
1

Network Deployment for Maximal Energy

Efficiency in Uplink with Multislope Path Loss

Andrea Pizzo, Student Member, IEEE, Daniel Verenzuela, Student Member, IEEE,

Luca Sanguinetti, Senior Member, IEEE, Emil Björnson, Senior Member, IEEE

Abstract—This work aims to design the uplink (UL) of a
cellular network for maximal energy efficiency (EE). Each base
station (BS) is randomly deployed within a given area and is
equipped with M antennas to serve K user equipments (UEs).
A multislope (distance-dependent) path loss model is considered
and linear processing is used, under the assumption that channel
state information is acquired by using pilot sequences (reused
across the network). Within this setting, a lower bound on the
UL spectral efficiency and a realistic circuit power consumption
model are used to evaluate the network EE. Numerical results are
first used to compute the optimal BS density and pilot reuse factor
for a Massive MIMO network with three different detection
schemes, namely, maximum ratio combining, zero-forcing (ZF)
and multicell minimum mean-squared error. The numerical
analysis shows that the EE is a unimodal function of BS density
and achieves its maximum for a relatively small density of BS,
irrespective of the employed detection scheme. This is in contrast
to the single-slope (distance-independent) path loss model, for
which the EE is a monotonic non-decreasing function of BS
density. Then, we concentrate on ZF and use stochastic geometry
to compute a new lower bound on the spectral efficiency, which
is then used to optimize, for a given BS density, the pilot reuse
factor, number of BS antennas and UEs. Closed-form expressions
are computed from which valuable insights into the interplay
between optimization variables, hardware characteristics, and
propagation environment are obtained.

Index Terms—Massive MIMO, energy efficiency, multislope
path loss, network design, stochastic geometry.

I. INTRODUCTION

K
EEPING up with the ever-growing demand for higher

data throughput is the major ambition of future cellular

networks [1]. An important question is how to evolve com-

munication technologies to deliver higher throughput without

prohibitively increasing the power consumption [2]. This calls

for new design mechanisms that provide the user equipments

(UEs) with high spectral efficiency at moderate energy costs.

There is a broad consensus on that this wireless capacity

growth can only be achieved with a substantial network densi-

fication [3] [4]. The main approaches for this densification are

twofold: small-cell networks [5]–[7] and Massive MIMO [8]–

[12]. The former relies on a massive deployment of small cells

that guarantees lower propagation losses [5]–[7]. The latter

A. Pizzo and L. Sanguinetti are with the University of Pisa, Dipartimento di
Ingegneria dell’Informazione, Italy (andrea.pizzo@ing.unipi.it). D. Verenzuela
and E. Björnson are with the Department of Electrical Engineering (ISY),
Linköping University, Linköping, Sweden (daniel.verenzuela@liu.se). L. San-
guinetti is also with the Large Systems and Networks Group (LANEAS),
CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192 Gif-sur-
Yvette, France.

A preliminary version of this work was presented at IEEE GLOBECOM,
4–8 December, 2017, Singapore.

makes use of a massive number of base station (BS) antennas

to simultaneously serve a relatively large number of UEs by

means of spatial multiplexing. A combination of both has also

received a lot of interest in the research literature (e.g., [13],

[14]). Despite being potentially effective in increasing spectral

efficiency, both solutions tend to increase the power consumed

by the network; small cells increase the number of deployed

BSs, whereas Massive MIMO requires more hardware per BS.

The aim of this work is to design a cellular network from

scratch to achieve maximal energy efficiency (EE), without

any a priori assumption on the number of BS antennas, UEs,

cell pilot reuse or BS density.

A. Main literature

The optimal deployment of cellular networks has received

great attention in the literature. The first attempts were based

on the simple Wyner model [15] wherein both BSs and UEs

are located on a line at fixed positions. Next, more complex

2D symmetric grid-based deployments (e.g., hexagonal lattice)

were considered [16]. Both approaches are not suited for mod-

eling and studying networks characterized by a very irregular

and dense structure, as envisioned in future cellular networks.

To address this problem, advanced mathematical tools based

on stochastic geometry have been employed in the last years

(e.g., [17]–[19]). Within the stochastic geometry framework,

the locations of BSs form a point process in a compact set

whose cardinality is a Poisson distributed random variable that

is independent among different disjoint sets. The performance

of a cellular network can be measured in many different ways

such as coverage probability, throughput and EE [20].Earlier

works on the design of EE-optimal cellular networks, equipped

with multiple antenna BSs, can be found in [9] and [21] where

closed-form expressions are derived for a single-cell scenario

and numerical results are given for a multicell setting. The

EE analysis of a multicell network is developed in [20], [22],

[23] by using stochastic geometry. In [22], the optimization

is done while satisfying a quality-of-service requirement per

UE. In [20], [23], the use of small-cells together with sleeping

strategies is proved to be a promising solution for increasing

the EE. Generally speaking, small-cells lead to a higher EE

but this gain saturates quickly as the density of small cells

increases. In [13], it has been shown that further benefits can

be achieved by using Massive MIMO.

As the majority of works in the literature, all the aforemen-

tioned ones use the standard path loss model where received

power decays like d−α over a distance d, where α is called

the "path loss exponent". This standard path loss model is
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quite idealized, and in most scenarios α is itself a function

of distance, typically an increasing one [24]. For example,

three distinct regimes could be easily identified in a practical

environment [25]: a distance-independent "near field" where

α0 = 0, a free-space like regime where α1 = 2, and finally

some heavily-attenuated regime where α2 > 2.1 What happens

if densification pushes many BSs into the near-field? An

answer to this question can be found in [24], [26], [27]

(among others), wherein the authors show that the propaga-

tion environment and fading distribution play a key role in

identifying network operating regimes for which an increase,

saturation, or decrease of the throughput is observed as the

network densifies. In the extreme case, ultra BS-densification

may even lead to zero throughput. Despite all this, multislope

path loss models are not frequently used in the analysis of

cellular networks because, in general, they make the theoretical

analysis much more demanding. This work attempts to solve

this issue for the EE maximization problem at hand.

B. Contributions and outline

We consider a cellular network in which the BSs are

independently and uniformly distributed in a given area ac-

cording to a homogeneous Poisson point process (H-PPP) of

intensity λ. Each BS is equipped with an arbitrary number

M of antennas and serves simultaneously K UEs. Statistical

channel inversion power-control is employed in the uplink

(UL) to achieve a uniform average signal-to-noise ratio (SNR)

across all the UEs. A multislope (distance-dependent) path

loss model is considered. Three different linear combining

schemes, namely, maximum ratio (MR), zero-forcing (ZF)

and multicell minimum mean-squared error (M-MMSE), are

used under the assumption that channel state information is

acquired by using pilots, which are reused across the network

with a factor ζ. The EE of the network is computed by using

a lower bound on the average UL spectral efficiency (valid

for any combining scheme) as well as a polynomial power

consumption model, thoroughly developed in [12]. Numerical

results are used to evaluate the impact of BS density λ and

pilot reuse factor ζ on the EE of a Massive MIMO network

such that M ≫ K ≫ 1. The results show that the EE with a

multislope path loss is a unimodal2 function of λ. Irrespective

of the employed detection scheme, the optimal EE is achieved

for relatively small values of λ and ζ. This is in sharp contrast

to [13] where the adoption of a single-slope path loss model

leads to the conclusion that densification is always beneficial

for EE; the EE is shown to be a monotonic increasing

function of λ in [13]. The results show also that, although

the “optimal” M-MMSE combiner provides the highest EE,

the three different schemes behave similarly in terms of EE

and area throughput as BS density increases.

Motivated by the above analysis, we concentrate on ZF and

compute a new closed-form lower bound on the average UL

SE. This lower bound is used to analytically find in closed-

form the EE-optimal network configuration with respect to M ,

1Such a situation results even with a simple 2-ray ground reflection, with
α2 = 4 in that case.

2A function f(x) is unimodal if it is monotonically increasing for x ≤ m
and decreasing for x > m for some m ∈ R.

K and ζ while satisfying a signal-to-interference-plus-noise

ratio (SINR) constraint. The closed-form expressions reveal

the fundamental interplay between the three design parameters,

which are also illustrated numerically. It turns out that ZF

allows a higher densification of the network while using a

smaller pilot reuse factor and achieving a higher EE than with

MR. Both schemes employ almost the same optimal number

of antennas per BS to approximately serve the same number of

UEs, with a ratio M/K between 4 and 19 when using ZF and

between 4 and 27 for MR depending on the SINR constraint.

In addition, ZF is characterized by a smoother EE function,

which is more robust to system changes and thus makes it a

better choice.

Compared to the preliminary version in [28], this work: (i)
provides the EE analysis for MR, ZF and M-MMSE; (ii) is

based on a multislope path loss model and aims at showing its

impact on EE when the network is densified; (iii) gives more

details and insights into the effect of network parameters and

circuit power model are given.

The remainder of this paper is organized as follows.3 The

next section introduces basic notation and describes the cellu-

lar network with the underlying assumptions and transmission

protocols. Section III analyzes the EE of MR, ZF, and M-

MMSE based on a realistic circuit power model. In Section IV,

we consider the ZF scheme and compute a lower bound on

the achievable EE, which is then maximized analytically with

respect to M , K and ζ. The resulting expressions reveal the

fundamental interplay between the three design parameters.

Numerical results are used in Section V to validate an alternat-

ing optimization algorithm, which allows of optimally design

the network. Finally, the major conclusions and implications

are drawn in Section VI.

