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1. Introduction

The Hodge decomposition of the cohomology of smooth projective complex va-
rieties is a fundamental tool in the study of their geometry. Over an arbitrary base
field of characteristic zero, étale cohomology with Qp-coefficients is a good substi-
tute for singular cohomology with complex coefficients, but in general no analogue
of the Hodge decomposition is known. However, owing to a fundamental insight of
Tate [45], we know that over a p-adic base field a version of Hodge decomposition
can indeed be constructed. Moreover, the cohomology groups involved carry an
action of the Galois group of the base field, whose interaction with the Hodge de-
composition can be analyzed by methods inspired by the study of the monodromy
action in the complex case. This has deep consequences for the study of vari-
eties of arithmetic interest, and can even be used to prove some purely geometric
statements.

The first proof of the p-adic Hodge decomposition is due to Faltings [20]; sev-
eral other proofs have been given since. One of the most recent is a wonderful
proof by Beilinson [3] which is the closest to geometry. It can be hoped that its
groundbreaking new ideas will lead to important applications; some of them already
appear in the recent construction of p-adic realizations of mixed motives by Déglise
and Niziol [12]. Moreover, one of the key tools in Beilinson’s approach is Illusie’s
theory [30] of the derived de Rham complex which has also reappeared during the
recent development of derived algebraic geometry. Beilinson’s work may thus also
be viewed as a first bridge between this emerging field and p-adic Hodge theory.

In the present text we give a detailed presentation of Beilinson’s approach,
complemented by some further advances due to Bhatt [8]. Let us start by reviewing
the complex situation which will serve as a guide to p-adic analogues.

1.1. The Hodge decomposition over C. We begin by recalling some basic
facts from complex Hodge theory; standard references are [46] and [6]. Let X be
a smooth projective variety over C (or more generally a Kähler manifold). The
Hodge decomposition is a direct sum decomposition for all n ≥ 0

Hn(Xan,C) =
⊕
p+q=n

Hp,q

where on the left hand side we have singular cohomology of the complex analytic
manifold Xan and

Hp,q ∼= Hq(Xan,ΩpXan)

with ΩpXan denoting the sheaf of holomorphic p-forms.
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Furthermore, complex conjugation acts on Hn(Xan,C) = Hn(Xan,Q)⊗ C via
its action on C, and we have

Hp,q = Hq,p.

These results are proven via identifying Hp,q with Dolbeault cohomology groups
and using the (deep) theory of harmonic forms on a Kähler manifold. However,
part of the theory can be understood purely algebraically.

First, observe that Hn(Xan,C) is also the cohomology of the constant sheaf C
for the complex topology of Xan. Consider the de Rham complex

Ω•Xan := OXan
d→ Ω1

Xan
d→ Ω2

Xan → . . .

Here the first d is the usual derivation and the higher d’s are the unique ones
satisfying

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2

for ω1 ∈ ΩpXan and ω2 ∈ Ωp
′

Xan .
The holomorphic Poincaré lemma implies that Ω•Xan has trivial cohomologies

over contractible open subsets except on the left where the kernel is C. In other
words, the augmented complex of analytic sheaves

0→ C→ OXan
d→ Ω1

Xan
d→ Ω2

Xan → . . .

is exact. Thus we have an isomorphism of (hyper)cohomology groups

(1.1) Hn(Xan,C) ∼= Hn(Xan,Ω•Xan) =: Hn
dR(Xan).

Now Ω•Xan has a descending filtration by subcomplexes

Ω≥pXan := 0→ · · · → 0→ ΩpXan

d→ Ωp+1
Xan → . . .

The p-th graded quotient is isomorphic to ΩpXan (shifted by p), whence a spectral
sequence (the Hodge to de Rham spectral sequence)

Ep,q1 = Hq(Xan,ΩpXan)⇒ Hp+q
dR (Xan)

inducing a descending filtration

Hn
dR(Xan) = F 0 ⊃ F 1 ⊃ · · · ⊃ Fn ⊃ Fn+1 = 0

on Hn
dR(Xan), the Hodge filtration.

