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1. Introduction

The Hodge decomposition of the cohomology of smooth projective complex va-
rieties is a fundamental tool in the study of their geometry. Over an arbitrary base
field of characteristic zero, étale cohomology with Q,-coefficients is a good substi-
tute for singular cohomology with complex coefficients, but in general no analogue
of the Hodge decomposition is known. However, owing to a fundamental insight of
Tate [45], we know that over a p-adic base field a version of Hodge decomposition
can indeed be constructed. Moreover, the cohomology groups involved carry an
action of the Galois group of the base field, whose interaction with the Hodge de-
composition can be analyzed by methods inspired by the study of the monodromy
action in the complex case. This has deep consequences for the study of vari-
eties of arithmetic interest, and can even be used to prove some purely geometric
statements.

The first proof of the p-adic Hodge decomposition is due to Faltings [20]; sev-
eral other proofs have been given since. One of the most recent is a wonderful
proof by Beilinson [3] which is the closest to geometry. It can be hoped that its
groundbreaking new ideas will lead to important applications; some of them already
appear in the recent construction of p-adic realizations of mixed motives by Déglise
and Niziol [12]. Moreover, one of the key tools in Beilinson’s approach is Illusie’s
theory [30] of the derived de Rham complex which has also reappeared during the
recent development of derived algebraic geometry. Beilinson’s work may thus also
be viewed as a first bridge between this emerging field and p-adic Hodge theory.

In the present text we give a detailed presentation of Beilinson’s approach,
complemented by some further advances due to Bhatt [8]. Let us start by reviewing
the complex situation which will serve as a guide to p-adic analogues.

1.1. The Hodge decomposition over C. We begin by recalling some basic
facts from complex Hodge theory; standard references are [46] and [6]. Let X be
a smooth projective variety over C (or more generally a Kahler manifold). The
Hodge decomposition is a direct sum decomposition for all n > 0

H"(X™,C)= @ H""
ptg=n
where on the left hand side we have singular cohomology of the complex analytic
manifold X*" and
HP? = FY(X* QL ..)

with Q% .. denoting the sheaf of holomorphic p-forms.
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Furthermore, complex conjugation acts on H"(X*" C) = H"(X*",Q) ® C via
its action on C, and we have
HP9 = Ha.p,

These results are proven via identifying HP'? with Dolbeault cohomology groups
and using the (deep) theory of harmonic forms on a Kéahler manifold. However,
part of the theory can be understood purely algebraically.
First, observe that H" (X", C) is also the cohomology of the constant sheaf C

for the complex topology of X*". Consider the de Rham complex

Q%an 1= Oxon 5 Qb 5 0% — ...
Here the first d is the usual derivation and the higher d’s are the unique ones
satisfying

d(wl AN LUQ) = dwl N wo + (*1)pwl AN dCUQ

for wy € N and wo € Q’;;an.

The holomorphic Poincaré lemma implies that Q%.. has trivial cohomologies
over contractible open subsets except on the left where the kernel is C. In other
words, the augmented complex of analytic sheaves

0= C— Oxon 5 Whan 50200 — ...
is exact. Thus we have an isomorphism of (hyper)cohomology groups
(1.1) H™"( X, C) 2 H"(X*™, Q%an) = Hig (X?").
Now Q% has a descending filtration by subcomplexes
Q3L =0 — - —0— .. iQ&tl — ...

The p-th graded quotient is isomorphic to %, (shifted by p), whence a spectral
sequence (the Hodge to de Rham spectral sequence)

EPT = HY(X™ OF..) = HEE9(X™)
inducing a descending filtration
Hip(X™)=F'>F'>...OF"D> " =0
on Hir(X?®"), the Hodge filtration.

The first fundamental fact is that the Hodge to de Rham spectral sequence
degenerates at E7, giving rise to isomorphisms
FP/pPit o BRI = HI(X™ OX ).

Via the isomorphism (1.1) the conjugation action on C induces an action on Hjg (X*").
Setting

WP = FP AT

we have obviously H?? = Hap.
The second nontrivial fact is that the natural map

HPd s Fp/Fp+1

is an isomorphism and hence HP¢ = HY(X* QOX..). In other words, H"? is a
complement of FP*1 in FP, so complex conjugation splits the Hodge filtration.
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However, the only known proof of this uses the Hodge decomposition we started
with. Namely, one proves
= @ HP4

p+q=n,p>i
whence of course we also get H?? = HP9,

1.2. Algebraization. On a complex algebraic variety X one may also con-
sider sheaves of algebraic differential forms Q% and the algebraic de Rham complex

Q% =0x S0k 302 5.

which is a complex of coherent sheaves on X; for X smooth they are moreover
locally free. There is a Hodge to de Rham spectral sequence

EP? = HY(X,0%) = HEY(X).

defined in the same way. Here we are using cohomology of coherent sheaves in the
Zariski topology.
There are natural maps

HI(X,0%) — HY(X™, O%..), HEN(X) — HELI(X)

compatible with the maps in the spectral sequence. By the GAGA theorem of Serre,
for X projective the first maps are isomorphisms, and hence so are the second ones
(in fact, the maps on de Rham cohomology are isomorphisms for general smooth
X by a result of Grothendieck [28]). Thus degeneration for the analytic spectral
sequence is equivalent to that of the algebraic spectral sequence. Indeed, there is
a purely algebraic proof of the degeneration of the algebraic Hodge to de Rham
spectral sequence due to Deligne and Illusie [17].

However, there is no algebraic Poincaré lemma (so the algebraic de Rham com-
plex is not a resolution of the constant sheaf C), and anyway the Zariski cohomology
of the constant sheaf C is trivial. However, comparison with the analytic results im-
ply that the singular cohomology H™(X?®", C) has a Hodge decomposition involving
algebraic differential forms.

The singular cohomology of X" can also be defined algebraically for certain
coefficients by means of étale cohomology. Indeed for m > 1 we have a comparison
isomorphism

H™"(X*Z/mZ) = H (X, Z/mZ)
due to M. Artin, whence for a prime p
H™ (X, Qp) = Hg (X, Qp)
where H} (X, Q,) := liin HE(X,Z/p"7L) @z, Qp.

But in general it does not compare with Hjr(X). The situation is better,

however, over p-adic base fields.

1.3. The case of a p-adic base field. Recall that C, is the completion
of an algebraic closure @p of @,. The Galois group G := Gal(@p\(@p) acts on
C, by continuity. Similarly, if K is a finite extension of Qp, by completing an
algebraic closure of K we obtain a complete valued field Cx with an action of
Gk = Gal(Q,|K). Of course, as a field it is the same as C, but it carries the
action of a subgroup of G.
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The G g-action on @; induces a G g-action on
Z,(1) := liin,upr
and hence on the tensor powers
Zp(i) == Zp(1>®i-
This can be extended to negative i by setting Z,(—i) to be the Z,-linear dual of
Z, (i) with its natural Gg-action. Finally, we have G g-modules
(CK(’L) = Cg Rz, Zp(i)

with G acting via c(A®@w) = 0(A) ® 0(w). A famous theorem of Tate [45], which
was the starting point of p-adic Hodge theory, states that

K i=0
1.2 Cr(i)9% =
(12) K0 {0 o
Now assume X is a smooth projective K-variety. The Hodge—Tate decomposi-
tion, conjectured by Tate and first proven by Faltings [20], is the following analogue
of the Hodge decomposition over C.

THEOREM 1.1. There is a canonical isomorphism

H(X7, Qp) ®o, Cx = P HU(X, 0% *) @k Crx (g —n)
q
of G g -modules.

Here Gk acts on the left by the tensor product of its actions on Hg (X%, Qp)
and on Cg and on the right via its actions on the Cx (g — n) (so the HY(X, Q% 7)
are equipped with the trivial G g-action).

REMARK 1.2. The Hodge-Tate decomposition holds more generally for smooth
varieties having a smooth projective normal crossing compactification, provided
that one uses the de Rham complex with logarithmic poles along the divisor at
infinity (see Subsection 5.3 for definitions). It is in this generality that the the-
orem will be proven in the present text. The existence of the smooth projective
normal crossing compactification is guaranteed by Hironaka’s theorem for smooth
quasi-projective X. It is also possible to extend the theorem to a statement about
arbitrary varieties using hypercoverings.

ExXAMPLE 1.3. In the case n = 1 we get
Hy (X7, Qp) ® Cx = (H(X, Q%) ® Cx(—1)) ® (H'(X, Ox) ® Ck)
or else
Hy (X7, Qp(1) ® Cx = (HO(X, Q) ® Ck) & (H'(X, Ox) @ Ck(1)).
Here
HY, (X%, Qp(1)) = T, (PicXg) ®z, Qp.

In the case of an abelian variety this was first proven by Tate [45] in the good
reduction case and by Raynaud in general, and then by Fontaine [24] by a different
method. For abelian varieties this implies the Hodge-Tate decomposition for all

H", as the (étale, Hodge or coherent) cohomology algebra of an abelian variety is
the exterior algebra on H'.
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Theorem 1.1 can be reformulated as follows. Introduce the Cg-algebra

BHT = @ (CK (Z)
i€z
where multiplication is given by the natural maps Cx (1) @ Cx (j) — Cx (i +J). It
carries a natural Gg-action. Also, define the K-algebra

Hijgo(X) == @D HI(X, Q9.
q=0

Both are graded algebras, so there is a grading on the tensor product
Hﬁdg(X ) @k Bur given by the sum of grades. Thus tensoring the Hodge—Tate
decomposition of Theorem 1.1 by Byt yields a G g-equivariant isomorphism of
graded Cg-algebras

Hg (X%, Qp) ®q, Bur = Hige(X) @k Bur-
Moreover, Tate’s theorem (1.2) implies
(HE (X7, Qp) @0, Bur)" = Hijg (X).
So we indeed recover the Hodge cohomology of X from the étale cohomology using
the Galois action. But what about the de Rham cohomology?

In his groundbreaking paper [23], Fontaine defined a complete discrete valued
field Bqr containing K that is equipped with a G'x-action and has a non-split de-
creasing G i-equivariant valuation filtration Fil* such that there are G'x-equivariant
isomorphisms

Fil' /Fil"t 22 Cge(4)
for all 4 € Z. So the associated graded ring of Bqr with respect to Fil’ is Byr, and
by Tate’s theorem we have Bg‘;{( =K.

We then have the following stronger statement, from which Theorem 1.1 results
after passing to associated graded rings.

THEOREM 1.4. For alln > 0 there is a G g-equivariant isomorphism of filtered
K -algebras
Hgt(va @p) Xq, Bar & HiR(X) ®k Bag.
Here the filtration on the right hand side is the tensor product of the Hodge filtration
F' and the filtration Fil’ on Bgg.

The equality ngf = K implies that we indeed recover de Rham cohomology
from étale cohomology:

COROLLARY 1.5. For all n > 0 there is an isomorphism of filtered K -algebras
(Hz( X7, Qp) ®g, Bar) ™ =2 Hig(X).

This was Fontaine’s Cqr conjecture, again first proven by Faltings in his paper
[21]; see also Illusie’s Bourbaki report [31]. Fontaine has also made finer conjectures
for smooth proper varieties with good reduction (the Ceis conjecture) and with
semistable reduction (the Cg conjecture), involving other period rings Bes and
Bst. Both conjectures imply the Cyr conjecture but in addition the groups in
the comparison theorems carry extra structure. In the semi-stable case these are
a semi-linear Frobenius and a monodromy operator, which together allow one to
recover étale cohomnology from de Rham cohomology, not just the other way round.
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The Cy; conjecture together with de Jong’s alteration theorem also implies a p-adic
analogue of Grothendieck’s local monodromy theorem.

All these conjectures are now theorems thanks to work of Fontaine-Messing,
Faltings, Hyodo, Kato, Tsuji, Niziol, Scholze and others; for the situation in 2009
complete with references and an in-depth account of Faltings’s method, see Olsson’s
report [38]. We are concerned here with a recent beautiful approach by Beilinson
[3] that closely resembles the complex setting. We shall only discuss the de Rham
comparison theorem, but Beilinson’s method also yields proofs of the Ctis and Cg;
conjectures, as shown in work by Beilinson himself [4] as well as Bhatt [8].

1.4. Beilinson’s method. The first innovative ingredient in Beilinson’s ap-
proach is a new construction of Fontaine’s period ring that immediately shows its
relation to de Rham theory. Namely, Beilinson considers

AdR,K = LQZ’)7/OK

where on the right hand side we have the Hodge-completed derived de Rham al-
gebra of Illusie [30]. The de Rham algebra LQ&?/@K itself is represented by a
complex of Og-modules equipped with a multiplicative structure and a descending
filtration, i.e. a filtered differential graded algebra. It is constructed by choosing
a free resolution of the Og-algebra O and considering the de Rham complexes
associated with each term in the resolution. Note that since Og-algebras do not
form an abelian category, the usual methods of homological algebra for construct-
ing resolutions do not apply, and one has to use simplicial methods instead. The
filtration is then induced by the Hodge filtration on the de Rham complexes.
Next, Beilinson considers the derived p-adic completion

AdR)KQ%Zp = Rhin(AdR,K ®L Z/pTZ).

It turns out that the homology of this object is concentrated in degree 0, so it
is a genuine filtered Og-algebra. Moreover, after tensoring with Q one obtains a
complete discrete valuation ring that does not depend on K any more and can be
identified with Fontaine’s ring B(J{R which is the valuation ring of Bqr. The key point
in this identification is Fontaine’s calculation of the module of differentials 9}97 10K
in [24]: it yields in particular a G g-equivariant isomorphism TP(Q}Q? /OK> ®Q =
Ck(1).

Beilinson’s second main idea is to introduce a sheafification AE{R of Aqr =
Aqgr,x for a certain Grothendieck topology that is fine enough to hope for an
analogue of the Poincaré lemma. This is Voevodsky’s h-topology [43] in which
coverings are generated by étale surjective maps and proper surjective maps. The
consideration of proper surjections is justified by an ingenious use of a theorem of
Bhatt [7]. According to Bhatt’s theorem, on a smooth variety every higher Zariski
cohomology class of a coherent sheaf becomes p-divisible after passing to a suitable
proper surjective covering; in particular, it vanishes after tensoring with Z/p"Z.
As a result, if one sheafifies the construction of the complexes Agr @ Z/p"Z for
the h-topology, they will have no higher cohomology over ‘small open sets’. This is
Beilinson’s p-adic version of the Poincaré lemma: the natural maps

Aqr ®" Z/p"7 — Al @F Z/p' T
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are filtered quasi-isomorphisms, where on the left hand side we have a constant
h-sheaf. As a result, for a smooth K-variety X we have filtered isomorphisms

H} (X3, Zp) @z, Bip = Hy' (X, Alp)®Q,

for all n > 0 that may be viewed as p-adic analogues of (1.1). We call these the
arithmetic side of the comparison isomorphism.

On the geometric side, one has to relate the right hand side of the above isomor-
phism to de Rham cohomology. This is accomplished by showing that .AElR ®Qis
none but the h-sheafification of the Hodge-completed (but non-derived) logarithmic
de Rham complex.

There are several technical issues to be settled in order to make these ideas
precise. First, the de Rham complexes under consideration only behave well for
smooth schemes U having a smooth normal crossing compactification U. For these
one has to work with logarithmic de Rham complexes and, in the arithmetic situ-
ation, log de Rham complexes of log schemes. Afterwards, h-sheafification causes
a problem as the Zariski presheaves we want to sheafify are only defined for pairs
(U,U) as above. Beilinson overcomes this difficulty by refining a general sheaf-
theoretic result of Verdier that becomes applicable in our situation thanks to de
Jong’s alteration theorems. Finally, there is a complication of homological nature
caused by the fact that we want to sheafify filtered objects in a derived category.
Beilinson handles it by using the theory of E.-algebras; here we follow the more
pedestrian approach of Tllusie [32] that uses canonical Godement resolutions.

Once the comparison map between Hg (X7, Q) ®q, Bar and Hig (X) @k Bar
has been constructed, the key computation is to verify that it is an isomorphism
in the case X = G,. Afterwards, the general case follows by formal cohomological
arguments already present in the work of Faltings and Fontaine—Messing.

1.5. Overview of the present text. In the first chapter we give a reasonably
complete introduction to Illusie’s theory [29] of the cotangent complex and the
derived de Rham algebra. The construction of these objects relies on simplicial
methods which are usually not part of the toolkit of algebraic geometers and number
theorists (such as yours truly). We have therefore summarized the results we need
in an appendix.

Next, we present Fontaine’s computation of the module of differentials for the
p-adic ring extension Oz |Ok with simplifications due to Beilinson. This then serves
for the computation of the p-completed derived de Rham algebra of the above ring
extension, for which we use techniques from Bhatt’s paper [8]. We emphasize
throughout the role played by deformation problems in these constructions, culmi-
nating in a description of the p-completed derived de Rham algebra of O%|Ok as
a solution of a certain universal deformation problem. This ties in with Fontaine’s
approach in [25] to period rings via deformation problems, with the notable differ-
ence that he constructs universal deformation rings ‘by hand’, whereas here, to use
a somewhat dangerous formulation, we derive them from derived de Rham theory.
This approach also makes it possible to prove directly that B;{R as constructed via
Beilinson’s method is a complete discrete valuation ring with the required prop-
erties, whereas he himself proceeds by comparison with Fontaine’s constructions.
A subtle point deserves to be mentioned here: as already noticed by Illusie in his
thesis [30], the p-completed derived de Rham algebras under consideration come
equipped with a divided power structure. This structure enters calculations in a
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crucial way but then gets killed when one inverts the prime p to obtain the ring
BIR. This indicates that the p-completed derived de Rham algebra is ‘really’ re-
lated to the crystalline theory, as confirmed by Bhatt’s construction of the period
ring A that we also briefly review in the text.

The following chapter presents Beilinson’s construction of the comparison map.
We have separated the geometric side of the construction from the arithmetic side,
as already outlined in the survey above. The geometric side does not use the
derived de Rham complex or logarithmic geometry but the h-sheafification process
already enters the game, in a somewhat simpler setting than in the arithmetic
situation. It should be pointed out here that the comparison with classical de
Rham cohomology uses complex Hodge theory. Presented this way, the arithmetic
side of the construction becomes a logarithmic variant of the geometric one over
a p-adic integral base, relying heavily on the Olsson—Gabber theory [37] of the
logarithmic cotangent complex. We only give a brief summary of the results of
[37], but we hope that the reader will take on faith that the exact analogues of
non-logarithmic results hold in this setting.

Of course, the arithmetic side of the comparison map has another non-trivial
input besides those just mentioned: Beilinson’s p-adic Poincaré lemma. We give its
proof in the last chapter. However, the key geometric result inspired by Bhatt [7]
is only presented in a special case (due to Bhatt himself) where the argument is
more transparent. The last chapter also contains a verification that the comparison
map is an isomorphism.

This text grew out of a study seminar organized by the authors at the Rényi
Institute during the academic year 2014/15, and was the basis of seminars at Uni-
versitdt Duisburg-Essen and Oxford University in 2016. We thank all participants
for their contribution. We are also indebted to Bhargav Bhatt, Luc Illusie and
Marc Levine for enlightening discussions and to Alexander Beilinson for his kind
comments on a preliminary version. We are grateful to the editors of the 2015 AMS
Summer Institute proceedings for their kind interest in our text and to the referee
whose suggestions have considerably improved it.

2. The cotangent complex and the derived de Rham algebra

2.1. The cotangent complex of a ring homomorphism. In this section
and the next we give a quick introduction to Illusie’s cotangent complex in the
affine case. To begin with, we summarize basic properties of differential forms for
the sake of reference.

Facts 2.1. Let A — B be a homomorphism of rings, and M a B-module. An
A-derivation of B in M is an A-linear map D : B — M satisfying the Leibniz
rule D(b1ba) = b1 D(b2) + b1 D(bs) for all by, by € B. We denote the set of A-
derivations B — M by Dera (B, M); it carries a natural B-module structure with
scalar multiplication given by (bD)(z) =b- D(x) for all b € B.

The functor M + Der4(B, M) on the category of B-modules is representable
by a B-module QE/A, the module of relative differentials. A presentation of QE/A
is given by generators db for each b € B subject to the relations d(a1by + agbs) —
a1dby — azdbe and d(b1by) — bydby — badby for a; € A and b; € B. It satisfies the
following basic properties:

(1) (Base change) For an A-algebra A’ one has Qpg 4 a0 = Qp /4 @4 A’
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(2) (Localization) Given a multiplicative subset S of B, one has
Q}.?s/A = QlB/A ®p Bg.

(3) (First exact sequence) A sequence of ring homomorphisms A - B — C
gives rise to an exact sequence of C-modules

(4) (Second exact sequence) A surjective morphism B — C of A-algebras
with kernel I gives rise to an exact sequence

11?5 CopQhy = Qby 0

of C-modules, where the map d sends a class = mod I* to 1 ® dz. (Note
that the B-module structure on I/I? induces a C-module structure.)

For all these facts, see e.g. [36], §25.

Exact sequence (3) above can be extended by 0 on the left under a smoothness
assumption on the map B — C. However, in general exactness on the left fails. One
of the main motivations for introducing the cotangent complex Lp, 4 is to remedy
this defect. To construct L/, we use the simplicial techniques from Subsection
A.1 of the Appendix.

DEFINITION 2.2. Let A be a ring. We call an augmented simplicial object
Qe — B in the category of A-algebras a simplicial resolution if it induces a simplicial
resolution on underlying A-modules in the sense of Definition A.17.

Note that the category of A-algebras is not an abelian category, and therefore
Definition A.17 does not apply directly.

CONSTRUCTION 2.3. We define the standard simplicial resolution Py = Py(B)
of the A-algebra B as follows. Set Py := A[B], the free A-algebra on generators x;
indexed by the elements of B; then define inductively

PiJrl = A[PZ]

for ¢ > 0.

We turn the sequence of the P; into a simplicial A-algebra as follows. Note first
that given an A-algebra B, its identity map induces an A-algebra homomorphism
kp : A[B] — B, and also a map of sets 75 : B — A[B] in the other direction.
Whence for 0 < j < i face maps

& : P=A[AL..[B]]...] = Pi_y = A[A[...[B]]...]
— —

i i—1
induced by applying £ 4(p,], and degeneracy maps
ol Py =A[Al..[B]]...] » Pi=A[A[...[B]]...]
— —
i—1 i

induced by applying 74p;). Direct computation shows that this defines a simplicial
resolution of the A-algebra B; this fact may also be deduced from the general
categorical result of ([47], Proposition 8.6.8).

For later use, note that in a similar fashion we obtain a standard simplicial
resolution for an A-module M, by iterating the functor associating with M the free
A-module with basis the underlying set of M. Finally, the construction may be
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carried out for simplicial algebras Be (or modules M,) over a simplicial ring A,: it
yields a bisimplicial object whose associated double complex gives a free resolution
in each column.

The standard resolution has the following important property.

LEMMA 2.4. Assume B = A[X] is a free algebra on the generating set X. Then
the standard simplicial resolution Py(A[X]) — A[X]e defined above is a homotopy
equivalence.

Here A[X], denotes the constant simplicial object associated with A[X], as in
Definition A.3 of the Appendix.

PROOF. Define fo : A[X]e — Puo(A[X]) and ge : Po(A[X]) — A[X]e by iterat-
ing the operations 75 and kp:

fn:: JTO---OT,
——

n+1
gn = KO---0K.
—_——

n+1

These indeed define morphisms of simplicial objects, and by construction we have
ge © fo = idy(x],. We define a simplicial homotopy between fo o go and idp, (4[x))
as follows. For a;: [n] — [1] (i = —1,0,...,n) with a; *(0) = {0,...,i} we put

TO:--0T KO-+ 0K

n—1i n—i

H,,: P, P; P,.

Taking the sum of these maps over all «; defines a simplicial homotopy
H: P,(A[X]) x A[l]e = Pe(A[X])
between f, o go and idp, (4[x))- O
Now we come to the fundamental definition of Illusie [29].

DEFINITION 2.5. Consider an A-algebra B, and take the standard resolution
Py — B. The cotangent complex Lp,4 of the A-algebra B is defined as the complex
of B-modules

LB/A = C(B. ®P_ Q}J./A)

Like in the previous lemma, here B, stands for the constant simplicial ring
associated with B (see Definition A.3). It is a simplicial P,-algebra via the aug-
mentation map P, — B,e (see Definition A.6). The simplicial A-module Q}:‘/A is
obtained by applying the functor B — Q}; /4 to the terms of the resolution P,, and
C denotes the associated chain complex.