II. NETWORK MODEL AND PROBLEM STATEMENT

We consider the UL of a cellular network wherein the BSs

are spatially distributed at locations {xi} within a compact ge-

ographic area according to a H-PPP Φλ = {xi; i ∈ N} ⊂ R2

of intensity λ [BS/km2]. Let A be the deployment area of

interest, the average number of deployed BSs is simply

E{xi}{Φλ} = λA. Each BS has M antennas and serves K
single-antenna UEs over a bandwidth of Bw [MHz]. These K
UEs are selected at random from a very large set according

to some scheduling algorithm. We assume that each UE is

connected to the closest BS such that the coverage area of a

BS is its Poisson-Voronoi cell (see Fig. 1). The K UEs are

assumed to be uniformly distributed in the Poisson-Voronoi

cell. Without loss of generality, we assume that the “typical

3Upper (lower) bold face letters are used for matrices (column vectors).
Sans serif fonts are used for mathematical quantities whereas times new
roman fonts are used for acronyms/texts. IN is the N × N identity matrix
and 0 is the zero vector. (·)T, (·)∗ and (·)H are the transpose, conjugate and
conjugate transpose operators, respectively. We use tr(·) to denote the matrix
trace operator and ‖ · ‖ for the Euclidean norm vector operator. ⌈x⌋ is the
nearest integer projector whereas P(A) indicates the probability associated
with an event A. En{·} denotes the expectation operator with respect to the
random vector n, whereas n ∼ NC(0,Rn) is the shorthand for a circularly-
symmetric normal distribution with covariance matrix Rn. We use Rn, Cn,
and Nn to denote the n-dimensional real-valued, complex-valued and non-
negative integer-valued vector spaces. We denote Γ(s; x) =

∫∞
x

ts−1e−t dt
the upper incomplete gamma function.
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UE”, which is statistically representative for any other UE in

the network [29], has an arbitrary index k and is connected

to an arbitrary BS j. The network operates according to a

synchronous time-division-duplex protocol. We denote by Bc

[Hz] and Tc [s] the coherence bandwidth and time, respec-

tively. Then, the coherence block is composed of τc = BcTc

[complex samples]. In each coherence block, τp samples are

used for acquiring channel state information by means of

UL pilot sequences, whereas τu and τd samples (such that

τc = τp + τu + τd) are used for payload transmission in the

UL and downlink (DL), respectively. We assume that τp = ζK
with ζ ≥ 1 being the pilot reuse factor and τu = ξ(τc − ζK)
with ξ ≤ 1 accounting for the payload UL fraction transmis-

sion [12].

A. Received Signal and Power Control Policy

We call sli ∼ NC(0, pli) the UL payload signal transmit-

ted from UE i of cell l to its serving BS l with power

pli = Es{|sli|2}. The signal yj ∈ C
M received at BS j is

yj = h
j
jksjk
︸ ︷︷ ︸

desired
signal

+

K∑

i=1,i6=k

h
j
jisji

︸ ︷︷ ︸

intra-cell
interference

+
∑

l∈Φλ\{j}

K∑

i=1

h
j
lisli

︸ ︷︷ ︸

inter-cell
interference

+ nj
︸︷︷︸

noise

(1)

where nj ∼ NC(0, σ
2IM ) is the additive Gaussian noise,

h
j
li ∈ CM is the channel response between UE i in cell l

and BS j modeled as uncorrelated Rayleigh fading [11],

i.e., h
j
li ∼ NC(0, β

j
liIM ), where βj

li is the large-scale fading

coefficient. We call djli the distance of UE i in cell l from BS

j and compute βj
li according to a general multislope path loss

model, which is given by:

βj
li(d

j
li) = Υn (djli)

−αn (2)

for djli ∈ [Rn−1, Rn) [km], for n = 1, . . . , N . The

coefficients {Υn}, {αn} are design parameters. Specifically,

0 ≤ α1 ≤ · · · ≤ αN are the power decay factors,

0 = R0 < · · · < RN∞ denote the distances at which a change

in the power decadence occurs. Setting N = 1 yields the

widely used single-slope path loss model βj
li = Υ1(d

j
li)

−α1 .

Following [30], we assume the UEs use a statistical channel

inversion power-control policy such that pli = P0/β
l
li where

P0 is a design parameter. This ensures a uniform ergodic per-

antenna received SNR at BS l to all the UEs, which it is given

by E{‖hl
li‖2pli}/(Mσ2) = P0/σ

2 = SNR0 and it is assumed

to be constant over the coherence block.

B. Pilot Reuse Policy and Channel Estimation

We assume that a pilot book Φ ∈ Cτp×τp of τp mutually

orthogonal UL sequences is used for channel estimation and

call φjk ∈ C
τp the pilot sequence assigned to the typical

UE k in cell j. It is assumed to have normalized UL pilot

sequences, to obtain a constant power level, and this implies

that ‖φjk‖2 = 1. To avoid cumbersome pilot coordination,

we assume that in each coherence block each BS l picks a

subset of K different sequences from Φ, uniformly at random

Fig. 1: Deployment of a cellular network with BSs drawn from a H-
PPP Φλ, each one serving K randomly located UEs. The “typical”
UE k in cell j is highlighted. The UEs of different cells sharing the
same pilot subset Φl are depicted with the same marker and color.
We consider A = 1km2, λ = 16, ζ = 4 and K = 30.

and distribute them among its served UEs. Since τp = ζK ,

we have that the reuse factor is ζ = τp/K > 1. In other

words, there are on average E{Φλ}/ζ cells in the network

that share the same pilot subset. This is modeled in each

cell through a Bernoulli stochastic variable al′l ∼ B(1/ζ) for

l′ 6= l and all = 1. Specifically, if al′l = 1 all the UEs in

cell l′ use the same pilot subgroup of those in cell l and thus

causes pilot contamination [12]. This occurs with probability

P(al′l = 1) = 1/ζ. Similarly, al′l = 0 indicates that there is

no pilot contamination from cell l′ to cell l and vice versa, and

happens with probability P(al′l = 0) = 1− 1/ζ. To facilitate

understanding, Fig. 1 illustrates a pilot allocation snapshot

where different markers and colors identify different pilot

subsets {Φl}. We call Y
p
j ∈ C

M×τp the signal received at BS

j during pilot transmission. The vector y
p
jli = Y

p
jφ

∗
li obtained

by correlating Y
p
j with φli takes the form:

y
p
jli =

√
ρ
√
pli h

j
li

︸ ︷︷ ︸

desired pilot

+
∑

l′∈Φλ\{l}

al′l
√
ρ
√
pl′i h

j
l′i

︸ ︷︷ ︸

interfering pilots

+N
p
jφ

∗
li

︸ ︷︷ ︸

noise

(3)

where N
p
jφ

∗
li ∼ NC(0, σ

2IM ) and the power of the UL trans-

mitted payload signal is scaled by a factor ρ = Pp/P0 ≥ 1 to

compensate for the lack of beamforming gain during channel

acquisition.

Corollary 1 (e.g. [12]). By using pli = Pp/β
l
li, the MMSE

estimate of h
j
li at BS j based on y

p
jli is

ĥ
j
li =

βj

li√
βl
li
Pp

βj

li

βl
li

+
∑

l′∈Φλ\{l}

al′l
βj

l′i

βl′

l′i

+ 1
SNRp

y
p
jli (4)

with SNRp = ρ SNR0 as a design parameter. The MMSE

estimate ĥ
j
li and error h̃

j
li, conditioned on a realization of

al′l for all l′, l ∈ Φλ, are independent and distributed as
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ĥ
j
li ∼ NC(0, γ

j
liIM ) and h̃

j
li ∼ NC

(
0, (βj

li − γj
li)IM

)
where

γj
li =

βj
li

βj

li

βl
li

+
∑

l′∈Φλ\{l}

al′l
βj

l′i

βl′

l′i

+ 1
SNRp

βj
li

βl
li

. (5)

For notational convenience, we define the collecting of

all the estimates in (4) from all UEs in cell l to BS j as

Ĥ
j
l =

[
ĥ
j
l1 . . . ĥj

lK

]
∈ CM×K . Note that the estimate ĥ

j
l′i of

a UE i in cell l′ using the same pilot sequence of a UE i in

cell l (i.e. al′l = 1) can be obtained from ĥ
j
li in (4) as

ĥ
j
l′i =

√

βl
li

βl′
l′i

βj
l′i

βj
li

ĥ
j
li (7)

where ĥ
j
l′i ∼ NC

(

0, γj
l′iIM

)

has variance

γj
l′i =

βl
li

βl′
l′i

(βj
l′i

βj
li

)2

γj
li (8)

and estimation error h̃
j
l′i ∼ NC

(

0, (βj
l′i − γj

l′i)IM

)

. The ex-

pression in (7) is responsible of pilot contamination with spa-

tially uncorrelated channels; the inability of BS j to separate

UEs that use the same pilot [8].

III. ENERGY EFFICIENCY ANALYSIS

The EE is defined as the amount of information reliably

transmitted per unit of energy4, which is mathematically

expressed as [21]:

EE =
Area throughput [bit/s/km2]

Area power consumption [W/km2]

=
Bw[Hz] · ASE [bit/s/Hz/km2]

APC [W/km2]
(9)

which is measured in [bit/Joule] and can be seen as a benefit-

cost ratio, where the service quality (area throughput) is

compared with the associated cost (area power consumption).

In (9), ASE and APC are the area spectral efficiency (ASE)

and area power consumption (APC), respectively.

A. Area Spectral Efficiency

Since the “typical UE” is statistically representative for

any other UE in the network [29], the ASE is obtained

as ASE = λK SE in [bit/s/Hz/km2] where SE denotes the

average UL spectral efficiency of the typical UE k in cell j
and is obtained averaging over different UE positions, pilot

allocations and channel realizations. The multiplicative factor

K accounts for the sum spectral efficiency of all UEs in cell

j and λ is the BS density per km2. A lower bound on SE,

which holds for any combining scheme, UE positions and pilot

allocations is as follows.5

4A considerable number of papers on EE analysis has considered mislead-
ing EE metrics measured in bit/Joule/Hz, instead of bit/Joule. This is pointless
since one cannot make the EE bandwidth-independent: the transmit power
is divided over the bandwidth while the noise power is proportional to the
bandwidth.

5Note that the UL capacity for a network (such as the one under investiga-
tion) with imperfect CSI and inter-cell interference modeled as a shot-noise
process is not known yet [31]. As a common practice in these circumstances,
we resort to a lower bound.

Theorem 1 ( [12]). When the channel is obtained through

the MMSE estimator in (4), the UL average ergodic channel

capacity of the typical UE k in cell j is lower bounded by

SE ≥ SE
′ = ξ

(

1−Kζ

τc

)

E{d,h,a}

{

log2
(
1 + SINR

′
)}

(10)

where SINR
′ is the instantaneous SINR given by (6) and

the expectation E{d,h,a}{·} is computed with respect to UE

positions, channel realizations and pilot allocations. The pre-

log factor accounts for the pilot overhead.6

The optimal vjk that maximizes (10) is given as follows.

