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ABSTRACT. We formulate an evolutionary oligopoly model where quantity

setting players produce following either the static expectation best response

or a performance-proportional imitation rule. The choice on how to behave

is driven by an evolutionary selection mechanism according to which the rule

that brought the highest performance attracts more followers. The model has

a stationary state that represents a heterogeneous population where rational

and imitative rules coexist and where players produce at the Cournot-Nash

level. We find that the intensity of choice, a parameter representing the evo-

lutionary propensity to switch to the most profitable rule, the cost of the best

response implementation as well as the number of players have ambiguous

roles in determining the stability property of the Cournot-Nash equilibrium.

This marks important differences with most of the results from evolutionary

models and oligopoly competitions. Such differences should be referred to

the particular imitative behavior we consider in the present modeling setup.

Moreover, the global analysis of the model reveals that the above mentioned

parameters introduce further elements of complexity, conditioning the con-

vergence towards an inner attractor. In particular, even when the Cournot-

Nash equilibrium loses its stability, outputs of players little differ from the

Cournot-Nash level and most of the dynamics is due to wide variations of

imitators’ relative fraction. This describes dynamic scenarios where shares

of players produce more or less at the same level alternating their decision

mechanisms. Keywords: Imitation, heterogeneity, evolutionary game, logit dynamics,

dynamic instability, dynamic systems

1. INTRODUCTION

The most common decisional mechanism considered in the game theory is
based on best response functions and was proposed by Cournot in his seminal
work [25]. Such a decisional mechanism was replaced in the literature con-
cerning oligopoly competition by heuristic behaviors that imply lower degrees
of rationality from players in terms of computational abilities and limited infor-
mation set exploited by the players. An example is the gradient rule, introduced
by [18], [13, 15], [3] and recently considered by [9, 8] and [28], according to
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which players ignore the market demand and adjust their outputs in the direc-
tion of increasing earnings based on local estimations of the slope of their profit
function at the actual market state. Another example is the local monopolistic
approximation (LMA) rule, introduced by [47], considered in the framework of
repeated oligopolies by [19], [38], [39] and in a monopolistic framework in [36].
According to the LMA rule, players optimize their profits using a linear approx-
imation of the true demand estimated by means of the local knowledge at the
actual market state. The simultaneous presence of different decisional mecha-
nisms is considered when the presence of heterogeneous degrees of rationality
and computational abilities among players is assumed. Various pairings of het-
erogeneous behaviors, including the best response, the gradient rule and the
LMA rule, are considered in [34], [26], [1, 2], [6], [45], [21], [5], [24], [22], [42],
[46], [37] and [4]. The presence of heterogeneous decisional mechanisms has
also been considered in evolutionary frameworks that account for the changing
propensity of players to behave according to a certain rule over a finite set of
possible decision mechanisms. Along the line marked by [27], the decisional
mechanism that brought the best relative performances will attract more follow-
ers. Several contributions in this direction are provided in [14], [32], [23], [16],
[10], [43], [17] among others. Noteworthy, endogenous fluctuations and evolu-
tionary stable heterogeneities, where different behaviors coexist along complex
dynamics, are often observed.

Here, we consider that the presence of heterogeneous decisional mech-
anisms is detected in experimental oligopolies, where both the imitative and
the rational behaviors emerge (see [7], [40], [31], [12] or [41] among others).
Motivated by this, we formulate an evolutionary oligopoly model where play-
ers behave following, alternatively, the static expectation best response or the
performance-proportional imitation rule introduced in [11]. The changing at-
titude to adopt one rule instead of the other one is driven by the differences
in the past performances that each decision mechanism has generated. In
particular we assume that the performances of an output, which have been ob-
tained by means of the static expectation best response behavior, result from
the profit which that particular choice has generated. However, that profit is
to be reduced by a constant average per period implementation cost, due to
the burden requirements that the best response behavior implies. Differently,
we consider that the performances of an output coming from the exploitation of
the imitation rule correspond to the profit it has generates. In other words we
assume that the imitation rule is free of charge.
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We obtain a three dimensional discrete time dynamic system that approxi-
mates the dynamics of a population of N agents. Our model has a stationary
state at which productions match the Cournot-Nash equilibrium and that rep-
resents a heterogeneous population, where both rational and imitative rules
coexist. We find that the equilibrium production has lowered whereas the num-
ber of players involved in the competition has increased. Moreover, the share
of imitators at the Cournot-Nash equilibrium gets higher as the propensity of
agents to switch to the most profitable rule increases. The same occurrence is
observed when the costs for the best response rule exploitation grow.