The cotangent complex is related to the module of differentials as follows.

PROPOSITION 2.6. We have a natural isomorphism of B-modules
Ho(Lp/a) = Qp/a-

PROOF. Since ¢, : P, — B, is an augmentation for the simplicial object P,,
we have egdy = €gdi. Therefore the composed map in the associated chain complex

B®p, Qp, 4 = B®p, Qp,ja = Up/a
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is the zero map. Thus we have a morphism of complexes Lp,4 — QE/A, with QlB/A
considered as a complex concentrated in degree 0. The induced map Ho(Lp/a) —
Q}; /4 1s surjective because so is the ring homomorphism Py — B. By Fact 2.1 (4)
we have an exact sequence

I/I? = B®@p, Up ja = Uy as

where [ is the kernel of the augmentation map €y: Py — B. But since P, — B is
a resolution, here [ is also the image of the map dy — dy: P, — Py, and therefore
the image of I/I? in B ®p, Q}DO/A is covered by B ®p, Q}Jl/A, as desired. O

We now show that the cotangent complex may be calculated by other free
resolutions as well.

THEOREM 2.7. Let Qo — B be a simplicial resolution of the A-algebra B whose
terms are free A-algebras. We have a quasi-isomorphism

Lp/a = C(Be @q, 24, /)
of complezes of B-modules.

The proof will be in several steps. We begin with a general lemma that will
serve in other contexts as well.

LEMMA 2.8. Let A, be a simplicial ring, and let E4 — Fy be a morphism of
Aqo-modules that induces a quasi-isomorphism on associated chain complexes. Ten-
soring by an Ae-module Lo that is termwise flat over Ao yields a map Eq ® 4, Lo —
Fe ®a4, Lo that also induces a quasi-isomorphism.

PROOF. Assume first that A, is a constant simplicial ring defined by a ring
A. In this case the lemma is a consequence of the Kiinneth formula applied to
the tensor products of the associated complexes of A-modules. In the general case
consider the standard simplicial resolution F'(L,,), — L, of each A,-module L,.
These assemble to a bisimplicial object F(L,), equipped with a map F(L,s), — L.
Moreover, we have a commutative square of bisimplicial objects

Eo ®A. F(Lo)o —— Fo ®A. F(Lo)o

l |

K, XA, Ly —F, XA, L,

viewing the simplicial objects in the lower row as ‘constant bisimplicial objects’. For
fixed n > 0 the vertical maps E,, ®4, F(Ly,)e = E,®a, L, and F,, ® 4, F(L,)e —
F, ®a, L, are quasi-isomorphisms because F(L,)s — Ly, is a flat resolution of the
flat A,-module L,,. It follows that both vertical arrows induce quasi-isomorphisms
on total chain complexes, and therefore it suffices to verify the same for the upper
horizontal arrow. By construction of the standard resolution, for fixed m,n > 0
the A,,-module F (L), is isomorphic to the free A,-module Ang”””) with basis a
set X, .m. Denoting by Z(Xnm) the similarly constructed free Z-module, we thus
have isomorphisms of simplicial modules Ey ®4, F(Le¢)m = Eo ®z, ZX+m) for
each m, where Z, is the constant simplicial ring defined by Z. The same holds
for F, in place of F,, and therefore by the case of a constant base ring the maps
Ee®4, F(Le)m — Foe®4, F(Le)m induce quasi-isomorphisms for all m. This gives
a quasi-isomorphism on total complexes, as required. [
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COROLLARY 2.9. If Q4 — B, is a simplicial resolution of the A-algebra B with
free terms, we have a quasi-isomorphism of complezes

CQE;./A >~ C(Be ®q, Qé./A).
PROOF. Apply the lemma with Ae = E¢ = Qo, Fo = B, and Le = Qé?./A. O

Next, assume given a simplicial A-algebra B,. The standard resolutions
Py(B,) — B, for each n assemble to a bisimplicial A-algebra P,(B,). Applying
the functor Q,l/ 4 vields a bisimplicial A-module Q}g.( B.)/As Whence an associated
double complex CQ}D.( B.)/4 and finally a total complex Tot(CQ};.( B.)/4): taken
with the direct sum convention.

LEMMA 2.10. Let Cy — B be a simplicial resolution of A-algebras. The induced
map

Tot(CQp, (c,)/4) = COp, ()
is a quasi-isomorphism.

ProOOF. By Propositions A.20 and A.21 the underlying morphism Cy — B,
of simplicial sets induces a homotopy equivalence. Applying the functor X —
P,_1(A[X]) for fixed n > 0 (with the convention P_; = id) we obtain a homotopy
equivalence P, (Cs) — P,,(B,) of simplicial A-algebras, whence a homotopy equiv-
alence Qp (14 = Qp, (B, a Of simplicial A-modules. As the latter is a constant
simplicial module, it follows that Q}DR(C.) /A~ Q};n( B)/a is a simplicial resolution
for each n. Thus the columns of the double complex CQ};.(C.) /a give free resolu-
tions of the terms of the complex CQ}D’( B)/a, and therefore the total complex is

indeed quasi-isomorphic to CQ},.( B)/A- O

Proof of Theorem 2.7. Applying the previous lemma to the simplicial resolution
Qe — B yields a quasi-isomorphism

Tot(CQ};.(Q.)/A) ~ CQ}D.(B)/A ~Lp/a

using Corollary 2.9.

On the other hand, for each fixed n the simplicial map P (Q,) — (Qn), is a
homotopy equivalence by Lemma 2.4, and therefore so is Q}D.(Qn)/A — (QlQn/A).,
so that CQ}’.(QTL)/A is an acyclic resolution of Qén/A. It follows that we have a
quasi-isomorphism

Tot(CQp, (qu)/4) = CQp, /4

which concludes the proof, again taking Corollary 2.9 into account. a

REMARK 2.11. In the model category of simplicial modules defined by Quillen
[39] the cofibrant replacements of an object correspond to projective resolutions of
modules. In the model category structure on simplicial algebras (see [39] or [40])
the simplicial resolutions considered in Theorem 2.7 will not necessarily be cofi-
brant replacements. However, one may obtain cofibrant replacements by imposing
an extra simplicial coherence condition. The resulting simplicial resolutions will
be homotopy equivalent as simplicial algebras, whereas the ones in 2.7 are only
homotopy equivalent as simplicial sets. See also [27] on these issues.
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If A’ is another A-algebra, we have a natural base change morphism
A' @4 Lpja — Larg, 5/,
noting that the map B — A’ ®4 B naturally extends to an A.-algebra map of
corresponding standard simplicial resolutions.
Before stating the next lemma, recall that two A-algebras A’ and B are called

Tor-independent if Tor;' (A’, B) = 0 for i > 0. If A’ is flat over A, then A’ and any
B are Tor-independent.

LEMMA 2.12. If A’ and B are Tor-independent A-algebras, the base change
map induces a quasi-isomorphism

A/ ®ﬁ LB/A :> LA’®AB/A’
of complexes of A’ @ B-modules.

PrROOF. Let P, — B be a standard simplicial resolution of the A-algebra B.
Since A’ and B are Tor-independent, the associated chain complex of A’ ® 4 P, is
acyclic outside degree 0 where its homology is A’ ® 4 B. In particular, A’ ®4 P,
is a free simplicial resolution of the A’-algebra A’ ® 4 B and hence may be used to
compute La/g ,p/ar by Theorem 2.7. Finally, note that

(A" ®4B)®agar, (Vg p,a) A @4 (B&p, Up, /4)

computes A’ @4 L /A using again the Tor-independence of A’ and B, noting that
Lp/a is a complex of free B-modules. O

We now come to one of the most important properties of the cotangent complex.

THEOREM 2.13 (Transitivity triangle). A sequence A — B — C' of ring maps
induces an exact triangle in the derived category of complexes of C-modules

C@é LB/A — LC/A — LC/B — C@é LB/A[l] .

PRrROOF. Let P, — B, be the standard resolution of the A-algebra B, and
consider the constant simplicial module Cy as a P,-module via the composite ho-
momorphism Py, — B, — C,. The standard simplicial resolutions of each C,, as a
P,-algebra assemble to a bisimplicial A-algebra QQee. The diagonal Q,A of Qee 18
a free P,-algebra in each degree, therefore the first exact sequence of differentials
induces for each n > 0 a short exact sequence

0— Q2 ®p, Q%H/A%Qéﬁ/A%Qéﬁ/Pn -0

of Qf—modules which splits since Q}QA /p, I8 @ free module. Tensoring with C then
gives rise to a short exact sequence

(2.1) 0= Co @p, Qp, /4 = Co @qa Qpa,a — Co ©ga Npa/p, — 0

of simplicial C-modules. We now show that after taking associated chain complexes
this sequence represents the exact triangle of the theorem in the derived category.

The complex C, @p, Q}D. /4 Tepresents C®LLg /4 as the simplicial B-module
Be ®p, Q}D. /A has free terms and the map P, — C, factors through B, by construc-

tion. Next, note that each term of Q,A is free as an A-algebra, the P, being free over
A and the Qﬁ free over P,,. On the other hand, since the total complex CQqe is
acyclic by construction, the Eilenberg-Zilber Theorem (Theorem A.16) implies that
Q2 is a free simplicial resolution of the A-algebra C. Theorem 2.7 then yields that
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the associated chain complex of Ce ®ga Q%Q.A /4 Tepresents the cotangent complex
LC/A~

Finally, put Q, := B, ®p, Q2. Since each Qﬁ is free over P,, Lemma 2.8
applied to the resolution P, — B implies that the map Q,A — @, induces a
quasi-isomorphism on normalized complexes. Since Q,A is a free simplicial res-
olution of C' as an A-algebra, so is @), as a B-algebra. The base change prop-
erty of differentials implies that we have an isomorphism of simplicial C-modules
Co ®qa Qé?.A/P- ~ (O, ®g. Q%./B, so Theorem 2.7 yields that the associated chain

complex of C' ®ga QéA /p, Tepresents the cotangent complex Le . O

Theorem 2.13 and Lemma 2.6 now imply:

COROLLARY 2.14. In the situation of the theorem there is a long exact homology
sequence
cee = HI(LB/A ®% C) — HI(LC/A) — Hl(LC/B) —
= Qp/a®C = Qe = Qpp — 0.

We close this subsection by computing the cotangent complex in important
special cases.

PROPOSITION 2.15. If B = A[X] is a free algebra on a set X of generators,
then the cotangent complex Lp,4 is acyclic in monzero degrees.

Proor. By Lemma 2.4 we have a homotopy equivalence between the constant
simplicial algebra A[X], and its standard resolution P,. Applying the functor
Q,l/ 4 gives a homotopy equivalence between Q}go /4 and Qz[ X]./4» Whence a quasi-
isomorphism on associated chain complexes. But CQ}L‘[X}. /4 ls a complex of free
modules that is acyclic in nonzero degrees, so we conclude by Corollary 2.9. O

The following case will be crucial for the calculations in the next section.

PROPOSITION 2.16. Assume that A — B is a surjective ring homomorphism
with kernel I = (f) generated by a nonzerodivisor f € A. Then Lp;a is quasi-
isomorphic to the complex 1/1%[1].

PROOF. We first treat the special case A = Z[z], B =7, f = x. Consider the
exact triangle

Laj)/z ®f1e) Z — Lzyz — Lzyzia) = Laj)/z 71 Z[1]

associated by Theorem 2.13 to the sequence of ring maps Z — Z[x] — Z. Lemma
2.6 and Proposition 2.15 imply that Lz,z is acyclic and Lgz,),z is quasi-isomorphic
to Q%[z]/z placed in degree 0. As the latter is a free module of rank 1, tensoring
with Z over Z[x] yields that Ly,/z ®z[4] Z is quasi-isomorphic to Z placed in degree
0. Hence the exact triangle implies that Lz,z[,] is acyclic outside degree 1. The
isomorphism Hi(Lz/z(,) = I/1? follows from Fact 2.1 (4).

To treat the general case, consider the map Z[x] — A sending z to f. The Z[z]-
modules A and Z are Tor-independent, because tensoring the short exact sequence

0—Zz] 5 Zx) -Z—0
by A over Z[z] yields the sequence

O%AQAHB%O
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which is exact by the assumption that f is nonzerodivisor. Therefore we may apply
Lemma 2.12 to obtain a quasi-isomorphism A ®£m Lz,/71a] = Lp/a, reducing the
proposition to the special case treated above. O

REMARK 2.17. The above proposition can be easily extended to the case when
I is not necessarily principal but generated by a regular sequence.

2.2. First-order thickenings and the cotangent complex. We continue
the study of the cotangent complex by discussing its relation to first-order thicken-
ings of A-algebras. Given an A-algebra B, a first-order thickening of B is given by
an extension

0=-I—-Y—=B—=0

of A-algebras, where I is an ideal satisfying I? = 0. Note that the condition I? = 0
implies that the natural Y-module structure on I induces a B-module structure.
Two first-order thickenings Y7, Y5 of B whose kernels I, Is are isomorphic to [
as B-modules are called equivalent if there is a morphism Y; — Y5 inducing the
identity map on B and a B-module isomorphism Iy & I,. A Baer sum construction
defines an abelian group structure on equivalence classes, denoted by Exala (B, I).

ProproOSITION 2.18. For a B-module I we have a canonical isomorphism
Exalu(B,I) = Extp(Lp/a, I).

PROOF. We construct a set-theoretic bijection and leave the verification of
additivity to the reader.

Consider the standard resolution P, — B of the A-algebra B. Given a first-
order thickening Y of B with ideal I, we may lift the surjection ¢y : Py — B to an
A-algebra map 6: Py — Y by freeness of Py. By composing with the differential
dy = 0y — 01 : P1 — Py of the chain complex CP,, we obtain a map D = # od;
from P; to I C Y which is readily seen to be an A-derivation. It thus induces a
P;-linear map Q}DI/A — I, whence also a B-linear map D: B ®p, Q}DI/A —1CY
by base extension, noting that the Pj-module structure on Y (and hence on I) is
given by the augmentation €¢; : P, — B. Next, note that the differential dy of CP,
induces a map B ®p, Q}gz a4 — B®p Q}gl /a- 1ts composite with D factors through
the map B ®p, Q};z/A — B ®p, Q}DO/A induced by d; o d2, and hence is the zero
map. Since

Extp(Lp/a, I) = Hi(Hom(B @p, Qp, /4, 1)),

the map D defines a class in EthB(LB/A,I). This class does not depend on the
choice of the lifting #. Indeed, if §': Py — Y, the relation I? = 0 implies that
the difference § — §': Py — I is an A-derivation and hence gives rise to a map
B ®p, Q}:,O sa — I as above. Composition with the differential d; then yields
a map in Homp(B ®p, Q}DI/A,I) which is D — D’ by construction, where D e
Homp (B ®p, Q}DI/A, I) is the map coming from #’. Thus D and D' define the same
class in EXtIB(LB/A, I).

We construct an inverse map Extjlg(LB/A, I) — Exals(B,I) by reversing the
above procedure. A class « in Ext}i,(LB /A, I) is represented by a B-linear map
D: B®p, Q}Dl /4 — I whose restriction to the second factor gives rise to an A-
derivation D: Py — I such that D ody = 0. Since Im(d2) = Ker(d;), we have
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Ker(d;) C Ker(D). Note that this implies that the augmentation map €¢; : P — B
defining the P;-module structure on I has a set-theoretic section with values in
Ker(D). Indeed, for pg € Py we have equalities dy(c0(po)) = 91 (00(po)) = po where
0o: Py — Pj is the degeneracy map and 0; : P, — P, the face maps, and therefore
sending = € I to oo(po) with some py € ¢ 1(90) defines such a section. It follows
that D(P;) is a B-submodule of I, because for p; € P; and the above pg and b we
have bD(p1) = €1(00(po))D(p1) = D(00(po)p1) by the Leibniz rule.

This being said, consider the A-module direct sum Py & I equipped with the
multiplication defined by (po,)(py,i’) = (popy,poi’ + pyi). It is an A-algebra in
which (0, ) is an ideal of square zero. Moreover, the A-module Y defined as the
cokernel of the A-module map (dy, D) : Py — Py®I inherits an A-algebra structure
from Py & I. Indeed, Im(dy, D) is an ideal in Py & I as all pj € Py, p1 € P, and
x € I satisfy

(di(p1), D(p1))(po, x) = (di(p1)phs di(pr)x + poD(p1)) =
= (d1(p1)p0, €0(py)D(p1)) € Im(dy, D)

since dy(p1) € Ker(ep) which is an ideal in Py, and D(p;) C I is a B-submodule. Tt
now follows that the surjection (ep,0) : Poy@®I — B induces an A-algebra extension

0—-I—-Y—B—0,

defining an object of Exals(B,I). We recover D : P; — I as the derivation
associated with the thickening Y by the procedure of the previous paragraph, which
shows that the two constructions are inverse to each other. d

Given an A-algebra B, first-order thickenings of B naturally form a category
Exal 4, (B) whose morphisms are A-algebra homomorphisms compatible with the
surjections onto B.

ProrosiTION 2.19. If Q}B/A = 0, the category Exal ,(B) has an initial object.

PROOF. In view of Lemma 2.6, the assumption Q} /4 = 0 implies that we may
identify EXt};(LB/A, I') with Homp(H1(Lp/a),I) for all B-modules /. In particular,
the identity map of Hi(Lp,4) yields a class in Ext}B(LB/A,Hl (Lpsa)), which in
turn corresponds to a first-order thickening Y,;, of B by Proposition 2.18, with
kernel H1(Lp/4). That Yyns, is an initial object follows by a Yoneda type argument
from the functoriality of the isomorphism Exaly(B,I) = Homp(H1(Lpg,4),I) in
I O

We shall call Y5, the universal first-order thickening of B.

EXAMPLE 2.20. In the case when A — B is a surjective morphism with kernel
J, the condition Q}B /A= 0 holds. In this case it is easy to describe Y,,,;, by hand:
it is given by the extension

0—J/J* = AJJ* = B —0.
In particular, we have an isomorphism Exala (B, I) = Hompg(J/J?,I).

Starting from Proposition 2.18, Chapter IIT of [29] develops a deformation
theory of algebras with the aid of the cotangent complex. We shall need two
statements from this theory which we now explain.
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Assume given a ring A and an ideal I C A of square zero. Given moreover an
A/I-algebra B and a B-module J together with an A-module map A: I — J, one
may ask whether there exists an A-algebra extension B making the diagram

(2.2) 0 J B B 0
1]
0 1 A AJT 0
commute.

ProrosiTION 2.21. If LE/(A/I) = 0, there is an A-algebra extension B of B
by J making diagram (2.2) commute, and such a B is unique up to isomorphism.

PROOF. The extension class of A defines a class in Exth/I(L(A/I)/A,I) by
Proposition 2.18, mapping to a class in Exth/I(L(A/I)/A, J) = EXt%(L(A/I)/A ®ﬁ/1
B, J) via the map induced by A on Ext-groups. The assumption LE/(A/I) =0
yields a quasi-isomorphism L(4,5)/4 ®g/1 B = LE/A by applying Theorem 2.13 to
the sequence of maps A — A/I — B. We thus obtain a class in Ext%(LE/A, J),

giving rise to an A-algebra extension B of B by .J via Proposition 2.18. Going
through the constructions in the proof of the said proposition one checks that up
to isomorphism B is the unique extension making diagram (2.2) commute. O

Now assume an A-algebra extension B as above exists, and moreover J = I B
(and hence B = B/IB). We have a natural surjection I ® 4,7 (B/IB) — IB which
is an isomorphism if B is flat over A. Thus if B is a flat A-algebra and C an
arbitrary A-algebra, every A/I-algebra map ¢ : B/IB — C/IC gives rise to an
A/I-algebra map IB — IC by tensoring with I. The map ¢ thus gives rise to a
diagram with exact rows

0 IB B B/IB —— 0
(2.3) ¢®idli laﬁ
0 Ic C c/IC —— 0

PROPOSITION 2.22. In the above situalion assume moreover L(p,rp)/a/r) = 0.

Then there exists a unique map q~5: B — C making the diagram commute.

PROOF. First a word on uniqueness. The difference of two liftings of ¢ is
an A/I-derivation B/IB — IC. But the assumption L(g,rp)/a/r) = 0 implies
Q%B/IB)/(A/I) = 0 in view of Proposition 2.6, so this derivation must be trivial.

For existence, observe first that the diagram (2.3) gives rise to two natural
A-algebra extensions of B/IB by IC: an extension B obtained as a pushout of the
upper row by the map ¢ ®id;, and an extension C obtained as the pullback of the
lower row by the map ¢. The universal properties of pushout and pullback imply
that a map a : B — C as in the statement exists if and only if the extensions B
and C are isomorphic.

By Proposition 2.18 both extensions have a class in ExtE/IB(L(B/IB)/A, 10).
Theorem 2.13 applied to the sequence A — A/I — B/IB gives an exact triangle

(B/IB) @31 Lianya = Ligisya = Ligyisyam = (B/IB) ®% 1 Lianalll.



THE p-ADIC HODGE DECOMPOSITION ACCORDING TO BEILINSON 19

Applying the functor Ext /18(+ 1C) gives an exact sequence

Exty 1 5(Ls/18)/a/0), IC) = Bxtp 1 5(Lia/18)/4, 1C) 2 Extly /1 (Lasn a, IC)
where we may identify the last group with Hom,,;(I,IC) by Proposition 2.18
and the Example 2.20. Furthermore, going through the constructions shows
that the map p sends both the class of B and that of C to the natural map
I — IC induced by the structure map A — C. But p is injective since we have
Ext}B/IB(L(B/IB)/(A/I), IC) = 0 by assumption. This shows B 2 C as required. [J

2.3. The derived de Rham algebra. We now come to the definition of the
derived de Rham algebra LQ 4.

Let B be an A-algebra, and P, — B the standard simplicial resolution of B.
The de Rham complex associated with the simplicial A-algebra P, is given by the
diagram

"'%Q%’Z/A EEQ%&/A :;Q?—"O/A

"'%Q}%/A EEQ}F&/A :;Q}DO/A

i —=Ph=——=P ——=Fh,.
We may view it as a simplicial object in the category of differential graded A-
algebras. By passing to the associated chain complex in the horizontal direction,
we obtain a double complex Q% e

DEFINITION 2.23. The total complex (with the direct sum convention) of the
double complex Q}./A is the derived de Rham complex of B. We denote it by

We sometimes view the derived de Rham algebra as an object in the bounded
above derived category of A-modules, and sometimes as the complex itself. In the
latter setting, we define the Hodge filtration FiLQb/A on LQ% 4 as the filtration
induced by ‘

(0 = 954
on the double complex Q% e

The completion of L% /4 With respect to the Hodge filtration will play a crucial

role in what follows. There is only one way to define it:

DEFINITION 2.24. The Hodge-completed qf\em’ved de Rham complex of B is de-
fined as the projective system of complexes LQ% 4 1= (LQJ'B/A/Fi).

To justify the terminology ‘de Rham algebra’, we equip L%, /A with the struc-
ture of a commutative differential graded algebra over A. We first define a product
structure P; ® P; — P;;; on the complex C'P, as the multiplication map on Fy for
1 =7 = 0 and otherwise as the shuffle map
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TRY Z (s V)(0vTuy oo 00, ) (O, Tpiy - - O, Y)
(1)
where 0, and 0, are the degeneracy maps in P,, the pair (x,v) runs through the
(i, j)-shuffles of the ordered set (1,2, ...,i+j) and e(, V) is the sign of the shuffle as
a permutation. (Recall that an (i, j)-shuffle is a permutation 7: (1,2,...,i+j) —
(1,2,...,i+j ) with7(1) < 7(2) < --- < 7(é) and 7(i+1) < 7(i+2) < --- < 7(i+J);
this also makes sense if one of i or j is 0.)

The above product structure on C'P, induces a product structure on the double
complex Qf, 4 and hence on the total complex LQ%, 43 we may therefore call it the
derived de Rham algebra of B. In fact, with this product structure LO%, /4 becomes
a differential graded algebra over A. Moreover, one checks that the multiplicative
structure on Q% /A I8 compatible with the Hodge filtration, and hence we may
consider Lﬁjg /4 as a projective system of differential graded algebras.

The i-th graded piece with respect to the Hodge filtration on LO%, /4 1s com-
puted as follows.

PROPOSITION 2.25. There is a quasi-isomorphism of complezes of A-modules
(2.4) grpQp, )4 = LA Lpjal—i]
where Lp, 4 is the cotangent complex of B.