Corollary 2 ([12]). The instantaneous UL SINR in (6) for a

typical UE k in cell j is maximized by

vM−MMSE
jk =

(
∑

l∈Φλ

K∑

i=1

pli

(

ĥ
j
li(ĥ

j
li)

H + (βj
li − γj

li)IM

)

+ σ2IM

)−1

pjkĥ
j
jk.

(11)

Proof. The proof can be found in [12] and it is based on the

Rayleigh quotient maximization.

The optimal combining vector in (11) is known as

M-MMSE combiner since it can be proved to be the

vector vjk that minimizes the conditional MSE, that is

E
{
sjk − vH

jkyj | {Ĥj
l }, {al′,l}

}
. Despite its optimality, the M-

MMSE combiner has not been used much in the research

literature. The majority of works make use of single-cell

processing schemes such as single-cell MMSE (S-MMSE),

regularized ZF (RZF), ZF and MR, which are all suboptimal.

Specifically, they can be obtained as approximations and

simplifications of the optimal M-MMSE [12]. For example, S-

MMSE can be obtained by considering the intra-cell channel

estimates Ĥ
j
j only, whereas RZF arises by neglecting interfer-

ence coming from other cells. The MR combiner VMR
j = Ĥ

j
j

is obtained for low SNR values whereas the ZF combiner

VZF
j = Ĥ

j
j

((
Ĥ

j
j

)H
Ĥ

j
j

)−1

(12)

arises for high SNR. In the sequel, we consider M-MMSE,

ZF and MR. M-MMSE provides the highest spectral efficiency,

but using the highest complexity. MR has the lowest complex-

ity, but also the lowest spectral efficiency. Finally, ZF strikes a

good balance between spectral efficiency and complexity [12].

B. Area Power Consumption

The APC can be expressed as follows:

APC = λ
(
η−1PTX + PCP

)
[W/km2] (13)

where PTX accounts for the average power usage for UL

transmission (payload and pilots) in an arbitrary cell j with

η ∈ (0, 1] being the high power amplifier (HPA) efficiency

whereas PCP is the power consumed by circuitry and can be

computed as in [13], [21]. Both are evaluated next.

6In each coherence block, BS j uses the first τp samples for acquiring CSI
to decode the UL payload in the remaining τu samples.
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SINR
′ =

pjk|vH

jkĥ
j
jk|2

vH

jk






∑

l∈Φλ

K∑

i=1
(l,i) 6=(j,k)

pliĥ
j
liĥ

jH

li +
∑

l∈Φλ

K∑

i=1

pli(β
j
li − γj

li)IM + σ2IM




vjk

(6)

TABLE I: Network and system parameters.

Parameter Value Parameter Value

Fixed power: PFIX 5 W Far-field path loss exponent: α 4
Power for BS Local Oscillator: PLO 0.1W Coherence block length: τc 200 samples

Power per BS antennas: PBS 0.2W Propagation loss at 1 km: Υ −148.1 dB

Power for antenna at UE: PUE 0.1W Bandwidth: Bw 20 MHz

Power for data coding: PCOD 0.01W/(Gbit/s) Deployment area: A 1 km2

Power for backhaul traffic: PBT 0.025W/(Gbit/s) UL fraction of payload block: ξ 1/3
Power for data decoding: PDEC 0.08W/(Gbit/s) Noise variance: σ2 −94 dBm

BS computational efficiency: LBS 750Gflops/W Signal-to-noise ratio of payload block: SNR0 5 dB

HPA efficiency: η 0.5 Signal-to-noise ratio of pilot block: SNRp 15 dB

TABLE II: Power consumed by different combining vectors vjk.

Combining scheme PLP−c,j

M-MMSE 3Bw
τcLBS

(

λA
(M2+3M)K

2
+ (M2 −M)K + M3

3
+ 2M +MζK2(ζ − 1)

)

ZF 3Bw
τcLBS

(

3K2M
2

+ KM
2

+ K3−K
3

+ 7
3
K
)

MR 3Bw
τcLBS

(

7
3
K
)

Corollary 3. If τu and τp samples are respectively used in UL

for data and pilot transmissions, then the average total power

used for transmission is

PTX =

(
τu + ρ τp

τc

)

K U (14)

where

U = P0

N∑

n=1

Υ−1
n

Γ
(
2+αn

2 ;Rn

)
− Γ

(
2+αn

2 ;Rn+1

)

(πλ)αn/2
(15)

with Γ(s;x) =
∫∞

x ts−1e−t dt being the upper incomplete

gamma function.

Proof. The BS locations are drawn from a H-PPP Φλ

and the UEs are uniformly distributed in the Poisson-

Voronoi cells. Thus, the distance djjk from the typ-

ical UE k to its serving BS j is Rayleigh dis-

tributed as djjk ∼ R(1/
√
2πλ) and its probability den-

sity function is given by fd(d
j
jk) = (2πλdjjk)e

−πλ(dj

jk
)2 for

djjk > 0 [31]. Besides, Es{|sjk|2} = pjk with pjk = P0/β
j
jk

or pjk = Pp/β
j
jk, depending on wether sjk is a pay-

load or pilot signal, respectively. Within a coherence

block, each user transmits data symbols for a fraction

of τu/τc and pilot symbols for τp/τc. This, together

with Pp = ρP0, leads to PTX =
τu+ρ τp

τc
P0KEd{1/βj

jk}. Fi-

nally, using the path loss model in (2) we have that

Ed{1/βj
jk} =

N∑

n=1
Υ−1

n

∫ Rn

Rn−1
yαn fd(y) dy from which (15)

follows by using (69) in Appendix B.

The power needed to run the circuitry of an arbitrary BS j
can be modeled as follows [13], [21]

PCP = PFIX
︸ ︷︷ ︸

fixed
power

+ PTC
︸︷︷︸

transceiver
chain

+ PC−BH
︸ ︷︷ ︸

coding
backhauling

+ PCE
︸︷︷︸

channel
estimation

+ PLP
︸︷︷︸

linear
processing

(16)

where PFIX is the power consumed for site-cooling, con-

trol signaling and load-independent backhauling, PTC for

the transceiver chain, PC−BH for coding and load-dependent

backhauling cost, PCE for channel estimation process and

PLP for linear processing. All these terms can be expressed

as a function of the system parameters reported in Table I.

In particular, we have that PTC = MPBS + PLO +KPUE,

whereas PC−BH = Bw K SE (PCOD + PDEC + PBT) with SE

that is typically lower bounded, e.g., using (10). The evaluation

of PCE and PLP requires first to evaluate the computational

complexity of channel estimation and linear processing in

terms of flops per coherence block.7 The MMSE estimation

has complexity K(Mτp +M) since, for any UE, it requires

Mτp operations to compute y
p
lij = Y

p
jφ

∗
li in (3) and M

operations for computing ĥ
j
li in (4). To transform these figures

into consumed power, we denote with LBS the computational

efficiency of the BS measured in [flops/W] and recall that

a complex multiplication requires three real multiplications8.

Thus, since there are Bw/τc coherence blocks per second and

τp = ζK , we obtain

PCE =
3

LBS

Bw

τc
KM(ζK + 1) (17)

7For the sake of simplicity, only the number of complex multiplications and
divisions is accounted for in the computational complexity analysis. Therefore,
a flop accounts only for a real multiplication/division.

8Let x = a+ jb and y = c+ jd, then
xy = (ac− bd) + j ((a + b)(c+ d) − ac− bd) whose computation
requires three real multiplications: ac, bd and (a+ b)(c+ d).
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(a) M-MMSE combining

10

2

4

8

6

8

6

10

104 20302 405060Pilot reuse factor (ζ) BS density (λ)

E
E
[M

b
it
/
J
o
u
le
]

(ζ⋆, λ⋆, EE⋆) = (2, 5, 9.63)

(b) ZF combining

10

2

4

8

6

8

6

10

104 20302 405060Pilot reuse factor (ζ) BS density (λ)

E
E
[M

b
it
/
J
o
u
le
]

(ζ⋆, λ⋆, EE⋆) = (2, 7, 6.47)

(c) MR combining

Fig. 2: EE (in Mbit/Joule) as a function of λ (in BS/km2) and ζ. Results are obtained for MR, ZF and M-MMSE by using Monte Carlo
simulations within a Massive MIMO setting with M = 100 and K = 10. The global optimum is star-marked for which the corresponding
values of ζ, λ and EE are also reported.
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Fig. 3: EE (in Mbit/Joule) as a function of (a) λ (in BS/km2) and (b) Area Throughput in (in Gbit/s/km2) for the optimal numerical ζ⋆.
Results are obtained from Monte Carlo simulations for MR, ZF and M-MMSE combiners within a Massive MIMO setting with M = 100
and K = 10. In Fig. 3a, both single-slope and multislope path loss models are considered while in Fig. 3b only the multislope is considered.

The power PLP(M,K) consumed by linear processing can be

quantified as PLP = PLP−r + PLP−c where PLP−r accounts

for the power consumed by reception of payload samples

(i.e., evaluation of yjk = vH

jkyj ) whereas PLP−c is the power

required for the computation of the combiner. The former can

be quantified as

PLP−r =
3Bw

τcLBS
MKτu =

3Bw

τcLBS
MKξ

(

τc − ζK
)

(18)

whereas the latter depends on the vjk used at BS j. Table II

provides the power consumed by M-MMSE, ZF and MR [12].

