143 

relying on the rain sample composition provided by Panettiere et al. (2000) and setting (i) CO2 fugacity 144 

as log fCO2 = -3.0; (ii) the temperature of the environment as 11 °C; (iii) a slight supersaturation of 145 

ferrihydrite-6 (Fe(OH)3, with Saturation Index, SI = 0.00001) and kaolinite (Al2Si2O5(OH)4, with SI = 146 

0.00001); and (iv) the value of the redox potential to be consistent with concentrations redox couple N(-147 

III)/N(V). To this end, we set concentrations of NH4
+ and NO3

- to 8.5 × 10-6 and 2.84 × 10-5 mol Kg-1, 148 



respectively). Values listed in Table 1, given the low contents of sodium (Na = 3.5 × 10-5 mol Kg-1) and 149 

chlorine (Cl = 3.9 × 10-5 mol Kg-1), can be considered as representative of precipitations across 150 

continental regions. The assumed mineral composition is listed in Table 2. The most abundant phase is 151 

Al-lizardite, an aluminum-enriched type of serpentine (Mg2.7Fe0.2Al0.2Si1.9O5(OH)4; Boschetti & Toscani, 152 

2008). This scenario is typical of an ophiolitic outcrop showing an advanced state of serpentinization. 153 

The source of chromium in the outcrop is constituted by a small amount of chromite (1%, in terms of 154 

molar percentage, in our setting). 155 

We model the spring water composition due to rock weathering upon relying on the reaction path 156 

modeling in time-less mode. This approach was first proposed by Garrels and Mackenzie (1967), 157 

formally implemented by Helgeson et al. (1969), and subsequently applied in several field studies (e.g., 158 

Censi et al., 2011; Marini, 2013; Taunton et al., 2010; Wood et al., 2006), and in hydrological scenarios 159 

similar to the one considered in this work (see, e.g., Apollaro et al., 2011; Boschetti & Toscani, 2008; 160 

Bruni et al., 2002; Fantoni et al., 2002; Helgeson, 1968; Helgeson et al.,1969, 1970; Lelli et al., 2013). 161 

In this context, the evolution of an irreversible reaction towards its final equilibrium state can be 162 

approximated by a sequence of partial equilibria (Marini, 2013). The term partial equilibrium indicates 163 

that the dissolution of the ophiolitic rock across the weathering process is discretized into partial 164 

equilibrium steps while the system is always in equilibrium with some selected mineral secondary phases. 165 

The progress of the system is described in terms of the so-called progress variable ξ  (that quantifies the 166 

number of moles of ophiolitic rock forcedly dissolved) instead of time (Apollaro et al., 2011; Bruni et 167 

al., 2002). This modeling approach is grounded on the experimental evidence that weathering is a very 168 

slow and complex process: we assume that the limiting reaction process is the dissolution of primary 169 

phases. The precipitation/dissolution of stable secondary phases is fast enough compared to dissolution 170 

of primary phases to be modeled by thermodynamic equilibrium. Here, we assume that the secondary 171 

mineral phases listed in Table 3 are allowed to precipitate as a consequence of ophiolites weathering. 172 



The reaction path modeling is implemented in PHREEQC (Parkhurst & Appelo, 2013) with the LLNL 173 

database (Delany & Lundeen, 1991). The references used to extend the LLNL database are listed in Table 174 

2 and Table 3. Additional details on the implementation of the reaction path modeling approach are 175 

illustrated in the Supplementary Material (Text S1). 176 

We note that the employed geochemical model is associated with some important simplifications 177 

and embeds the following assumptions: 178 

1. The rock is characterized by a spatially uniform composition and rainfall is the only source of 179 

recharge. 180 

2. Spring water composition is expected to vary markedly as a consequence of environmental 181 

redox (Eh) and pH conditions. These factors are taken into consideration by introducing the 182 

dependence of the spring water composition on three parameters, i.e., the spring water 183 

temperature (T), the O2 fugacity (fO2), and the CO2 fugacity (fCO2), which are assumed to be 184 

constant, albeit affected by uncertainty. 185 

3. We neglect the occurrence of catalytic processes and assume redox conditions to be driven by 186 

oxygen partial pressure, fO2. As such, possible impacts of Mn oxides are neglected. We assume 187 

that the Cr(III) leached by chromite gives rise to Cr(VI) if the redox conditions (expressed in 188 

terms of Eh, as controlled by fO2 in our model) are compatible with the oxidized valence state 189 

of chromium (Apte et al., 2005; Fendorf, 1995). A similar assumption is considered for all 190 

redox species (even as this aspect is not always documented in natural systems, as seen by, e.g., 191 

Palandri & Reed, 2004 and references therein). 192 

4. Coupling between geochemical and flow/transport processes is neglected. This implies that the 193 

subsurface system is modeled as a well-mixed reactor, the possible occurrence of incomplete 194 



mixing and/or transport limitation of the reaction being disregarded. Temporal dynamics which 195 

could be associated with chemical reaction kinetics are also excluded. This is motivated by the 196 

observation that estimates of kinetic weathering reaction rate and fluid-mineral interfacial 197 

surface area can be uncertain or markedly hard to characterize due to paucity of data (Schott et 198 

al., 2012). 199 

While being aware of the limitations offered by the geochemical model considered, we remark that our 200 

approach is (a) relatively straightforward to implement within available geochemical codes and (b) 201 

computationally inexpensive (i.e., a single model realization, corresponding to a given set of model 202 

parameters, runs in about 2s). Low computational costs give us the flexibility to fully explore sensitivity 203 

analyses and uncertainty propagation via numerical simulations (see also Section 4.2) with acceptable 204 

computational times and computer resources. The selected geochemical model still retains some 205 

information on typical environmental conditions characterizing settings where the weathering process 206 

takes place, and can provide some valuable preliminary indications on the system behavior in terms of 207 

model inputs that can be evaluated in a real scenario. 208 

2.2 Uncertain model parameters and target outputs 209 

We detail here the selected uncertain inputs and the implementation of the model illustrated in 210 

Section 2.1. We follow Neuman (2003a) and distinguish between modeling (Ye et al., 2005) and 211 

parametric uncertainties. Here, we explore the impact of the latter given the model structure introduced 212 

in Section 2.1. 213 

We select fO2, fCO2 and T as uncertain model parameters in agreement with previous studies (e.g., 214 

Boschetti & Toscani.,2008; Bruni et al., 2002; Fantoni et al., 2002; Lelli et al., 2013; Marini, 2013) and 215 

explore the way their uncertainty propagates to govern the variability of the spring water speciation. 216 