Here the object L A? L4 is represented by CA! (Be ®p, Q}g./A), in accordance
with Remarks A.24 and A.11.

Proof. First, note that
grpLQp, 4 =, jal=i] = (- = Qp g = - = Qp = Vg ya)

where on the right-hand side the term Qé;j /A has degree j — 7 in the complex.

Consider now the constant simplicial ring B,, and view the augmentation map
P, — B, as a morphism of simplicial P,-modules inducing a quasi-isomorphism on
associated chain complexes. As Q}. /4 is a simplicial P,-module with free terms,
Lemma 2.8 gives rise to the first quasi-isomorphism in the chain

Po@p, Qp, /a4 = Be @p, Vp, 4 = Be @p, N'Qp, 14 = N (Be @p, Up, /4)-
The quasi-isomorphism of the proposition follows. a
We next discuss the analogue of Theorem 2.7.

THEOREM 2.26. Let Qo — B be a simplicial resolution of the A-algebra B
whose terms are free A-algebras. We have a quasi-isomorphism of complexres

LO% 4 = Tot(Q2g), /4)
compatible with the product structure and the Hodge filtration.

Here the product structure and the Hodge filtration on the right hand side are
defined in the same way as on QZ?./A.
The presentation below is influenced by unpublished notes of Illusie.



THE p-ADIC HODGE DECOMPOSITION ACCORDING TO BEILINSON 21

PROOF. The proof proceeds along the lines of that of Theorem 2.7 but we have
to be more careful concerning convergence issues.

We first fix n > 0 and start with the homotopy equivalence P, (Qs) — Py, (B.)
obtained during the proof of Lemma 2.10. By functoriality it induces a homotopy
equivalence 0}, .y — Q% (p,) of simplicial objects in the category of complexes
o.f A-modules, whence a quasi-isomorphism Tot(Qp, (g, ) = Tot(Qp, (p,)) of asso-
ciated complexes.

Consider now the double complex ng = Tot(Q;pp(Q.))q with horizontal differ-
entials those of the complex associated with the simplicial object [p] — Tot(Q2p (q,))
in the category of complexes of A-modules and vertical differentials given by those
of Tot(Q} @,))- We have a total complex Tot(ng) taken with the direct sum
convention and a morphism of complexes Tot(ng) — Tot(C’ﬁ ) With Tot(C;fq)
defined similarly starting from C’f g = Tot(Qp B-))q' We claim that this map is a
quasi-isomorphism.

Define subcomplexes Cgpo C Tot(ng) (resp. Cgpo C Tot(C'fq)) by replacing
the columns with p > pg in C’gq (resp. C’fq) by 0 and taking the associated
total complexes. We have morphisms of complexes C’gpo — C’gpo that form a
direct system as pg goes to infinity. In the direct limit we recover the morphism
of complexes Tot(ng) — Tot(C;f ) considered above. It thus suffices to prove
that each morphism c? @

. . ) <po <po
induction using the exact sequences

is a quasi-isomorphism. This follows by finite

0=C2, , —»C2 - Tot(Q}, (q.) = 0,
0-C2, = CE, — Tot(Q%, (5,)) = 0

together with the quasi-isomorphisms Tot( ;Dpo(Q-)) o~ Tot(Q}po( B.)) established
above. (Note that the above short exact sequences are actually split exact, as their
terms are free A-modules.)

We thus obtain quasi-isomorphisms Tot(ng) o~ Tot(Cqu) ~ LQ% 4 as Be is a
constant simplicial algebra. On the other hand, starting from the homotopy equiva-
lences Po(Qr) — (Qn), given by Lemma 2.4 for each fixed n and performing a simi-
lar construction as above, we obtain a quasi-isomorphism Tot(C’g ) == Tot( 0. / 1)
Finally, compatibility with products and Hodge filtrations follows as the construc-
tions involved in the above proof satisfy them. O

REMARK 2.27. If one only wishes to prove the independence of the Hodge-
completed derived de Rham algebra Lﬁfg /A of the resolution, the above argu-
ment simplifies as we do not have to worry about unbounded filtrations. Alter-
natively, once the Hodge-truncated versions of the maps Tot(C’gq) — Tot(C;fq)
and Tot(C’gq) — Tot(7), /4) used in the above proof have been constructed, we
may reduce to Theorem 2.7 by means of Proposition 2.25.

EXAMPLE 2.28. An important example of a simplicial resolution with free terms
other than the standard resolution is given by the bar resolution Qe in the case
A = R[z], B = R where the ring R is viewed as an R[z]-algebra R via the map
x +— 0. Here

Qn = Rlz][z1,. .., z,)
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and the face (resp. degeneracy) maps Jp,...,0n: @n — Qn—1 (resp.
00y -+30n: Qn = Qpny1) are defined by

zj ifn=#£j<i

(91(363) = Tj—1 ifj>i
0 ifj=i=n,

) i<

oi(w;) = {xj L

Tjt+1 lf] >

where by convention we put xg := x. That this is indeed a simplicial resolution is
verified by direct computation.

Given the theorem, we can establish the analogue of Lemma 2.12 for derived
de Rham algebras.

COROLLARY 2.29. Given Tor-independent A algebras A’ and B, we have a
canonical quasi-isomorphism

A/ ®ﬁ LQE?/A ~ LQA’Q@AB/A/
of associated derived de Rham algebras.

PROOF. This is similar to the proof of Lemma 2.12, the main point being that
for the standard resolution P, — B the base change A'®@4P, —+ A’ ®4 B gives a
free resolution of A’ ® 4 B by Tor-independence, and hence may be used to compute
LQ% g, p/as Dy the theorem. O

We now use the derived de Rham algebra to give an explicit construction of
the universal first-order thickening of the previous section. Note first that by the
compatibility of the multiplicative structure of LQp, /4 With the filtration the group

HO(LQ},./A/FQ) is an A-algebra.

THEOREM 2.30. Assume Q}B/A =0. Then HO(LQ},./A/FQ) is a universal first
order thickening of the A-algebra B.

Proo¥r. The truncated derived de Rham complex LQp, /4 /F % is the total com-
plex

(2.5) e QA B PL— Qp g ® Po— Qp /4
of the double complex
(2.6) e 0 0 0
Q}DQ/A Q}:,l/A > Q}DO/A
Py Py FPo

If we use homological indexing for the complex (2.5), then Q}DO /4 sits in degree
—1 and Q}DI/A @ Py in degree 0. In view of Lemma 2.6 the assumption Q}B/A =0
implies

HO(Q}J./A) = HO(Q}D./A ®p, Ps) = HO(Q}J./A ®p, Bs) =0
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and hence the complex (2.5) has trivial H_;. On the other hand, applying Propo-
sition 2.25 for ¢ = 0, 1 yields an exact sequence

(2.7) 0— HiLpja = Ho(LQ%y,4/F?) = B = 0.

By definition of the multiplication on LQY 4 the square of Q};l /4 lies in Q?% /4, and

therefore H1Lp,/4 has square zero in HO(LQFB/A/FQ), which shows that we have
obtained a first-order thickening of the A-algebra B.
Now let

0—=1—=-Y—=B—=0
be a first-order thickening of B. We view Y as a differential graded algebra con-
centrated in degree zero. Lift the augmentation ¢y : Py — B to a morphism
0: Py — Y, and construct the derivation D = 0 o d; as in the proof of Proposition
2.18. This gives rise to a morphism of differential graded A-algebras given by the
diagram

(2.8) degree 1 0 -1

0 Y 0

| ]

@P1*>QI @POHKF

. O} P1/A Po/A

P2/A

which commutes in view of the identities ¢y o dy = D o dy = 0 seen in the proof
of Proposition 2.18. By passing to 0-th homology we obtain an A-algebra homo-
morphism @y : HO(LQ]'B/A/F2) — Y lifting the map HO(LQ%/A/FQ) — Y in (2.7).
In the case Y = Y,n0, where Y., is as in Proposition 2.19, the restriction of
©OY,ni, to the term HiLp/4 in (2.7) is the identity map by construction, and we
are done. O

3. Differentials and the de Rham algebra for p-adic rings of integers

3.1. Modules of differentials for p-adic rings of integers. Let K be
a finite extension of Q, with fixed algebraic closure K. Denote by O (resp.
O5) their respective rings of integers and by v the unique extension of the p-adic
valuation. The goal of this section is to present a fundamental calculation, due to
Fontaine [24], of the module of differentials Q%Qf JOx

Denote, as usual, by p,~ the torsion Zy,-module of all p-primary roots of unity
in K. The logarithmic derivative defines a map of Z,-modules

dlog : pipee — 9%97/01@ Cpr > dCpr [ Cpr
with Oz-linear extension
dlog : O ®z,, ppe — Qé?/ok.

Now taking the inverse limit Z,(1) of the modules i, for all r, we have Q,/Z,(1) =
(Qp/Zyp) @ Zp(1) = ppe, and therefore after tensoring by the Z,-module O we
obtain an isomorphism

(3.1) (K/O) ®z, Ly(1) = O @z, jip
recalling that K = Ox[p~'].
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THEOREM 3.1 (Fontaine). Denote by Ko the maximal unramified subextension
of K|Q, and by Dk |k, the associated different. The map

dlog : (K/O) @z, Zp(1) = Qo._j0,
induces an isomorphism
(K/Ix) @z, Zo(1) = Qo0
where
I :={a€K:v(a) > —v(Dg/r,) —1/(p— 1)}
Here are some easy corollaries of the theorem.
COROLLARY 3.2. The dlog map induces an isomorphism
Cx(1) = Vo(Qo,j0,)-

Here, as usual, for a Z,-module A the Tate module T,,(A) is defined as the

inverse limit of the p"-torsion submodules ,r A, and V,(A) := T,(A) ®z, Q.

Proor. We have isomorphisms of Z,-modules
o (K/Ig) =p "Ik /Ix = I /p"Ix = O /p Ox.

Passing to the inverse limit, we obtain the p-adic completion of O which is the
ring of integers of Ck. It remains to invert p and apply the theorem. ([

COROLLARY 3.3. The module of differentials Q%QF/OK is p-primary torsion and

p-divisible. Moreover, the derivation d : O — Q}Q?/OK s surjective.

PROOF. The first statement is immediate from the theorem together with for-
mula (3.1). As for the second, pick an element adb € Q}Q?/OK. As Q%OY/OK
is p-primary torsion, we find r > 0 such that p"da = p"db = 0. Since K is alge-
braically closed, there exists an element & € O satisfying 2+ p"x = b and hence
also p"(p"z?" ~' 4+ 1)dz = db. On the other hand, we have (p"2?" ~* + 1)db = db
as p"db = 0. Note that (p"acpm_l + 1) is invertible in O, being congruent to 1
modulo p”. Therefore the above equalities yield db = (p’“asprf1 +1)7'db = p"dz,
whence

adb =p"adx = d(p"ax) — zd(p"a) = d(p"ax) — zp"da = d(p"ax)
showing adb € Im(d). O

Before starting the proof of the theorem we first recall some basic facts con-
cerning extensions of local fields. All of them can be found in [41], Chapter III,
§86,7.

Facts 3.4. Let L be a finite extension of K, with ring of integers Op. There
exists b € Op, such that O = Oklb]. As an Og-module Oy, is freely generated by
finitely many powers of b. The module of differentials QéL JOx 18 generated by a
single element db over Of,. Its annihilator is the different Dy, x of the extension
L|K; it is the principal ideal generated by f’(b), where f € O[] is the minimal
polynomial of b.
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EXAMPLE 3.5. As an example that will serve later, let us compute the different
of the totally ramified extension Q,({,r)|Qp, where {, is a primitive p"-th root of

unity. The minimal polynomial of {,~ over Z, is f = (27 —1)/ (xpril — 1) with
derivative
1 r—1

Fr= e e =) —p e @ =) /(@ - 1)),
Thus f'((pr) = p"/Cr ((:5:71 — 1), so setting ¢, = (5:71 we see that the sought-
after different is the principal ideal of Z,[(,~] generated by p”/({, —1). The p-adic
valuation of this element is —1/(p — 1) +r, as (;, — 1 is a uniformizer in the degree
p — 1 totally ramified extension Qy(u,)|Qp.

As observed by Beilinson, the use of the cotangent complex considerably sim-
plifies Fontaine’s original calculation, so we next compute Lo_/o, -

LEMMA 3.6. Let L|K be a finite extension of p-adic fields. The cotangent
complex Lo, 0, 18 acyclic in nonzero degrees.

Proor. Writing O = Ok|[z]/(f) a some monic polynomial f € Oklz] as
above, we may consider the sequence of ring maps O — Oglz] — O where the
second map is the quotient map. The associated transitivity triangle (Theorem
2.13) reads

(3-2) Loy e)/ox @6yl OL = Loy j0x = Loy /0xia) = Lokial/0x @6y OLll]-
Here Lo, [+)/0, 18 acyclic in nonzero degrees by Proposition 2.15, and Lo, /0 [«]
is acyclic in degrees # 1 by Proposition 2.16 where its homology is (f)/(f?). It
thus remains to check Hy(Lo, /0, ) = 0. A piece of the long exact sequence of (3.2)
reads

0= Hi(Lo, /o) = Hi(Lo, /o) = Ho(Loya)/ox ©6, 1 OL)-

By Lemma 2.6 and Proposition 2.16 we may identify the last map in this sequence
with

(N/(F) =610k POrla] O
which is a nonzero map of free Op-modules of rank 1 sending the class of f to df.
This shows H1(Lo, /0, ) = 0 as desired. O

REMARK 3.7. We remark for later use that the same argument as in the above
proof shows L /x = QlL k=0 for a finite separable extension L|K of arbitrary
fields.

COROLLARY 3.8. The natural map
Lo jox = Ho(Lo, /o) = Q%Q?/OK
is an isomorphism.

Proor. Writing O as the direct limit of the Ox-algebras Op, for each finite
subextension K C L C K induces an isomorphism Qé?/OK ~ li_r>n Q%QL/OK' Sim-

ilarly, the standard resolution P,(O%) — O is the direct limit of the standard

resolutions P, (Oy) — Oy, so after applying the functor Q-l/oK and tensoring with

O we obtain an isomorphism Lo,.jo, = limLo, /0, . It remains to apply the
—

isomorphisms Lo, /0, = Q:(l?L/OK given by the lemma. [
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We now assemble some auxiliary statements to be used in the proof of the
theorem.

LEMMA 3.9.
(1) The maps Q:(LQL/OK — Q%Q?/OK appearing in the above proof are injective.
(2) If w € Q}O?/OK comes from Q%DL/OK and Ip is its annihilator as an
element of Q%OL/OK’ then its annihilator Iz in O is I O%. In particular,
I3 is principal.
(3) If Ko is the maximal unramified subextension of K|Q, and Dg/x, is the
associated different, we have an exract sequence

0 — Ox/Dk /K, O — Q}gf JOry ng o, — 0.

Moreover, there is an isomorphism

1 ~ Ol
QO?/OKU - QO?/ZZJ'
PROOF. The transitivity triangle of the cotangent complex (Theorem 2.13)
associated with the sequence of maps Ox — O — O reduces to a short exact
sequence

0 — Ox ®0, Q%QL/OK — Q}Q?/OK — Q%QF/OL -0

in view of Corollary 3.8. Moreover, since O is a directed union of free Op-
submodules as recalled in Facts 3.4, it is faithfully flat over O, and hence the natural
map Q%QL/OK — 0% ®o, Q}DL/OK is injective. Thus so is the composite Q%QL/OK —
Qéf /0, » Whence statement (1). Statement (2) follows from the injectivity of the

map O ®o, Q%OL/OK — Q%Df/ox' Finally, for the exact sequence in statement (3)
we use the transitivity triangle associated with the sequence Og, = O — O to
obtain

0 — O o, Q}QK/OKO — Q%O?/OKO — 9}97/(9,( =0

and apply the definition of the different (Facts 3.4). The last isomorphism is induced
by the exact sequence of differentials associated with the sequence of maps Z, —
Ok, — O, noting that Q}QKO sz, = 0 as the ring extension Ok, |Z, is unramified.

|

Proof of Theorem 3.1. Using Lemma 3.9 (3) we reduce to the case K = Q. In this
case Ix = (1/(¢p—1))O for a primitive p-th root of unity ¢, as v({,—1) = 1/(p—1).

We first determine the kernel of the dlog map. As finitely generated submodules
of ppe- are cyclic, we may write each element of Oz ® e in the form a ® (- for
some a € O and (pr € ppoo. This element is in the kernel of the dlog map if
and only if ¢ annihilates d(,-. Applying Lemma 3.9 (2) with L = Q,(¢,) and the
calculation in Example 3.5, we obtain that a € (p"/({, —1))O% C (1/({, —1))O%,
as desired.

For surjectivity, pick w € Q}Q?/Zp. By Lemma 3.9 (2) we have Opw = O /I3
where Iz C O is a principal ideal. If a,, € I is a generator, we have

(3.3) v(ay) < =1/(p—1)+r

for r large enough. Now choose a finite extension L|Q, such that w comes from
Q%DL/Z,, and moreover p"/({, — 1) € Or. As Of is a discrete valuation ring whose
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valuation is a multiple of v, the inequality (3.3) implies Ora, D Or(p"/({p — 1)).
But then

Oxw = O/ Oga, C O /Ox(p"/(¢p — 1)) = Ogdlog((pr)

by the calculation recalled above. O

3.2. The universal p-adically complete first order thickening of
Oc,/Ok. We now combine the results of the previous two sections to compute
the truncated de Rham algebra LQIB/A/F2 in the special case A = Ok /(p") and
B = Oy /(p") for an integer n > 0.

PROPOSITION 3.10. Let K be a p-adic field with algebraic closure K, and let
n >0 be a fizved integer.
(1) The truncated de Rham algebra LQEO?/(;D"))/(OK/(M))/FQ is concentrated

in degree 0.
(2) We have a short exact sequence

34 0= Q. 0, = Ho(LLo om0k /) / F?) = O/ (P") = 0
where the term on the left identifies with the image of
Ho(F' LOo,/(5m))/0r 5m) [ )
(3) The Ok /(p™)-algebra HO(LQZO?/(pn))/(OK/(pn))/Fz) is the universal first
order thickening of Oz /(p").

ProoF. Consider the standard resolution P, of O%/(") as an Og/(p")-
module. The complex LQEO?/(M))/(OK/@”))/F2 is computed by the total complex
of

0 0 0
1 1 1
Qﬁz/(ox/(p")) Q151/((9K/(1U")) Q130/(01(/(11”))
132 ﬁl ﬁO

Here the bottom row is the resolution P, of O%/(P"). The middle row computes
the cotangent complex Lo, /(pn))/(0x /(pn)) Which is quasi-isomorphic to the com-
plex Lo_/o) ®6, (Ok/(»™)) by Lemma 2.12 as O is flat over Og. But by
Corollary 3.8 we have a quasi-isomorphism Lo_/0, =~ Q}Qf O+ SO We have quasi-
isomorphisms

Log /)10 /) = Logjox @6, (Ox/(0™) = Qb 0, ©oy [Okx * Okl.
Therefore LQEO?/(},”))/(OK/(pn))/FQ is computed by the total complex of

1 " 1
QOY/OK ? QOY/OK

| [

O —2— Ox
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which is placed in degrees —1, 0 and 1. Since O has no p-torsion and d is surjective
by Corollary 3.3, this complex is indeed concentrated in degree 0. Using the p-
divisibility of Q:(LQ? /0, We see that we have an exact sequence as in (3.4). The last

statement follows from Theorem 2.30 once we check Q%O? J(0m))/(Ox /(pr)) = 0- But
by the base change property of differentials

1 ~ Ol
Q0w /0)/(Ox /) = Log/0i B0 Or/(P")
and the right hand side is 0 as Q%g? /0y 18 p-divisible (Corollary 3.3). O
COROLLARY 3.11. The inverse limit
. o 2
m Ho (Lo /5 /(0 /o)) E7)

fits into a short exact sequence
0= T Qo j0,) = Im Ho( Loy oy /(0 /) /) = Ocie =0

and defines a universal first-order thickening of the Ok -algebra Oc,, in the category
of p-adically complete O -algebras.

PROOF. In view of the proposition it remains to note that the inverse system
of the exact sequences (3.4) satisfies the Mittag-Leffler condition and that O¢,, is
none but the p-adic completion of O. ([l

There is also an arithmetic approach to universal p-adically complete thicken-
ings via Fontaine’s ring A;,¢ that we explain next. We first begin with a quick proof
of the basic facts concerning Witt rings of perfect rings by means of the cotangent
complex, based on ideas of Bhatt.

ProPOSITION 3.12. Let R be a perfect ring of characteristic p > 0.

(1) Up to isomorphism there is a unique p-adically complete flat Z,-algebra
W(R) with W(R)/(p) = R.

(2) Given moreover a p-adically complete ring S, every ring homomorphism
R — S/(p) lifts uniquely to a p-adically continuous homomorphism
W(R)— S.

ProoF. To prove (1), we construct by induction on n flat Z/p"Z-algebras
W, (R) such that Wi (R) = Rand W;(R) = W,(R)/(p") for all 1 < i < n. Assuming
that W, (R) has been constructed, apply Proposition 2.21 with A = Z/p"*'Z,
I=9p"Z/p""' 7, J =R, B=W,(R)and X\ : p"Z/p""*Z — R the natural map
to obtain a Z/p"T'Z-algebra extension W, 1(R) of W, (R) by R. To be able to
apply the proposition, we need to know that Ly, (r)/(z/pnz) = 0. This vanishing
follows from a more general statement, Lemma 3.27 (1) below that we shall prove
by an argument that uses only properties of the cotangent complex encountered
so far. Note that p"W,,(R) = 0 implies R C p"W,,4+1(R), and this inclusion is in
fact an equality as the W,, 11 (R)-module structure on R coming from the extension
structure is given by the composite of the surjections W,,11(R) — W,(R) — R.
Thus we have isomorphisms p'W,,1(R)/p" ™ W, 1(R) = R for all i < n, whence
we deduce ,:W,,41(R) = p" ™ ‘W, 11 (R) for all 1 <i < n using the perfectness of
R. This implies the flatness of W,,1(R) over Z/p™*?.

As for (2), by p-adic completeness it suffices to lift the map R — S/(p) in-
ductively to maps W,,(R) — S/(p"). Assume that a unique mod p" lifting exists.
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In view of the vanishing of Ly, (r)/z/pnz) already used above, the existence of a
unique mod p™ ! lifting follows from applying Proposition 2.22 with A = Z/p" ' 7Z,
B = Wyi(R), C = S/(p"") and I = (p"). O

The ring W(R) is the Witt ring of R as constructed e.g. in [41], §II.5. For
computational proofs of statement (2), see [10], Section 4.4 or [34].

Assume now that R is a ring of characteristic p > 0 on which the Frobenius
morphism x — x? is surjective. We define the perfection of R as the inverse limit
RPf .= lim R.

xﬁp
Thus RP' consists of sequences (x;) with 2 = 2;_;. On such sequences the map

x — P is bijective, hence RP*™! is a perfect ring.
Following Fontaine, we set

At = W((Ox/(p))"*").

Since Oc¢, is the p-adic completion of O, we have Ox/(p) = Oc,/(p). By
Proposition 3.12 (2), the natural surjection

0: (Og/()**" — O/ (p)
lifts to a surjection
0: Ains — Oc

Note that Ay is complete with respect to its ker(6)-adic filtration. This follows
from p-adic completeness and the fact that (Ox/(p))P™" is complete with respect
to the ker(f)-adic filtration.

Now a surjection p : B — A of p-adically complete Og-algebras is an order
k thickening for some k > 0 if ker(p)*** = 0. For fixed A such pairs (B, p) form
a natural category, and an initial element in this category (if exists) is called a

universal p-adically complete Ok -thickening of order k.

PROPOSITION 3.13 (Fontaine). For each k > 0 the Ok-algebra Oc, has a
universal p-adically complete Ok -thickening of order k, given by

(Ainf/ker(e)k+1) ®Zp OK.

Proor. It suffices to treat the case Ok = Z,, as then the general case follows
by base change. Furthermore, in view of Proposition 3.12 (2), given an order k
thickening p: B — Og, it suffices to construct a map 7: (O%/(p)**"" — B/(p).