C. Numerical analysis

We now use the developed power model to design the

network for maximal EE. To this end, we adopt the parameters

listed in Table I [12].9 We stress that these parameters tend to

be extremely hardware-specific and thus may take substantially

different values. The Matlab code that is available online at

https://github.com/lucasanguinetti/max-EE-Multislope-Path-Loss

enables testing of other values. We consider a deployment

area of A = 1km2 wherein E{Φλ} = λA BSs are randomly

9The interested reader is also referred to the power consumption
model developed by IMEC and available on line at the following link
http://www.imec.be/powermodel.

deployed according to a H-PPP. A wrap-around topology

is used to simulate the H-PPP in the whole R2 and keep

the translation invariance. Inspired by [24] and [14], a

bounded N = 3 slopes path loss model is used for the large

scale fading in (2) with parameters [α1, α2, α3] = [0, 2, α],
[R1, R2] = [10, 446] [m] and [Υ1,Υ2,Υ3] = [1, 1,Υ] with

α and Υ as in Table I. The cut off distance R2 comes from

a simple 2-ray ground reflection case, with R2 ≈ 4hthr/λc

where ht = 10 and hr = 1.65 are the antenna heights of

BS and UE, and λc = c/fc is the operating wavelength at

a carrier frequency fc = 2GHz. A Massive MIMO setup is

considered, which is roughly characterized by an antenna-UE

ratio M/K = 10 in order to meet the channel hardening and

favorable propagation conditions [12]. Within this setup, we

set M = 100 and K = 10.

Fig. 2 shows the EE of MR, ZF and M-MMSE as a

function of BS density and pilot reuse factor ζ. In par-

ticular, we consider λ ∈ L = {1, 2, . . . , 10, 20, . . . , 60} and

ζ ∈ {1, . . . , 10} with an average SNR0 = 5 dB. We see that

with all schemes the EE is a pseudo-concave function and

has a unique global optimizer (λ⋆, ζ⋆) at which maximum

EE
⋆ Mbit/Joule is achieved. In the remainder, the superscript

⋆ is used to indicate optimal values. Each point uniquely

determines the EE-optimal network deployment configuration

https://github.com/lucasanguinetti/max-EE-Multislope-Path-Loss
http://www.imec.be/powermodel
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SINR =
pjk|E{h,a}{vH

jkh
j
jk}|2

∑

l∈Φλ

K∑

i=1

pliE{h,a}{|vH

jkh
j
li|2} − pjk|E{h,a}{vH

jkh
j
jk}|2 + σ2E{h,a}{‖vjk‖2}

(19)

for the corresponding scheme. We notice that M-MMSE

provides the highest EE, followed by ZF, while MR achieves

the lowest EE. M-MMSE does not only provide the highest

EE but has also the smoothest EE around the optimum. This

makes it more robust to a variation of network settings (e.g.,

pilot reuse and BS density). From Fig. 2a, we can see that the

maximal EE value with M-MMSE is EE
⋆ = 11 Mbit/Joule

and is achieved at (ζ⋆, λ⋆) = (3, 5). With ZF (see Fig. 2b),

we have EE
⋆ = 9.63Mbit/Joule at (ζ⋆, λ⋆) = (2, 5), whereas

with MR (see Fig. 2c) we obtain EE
⋆ = 6.47Mbit/Joule

at (ζ⋆, λ⋆) = (2, 7). Note that, irrespective of the combining

scheme, the optimal EE is achieved for a pilot reuse factor

between 2 and 3 and also for a relatively small BS density

(e.g., a few BSs per km2). This latter result is in contrast

to [13], wherein the EE monotonically increases as λ grows

large. This was a consequence of the single-slope path loss

model adopted in [13]. Further details on this are given next.

Fig. 3a depicts the EE of MR, ZF and M-MMSE as a

function of λ ∈ L for the optimal pilot reuse factors ζ⋆,

provided by Fig. 2. Comparisons are made with the EE

achieved with a single-slope path loss model with large scale

fading parameters α and Υ as in Table I. As expected, in this

latter case, the EE is a monotonic non-decreasing function

of λ for all schemes. For completeness, Fig. 3b illustrates

the EE with MR, ZF and M-MMSE as a function of the

corresponding average Area Throughput, obtained for λ ∈ L.

We see that there exist operating conditions under which it is

possible to jointly increase both the area throughput and EE up

to the maximum EE point, but further increases in throughput

can only come at a loss in EE. The curves are quite smooth

around the maximum EE point; thus, there is a variety of

throughput values or, equivalently, BS densities that provide

nearly maximum EE with higher area throughput. With M-

MMSE, selecting λ = 9 > λ⋆ = 5 leads to a 27% increase

in area throughput while the EE is reduced by 12% only. The

gain is even higher when considering MR and ZF. Specifically,

they allow a reduction of respectively 19% and 10% in EE to

achieve 46% and 56% higher area throughput.

To summarize, Figs. 2 and 3 show that the additional

computational complexity of M-MMSE processing pays off

both in terms of EE and area throughput. Moreover, the

analysis shows that, for a Massive MIMO setup, reducing the

cell size does not bring benefits in terms of EE; the optimal EE

is roughly achieved for the same λ for all detection schemes.

IV. ENERGY EFFICIENCY MAXIMIZATION WITH ZF

Monte Carlo simulations were used above to examine the

EE of different network configurations for a given pair of

(M,K) and detection scheme. In the following, we look

at the EE from a different perspective: we design the net-

work from scratch to achieve maximal EE for a given BS

density, without any a priori assumption on M and K . In

doing so, we concentrate on ZF and show how the EE

maximization problem can be solved analytically, without

the need of heavy Monte Carlo simulations. Moreover, such

an analysis exposes fundamental behaviors with respect to

network parameters that cannot be easily inferred from the

numerical analysis. In particular, we are interested in finding

the EE-optimal tuple of parameters θ = (ζ,M,K) defined

over a set Θ = {θ : 1 ≤ ζ < τc/K, (M,K) ∈ N
2} where the

channel coherence block length τc represents the upper limit

on the pilot signaling overhead. To this end, we resort to an

alternative lower bound for the average ergodic capacity, which

is called Use-and-then-Forget (UatF) bound that is as follows.

Theorem 2 (e.g. [12]). The UL average ergodic channel

capacity of the typical UE k in cell j is lower bounded by

SE ≥ ξUL

(

1− Kζ
τc

)

Ed {log2 (1 + SINR)} where the SINR of

the typical UE, conditioned on a realization of UEs locations,

is given by (19).

The lower bound in Theorem 2 is less tight than the previous

bound in Theorem 1 since the instantaneous channel estimates

are not utilized during signal detection [11]. However, it allows

to compute a tractable lower bound on the average UL spectral

efficiency when ZF is used.

Lemma 1. When the channel is obtained through the MMSE

estimator in (4), the UL powers {pjk} are chosen as

pjk = P0/β
j
jk and the ZF combining is chosen as in (12),

a lower bound on the UL average ergodic channel capacity

of the typical UE k in cell j, computed using the UatF bound

in (19), is given by SE = ξ
(

1− Kζ
τc

)

log2 (1 + SINR) where

SINR =
M −K

INT
︸︷︷︸

Interference plus noise

+(M −K)µ2/ζ
︸ ︷︷ ︸

Pilot contamination

(20)

with

INT =
(

K +
1

SNR0

)(

1 +
µ1

ζ
+

1

SNRp

)

+
K

ζ

(
µ2
1 + µ2

)

+Kµ1

(

1 +
1

SNRp

)

−K
(

1 +
µ2

ζ

)

(21)

and µκ for κ = 1, 2

µκ = 2

N∑

n=1

Γ
(
2;πλR2

n−1

)
− Γ

(
2;πλR2

n

)

καn − 2
+

2 cn(κ)

(πλ)
καn

2 −1

(

Γ
(

1 +
καn

2
;πλR2

n−1

)

− Γ
(

1 +
καn

2
;πλR2

n

))

(22)

with cn(κ) = −R2−καn
n

καn−2 +
∑N

i=n+1

(
Υi

Υn

)κ R
2−καi
i−1 −R

2−καi
i

καi−2 .

Proof. The proof is available in the Appendices and is articu-

lated in two parts: the first part is given in Appendix A wherein
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all the expectations in (19) with respect to channel and pilot

realizations are computed, while the second part is given in

Appendix B where the expectation with respect to both BS

and UE locations is computed.

Notice that the numerator of SINR in (20) scales with

M −K since each BS sacrifices K degrees of freedom for in-

terference suppression within the cell. The pilot contamination

term scales also with M −K and accounts for the coherent

interference due to UEs that use the same pilot sequence as

the typical UE. Many of the interference terms in INT increase

with K since having more UEs leads to both more intra-

cell and inter-cell interference due to the imperfect CSI and

lack of multicell processing. Comparing the above expressions

with those obtained in [13] with MR combining and a single-

slope path loss model, it follows that the numerator scales

with M rather than M −K since MR combining overcome

the interference and noise by amplifying the signal of interest

using the full array gain of M . The interference from other

cells is the same for both schemes except for the extra

negative term in (21) given by K
(
1 + µ2/ζ

)
, which makes ZF

combining preferable to MR combining whenever the reduced

interference is more substantial than the loss in array gain. The

pilot contamination term scales also with M (as the useful

signal) rather than M −K as in (20) since MR combining

does not benefit from interference suppression.

A. Problem Statement

The EE maximization problem using Lemma 1 is formu-

lated as

θ⋆ =argmax
θ∈Θ

EE(θ) =
Bw ASE(θ)

APC(θ)

subject to SINR(θ) = γ

(23)

where ASE(θ) = λK SE(θ) and γ > 0 is a design param-

eter, SINR(θ) is given in (20) and APC(θ) can be obtained

from (13). This constraint is imposed to avoid that the EE

optimization may lead to an optimizer with poor spectral

efficiency. More details are given next. By adopting the power

consumption model developed in Section III and expanding

the contribution due to PTX in (14) and PCP in (16)–(18), the

PC with ZF combining can be rewritten as:

APC(θ) = λ
(

C0 + C1K − ζC2K2 + C3K3 +D0M

+D1MK +D2MK2
)

+ABw ASE (24)

with C0 = PFIX + PLO, C1 = PUE + 5Bw/(τcLBS)
+ U(1 + 1/τc)K , C2 = U/τc, C3 = Bw/(τcLBS), D0 = PBS,

D1 = 3Bw

(
5/2 + τc

)
/
(
τcLBS

)
, D2 = 9Bw/(2τcLBS) and

A = PCOD + PDEC + PBT. Note that the functional depen-

dence of APC(θ) on λ is due to the term U given in (15),

which depends on the transmit power. Due to the unavoidable

inter-cell interference in cellular networks, (23) is only feasible

for some values of γ. This feasible range is obtained in [13]

observing that SINR is a monotonically increasing function of

M and the constraint ζ < τc/K must be satisfied, which leads

to γ < τc/(Kµ2).