Fixing the fugacity of oxygen of the geochemical system is tantamount to controlling the environmental 217 



redox condition, since Eh is directly related to fO2 for a given pH (Anderson, 2005). The fugacity of CO2 218 

is used as a controlling factor of the acidity of the environment (e.g., Bruni et al., 2002). Note that the 219 

variables fO2, fCO2 and T can be interpreted as a proxy of the depth associated with the flowing path 220 

traveled by the meteoric water before being released to the spring. Low values of fO2 together with high 221 

values of fCO2 are representative of deep flowing paths across the fracture network, consistent with the 222 

observation that shallow hydraulic circuits can easily exchange mass with the external atmosphere where 223 

oxygen is abundant (log fO2 ≈ -0.67 and log fCO2 ≈ -3.5, fO2 and fCO2 being expressed in atm). Abundance 224 

of oxygen and CO2 varies with depth depending on the efficiency of exchanges with the atmosphere 225 

(Bruni et al., 2002; Cipolli et al., 2004; Fantoni et al., 2002). 226 

Our approach relies on the following steps (see Supplementary Material (Text S1, Fig. S1-S2) for 227 

more details): 228 

1. We select the intervals of variation listed in Table 4 for the three uncertain inputs on the basis 229 

of literature analysis (Fantoni et al., 2002; Helgeson et al.,1969; Lelli et al., 2013). Note that 230 

we consider fO2 to vary between its value in free atmosphere and very low values that may be 231 

associated with deep water circuits. We label as 1Θ , 2Θ , and 3Θ  the intervals of variability 232 

of log fO2, log fCO2 and T, respectively. 233 

2. We sample randomly the parameter space defined at Step 1 and generate a collection of 234 

PHREEQC input files (Step 3). Additional details on the sampling methods we employ 235 

depending on the considered sensitivity metric are illustrated in Section 3. 236 

3. We simulate the weathering process using the reaction path modeling approach (see Section 237 

2.1) for each generated parameter set. Advancement of the reaction modeling is discretized into 238 

20 steps corresponding to the values of the progress variable ξ  ranging from 5 × 10-9 mol to 1 239 

mol. Target outputs (Y) of our analysis are the molalities of the following dissolved elements: 240 

H+, C, Ca, Mg, Na, Fe, Cr(III), Cr(VI), Si, Al, Cl, N, S, and K. The analysis of additional 241 



outputs (e.g., alkalinity, amount of secondary phases, and/or ionic strength) that is potentially 242 

providing further insights on the problem under investigation can be considered as a future 243 

development. 244 

3 Sensitivity analysis 245 

Sensitivity analysis tools are briefly illustrated in the following Sections (SP in Section 3.1, 246 

DELSA in Section 3.2 and MM-GSA in Section 3.3). To simplify notation, we present the methods for 247 

three generic uncertain model parameters 1ϑ , 2ϑ  and 3ϑ . In our application these will correspond to log 248 

fO2, log fCO2, and T, respectively. The three-dimensional parameter support space is referred to as 249 

1 2 3Ω = Θ ×Θ ×Θ . 250 

3.1 Scatter Plots analysis (SP) 251 

Scatter plots provide a qualitative sensitivity indication (Saltelli et al., 2008). We generate scatter 252 

plots through Monte Carlo sampling of the parameter space considering the three uncertain inputs as 253 

uniformly distributed independent random variables. We employ here N = 105 realizations of the model 254 

parameter set collected in vector ( ), ,
1 2 3, ,i j k i j kϑ ϑ ϑ=p  and obtain the corresponding outputs , ,i j kY  through 255 

the geochemical model described in Section 2.2. Given the N samples of , ,i j kp  and the corresponding 256 

values of , ,i j kY , scatter plots are obtained by plotting the N values of the selected output , ,i j kY  against the 257 

N values of each of the input factors (i.e., 1
iϑ , 2

jϑ , 3
kϑ ). Scatter plots can be informative to assess trends 258 

of output variations as a function of a single parameter. Otherwise, they can hardly be used as a stand-259 

alone tool, as they do not provide a synthetic appraisal of sensitivity. Exploring the scatter plots 260 

associated with each of the 20 steps of the progress variable ξ  requires constructing a large amount of 261 

graphs whose analysis may become cumbersome (i.e., in our case this would imply constructing 840 262 



plots for the analysis of the impact of 3 input factors on 14 model outputs selected at each of the 20 263 

progress variable steps). 264 

3.2 Distributed Evaluation of Local Sensitivity Analysis (DELSA) 265 

Local sensitivity analysis methods are typically based on the computation of local derivatives of 266 

the model output Y with respect to parameter values corresponding to a specific location in the parameter 267 

space. The information about relative parameter importance is limited to the single location where the 268 

local derivative is assessed and these results can be extended to the entire parameter space only if the 269 

model displays a linear behavior with respect to input parameters. To reveal how the sensitivity of a 270 

model output varies across the parameter space, Rakovec et al. (2014) suggest performing a Distributed 271 

Evaluation of Local Sensitivity Analysis (DELSA). The latter essentially consists of performing multiple 272 

evaluations of a local sensitivity metric across the parameter space. We list here for convenience the 273 

main points of the steps required to conduct DELSA (see Rakovec et al., 2014 for additional details): 274 

1. We sample the parameter space along each dimension with constant spacing h∆  (with h = 1, 275 

2, 3, respectively for 1Θ , 2Θ  and 3Θ ). This yields a set of 1 2 3M m m m= ⋅ ⋅  sampling points 276 

, ,i j kp , where hm  represents the number of sampling points along each coordinate in the 277 

parameter space. We then evaluate the model output , ,i j kY  for each sampling point. 278 

2. We approximate the local derivatives with respect to 1ϑ  at a given evaluation point , ,i j kp  as 279 
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1
1 2 3 1 2 3
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   (1) 280 

We compute the local derivatives with respect to 2ϑ  and 3ϑ  as in (1). 281 

3. We compute the local variance of the target output , ,i j k
LV  associated with each location , ,i j kp  as  282 
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  (2) 283 



where 2 2 ( )j js σ ϑ=  is the a priori variance of jϑ . Equation (2) represents the local variance of the 284 

target output under the following assumptions: (i) the random input factors are characterized by 285 

uniform distributions and (ii) the variance computation relies only on a priori information about the 286 

parameters (Rakovec et al., 2014). 287 

4. The local sensitivity indices are then defined as (see Rakovec et al., 2014) 288 
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The four-steps procedure here presented is repeated ( )( )( )31 2 11 1 mm m −− −  times to estimate the 290 

distribution of the local indices defined in (3) throughout the parameter space. Hereafter, distributions of 291 