The first fundamental fact is that the Hodge to de Rham spectral sequence
degenerates at E1, giving rise to isomorphisms

F p/F p+1 ∼= Ep,q1 = Hq(Xan,ΩpXan).

Via the isomorphism (1.1) the conjugation action on C induces an action onHn
dR(Xan).

Setting

Hp,q := F p ∩ F q

we have obviously Hp,q = Hq,p.
The second nontrivial fact is that the natural map

Hp,q → F p/F p+1

is an isomorphism and hence Hp.q ∼= Hq(Xan,ΩpXan). In other words, Hp,q is a

complement of F p+1 in F p, so complex conjugation splits the Hodge filtration.
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However, the only known proof of this uses the Hodge decomposition we started
with. Namely, one proves

F i =
⊕

p+q=n,p≥i

Hp,q

whence of course we also get Hp,q = Hp,q.

1.2. Algebraization. On a complex algebraic variety X one may also con-
sider sheaves of algebraic differential forms ΩpX and the algebraic de Rham complex

Ω•X := OX
d→ Ω1

X
d→ Ω2

X → . . .

which is a complex of coherent sheaves on X; for X smooth they are moreover
locally free. There is a Hodge to de Rham spectral sequence

Ep,q1 = Hq(X,ΩpX)⇒ Hp+q
dR (X).

defined in the same way. Here we are using cohomology of coherent sheaves in the
Zariski topology.

There are natural maps

Hq(X,ΩpX)→ Hq(Xan,ΩpXan), Hp+q
dR (X)→ Hp+q

dR (Xan)

compatible with the maps in the spectral sequence. By the GAGA theorem of Serre,
for X projective the first maps are isomorphisms, and hence so are the second ones
(in fact, the maps on de Rham cohomology are isomorphisms for general smooth
X by a result of Grothendieck [28]). Thus degeneration for the analytic spectral
sequence is equivalent to that of the algebraic spectral sequence. Indeed, there is
a purely algebraic proof of the degeneration of the algebraic Hodge to de Rham
spectral sequence due to Deligne and Illusie [17].

However, there is no algebraic Poincaré lemma (so the algebraic de Rham com-
plex is not a resolution of the constant sheaf C), and anyway the Zariski cohomology
of the constant sheaf C is trivial. However, comparison with the analytic results im-
ply that the singular cohomology Hn(Xan,C) has a Hodge decomposition involving
algebraic differential forms.

The singular cohomology of Xan can also be defined algebraically for certain
coefficients by means of étale cohomology. Indeed for m > 1 we have a comparison
isomorphism

Hn(Xan,Z/mZ) ∼= Hn
ét(X,Z/mZ)

due to M. Artin, whence for a prime p

Hn(Xan,Qp) ∼= Hn
ét(X,Qp)

where Hn
ét(X,Qp) := lim

←
Hn

ét(X,Z/prZ)⊗Zp
Qp.

But in general it does not compare with Hn
dR(X). The situation is better,

however, over p-adic base fields.

1.3. The case of a p-adic base field. Recall that Cp is the completion

of an algebraic closure Qp of Qp. The Galois group G := Gal(Qp|Qp) acts on
Cp by continuity. Similarly, if K is a finite extension of Qp, by completing an
algebraic closure of K we obtain a complete valued field CK with an action of
GK := Gal(Qp|K). Of course, as a field it is the same as Cp but it carries the
action of a subgroup of G.
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The GK-action on Q×p induces a GK-action on

Zp(1) := lim
←
µpr

and hence on the tensor powers

Zp(i) := Zp(1)⊗i.

This can be extended to negative i by setting Zp(−i) to be the Zp-linear dual of
Zp(i) with its natural GK-action. Finally, we have GK-modules

CK(i) := CK ⊗Zp
Zp(i)

with GK acting via σ(λ⊗ω) = σ(λ)⊗σ(ω). A famous theorem of Tate [45], which
was the starting point of p-adic Hodge theory, states that

(1.2) CK(i)GK =

{
K i = 0

0 i 6= 0.