B. Optimal Pilot Reuse Factor

Next, the optimal pilot reuse factor ζ⋆ for problem (23) is

computed.

Lemma 2. Consider any pair of (M,K) for which the

problem (23) is feasible. The SINR equality constraint in (23)

is satisfied by selecting

ζ⋆(M,K) =
B1(M,K)γ

M −K −B2(K)γ
(25)

where B1 : N2 → R and B2 : N → R are given by

B1(M,K) = K
(
µ1(1 + µ1)− µ2

)
+Mµ2 +

µ1

SNR0
(26)

B2(K) = K

(
1

SNRp
+ µ1

(

1 +
1

SNRp

))

+
1 + 1

SNRp

SNR0
(27)

Proof. The optimal ζ follows from the constraint (23), which

parametrizes the solution set with respect to M and K .

The above lemma provides insights into how the EE-optimal

pilot reuse factor ζ⋆ depends on the other system parameters.

In particular, it shows that ζ⋆ must increase with K to

guarantee a certain average SINR equal to γ. This is intuitive

since increasing ζ leads to better channel estimation which

can partially suppress the increased interference due to more

UEs. Comparing (25) with the optimal pilot reuse factor

ζ⋆MR(M,K) =
B1(M,K) γ + 2Kµ2 γ

M −K γ −B2(K) γ
(28)

obtained in [13] with MR combining, it follows that with MR

the denominator scales with Kγ rather than K and we have

a positive extra term in the numerator. Since usually γ ≥ 1
(to ensure reasonable average spectral efficiency constraint),

it turns out that a smaller pilot reuse factor can be used with

ZF due to its interference suppression capabilities. Notice

that ζ⋆ is a decreasing function of M , SNR0 and SNRp. This

is because all these parameters amplify the desired signal,

which, as a consequence, improves the channel estimation and

makes the system operate in a less noise limited regime. The

pilot reuse factor ζ⋆ reduces as the path loss exponents {αn}
increase (since B1 and B2 are reduced), which is natural since

inter-cell interference decays more quickly.

C. Optimal Number of Antennas per BS and Number of UEs

Plugging ζ⋆ as in (25) into (23), the EE maximization

problem becomes

maximize
(M,K)∈N2

EE(ζ⋆,M,K) =
Bw ASE(ζ⋆,M,K)

APC(ζ⋆,M,K)

subject to 1 ≤ ζ⋆(M,K) ≤ τc/K.

(29)

Next, we look for the optimal values of M and K in the above

problem. We start by considering an integer-relaxed version of

the original problem (29) obtained by relaxation of the domain

set. For analytic tractability, we replace M with c = M/K,

i.e., the number of BS antennas per UE. This yields:

maximize
(c̄,K)∈R2

EE(ζ⋆, c̄, K) =
Bw ASE(ζ⋆, c̄, K)

APC(ζ⋆, c̄, K)

subject to
K

τc
≤ ζ⋆(c̄, K)K

τc
≤ 1

(30)
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TABLE III: Optimization parameters.

Parameter Value Parameter Value

a0
γ

τc
µ2 K2 b0

γ

τc

(

µ1(1 + µ1) + µ2(c̄− 1)
)

a1
γK
τc

(

K (µ1(1 + µ1)− µ2) +
µ1

SNR0

)

b1
γ
τc

µ1
1

SNR0

a2 K b2 c̄− 1− µ1γ
(

1 + 1
SNRp

)

− γ
SNRp

a3 K
(

1 + γ
(

1
SNRp

+ µ1

(

1 + 1
SNRp

)))

+ γ

SNR0

(

1 + 1
SNRp

)

b3
γ

SNR0

(

1 + 1
SNRp

)

a4 D0K +D1K2 +D2K3 b4 C0
a5 C0 + C1K + C3K3 b5 C1 +D0c̄
a6 τcC2K b6 D1c̄
a7 — b7 C3 +D2c̄
a8 — b8 τcC2

with
ζ⋆(c̄, K)K

τc
= K

B1(c̄, K)γ/τc
K(c̄− 1)−B2(K)γ

. (31)

However, this is still a non-convex problem that is hard

to solve. To this end, we resort to an iterative alternating

optimization algorithm in which we optimize over one variable

at a time while the other one is kept fixed. By doing so,

the objective of (29) turns out being convex in each variable

(M,K) and also the descent directions at each iteration can

be computed in closed-form. The integer-valued solutions are

finally retrieved from the relaxed ones by projection onto N2.

1) Optimal Number of Antennas per BS: We look for the

optimal c when K is given.

Lemma 3. For any fixed K > 0 such that (30) is feasible,

the EE is maximized by

c̄⋆ = min (max (c̄0, c̄1) , c̄2) (32)

with c̄1 = a1+a3

a2−a0
, c̄2 =

K
τc

a1+a3

a2−
K
τc

a0
, and

c̄0 =
r1
r0

+

√

−q0
q2

− q1
q2

r1
r0

+

(
r1
r0

)2

(33)

where we used r0 = a2−a0, r1 = a1+a3, q0 = a1a6+a3a5,

q1 = a3a4+a0a6−a2a5 and q2 = a2a4, while all the auxiliary

parameters {ai} are listed in Table III.

Proof. By using the notation introduced in the lemma, we

begin with computing the term ζ⋆K/τc that appears both

in ASE and APC. Plugging (26) and (27) into (31) yields

ζ⋆K/τc =
a0c̄+a1

a2c̄−a3
such that the objective function in (30)

reduces to EE(ζ⋆, c̄, K) =
1−

a0c̄+a1
a2c̄−a3

a4 c̄+a5−a6
a0 c̄+a1
a2 c̄−a3

which is a quasi-

concave function of c̄. By taking the first derivative and

equating it to zero, we obtain c̄0 in (33), which corresponds

to the solution to the unconstrained problem. Further, the

constraint in (30) can be rewritten as 1 ≤ a0 c̄+a1

a2c̄−a3
≤ τc

K which

implies c̄1 ≤ c̄ ≤ c̄2. This yields the desired result.

Notice that the constraint c̄ ≥ c̄1 is active for

γ ≤ τc/(µ2K). Assuming single-slope pathloss model

with typical values: α = 4, τc = 200 symbols and a very high

number of UEs (worst case) as K = 24, e.g., then we obtain

γ ≤ 23, namely a gross spectral efficiency constraint of 4.6
bit/s/Hz/UE, which implies that this constraint is always active

for practical cases. The second constraint c̄ ≤ c̄2 is instead

active for γ ≤ τ2c /(µ2K
2), which obviously applies even

more. This lemma shows how the optimal c̄ depends on the

other system parameters. In particular, we see that c̄0 increases

roughly linearly with K and γ. This is reasonable since the

network tends to equip the BSs with more antennas in order

to guarantee an increase of the minimum average SINR to

each UE. In contrast, the contrary happens with respect to the

the circuit power parameters given by C0 = PFIX + PSYN and

C1 = PUE + 5Bw/(τcLBS) + U(1 + 1/τc). In particular, c̄0
is directly proportional to the BS density as λαn/4 (since U in

a5 is reduced as λ−αn/2); larger antenna arrays must be used

if the BS density increases. The same happens with respect

to D0 = PBS since it becomes more costly to have additional

antennas when PBS increases. Finally, fewer antennas are

needed when SNR0 and SNRp are increased since the rate

requirement is achieved by using a higher transmitted power

during either data transfer or channel estimation.

2) Optimal Number of UEs per cell: We now look for the

optimal K when c̄ is given.

Lemma 4. For any fixed c̄ > 0 such that the relaxed problem

(30) is feasible, the optimal number of UEs is maximized by

K⋆ = max (K2,max (K1,1,min (K0,K1,2))) (34)

where K0 is the real root of the quintic equation
5∑

i=0

pix
i = 0

with p0 = 2(−m1 +m2), p1 = n1(−m1 +m2) + 3m3n0,

p2 = n1(−m3 + 3m1), p3 = (−m1 +m2)n3 −m3n2,

p4 = 2n4(−m1 +m2), p5 = −m3n4 and we define

K2 = − b1+b3/τc
b0−b2/τc

and

K1,1 =
−(b1 − b2)−

√

(b1 − b2)2 − 4b0b3
2b0

(35)

K1,2 =
−(b1 − b2) +

√

(b1 − b2)2 − 4b0b3
2b0

. (36)

Proof. As already done in Lemma 3, we begin with computing

the term Kζ⋆/τc, which is given by K b0K+b1
b2K−b3

, being {bi}
auxiliary parameters that are listed in Table III. By doing so,

the objective function in (30) can be rewritten as

EE(ζ⋆, c̄, K) =
−m3K

3 +m2K
2 −m1K

n4K4 + n3K3 + n2K2 + n1K − n0
(37)

with m1 = b3, m2 = b2 − b1, m3 = b0 and

n0 = b3b4, n1 = b2b4 − b3b5, n2 = b2b5 − b3b6 − b1b8,

n3 = b2b6 − b3b7 − b0b8 and n4 = b2b7. Then, this lemma
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can be proved by taking the derivative of (37) with respect to

K and then considering the constraints on ζ⋆K/τc.

In particular, it is trivial to show that constraint

K2 is active if and only if γ ≤ γ−1
2 with

γ2 =
(

µ2
1 + µ1

(

2 + 1
SNRp

)

+ µ2(c̄− 1) + 1
SNRp

)

/(c̄− 1).

Notice that there exists no generic closed-form root expression

for a quintic equation but solutions can be easily found by

means of exhaustive search over the domain set. This can be

further speeded up by using for example a bisection method

over a feasible set. To gain insights into how K⋆ is affected

by the system parameters, assume that the power consumption

required for linear processing due to combining at the BS is

negligible, which implies C3 = D2 ≈ 0. This is relevant as

all these terms essentially decrease with the computational

efficiency LBS, which is expected to increase rapidly in the

future. If LBS is very large, we can further neglect other

terms due to linear processing and channel estimation, i.e.