, ,
1
i j kSL , , ,

2
i j kSL  and , ,

3
i j kSL  in the parameter space are denoted as sensitivity maps of 1ϑ , 2ϑ , and 3ϑ , 292 

respectively. To avoid artificially high values of local indices due to numerical issues associated with 293 

low local variance values, we estimate the local coefficient of variation ( , ,i j k
hLCV ) 294 

 
, ,

, ,
, ,

i j k
Li j k

h i j k

V
LCV

Y
= ; h = 1, 2, 3 (4) 295 

and force index , ,i j k
hSL  to zero at all locations  where , ,i j k

hLCV  < 1 × 10−2. A refined grid in the 296 

parameter space has also been analyzed to assess the stability of the results presented in this study and 297 

no significant differences have been observed (details not shown). 298 

One should note that (i) the implementation of DELSA is generally less computationally intensive 299 

than several global sensitivity analysis tools (e.g., Sobol’ statistics) and (ii) allows exploring factor 300 

mapping (according to the terminology of Saltelli et al., 2008) or regions of sensitivity identification 301 

(according to the terminology of Razavi & Gupta, 2015). The latter relies on dividing the parameter space 302 

in sub-regions where the model output sensitivity shows a diverse behavior in response to the same 303 

variation of a random input. 304 

, ,i j kp



A somehow limiting aspect of DELSA is the large amount of sensitivity maps that can be obtained 305 

as result of the method implementation. In our study we obtain three sensitivity maps (one for each input 306 

parameter) for each model output Y investigated for each step ξ . Considering all of the outputs subject 307 

to our investigation and the number of ξ  steps simulated, this yields a total of 840 sensitivity maps. 308 

Where sensitivity to a parameter of interest, e.g., 1ϑ , is identified, one can introduce the following 309 

indicator 310 

 
( )( )

32 11
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∑ ∑
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The latter corresponds to averaging 1SL  along directions 2ϑ  and 3ϑ  and yields the quantity 1
iSL  that is 312 

only a function of 1ϑ  and the reaction progress variable step ξ ; quantity 1
iSL  can then be 313 

complemented by its standard deviation, defined as 314 

 
( )32 11 2
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1 1

1 1
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3.3 Moment-based Metrics for Global Sensitivity Analysis (MM-GSA) 316 

The global sensitivity metrics suggested by Dell’Oca et al. (2017) are here implemented to 317 

quantify the impact of the input factor uncertainties on statistical moments driving key features of the 318 

structure of the probability density function (pdf) of model outputs. These authors propose estimating 319 

sensitivity indices based on the first four (statistical) moments of the pdf of a model output (i.e., mean, 320 

variance, skewness and kurtosis). Here, we confine our analysis to the mean and variance and employ 321 

the metrics 322 
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where 
j

AMAEϑ  and 
j

AMAVϑ  respectively represent the sensitivity indices associated with the first and 325 

the second moment of the target model output Y; quantity 0Y  in (7) indicates the (unconditional) mean of 326 

Y, i.e., the mean value computed over the entire parameter space; the symbols [ ]E •  and [ ]V •  respectively 327 

identify expected value (i.e., the mean) and variance; the symbol jY ϑ  indicates conditioning of Y to a 328 

known value of parameter jϑ . Essentially, indices 
j

AMAEϑ  and 
j

AMAVϑ  quantify the expected change 329 

of the mean and variance of Y due to our knowledge of (or conditioning on) jϑ . Large values of these 330 

indices indicate that the variability of the input markedly affects the considered moments of the output 331 

pdf. We estimate these indices by way of the same Monte Carlo sample used for the scatter plot analysis. 332 

Conditional statistics are evaluated upon subdividing the sample in classes (e.g., Saltelli et al., 2008). 333 

To avoid artificially high values of 
j

AMAVϑ  occurring when the variance [ ]V Y  is very small, we 334 

introduce 335 

 
0

[ ]V Y
CV

Y
=    (9) 336 

and force to zero the index value if CV < 1 × 10-2. 337 

A strength of the MM-GSA approach is to condense the impact of random input factors on a 338 

moment of the pdf of each target model output through a limited number of indices, thus streamlining 339 

the elaboration and interpretation of the results. Otherwise, information on local sensitivity is shadowed. 340 

The MM-GSA method proposed by Dell’Oca et al. (2017) is more informative than other commonly 341 



used GSA variance based methods (such as, e.g., the Sobol’ indices based on the classical decomposition 342 

of variance) because it considers the way the moments driving structure of the pdf of the target output 343 

are affected by the uncertainty associated with each model parameter. A limitation of the MM-GSA is 344 

that a large number of Monte Carlo model realizations might be required in some cases to obtain a robust 345 

and stable estimation of the moment-based metrics. This barrier could be in some instances alleviated by 346 

resorting to the use of surrogate (or reduced-order) models (Dell’Oca et al., 2017). Here, we verify that 347 

a number of model runs N = 105 was sufficient to attain stability of the MM-GSA indices computed. 348 

4 Results 349 

We focus on a selection of the results obtained with the sensitivity analysis tools introduced in 350 

Section 3. Results are illustrated for three exemplary reaction steps, i.e., 1ξ  = 1 × 10-8 mol, 2ξ  = 1 × 10-4 351 

mol and 3ξ  = 0.5 mol. This Section is structured in two parts: in Section 4.1 we discuss the results 352 

associated with the identification of regions of sensitivity, i.e., the analysis of the SPs and the 353 

implementation of DELSA; Section 4.2 is devoted to the discussion of the results of MM-GSA. Results 354 

presented here focus on selected outputs (Cr speciation, C molality and pH) and are complemented by 355 

those given in the Supplementary Material (Text S2 and Figures S3-S5) for other chemical species (Si, 356 

Fe, Ca). 357 

4.1 Local sensitivity analysis across the parameter space and regions of sensitivity 358 

In this Section we analyze trends and features displayed by key outputs as a function of the three 359 

uncertain model parameters, through visualization of results encapsulated in SPs (Fig. 2) and DELSA 360 

(Fig. 3-5). These analyses are performed following the procedures described in Section 3. We employ N 361 