The Cournot-Nash equilibrium may lose its stability either through flip or
Neimark-Sacker bifurcations, which occur at certain variations of the intensity
of choice, of the implementation costs and the number of players. Remarkably,
those parameters have an unexpected ambiguous role in determining the lo-
cal stability of the Cournot-Nash equilibrium. In fact, most of the evolutionary
models state the destabilizing role of both the intensity of choice (see e.g. [29])
and the implementation costs (see e.g. [30], where several models assume
per period information gathering costs to be associated to highly sophisticated
decision mechanisms). In addition, starting from [44], most of the literature
concerning oligopoly competition highlights the destabilizing role of the number
of players.

The global analysis, performed through numerical simulations, highlights the
effects of parameters variations on both the dynamic complexities of attractors
and the shapes of their basins of attraction. Indeed, inner attractors should be
the stationary state, periodic orbits, closed invariant curves as well as chaotic
trajectories. They describe the dynamics of heterogeneous populations where
both rational and imitative rules coexist. Remarkably, we find that increasing
values in the intensity of choice widen the basin of attraction of the inner attrac-
tor around the Cournot-Nash equilibrium. In addition, even when the Cournot-
Nash equilibrium is unstable, outputs of players that occur along periodic or
chaotic trajectories little differ from the Cournot-Nash level. Most of the dy-
namics consists in variations of the imitators’ relative fraction, thus describing
scenarios where shares of players produce at the same level alternating their
decision mechanisms.

The paper is organized as follows. In Section 2 the model is formulated. In
Section 3 the stationary states of the model and their relative stability conditions
are provided in analytic forms when possible. In Section 4, the global dynamics
that the model describes is discussed. Section 5 concludes.
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2. THE MODEL

We consider a linear oligopoly model where a population of N ≥ 2 quantity
setting players compete producing homogeneous goods and bearing the same
constant marginal production cost c > 0. Let qk ≥ 0 be the output strategy
adopted by agent k, for all k = 1, ..., N , and let the aggregate supply by all
agents be Q =

∑N
k=1 qk. We assume that the market structure is summarized

by the inverse demand function P (Q) = max{a− bQ, 0}, where the parameter
a > 0 represents the maximum price and b > 0 is the slope of the price with
respect to Q in the interval where it is positive. Hence, the generic k-th player’s
profit results as

(2.1) πk := π(qk) = (P (Q)− c)qk

Game theoretic arguments show that at the Cournot-Nash equilibrium each
player produces at the level

(2.2) q∗ =
a− c

b(N + 1)

and earns the profit

(2.3) π∗ =
1

b

(
a− c
N + 1

)2

Since producing at the Cournot-Nash level is very demanding in terms of ra-
tionality and information set owned by players, we assume that the players’
strategies come from the adoption of certain decisional mechanisms that can
be implemented with limited information sets and, in one case, with limited ra-
tionality. Even so, we consider that the exploitation of a behavioral rule may
require efforts in terms of computational abilities and the use of information
set for its implementation. With this, the performance from an outcome can
be measured by means of the profits it has brought, diminished by the costs
needed for the implementation of the involved decisional mechanism. Hence,
if agent k choose qk, she gets the performance Uk = π(qk) − Ck, where Ck
represents the per period implementation cost related with the rule adopted by
k.

We consider here that players can choose, alternatively, between the static
expectation best response rule and a performance-proportional imitation rule
involving weighed averages of previous period outputs, similarly to the rule pro-
posed in [11]. Since the static expectation best response requires relevant
computational abilities and the holding of an important information set, which
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includes the knowledge of the market demand, we assume this to be imple-
mented at a constant average per period cost C. Differently, imitation-like be-
haviors are simple heuristics that imply limited implementation efforts that are
negligible with respect to C and we set it free of charges. This is to say Ck = C

if k denotes a best responder player while Ck = 0 if k denotes an imitator
player.

Remark 1. For the economic consistency of the model, we assume the imple-
mentation cost C to be small enough not to determine negative or vanishing
performances at the Cournot-Nash level, namely

(2.4) C < π∗ :

where π∗ is the profit of each player at the Cournot-Nash equilibrium (see (2.3)).

The model is developed in a discrete time framework where each player, at
the beginning of each period, chooses which decisional mechanism to exploit
and determines her production level accordingly. Following [27] (see also [16],
[10] or [33], among others) we assume that, if agent i produces according to the
best response rule, she adapts her production optimally to the average output
of the rest of the industry that has been observed in the previous period. Then,
player i sets her output, at the generic time period t+ 1, to the level

qi(t+ 1) = arg max
qi≥0

πi (qi, (N − 1)q̄(t))

= arg max
qi≥0

(
1

2b
(a− c− b(N − 1)q̄(t))

)
(2.5)

where the “max” operator prevents best responders from adopting negative
outputs and where (N − 1)q̄(t) is the average production of the rest of the
industry at time period t. Under static expectations, the value (N − 1)q̄(t) is
taken as a proxy for the aggregate quantity Q(e)

−i (t+ 1) that player i expects to
be produced by her competitors at the time period t+ 1.