D1 ≈ 0. For the sake of tractability, we assume also that

both SNR and BS density are sufficiently large (since U
reduces as λ−αn/2 we have C2 → 0 and SNR0 ≫ γ). Then,

the following result is of interest:

Corollary 4. Consider the optimization problem (30) where

c̄ = M/K and K are relaxed to be real-valued variables. For

any fixed c̄ > 0 such that the relaxed problem is feasible, if we

let LBS → ∞10, λ ≫ 1 and SNR0 ≫ γ, the optimal number

of UEs is

K⋆
∞ =

C0
C1 +D0c̄

(√

1 +
b2 − b1

b0

C1 +D0c̄

C0
− 1

)

. (38)

Proof. If c̄ is given, C2 = C3 = D1 = D2 = 0 and b3 = 0, then

(37) reduces to

EE∞(ζ⋆, c̄, K) = K
m2 −Km3

n1 +Kn2
(39)

which is a quasi-concave function whose maximum is

achieved for (38).

The above result coincides with that in [13] and shows

that, under the above circumstances, K⋆ decreases with c̄⋆ as
√

1/c̄⋆. From (38), it is found that K⋆ increases with the static

energy consumption C0, while it decreases with C1 and D0.

The same behavior is observed for the optimal number of BS

antennas. Therefore, we may conclude that more BS antennas

and UEs per cell can be supported only if the increase in

circuit power has a marginal effect on the consumed power.

In addition, we note that K⋆ is a decreasing function of γ,

since the interference increases as more UEs are served. We

later show that when using hardware parameters as in Table I

and having reasonable SNR values, the optimal K computed

using Corollary 4 achieves practically the same performance

of the one in Lemma 4 that requires exhaustive search.

10Notice that in (38) and (39) the subscript ∞ is used to emphasize that
the provided expressions is an asymptotic behavior.

3) Convergence Analysis of the Alternating Optimization:

To summarize, we first show in Lemma 2 how to compute the

optimal ζ⋆ for the original optimization problem (23). This

leads to (29) that is later relaxed as in (30), and then solved

through the alternating method explicated in Algorithm 1.

Lemma 5. Algorithm 1 converges to the global optimum θ⋆.

Proof. See Appendix C. Results are validated by numerical

analysis in the sequel.

Algorithm 1 Alternating optimization for Problem (29)

Set θ
⋆
0 = (ζ⋆0 , c̄

⋆
0,K

⋆
0 ); 0 < ε < 1; k = 1;

while ‖θ⋆
k − θ

⋆
k−1‖ ≥ ε do

Compute c̄⋆k by using Lemma 3;
Compute K⋆

k by using Lemma 4 (Corollary 4);
Compute M⋆

k = c̄⋆kK
⋆
k ;

Compute ζ⋆k(M
⋆
k ,K

⋆
k) by using Lemma 2;

Collect θ⋆
k = (ζ⋆k ,M

⋆
k ,K

⋆
k); k = k + 1;

end while
return θ

⋆ = (ζ⋆, c̄⋆,K⋆) = (ζ⋆k , ⌈M
⋆
k ⌋, ⌈K

⋆
k⌋)

V. NUMERICAL RESULTS

Numerical results are now used to design the network and

validate the theoretical analysis done in Section IV with ZF

and MMSE channel estimation. The circuit power parameters

as well as the channel parameters are taken from [13] and

[21] and listed in Table I. As for Section III-C, the Matlab

code available online11 enables testing of other values. The

power needed to run the network is computed by using the

model developed in Section III-B. We consider a squared

deployment area of 1 km2 with wraparound topology wherein

E{Φλ} = λA BSs are deployed as described in Section II.

The transmission bandwidth is Bw = 20MHz and each co-

herence block consists of τc = 200 samples. We assume that

SNRp = 15 dB and SNR0 = 5 dB. The path loss model is the

same as Section III-C. Fig. 4 plots the EE of the network as a

function of λ with MR, ZF, and M-MMSE with M = 100 and

K = 10. The curve labelled ZF-LB is obtained by using the

closed-form expression of the average spectral efficiency pro-

vided in Lemma 1 while MR-LB is obtained by extending the

results (not shown for space limitations) of [13, Proposition 1]

to the considered multislope path loss model. The curves MR,

ZF, and M-MMSE refer to the performance of a network in

which the average spectral efficiency is numerically evaluated

by using the Theorem 2. Several important observations can

be made from the results presented in Fig. 4. Firstly, although

there is a gap between the lower and upper bounds, the curves

behave exactly the same for any value of λ. This validates

the accuracy of the spectral efficiency expressions provided in

Lemma 1 and [13, Proposition 1] (recall that for this latter case

results need to be first extended to the considered multislope

path loss model). Secondly, in all cases the EE is a unimodal

function of λ and the optimal deployment is achieved for the

same (relatively small) BS density.

11See https://github.com/lucasanguinetti/max-EE-Multislope-Path-Loss

https://github.com/lucasanguinetti/max-EE-Multislope-Path-Loss
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TABLE IV: Optimal network design parameters and performance achieved for λ = 10 BS/km2 at different γ values.

Combiner EE
⋆ [Mbit/Joule] Area throughput⋆ [Mbit/s/km2] APC

⋆ [W/km2] M⋆ K⋆ ζ⋆ Cell Reuse 1/ζ⋆ [%]

ZF (γ = 1) 3.81 672 176 53 13 3.4 28.98

ZF (γ = 3) 3.66 607 166 53 6 8.02 12.47

ZF (γ = 7) 2.71 453 167 56 3 16.34 6.12

MR (γ = 1) 3.58 617 172 52 12 3.80 26.28

MR (γ = 3) 2.96 517 174 58 5 8.98 11.14

MR (γ = 7) 2.03 446 220 82 3 17.08 5.86
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Fig. 4: EE (in Mbit/Joule) as a function of λ (in BS/km2), for fixed
SNR0 = 5 dB and SNRp = 15 dB. Results are obtained for MR, ZF
and M-MMSE with M = 100 and K = 10. The optimal pilot reuse
factor ζ is computed numerically. Curves are obtained by numerically
evaluating the bound provided in Theorem 2 (empty-markers) and by
using the closed-form expression (filled-markers) in Lemma 1 and in
[13, Proposition 1] for MR (extended to the multislope model in (2)).

Fig. 5 shows the EE lower bound as a function of K and

M > K with γ = 3. The pilot reuse is chosen optimally ac-

cording to (25) and the BS density is fixed to λ = 10BS/km2,

which is found to be a good compromise between EE and

area throughput in Section III. As it is seen, EE is pseudo-

concave and has a unique global maximizer (black triangle),

which is closely approached by the alternating optimization

algorithm in Section IV. The global maximizer is given by

the triplet (M⋆,K⋆, ζ⋆) = (53, 6, 8) and gives a maximum of

EE
⋆ = 3.66 Mbit/Joule. The ratio M/K for the considered

setup is roughly 9, which resembles a Massive MIMO setup.

The cell reuse 1/ζ⋆ ≈ 12% is low enough to ensure robustness

against pilot contamination. Compared to [13], the results

in Fig. 5 shows that ZF is characterized by a smoother EE

function with respect to MR, which makes ZF more robust to

system changes and thus a better choice as BS combiner.

In Table IV, ZF and MR are compared by using

λ = 10 BS/km2 and with γ ∈ {1, 3, 7}, which corresponds

to the average spectral efficiencies log2(1 + γ) ∈ {1, 2, 3}
[bit/s/Hz/UE]. We observe that both schemes require almost

the same optimal number of antennas at each BS and serve

approximately the same number of UEs. With both schemes,

the ratio M/K increases almost linearly with γ as stated

in Lemma 3. ZF achieves a higher EE than MR. This is a

direct consequence of the ZF capabilities to handle intra-cell

interference, which allows the BS to serve more UEs with a

smaller number of antennas. This has a dual-positive effect:

higher area throughput due to multiplexing gain and lower

APC because of smaller arrays (especially when the network

0
250

1

200 25

2

150 20

3

15100

4

1050 5

E
E

[M
b
it

/J
o
u
le

]

Number of BS antennas (M) Number of UEs (K)

Alternating
optimization

EE
⋆=4.9 Mbit/Joule,

(M⋆,K⋆,ζ⋆)=(53,6,8)

Fig. 5: EE (in Mbit/Joule) of ZF as a function of M and K, for fixed
γ = 3, λ = 10 BS/km2, SNR0 = 5 dB and SNRp = 15 dB. The
global optimum obtained from Monte Carlo simulations is indicated
with a black triangle. This is compared to the optimum achieved by
using Algorithm 1 (blue star).

operates in a high area throughput regime, which requires

larger antenna array). Notice also that, as claimed in Lemma 4,

K⋆ decreases with γ since the interference increases as more

UEs are served. The pilot reuse factor is slightly smaller than

with MR. This happens because ZF mitigates the intra-cell

interference and allows a higher inter-cell interference, though

this effect is mitigated by the incoming inter-cell interference

that is not handle by either of these combining scheme.

VI. CONCLUSIONS

We designed a cellular network for maximal EE with MR,

ZF and M-MMSE under the assumption of imperfect CSI

and a multislope path loss model. This was formulated as an

optimization problem by using a lower bound on the spectral

efficiency and a state-of-the-art power consumption model.

The variables were pilot reuse factor ζ and BS density λ
for a Massive MIMO network. The results showed that the

additional computational complexity of M-MMSE processing

pays off in terms of EE and area throughput, though all the

scheme behaves substantially the same with respect to λ, that

is, reducing the cell size does not bring benefits in terms of EE.

To get further insights, we concentrated on ZF and formulated

the optimization problem by using stochastic geometry and a

new lower bound on the average ergodic spectral efficiency.

The variables were pilot reuse factor, number of BS antennas

and UEs per BS. The results showed that ZF allows a higher

network densification and the use of a smaller pilot reuse factor

while achieving a higher EE than with MR combining. Also,

it turned out that the EE-optimal configuration resembles a

Massive MIMO setup.
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APPENDIX A — PROOF OF LEMMA 1

To ease understanding, the proof is articulated in two steps.