= 105 realizations for SPs and 1∆  = 2, 2∆  = 0.2, and 3∆  = 1 as discretization steps for DELSA (leading 362 

to M = 1188 realizations). 363 



4.1.1 Chromium speciation 364 

Values of Cr(VI) molality vary with ξ, remarkably similar qualitative patterns of the data clouds 365 

being observed as a function of log fO2 for the diverse ξ levels considered (see Fig. 2a). We note that the 366 

molality of Cr(VI) steadily decreases for decreasing values of log fO2 (for 2l g 20o Of < − ). When 367 

242 log 30Of− ≤ ≤ − , the amount of dissolved Cr(VI) is smaller than 10-6, 10-8, and 10-14 mol kg-1, 368 

respectively at 1ξ , 2ξ , and 3ξ , i.e., it is lower than 0.5% of the total chromium in the system at each step 369 

and lies below the field detection limit (Ball & Izbickib, 2004) for 242 log 35Of− ≤ ≤ − . Molality of 370 

Cr(VI) is constant across all realizations for 2l g 20o Of > −  and for each of the three considered values of 371 

ξ  coincides with the total amount of chromium released by the weathering of ophiolitic rock, i.e., the 372 

total amount of chromium present in the system. This result is a consequence of the high solubility of 373 

Cr(VI) in water (Fendorf, 1995). Otherwise, Cr(III) is present in negligible amounts in water for 374 

2l g 20o Of > −  (see also Bai & Fan, 2009) and we verify that it never exceeds the detection limit in this 375 

range of values of log fO2 across all Monte Carlo realizations. Scatter plots of Cr(III) versus 2log Of  376 

display trends mirroring those of Cr(VI) in Fig. 2a (not shown). Figs. 2b and c depict the scatter plots for 377 

Cr(VI) as a function of 2log COf  and T. These results suggest a linear dependence (on average) of the 378 

molality of Cr(VI) on both 2log COf  (Fig. 2b) and T (Fig. 2c) and indicates a mild sensitivity of Cr(VI) 379 

with respect to these two factors. A similar behavior is also observed for Cr(III) (not shown). 380 

Fig. 3 depicts 
2O

i
fSL  as function of log fO2 and the reaction progress variable ξ  computed for 381 

the Cr molality apportioned in its two forms, i.e., Cr(VI) (Fig. 3a) and Cr(III) (Fig. 3b). These results 382 

clearly suggest the presence of three regions of sensitivity for any ξ : (i) for 2l42 0og 3Of− < < −  the local 383 

sensitivity of the molality of Cr(VI) is completely controlled by oxygen fugacity, molality of Cr(III) 384 

being only slightly sensitive to 2log Of ; (ii) for 2l30 0og 2Of− < < − , molalities of Cr(VI) and Cr(III) are 385 



both sensitive to 2log Of  revealing a pattern according to which a large 
2O

i
fSL  value for Cr(VI) 386 

corresponds to a small value for Cr(III) at a fixed 2log Of ; and (iii) for 2lo0 0 7g2 .6Of− < < −  the local 387 

sensitivity of Cr(III) molality is fully controlled by oxygen fugacity, while the molality of Cr(VI) is not 388 

sensitive to 2log Of . These results suggest that these two forms of chromium can coexist in water in 389 

detectable amounts solely for the limited range −30 ≤ 2log Of  ≤ −20 (corresponding to the conditions 390 

characterizing the transition from shallow groundwater to deeper hydraulic circuits leading to more 391 

evolved Ca-enriched waters; see also Fantoni et al., 2002; Lelli et al., 2013) and the relative proportions 392 

of Cr(III) and Cr(VI) within this region is sensitive to 2log Of . Otherwise, the role of 2log Of  is no longer 393 

relevant for the chromium valence state partitioning for −20 ≤ 2log Of  ≤ −0.67 (a setting ascribed to 394 

shallow groundwater circulation leading to Mg-HCO3 rich waters; see also Fantoni et al., 2002; Lelli et 395 

al., 2013) and the total amount of chromium is found in the form of Cr(VI). 396 

4.1.2 pH and Carbon speciation 397 

Fig. 2d depicts the scatter plot of pH as a function of log fO2 at 1ξ  = 1×10-8 mol (black circles), 398 

2ξ  = 1×10-4 mol (red circles) and 3ξ  = 0.5 mol (blue circles). Results obtained for 1ξ  = 1×10-8 mol 399 

suggest that pH is not sensitive to 2log Of  for 2l42 0og 1Of− ≤ ≤ −  and 2lo 0 7g5 .6Of− ≤ ≤ − . The pH 400 

values sharply decrease with increasing log fO2 for 2log10 5Of− ≤ ≤ − . This behavior is associated with 401 

nitrogen speciation in water which, in turn, is affected by fO2 (i.e., by the redox state). For small values 402 

of ξ , nitrogen, sulfur and chloride are abundant, as compared against other elements, given the 403 

composition of the meteoric water (see Table 1). In the range of oxygen partial pressure explored in our 404 

simulations, the nitrogen may appear in two different stable valence states: (i) N(0) is the dominant 405 

valence state of nitrogen for 242 log 10Of− ≤ ≤ − , with negligible content of N(V) in the water; (ii) 406 

nitrogen is present solely as N(V) for 25 log 0.67Of− ≤ ≤ − . Detectable amounts of N(0) and N(V) coexist 407 



in solution within the interval 210 log 5Of− ≤ ≤ −  (not shown). These features have a definite impact on 408 

pH, as the oxidized N(V) form of nitrogen is prone to generating acid compounds in water, such as HNO3
-409 

, which favors the decrease of pH of the solution. Otherwise, the formation of the neutral compound N2 410 

is favored when the N(0) reduced form dominates. Therefore, pH is higher for 242 log 10Of− ≤ ≤ −  (i.e., 411 

when nitrogen is reduced to N(0)) than for 25 log 0.67Of− ≤ ≤ −  (i.e., when nitrogen is oxidized to N(V)). 412 

In the range 210 log 5Of− ≤ ≤ − , pH responds proportionally to the relative abundancy of the N(V) and 413 

N(0) in which nitrogen is apportioned. Values of pH are then seen to decrease as log fO2 increases, 414 

consistent with the increase of N(V) at the expenses of N(0). 415 

For 0.5ξ =  mol, a slight and localized variation of pH is observed (blue circles in Fig. 2d) in the 416 

interval 230 log 20Of− ≤ ≤ − , while pH appears to be insensitive to 2log Of  for 242 log 30Of− ≤ ≤ −  and 417 