Now assume X is a smooth projective K-variety. The Hodge–Tate decomposi-
tion, conjectured by Tate and first proven by Faltings [20], is the following analogue
of the Hodge decomposition over C.

Theorem 1.1. There is a canonical isomorphism

Hn
ét(XK ,Qp)⊗Qp

CK ∼=
⊕
q

Hq(X,Ωn−qX )⊗K CK(q − n)

of GK-modules.

Here GK acts on the left by the tensor product of its actions on Hn
ét(XK ,Qp)

and on CK and on the right via its actions on the CK(q − n) (so the Hq(X,Ωn−qX )
are equipped with the trivial GK-action).

Remark 1.2. The Hodge–Tate decomposition holds more generally for smooth
varieties having a smooth projective normal crossing compactification, provided
that one uses the de Rham complex with logarithmic poles along the divisor at
infinity (see Subsection 5.3 for definitions). It is in this generality that the the-
orem will be proven in the present text. The existence of the smooth projective
normal crossing compactification is guaranteed by Hironaka’s theorem for smooth
quasi-projective X. It is also possible to extend the theorem to a statement about
arbitrary varieties using hypercoverings.

Example 1.3. In the case n = 1 we get

H1
ét(XK ,Qp)⊗ CK ∼= (H0(X,Ω1

X)⊗ CK(−1))⊕ (H1(X,OX)⊗ CK)

or else

H1
ét(XK ,Qp(1))⊗ CK ∼= (H0(X,Ω1

X)⊗ CK)⊕ (H1(X,OX)⊗ CK(1)).

Here

H1
ét(XK ,Qp(1)) ∼= Tp(PicXK)⊗Zp

Qp.
In the case of an abelian variety this was first proven by Tate [45] in the good
reduction case and by Raynaud in general, and then by Fontaine [24] by a different
method. For abelian varieties this implies the Hodge-Tate decomposition for all
Hn, as the (étale, Hodge or coherent) cohomology algebra of an abelian variety is
the exterior algebra on H1.
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Theorem 1.1 can be reformulated as follows. Introduce the CK-algebra

BHT :=
⊕
i∈Z

CK(i)

where multiplication is given by the natural maps CK(i)⊗CK(j)→ CK(i+ j). It
carries a natural GK-action. Also, define the K-algebra

Hn
Hdg(X) :=

n⊕
q=0

Hq(X,Ωn−qX ).

Both are graded algebras, so there is a grading on the tensor product
Hn

Hdg(X)⊗K BHT given by the sum of grades. Thus tensoring the Hodge–Tate
decomposition of Theorem 1.1 by BHT yields a GK-equivariant isomorphism of
graded CK-algebras

Hn
ét(XK ,Qp)⊗Qp

BHT
∼= Hn

Hdg(X)⊗K BHT.

Moreover, Tate’s theorem (1.2) implies

(Hn
ét(XK ,Qp)⊗Qp BHT)GK ∼= Hn

Hdg(X).

So we indeed recover the Hodge cohomology of X from the étale cohomology using
the Galois action. But what about the de Rham cohomology?

In his groundbreaking paper [23], Fontaine defined a complete discrete valued
field BdR containing K that is equipped with a GK-action and has a non-split de-
creasing GK-equivariant valuation filtration Fili such that there are GK-equivariant
isomorphisms

Fili/Fili+1 ∼= CK(i)

for all i ∈ Z. So the associated graded ring of BdR with respect to Fili is BHT, and
by Tate’s theorem we have BGK

dR = K.
We then have the following stronger statement, from which Theorem 1.1 results

after passing to associated graded rings.

Theorem 1.4. For all n ≥ 0 there is a GK-equivariant isomorphism of filtered
K-algebras

Hn
ét(XK ,Qp)⊗Qp

BdR
∼= Hn

dR(X)⊗K BdR.

Here the filtration on the right hand side is the tensor product of the Hodge filtration
F i and the filtration Filj on BdR.