The first aims at computing all the inner expectations in (19)

with respect to channel and pilot realizations, whereas the

second makes use of all these terms, together with the power

allocation policy in Section II, to evaluate the outer expectation

with respect to both the BSs and UEs locations.

A.1. Computation of all the expectations in (19)

Let vjk = VZF
j ek be the ZF detector for the typical UE k

in cell j, with VZF
j as in (12) and ek being the kth vector of

the standard basis.

Received signal power: The useful term is computed as:

|E{h,a}{vH

jkh
j
jk}|2

(a)
= |E{h,a}{vH

jkĥ
j
jk}|2

(b)
= 1 (40)

where (a) follows from Corollary 1 and (b) comes from the

ZF combining.

Noise power: The noise term is obtained as:

E{h,a}{‖vjk‖2}
(a)
= E{h,a}

{[(
(Ĥj

j)
HĤ

j
j

)−1
]

k,k

}

(a)
=

1

M −K
E{a}

{
1

γj
jk

}

(41)

where (a) is due to the ZF combining, (b) exploits both

the statistics of ĥ
j
jk in Corollary 1, with γj

jk denoted in (5),

and the properties of Wishart matrices (e.g., see [9, Proof of

Proposition 3] or [32] for a more general treatment).

Intra-cell interference power: Consider now the cell of

interest j and let us compute the intra-cell interference. Then,

for any interferer UE i in cell j we have that

E{h,a}{|vH

jkh
j
ji|2}

(a)
= E{h,a}{tr(vjkv

H

jkĥ
j
ji(ĥ

j
ji)

H) + tr(vjkv
H

jkh̃
j
ji(h̃

j
ji)

H)}
(b)
= δ(i− k) + E{a}

{
(βj

ji − γj
ji)E{h}{‖vjk‖2}

}

(c)
= δ(i− k) +

1

M −K

(

βj
jiE{a}

{
1

γj
jk

}

− E{a}

{
γj
ji

γj
jk

})

(42)

with δ(·) as the delta Kronecker function and where (a)–(b)
follow from Corollary 1 while using ZF combining for the

first term and (c) is due to (41).

Inter-cell interference power: The inter-cell interference

collected by BS j from cell l, e.g., depends on whether

the UEs in that cell use the same or a different pilot sub-

set Φl than the one used in cell j, that is (l, i) ∈ Pj,k

with Pj,k = {(l, i) ∈ Φλ \ {j} × {1, . . . ,K} : alj = 1}. Con-

sider a UE i that does not cause pilot contamination to UE k
of cell j. In that case, (l, i) /∈ Pj,k and

E{h,a}{|vH

jkh
j
li|2|alj = 0} (a)

= βj
liE{h,a}{‖vjk‖2|alj = 0}

(b)
=

βj
li

M −K
E{a}

{
1

γj
jk

∣
∣
∣
∣
alj = 0

}

(43)

where (a) follows from Corollary 1 and the fact that vjk is a

function of {ĥj
ji}Ki=1, which are statistically independent from

{ĥj
li}Ki=1 (and so {hj

ji}Ki=1) in presence of no pilot contam-

ination, for which (7) does not hold and (b) is due to (41).

Consider an interferer UE i that cause pilot contamination to

UE k of cell j. Then, (l, i) ∈ Pj,k and using Corollary 1

leads to E{h,a}{|vH

jkh
j
li|2|alj = 1}=E{h,a}{|vH

jkĥ
j
li|2|alj =

1} + E{h,a}{|vH

jkh̃
j
li|2|alj = 1}. Let us now tackle these

contributions to pilot contamination separately. The former is

E{h,a}{|vH

jkĥ
j
li|2|alj = 1}

(a)
=

(βj
li)

2

βl
liβ

j
ji

E{h,a}{|vH

jkĥ
j
ji|2|alj = 1} (b)

=
(βj

li)
2

βl
liβ

j
ji

δ(i − k) (44)

where in (a) we make use of (7) that accounts for the channel

estimates linearity (alj = 1) and (b) follows from the same

considerations used for (42) since conditioning has no impact

here. The latter term is computed as

E{h,a}{|vH

jkh̃
j
li|2|alj = 1}

(a)
= βj

liE{h,a}{‖vjk‖2|alj = 1
}
− E{h,a}

{
γj
li ‖vjk‖2|alj = 1

}

(b)
=

βj
liE{a}

{

1

γj

jk

∣
∣
∣
∣
alj = 1

}

M −K
−

E{a}

{

γj

li

γj

jk

∣
∣
∣
∣
alj = 1

}

M −K

(c)
=

βj
liE{a}

{

1

γj

jk

∣
∣
∣
∣
alj = 1

}

− (βj

li
)2

βl
li
βj
ji

E{a}

{
γj
ji

γj

jk

∣
∣
∣
∣
alj = 1

}

M −K
(45)

where (a) follows from Corollary 1 while keeping the con-

ditioning, (b) is due to (41) and (c) follows from (7). The

inter-cell interference term can be computed by considering

the probability of having or not pilot contamination between

UE i of cell l and the typical UE, i.e., P(alj = 1) = 1/ζ and

P(alj = 0) = 1− 1/ζ. Particularly, from (43) – (45) we obtain

E{h,a}{|vH

jkh
j
li|2}

=
1∑

p=0

P(alj = p)E{h,a}{|vH

jkh
j
li|2|alj = p}

=
1

ζ

(βj
li)

2

βl
liβ

j
ji

δ(i− k)− 1

ζ

1

M −K

(βj
li)

2

βl
liβ

j
ji

E{a}

{
γj
ji

γj
jk

∣
∣
∣
∣
alj = 1

}

+
βj
li

M −K
E{a}

{
1

γj
jk

}

. (46)

A.2. Computation of the lower bound on the UL SE

To begin with, let us define the following quantities

ϑ
(1)
ji =

∑

l∈Φλ\{j}

βj
li

βl
li

, ϑ
(2)
ji =

∑

l∈Φλ\{j}

(

βj
li

βl
li

)2

(47)

which are then used to compute the inner expectations in (41),

(42) and (46) with respect to the pilot realizations only. Then,
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the following terms are of interest

E{a}

{
1

γj
jk

}

=
1

βj
jk

(

1 +
ϑ
(1)
jk

ζ
+

1

SNRp

)

(48)

E{a}

{
γj
ji

γj
jk

}

=







E{a}{1} = 1 if i = k

E{a}

{

1
γj

jk

}

E{a}{γj
ji}

(a)

≥ βj
ji

βj

jk

1+
ϑ
(1)
jk
ζ

+ 1
SNRp

1+
ϑ
(1)
ji
ζ

+ 1
SNRp

if i 6= k

(49)

where (48) follows from (5) with E{a}{alj} = 1/ζ and

ϑ
(1)
jk ∈ R that is denoted in (47), while in (49) we exploit the

fact that UEs i and k in cell j cannot share the same pilot

sequence when i 6= k and (a) comes directly from jointly

using Jensen’s inequality and (48).12 The noise term in (19)

is computed by plugging (48) into (41) as follows

βj
jkE{h,a}{‖vjk‖2} =

1

M −K

(

1 +
ϑ
(1)
jk

ζ
+

1

SNRp

)

. (50)

The interference contribution is decomposed as the sum of

three terms, i.e., the intra-cell interference and the inter-cell

interferences due to pilot and no pilot contamination:

∑

l∈Φλ

K∑

i=1

βj
jk

βl
li

E{h,a}{|vH

jkh
j
li|2} =

K∑

i=1

βj
jk

βj
ji

E{h,a}{|vH

jkh
j
ji|2}

︸ ︷︷ ︸

intra-cell interference

+
∑

l∈Φλ\{j}

K∑

i=1

βj
jk

βl
li

1∑

p=0

P(alj = p)E{h,a}{|vH

jkh
j
li|2|al,j = p}

︸ ︷︷ ︸

inter-cell interference

.

(51)

The first term accounts for intra-cell interference from all UEs

i in cell j when using (48) and (49) into (42) becomes

K∑

i=1

βj
jk

βj
ji

E{h,a}{|vH

jkh
j
ji|2}

≤ 1 +

K
(

1 +
ϑ
(1)
jk

ζ + 1
SNRp

)

−
K∑

i=1

1+
ϑ
(1)
jk
ζ

+ 1
SNRp

1+
ϑ
(1)
ji
ζ

+ 1
SNRp

M −K
. (52)

The second term accounts for the interference from all UEs i
in cells l 6= j and thus it can be computed substituting (48) –

12Hereafter we do not consider the conditioning anymore since, as we will
see in a while, we lower bound this term when averaging over the BSs and
UEs locations in the outer expectation.

(49) into (46), which reads

∑

l∈Φλ\{j}

K∑

i=1

βj
jk

βl
li

E{h,a}{|vH

jkh
j
li|2}

≤ 1

M −K

[(

1 +
ϑ
(1)
jk

ζ
+

1

SNRp

) K∑

i=1

ϑ
(1)
ji +

(M −K)

ζ
ϑ
(2)
jk

− 1

ζ

K∑

i=1

ϑ
(2)
ji

(
1 +

ϑ
(1)
jk

ζ + 1
SNRp

1 +
ϑ
(1)
ji

ζ + 1
SNRp

)]

. (53)

Plugging (40) and (50) – (53) together into (19) we have (54).

This completes the first part of the proof.

APPENDIX B — PROOF OF LEMMA 1

Next, a tractable lower bound on the UL average ergodic

spectral efficiency of the typical UE is computed, where the

expectation is taken with respect to the BSs and UEs locations.

To begin with, the Jensen’s inequality is applied to move the

expectation inside the logarithm and obtain

Ed

{

log2

(

1 +
1

SINR
−1

)}

≥ log2

(

1 +
1

Ed

{
SINR

−1
}

)

= log2
(
1 + SINR

)
(55)

where we denote with SINR = Ed

{
SINR

−1
}

. Before pro-

ceeding further, let us explicate some of the terms included

in (53), that is, (56) and (56), respectively, where in (56) we

use the independence between UEs distance realizations for

i 6= k together with the Jensen’s inequality, while in (57) we

lower bound the expectation13. From (54), the expectation of

SINR
−1

can be expanded as in (58).