For an element z € Oc¢, /(p) = O/ (p) choose some lifting ¥ € B/(p) via the
mod p reduction p of p. Given an element (..., x,,...,20) € (Ox/(p))P*", set

(oo Ty, x0) i= lim 7,7 € B/(p).
n—oo

Note that this limit exists since ker(p)* = 0 and we obtain a ring homomorphism.
Also, this is the only possible definition as 7(..., Zpir,-..,2,) =Z, (mod ker(p))
forces

T Ty 20) =T (s Ty ooy )P = o (mod ker(p))

for all r > 0. [l
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COROLLARY 3.14. We have a canonical isomorphism of Ok -algebras
(Aint / ker(6)7) @z, O 2 lim Ho(L%or om0/ )/ F)-

In particular, we have an isomorphism
ker(6)/ker(6)? @z, Ok = T,(Q._j0,)-
and therefore the ideal ker(0) ®z, Ox C At ®z, Ox is principal.

PrOOF. The two isomorphisms result from putting Corollary 3.11 and Propo-
sition 3.13 together. By Theorem 3.1 the Oc,-module T,,(Q%D? 0y ) 18 free of rank

1, hence so is the Oc,-module ker()/ker(f)?. The last statement follows as Ajp;
is ker(#)-adically complete. O

3.3. Derived de Rham algebra calculations. Our next goal is to compute
the p-adic completion of the derived de Rham algebra L)g, o, for a finite exten-
sion K|Q,. The methods to do so stem from the preprint [8] of Bhargav Bhatt.
This section is devoted to preliminary calculations.

Arguably the key step is the computation of LQEZ /pZ))(Z)prZiz])> Where Z /"7
is viewed as a Z/p"Z|x]-algebra via the natural projection sending x to 0. To
describe it, we need the divided power algebra I'% (M) introduced in Lemma A.26
of the Appendix in the case where M = A™ is a free A-module on generators
t1,...,tn. We set

Alty, ... tn) :=T%(A").
We denote the kernel of the natural augmentation map A(ti,...,t,) — A by
(t1,...,tn). The divided powers of the ideal (t1,...,t,) are defined as follows.
First, the maps v; : Aty ® --- @ At,, — A(ty,...,t,) extend to a unique divided
power structure on A(ty,...,t,) by (t1,...,t,) by setting

35 WOn ) () i R (01) v (52).

Next, one defines the divided powers of the ideal by
<t1, . ,tn>[i] = A['Yil(xl) s "Yi,.(-rr) | T € <t1, N ,tn>,i1 + -+ ’L'»,‘ Z ’L]

REMARK 3.15. These formulas are unfortunately complicated, but notice for
later use that in the case where A is a domain with fraction field K, the filtration by
(t1,. .. ,tn>m ®a K on K(ty,...,t,) becomes the filtration by powers of (¢1,...,t,).

PROPOSITION 3.16 (Bhatt). The derived de Rham algebra LYy ,n7) (7,/p2(2))
is concentrated in degree 0 and we have an isomorphism

Ho(Lz /2y j 2 /przia))) = L/P"L{2)-
Moreover, under this isomorphism the Hodge lﬁltmtion on the left hand side coin-
cides with the filtration by divided powers (x)1 on the right.

We start the proof of the proposition with the case n = 1. It is based on the
following splitting lemma.

LEMMA 3.17. We have a quasi-isomorphism

L% jp i) = D LA L, ) o)) /5, 1))
1=0
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where Fp[z]/(xP) is viewed as an Fp[x]-algebra via the natural projection.

The proof of the lemma, which is a version of the decomposition technique of
[17] for the de Rham complex, will use some basic facts about relative Frobenii
that we now recall.

Facts 3.18. Assume A and B are Fj-algebras, and consider the A-algebra AW
defined by A with its A-algebra structure given by the Frobenius map a +— a?. We
have a morphism of A-algebras A — AW induced by Frobenius, whence a morphism
B— BY :=Bg, AV by base change. Furthermore, the commutative square of

A-algebras
A—— B

o

A—— B
induces a morphism B — B. When A is perfect, the morphism A — AM) is an
isomorphism by definition, hence so is the base change B — BW_ If moreover B
is perfect, the morphism BW — B induced by the diagram is an isomorphism as
well.

PrROOF. For n > 0 set @, := Fp[z][z1,...,z,] and consider the above situa-
tion for A = Fp[z] and B = Q,. Identifying I, [x] with F,[z?] via the Frobenius
map, the map QS) — @, becomes identified with the map F,[z][z1,...,z,] —
Fyl2][x1, ..., x,] that is the identity on Fp[z] and sends z; to z}. We may lift this
map to a morphism of Z/p?Z[x]-algebras

(Z/p*L)[2][zy, ..., xa] = (Z/P*T)[a][zy, - .., 2]
sending x; to x? . For all ¢ > 1 there is an induced map

i

Fi s Qappenyaifer,....anl/@/p?D)la] = @/, ..o/ @/p7D)z]
on differential .forms whose image is 2contained in p.iﬂz(.Z/pQZ)[:c][xl a2/ 0]
ASA the p-torsion of the free Z/p“Z-modules Y zp22)[2][o1,....0m] /(2 p2T)[z] 1S
Pz 2z a)fon .. o)/ (2/p?2) (] PhE AD
w = (1/p)Fi(w)
induces a well-defined map
(1/p)FZ : Qi@s})/lﬁ‘p[z] - QZQH/]FP[:L’]

after reducing modulo p; it is the zero map for ¢ > 1 but nonzero for ¢ = 1. Thus
by construction we obtain a commutative diagram

- .0l

1
Q00 kg Qu /Fyla]

| !

2 QZ

QQ&P JFpla] Qn /Fpla]

whose horizontal maps are respectively given by (1/p)F; and (1/p)F; modulo p.
As the latter map is zero, we get a well-defined map of complexes

1 °
Q00,1 = Q)
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Taking the direct sum of the i-th wedge powers of (1/p)F; for all i and applying a
similar argument, we obtain a map

(3.6) @ %;U/Fp[m] [=i] = 9%, /5, 12)-

This map is a quasi-isomorphism for n = 0,1 by direct computation, and therefore
for general n by passing to tensor powers and using that Q) /g ) = (25, /5, [x])@m
(The learned reader will recognize that (3.6) induces the Cartier isomorphism on
cohomology groups.)

Now consider the bar resolution of the Z/p®Z[z]-algebra Z/pZ introduced in
Example 2.28. Reducing modulo p we obtain the bar resolution @, of the F,[x]-

algebra IF,. Twisting by relative Frobenius gives the bar resolution Qsl) — IFZ(}).
Notice that

F() = F,[2] @k, [z Fp = Fplz]/(a?)

where the F,, [z]-module structure on Fp[z] in the tensor product is given by x + «”.
Applying the inverse of the isomorphism (3.6) to the terms of the bar resolution,
we obtain using Theorems 2.7 and 2.26 quasi-isomorphisms

L, jr,fe1 = Wu sy 1a) = D Qoo [=8 = D LA Ly o0y, [ —1]
K3 K3
as desired. O

Next we compute the right hand side of the quasi-isomorphism in Lemma 3.17.

LEMMA 3.19. The complex L A\ Ly, (2)/(xr)/F,[2] 1S acyclic outside degree i. Its
degree i homology is isomorphic to a free (Fy[x]/(xP))-module generated by ~;(y),
where y is a generator of the rank 1 free module (xP)/(z%P).

PRrROOF. By Proposition 2.16 the cotangent complex L (2]/(27)/F,[2] 1S cOncen-

trated in degree 1 where its homology is (2)/(2*?). This is a free module of rank
1 over Fp[z]/(«P). Denoting by y a free generator, we have a quasi-isomorphism of
complexes

L, [x]/ () /5, 2] = (Fp[2]/(27))y[1].
Taking derived exterior powers, we obtain
LA Ly, fa)/(or) 70 = LA (Fp[a]/(7))y[1]) 2 LT (Fp[a]/ (a7))y)li]

using Quillen’s shift formula (Proposition A.27). Finally, since free modules are
acyclic for the functor I'*, we obtain

LT ((Fpla]/(27))y) = T*((Fpla]/ (27))y) = (Fplz]/ (@) 7(y).

Now we can handle the case n = 1 of Proposition 3.16.

COROLLARY 3.20. The derived de Rham algebra L g 1,1 is concentrated in
degree 0, and we have an isomorphism

Ho(LQg jr,12) = Fp(z).
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ProOOF. Applying the previous two lemmas, we compute

LS o) = D LA Lz, (oo o, 1o [ 1]
=0

= P I(EF,[2)/ (")) lil[i] = Fyla]/ () (y) -
=0

Finally, we identify the right hand side with F,(x) as follows. Noting that
F,[z]/(2P)(y) is generated over F, by the elements 277;(y) (0 < j < p — 1), we
define a map Fp[z]/(z"){(y) — Fp(z) by sending 27/7;(y) to jlv;(z)yi(vp(z)). A
calculation using formula (3.5) and the fact that (ip)!/(i!p*) is a unit in F, shows
that this map is an isomorphism. ([l

We shall need a consequence of this result for the analogous situation with
Z,-coefficients.

COROLLARY 3.21. The derived de Rham algebra LY, ,; 1.1 is concentrated in
degree 0, and Ho(LSY, /7 (,1) s a torsion-free Z,-module.

ProoOF. If we compute L€ . as the total complex of QF, ,; . where

Qe — Zy, is the bar resolution, we have an/zpm = 0 for ¢ > n, which shows that
Lsz JZy[e] is concentrated in nonnegative homological degrees. Furthermore, we
have quasi-isomorphisms

Fp ®Z LOG 7,10 = Fplz | ®7 12 L%, 2,10 = LR /R, () = Fo(2)

by Corollaries 2.29 and 3.20, so F, ®Zp L 7, 12 is & complex concentrated in
degree 0. On the other hand, its homologies are computed by the Kiinneth spectral
sequence

17 7 . °
Ey = Tor;” (Fp, Hi (LY, 17 7)) = Hiy; (Fp ©F LO5 7 ).

Since Z,, has flat cohomological dimension 1, we have E;j =0 for ¢ > 1, and there-
fore the spectral sequence degenerates at Fy. Thus the vanishing of the abutment
for i 4+ j 75 0 implies Tor?p (Fp,Hj(LQZp/Zp[Z])) = 0 for all j, i.e. all homologies of
L 7 12 are torsion free. To finish the proof, we show that they are also torsion
for j > 0 To do so, we compute the complex Q, ®Z LOG 7,10 LQQP/Qp[w]
by means of the bar resolution Q, ®z, Q.. For fixed n we have Q0,00.)/0,[2] =
(0, [2,21] /Qp[w]) , and there is a quasi-isomorphism

O, (2010 = (Qolr, 1] 5 Qplz, 21]dar) = (Qylz] — 0).

Thus Tot(Qfg, 0.)/0,[2)) is the chain complex associated with the constant sim-
plicial object Q,[x]s; in particular, it is acyclic in positive degrees. O

To pass from the case n = 1 of Proposition 3.16 to the general case, we need:

LEMMA 3.22 (Dévissage). Let ¢: Ae — Be be a morphism of complexes of
Z/p"Z-modules. If the base change map A, ®£/pnz F, — B, ®£/pnz F, is a quasi-
isomorphism, then so is ¢.
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PRrROOF. By exactness of the derived tensor product we reduce to the case B, =
0. Moreover, after replacing A, by a complex with free terms we may assume A, has
free terms. Thus we have to show that the acyclicity of Ae ®z/,n7F) implies that of
A,. We use induction on n. If a; € A; satisfies da; = 0, we have o; = do11 + pS;
for some ;11 € Asy1 and B; € A; by acyclicity of As/pAe = Ae®z/pnz[F,. Since A,
has free terms, multiplication by p induces an isomorphism A,/pAs = pAs/p? A,
and hence the complex of Z/p" ' Z-modules pA, is acyclic by induction on n. As
d(pB;) = 0 by construction, we then find f;11 € A;+1 such that ps; = d(pBit+1), so
finally a; = d(ai1 + pBiv1)- O

Proof of Proposition 3.16. The key point is the construction of a map
Zp(z) = LG 17 4]

that lifts the map Fp(z) — LQ];-p JF,[2) inducing the isomorphism of Corollary 3.20
and is compatible with the filtrations on both sides. Once such a map has been
constructed, we obtain maps

ZIp"L(x) = Ly pnz) ) (/0 )]

for all n by reducing modulo p". These maps are isomorphisms modulo p by
Corollary 3.20, hence isomorphisms by Lemma 3.22.

The idea of the following construction is due to Bhargav Bhatt (private com-
munication). By Corollary 3.21 we may replace LQZP/ZPM by its Hy and con-
sider it as an honest Z,[x]-algebra. We then claim that the structure map
¢t Lplx] = LQ 5 1, extends to a map ¢ @ Zy(x)—=LQ) 7 (- To see this,
denote by I the kernel of the augmentation map L, 1. — Z;. After reducing
modulo p we have

L, 2,1 @z, Fp = LO% g 1) = Fp(2)

by Corollary 3.20, with / mapping to the ideal (z). In particular, for f € I with
image f in (z) we have
ﬁ = ?:D = p!')/p(?) =0,
showing that f* is divisible by p in L . (. As LQj 5 ) is torsion free by
Corollary 3.21, there is a unique element f?/p € LQip/Zp[z] with p(f?/p) = f*.
Since fP € I and Z, is torsion free, we in fact have f?/p € I. Applying this to f?/p
pk—
in place of f we find f”2 /PP € pl. Tterating k times we deduce prll | fpk. For a
positive integer n with p-adic expansion n = a,p" + - -+ + a1p + a¢ this implies the
divisibility
p22=0 Ok p::ll ‘ fzzzo arp® = f” .

Here the left hand side is exactly the p-part of n!, so we conclude (using tor-
sion freeness again) that there is a unique element (f"/n!) € LQj , .1 with
nl(f"/n!) = f". Applying this to f = ¢(z) € I we may then unambiguously
set @(yn(2)) := p(x)" /n! for all n, which defines ¢.

For the compatibility of the divided power filtration with the Hodge filtration it
suffices to show that ¢(yn(2)) € F"LSY, ,; 1, for all n. Since FlLﬂip/Zp (o] is the

kernel of the augmentation map to Z,, it contains ¢(x), and therefore F"LQ%D JZy12]
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contains ¢(x)" = @p(z") = nl@(v,(x)). However, the graded pieces of the Hodge
filtration are given by

LA L, 5, =i = T((2) /(2%))

by Propositions 2.25, 2.16 and A.27, and these Z,-modules are torsion free for all
i > 0. We deduce ¢(v,()) € F"LQ, 7 ) as required. a

The last result in this section may be viewed as an analogue of Proposition
2.16.

THEOREM 3.23 (Bhatt). Assume that A — B is a surjective homomorphism
of flat Z/p"Z-algebras with kernel I = (f) generated by a nonzerodivisor f € A.
The derived de Rham algebra LQY 4 is concentrated in degree 0 and we have an
isomorphism of A-algebras

Ho(Lp,4) = A)/(t = ).

Moreover, the Hodge filtration on LQJ'B/A corresponds on the right hand side to the
filtration induced by the divided power filtration of A(t).

The proof uses the following lemma.

LEMMA 3.24. The Z/p"Z[x]-algebras A and Z/p"Z{x) are Tor-independent,
where A is considered as a Z/p"Z[z]-algebra via the map x — f.

PROOF. Take a resolution F, — Z/(p")(z) by free Z/p"Z[z]-modules. We
show that A ®z/(,n)[2] Fe is acyclic in positive degrees. To do so, we reduce by
dévissage (Lemma 3.22) to proving acyclicity of

Fp ®z/pnz (A @z/pnzfz) Fo) = (Fp ®z/pnz A) O, 1] (Fp ®z/pnz Fe).

Since both Z/p"Z(x) and the terms of F, are free over Z/p"Z, the base change
Fp, ®z/pmz Fe is a free resolution of F,(x) over F,[z], so we reduce to proving
acyclicity of A ®z/(yn)[2) Fe in the case n = 1. But then F,(z) is isomorphic to a
direct sum of copies of Fp[z]|/(z?) as an F,[z]-module, so it suffices to show Tor-
independence of A and Fy[z]/(2F) over Fy[z]. This is verified as in the proof of
Proposition 2.16. (I

Proof of theorem 3.23. As in the proof of Proposition 2.16, we see that the Z/p"Z[x]-
algebras Z/p"7Z and A are Tor-independent, and therefore by the base change prop-
erty of derived de Rham algebras we have a quasi-isomorphism

. ~ L
L0z /o282 nam 4)/4 = Lz jpmz) )@ /07 210) O fprziz) A-
On the other hand, we have
. L n L ~ n
L jpmz) ) @/pr2ia)) Ozpprzie) A = LIP"L(T) @ jpnia) A = L/P"L{x) @z /e A
in view of Proposition 3.16 and the lemma above.

So we obtain that LQ% /4 is concentrated in degree zero and compute its 0-th
cohomology as

Z|p"L(x) @z/pnzie) A = coker (Z/p" Z[z](t) (x;t)'
S L E) @2z A= A/ (f ~ 8).

The equality of the Hodge filtration with the PD filtration follows from the equality
of these filtrations in Proposition 3.16. a
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REMARK 3.25. Note that the divided power structure on A(t) induces one one
the quotient by (f —t). Indeed, since f is not a zerodivisor in B, for a € A(t) we
have (f—t)a € (t) if and only if @ € (t), so we may consider the A(t)/(t— f)-module
(t)/(t — f){t) and induce divided power operations on the quotient using axioms
(3) and (4) of Definition A.25.

3.4. The p-completed derived de Rham algebra of Oc¢, /Ox. We now
apply the theorem to the surjection 6 : Ajny — Oc, introduced in the previous
section. Modulo p" it induces a map 6, : Ains/(p") — Oc,/(p"). By Corollary
3.14 the kernel of 6, is a principal ideal; denote by &, a generator.

COROLLARY 3.26. The derived de Rham algebra LQEOCK/(p"))/(Ainf/(p")) is con-
centrated in degree 0, and we have a filtered isomorphism

Ho(LYoc, /) /(A /o) = (At /(P 0/ (E = &n).

PROOF. In order to be able to apply Theorem 3.23 we have to check that the
generator &, of ker(6,,) is not a zero-divisor. Denote by &; its image in A;n¢/(p) =
(O%/(p))P°, and represent &; by a sequence (55’9)) of elements of the form ék) =
Ak + (p) with some choice A\ = #»{/p of a compatible system of p-power roots of p.
Were &; a zero divisor in A;,,r/(p), there would be a sequence (uy) C Og, with
tho1 = px such that v, (ugAr) > 1 for all & > 0. Since v,(Ar) = 1/p*, we obtain
vp(pr) > 1 —1/p" for all k > 0. However, this means that v,(u1) = pvp(prr1) >
p—1/p* > 1for all k > 0, so the class of the sequence (ux -+ (p)) is zero in Ay r/(p),
a contradiction. Thus &; is not a zero-divisor, and neither is &, by a dévissage
argument. ([

Assume now that K|Q, is an unramified extension. In this case Ajy =
W ((O%/(p))P°") has an Ox-algebra structure via the canonical map

Ok = W(Ok/(p)) = W((O/ ()P

lifting the inclusion Of/(p) — (O%/(p))P*" according to Proposition 3.12 (2).
Moreover, we have an Og-algebra map Ains — Oc, . An important observation of
Bhatt is that modulo p™ we may compare the associated derived de Rham algebra
with that of O over Og. This is enabled by the following general lemma.

LEMMA 3.27. Let A — B be a flat map of Z/p"Z-algebras such that both A/pA
and B/pB are perfect Fp,-algebras.
(1) We have Lp,a ~ 0.
(2) If C is a B-algebra, we have a quasi-isomorphism
LOg g~ LOE ) 4
of Hodge-completed derived de Rham algebras.

In the second statement the quasi-isomorphism is to be understood as a pro-
jective system of compatible quasi-isomorphisms LQé/B/FZ ~ LQEV/A/F@

PrROOF. It is enough to verify the first statement for n = 1 by dévissage
(Lemma 3.22). So assume A and B are perfect F,-algebras, and recall the ba-
sics about relative Frobenii explained in Facts 3.18. The A-isomorphism B 03B
established there induces an isomorphism of cotangent complexes Lp) 4 5 Lp JA-
To compute it, consider the standard resolution P, — B. As in the proof of
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Lemma 3.17, for a free A-algebra P = Alz; | i € I] if we identify A with A®
via the Frobenius map, the morphism of A-algebras PM 5 P constructed above
becomes identified with the map P — P which is the identity on A and sends each
z; to z. In view of the equalities de? = pa? 'dz; = 0 in characteristic p, the
map Q}D(l)/A — Q})/A induced by the morphism PY — Pis 0. Applying this to
the terms of P,, we obtain that the isomorphism B®M X B induces the zero map
Lgaysa — Lpya, which is only possible if L4 = 0.

For the second statement, observe that by functoriality of modules of differ-
entials the morphism A — B induces a morphism of derived de Rham algebras
LQE*/A — LQZ‘/B compatible with the Hodge filtration, whence also a morphism

Lﬁé /A = L(AZ;J /5 on Hodge completions. It is an isomorphism if and only if the
induced map on associated graded objects is, so by Proposition 2.25 it suffices to
show that Lcya — Leyp is an isomorphism. In view of the transitivity triangle for
cotangent complexes (Proposition 2.13), this in turn follows from the vanishing of
Lp,a, which is statement (1). |

REMARK 3.28. In ([8], Corollary 3.8 and Lemma 8.3(5)), Bhatt proves that
the conclusion of statement (2) holds also for the uncompleted derived de Rham
algebras: under the assumptions of the lemma we have a quasi-isomorphism
L, /B~ LOg. /a- The proof follows the same pattern as above, except that in-
stead of the Hodge filtration on LQY /4 it uses the conjugate filtration Feo | Tt is an
increasing filtration induced by canonical truncations on the de Rham complexes

;—"n/A:
O if j <
conj j i d i o s .
F; J(ann/ﬁ = Ker(QPn/A%QPtl/A) ifj=1
0 if j >4 .

The key point then is that modulo p the Cartier isomorphism splits the conjugate
filtration: there is a direct sum decomposition

8, (LG /4) = LA L 4l

for a map of F,-algebras A — B induced by the Cartier isomorphism ([8], Lemma
3.5). The rest of the argument is then the same as above.

COROLLARY 3.29. Assume K|Q, is unramified. The Ok -algebra map Ajns —
Oc, induces an isomorphism of Hodge-completed derived de Rham algebras

B.7) LYoe, /m)/Awme/om) = L 0c . 1710k 10m)) = L0 1(0m)) /(O 1 om)

for all m > 0. Hence LQZOF/(p“))/(OK/(p")) is concentrated in degree 0, where its

homology is isomorphic to the completion of (Aint/(P™)){(t)/(t — &n) with respect to
its divided power filtration.

PrOOF. As K|Q, is unramified, the ring O /(p) is a finite field, so the map
of Fy-algebras O /(p) — Awne/(p) = (Ok/(p))P™" is a morphism of perfect F,-
algebras. Therefore Lemma 3.27 applies to the map Ok /(p") — Ains/(p") and
yields isomorphism (3.7). The second statement follows from Corollary 3.26. (]
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Finally, define the derived p-adic completion of LQg, ¢, by
LY o, 8L, = RUm(LOY o, & Z/p"2)

(see e.g. [47], §3.5 for derived inverse limits). Here the right hand side is to be
understood as the projective system of the R@(Lﬁb?/@( JF' @ 7./p"7) for all
i. Since O is flat over Ok, we have

O L ny . TO®
LG _jo, @ LI L~ LYo _)m) )0k /(6m)

by base change (Corollary 2.29). The complexes on the right hand side are com-
puted by Corollary 3.29. In particular, they are concentrated in degree 0 and the
maps in their inverse system are surjective. Hence the derived inverse limit is the
usual inverse limit over n (see [47], Proposition 3.5.7), and we obtain

COROLLARY 3.30. If K|Q, is unramified, the derived p-adic completion of
LQZ,)?/OK is concentrated in degree 0, where its homology is isomorphic to the
completion of Ais(t)/(t — &) with respect to its divided power filtration.

Here € is a generator of the kernel of 6 : Aj,y — Og¢, (Corollary 3.14), and we
have used the p-adic completeness of Ajys.

REMARK 3.31. Using Remark 3.28 we also obtain that the uncompleted de-
rived de Rham algebra LQZOY J(om)/(Ox /(pm) 18 concentrated in degree 0, where its
homology is isomorphic to (Aijne/(p™))(t)/(t — &,). In the inverse limit we obtain
that LQG_ 0, &7, is isomorphic to the p-adic completion of Ay (t)/(t — &). This
is Fontaine’s ring Aqis x as defined in [25].