Alternatively, if agent i determines her output by exploiting the performance-
proportional imitation rule, she sets at time period t + 1 the weighted average
of the previous period outputs in the market, where weights are given by the
associated relative performances. More precisely, let S(t) be the set of the
quantities in the market at time t given by

S(t) := {q ∈ R+ : ∃ j ∈ N s.t. q = qj(t)}
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In terms of S, the set of best responders and imitators’ indexes choosing,
respectively, different outputs can be expressed as

B(t) = {i ∈ N : qi ∈ S(t) and i is a best responder}

I(t) = {j ∈ N : qj ∈ S(t) and j is an imitator}

Letting A(t) := I(t) ∪ B(t), the performance-proportional imitation rule we
consider is

qi(t+ 1) =

∑
k∈A(t) Ukqk∑
k∈A(t) Uk

(2.6)

The rule (2.6) considers that imitators are aware of the presence of strategic
interactions and that an action that brought high performance (or the highest
performance) in the previous period may not produce so good a result in the
present time. Because of the indeterminacy about the performances that an
action produces, imitators will tackle the problem of whom to imitate by consid-
ering, prudently, all the previous period outputs with weighted importance. This
allows to mitigate the uncertainty on which outcome should arise from imitat-
ing a single previous-period output. In addition, weights measure the relative
importance of each output in proportion to the performances it has generated.
Therefore, the higher the performance from a certain output is the more the
imitators’ production approaches that output.

Remark 2. The imitation rule (2.6) is defined at time t + 1 whenever perfor-
mances at time t are non-negative, namely Uk ≥ 0 for all k ∈ A(t), with at
least one of them that is strictly positive. This restriction ensures that each
weight Uk/

∑
k′ Uk′ , with k ∈ A(t) is included in the interval [0, 1] and, in turn,

implies that production levels of imitator players at time t+ 1 are non negative,
provided that positive outputs at time t are given.

The recurrences (2.5) and (2.6) can be aggregated into two unidimensional
discrete maps by assuming the same initial conditions for players adopting the
same rule. Indeed, this implies that best responders produce at the same out-
put also in subsequent periods and their actions can be summarized by a single
dynamic variable q1 interpreted as the choice of the representative best respon-
der earning profits π1 with U1 = π1 − C performance. The same implication
holds for imitators’ outputs that can be summarized by a single dynamic vari-
able q2 interpreted as the choice of the representative imitator earning profits
π2 with U2 = π2 performance. The splitting of the population between best
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responders and imitators can be described by the variable ω(t) ∈ (0, 1) repre-
senting the fraction of imitators at time t. Clearly, the complementary fraction
(1 − ω(t)) represents the fraction of best responders. Then, the average level
of production can be expressed, at the generic period t, in terms of the share
ω(t) of imitators as

q̄(t) = (1− ω(t))q1(t) + ω(t)q2(t)

and recurrence (2.5) reduces to

q1(t+ 1) = max

{
0,
a− c

2b
− 1

2
(N − 1) ((1− ω(t))q1(t) + ω(t)q2(t))

}
(2.7)

At the same time, the assumption of identical initial conditions of players can
be expressed as

q2(t+ 1) =
U1(t)

U1(t) + U2(t)
q1(t) +

U2(t)

U1(t) + U2(t)
q2(t)(2.8)

where performances explicitly read as

U1(t) : = π1(t)− C = (a− c− bN((1− ω(t))q1(t) + ω(t)q2))q1(t)− C

U2(t) : = π2(t) = (a− c− bN((1− ω(t))q1(t) + ω(t)q2(t)))q2(t)

The changing propensity of each player to adopt a certain decisional mech-
anism is driven by differences in performances from past choices. As a conse-
quence, the rule with better performance will attract more followers. Along the
line marked by [35] the propensity to follow the imitative rule changes in time
according to the logit model

(2.9) ω(t+ 1) =
eβU2(t)

eβU2(t) + eβU1(t)

where the parameter β is the intensity of choice and measures the propensity
of players to adopt the decision mechanism that brought the best performances
in the past period. If β = 0, players do not value differences in performances
and the fraction of imitators is fixed over time at 1/2. Otherwise, if β = ∞,
players perfectly distinguish differences in performances and, in each period,
all agents choose the previous-time best decision rule.