The equality BGK

dR = K implies that we indeed recover de Rham cohomology
from étale cohomology:

Corollary 1.5. For all n ≥ 0 there is an isomorphism of filtered K-algebras

(Hn
ét(XK ,Qp)⊗Qp

BdR)GK ∼= Hn
dR(X).

This was Fontaine’s CdR conjecture, again first proven by Faltings in his paper
[21]; see also Illusie’s Bourbaki report [31]. Fontaine has also made finer conjectures
for smooth proper varieties with good reduction (the Ccris conjecture) and with
semistable reduction (the Cst conjecture), involving other period rings Bcris and
Bst. Both conjectures imply the CdR conjecture but in addition the groups in
the comparison theorems carry extra structure. In the semi-stable case these are
a semi-linear Frobenius and a monodromy operator, which together allow one to
recover étale cohomnology from de Rham cohomology, not just the other way round.
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The Cst conjecture together with de Jong’s alteration theorem also implies a p-adic
analogue of Grothendieck’s local monodromy theorem.

All these conjectures are now theorems thanks to work of Fontaine–Messing,
Faltings, Hyodo, Kato, Tsuji, Niziol, Scholze and others; for the situation in 2009
complete with references and an in-depth account of Faltings’s method, see Olsson’s
report [38]. We are concerned here with a recent beautiful approach by Beilinson
[3] that closely resembles the complex setting. We shall only discuss the de Rham
comparison theorem, but Beilinson’s method also yields proofs of the Ccris and Cst

conjectures, as shown in work by Beilinson himself [4] as well as Bhatt [8].

1.4. Beilinson’s method. The first innovative ingredient in Beilinson’s ap-
proach is a new construction of Fontaine’s period ring that immediately shows its
relation to de Rham theory. Namely, Beilinson considers

AdR,K := LΩ̂•OK/OK

where on the right hand side we have the Hodge-completed derived de Rham al-
gebra of Illusie [30]. The de Rham algebra LΩ•OK/OK

itself is represented by a

complex of OK-modules equipped with a multiplicative structure and a descending
filtration, i.e. a filtered differential graded algebra. It is constructed by choosing
a free resolution of the OK-algebra OK and considering the de Rham complexes
associated with each term in the resolution. Note that since OK-algebras do not
form an abelian category, the usual methods of homological algebra for construct-
ing resolutions do not apply, and one has to use simplicial methods instead. The
filtration is then induced by the Hodge filtration on the de Rham complexes.

Next, Beilinson considers the derived p-adic completion

AdR,K⊗̂Zp := R lim
←

(AdR,K ⊗L Z/prZ).

It turns out that the homology of this object is concentrated in degree 0, so it
is a genuine filtered OK-algebra. Moreover, after tensoring with Q one obtains a
complete discrete valuation ring that does not depend on K any more and can be
identified with Fontaine’s ringB+

dR which is the valuation ring ofBdR. The key point

in this identification is Fontaine’s calculation of the module of differentials Ω1
OK/OK

in [24]: it yields in particular a GK-equivariant isomorphism Tp(Ω
1
OK/OK

) ⊗ Q ∼=
CK(1).

Beilinson’s second main idea is to introduce a sheafification A\dR of AdR :=
AdR,K for a certain Grothendieck topology that is fine enough to hope for an
analogue of the Poincaré lemma. This is Voevodsky’s h-topology [43] in which
coverings are generated by étale surjective maps and proper surjective maps. The
consideration of proper surjections is justified by an ingenious use of a theorem of
Bhatt [7]. According to Bhatt’s theorem, on a smooth variety every higher Zariski
cohomology class of a coherent sheaf becomes p-divisible after passing to a suitable
proper surjective covering; in particular, it vanishes after tensoring with Z/prZ.
As a result, if one sheafifies the construction of the complexes AdR ⊗L Z/prZ for
the h-topology, they will have no higher cohomology over ‘small open sets’. This is
Beilinson’s p-adic version of the Poincaré lemma: the natural maps

AdR ⊗L Z/prZ→ A\dR ⊗
L Z/prZ
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are filtered quasi-isomorphisms, where on the left hand side we have a constant
h-sheaf. As a result, for a smooth K-variety X we have filtered isomorphisms

Hn
ét(XK ,Zp)⊗Zp B

+
dR
∼→ Hn

h (XK ,A
\
dR)⊗̂Qp

for all n ≥ 0 that may be viewed as p-adic analogues of (1.1). We call these the
arithmetic side of the comparison isomorphism.