4. Construction of period rings

4.1. Construction and basic properties of Bgr. Let K be a finite exten-
sion of Q,,, with algebraic closure K. Following Beilinson, we define

AdR,K = LQE)?/OK

and
Bd+R = AdR,K®Qp = (AdR,K®Zp) ® er
Note that by construction these objects are equipped with an action of Gx =
Gal(K|K) and are complete with respect to the Hodge filtration.
When clear from the context, we shall drop the subscript K from the notation

Agr, k. However, BQ'R does not depend on K any more, as the following lemma
shows.

LEMMA 4.1. Let K'|K be a finite extension. The natural map Aar x—Adr K’
induced by the maps Q_'/K — Q_'/K, on modules of differentials gives rise to an
isomorphism

Agr, k®Qp = Adr k' BQ)p.

Proor. By Theorem 2.13 the sequence of maps O — Og+ — O yields an
exact triangle

O? ®éK LOK//OK - LO?/OK - LO?/OK/ - Of ®(L9K LOK’/OK[l]
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of cotangent complexes. By Lemma 3.6 we have a quasi-isomorphism Lo, , /0, =~
Qé)K//OK' According to the structure of Q%OK//OK recalled in Facts 3.4, the latter
is a finitely generated torsion Z,-module, i.e. a finite abelian p-group, whence

LOK//OK®QP = 0

Since the derived tensor product with @Q, is an exact functor, we conclude that
there is a quasi-isomorphism

(4.1) Lo /0x®Qp = Lo_j0,., 8Qp.

Now we use the Hodge filtration on Aqr,x. By Proposition 2.25 we have quasi-
isomorphisms

groAgqrx ~ LA Lo, o, 1]

and similarly for Agr x/. So from (4.1) we derive quasi-isomorphisms
gl Aqr, k @Q) ~ grs Aar, k' ®Q,
for all 4, whence quasi-isomorphisms
(Adr, i/ F)EQp =~ (Aar,x /F*)BQy

for all ¢ by induction on i. As by definition Aqg, k is the projective system of the
AdR,K/FZ and similarly for AdR,K’a we are done. [l

By the lemma, when computing B('fR we may assume it is defined as Aqgg, K@QP
with a finite unramified extension K|Q,. Corollary 3.30 then implies that we may
view B;{R as a complete filtered ring and not just as a projective system of com-
plexes.

ProrosiTION 4.2. The ring B(;LR is a complete discrete valuation ring with

residue field Crc. Moreover, its filtration Fil' by powers of the mazimal ideal satisfies
a G -equivariant isomorphism

(4.2) Fil' /Fil"t 2 Cg (i).

PROOF. As already remarked, by the previous lemma we may assume K is
unramified over Q,. Then by Corollary 3.30 the Hodge filtration on AdRQA@ZP is
the filtration by divided powers of the ideal ker(64r), where Oqr is the natural
surjection Aqr®Z, — (Aqr/F')®Z, = Oc,. After tensoring by Q this becomes
the filtration by powers of ker(fqr ® Q) which is the maximal ideal of BJ; as the
associated quotient is Oc,, ® Q = Cg. Moreover, B;“R is complete with respect to
the filtration since Aqgr is the Hodge-completed de Rham algebra. By Corollaries
3.11 and 3.2 we have a G g-equivariant isomorphism

(4.3) (ker(04r)/ ker(far)?) ® Q = Ck (1)

which shows in particular that this is a Cx-vector space of dimension 1, and there-
fore ker(fqr) ® Q is a principal ideal by completeness of BCTR. Its powers define the
filtration Fil’, and the isomorphism (4.2) follows from (4.3). O

PROPOSITION 4.3. There exists a G -equivariant embedding K — B;{R such
that the composite K — B;'R —» Cg is the natural embedding K — Cg.
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Proor. By Corollaries 3.3 and 3.8 the cotangent complex Lo_/0, is concen-
trated in degree 0 where its homology is torsion. Thus Lo, /0, ® Q ~ 0 and
therefore R R o

LOY o, ® Q= (L2 0, /F) ® Q=K.

Thus the natural map L(AZZQ? Jox Lﬁéf em @ZP induces the required map after
tensoring with Q. O

REMARK 4.4. There does not exist a Gg-equivariant splitting Cx — B;{R.
This would entail a G g-equivariant isomorphism By = Ck|[[t]] which is not the
case.

COROLLARY 4.5. We have (Bj)°" = K.

Proof. By Tate’s theorem cited in the introduction, we have Cg ()95 = 0 for

i > 0, hence (Fil')“% = 0 by induction from the second statement of Proposition

4.2 and completeness. We thus obtain an injection (Bjg)®* — (Bjg/Fil')¢x =
—G

C%* = K. Since we also have an injection K = K~ < (BIz /Fil')9% by the

proposition, the corollary follows. o

DEFINITION 4.6. The field Byr of p-adic periods is the fraction field of the
discrete valuation ring B(;FR.

Thus Bgr comes equipped with a G g-action for which Bg{ = K by the last
corollary, and a filtration Fil* inherited from BIR. Its associated graded ring is

BHT = gr;«ﬂBdR = @ (CK(Z)
icZ
in view of the last statement of Proposition 4.2.

4.2. Deformation problems and period rings. In Proposition 3.13 we saw
that truncations of Fontaine’s ring A;nr yield solutions to a universal deformation
problem. In [25], Fontaine shows a similar universal deformation property for the
ring As considered in Remark 3.31. Our main goal in this subsection is establish
a property of this type for the ring Aggr, thereby making the link with Fontaine’s
original constructions.

As Aggr carries a divided power structure, the deformation problem will have
to take it into account. First some definitions. A divided power ideal, or PD-ideal
for short, in a ring B is an ideal I C B together with a divided power structure on
B by I in the sense of Definition A.25, such that the maps «; : I — B moreover
satisfy y1 = idy, v;(I) C I for ¢ > 1 as well as the supplementary axiom

(4.4) (@) = (“””)! (a).

m!)”n!fynm
EXAMPLES 4.7.

(1) If B is a Q-algebra, the usual divided power operations 7;(a) = a'/i! equip
every ideal I C B with a PD-structure.

(2) If K|Q, is a finite unramified extension, restricting the above divided power
operations on K to (p) C Ok equips (p) with the structure of a p-ideal. This
follows from the well-known formula v,(n!) = [n/p] + [n/p*] + [n/p*] ... However,
there may not be a PD-structure on (p) for general K; in fact, such a PD-structure
exists if and only if the ramification index of K|Q), is < p (see [9], Example 3.2(3)).
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The divided powers of a PD-ideal I C B are defined by
10 = (yiy (1) i () | @5 € Lig 4+ + iy > 4)

generalizing the special case discussed before Remark 3.15. Note that 2] = 12 but
these ideals differ in general if i > 2.

Finally, in the case when B is an Og-algebra for K|Q, unramified, we say that
the PD-structure on I C B is compatible with that on (p) C Of if v;(bp) = b'p’ /i!
for all b € B for which bp € I.

DEFINITION 4.8. A surjection p: B — A of p-adically complete Og-algebras
is an order i PD-thickening for some ¢ > 0 if ker(p) is a PD-ideal with PD-structure
compatible with that of (p) C Of, and moreover ker(p)+1 = 0.

For fixed A such pairs (B, p) form a natural category, and an initial element in
this category (if exists) is called a wniversal p-adically complete PD-thickening of
order 1.

THEOREM  4.9. If K|Q, is unramified, then for all i the Og-algebra
(AdR/FZH)@Zp is the universal p-adically complete PD-thickening of order i of
Oc, over Ok.

PROOF. We use the description of Corollary 3.30. For simplicity we treat the
case K = Q,; the general case follows by base change to Ok. Given a p-adically
complete PD-thickening p : B — Oc¢,, of order i over Ok, we first show that there
exists a unique p-adically continuous homomorphism A; s — B making the diagram

0

0 —— ker(é‘) Ainf O(CK 0
| | [
0 —— ker(p) B L Oc, 0

commute. As B is p-adically complete, we reduce by Proposition 3.12 (2) to con-
structing a unique map 7 : Ajy/(p) — B/(p) making the mod p diagram com-
mute. Given an element (x,) in Apne/(p) = (Ox/(p))P, consider the unique
p-th root of () in Ajne/(p), namely the shifted sequence (2,11). We must have
T((n41))? = 7((xn))?, and (z,,+1) maps to z1 in O/(p). Therefore we must have
7(zy,) = 24 for a lifting Z; € B/(p) of 1 € Ox/(p). On the other hand, the p-th
power Z} does not depend on 1, for if y; is another lifting of 1, then Z; —y; € ker(p
mod p), and therefore 7" — y¥ = (71 — y1)? = p!p(@1 — y1) = 0 by compatibility
of the PD-structure on ker(p) with that on (p) C Ok. This shows that the map
7(xy) := 7% is well defined, and is the only possible choice for 7.

Next, consider Ajyr as a Zy[t]-algebra via the map ¢ — &, where ¢ is a generator
of ker(#) (Corollary 3.14). By the diagram the composite map Z,[t] = Ain¢ — B
sends ¢ to an element of the PD-ideal ker(p), hence it extends uniquely to a Z,-
algebra map Z,(t) — B. The commutative diagram

Zylt] —— Aint

I l

Z,(ty —— B
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induces a map Z,(t) ®z, [y Aint — B. But
Zp(t) @z,14) Aint = Aine (t)/(t — &)

and the map respects the filtration by powers of PD-ideals, so we conclude by
Corollary 3.30. |

REMARKS 4.10.

(1) The proof above shows that AdR@)ZP is the universal p-adically complete
pro-PD-thickening of Og,. over Ok, where a pro-PD thickening (B, p) is
a PD-thickening complete with respect to divided powers of ker(p). After
inverting p, the divided power structure gets killed, which shows that
Aqr®Q,, identifies with Fontaine’s ring Bj; as defined in ([25], §1.5).

(2) The proof also shows that the ring A.;s = Lonf/OK ®Zp introduced in
Remark 3.31 is the universal p-adically complete PD-thickening of Oc¢,
over Ok, where the definition of a PD-thickening is the same as in 4.8
except that we do not require ker(p)+! = 0 (compare [25], §2.2).

4.3. The Fontaine element. Recall that we defined the G g-module Z,(1)
as the inverse limit lim p,,-; it can be also viewed as the Tate module of the torsion
+—

Zp-module fipeo. Our aim is now to construct a canonical G g-equivariant map
Z,(1) — Fil' Bf;.

The image of a generator of Z,(1) will be an analogue of the complex period 2mi
called the Fontaine element.

CONSTRUCTION 4.11. Represent an element of Z,(1) by a sequence (e,,) of p-
power roots of unity with ¢g = 1 and ? 41 = €n- Reducing the sequence modulo p
we obtain an element ¢ in (O%/(p))**" with multiplicative representative [¢] in the
Witt ring W (O%/(p))P™") = Aine. As the canonical surjection 6 : Ajs — O, lifts
the projection (O%/(p))P**" — Oc, /(p) sending the mod p class of ¢ to 1, we have
0(e]) = 1. On the other hand, we may view [¢] as an element of Aqr®Z, C By
via the embedding A s — AdR®ZP given by Corollary 3.30. It follows that the
assignment

(4.5) (en) = i(—l)”“w

n

perf

gives a well-defined map
v Zy(1) — Fil' B

as [e] — 1 lies in the maximal ideal Fil' Bj; = ker(f ® Q) of the complete discrete
valuation ring Bjy. We may also view the right hand side of (4.5) as the p-adic
logarithm of [¢] in the p-adically complete ring Bj;. This shows that ¢ is G-
equivariant (for K = Qp): given g € Gk, we have by definition ge = X9 where
X is the cyclotomic character, whence g[e] = [s]X(g) by the multiplicativity of the
lifting [e] — €. Taking the logarithm finally gives gic((e,)) = x(9)¢((n) as desired.

DEFINITION 4.12. We define the Fontaine element ¢ € FillBQ'R as the image of
a fixed generator of Z,(1) under ¢.



THE p-ADIC HODGE DECOMPOSITION ACCORDING TO BEILINSON 43

Thus the Fontaine element depends on the choice of a generator up to multi-
plication by an element in Z; and the Galois group acts on it via the cyclotomic
character. This is the promised analogue of the complex period 27i.

In Subsection 6.1 we shall see that the Fontaine element may also be defined
by means of the p-adic comparison isomorphism. Here is a first step towards this
claim. By passing to the quotient by Fil?B(;“R the map ¢ induces a G i-equivariant
embedding

7t Zy(1) < gr' Bz
Another such map is constructed as follows. Recall from Subsection 3.1 that the
dlog map pipee — Qb /0y induces an embedding Zy (1) = T}, (pp=) — T, (Q}QK/OK)
and the latter is identified with ngLQO /O ®Z Cgr B r by Corollary 3.11. So
we have another Galois-equivariant embeddmg

(46) Z,(1) > &' Bl
PROPOSITION 4.13. The map (4.6) coincides with 7.

PROOF. Note first that since [¢] — 1 € Fil'Bjy, the element 7((c,)) is the
class of [e] — 1 in grlBérR. We have to show that this class corresponds to that of
dlog(ey,) € T (pp-) under the identification of Corollary 3.11. We do this modulo
p".

The map Ajr — HO(LQZQY/(p")/OK/(p")/FQ) coming from Corollary 3.29
takes the multiplicative representative [¢] to the p-adic limit of the elements

n+m
p —. . . ..
Entm , where €,,1,, is an arbitrary lift of the class of €,,1,, under the surjection

HO(LQEOCK /p")/(OK/p")/F2> — Oc, /(@"). Let P, be the standard free simplicial
resolution of the Ok-algebra Oz and for an element b € P; put 3, € Piy1 = Og[P]
for the corresponding variable for all ¢ > —1 (with the convention P_; := O%).
By definition, LYY o) /0 /ey /F? = (L0 0, /F?) @ [Z %5 7] is quasi-
isomorphic to the total complex of the double complex

(4.7) P1®QP/O HPO@QP/O HQ]PO/OKHO
p"T P"T p"T
"HPl@QP/O HPO@QP/() *)QP/OK 0.

As each term in (4.7) is torsion free, the total complex is quasi—isomorphic to

(4.8) - = P /(") @ P2/0K/p 4P0/( ") @ P/OK/p QPO/OK/(pn)*}Oa

a complex placed in homological degrees > —1. By Proposition 3.10 (2) we have
an exact sequence

0— ané?/OK — HO(LQEO?/(pn))/(OK/(pn))/F2) — O?/(p”) — 0,

and the proof of the proposition shows that the term nQ%Q /O Comes from setting
the summands P;/(p™) in the terms of (4.7) to 0. Now the element (a? ,0) €
Py @ QPl/OK has image derHm = p" :L"EM+m dTe,,,,, N QPO/OK, hence its mod
0) defines a
class £,y in HO(LQEOCK /p")/(OK/p")/Fz) which lifts that of €, in Oc,/(p")

€2n+m

p" class lies in the kernel of the map dy of (4.7). Therefore (a?

52 1+m )
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by the above description of the map HO(LQEOF/([)"))/(OK/([)"))/FQ) — O%/(").
~1,0) in (LQY_ 0, /F?) &" Z/p"2.
—1,0) in (4.8) is again in the kernel of dy, and under

2n+m
So we have to compute the class of (2

2n+m
2n+m
n P
The mod p" class of (2, ,

the quasi-isomorphism of the total complex of (4.7) with (4.8) it corresponds to the

2n+m 2n+m __ .
class of (22, . ~—1, O,p"':mx§2n+m Ydze,, ) € Py @Q}DI/OK @Q}DO/OK in the total
n+m
complex of (4.7). As x‘g2n+m — 1 maps to 0 under the map Py — Oy, this class

represents an element of ,» Q:(L?? /O and therefore comes from the double complex
obtained by deleting the P; terms. Chasing through the construction shows that

the element of ané?/oK thus obtained is the image of p"*mwé’z:m 1dx52n+m,
2n+m __
which is p"*msgner 1d52n+m = p""™dlog eoptm = dloge,. O

COROLLARY 4.14. The Fontaine element t generates the maximal ideal of the
discrete valuation ring B, and hence Bar = B[t ™'].

REMARK 4.15. It can be checked that the same construction as in 4.11 realizes ¢
as an element of A..is. One defines Beis = Acris [t_l]. The Frobenius endomorphism
of Oc¢, /(p) lifts uniquely to an endomorphism ¢ of A, and satisfies p(t) = pt
(see [25], 2.3.4).

5. Beilinson’s comparison map

5.1. Sheaf-theoretic preliminaries. In this section we construct the map
comparing de Rham and p-adic étale cohomology following Beilinson’s approach.
We begin by assembling general facts about sheaves in certain Grothendieck topolo-
gies needed for the construction. First a general comparison result for Grothendieck
topologies due to Verdier:

THEOREM 5.1. Assume F : C — C' is a functor between small categories, and
C' is equipped with a Grothendieck topology. Equip C with the induced Grothendieck
topology, i.e. the finest topology in which the pullback of a sheaf on C' by F is a
sheaf on C.

If F is fully faithful, and moreover every object of C' has a covering by objects
in the image of F', then the pullback functor induces an equivalence of category of
sheaves on C' with the category of sheaves on C.

See [2], Exposé 111, Theorem 4.1 or [44], Chapter I, §3.9. The main point of the
proof is that under the conditions of the theorem one may construct a push-forward
functor from sheaves on C to sheaves on ¢’ which is right adjoint to pullback.

Beilinson needs a refinement of the above theorem for functors that are faithful
but not necessarily fully faithful. He therefore replaces the covering condition in
Verdier’s theorem by the following more complicated one:

Condition (*). For every V € C’ and a finite family of pairs (W, fo) with W, € C
and f, : V — F(W,) morphisms in C’ there exists a set of objects W3 € C together
with morphisms F(W3) — V in C’ satisfying:
e The morphisms F(Wg) — V form a covering family of V.
e Every composite morphism F(Wgz) - V — F(W,) is in the image of a
morphism Wg — W, via F.

Under this condition Beilinson proves in §2.2 of [3]:



THE p-ADIC HODGE DECOMPOSITION ACCORDING TO BEILINSON 45

THEOREM 5.2. If C,C" are as in the previous theorem and F : C — C' is
a faithful functor satisfying condition (*), then the pullback functor induces an
equivalence of the category of sheaves on C' with the category of sheaves on C for
the topology induced by F'.

In the case where the initial B, form an empty set, Beilinson’s condition reduces
to Verdier’s.

We now recall the notion of Godement resolutions. This is a canonical way to
construct a flabby resolution of a sheaf on a site that has enough points.

CONSTRUCTION 5.3. Suppose for simplicity that F is a sheaf for the Zariski
topology on a scheme Y’; this is the only case we need. Given a point y € Y, we
may consider the inclusion map i, : Speck(y) — Y and the push-forward sheaf
iy« Fy, where F is the stalk of F at y considered as a constant sheaf. The rule

U COF)U) = [] iy Fu
yelU

with the obvious restriction maps defines a flabby sheaf C°(F) on X and there is
a natural injective morphism of sheaves

L F—=CUF), s (sy)
where s, is the image of a section s in the stalk F,. Now we define
CY(F) := C°(coker (1)).
By construction, there is a natural map
d*: C°(F) = CH(F).
We now construct inductively sheaves
CY(F) := C"(coker (d'~?)).

and maps

=t CHF) = CU(F).
In this way we obtain a flabby resolution F — C*®(F) canonically attached to F and
functorial in F, the Godement resolution. By definition, the complex I'(X, C*(F))
represents RI'(X, F) in the bounded below derived category of abelian groups. This
construction extends in the usual way from sheaves to bounded below complexes
of sheaves.

Finally, we need the definition of Voevodsky’s h-topology.

DEFINITION 5.4. A morphism ¢ : X — Y of schemes is a topological epi-
morphism if on underlying spaces it induces a topological quotient map (i.e. ¢ is
surjective and the topology of Y is the same as the quotient topology induced by
¢.) It is a universal topological epimorphism if for every morphism Z — Y the base
change map X Xy Z — Z is a topological epimorphism.

An h-covering of a scheme X is a finite family of morphisms of finite type
X; — X such that IIX; — X is a universal topological epimorphism. We equip
the category of schemes with the induced Grothendieck topology and call it the
h-topology.



46 TAMAS SZAMUELY AND GERGELY ZABRADI

Etale surjective maps and proper surjective maps are universal topological epi-
morphisms, so the h-topology is finer than the étale or proper topologies (defined
respectively by finite surjective families of étale and proper maps). The following
geometric fact is nontrivial, however.

FacT 5.5. Assume X is a reduced connected Noetherian excellent scheme (for
instance a reduced scheme of finite type over a field or a discrete valuation ring
of characteristic 0). Every h-covering I1X; — X has a refinement ITY; — X that
factors as IIY; — Y — X, where IY; — Y is a Zariski open covering and ¥ — X
is proper and surjective (but usually not flat). See [43], Corollary 10.4.

This fact has an important consequence for h-hypercoverings, i.e. hypercover-
ings for the class of coverings in the h-topology. Namely, we may apply Theorem
A.32 of the Appendix to obtain:

COROLLARY 5.6.

(1) In the category of reduced connected excellent schemes h-hypercoverings
satisfy cohomological descent for torsion étale sheaves.

(2) In the category of reduced C-schemes of finite type h-hypercoverings satisfy
cohomological descent for the complex topology.

Moreover, applying Theorem A.33 of the Appendix we obtain:

COROLLARY 5.7. Let X be as above, and let A be a torsion abelian group.
Denoting by A and Ay, the associated constant étale and h-sheaves on X, we have
a canomnical quasi-isomorphism

RT (X, Aet) = RT(Xp, Ap).
Proof. For all i > 0 we have a series of canonical isomorphisms

(5.1) H(X, Ay) = lim H(C(Aer(Y2))) & lim H, (Ye, A})

where the first isomorphism comes from applying Theorem A.33 of the Appendix
to the system of h-hypercoverings Y, — X, and the second is proven by the same
argument as the analogous fact for Cech cohomology (see e.g. [44], Chapter I,
Theorem 2.2.3). Here AZ, denotes the constant simplicial sheaf coming from Ag.
Since Ag; is the pullback of the constant sheaf Ag, on X to Y,, the direct system
on the right hand side of (5.1) is constant by Corollary 5.6 (1). o

5.2. Preliminaries on logarithmic structures. We now give a summary
of the notions from logarithmic geometry we shall use; they will be needed from
Section 5.4 onwards. Our basic reference for log structures is Kato’s paper [33].
A gentle introduction is contained in sections 2-3 of [1]; a textbook by A. Ogus is
expected.

A monoid is a commutative semigroup with unit. Every monoid M has a
group completion M®P which is the universal object for monoid morphisms of M
into groups. It can be constructed as the quotient of M x M where two pairs (z,y)
and (z,t) are identified if axt = ayz for some a € M. There is a natural map
M — M?®P induced by z — (z,1); if it is injective, then M is called an integral
monoid.

A pre-logarithmic ring (or pre-log ring for short) is a triple (A, M, «), where A is
a commutative ring with unit, M is a monoid and o« : M — A is a homomorphism
in the multiplicative monoid of A. Morphisms (A, M,a) — (B, N, 3) of pre-log
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rings are given by pairs of morphisms M — N and A — B compatible via o and 3.
A pre-log ring is a log ring if the map a induces an isomorphism o ' (A*) 5 A%,
where A* is the group of units in A. Every pre-log ring as above has an associated
log ring given by a morphism o : M* — A, where M is the quotient of A* x M
where two pairs (a,z) and (b,y) are identified if there exist ¢,d € A* such that
aa(d) = ba(c) and cx = dy. One checks that this is indeed a log ring, with o
induced by the map (a,x) — aa(z).

Given a scheme X, one can define pre-log structures and log structures on X
by sheafifying the above notions for the étale topology. Thus a pre-log scheme is a
triple (X, M, «), where X is a scheme, M is a sheaf of monoids on the small étale
site of X and a: M — Ox is a morphism of étale monoid sheaves, where Ox is
considered as a monoid for its multiplicative structure. A morphism (Y, N, () —
(X, M, «) of pre-log schemes is given by a morphism ¢ : ¥ — X of schemes and a
morphism ¢~ 1M — N of étale monoid sheaves whose composite with 8 equals the
composite ¢ M — ¢~ Ox — Oy, where the first map is the pullback of o and
the second is induced by ¢. A pre-log scheme is a log scheme if moreover « induces
an isomorphism a1 (0%) = O%. From now on we shall drop a from the notation
when considering (pre-)log schemes.