The dynamics of best responders and imitators’ productions, described by
means of recurrences (2.7) and (2.8) respectively, together with recurrence
(2.9), is given by the three dimensional discrete time nonlinear map T that
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explicitly reads as

T :


q′1 = max

{
0,
a− c

2b
− 1

2
(N − 1) ((1− ω)q1 + ωq2)

}
q′2 =

(a− c− bN((1− ω)q1 + ωq2))(q
2
1 + q22)− Cq1

(a− c− bN((1− ω)q1 + ωq2))(q1 + q2)− C
ω′ =

1

1 + eβ{(a−c−bN((1−ω)q1+ωq2))(q1−q2)−C}

(2.10)

where not labeled variables are intended at the generic time t and accents
denote one step time advancements.

3. LOCAL ANALYSIS

Stationary states of the model are provided in the following proposition.

Proposition 1. Map T has the stationary state E∗ = (q∗, q∗, ω∗) where

q1 = q2 = q∗ =
a− c

b(N + 1)
, ω∗ =

1

1 + e−βC

In addition, if condition (2.4) is met, then map T has the further stationary state
E0 = (q01, q

0
2, ω

0) where

q01 =
1

4bN

(
a− c+

√
(a− c)2 + 8bN(N − 1)C

)
q02 =

1

4bN(N − 1)ω0

(
(a− c)(3N − 1 + ω0(N − 1))+

− (N + 1− ω0(N − 1))
√

(a− c)2 + 8bN(N − 1)C

)
and ω0 ∈ (0, 1) is the unique root in the interval [0, 1] of the equation G(ω) = 0,
where

(3.1) G(ω) = −C
q01
q02 −

1

β
ln

(
1

ω
− 1

)
Proof. See Appendix 6

At the stationary state E∗ best responders and imitators produce the same
output q∗. Hence, E∗ matches the Cournot-Nash equilibrium. Moreover, we
mention that, at the stationary state E∗, the equilibrium share of imitators ω∗

increases with increasing values of both β and C. This follows from the fact
that the performances of the representative best responder player are lower
than those of the representative imitator player because of the implementation
costs C required by the best response behavior. Hence, the increase of β,
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which corresponds to the increasing capacity of players to distinguish differ-
ences in performances, makes the imitation heuristic more appealing. At the
same time, the increase of C discourages the adoption of the best response
behavior because of its increasing burden.

We further mention that, in the special occurrence where C → 0, the station-
ary state E0 can be interpreted as the Walrasian equilibrium of the oligopoly,
where players produce at the market clearing price and earn null profits. In-
deed, in this case, it results

lim
C→0

P (Q) = lim
C→0

max
{

0, a− bN((1− ω0)q01 + ω0q02)
}

= c

The following proposition claims sufficient conditions for the asymptotic sta-
bility of the Cournot-Nash equilibrium.

Proposition 2. The stationary stateE∗ is locally asymptotically stable provided
that ωf < ω∗ < ωns, where

ωf :=
1

2
· 3π∗ − C

2π∗ − C
· N − 3

N − 1
, ω∗ =

1

1 + e−βC
and ωns =

2

N − 1
+

π∗

2π∗ − C
At ω∗ = ωf , E∗ undergoes a flip bifurcation, while at ω∗ = ωns, E∗ undergoes
a Neimark-Sacker bifurcation.

Proof. See Appendix 6

Analytic stability conditions cannot be obtained for the fixed point E0 since
the equilibrium fraction ω0 cannot be obtained in an analytical form. However, in
several numerical simulations performed at a wide range of parameters’ values,
the stationary state E0 is never found to be stable. The instability of the station-
ary state E0 is an important outcome of our model whenever it is interpreted
as the Walrasian equilibrium in the case in which implementation costs tend
to zero. This is a consequence of our modeling setup where imitator players
are coupled with profit maximizers, whose actions tend to move the oligopoly
competition away from the market clearing price production and, hence, from
E0. Indeed, best responders have incentive to deviate from having vanishing
performances that correspond to negative profits.

We remark that the instability occurrence of the Walrasian equilibrium de-
viates from various theoretical and experimental results concerning Cournot
competitions, where imitation heuristics are considered (see e.g. [48, 7]). In
detail, as shown in [48], the Walrasian equilibrium emerges as players imitate
the best or, alternatively, set random outputs with a non vanishing mutation
probability. Then, the emergence of the Walrasian equilibrium in that model
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should be explained by means of the players’ lack of awareness of strategic
interactions. A similar argument can be used to explain the emergence of the
mentioned equilibrium in the model proposed in [7] and tested through exper-
iments. In fact, according to that model, players follow imitation-like rules. We
also mention that the emergence of the Walrasian equilibrium in an evolution-
ary setting has been found by [43], where the author considers firms competing
in a Cournot oligopoly by choosing to behave as profit maximizers or as price
takers.

In the remainder of the Section we outline the role of the relevant parame-
ters of the model, that is the intensity of choice β, the implementation costs C
and the number of players N , in their influencing the stability property of the
Cournot-Nash equilibrium. As for this subject, we first mention that the stability
conditions for the Cournot-Nash equilibrium provided in Proposition 2 can be
rewritten in terms of the parameter β.