220 log 0.67Of− ≤ ≤ − . For 230 log 20Of− ≤ ≤ − , pH varies in response to the transition of dissolved 418 

chromium discussed in Section 4.1.1. Similar to the case of nitrogen, dissolved Cr(VI) is found in chromic 419 

acid (H2CrO4), which is partially or totally dissociated into HCrO4
- and CrO4

2- and may acidify the water 420 

solution. Otherwise, Cr(III) is chemically affine to the hydroxyl group (OH-) leading to the formation of 421 

Cr(OH)2
+, Cr(OH)2+ and Cr3+, which can buffer the acidity of the solution (Motzer & Engineers, 2004). 422 

We observe negligible sensitivity of pH to fO2 for ξ =1×10-4 mol (red circles in Fig. 2d). This 423 

behavior is likely related to the observation that the progressive alteration of the ophiolitic rock has an 424 

alkalizing effect on the pore water, as reported by Oze et al. (2004) and evidenced in Fig. 2d by the 425 

overall increment of pH as reaction advances. It can also be observed that, irrespective of the increase of 426 

pH with ξ , the alkalinity is not strong enough to entirely buffer the pH alteration ascribed to large 427 

amounts of chromate ion formed at large ξ  for 220 log 0.67Of− ≤ ≤ − . Fig. 2e-f show that pH tends to 428 



decrease as 2log COf  increases, independent of ξ  (Fig. 2e), while temperature has a negligible overall 429 

impact on the pH of the final solution. 430 

Fig. 4 depicts six sensitivity maps resulting from the DELSA and targeting pH as a model output. 431 

Fig. 4a, b, and c respectively depicts the sensitivity maps of
2Of

SL , 
2COfSL  and SLT evaluated at 0.5ξ =  432 

mol. Corresponding depictions for ξ =1×10-8 mol are included in Fig. 4d, e, and f. These maps show that 433 

the pH of the solution is chiefly influenced by 2log COf  for most of the parameter combinations within 434 

the selected parameter space. Notable exceptions are given by localized regions where the effect of 435 

2log Of  becomes prevalent, i.e., for 230 log 20Of− ≤ ≤ −  (Fig. 4a) when 0.5ξ =  mol and for 436 

210 log 5Of− ≤ ≤ −  when ξ =1×10-8 mol (Fig. 4d). This behavior is consistent with our comments above 437 

related to the sensitivity to 2log Of  of the apportionment between the redox couples N(0)/N(V) and 438 

Cr(III)/Cr(VI). 439 

The dependence of the extent of the sensitivity regions of pH on 2log Of  and ξ  can be clearly 440 

visualized upon considering 
2O

i
fSL  (Fig. 5a). Note that shaded areas highlighted in the plane ( 2log Of , 441 

ξ ) in Fig. 5 correspond to the ranges of 2log Of  values associated with the transition of the dominant 442 

valence state of Cr (yellow area) and N (red area). The pattern of 
2O

i
fSL  computed for the molality of 443 

H+ at ξ =1×10−8 mol is very similar to the one observed at all reaction progress steps 1×10−8 mol ≤ ξ ≤ 444 

1×10−4 mol. For 1×10−4 mol < ξ ≤ 1×10−1 mol, 
2O

i
fSL  vanishes throughout 1Θ . This is consistent with 445 

the results depicted in the scatter plots of pH versus log fO2 for ξ =1×10-4 mol (red circles in Fig. 2d). 446 

Then, for the interval ξ = [1×10−4 mol, 1×10−1 mol] the increase of solution alkalinity (resulting from 447 

ophiolitic rock alteration) completely buffers the release of H+ resulting from oxidized chromium as well 448 

as nitrogen valence states. Nonzero values of sensitivity to 2log Of  are found for ξ  > 1×10−1 mol, (i.e., 449 



for advanced stages of the reaction) solely across the shaded yellow area in Fig. 5a. Sensitivity of H+ to 450 

2log Of  generally increases as ξ  increases from 1×10−1 to 1. This behavior is a consequence of the larger 451 

amount of chromium released by the altered rock in the solution, which, in turn, markedly alters pH when 452 

the oxidizing conditions favor speciation to Cr(VI) at the expenses of Cr(III). 453 

Fig. 5b depicts the evolution of 
2O

i
fSL  associated with dissolved carbon as a function of log fO2 454 

and ξ . Carbon speciation in water is heavily influenced by pH and the trends observed in Fig. 5b 455 

naturally follow those in Fig. 5a. A remarkable difference between these two trends is observed for 456 

1×10−4 ≤ ξ ≤ 1×10−2, where the dissolved carbon shows a mild sensitivity to 2log Of  (note the nonzero 457 

values of 
2O

i
fSL ) across the two colored shaded areas in Fig. 5b. These results are consistent with the 458 

observation that the alkalinity (to which the ion HCO3
- contributes) of the solution is sufficient to 459 

maintain the pH stable at these reaction stages even as the change of the valence state of Cr and N may 460 

release H+ ions. The significance and implications of this finding might be further explored upon 461 

considering the dynamics of the assumed secondary phases, an analysis that is beyond the scope of this 462 

study. 463 

4.1.3 Identification of sensitivity regions 464 

The sensitivity maps obtained from DELSA together with the SPs analysis show that the 465 

variability of 2log Of  has a pivotal role to sensitivity of many model outputs, i.e., H+, C, Ca, Mg, Na, Fe, 466 

Cr(III), Cr(VI), Al, and K. This result is not surprising given that the system under consideration is driven 467 

by redox state. In this context, our analysis documents that the importance of oxygen fugacity is not 468 

uniform across the parameter space. One can easily identify two sub-regions of 1Θ  where the variability 469 

of 2log Of  may be considered the only element contributing to the target output variances. Sensitivity of 470 



target variables to 2log Of  vanishes in the remaining regions of 1Θ , where it is driven solely by 2log COf  471 

and T. 472 

We can then identify the following regions of sensitivity associated with the model presented in 473 

this work by relying on the results of Figs. 2-5 and partitioning 1Θ  onto five intervals Iw (w = 1, 2, 3, 4, 474 

5): 475 

1. {I1 : 2log [ 42, 30]Of ∈ − − , 
2 2log

COf ∈Θ , and 3T ∈Θ }: all model outputs are insensitive to 2log Of  476 

in this interval across the range of ξ  explored; an exception is given by the molality of Cr(VI) 477 

that is very sensitive to 2log Of , a feature which is not of practical interest because of the 478 

negligible amount of Cr(VI) in the solution. 479 

2. {I2 : 2log [ 30, 20]Of ∈ − − , 
2 2log

COf ∈Θ , and 3T ∈Θ }: several model outputs (H+, Ca, C, Fe, Mg, 480 

K, Na, Al) are sensitive to 2log Of  in this interval only for large values of the progress variable ξ481 