One may define an associated log scheme (X, M?) for every pre-log scheme
(X, M) by sheafifying the construction for pre-log rings described above. A log
scheme (X, M) is coherent (resp. integral) if étale locally there exists a morphism
Px — Ox whose associated log structure is isomorphic to M, where Px is a
constant sheaf of monoids defined by a finitely generated (resp. integral) monoid
P. The log structure is fine if it is coherent and integral. We shall only use the
two most important examples of log structures: the trivial log structure, given by
M = O% and the natural inclusion o : O% — Ox, and the canonical log structure
associated with a pair (X, D), where X is a regular scheme and D C X a normal
crossing divisor (see the beginning of the next section for a reminder). In the latter
case the map M — Ox is given by the inclusion of (Ox N j.OF) — Ox, where
j : U — X is the inclusion map of the open complement U of D in X.

Given a morphism (A4, M,«a) — (B,N,B) of pre-log rings, one defines
the B-module Q%B’ N)Y/(A,M) of log differentials as the quotient of the module
Q}B/A @ (B ®y coker (M8 — N&P)) by the submodule generated by elements of
the form (dB(n),0) — (0,8(n) ® n) for n € N. It comes equipped with natu-
ral maps d : B —>Q%B7N)/(A,M), dlog : N — Q%B)N)/(A)M) related by the formula
B(n)dlog(n) = dB(n) for all n € N. One can show that the operation of taking
associated log rings induces an isomorphism on log differentials.

Given a morphism ¢ : (Y, N) — (X, M) of pre-log schemes, one defines the Oy-
module Q%Y, ~)/(x,m) of log differentials by performing the above construction in the
context of étale monoid sheaves. If moreover ¢ is a morphism of fine log schemes,
one says that ¢ is log smooth if the underlying scheme morphism is locally of finite
presentation and f satisfies a log analogue of the infinitesimal lifting property ([33],
3.3 or [1], Definition 3.10). In this case one can show that the sheaf Q%Y,N)/(X_’M)
is locally free of finite rank. The fundamental example of a log smooth morphism
is given by a regular flat scheme X — S, where S is the spectrum of a discrete
valuation ring and X has semi-stable reduction over S. Here the log structures on
X and S are the canonical ones associated with the special fibre of X — S and the
closed point of S, respectively.
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Once log differentials have been defined, one has a notion of a log cotangent
complex. Olsson’s paper [37], which is the main reference on the subject, contains
two constructions; Beilinson works with that of Gabber, explained in Section 8 of
[37]. The main point is that Gabber defines an analogue of the free A-algebra
A[B] used in the construction of the usual cotangent complex Lp,4 for a morphism
(A, M) — (B, N) of pre-log rings. This is the pre-log ring given by the free A-
algebra A[BII N| on the disjoint union on the underlying sets of B and N together
with the morphism of monoids M &N~ — A[BTI N] induced by the structure map
M — A and the map sending the basis element of the free monoid N%V corresponding
to n € N to the generator of A[BII N]| given by n. There is a natural morphism
(A, M) = (A[B1I N], M @ N~) of pre-log rings and the associated module of log
differentials is isomorphic to the free B-module with basis B IT V.

With the notion of a free algebra attached to (A, M) — (B, N) at hand, one
defines a canonical free resolution P4 (B, N), — (B, N) in this context by
mimicking Construction 2.3 (resolution meaning here that the underlying morphism
of simplicial sets is a trivial fibration). One then defines

. 1
LNy /amy = @ Py sy (BN), /(AM) P (BN), B

where the tensor product is taken over the underlying simplicial ring of
P(A,M)(B7 N).
Similarly, one defines the log de Rham algebra

L nysann) = Tot(Q Py oy (B.N), /(AM))

which has a Hodge filtration and a Hodge-completed version LSA)EB7N)/(A7M). The
graded pieces of the Hodge filtration are given by shifts of derived exterior powers
of L(p,n)/(a,nm) as in Proposition 2.25. All these notions reduce to the usual ones
in case the pre-log structures are trivial (i.e. given by the unit submonoids).

It is proven in Olsson’s paper ([37], Theorem 8.20) that passing to associated
log rings for a morphism (A, M) — (B, N) of pre-log rings induces an isomorphism
on associated log cotangent complexes. Furthermore, the logarithmic cotangent
complex enjoys properties analogous to those of the usual one. In particular, one
has a natural map L(p n)/a,m) — Q%B,N)/(A’M) which induces an isomorphism
on Hy and is a quasi-isomorphism if (B, N) is a free algebra over (A4, M) defined
by Gabber’s construction ([37], Lemmas 8.9 and 8.10). Most importantly, there
is a log analogue of the exact transitivity triangle (Theorem 2.13) for a sequence
(A, M) — (B,N) — (C, L) of morphisms of pre-log rings ([37], Theorem 8.18).

Finally, given a morphism ¢ : (Y, N) — (X, M) of pre-log schemes, one defines
sheafified variants L(y,n)/(x,m), LO{y,n)/(x,m) and LQEY,N)/(X,M) of the above
constructions by performing analogous operations starting from the natural mor-
phism (¢~ 'Ox, ¢ M) — (Oy, N) of pairs of étale sheaves induced by ¢. In the
case when ¢ is a morphism of fine log schemes that is log smooth and integral (the
latter is a technical condition satisfied in our basic example of semistable reduc-
tion), the natural morphism Ly,ny/x,ay — Q%y)N)/(X’M) is a quasi-isomorphism
(see [37], 3.7 and 8.34).

5.3. The geometric side of the comparison map. In what follows, by
‘variety’ we mean a separated scheme of finite type over a field.



THE p-ADIC HODGE DECOMPOSITION ACCORDING TO BEILINSON 49

Let Y be a smooth variety over a field k of characteristic 0. Choose a smooth
compactification j : Y < Y such that D := Y'\Y is a divisor with normal crossings.
Such a compactification exists by Hironaka’s theorem.

Recall the notion of divisor with normal crossings: there is a family of étale
morphisms ¢; : Y; — Y with UIm (¢;) =Y (i.e. a covering of Y in the étale
topology) such that each Y; sits in a cartesian square

DXV?i I ?z

[
V(ty---t,) —— A}

where the morphism p; is étale, the t1,...,t, are coordinate functions on A} and
r <n.
In the above situation, we have the notion of the logarithmic de Rham complex.

DEFINITION 5.8. Given a pair (Y, D) as above, the logarithmic de Rham com-

plex Q3 /k(log D) is the subcomplex of j*Q;//k whose terms have local sections

w € j*Qif/k(U) such that both w and dw have a simple pole along D (i.e. fw is
a section of Q% Ik and fdw is a section of Q%"/lk for a local equation f of D in U
sufficiently small).

REMARK 5.9. It can be shown (see [14], §3 and [15], §3.1) that Qi?/k(log D)=

/\in?/]c (log D) and if we pull back le/k(log D) to an étale neighbourhood Y; as
above, it becomes freely generated by dty/ty,...,dt,/tr, dtriq, ..., dty.
Now set

RTar(Y/k) := RT(Y, 0%, , (log D)),

Notice that RT'qr(Y/k) is an object in the bounded derived category of abelian
groups, and its cohomologies are the groups

Hig (Y/k) = HI(V. 93, (log D)).

These groups are equipped with the Hodge filtration defined by

FPHip (Y/k) := Im (H'(Y, FPQ$. s (log D)) — H' (Y, 05 1 (log D))

where

FPQ5 ), (log D) = (0 — QF (log D) — Qp?‘ﬁ(log D)= --)

In case Y is proper, we may take Y =Y and hence
Hig(Y/k) = H' (Y, Q5 ).

REMARKS 5.10.
(1) Deligne has shown (see [15], Theorem 3.2.5) that RI'gr(Y/k) does not
depend on the choice of Y.
(2) When &k = C and Y is not necessarily proper but smooth, we have iso-
morphisms

H'(Y,Q3,) = H'(Y™",C) & H'(Y, Q5 , (log D)).
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However, the filtration on H*(Y™",C) coming from the filtration on the
left hand side induced by

FPQy,, = (005,

p+1

—>Qy/k

is not the same as the Hodge filtration coming from the right hand side
(in fact, it is often trivial).

We now discuss a sheafified variant of the above notions. Fix an algebraically
closed base field k of characteristic 0, and consider pairs (U, U), where U is a smooth
k-variety with smooth compactification U such that U\U is a divisor D with normal
crossings. These form a category Py, whose morphisms (U, U) — (U, UI) are defined

as morphisms U — U mapping U into U’. We have a contravariant functor on this
category given by

(5.2) (U,U) — QZU,U)/k = Q'v/k(log D).

We consider this functor as a presheaf on P, and would like to sheafify its total
derived functor but the latter takes values in a derived category. However, fol-
lowing Tllusie [32], we may use Godement resolutions to find a canonical complex
representing it:

(5.3) (U.0) = DT, (2% 5,,)

We thus have a presheaf on the category P that is a derived version of (5.2). Via

the forgetful functor Py, — Vary, given by (U,U) +— U we may restrict Voevodsky’s
h-topology on Vary to P, and therefore the following definition makes sense.

DEFINITION 5.11. We define Agr to be the complex of h-sheaves associated
with the presheaf (5.3) on the category Pk.

(U,0)/k"
The good news is that Aggr defines a filtered complex of h-sheaves on the whole
of Vary, by virtue of the following theorem.

Note that Aggr carries a Hodge filtration induced from the one on §2

THEOREM 5.12. The forgetful functor Py, — Vary induces an equivalence of
categories between h-sheaves on Py, and h-sheaves on Vary.

PRroOF. Apply Beilinson’s Theorem 5.2 in the situation where C’ is Vary
equipped with the h-topology, and F is the (faithful) forgetful functor (V,V) — V
from the category P;, of pairs (V,V) consisting of a k-variety V and a proper k-
variety V containing V as a dense open subset. Notice that condition (*) is satisfied:
given a finite family of maps V — V,, with V,, having a compactification V, embed
V in a proper k-variety V' (such a V' exists by Nagata’s theorem) and let V be the

closure of the image of the embedding V' — V' x HVQ. Then V is proper and the
second projection induces maps (V,V) = (Va, Va).

Next notice that the inclusion functor Py, — Py, is fully faithful, hence we may
apply Verdier’s Theorem 5.1 to it: we have to check that each pair (V,V) in P},
has an h-covering (U,U) — (V,V) by a pair in Pk. This follows from Hironaka’s
theorem or de Jong’s alteration theorem over fields [13]. O

We now come to the main result of this subsection. The morphism of filtered
complexes of presheaves

co Qe

(W, k) — A
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gives rise to a morphism
(5.4) RT4r(Y/k) = RTA(Y, Aar)
for a smooth k-variety Y, inducing maps

Hip(Y/E) - H"(Y, Aar).

THEOREM 5.13. For a smooth variety Y over k the maps (5.4) are filtered
quasi-isomorphisms.

PROOF. By a ‘Lefschetz principle’ type argument we reduce to the case k = C.

Choose a smooth normal crossing compactification Y for Y with complement
D. By ([16], (6.2.8)) or in more detail ([11], Theorem 4.7) there exists an h-
hypercovering Vo — Y such that each V,, is a smooth k-scheme of finite type and
furthermore there is a simplicial compactification V, — Ve — Y such that V,, is
proper and smooth with D,, := V,, \ V,, a normal crossing divisor. On V, consider
the simplicial complex of presheaves Q.V. /k(log D,).

According to Grothendieck [28] (see also [15]), we have a filtered quasi-
isomorphism

RI'(V,, O, c(log D.)) = Rl (Vo,C)

where on the right hand side we have complex singular cohomology. Similarly, we
have

RT(Y, 03, . (log D) = Rl (Y, C).

The two isomorphisms induce commutative diagrams for all n

H" (Vh Q.V./(C(log D')) i> Hgng (Vh C)

| l

Hip(Y) =H"(Y, Q5 (log D)) —— H§,,(Y,C)

By Corollary 5.6 the right vertical map is an isomorphism, hence so is the left

one. Recall that RI'(Y, Qs /(C(log D)) is computed (in the Zariski topology) by

ry, C"(szy) /C)) and similarly for the simplicial version. It follows that the

direct system H"(V,, C* Q% /C(log D,)) for all V, as above is constant. Since the

direct limit of this system is H" (Y, Aqr) by Theorem A.33, we are done. O
We shall in fact need a Hodge-completed version of the above theorem. Define

the Hodge-completed de Rham complex Q;Uﬁ) Jk
ZU,ﬁ)/k/Fi by steps of the Hodge filtration. Next, denote by .,ZdR

the h-sheaf (of projective systems of complexes) associated with

(amHmﬁw@;

as the projective system defined

by the quotients Q

U,ﬁ)/k))'
As above, this gives rise to an h-sheaf on the category of varieties, whence mor-
phisms

(5.5) RU4r(Y)" = RU(Y, Ar)

where on the left-hand side we have hypercohomology of the Hodge-completed de
Rham complex. Its cohomology groups are the same as those of the non-completed
complex as the Hodge filtration on each fixed group Hir(Y) is finite. Hence we
have:
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THEOREM 5.14. For a smooth wvariety Y over k the maps (5.5) are filtered
quasi-isomorphisms.

5.4. The arithmetic side of the comparison map. We now consider an
arithmetic version of the previous constructions. Let K be a finite extension of
Qp, and Ok its ring of integers, with residue field k. A semistable pair over K
will consist of a smooth K-variety U and an open immersion j : U — U, where
U is a regular scheme proper and flat over Ok, and U \ U is a divisor D with
normal crossings. This divisor consists of two parts. There is a ‘horizontal part’
Dy, consisting of the components that are flat (hence surjective) over O. It yields
a normal crossing divisor Uk \ U after passing to the generic fibre. The other
components form the ‘vertical part’ D,; it is concentrated in the special fibre U;.
Locally the situation can be described as follows. Assume that a point u € U
lies on r components of D, and s components of D;,. Then there is an étale
morphism V' — U whose image contains u and another étale morphism V —
Spec Oklt1, ... tn]/(t1 -+ t, — ), where r < n and 7 is a uniformizer in Ok.
Moreover, the trace Dy, x;; V is described by the cartesian diagram:

Dy xyV E— \%4

J I

Vtyi1- trss) —— SpecOxltr,... tal/(t1 -, — 1)

A semi-stable pair over K will be a pair (V, V) defined by an open immersion of
a K-variety V in a flat proper Ox-scheme V which comes by base change from
a semi-stable pair (U’,U") defined over some finite extension K'|K in the above
sense.

Equip V with the canonical log structure defined by M = 0y,Nj,Oy;; we denote
this log scheme again by (V,V). There is a morphism of log schemes (V,V) —
Spec Ok induced by the composite V — Spec O — Spec Ok; here Spec Ok is
equipped with the trivial log structure given by O%. It therefore makes sense to
consider the derived log de Rham algebra LQZV’V) /0K and its completed version

L@ZV’V)/OK introduced in Subsection 5.2. As above, the rule
(V,V) =TV, LNy 1y 0,)

defines a contravariant functor on the category of semi-stable pairs over K. To
make the derived functor RT'(V, LQEV_’V) /OK) a presheaf on this category, we again
use the Godement resolution for the Zariski topology:

(V,V) = T(V,C* (L 10,0 )

By definition, the right hand side is a projective system of complexes of Zariski
sheaves (I'(V, C*(LXy vy /0, /F*)))-

Now consider the h-topology on the category Varg of K-varieties, and pull
it back to the category SS7 of semistable pairs over K via the forgetful functor
887 — Varg. Sheafifying the above presheaf on SS+ for the h-topology, we obtain
an h-sheaf that we denote by AER following Beilinson.

Again this defines an h-sheaf on the whole category of K-varieties by the fol-
lowing analogue of Theorem 5.12:
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THEOREM 5.15. The forgetful functor SS3 — Vary induces an equivalence of
categories between h-sheaves on SS and h-sheaves on Varg.

Proof. As in the proof of Theorem 5.12, we proceed in two steps. We first ap-
ply Beilinson’s Theorem 5.2 in the situation where C’ is Varz equipped with the
h-topology, and F' is the forgetful functor (V,V) — V from the category PPz of
pairs (V,V) consisting of a K-variety V and a reduced proper flat Oz-scheme V
containing V' as a dense open subscheme. By the same arguments as in the geo-
metric case, condition (x) is satisfied, hence we obtain an equivalence of categories
of h-sheaves.

Next we apply Theorem 5.1 to the fully faithful inclusion of categories SS7 —
PPs. We have to check that each pair (V,V) in PP has an h-covering (U,U) —
(V,V) by a pair in SS7. This follows from one of de Jong’s alteration theorems [13]:
choosing a model (V', V') of (V,V) over a finite extension K’|K, there exists, up
to replacing K” by a finite extension, a semistable pair (U’,U’) over K’ equipped
with an alteration (U’,U") — (V',V’). As alterations are surjective and proper
(and generically finite), this is an h-covering. a

We now compare the sheaf AEIR with the sheaf .ZdR defined at the end of the
previous subsection.

PrOPOSITION 5.16. We have a canonical isomorphism
Ap ®Q= Ay
of projective systems of complexes of h-sheaves on Varg.

Proof. First, consider a pair (U,U) of K-varieties such that U is proper smooth
over K and U\U is a normal crossing divisor. As before, equip U with the canonical
log structure and K with the trivial log structure. Consider the derived logarithmic
de Rham complex LQEU )R arising from these data. Since U is log smooth and
integral over K, we have

. ~ O°
LYy oy % = Yoo ®
where on the right hand side we have the non-derived logarithmic de Rham complex
of the previous section.

Furthermore, we have Lz K = Q% = 0 by Remark 3.7 and a direct limit

/K
argument, so

LOo?

TR S LO?®

(U0)/K"
Finally, assume that U is the generic fibre of a proper flat Oz-scheme U such that

(U,U) is a semistable pair over K in the sense defined above, equipped with its log
structure. Then by construction

LOy 7y = L¥vwyj0, @ Q-
Putting everything together, we thus have
LQEUJ/{)/OK ®Q~ QZU,U)/?

Passing to global sections of the associated Godement resolutions, we obtain an
isomorphism of projective systems of filtered complexes

(CU, C* (L 1) j0, /[F)) @ Q) 2 (DT, C* Q0 5y 5/ F)))-
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Passing to associated h-sheaves on Vary, we finally obtain the stated isomorphism.
o

Now recall that we defined Agr := L(A%K
schemes

Ok Consider the morphisms of log

(U,U) 5 Spec O — Spec Ok

where the latter two schemes are equipped with a trivial log structure. This gives
rise to a transitivity triangle of log cotangent complexes, whence a map

T Log/ox = Lwu/ox-
Similarly, there is a map of derived log de Rham complexes

Modding out by F?, we may identify the left hand side with the constant (Zariski)
sheaf on U associated with Agr/F*. As its higher cohomologies are trivial, we have
a morphism of complexes (with Agr/F* placed in degree 0)

Aar/F' = TU,C* (L0 /0, /F*))-
Sheafifying for the h-topology we obtain morphisms
Agr/F" — A | F?
for all 7, where we have a constant h-sheaf on the left hand side. Now we have:

THEOREM 5.17 (Beilinson’s p-adic Poincaré lemma). The above maps induce
quasi-isomorphisms
(Aar/F)BZy — (Al /F)BZ,
for all 1.
The proof will be given in the next section.

COROLLARY 5.18. Assume X is a smooth K-variety having a smooth normal
crossing compactification. There are filtered quasi-isomorphisms

RUa(Xge, Zy) @z, (Bl /F') 5 RUn (X, A/ ') BQy
for all i, giving rise to a filtered quasi-isomorphism
RTe(X7, Zp) ®z, B ™ RTn(Xgz, Al ) 8Qp
in the limit.
Proof. We start with the quasi-isomorphisms

RUa(Xge Zp) ©F, (Aar/F') = RTet(Xge; Aaw/F").

Taking completed tensor product with Z, (which is an exact functor) we obtain
RUs (X, Zy) @7 (Aar/F')®Zy ~ Rl (X, (Aar/F")&Zy).

Next, Corollary 5.7 yields a quasi-isomorphism

RTe( Xz, (Aar/F*)®Z,p) = RUp (X7, (Aar/F')RZLy)
Applying the Poincaré lemma yields

RUW(Xge, (Aan/F')82Zy) = RUW(Xge, (Al /F)BZ,)
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so, putting the above together (and using exactness of ®Z, again)
RU& (X7, Zy) ®% (Aar/F)@ZL, ~ RT) (X, Al /F))GL,.
On the other hand, by definition we have
(Aar/F")8Z, ® Q = B /F",

so the corollary follows by tensoring with Q. a

CONSTRUCTION 5.19. We are finally in the position to construct the comparison
maps

comp,, : H(?R(X) R Bar — H&(Xf, Zp) ®Zp Bar

for X as in the previous corollary following Beilinson’s approach.

First recall that by Corollary 5.14 and Proposition 5.16 we have filtered quasi-
isomorphisms

RTqr(X7)" = Ry (X7, Adr) = Ry (X7, Ajp) © Q.
On the other hand, there is a natural map
RUp,(Xge, Ag) — RUy(Xg, AlR) D7,

so after tensoring by Q and composing with the preceding isomorphisms we obtain
a map
RFdR(X?)/\ — RFh (Xf, AZR)®QP

Applying the previous corollary, we therefore have a natural map

RFdR(Xf)A — Rl (X%, Zyp) ®z, B;"R.
Composing by the natural map RTqr(X)" — RLar(X%)"

linearly, this yields a map

and extending BIR—

RFdR(X)A R B(;FR — RTg (Xf, Zp) ®Zp B(JirR
compatible with filtrations. Passing to the fraction field of BJ; and taking coho-
mology, we obtain the announced comparison maps

comp,, : Hig(X) ®x Bar — Hg (X5, Zy) @z, Bar
that are compatible with filtrations and Galois action. (Here we have used again
that the Hodge filtration on the groups Hjg (X) is finite.)
6. The comparison theorem

6.1. Proof of the comparison isomorphism. This subsection is devoted
to the proof of:

THEOREM 6.1. (De Rham comparison theorem) The maps comp,, are filtered
isomorphisms for all smooth quasi-projective X and all n.

We begin with the crucial case X = G,, x = Spec K[z,z ']. Since it is
connected of dimension 1, only the case n = 1 is nontrivial.

PROPOSITION 6.2. The map comp, induces a Galois-equivariant filtered iso-
morphism
Hig (G k) ®k Bar = Hg(G,, 7, Q) ®q, Bar-
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Proor. We may assume K = Q, by a base change argument and drop the
subscript from G, g,. Since comp; is compatible with filtrations, it suffices to show
that it induces an isomorphism on associated graded rings. By Proposition 4.2 we
have gri; Bar = C,(i) for all i. On the other hand, since G, is affine of dimension
1, we have FOH}R(G,,) = F'Hix(G,,) = Hig(G,,) and F'Hiz(G,,) = 0 fori > 1,
whence an isomorphism gri Hig (G,,) = Hiz(G,,). Thus it will suffice to show that
comp; induces an isomorphism

(6~1) Hle(Gm) ®@p (Cp = Hélt (Gm,@pv(@p) ®Qp (Cp(l)

as on the other graded pieces the maps will be just Galois twists of this one.