Corollary 1. The stationary state E∗ is locally asymptotically stable provided
that βf < β < βns where

βf = − 1

C
log

(
1

ωf
− 1

)
, βns = − 1

C
log

(
1

ωns
− 1

)
The Corollary shows that a double stability threshold exists at increasing val-

ues of β. This occurrence is due to the presence of the imitative heuristic and
it is quite unexpected since, in most models endowed with logit-like evolution-
ary mechanisms, the intensity of choice has just a destabilizing effect (see e.g.
[20], [30] or [29]). Bifurcation diagrams, which show the long run dynamics
of the three dynamic variables q1, q2 and ω varying β, are reported in figure
1. In the simulation, the stationary state E∗ is unstable, provided values of
β below the threshold βf are given. If parameter β increases, a stable pe-
riod 2 cycle appears and merges with the stationary state E∗ as β matches
the threshold value βf . This causes a flip bifurcation, after which the Cournot-
Nash equilibrium E∗ becomes locally asymptotically stable. The stability of E∗

is maintained as β is further increased until it reaches the second threshold
value βns at which E∗ undergoes Neimark-Sacker bifurcation. From this point
onwards, further increases of β beyond βns determine the loss of stability of
E∗ and the appearance of stable invariant curves, periodic cycles and chaotic
trajectories. The amplitudes of fluctuations of those trajectories widens as β
grows, until a contact of the stable attractor with the boundary of its basin of
attraction occurs, thus causing a global bifurcation (contact bifurcation) after
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which only unfeasible trajectories take place. In order to underline the role of

FIGURE 1. Bifurcation diagram of q1 (left), q2 (center) and ω
(right). Parameters are a = 100, b = c = 1, C = 3 andN = 15.

β at a wider spectrum of parameters variations, we provide numerical simula-
tions in figure 2, giving examples of stability regions in the C − β and N − β
parameters spaces (panels a) and b) respectively). In detail, stability regions,
which denote parameters combinations for which E∗ is stable, are highlighted
by the grey points while the white points denote parameters configurations for
which E∗ is unstable. Flip and Neimark-Sacker bifurcation thresholds are also
shown by the orange and blue lines respectively. The simulations confirm the
double stability threshold for β, as stated in Corollary 1.

Simulations in panels a) highlight also the ambiguous role of implementation
costs C in influencing the stability properties of E∗. Indeed, several bifurcation
values exist along different bifurcation paths where C increases and to which
various stability losses and stability retrievals of E∗ may correspond. In detail,
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(a) C − β planes. Left. N = 7. Right. N = 15.

(b) N − β planes. Left. C = 1. Right. C = 10.

FIGURE 2. Parameter spaces where stability regions are high-
lighted by the grey points. Common parameters are a = 100,
b = c = 1, while Cmax and Nmax denote maximum values of C
and N such that condition (2.4) is satisfied.

the left panel a) where N = 7, shows that, given a fixed value of β, E∗ is stable
provided that implementation costs C are at sufficiently low values. Then, the
increase of C determines, at first, the loss of stability of the Cournot-Nash
equilibrium through Neimark-Sacker bifurcation and then its stability retrieval
through Neimark-Sacker bifurcation. Differently, in the right panel a) where
N = 15, E∗ is unstable provided that C is at sufficiently low values. Then, the
increase of C may determine the stability retrieval of E∗ through flip bifurcation,
its loss of stability through Neimark-Sacker bifurcation and, again, its stability
retrieval through Neimark-Sacker bifurcation.



AN EVOLUTIONARY MODEL WITH BEST RESPONSE AND IMITATIVE RULES 13

We remark that the variety of results that emerges with increasingC is an un-
expected occurrence since, usually, implementation costs in evolutionary set-
tings have just a destabilizing effect (see [20], [30] or [29]). By contrast, in the
present modeling setup, the ambiguous role of C should be referred to its pres-
ence both within the evolutionary selection mechanism and within the imitative
rule. In particular, we note that the first stability retrieval of E∗ through flip bifur-
cation, which takes place when the numberN of players is sufficiently high, can
be explained by noting that, as C increases, the equilibrium share of imitators
ω∗ increases as well. Then the share of imitators with a stabilizing role reaches
a sufficient size so that the destabilizing action of best responders is compen-
sated. Differently, the successive loss of stability ofE∗ through Neimark-Sacker
bifurcation, which may occur in both the scenarios where N = 7 and N = 15,
should be referred to the overcrowding imitators and the scarcity of best re-
sponse players to drive the dynamics towards convergence. Moreover, both
the above mentioned simulations show that E∗ is stable whenever implemen-
tation costs C are sufficiently high, provided sufficiently high values of β are
given. This circumstance can be proved by analytical computations. To this
purpose let us define the value Cmax to be the least upper bound of values of
C such that condition (2.4) is satisfied. Clearly it results Cmax = π∗. Then, the
stability conditions of E∗ given in Proposition 2, namely ωf < ω∗ < ωns, can
be rewritten1 in the limit C → Cmax as