On the geometric side, one has to relate the right hand side of the above isomor-

phism to de Rham cohomology. This is accomplished by showing that A\dR ⊗Q is
none but the h-sheafification of the Hodge-completed (but non-derived) logarithmic
de Rham complex.

There are several technical issues to be settled in order to make these ideas
precise. First, the de Rham complexes under consideration only behave well for
smooth schemes U having a smooth normal crossing compactification U . For these
one has to work with logarithmic de Rham complexes and, in the arithmetic situ-
ation, log de Rham complexes of log schemes. Afterwards, h-sheafification causes
a problem as the Zariski presheaves we want to sheafify are only defined for pairs
(U,U) as above. Beilinson overcomes this difficulty by refining a general sheaf-
theoretic result of Verdier that becomes applicable in our situation thanks to de
Jong’s alteration theorems. Finally, there is a complication of homological nature
caused by the fact that we want to sheafify filtered objects in a derived category.
Beilinson handles it by using the theory of E∞-algebras; here we follow the more
pedestrian approach of Illusie [32] that uses canonical Godement resolutions.

Once the comparison map between Hn
ét(XK ,Qp)⊗Qp

BdR and Hn
dR(X)⊗KBdR

has been constructed, the key computation is to verify that it is an isomorphism
in the case X = Gm. Afterwards, the general case follows by formal cohomological
arguments already present in the work of Faltings and Fontaine–Messing.

1.5. Overview of the present text. In the first chapter we give a reasonably
complete introduction to Illusie’s theory [29] of the cotangent complex and the
derived de Rham algebra. The construction of these objects relies on simplicial
methods which are usually not part of the toolkit of algebraic geometers and number
theorists (such as yours truly). We have therefore summarized the results we need
in an appendix.

Next, we present Fontaine’s computation of the module of differentials for the
p-adic ring extension OK |OK with simplifications due to Beilinson. This then serves
for the computation of the p-completed derived de Rham algebra of the above ring
extension, for which we use techniques from Bhatt’s paper [8]. We emphasize
throughout the role played by deformation problems in these constructions, culmi-
nating in a description of the p-completed derived de Rham algebra of OK |OK as
a solution of a certain universal deformation problem. This ties in with Fontaine’s
approach in [25] to period rings via deformation problems, with the notable differ-
ence that he constructs universal deformation rings ‘by hand’, whereas here, to use
a somewhat dangerous formulation, we derive them from derived de Rham theory.
This approach also makes it possible to prove directly that B+

dR as constructed via
Beilinson’s method is a complete discrete valuation ring with the required prop-
erties, whereas he himself proceeds by comparison with Fontaine’s constructions.
A subtle point deserves to be mentioned here: as already noticed by Illusie in his
thesis [30], the p-completed derived de Rham algebras under consideration come
equipped with a divided power structure. This structure enters calculations in a
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crucial way but then gets killed when one inverts the prime p to obtain the ring
B+

dR. This indicates that the p-completed derived de Rham algebra is ‘really’ re-
lated to the crystalline theory, as confirmed by Bhatt’s construction of the period
ring Acris that we also briefly review in the text.

The following chapter presents Beilinson’s construction of the comparison map.
We have separated the geometric side of the construction from the arithmetic side,
as already outlined in the survey above. The geometric side does not use the
derived de Rham complex or logarithmic geometry but the h-sheafification process
already enters the game, in a somewhat simpler setting than in the arithmetic
situation. It should be pointed out here that the comparison with classical de
Rham cohomology uses complex Hodge theory. Presented this way, the arithmetic
side of the construction becomes a logarithmic variant of the geometric one over
a p-adic integral base, relying heavily on the Olsson–Gabber theory [37] of the
logarithmic cotangent complex. We only give a brief summary of the results of
[37], but we hope that the reader will take on faith that the exact analogues of
non-logarithmic results hold in this setting.