SINR ≥ 1

M −K

(
(

K +
1

SNR0

)(

1 +
1

ζ
Ed

{

ϑ
(1)
jk

}

+
1

SNRp

)

+
(

1 +
1

SNRp

) K∑

i=1

Ed

{

ϑ
(1)
ji

}

+
1

ζ

K∑

i=1

Ed

{

ϑ
(1)
jkϑ

(1)
ji

}

+
M −K

ζ
Ed

{

ϑ
(2)
jk

}

−K − 1

ζ

K∑

i=1

Ed

{

ϑ
(2)
ji

}
)

(58)

Now, in order to obtain the achievable lower bound in (20)

we introduce the following Lemma:

Lemma 6. Assume a multislope path-loss model βj
lk(d

j
lk) as

in (2) and djlk ∈ Φλ \{j} with djlk being the distance between

UE k in cell l and the BS in cell j (where Φλ \ {j} describes

13Let us consider one term of the sum within ϑ
(1)
ji at a time and denote with

x = βj
li
/βl

li
. Then we have Ex{

x2

b+x
} ≥ (Ex{x})2

b+Ex{x}
≥ Ex{x2}

b+Ex{x}
by applying

Jensen’s inequality first (since b = 1 + 1/SNRp > 0) and Holder’s inequality
at second.
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SINR ≥ M −K
(

K + 1
SNR0

+
K∑

i=1

ϑ
(1)
ji

)(

1 +
ϑ
(1)
jk

ζ + 1
SNRp

)

+ M−K
ζ ϑ

(2)
jk −

K∑

i=1

(
1+ϑ

(1)
jk

/ζ+ 1
SNRp

1+ϑ
(1)
ji

/ζ+ 1
SNRp

)(

1 +
ϑ
(2)
ji

ζ

) (54)

Ed







1 +
ϑ
(1)
jk

ζ + 1
SNRp

1 +
ϑ
(1)
ji

ζ + 1
SNRp







=







Ed{1} = 1 if i = k

Ed

{

1 +
ϑ
(1)
jk

ζ + 1
SNRp

}

Ed







1

1+
ϑ
(1)
ji
ζ

+ 1
SNRp






≥ 1 if i 6= k

(56)

Ed







1 +
ϑ
(1)
jk

ζ + 1
SNRp

1 +
ϑ
(1)
ji

ζ + 1
SNRp

ϑ
(2)
ji







=







Ed







1+
ϑ
(1)
jk
ζ

+ 1
SNRp

1+
ϑ
(1)
jk
ζ

+ 1
SNRp

ϑ
(2)
jk






= Ed

{

ϑ
(2)
jk

}

if i = k

Ed







ϑ
(2)
ji

1+
ϑ
(1)
ji
ζ

+ 1
SNRp






Ed

{

1 +
ϑ
(1)
jk

ζ + 1
SNRp

}

≥Ed

{

ϑ
(2)
ji

}

if i 6= k

(57)

the set of BSs distributed as an H-PPP with density λ) we

have

Ed

{

ϑ
(κ)
ji

}

= Ed







∑

l∈Φλ\{j}

(

βj
li(d

j
li)

βl
li(d

l
li)

)κ





= µκ, (59)

Ed

{

ϑ
(1)
jkϑ

(1)
ji

}

= Ed







∑

n∈Φλ\{j}

∑

l∈Φλ\{j}

l 6=n

(

βj
nk(d

j
nk)

βn
nk(d

n
nk)

)(

βj
li(d

j
li)

βl
li(d

l
li)

)







≤ µ2
1 + µ2 (60)

where µκ for κ = 1, 2 is denoted in (22).

Proof. We start by considering the BSs distributed in a circular

area of finite radius r and wrap around in the radial domain

to keep the translation invariance. Considering the closest BS

policy association in Section II, which tells us that there

are no interfering BSs closer than the one is serving the

typical UE k in cell j, that is BS j, the average number

of inter-cell interferers in that ring is λAR with AR(r, λ) =

π
(

r2 −Ed

{

(djjk)
2
})

= π
(

r2 − 1
πλ

)

. Then, (59) – (60) can

be written as [13, Appendix B]

Ed

{

ϑ
(κ)
ji

}

= λAR(r, λ)Ed

{(

βj
lk(d

j
lk)

βl
lk(d

l
lk)

)κ}

(61)

Ed{ϑ(1)
jkϑ

(1)
ji } ≤ λAR(r, λ)

(
(

λAR(r, λ) − 1
)

E
2
d

{

βj
lk(d

j
lk)

βl
lk(d

l
lk)

}

+ Ed







(

βj
lk(d

j
lk)

βl
lk(d

l
lk)

)2






)

. (62)

Therefore, (61) – (62) requires computing the following term

Ed

{(

βj
lk(d

j
lk)

βl
lk(d

l
lk)

)κ}

(a)
= Ed

{

β(dllk)
−κ

Ed

{
β(djlk)

κ | dllk
}}

(b)
= Ed

{

β(dllk)
−κ

∫ r

dl
lk

β(x)κ
2x

r2 − (dllk)
2
dx

}

(c)
=

N∑

n=1

(
∫ Rn

Rn−1

2βn(y)
−κ

r2 − y2

(
∫ r

y

xβ(x)κ dx

)

fd(y) dy

)

(63)

for κ = {1, 2}, where in (a) we use the theorem of to-

tal expectation conditioning over dllk , (b) is due to the

fact that there are no interfering BSs closer than the jth

(i.e., djlk ≥ dllk) and change of variable to polar coordinates,

while in (c) we use the multislope pathloss model in (2)

y ∈ [Rn−1, Rn), n = 1, . . . , N and denote with fd(d
j
jk) the

probability density function of the distance from the typical

UE k to its serving BS j. By using (2), we rewrite the term

within the inner brackets in (63) as follows

r∫

y

xβ(x)κ dx =

Rn∫

y

xβn(x)
κ dx+

N∑

i=n+1

Ri∫

Ri−1

xβi(x)
κ dx (64)

where we have used that x ≥ y for any fixed index n of the

summation in (63). Then, using (2) into (64) we obtain

r∫

y

xβ(x)κ dx = Υκ
n

y2−καn −R2−καn
n

καn − 2

+

N∑

i=n+1

Υκ
i

R2−καi

i−1 −R2−καi

i

καi − 2
. (65)

Plugging (65) into (63), after some rearrangements we obtain

Ed

{(

βj
lk(d

j
lk)

βl
lk(d

l
lk)

)κ}

= (66)

2

N∑

n=1

Rn∫

Rn−1

(

y2

(καn − 2)(r2 − y2)
+

yκαncn(κ)

(r2 − y2)

)

fd(y) dy
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where cn(κ) =
∑N

i=n+1

(
Υi

Υn

)κ R
2−καi
i−1 −R

2−καi
i

καi−2 − R2−καn
n

καn−2 .

To account for the wrap around in R2, we let r → ∞ and

obtain14

λA(r, λ)Ed

{(

βj
lk(d

j
lk)

βl
lk(d

l
lk)

)κ}

→

2λπ

N∑

n=1

(

1

καn − 2

Rn∫

Rn−1

y2fd(y) dy + cn(κ)

Rn∫

Rn−1

yκαnfd(y) dy

)

.

(67)

Finally, by using Corollary 3 the two integrals in (66) can be

computed in closed-form as (after simple calculus)

Rn∫

Rn−1

y2fd(y) dy =
Γ
(
2;πλR2

n−1

)
− Γ

(
2;πλR2

n

)

πλ
(68)

Rn∫

Rn−1

yκαnfd(y) dy =
Γ
(

2+καn

2 ;πλR2
n−1

)

− Γ
(

2+καn

2 ;πλR2
n

)

(πλ)
καn

2

.

(69)

Plugging (67) – (69) into (61) – (62) leads to (59) – (60),

which completes the proof.

APPENDIX C — PROOF OF LEMMA 5

We start by noticing that the mapping applied at each

iteration, to compute the next point of the algorithm, fol-

lows the gradient descent rule, which provides a station-

ary point with no increase of the objective value. In

[33, Theorem 3.2], convergence of a gradient descent-

based alternating method is proved given that the objective

EE(c̄, K) is pseudo-concave in each variable and the level set

S = {(c̄, K) ∈ R2 : EE(c̄, K) ≤ EE(c̄0,K0)}, with respect to

the the initial point of the algorithm, is compact. The latter

can be easily proved by noticing that c̄ and K are defined

over a box (compact and closed domain) and the objective

function is bounded, which is true for any PFIX > 0. In

particular, under these conditions, the alternating optimization

method introduced in Lemma 5 returns a sequence {c̄k,Kk}
that converges to a global maximizer of EE on R2. Thus,

convergence is achieved whenever pseudo-concavity holds

component-wise for both EE(c̄) and EE∞(K) in (30) and

(39), respectively. To this end, in [34, Proposition 2.9] it is

shown that fractional objectives in the form of r = f/g defined

over a convex set X ⊆ Rn with n ≥ 1 enjoy pseudo-concave

properties when f : X → R is non-negative, differentiable,

and concave, while g : X → R is differentiable and convex

(if g is affine, the non-negativity of f can be relaxed). In par-

ticular, the former objective can be rewritten as r(c̄) = EE(c̄)
with f(c̄) = p1c̄+ p0 and g(c̄) = q2c̄

2 + q1c̄+ q0 with some

parameters {pi, qi} that can be easily related to the parameters

{ai} illustrated in Table III. Here, f(c̄) is affine and non-

negative for c̄ ≥ − p0

p1
= a1+a3

a2−a0
, which is equivalent to assume

14Notice that the function within the integral is a fractional polynomial of
second order degree that converges to a bounded real-valued limit as r → ∞.
For this reason, the bounded convergence theorem conditions are satisfied and
that operation is allowed.

γ ≤ τc
µ2K

(true in general as seen below (30)) whereas g(c̄) is

convex since q2 = a2a4 that are both positive quantities; see

Table III. For the latter objective r(K) = EE∞(K), we have

that f(K) = −m3K
2 +m2K is concave for m3 = b0 > 0

(see Table III), while g(K) = n2K + n1 is affine over K ∈ R.

This proves the convergence of Algorithm 1.
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