1− 2

N − 1
<

1

1 + e−βπ∗
< 1 +

2

N − 1

Those relations are always satisfied for whichever β if N ≤ 3 while, if N > 3,
the same relations are satisfied provided that

β >
1

π∗
log

(
N − 3

2

)
The consequence of such a circumstance is that as players support increas-
ingly burden efforts to implement the best response behavior, then the emer-
gence of the Cournot-Nash equilibrium is favored, provided players have suffi-
cient capability to distinguish differences in performances.

In order to highlight the role of the number of players in determining the sta-
bility of the stationary state E∗, we provide the bifurcation diagram in figure 3

1Indeed, there hold

lim
C→Cmax

ωf = 1− 2

N − 1
, lim
C→Cmax

ω∗ =
1

1 + e−βπ∗ , lim
C→Cmax

ωns = 1 +
2

N − 1
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where the long run dynamics of the state variables are shown as N increases.
The diagram reveals three stability threshold values of N to which the same
number of changes in the stability of the stationary state E∗ corresponds. In
detail, provided sufficiently low values of N , the Cournot-Nash equilibrium is
stable. We remark that this circumstance is always true. Indeed, the two rela-
tions that ensure the local asymptotic stability of E∗ given in Proposition 2 are
both matched2 at the extreme value N = 2. Then, as N increases, the first
loss of stability of E∗ takes place through a Neimark-Sacker bifurcation, thus
giving rise to a stable closed invariant curve. The curve widens as N increases
and, then, disappears due to a global bifurcation that should be explained by
the contact of the attractor with its basin of attraction. Just after that global bi-
furcation no feasible trajectory occurs. However, as N is sufficiently increased,
a stable attractor (which is again a closed invariant curve) acquires stability
and merges with the stationary state E∗ that becomes stable through a second
Neimark-Sacker bifurcation. Moreover, at higher values of N , the stationary
state E∗ loses again its stability through the flip bifurcation and a stable period
2 cycle arises. The stability property of the cycle C2 evolves with N as well
and, after the usual period doubling cascade, it originates periodic and chaotic
trajectories. Finally, a new global bifurcation determines the disappearance of
any stable attractor and bound trajectories can no more exist.

The ambiguous role of N is also highlighted in the simulations provided in
figure 2 panels b), where stability regions in the N − β parameters space are
shown for C = 1 and C = 10 (left and right panels b) respectively). The
simulations highlight the occurrence of possible stability changes in the sta-
tionary state E∗ that may be observed at increasing values of N . Again, the
ambiguous role of the number of players should be referred to the presence
of imitative behavior. It represents an unexpected circumstance since, accord-
ing to the Theocharis’ result provided in [44], most of the literature concerning
oligopoly competition highlights the destabilizing role of the number of players.

4. GLOBAL ANALYSIS

The global analysis, performed through numerical simulations, reveals fur-
ther interesting dynamic phenomena that cannot be deduced through the local
analysis provided in the previous Section. Before proceeding with simulations,

2Indeed, there hold
lim

N→2+
ωf < 0, lim

N→2+
ωns > 1
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FIGURE 3. Bifurcation diagram of q1 (left), q2 (center) and ω
(right) as N varies. Other parameters are a = 100, b = c = 1,
C = 10 and β = 0.2.

we observe that the segment L := {(q∗, q∗, ω) : ω ∈ (0, 1)} is invariant un-
der the action of map T , i.e. T (L) ⊂ L. In particular, initial conditions lying
on L are mapped towards E∗ ∈ L in one step. This implies that the set L is
included in the basin of attraction of E∗. The role of the segment L in shaping
basins of attraction of feasible trajectories is highlighted in simulations. Indeed,
figures 4 and 5 show vertical sections of the phase space where the variable
standing for the output of best responders is kept fixed at the equilibrium level
q∗ and the invariant segment L is highlighted by the dashed red lines. In all
the scenarios, where the share of imitators lies between the extreme values 0

and 1, an inner attractor is present and represents heterogeneous populations
where rational and imitative rules coexist in the long run. Basins of attraction
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of inner attractors are represented by the blue points while the white points de-
note initial conditions from which unfeasible trajectories originate. The shapes
of the basins highlight that the possibility for non diverging dynamics to occur
is conditioned upon initial conditions. Indeed, feasible trajectories are likely to
be observed as initial productions are closer to the Cournot-Nash level. Also,
whenever the initial productions sufficiently approach the Cournot-Nash level,
the convergence towards E∗ occurs regardless the share of imitators. At the
same time, if the share of best responders increases, the initial deviation from
the Cournot-Nash production, which still leads to non divergent paths, grows
larger.