Both sides of (6.1) are 1-dimensional Cp-vector spaces. A generator for the left
hand side is given by the logarithmic differential dlog(z), and of the right hand
side by the compatible system c, of the images of the coordinate function x by the
Kummer maps

Hgt(((}m)@p, G,) — Hé}t(Gm’@p, fipn)

for all n. Another description of the class ¢, is as follows. The étale fundamental

~

group II := Wl(Gm@ ) is pro-cyclic, whence an isomorphism Hélt(Gm@ s Ppn) =
p »ep
Z/p"Z, a generator being given by the class of the p,n-torsor G,, coming from the
map = — z” on G,, g, - The compatible system of these for all n forms a pro-torsor
s\ep
whose class generates Hg, (G, 5. Lp(1)).
Yp
It thus suffices to check that comp; sends the class of dlog(x) to that of ¢,
modulo the identification gryBar = C,(1). As we have seen in Subsection 3.1,
this isomorphism is induced by the map p,» — pn,Qé?/OK >~ orh Agr oL Z/p"Z.
The latter group, viewed as a constant h-sheaf, is isomorphic to gr};AgR oLz /p"Z
by the Poincaré lemma (Theorem 5.17). Restricting to the étale topology we thus
L
have a map p : Hélt(Gm,@p7upn) — Hélt(Gm@p,gr%AEiR ®% Z/p"Z). On the other
hand, we may identify dlog(z) € griHig(G,,) with a class in H,%(Gm’@p, griAdr)
via Theorem 5.13. As this class is defined over O, we may view it as a cohomology
class with values in gr};AgR (as an h-sheaf on Varg ) and send it to a class in
P

Hé(Gm,@p, gr%AiR @LZ/p"7) = Hélt(Gm,@p, gr};AﬂR ®% Z/p"7Z). We compute the

latter group as group cohomology of II with values in AZR ® [Z N Z)]. Both classes
are represented by an element in the 1-cochain group C°(II, AER[l]) o CH(1, AER).
The 0-cochain group CO(H,AER[l]) maps to this group via multiplication by p"
in the first component and the natural identification in the second with a minus
sign. Now let  be the coordinate function on the p,n-torsor G G, ﬂ G,,. We
represent dlog(z) by a 0-cochain with values in AZRH] and compute p"dlog(z) =
dlog(z”") = dlog(z). On the other hand, under the identification C°(II, AE{R[I])

c(1I, AER) the class dlog(Z) goes over to the 1-cocycle o — o(dlog(Z)) — dlog(Z)
which represents p(c;). Therefore the two 1-cocyles are cohomologous. O

REMARK 6.3. The isomorphism of the proposition sends the class of the element
dlog(z)®1 in Hig (G x) @k Bar to c;@(1®C,) € Hét(Gmf, Qp(1))®q, Bar(—1),
where ¢, is as in the above proof and ¢ : Z,(1) — Bqgg is the map of Construc-
tion 4.11 defining the Fontaine element. Indeed, the elements dlog(z) ® 1 and ¢,
are equal up to multiplication by an element A € Bggr(—1) in the 1-dimensional
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Bgr-vector space Hélt((f}mf7 Qp) ®q, Bar, and the calculation in the above proof
together with Proposition 4.13 shows that A and ¢:®C,, coincide modulo Fil®. Hence
their difference is a Galois-invariant element in Fil? Byg(—1), which must be 0 by
Proposition 4.2 and Tate’s theorem cited in formula (1.2) of the introduction.
This is analogous to the isomorphism of complex de Rham theory for G,,, that

maps dlog(z) to the linear map H;(G,,,Z) — C with value 27 on a generator of
H(Gp,Z) 2 7.

The next crucial point is compatibility of the comparison map with Gysin maps
in codimension 1. We explain these for the étale theory; the de Rham theory is
similar. In fact, as explained in ([9], §2), both étale cohomology and algebraic de
Rham cohomology satisfy the axioms of a ‘Poincaré duality theory with supports’
in the sense of that paper, and the properties of cohomology we are to use are all
valid for theories satisfying these axioms.

Given a pair Y C X of K-varieties, there are cohomology groups with support
H{(X,Q,(r)) fitting into a long exact sequence

s HE (X, Qp(r) = HE (X \ Y, Qp(r) — Hy ™ (X, Qp(r) = -+

One can in fact construct this sequence (and the similar one in de Rham co-
homology) by defining RT'y(X) to be the cone of the natural pullback map
RT(X) — RT'(X \Y). As a consequence of this cone construction, we may ex-
tend the definition of the comparison maps comp,, to cohomology with support in
Y.

If moreover both X and Y are smooth and Y is of codimension 1 in X, there
are purity isomorphisms (sometimes called Gysin isomorphisms)

HE (Y, Qp(r) = Hy (X, Qp(r + 1))
for cohomology with support. Composing with the natural map
Hy (X, Qp(r +1)) = Hi (X, Qp(r + 1))
we obtain the Gysin maps
HE (Y, Qp(r)) — Hi (X, Qp(r +1))

We first study the Gysin map in a special situation. Consider a line bundle
L on a smooth Y this is a locally free Oy-module of rank 1. The corresponding
geometric line bundle is denoted by V(£) — Y. As such, it is equipped with the
zero section Y — V(L) which identifies Y with a smooth codimension 1 closed
subscheme in V(L£).

LEMMA 6.4. The maps comp,, are compatible with Gysin isomorphisms asso-
ciated with closed embeddings i : Y — V(L) as above.

Proof. In both the étale and the de Rham theories, the projection 7 : V(L) - Y
induces a map of cohomology rings 7* : H*(Y) — Hy(V(L)) that equips the
latter ring with an H*(Y)-module structure induced by the cup-product. The
map i, respects this module structure, and therefore for all « € H"(Y) we have
ix(a) =i, (1) Un*(a) where 1 € H°(Y). Thus we reduce to showing that the maps
comp, preserve the classes i.(1) € H(V(L)). Pick an open covering trivializing
the line bundle £. By the Mayer-Vietoris sequences

S HYNUNV) 5 HNUUV) = HYU) ® H (V) — - --
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in both theories (and their analogues with support) we reduce to the case where £
is trivial, i.e. V(£) 2Y x A'. Now consider the commutative diagram of pairs

(Y x ALY x {0}) —— (A' {0})

I |
(Y,Y) — (Spec K, Spec K)

inducing a commutative diagram

Hy oy (Y x AY) «——  H{p (A"

HO(Y) +——— H°(SpecK)
It shows that when identifying i,(1) we may reduce to the case where Y is a point.
But then the localization sequence induces an isomorphism
HY(G,, ) = Hipy (A1)

since H"(A') = 0 for n > 0, and one checks that under this isomorphism the
elements i,(1) map to the distinguished elements described in Proposition 6.2.
Thus the statement follows from the proposition. o

PROPOSITION 6.5. The maps comp,, are compatible with all Gysin isomor-
phisms associated with closed embeddings of smooth codimension 1 subvarieties.

The proof uses a ‘deformation to the normal cone’ (in this case, normal bundle)
construction that we recall next. A reference is [19].

CONSTRUCTION 6.6. Let Y C X be a smooth codimension 1 pair as above,
and denote by N the normal bundle of Y in X. There exists a closed embedding
Y x Al < M° in a K-variety M° equipped with a projection p : M° — A! such
that the composite Y x A! < M° — Al is the natural projection py, and moreover
the following properties hold.

(1) There is an isomorphism p~'(A*\ {0}) = X x (A'\ {0}) making the
diagram

Py (AT\{0}) —— pI(AT\{0})

| :
Y x (AT\{0}) —— X x (A1) {0})

commute, where the bottom horizontal map is the natural inclusion.
(2) There is an isomorphism p~*(0) = V(N) making the diagram

Py 1(0) —— p~(0)
gl lg
Y —— V(WV)

commute, where the bottom horizontal map is the embedding of Y via
the zero section.
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The construction of M° is as follows. Consider the closed embedding ¥ x A' —
X x A and blow up the closed subscheme Y x {0} in X x A'. The resulting blowup
M — X x A is equipped with a natural projection p : M — A' compatible with
p2: Y x A — A, Now over A'\ {0} the situation is as above because the blowup
did not change X x (A'\ {0}). The fibre p~!(0) decomposes in two components Z;
and Z5. The component Z; is isomorphic to the blowup of Y in X, and Z5 is the
projective line bundle P(N & Oy ). Furthermore, the inclusion Z; N Zy < Z5 is the
inclusion of the ‘hyperplane at infinity’ in P(N & Oy ); its complement is V(N).
Setting M° := M \ Z; we thus arrive at the situation described above.

Proof of Proposition 6.5. The geometric construction described above gives rise to
commutative diagrams in both cohomology theories

Hy (X)) —— Hyl,(M°) —— Hy(V(N)

H'(Y) +—— H"(Y xA') ——  H™(Y)
The vertical maps are Gysin isomorphisms and the horizontal maps are pullbacks
associated with Y x {1} — Y x A'! on the left and Y x {0} — Y x A' on the
right (and the inclusions X x {1} < M°® <> V(N) above). The lower horizontal
maps are isomorphisms by homotopy invariance of de Rham and étale cohomology,
hence so are the upper horizontal maps. We thus reduce to the case treated in the
previous lemma. a

Proof of Theorem 6.1. First assume X is smooth and projective of dimension d.
Consider a smooth hyperplane section H C X. It exists by the Bertini theorem
and is a smooth codimension 1 subvariety of X. It has a class 7 € H& (X7, Q,(1))
which is the image of 1 by the Gysin map

Hgt(X?» Q) = H)%(Xfa Qp(1)) = He’Qt(X?a Qp(1)).

Similar facts hold for de Rham cohomology. The second map here comes from a long
exact sequence associated to a cone of a pullback map, hence it commutes with the
comparison map. From the previous proposition we therefore conclude that comp,
is compatible with the above Gysin map. Furthermore, the d-fold cup-product n?
generates the group
Hégtd(va Qp(d)) = Qp

and similarly for de Rham cohomology. Since the maps comp,, are compatible with
the product structures on de Rham and étale cohomology, we conclude that these
isomorphisms are compatible with each other via compy,; in particular, compy, is
an isomorphism.

Now observe that both cohomology algebras are equipped with Poincaré duality
pairings which are non-degenerate. Thus if & € HJ (X) is a nonzero element, there
isfeH ng_"(X ) such that a - 8 # 0. Therefore, since comp,,; is an isomorphism
and the Poincaré duality pairing on étale cohomology is non-degenerate, we have
comp,, (o) # 0. But then comp,, is injective for all n. On the other hand, we know
that the source and the target of comp,, are finite-dimensional vector spaces of the
same dimension over Bggr. This results by a Lefschetz principle argument from
the isomorphism Hig (Xc¢) & H"(X&", C) for complex smooth projective varieties
recalled in the introduction to this paper, i.e. the comparison between algebraic
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and analytic de Rham cohomology and the complex Poincaré lemma. We conclude
that comp,, is an isomorphism for all n.

Now if X is only assumed to be smooth and quasi-projective, by Hironaka’s
theorem it has a smooth projective compactification X with complement a normal
crossing divisor D whose components are smooth. We prove the theorem by a
double induction on the dimension d of X and the number r of components of D;
the case r = 0 is the projective case treated above. Now fix a component Dy of D,
and let D" be the union of the other components. Then X \ D’ has r—1 components
at infinity and (X \ D)\ (Do \ (Do N D)) = X. There are localization sequences
in both theories of the form

H"2(Dy\ (DoND")) = H" (X \ D) = H"(X) = H" (Do \ (DyN D))

coming from exact Gysin triangles, hence compatible with the comparison maps by
the previous proposition. The comparison maps are isomorphisms for Do\ (DoND")
by induction on d and for X \ D’ by induction on r, so they are isomorphisms for
H"(X) as well. o

6.2. Proof of the Poincaré lemma. This section is devoted to the proof of
Beilinson’s Poincaré Lemma (Theorem 5.17). We begin with auxiliary statements
about log differentials.

Recall that for a semistable pair (U,U) over O we have denoted by L u4y/0,
the log cotangent complex where O is equipped with the trivial log structure,
and similarly for log differentials and the (derived) log de Rham algebra. We shall
also consider these objects in the case where O (or an extension of it) is equipped
with the canonical log structure coming from the inclusion of the closed point in
Spec Ok ; we denote the corresponding objects by L/ (k,0,) and similarly for
differentials. To compare the two, the following lemma will be handy.

LEMMA 6.7. There is a natural quasi-isomorphism

~ 1
L - Q(F»OF)/OK’

(Spec K,Spec O%)/OKk
where we have logarithmic 1-forms on the right hand side, and Ok carries the trivial
log structure. Moreover, the natural map

1

1
Qo0 = Q(?,Of)/ox

from usual differentials is an isomorphism.

Proof. The first statement is proven exactly as its non-logarithmic analogue
(Lemma 3.6). The proof of that statement was based on two properties of the
cotangent complex: the transitivity triangle and the computation of the cotangent
complex of a polynomial algebra. As recalled in Subsection 5.2, both of these
properties have analogues for Gabber’s log cotangent complex, to be found in [37].

For the second statement, we may replace K by its maximal unramified ex-
tension. Consider first a finite extension L|K generated by a uniformizer = of Oy,
with minimal polynomial f. As recalled in Facts 3.4, the Op-module Q%QL JOK 18
generated by dm with annihilator the principal ideal generated by f’(m). Similarly,
the construction of log differentials shows that Q%L’OL) /o, 18 a quotient of the free
module generated by dr/m modulo the submodule generated by f’(w). Thus the
natural map Q%,)L/OK — Q%L,OL)/OK can be identified with the inclusion

(6.2) (Op/f'(m)Op)dr — (x~OL/ f (7)Or)dr
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whose cokernel is killed by 7 and hence by p. By passing to the direct limit,
we deduce that the map 9}97 Jox Qz?, 02)/Ox is injective with cokernel killed
by p. To show that the cokernel is in fact trivial, it will suffice to verify that

Qé? /0, contains the p-torsion of Qg?, 0)/Ox" Indeed, given w € Qz?’ 0m)/0x We

have pw € QEY/OK, but the latter group is p-divisible by Corollary 3.3, so after

modifying w by a p-torsion element we obtain an element in Qé? JOK-

1
(K,0%)/0k

element wy € Q%L,OL)/OK for some finite extension L|K. As pw; maps to 0 in

Assume therefore w € is a p-torsion element, coming from an

Q%Df/ox’ we conclude pwy, = 0 from Lemma 3.9 (1). On the other hand, by
Corollary 3.3 the Op-module Q})? /O which is the direct limit of the modules
Q%QL O+ I8 nonzero and p-divisible, and therefore for L large enough we must have
pQéL/OK # 0. In particular, p does not lie in the annihilator (f'(m)) of Q%QL/OK’

ie. p/f'(m) ¢ Or. But then f'(m)/p € Or and hence f'(m)wr = (f'(7)/p)pwr = 0.
Since under the inclusion (6.2) the left hand side becomes identified with the part
of the right hand side killed by f/(), this means that w; comes from Q%QL /O 85
desired. o

Consider now a semi-stable pair (V,V) over K; recall that it comes from a
semistable pair (U,U) defined over a finite extension K'|K.

PROPOSITION 6.8. We have a natural quasi-isomorphism

~ Ol
Lok = Qv /o
Moreover, the right hand side sits in a short exact sequence of log Oy -modules

0 — OV ®O? 9297/01{ — Q:(LV,V)/OK — Q%V,V)/(f,@ — 0

%)

Here the last term is locally free, hence the sequence is locally split.
Proof. Consider the exact triangle of log cotangent complexes
Oy Doz LO(?,O?)/OK = Lwvyyox = L(V,V)/(f,of) — Oy Qoz LO(?,o?)/oK 1]
coming from the sequence of morphisms of log schemes
VY — Spec O — Spec Ok,

where the first two terms carry the canonical log structure and the third the triv-
ial one. Here the term L(v,v) J(K.,02) is a direct limit of cotangent complexes
L, o)) (K",0,,) for finite extensions K'|K. Since by assumption for sufficiently
large K'|K the morphisms (Ug/,Uk') — (K',Ok) are log smooth and integral,
we have quasi-isomorphisms

Y 1
L ugen) (k1,050 = Q(UK/,UK/)/(K’,OK,)

and the latter terms are locally free of finite rank independent of K’. Hence the
same is true of L(V,v) J(R.0x) Using the first statement of the previous lemma we
may thus rewrite the triangle as

1

Oy ®og & (V.V)/(R,05)

1 1
(®.0m)/0x 7 Lo = = Ov Bor A 0,0, 1
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We obtain the quasi-isomorphism Ly vy 0, = Q%Vy) /oy by comparing this trian-
gle with the one coming from the exact sequence

1 1 1
0 — Oy ®o. Q(Kof)/ox = Qv yy0, = 2 =0

(VWV)/(K,0%)
of log differentials (which is exact on the left again because (V,V) — (K,Ox) is a

. . . . . 1
limit of log smooth integral maps). Finally, we identify Q (R.0:)/Ox

using the second statement of the previous lemma. o

Now recall that the graded pieces of the Hodge filtration on the logarithmic
derived de Rham algebra LQZ‘/’V) /O are described by
gr%(LQZV,V)/OK) =LA L) o=l
which we may rewrite using the previous proposition as
g (L) 0, ) = LA Q) o, [=il-

Using the exact sequence of the proposition, we may unscrew these objects further
as follows.

PROPOSITION 6.9. There exists a filtration I, on gr%LQEV,V)/OK with graded
pieces given by

I .1 [} ~ i—a a
gra8rp Ly vy j0, = erp “Adr[—a] @0 Uy ) 7 0.
PrROOF. We apply Construction A.29 of the appendix to the exact sequence of
the preceding proposition. It gives a filtration
_ i—a (1 i Ol
Lo =Im ((Oy @ore LA™ Qo j0,) ®0v Uy y) m.0,9) = LA Qv op)
on
LA Qv )0, = 8L vy 0, -
Here the induced map on graded pieces is injective as the sequence is locally split.
Moreover, recall that by definition
g “Adr = g1y ‘L0, =LA Qo0 [a — ]

whence the description of grégr%(LQZvy) 1Ok )- O

We may sheafify the statement of the above proposition as follows. Apply the
functor RT'(V,-) to Ly )0, and take the associated h-sheaf (using Godement
resolutions in a by now familiar fashion). Further, denote by G the complex of
h-sheaves associated with

(V,V) = ROV, Q0 o) =T(V, 000, ) o).

The proposition then yields:
COROLLARY 6.10. There exists a filtration 1, on gr%AiR with graded pieces
given by
grégr%AgR >~ or' % Agr[—d ®é? Gge.
This corollary enables us to make an important reduction in the proof of the
Poincaré lemma.
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COROLLARY 6.11. Theorem 5.17 follows from from the vanishing statements
750G° @ Z/pZ = 0
and
G QY Z/pZ =0
for all a > 0.

PRroOF. To prove the theorem, it suffices to prove that the maps
(Aqr/F?) @ Z/p"Z — (Al /F)) @V Z/p"Z

are quasi-isomorphisms for all » > 0, for afterwards we may pass to the limit. Using
induction along the exact sequences

0—=Z/p" 2 = Z/p"Z — Z/pZ — 0
we reduce to the case r = 1. This case amounts to proving that
Cone(griy Aqp — grivAly) @ Z/pZ = 0.
Consider the 0-th step of the I-filtration on gr}AzR. By definition, it is given by
the term gri Aar @%ﬁ GY. The cohomology sheaf H°G is the h-sheaf associated
with (V,V) = H°(V, 0y). If the smooth proper K-scheme V is connected (which
we may assume), we have H%(V, Oy) = O, and therefore
gl Adr ®{‘9f HOGO = grl Agr,

which means that gr%AdR already sits inside Iy (gr%AgR), and the cone of the map
gri-Agr — Io(gr%AEjR) is gri Agr ®I(5? 7-0G". Thus the nullity of Cone(gréAgr —
Iy gr%AgR)Q@LZ /DZ follows from the first vanishing statement above, and the second

one yields the vanishing of the higher graded pieces of gr%AiR in view of the
previous corollary. (Il

Finally, we translate the vanishing conditions of the corollary in a more
tractable form.

LEMMA 6.12. Assume that for every semistable pair (V,V) over K there is an
h-covering h = (V', V") = (V,V) of semistable pairs such that the induced maps

W HY(V,Q4,) = HY(V, Q% 1)
factor as
H'(V,Q0,,) & H'(V, Q) = H'(V, Q% 1),

where the first map is multiplication by p. Then the vanishing statements of the
previous corollary hold.

PROOF. The vanishing statements in question mean that the cohomology
sheaves H°G® are uniquely p-divisible for all (a,b) except for a = b = 0. The
condition above yields p-divisibility in view of the commutative diagram

Hb(V> Q(\l/,v) L Hb(V7 Q%/,V)

! l

o'WV, Q ) —2— H(V, Q4 ).
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On the other hand, if a € Hb(V,Q“l/y) satisfies pf*a = 0 for an h-covering
(V) — (V,V), taking a further h-covering h : (V" V") — (V' V') with
the property of the lemma ensures that (ho f)*a = 0. |

Since (V, V) come from a semistable pair (U,U) defined over some finite exten-
sion K'|K and

Hb(V’ Q(\l/,V) = Hb(uv QaUJ/{) ®OK/ Of’

to verify the condition of the lemma it will suffice to prove the corresponding
statement over K’'. Without loss of generality we may assume K’ = K, so the
proof of Theorem 5.17 finally reduces to proving

THEOREM 6.13. For every semistable pair (U,U) over K there is an h-covering
h: (U, U — (UU) of semistable pairs such that the induced maps

K HYU, Q) — HU Q)
factor through the multiplication-by-p map
Hb(u7 QCIZ’,L{) £> Hb(“v QIGJ,L{)

for all (a,b) # (0,0).

We sketch the proof in the case where U is proper and a = 0; this was proven
by Bhargav Bhatt in his paper [7]. It turns out that in this case the map h can
be chosen to be proper and surjective. The general proof follows a similar pattern
but the technical details are a bit more complicated; see the original paper [3] of
Beilinson or Illusie’s survey [32].

The key lemma is the following.

LEMMA 6.14. Let X be a proper curve over a field. There exists a proper smooth
curve Y with geometrically connected components defined over a finite extension of
k and a proper surjection h : Y — X such that the induced map h* : Pic X — PicY
factors through the multiplication-by-p map Pic X — Pic X.

Proof. We are allowed to take finite covers of X and work with one component
at a time, so after extending the base field and normalizing X in a finite extension
of its function field we may assume X is smooth connected of positive genus and
has a k-point O. The Abel-Jacobi map P — [P — O] defines a closed immersion
X — Pic’X c Pic X. Define Y by the fibre square

Y — Pic’Xx
| K
X —— Pic’X

and take Y to be the normalization of Y. This defines h : ¥ — X. The map
Y — Pic’X induces a map Y — Pic’ X and factors through Pic’Y by the universal
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property of the Jacobian. We thus obtain a commutative diagram

Yy — Pic’Y

| |

Y —— Pic’X

A I

X —— Pic’X
The composite map Pic’Y — Pic’X on the right hand side is the map induced
by the composition ¥ — X — Pic’X. By autoduality of the Jacobian, the map
Pic’X — Pic’Y on dual abelian varieties is the pullback induced by h. By con-
struction it factors through the multiplication-by-p map of Pic’X. a

COROLLARY 6.15. Let X be a proper curve over a field having a rational point
O. There exists h: Y — X as above such that the induced map h* : H'(X,0x) —
HY(Y,Oy) factors through the multiplication-by-p map on H*(X,Ox).

Proof. Identify H'(X,Ox) with the tangent space at 0 of Pic" X. a

When X is semi-stable, then Pic’ X is a semi-abelian variety. We can then use
properties of semi-abelian varieties to establish a relative version of the corollary.

PROPOSITION 6.16. Assume X — T is a projective semi-stable relative curve
with T integral and excellent. There exists a pullback diagram

X =5 X

¢>'l l¢

T YT
where ' : T — T is an alteration, the base change curve X' — T’ is projec-
tive semistable and the pullback map V*R'$,Ox — R'¢.Ox/ is divisible by p in
Hom(y* R'¢.Ox, R'¢,Ox).
Recall that a diagram as above always defines base change morphisms
V*RIG.F — RIY. (n*F) for a sheaf F on X. We apply this with F = Ox and
compose with the morphism 7*Ox — Ox/ induced by .

Proof. Let 1 be the generic point of T. By the lemma we find a finite map n’ — n
and a proper smooth curve Y,, — X, such that the induced map PicOYn/ — PicOX,7
factors through multiplication by p. By a result of de Jong [13], after replacing T
by an alteration T — T and base changing X we may extend Y, to a semistable
curve Y — X. (If Y has several components, we do this componentwise.) Now
Pic’(X/T) and Pic’(Y/T) are semi-abelian schemes. By a basic result on semi-
abelian schemes G over a normal base ([22], I 2.7), the restriction functor G — G,
to the generic point is fully faithful. Thus, since we know that the restriction of
Pic’(X/T) — Pic’(Y/T) to the generic point factors through multiplication by p,
the same is true for the map itself. Finally, we deduce the result on R'¢,Ox by
passing to the normal bundle of the zero section as in the previous corollary. o

Proof of Theorem 6.13 for a = 0 and U proper. Since Spec O is affine, by the
Serre vanishing theorem it will suffice to prove a relative result: there exists an
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alteration o : U — U such that R'f,0p — RY(f o a),Oup is divisible by p in
Hom(R® f.Oy, R*(f o @).Op), where f is the structure map U — Spec Of.