. This result can be interpreted as an indirect consequence of the change of proportion between 482 

Cr(III) and Cr(VI) as a function of 2log Of . Outside of I2, only one valence state of chromium is 483 

detectable in the spring water for large values of ξ . 484 

3. {I3 : 2log [ 20, 10]Of ∈ − − , 
2 2log

COf ∈Θ , and 3T ∈Θ }: all model outputs are not sensitive to 485 

2log Of  in this interval across the range of ξ  explored; an exception is given by the molality of 486 

Cr(III) that is very sensitive to 2log Of  but otherwise associated with negligible values in the 487 

system. 488 

4. {I4 : 2log [ 10, 5]Of ∈ − − , 
2 2log

COf ∈Θ , and 3T ∈Θ }: some model outputs (H+, C, Al) are sensitive 489 

to 1ϑ  in this interval, with a high level of sensitivity registered only for small values of the 490 

progress variable ξ . From a physical point of view, this results can be seen as an indirect 491 

consequence of the change of proportion between N(0) and N(V) as a function of log fO2. Outside 492 



of I4, only one valence state of chromium is detectable in the spring water for small ξ . Note that 493 

the amount of Cr(III) is still negligible within I4, similar to what observed for I3. 494 

5. {I5 : 2log [ 5, 0.67]Of ∈ − − , 
2 2log

COf ∈Θ , and 3T ∈Θ }: all model outputs are insensitive to fO2 in 495 

this interval across the range of ξ  explored. The molality of Cr(III) stands as an exception also 496 

in this region and, similar to I4 and I3, the interest of this target variable in this interval is negligible 497 

due to the very low quantity of Cr(III) that can be found in water. 498 

4.2 Global Sensitivity Analysis 499 

The analysis illustrated in Section 4.1 suggests that a set of distinct regions of sensitivity can be 500 

demarcated in the parameter space. Here, we compare MM-GSA indices jAMAE  and jAMAV  (here, j 501 

stands for 2Of , 2COf , or T) computed considering the full parameter space Ω  against their counterparts 502 

evaluated within each of the partitions Iw (w = 1, 2, ..., 5) defined in Section 4.1.3. In the following, we 503 

term the latter as region-specific sensitivity indices. 504 

Fig. 6 depicts the results obtained by the computation of the MM-GSA indices jAMAE (Ω ) and 505 

jAMAE (Iw) (filled circles) for H+. Global sensitivity measures generally indicate that CO2 fugacity has 506 

the largest influence on H+, followed by oxygen fugacity and temperature, for ξ  = 1×10-8, and 0.5 mol. 507 

For ξ =1×10-4 mol, H+ is exclusively sensitive to 2log COf  and displays negligible sensitivity to 508 

temperature and oxygen fugacity. Large discrepancies are observed between 
2Of

AMAE (Ω ) and 509 

2Of
AMAE (Iw) for ξ  = 1×10-8 and 0.5 mol. Region-specific sensitivity indices 

2Of
AMAE (Iw) indicate that 510 

oxygen fugacity influences H+ only within intervals I4 (for ξ  = 1×10-8 mol) and I2 (for ξ  = 0.5 mol) 511 

(Fig. 6a-c, blue filled circles). Note that 
2Of

AMAE (I2) = 0.11 for ξ  = 0.5 mol, while 
2Of

AMAE (I4) = 0.54 512 

for ξ  = 1×10-8 mol indicating a larger sensitivity for H+ in 4I  than in 2I . This result is in agreement with 513 



our conclusions inferred from the scatter plots presented in Section 4.1 (Fig. 2d) and provides a 514 

quantification of the qualitative behavior evidenced by the SPs. Indices 
2COfAMAE (Iw) (red filled circles, 515 

Fig. 6a-c show that CO2 fugacity is the most important controlling factor for the mean of H+ across the 516 

bulk of the parameter space, the only exception being given by interval I4 for ξ  = 1×10-8 mol (Fig. 6a, 517 

where 
2Of

AMAE (I4) > 
2COfAMAE (I4)). Sensitivity to temperature T does not show significant variations 518 

for the three investigated values of ξ , both global and region-specific indices associated with it never 519 

exceeding a value of 0.1. Temperature would be ranked as the least influential parameter on the basis of 520 

global sensitivity indices computed upon considering the entire parameter space Ω. However, it can also 521 

be observed that H+ is more sensitive to temperature than to fO2 across the parameter space with the 522 

exception of intervals I4 (for ξ  = 1×10-8 mol) and I2 (for ξ  = 0.5 mol), as discussed above. The 523 

qualitative trend of jAMAE (Iw) is analogous to the one of jAMAV (Iw), shown in Fig. 6d-f. We can then 524 

infer that the sample mean and variance of H+ are characterized by similar sensitivities to the selected 525 

input factors. 526 

Results in Fig. 6 reveal possible limitations associated with global sensitivity measures. As an 527 

example, Fig. 6a shows that 
2Of

AMAE (Ω ) = 0.28, 
2COfAMAE (Ω ) = 0.42, and TAMAE (Ω ) = 0.03, i.e. 528 

that the sample mean of the output is chiefly influenced by 2log COf  (related to alkalinity), followed by 529 

2log Of  (related to redox conditions), while T has a negligible influence on H+. This behavior is mainly 530 

driven by the large sensitivity to 2log Of , which is actually confined to region I4 but yields high values 531 

of 
2Of

AMAE (Ω ). This shows that effects of locally high sensitivities can be propagated to global 532 

measures relying on the entire sampling domain Ω . Note that the global nature of 
2Of

AMAE (Ω ) masks 533 

the richness of information related to the distribution of the sensitivity across the parameter space. In 534 

other words, relying on an index such as 
2Of

AMAE  (Ω ) prevents distinguishing between cases in which 535 



the sensitivity to the random input factor is high and uniformly distributed across Ω (see, e.g., the 536 

sensitivity to 2log COf  in Fig. 6b) from cases where only isolated high sensitivity peaks occur (see, e.g., 537 

the sensitivity to 2log Of  in Fig. 6a). 538 

Similar considerations can be made by comparing indices jAMAE (Iw) and jAMAE (Ω ) (or 539 

equivalently jAMAV ) for all of the other outputs displaying a local variation of parameter sensitivity 540 

according to DELSA and SPs analysis. Fig. 7 depicts the results of the MM-GSA metrics evaluated for 541 