Moreover, the simulations in figure 4 show two different dynamic scenarios
obtained at different values in the number of players. In particular, in the left
panel where N = 8, the stationary state E∗ is locally asymptotically stable.
Differently, in the right panel where N = 11, E∗ has lost its stability through the
flip bifurcation and a stable inner period 2 cycle C2 is present. Noteworthy, the
increase of N not only determines the stability loss of the stationary state E∗

but it also influences the shapes of basins of feasible trajectories by shrinking
them around the invariant segment L. This circumstance limits the feasible
trajectories to the ones starting from productions that are closer and closer to
the Cournot-Nash level as N increases.

FIGURE 4. Sections of the phase space at fixed q1 = q∗ atN =
8 (left) and N = 11 (right). The blue points represent the basin
of attraction of inner attractors, while the white points represent
the basin of unfeasible trajectories. Common parameters are
a = 100, b = c = 1, C = 10 and β = 0.04.
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Other interesting dynamic scenarios obtained at different values of the inten-
sity of choice β are represented in figure 5. In detail, in the left panel where
β = 0.1, the stationary state E∗ is stable while, in the right panel, E∗ has lost
its stability through a Neimark-Sacker bifurcation. This is due to the increase
of β up to β = 0.15, beyond the threshold βns, and an inner chaotic attractor is
present. Noteworthy, when chaotic dynamics arise, outputs of best responder
and imitator players little differ from the Cournot-Nash production level and fea-
sible trajectories take place in the neighborhood of the invariant segment L. In
addition, most of the dynamics of the system is due to the wide variations of im-
itators’ relative fraction. This means that the loss of stability of E∗ represents a
transition from a scenario where each player produces according to a given rule
in time towards a new scenario where shares of players produce at the same
level alternating their decision mechanisms. Moreover, the comparison of sce-
narios provided in figure 5 highlights that the intensity of choice influences the
shapes of the basins of inner attractors. Indeed, increasing values of β widen
the set of convergent initial conditions around the invariant segment L, at the
expense of the extension of the basin of unfeasible trajectories. Then, conver-
gence towards the inner attractor is more likely to be achieved when players
increase their ability to distinguish differences in performances.

FIGURE 5. Sections of the phase space at fixed q1 = q∗

at β = 0.1 and β = 0.15. The blue points represent the
basin of attraction of the stable Cournot-Nash equilibrium, while
the white points represent the basin of unfeasible trajectories.
Common parameters are N = 10, a = 100, b = c = 1 and
C = 10.
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5. CONCLUSION

The oligopoly competition among static expectation best responders and im-
itators is considered. Players select which decisional mechanism to exploit ac-
cording to an evolutionary selection mechanism such that the rule that brought
the highest performance in the past attracts more followers. The model we con-
sider describes the dynamics of N players by means of a discrete time three
dimensional map and has a stationary state with an important economic inter-
pretation, representing a heterogeneous population where rational and imitative
rules coexists and where players produce at the Cournot-Nash level. We found
that the intensity of choice, a parameter representing the evolutionary propen-
sity to switch to the most profitable rule, and the cost of the best response
implementation have ambiguous roles in determining the stability property of
the mentioned stationary state. This is due to the presence of the imitative rule
and marks an important difference with most of the results from evolutionary
models (see e.g. [20], [30] or [29]). A similar occurrence has been found as the
number of players involved in the competition increases. This, again, should
be referred to the presence of imitative behavior and represents an unexpected
circumstance because most of the literature concerning oligopoly competition,
starting from the Theocharis rule (see [44]), highlights the destabilizing role of
the number of players. The global analysis of the model, performed by means
of numerical simulations, reveals that variations of both the number of play-
ers and the intensity of choice lead to the loss of stability of the Cournot-Nash
equilibrium and to the emergence of inner and stable periodic cycles or chaotic
attractors. We found that the increase in the number of players or the increase
in the intensity of choice influences the shape of the basin of the inner attrac-
tor by, respectively, shrinking or widening that basin around the Cournot-Nash
production level.
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Proof of Proposition 1. Stationary states of map T are the solutions of the
following algebraic system of equation

q1 = max

{
0,
a− c

2b
− 1

2
(N − 1) ((1− ω)q1 + ωq2)

}
q2 =

(a− c− bN((1− ω)q1 + ωq2))(q
2
1 + q22)− Cq1

(a− c− bN((1− ω)q1 + ωq2))(q1 + q2)− C
ω =

1

1 + eβ{(a−c−bN((1−ω)q1+ωq2))(q1−q2)−C}

(6.1)