We use induction on the relative dimension d of f : U — Spec Og. The case
of dimension 0 is easy using Kummer theory. By another result of de Jong, after
replacing U by an alteration, we find a factorization U — T — Spec O such that
T is integral, ¢ : U — T is a projective semi-stable relative curve having a section
s: T —U,and f': T — Spec Ok is proper surjective of relative dimension d — 1.
Since ¢ is of relative dimension 1, the Leray spectral sequence

RPfL(R1¢,0Oyp) = RP*f, Oy
yields an exact sequence
0 — R'f1(6.0y) = R*f.(Oy) = R"' fL(R'¢.0y) — 0.
As ¢ has connected fibres, we have ¢.Oy = Or, so the exact sequence becomes
0= R'f{(Or) = R*f.(Ov) = R"™ [L(R'6.00) = 0,

and the section s : U — T induces a splitting. By induction we find an alteration
7'+ T' — T such that 7*R°f/ O — R¢.Op: is divisible by p in the Hom-group,
where ¢’ = f' on’. Denote by ¢ : U’ — T” the base change curve. By the previous
proposition, we find a further alteration 7"’ : T — T giving rise to a commutative
diagram

U U’ U
e e
A L SN

such that 7/*R'¢. Oy — R'¢”Op» is also divisible by p in the Hom-group. We
conclude by putting these results together using the above split exact sequence. O

A. Appendix: Methods from simplicial algebra

In this appendix we summarize some basics from simplicial algebra needed for
the study of cotangent complexes and derived de Rham algebras. For the first three
subsections our main reference is Chapter 8 of Weibel’s book [47].

A.1. Simplicial methods. Denote by A the category whose objects are the
finite ordered sets [n] = {0 < 1--- < n} for each integer n > 0, and the morphisms
are nondecreasing functions.

DEFINITION A.1. A simplicial (resp. cosimplicial) object in a category C is a
contravariant (resp. covariant) functor X : A — C.

Simplicial (resp. cosimplicial) objects in a category C form a category Simp(C)
(resp. cosimp(C)) whose morphisms are morphisms of functors.

Fix an integer n > 1. For each 0 < i < n we define a face map ;: [n—1] — [n]
as the unique nondecreasing map whose image does not contain i. In the other
direction, we define for each 0 < i < n a degeneracy map n;: [n] — [n — 1] as the
unique nondecreasing map that is surjective and has exactly two elements mapping
to 1.

LEMMA A.2. Giving a simplicial object X in a category C is equivalent to giving
an object X,, for each n > 0 together with face operators 9; = X (g;): X, = Xn—1
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and degeneracy operators o; = X(n;): X, = Xpg1 for 0 < i < n satisfying the
identities

61‘8]‘ = 8j_18i 1<,

(A1) 005 = 0j410; 1]
0j—10; 1<]
dio; = <id i=jori=j+1
0;0i—1 i>j+1.
Proof. See [47], Proposition 8.1.3. o

ExAMPLE A.3. If B is an object in the category C, we define the constant
simplicial object Bo associated with B by setting B,, := B for all n, and declaring
all face and degeneracy maps to be identity maps of B.

ExAMPLE A.4. Fix an integer n > 0. Setting A[n],, := Homa ([m], [n]) defines
a simplicial set A[n],, i.e. a simplicial object in the category of sets. Here the
simplicial structure is induced by contravariance of the Hom-functor. Moreover,
[n] = Aln]e is a covariant functor from A to the category of simplicial sets.

We also need the notion of augmented simplicial objects.

DEFINITION A.5. Given an object B and a simplicial object X, in a category
C, we define an augmentation €: Xq — B to be a morphism X, — B,.

LEMMA A.6. Let X4 be a simplicial object. Defining an augmentation cq: Xo —
B is equivalent to giving a morphism €y: Xo — B satisfying g0y = €90 .

PrOOF. Given a map €, : Xo — B, of simplicial objects, the degree 0 compo-
nent €g satisfies this identity by definition. Conversely, given €y as in the statement,
we may choose an arbitrary morphism «: [0] — [n] and set €, := €y o X (a). This
does not depend on the choice of «, because for a different choice 8: [0] — [n] we
may find a morphism ~v: [1] — [n] such that both a and g factor through ~, from
which the identity egdy = €901 implies that the resulting maps €, are the same.
The reader will check that the sequence ¢, indeed defines an augmentation. (I

Next we define simplicial homotopies. To do so, we first need an auxiliary
construction.

CONSTRUCTION A.7. Let C be a category in which finite coproducts exist.
Assume given a simplicial object X, in C and a simplicial object U, in the category
of nonempty finite sets. We define the product X, x U, as a simplicial object in C
with terms given by

(X xU)p =[] Xa
ueUn,
and the simplicial structure defined as follows: for : [m] — [n] the morphism
(X x U)(v) maps the component X,, indexed by u € U, to the component X,,
indexed by U(v)(u) € U,, via the morphism X (7).

In particular, it makes sense to speak about the product X, x Aln], for each
n > 0. Note that by functoriality the two morphisms €g,€e; : [0] — [1] induce
morphisms e; : X x A[0]ls = Xo¢ X A[l]e of simplicial objects in C for ¢ = 0, 1.
Here we may identify X¢ x A[0]s with X, since by definition A[0], is the constant
simplicial object associated with the one-point set.
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DEFINITION A.8. Assume C has finite coproducts, and consider two morphisms
feo,9e: Xo = Y, between simplicial objects of C. A simplicial homotopy from f, to
Je is a morphism he: Xo X A[l]le — Y, satisfying fo = he 0 €y and ge = he 0 €7,
where eg, e; are the maps defined above.

We say that f, and ge are homotopic if they are in the same class of the equiv-
alence relation on maps of simplicial objects generated by simplicial homotopies.
Given a morphism f,: X, — Y, of simplicial objects, a homotopy inverse of f is a
morphism ge: Yo — X, such that fo 0 ge (resp. ge 0 fo) is homotopic to the identity
map of Y, (resp. X,). If such f and g exist, we say that X, and Y, are homotopy
equivalent.

REMARK A.9. If A is an abelian category, then the existence of a simplicial
homotopy between two simplicial maps f, to ge in A is already an equivalence
relation. See [47], Exercise 8.3.6.

A.2. Associated chain complexes. We now investigate simplicial objects
in abelian categories.

DEFINITION A.10. Given a simplicial object X, in an abelian category A,
we define its associated (unnormalized) chain complex as the complex CX, with
CX, := X, in degree n and with differential d,,: X,, = X,,_1 defined by

dp = (=1)0;.
i=0

This is indeed a chain complex by the first identity in Lemma A.2. The nor-
malized chain complex of X, is the chain complex NX, with

NX,, := ﬂ Ker(9;),
0<i<n—1
where 9;: X,, — X,,_1 is the i-th face map. The differential NX,, - NX,,_; is
defined to be (—1)"9,,. The homotopy groups of X, are given by
Tn(Xe) := Hp(NX,).

REMARK A.11. By ([47], Theorem 8.3.8), the natural inclusion NX, — CX,
is a quasi-isomorphism. Therefore we also have 7, (Xe) = H,(CX,).

The main theorem concerning the normalized chain complex is now the follow-
ing.

THEOREM A.12 (Dold—Kan correspondence). Let A be an abelian category.

The functor N induces an equivalence of categories between the category of simpli-
cial objects in A and that of nonnegatively graded homological chain complexes in
A.

Under this equivalence simplicial homotopies between simplicial maps corre-
spond to chain homotopies on the associated normalized complezes.

Proof. See [47], Theorem 8.4.1. a

The quasi-inverse to the functor N in the Dold—Kan correspondence is given
by the Kan transform KC, of a nonnegatively graded chain complex Cy in A. It
is the simplicial object whose degree n term is defined by

KC, =& &y Cp

p<n n:[n]—[p] surjective
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and whose maps are defined as follows. For a morphism «: [m] — [n] of simplices
and a surjective morphism 7: [n] — [p] we may write the composite uniquely in
the form n o a = &’ on where € is injective and 7’ is surjective. We define the
morphism KC(«): KC,, — KC,, on the direct summand C,, of KC,, by

idcp if 8/ = ld[p]
KC, |Cp:: d: Cp—>Cp71 if &/ = &0
0 otherwise,

where g¢: [p — 1] — [p] denotes the unique injective morphism of simplices whose
image avoids 0.

A.3. Bisimplicial objects. We now turn to bisimplicial constructions.

DEFINITION A.13. A bisimplicial object Xqe in a category C is a simplicial
object in the category of simplicial objects in C.

We may regard X,e as a contravariant functor from A x A to C. We have hor-
izontal (resp. vertical) face maps 9!': Xpg = Xp—1,4 (vesp. 07 : Xpg = X, 4—1) and
degeneracy maps o': Xpq = Xpi1,q (resp. 07 Xpg = Xpg+1). These satisfy the
simplicial identities horizontally and vertically, and horizontal operators commute
with each vertical operators.

DEFINITION A.14. The diagonal X2 of a bisimplicial object X,, is the sim-
plicial object obtained by composing the diagonal functor A — A x A with the
functor X.

Thus Xﬁ = X, and the face (resp. degeneracy) operators are given by 8? =
oMoy = Yol (vesp. o; = ola? = olal).

CONSTRUCTION A.15. We define the (unnormalized) first quadrant double
complex CX,, associated with a bisimplicial object X, in an abelian category
A as follows. The horizontal differentials in the double complex are those of the
chain complex coming from the horizontal face maps. The vertical differentials are
those of the chain complex coming from the vertical face maps, multiplied by a
factor (—1)? for a differential starting from X,,.

THEOREM A.16 (Eilenberg-Zilber). Let Xoe be a bisimplicial object in an
abelian category A. For all n > 0 there are natural isomorphisms

T (X2) 2 H, Tot(CX,,),

where Tot(Cee) denotes the total complex associated with a double complex Coe
(with the direct sum convention).

PROOF. See [47], Theorem 8.5.1. O

A.4. Simplicial resolutions. Our definition for a simplicial resolution is as
follows.

DEFINITION A.17. An augmented simplicial object € : X, — B in an abelian
category is a simplicial resolution of B if ¢y : Xg — B is surjective and the as-
sociated chain complex of X, is acyclic except in degree 0 where its homology is
B.
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As the associated chain complex of the constant simplicial object B, is acyclic in
positive degrees, the augmentation map in a simplicial resolution X, — B induces
a quasi-isomorphism CX, 5 CB,.

To elucidate the homotopical nature of this definition in the case of abelian
groups, we need the following notion.

DEFINITION A.18. A morphism X, — Y, of simplicial sets is a trivial (Kan)
fibration if in every commutative solid diagram

Ze—25 X,

W0T>Yo

of simplicial sets such that for all n > 0 the maps Z,, — W,, are injective a dotted
arrow exists making the diagram commutative.

REMARK A.19. In fact, it is enough to require the right lifting property of
the above definition in the special case of the inclusions dA[n]e — A[n]s, where
OA[n]e is the boundary of the simplicial set A[n]s of Example A.4. See ([39], §2.2,
Proposition 1) or ([42], Tag 08NK, Lemma 14.30.2).

PrOPOSITION A.20. A trivial fibration Xe — Yo of simplicial sets has a homo-
topy inverse.

PROOF. See ([42], Tag 08NK, Lemma 14.30.8). O
This being said, we have:

PROPOSITION A.21. An augmented simplicial object € : Xo4 — B in the category
of abelian groups is a simplicial resolution if and only if the underlying morphism
of simplicial sets is a trivial fibration.

PRrOOF. See ([39], §2.3, Proposition 2) or ([42], Tag 08NK, Lemmas 14.31.8
and 14.31.9). O

In particular, a simplicial resolution of abelian groups induces a homotopy
equivalence of underlying simplicial sets (but not necessarily of simplicial abelian

groups!).

A.5. Derived functors of non-additive functors. Simplicial methods may
also be used to construct derived functors of not necessarily additive functors be-
tween abelian categories, following Dold and Puppe [18].

Let A be an abelian category with enough projectives, and F' : A — B a
functor to another abelian category B. For an object A € A consider a projective
resolution P, — A. By the Dold-Kan correspondence (Theorem A.12) the Kan
transform K P, — A is a simplicial resolution of A with projective terms. Set

(A.2) L'F(A) := H(NF(KP,)).

LEMMA A.22. The above definition does not depend on the choice of the pro-
jective resolution P,.
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Proof. Any two projective resolutions P,, Qe of A are chain homotopy equiva-
lent. Therefore K P, and K, are simplicially homotopy equivalent by the Dold—
Kan correspondence. As simplicial homotopies are preserved by arbitrary functors
on simplicial objects, so are F(KP,) and F(KQ,). Reading the Dold-Kan corre-
spondence backwards we see that NF(K P,) and NF(KQ,) are quasi-isomorphic.

a

DEFINITION A.23. We define the i-th left derived functor L‘F of F' by means
of formula (A.2) above. Similarly, we define right derived functors R'F for functors
on abelian categories having enough injectives.

REMARKS A.24.
1. In the case of an additive functor I’ we recover the standard definition of derived
functors as additive functors commute with the Kan transform.

2. More generally, we may define total left derived functors LF : D™ (A) —
D™ (B) for non-additive F' and similarly for right derived functors. Instead of a
projective resolution we start with a bounded above complex with projective terms
representing an object in D™ (A), and then apply the functor NFK.

A.6. Application: derived exterior powers and divided powers. Im-
portant examples of non-additive functors are given by the exterior power functors
M +— A"M on the category of modules over a commutative ring A. Another
example is given by divided powers, as we now recall.

DEFINITION A.25. Let A be a commutative ring, M an A-module and B an
A-algebra. A divided power structure on B by M is given by a sequence of maps
Yn: M — B for each n > 0 satisfying

(1) 20m) = 1 t
@ sutmpatm) = (T )satm)
3

(3) lm+m) = Y yulm)y(m)
s+t=n
(4) m(Am) = A"y (m)
forallme M, A€ A, and s,t,n > 0.

Note that if n is such that n! is invertible in B, the second relation forces
Yn(m) = v1(m)"™ /nl, whence the term ‘divided power structure’.

LEMMA A.26. Fiz A and M. The set-valued functor sending an A-algebra B
to the set of its divided power structures by M is representable by an A-algebra
IS (M).

PROOF. One constructs I'} (M) by taking the free A-algebra A[y,(m)] on gen-
erators 7y, (m) for all n > 0 and m € M, and then taking the quotient by the above
four relations. O

Observe that A[y,(m)] has a natural graded algebra structure in which the
vn(m) for fixed n generate the degree n component. As the relations are homoge-
neous, this induces a grading on I'% (M) whose degree n component we denote by
I"i(M). We shall drop the subscript A when clear from the context.

The functors M +— T'™(M) are also non-additive functors on the category of
A-modules. Their derived functors are related to those of the exterior product
functors by the following identity.
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PROPOSITION A.27 (Quillen’s shift formula). Let E be a bounded above complex
of A-modules. In the associated derived category we have isomorphisms

LA™ (E[]) = (LI™(E))[n]
for alln > 0.

We give a proof for the sake of completeness, based on Quillen’s ideas sketched
in [40] and [29].

The proof uses an auxiliary construction. Assume given a sequence F — F 5
G of A-module homomorphisms with v o u = 0. To these data we associate a
complex of A-modules

(A3) 0 =>T"(E) = T"(F) - T" Y F)®G — - > THF) A" 'G - A\"G -0

for all n > 0 as follows. The differential I'"(E) — I'"(F) is induced by u. For i >0
the differentials d : I *(F) @ A'G — T "1 (F) ® A""'G are defined by setting

d(Yn-i(z) ®1) = Yp_i—1(z) @v(z), d1l®y):=0

for x € F and y € G and extending by linearity. We obtain a complex in view of
the relations vou =v Av = 0.

LEMMA A.28. Assume given a short exact sequence
(A.4) 0E—-F—->G—0
of flat A-modules. The associated complexes (A.3) are exact for all n > 0.

PRrROOF. To begin with, the lemma holds in the special cases

(A.5) 0—>A—->A—-0-—0,
A6 0—>0—-A—A—0.
(

In the first case the complexes (A.3) reduce to the isomorphisms I'"(A) = T (A) and
in the second case one has to check that the maps I'"™(A)—I""(A) ® A induced by
Yn(a) = yn—1 ® a are isomorphisms. As these are nonzero maps of free A-modules
of rank 1, the statement follows.

Next one deals with the case where E, F and G are finitely generated and free
over A. In this case the short exact sequence (A.4) splits, and therefore we may
write it as a finite direct sum of short exact sequences of the form (A.5) and (A.6).
Starting from these special cases, one proves the proposition by induction on the
sum of the ranks by checking that the complex (A.3) associated with a direct sum
of two short exact sequences is a direct sum of tensor products of complexes of
type (A.3) associated with the individual short exact sequences. The lemma then
follows by the Kiinneth formula for complexes of free modules. Finally, the general
case follows by writing a short exact sequence of flat modules as a direct limit of
sequences of finitely generated free modules. O

Proof of Proposition A.27. Replacing E by a quasi-isomorphic complex of free
modules, we may assume that F has free terms. Consider the short exact sequence
0—-FE—=C(E)—=E[1]—=0
of complexes, where C'(FE) is the cone of the identity map of E. By taking Kan

transforms we obtain a short exact sequence

0—-KE— KC(E)— K(E[1]) =0
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of simplicial A-modules with free terms. Applying Lemma A.28 in each degree and
taking associated normalized complexes, we obtain an exact sequence

0 — NI"KE — NI"KC(E) - NIT" 'KC(E)® K(E[1])) = ...
(A7) .- > NT'KC(E) @ A" 'K(E[1])) = N A" K(E[1]) = 0
of complexes of A-modules. Since C(F) is an acyclic complex with free terms,
we may view KC(E) as a free simplicial resolution of the zero module. Thus by
definition NI KC(E) = L"T'(0) = 0. Applying Lemma 2.8 with E, = T"’KC(E),
F, =0, and L, = A""PK(E[1]) we obtain that all complexes in the middle of

(A.7) are acyclic. It remains to note that by definition LI"™E = NI"KE and
LA™ (E[1]) = N A" K(E[1]). a

We finish this subsection by constructing of a filtration on higher derived func-
tors of the exterior product attached to short exact sequences of modules.

CONSTRUCTION A.29. Given an exact sequence
0—->M —-M-—M"—0

of flat modules over a ring A, define an increasing filtration I, A" (M) on A*(M) by
setting
I A" M :=Tm (A7 M' @ A*M — A'M) .
We then have a natural map
ANTOM @ AN*M" — grl AT M.

In case the exact sequence splits, this map is an isomorphism and the wedge product
decomposes as a direct sum

@/\ifaM/ ® /\aM// o /\ZM
a
We construct a derived version of this filtration as follows. Choose a projective

resolution P, (resp. P.') of M’ (resp. of M"). By the Horseshoe Lemma ([47],

Proposition 2.2.8) there is a projective resolution P, of M fitting in a short exact
sequence

0— P,—Py— P/ =0
of complexes. Applying the Kan transform gives a short exact sequence

0— KP,— KPy — KP! =0

of simplicial A-modules. So for each n we have a map /\F“KP;L@)/\GKPH — NKP,
giving rise to a map

ANTCKP, @ N*"KP, — N'KP,
of simplicial A-modules. Passing to the normalized chain complex yields a filtration

ILAN'M :==TIm (LA™ M &“LA*M — LN M)

with analogous splitting properties since by definition L AY M is represented by
the chain complex N A* K P, in the derived category of A-modules. A similar
construction holds for sheaves of modules.
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A.7. Cohomological descent. In this subsection and the next, we give a
utilitarian summary of the results of cohomological descent we need. The basic
reference is [2] but the notes of Conrad [11] and Laszlo [35] are much more readable.
There is also a brief summary in [16].

Let X, be a simplicial object in the category of topological spaces, or the
category of schemes equipped with a Grothendieck topology. A simplicial abelian
sheaf on X, is given by an abelian sheaf 7" on each X,, together with morphisms
[¢] © X(¢)*F" — F™ for each ¢ : [n] — [m] in A subject to the compatibility
conditions [¢] o X (¢)*[¢)] = [¢ o ¢] for all composable pairs ¢, 1) of morphisms in A.
(Recall that X (¢) is the morphism X,,, — X, induced by ¢ : [n] — [m].)

Given an augmented simplicial space € : X, — .S, we have a natural pullback
functor £* from the category of sheaves on S to simplicial sheaves on X, induced
by termwise pullback via the morphism of simplicial spaces X, — S, corresponding
to &. The functor ¢* has a right adjoint ¢, sending a simplicial sheaf F* on X, to
ker((0g — 1) : €0 F° — £1.F"). The functor £* is exact and ¢, is left exact, giving
rise to a total derived functor Re.,.

DEFINITION A.30. The augmented simplicial space € : X, — S satisfies coho-
mological descent if the adjunction map id — Re, o €™ is an isomorphism.

Define the functor I'(X,, ) by sending a simplicial abelian sheaf 7* on X, to
I'(S,e.F). The adjunction map induces a morphism

RI(S,F) — RU(S, Re,e*F) = R(I(S,-) oe,)(e*F) = RI'(X,,&*F)

for an abelian sheaf F on S. If cohomological descent holds, the first map is also
an isomorphism, and we obtain an isomorphism

RI(S, F) = RT(X,,e*F).
Moreover, we have a spectral sequence
BV = HY(X,, e, F) = HPT(S, F).

This construction extends to objects of the bounded below derived category DT (.9).
For details, see e.g. [11], Theorem 6.11.

A.8. Hypercoverings. The method of hypercoverings enables one to con-
struct augmented simplicial objects satisfying cohomological descent.

To define hypercoverings, we first need the notion of (co)skeleta. For an integer
n > 0 denote by A,, the full subcategory of A spanned by objects [m] for m < n.
An n-truncated simplicial object in a category C is a contravariant functor A, —
C. These form a category Simp,,(C). These notions have obvious augmented and
cosimplicial variants.

For each n > 0 there is a natural functor

sk, : Simp(C) — Simp,,(C)
induced by restriction of functors to A,,. It is called the skeleton functor. When C
admits finite inverse limits, these functors have right adjoints
cosk,, : Simp,, (C) — Simp(C)
called coskeleton functors. See e.g. [11], §3 for an exhaustive discussion. Given an
object X, in Simp,,(C), the degree p term cosk,,(Xe), is given by the finite inverse
limit lim X, indexed by maps [g] — [p] for ¢ < n.
+—
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DEFINITION A.31. Let C be the category of topological spaces, or the category
of schemes equipped with a Grothendieck topology. Assume given a class P of
morphisms stable under base change and composition and containing isomorphisms
in C. An augmented simplicial object Xy — S in C is a P-hypercovering if for all
n > —1 the adjunction maps

Xo — cosky, (sk, (X))
are given in degree n 4+ 1 by a map
Xnt1 — cosky, (skp (Xe))nt1
that lies in P. (Here S is in degree —1 by convention.)

THEOREM A.32. A P-hypercovering Xo — S satisfies cohomological descent in
each of the following cases.

(1) C is the category of topological spaces or the category of schemes equipped
with a Grothendieck topology and P is the class of surjective covering maps
in this topology.

(2) C is the category of topological spaces and P is the class of proper surjective
maps.

(3) C is the category of schemes equipped with the étale topology, and P is the
class of proper surjective maps, provided we restrict to torsion sheaves.

(4) In the previous situation we may also take for P the class of maps that
are composites of proper surjective maps and étale coverings. In the topo-
logical situation we may take for P the maps that are composites of proper
surjective maps and open coverings.

For the proof, see the references cited above, more specifically [11], Theorems
7.7 and 7.10.

Hypercoverings can also be used to compute sheaf cohomology by a generaliza-
tion of the Cech method.

THEOREM A.33. Let S be a topological space (resp. a scheme), and Cs the cat-
egory of spaces (resp. schemes) over S. Assume Cg is equipped with a Grothendieck
topology which in the topological case is the classical one, and let P be the class of
surjective covering maps.

The system of P-hypercoverings € : Xo — S form a filtered inverse system
indexed by the homotopy classes of simplicial maps between them. Given an abelian
presheaf F on Cs with associated sheaf F*, we have canonical isomorphisms

Hi(s7 ]:ﬁ) o ]E}HHZ(C(]:(XO)))

for all © > 0, where the direct limit is taken over the dual of the above inverse
system.

For the proof, see [2], Exposé V, Theorems 7.3.2 and 7.4.1. The theorem holds
more generally for bounded below complexes of presheaves.
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