Cr(III) (Fig. 7a, c) and Cr(VI) (Fig. 7b, d) at ξ  = 0.5. Parameter ranking remarkably varies also in these 542 

cases when considering the global and region-specific indices. We observe (Fig. 7a, c) the occurrence of 543 

quite large values for 
2Of

AMAE (Iw) and 
2COfAMAE (Iw) in I2, I3, I4, and I5 for Cr(III), values associated 544 

with Cr(VI) being largest in I1 and I2.  545 

5 Conclusions 546 

Our work leads to the following major conclusions. 547 

1. Our study suggests that SPs, DELSA and MM-GSA lead to coherent results and 548 

complementary information when properly implemented and interpreted and highlights the 549 

importance of combining diverse sensitivity measures in geochemical modeling. Scatter plots 550 

and DELSA provide quantitative and qualitative criteria to demarcate localized regions of 551 

sensitivity in the parameter space, which may arise for localized changes in the chemistry of 552 

the solution. In the case of Cr oxidation, alteration of redox couples’ equilibrium induces 553 

localized changes in the model responses, which in turn yield regionalized sensitivity 554 

responses. 555 

2. We delineate five regions of sensitivity based on the influence of the oxygen partial pressure 556 

on the model outputs. The importance of fO2 is inhomogeneous across the parameter space and 557 



this parameter induces nonlinear variations in the output, driven by shifts in the redox couples 558 

concentrations. Analysis of SPs enables us to associate the variation of local model sensitivity 559 

across the parameter space with the valence state transition of N(0) into N(V) and Cr(VI) into 560 

Cr(III), and vice versa. The reduced form of nitrogen tends not to impact on the solution pH, 561 

while the reduced form of chromium typically induces an increase in pH. The oxidized form of 562 

both of these elements are associated with acid solutions. With an increase of nitrogen or 563 

chromium molality, pH varies according to the water redox conditions and the sensitivity of 564 

nitrogen and chromium valence state to the redox conditions is propagated through pH to the 565 

entire spring water speciation (i.e., Ca, Mg, K, Al, Na, Fe molalities). 566 

3. In settings where the model response displays a regionalized sensitivity output of the kind 567 

illustrated above, MM-GSA indices largely depend on the selection of the parameter space. For 568 

example, the sensitivity of the mean pH to oxygen fugacity becomes predominant over 569 

temperature and carbon dioxide fugacity within well-defined regions of the wide parameter 570 

space explored. The combination of local and global sensitivity measures is then key to 571 

understand the relationship between global and region-specific parameter ranking. This 572 

conclusion is markedly relevant when sensitivity measures are employed to drive and design 573 

experimental measurements campaigns.  574 

The identified regions of sensitivity and the model outputs sensitivities observed are specifically 575 

associated with the simplified geochemical model of Cr oxidation and leakage investigated here. 576 

Otherwise, the procedure implemented can be readily extended to any other natural geochemical model 577 

relying on a diverse physical system and conceptual outline. As redox- sensitive (e.g., Fe, N, S, Cl, Cr, 578 

As) elements are ubiquitous in natural systems, we envision our results to be relevant to a large class of 579 

environmental problems. 580 
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Table 1: Speciation of the meteoric water which constitutes the only recharge of the hydrogeological 
system outlined in Figure 1. The speciation is obtained following the procedure proposed by 
Boschetti and Toscani (2008). 

Table 2: Mineral phases composing the partially altered Cr-rich ophiolitic outcrop. 

Table 3: Secondary phases allowed to precipitate downstream of the meteoric water and ophiolitic rock 
interaction. 

Table 4: Ranges of variability selected for each parameter describing the environmental conditions of 
the flowing path. 

  



Table 1: Speciation of the meteoric water which constitutes the only recharge of the hydrogeological 
system outlined in Figure 1. The speciation is obtained following the procedure proposed by Boschetti 

and Toscani (2008). 

Element/Quantity Molality [mol Kg-1]  Element/Quantity Molality [mol Kg-1] 

Al 1.35×10-6 Mg 1.2×10-5 

C 5.8×10-5 N 3.7×10-5 

Ca 7.7×10-5 Na 3.5×10-5 

Cl 3.9×10-5 S 3.5×10-5 

Fe 1.3×10-8 Si 1.35×10-6 

K 1.1×10-5 pH 5.4 

  



Table 2: Mineral phases composing the partially altered Cr-rich ophiolitic outcrop. 

Phases Molar percentage [%] Thermodynamic data reference 

Al-lizardite (Mg2.7Fe0.2Al0.2Si1.9O5(OH)4)  86 Boschetti and Toscani (2008) 

Chromite (FeCr2O4) 1 LLNL Database 

Chrysotile (Mg3Si2O5(OH)4) 5 LLNL Database 

Clinochlore-daphnite (Mg4FeAl2Si3O10(OH)8) 2 LLNL Database 

Magnetite (Fe3O4) 1 LLNL Database 

Spinel (Al2MgO4) 1 LLNL Database 

Albite (NaAlSi3O8) 1 LLNL Database 

Anorthite (CaAl2(SiO4)2) 3 LLNL Database 
  



Table 3: Secondary mineral phases allowed to precipitate as a consequence of ophiolites weathering. 

Phases Composition Thermodynamic data 
reference 

Kaolinite Al2Si2O5(OH)4 LLNL database 
Gibbsite Al(OH)3 LLNL database 
Hydromagnesite Mg5(CO3)4(OH)2:4H2O LLNL database 
Brucite Mg(OH)2 LLNL database 
Nesquehonite MgCO3:3H2O LLNL database 
Ideal solid solution of Montmorillonites:   
 Mg-montmorillonite Mg.495Al1.67Si4O10(OH)2 LLNL database 
 K-montmorillonite K.33Mg.33Al1.67Si4O10(OH)2 LLNL database 
 Ca-montmorillonite Ca.165Mg.33Al1.67Si4O10(OH)2 LLNL database 
 Na-montmorillonite Na.33Mg.33Al1.67Si4O10(OH)2 LLNL Database 
 Mn(II)-montmorillonite Mn.165Mg.33Al1.67Si4O10(OH)2 Fantoni et al. (2002) 
 Mn(III)-montmorillonite Mn.11Mg.33Al1.67Si4O10(OH)2 Fantoni et al. (2002) 
 Cr(III)-montmorillonite Cr.11Mg.33Al1.67Si4O10(OH)2 Fantoni et al. (2002) 
 Ni-montmorillonite Ni.165Mg.33Al1.67Si4O10(OH)2 Fantoni et al. (2002) 
 Fe(II)-montmorillonite Fe.165Mg.33Al1.67Si4O10(OH)2 Fantoni et al. (2002) 
 Fe(III)-montmorillonite Fe.11Mg.33Al1.67Si4O10(OH)2 Fantoni et al. (2002) 
Ideal solid solution of 
Carbonates: 