We observe that the second equation in (6.1) can be re-expressed as

q2 =
π1 − C

π1 + π2 − C
q1 +

π2
π1 + π2 − C

q2

which is equivalent to
(q2 − q1)(π1 − C) = 0

This equation is satisfied if either q1 = q2 or π1−C = 0. In the former case, the
condition q1 = q2, together with the first equation in (6.1), implies either q1 =

q2 = q∗ or q1 = q2 = 0. Moreover, since the condition q1 = q2 implies π1 = π2,
the stationary share of imitators satisfying the third equation in (6.1) is fixed at
the level ω∗ = 1/(1 + e−βC). However, only the point (q∗, q∗, ω∗) is a feasible
stationary state of map T . Indeed, provided that both the representative best
responder and imitator set null productions, namely q1 = q2 = 0, the imitation
rule (2.6) is not defined (see Remark 2).

Let us consider the latter occurrence in which π1 − C = 0. In this case the
condition q1(t + 1) = q1(t) can be rewritten to express the stationary value q2
in terms of q1 as

(6.2) q2 =
2

(N − 1)ω

(
a− c

2b
− q1

(
1 +

1

2
(N − 1)(1− ω)

))
Hence, the condition π1 − C = 0 turns to a second order polynomial in the
variable q1:

(6.3) π1 − C =

(
2b

N

N − 1
q1 −

a− c
N − 1

)
q1 − C = 0

whose positive root is q01 . Then, by substituting the value q01 in equation (6.2),
the value q02 is obtained. We observe that, provided that condition (2.4) holds,
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q02 is positive. Indeed

q02 =
1

4bN(N − 1)ω

(
(a− c)(3N − 1 + ω(N − 1))+

− (N + 1− ω(N − 1))
√

(a− c)2 + 8bN(N − 1)C

)
>

1

4bN(N − 1)ω

(
(a− c)(3N − 1 + ω(N − 1))+

− (N + 1− ω(N − 1))

√
(a− c)2 + 8N(N − 1)

(
a− c
N + 1

)2)

=
a− c

4bN(N − 1)ω

(
2N + (N + 1)

(
1−

√
1 +

8N(N − 1)

(N + 1)2

)
+

+ ω(N − 1)

(
1 +

√
1 +

8N(N − 1)

(N + 1)2

))
=

a− c
4bN(N − 1)ω

(
2 + ω(N − 1)

(
1 +

3N − 1

N + 1

))
> 0

Finally, the condition ω(t + 1) = ω(t) computed at q1 = q01 and q2 = q02 leads
to the equation G(ω) = 0, where

G(ω) =
(
a− c− bN((1− ω)q01 + ωq02)

)
(q01 − q02)− C − 1

β
ln

(
1

ω
− 1

)
By equation (6.3), G(ω) can be simplified as follows

G(ω) = −C
q01
q02 −

1

β
ln

(
1

ω
− 1

)
Equation G(ω) = 0 has a unique root ω0 within the interval [0, 1] such that
ω0 ∈ (0, 1) provided that condition 2.4 holds. Indeed, in this case, there holds

lim
ω→0+

G(ω) = −∞, lim
ω→1−

G(ω) = +∞

and G′(ω) > 0 for all ω ∈ (0, 1).
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Proof of Proposition 2. The Jacobian matrix of map T computed at E∗ is
given by

J(E∗) =


−(N − 1)(1− ω∗)/2 −(N − 1)ω∗/2 0

π∗ − C
2π∗ − C

π∗

2π∗ − C
0

−βN · a− c
N + 1

· e−βC

(1 + e−βC)2
βN · a− c

N + 1
· e−βC

(1 + e−βC)2
0


The Jacobian matrix J(E∗) has a vanishing column and its characteristic poly-
nomial can be factorized as P (λ) = −λP̂ (λ) where

P̂ (λ) = λ2 − λ
(
−N − 1

2
(1− ω∗) +

π∗

2π∗ − C

)
+

− N − 1

2
· π∗

2π∗ − C
(1− ω∗) +

N − 1

2
· π
∗ − C

2π∗ − C
ω∗

is the characteristic polynomial of the 2× 2 matrix Ĵ representing the Jacobian
matrix related to the first two recurrences of map T computed at q1 = q2 = q∗.
Hence, the stability conditions for E∗ are the Jury’s conditions for the stability
of equilibria in two-dimensional discrete time maps and read as

P̂ (1) > 0 =⇒ N + 1 > 0 (always satisfied)

P̂ (−1) > 0 =⇒ ω∗ > ωf :=
1

2
· 3π∗ − C

2π∗ − C
· N − 3

N − 1

detĴ < 1 =⇒ ω∗ < ωns :=
2

N − 1
+

π∗

2π∗ − C
and the thesis follows.
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