   

 Calcite CaCO3 LLNL Database 
 Siderite FeCO3 LLNL Database 
 Rhodocrosite MnCO3 LLNL Database 
Ideal solid solution of 
Hydroxides 

   

 Fe(II)-hydroxide (Fe(OH)2) LLNL Database 
 Fe(III)-hydroxide (Fe(OH)3) LLNL Database 
 amorphous Mn(II)-

hydroxide 
(Mn(OH)2) LLNL Database 

 Mn(III)-hydroxide (Mn(OH)3) LLNL Database 
 Ni-hydroxide (Ni(OH)2) LLNL Database 
 Cr(III)-hydroxide (Cr(OH)3) LLNL Database 
Ideal solid solution of Saponites    
 Ca-saponite Ca.165Mg3Al.33Si3.67O10(OH)2 LLNL Databasa 
 K-saponite K.33Mg3Al.33Si3.67O10(OH)2 LLNL Database 
 Mg-saponite Mg3.165Al.33Si3.67O10(OH)2 LLNL Database 
 Na-saponite Na.33Mg3Al.33Si3.67O10(OH)2 LLNL Database 
 Fe(III)-saponite Fe.11Mg3Al.33Si3.67O10(OH)2 Fantoni et al. (2002) 
 Fe(II)-saponite Fe.165Mg3Al.33Si3.67O10(OH)2 Fantoni et al. (2002) 
 Cr(III)-saponite Cr.11Mg3Al.33Si3.67O10(OH)2 Fantoni et al. (2002) 
 Mn(II)-saponite Mn.165Mg3Al.33Si3.67O10(OH)2 Fantoni et al. (2002) 
 Mn(III)-saponite Mn.11Mg3Al.33Si3.67O10(OH)2 Fantoni et al. (2002) 
 Ni-saponite Ni.165Mg3Al.33Si3.67O10(OH)2 Fantoni et al. (2002) 

  



Figure 1: The simplified hydrogeological setting studied in this work. The water path is segmented into 
three main phases: (i) meteoric water infiltrates into the subsurface; (ii) water flows in the 
subsurface fracture network and then (iii) gushes out as springs. 

Figure 2: Scatter plots obtained for N realizations of: log Cr(VI) corresponding to the N samples of (a) 
log fO2, (b) log fCO2, and (c) T; –log H+ values (i.e., pH) corresponding to the N samples of (d) log 
fO2, (e) log fCO2, and (f) T. Each panel depicts the scatters plots corresponding to three ξ  steps, i.e. 

1ξ =1×10-8 mol (black circles), 2ξ =1×10-4 mol (red circles), and 3ξ  =0.5 mol (blue circles). 

Figure 3: Evolution of 
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fSL  as a function of log fO2 and the reaction progress variable ξ  for (a) 

Cr(VI), and (b) Cr(III) molalities. The shadowed blue and green areas indicate the sub-region of 
1Θ  where Cr(III) and Cr(VI) can respectively be considered as the dominant valence state in the 

system. The dashed grey curves correspond to 
2O
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fSL std+  (where std is the standard deviation 

of 
2O
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fSL ). 

Figure 4: distribution in the parameter space of the local indices 
2Of

SL  (panels (a) and (d)), 
2COfSL  

(panels (b) and (e)), and TSL  (panels(c) and (f)) as defined by the DELSA analysis for the target 
variable H+ at two diverse progress variable steps 0.5ξ =  mol (panels (a), (b) and (c)) and ξ
=1×10-8 mol (panels (d), (e) and (f)). 

Figure 5: Evolution of 
2O

i

fSL  as a function of log fO2 and the reaction progress variable ξ  for (a) H+ 

and (b) C molalities. The shadowed yellow and red areas respectively indicate the sub-region of 
1Θ  where Cr and N change their dominant valence state. Dashed grey curves correspond to 

2O

i

fSL std±  (where std is the standard deviation of 
2Of

SL ). 

Figure 6: MM-GSA indices computed for H+. Index AMAE computed at ξ  = (a) 1×10-8 mol, (b) 1×10-4 
mol, and (c) 0.5 mol for log fO2 (blue), log fCO2(red), and T (black). Index AMAV computed at ξ  = 
(d) 1×10-8 mol, (e) 1×10-4 mol, and (f) 0.5 mol for log fO2 (blue), log fCO2(red), and T (black). In all 
panels the indices AMAE and AMAV are computed relying on all the realizations sampled in Ω  
(dashed horizontal lines) or relying only on region-specific realizations, i.e., parameter realizations 
associated with each of the intervals Iw (w = 1, ... ,5, filled circles) defined in Section 4.1.3 and 
identified as shaded areas in the figure. 

Figure 7: MM-GSA indices computed for (a), (c) Cr(III), and (b), (d) Cr(VI). Index (a), (b) AMAE and 
(c), (d) AMAV are computed at 0.5molξ = for log fO2 (blue), log fCO2(red) and T (black). In all 
panels the indices AMAE and AMAV are computed relying on all the realizations sampled in Ω  
(dashed horizontal lines) or relying only on region-specific realizations, i.e., parameter realizations 
associated with each of the intervals Iw (w = 1, ... ,5, filled circles) defined in Section 4.1.3 and 
identified as shaded areas in the figure. 
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Figure 7: MM-GSA indices computed for (a), (c) Cr(III), and (b), (d) Cr(VI). Index (a), (b) AMAE and 
(c), (d) AMAV are computed at 0.5molξ = for log fO2 (blue), log fCO2(red) and T (black). In all panels 
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Table 4: Ranges of variability selected for each uncertain model parameter describing the 
environmental conditions of the flowing path. 

Parameter Lower Bound Upper Bound 

2log Of  ( 2Of  in atm) -42 -0.67 

2log COf  ( 2COf  in atm) -3.5 -1.5 

T  (°C) 6.8 15.5 
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