Of course, the arithmetic side of the comparison map has another non-trivial
input besides those just mentioned: Beilinson’s p-adic Poincaré lemma. We give its
proof in the last chapter. However, the key geometric result inspired by Bhatt [7]
is only presented in a special case (due to Bhatt himself) where the argument is
more transparent. The last chapter also contains a verification that the comparison
map is an isomorphism.

This text grew out of a study seminar organized by the authors at the Rényi
Institute during the academic year 2014/15, and was the basis of seminars at Uni-
versität Duisburg-Essen and Oxford University in 2016. We thank all participants
for their contribution. We are also indebted to Bhargav Bhatt, Luc Illusie and
Marc Levine for enlightening discussions and to Alexander Beilinson for his kind
comments on a preliminary version. We are grateful to the editors of the 2015 AMS
Summer Institute proceedings for their kind interest in our text and to the referee
whose suggestions have considerably improved it.

2. The cotangent complex and the derived de Rham algebra

2.1. The cotangent complex of a ring homomorphism. In this section
and the next we give a quick introduction to Illusie’s cotangent complex in the
affine case. To begin with, we summarize basic properties of differential forms for
the sake of reference.

Facts 2.1. Let A→ B be a homomorphism of rings, and M a B-module. An
A-derivation of B in M is an A-linear map D : B → M satisfying the Leibniz
rule D(b1b2) = b1D(b2) + b1D(b2) for all b1, b2 ∈ B. We denote the set of A-
derivations B → M by DerA(B,M); it carries a natural B-module structure with
scalar multiplication given by (bD)(x) = b ·D(x) for all b ∈ B.

The functor M 7→ DerA(B,M) on the category of B-modules is representable
by a B-module Ω1

B/A, the module of relative differentials. A presentation of Ω1
B/A

is given by generators db for each b ∈ B subject to the relations d(a1b1 + a2b2) −
a1db1 − a2db2 and d(b1b2) − b1db2 − b2db1 for ai ∈ A and bi ∈ B. It satisfies the
following basic properties:

(1) (Base change) For an A-algebra A′ one has Ω1
B⊗AA′/A′

∼= Ω1
B/A ⊗A A

′.
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(2) (Localization) Given a multiplicative subset S of B, one has

Ω1
BS/A

∼= Ω1
B/A ⊗B BS .

(3) (First exact sequence) A sequence of ring homomorphisms A → B → C
gives rise to an exact sequence of C-modules

C ⊗B Ω1
B/A → Ω1

C/A → Ω1
C/B → 0.

(4) (Second exact sequence) A surjective morphism B → C of A-algebras
with kernel I gives rise to an exact sequence

I/I2 δ→ C ⊗B Ω1
B/A → Ω1

C/A → 0

of C-modules, where the map δ sends a class x mod I2 to 1⊗ dx. (Note
that the B-module structure on I/I2 induces a C-module structure.)

For all these facts, see e.g. [36], §25.

Exact sequence (3) above can be extended by 0 on the left under a smoothness
assumption on the map B → C. However, in general exactness on the left fails. One
of the main motivations for introducing the cotangent complex LB/A is to remedy
this defect. To construct LB/A, we use the simplicial techniques from Subsection
A.1 of the Appendix.

Definition 2.2. Let A be a ring. We call an augmented simplicial object
Q• → B in the category of A-algebras a simplicial resolution if it induces a simplicial
resolution on underlying A-modules in the sense of Definition A.17.

Note that the category of A-algebras is not an abelian category, and therefore
Definition A.17 does not apply directly.

Construction 2.3. We define the standard simplicial resolution P• = P•(B)
of the A-algebra B as follows. Set P0 := A[B], the free A-algebra on generators xb
indexed by the elements of B; then define inductively

Pi+1 := A[Pi]

for i ≥ 0.
We turn the sequence of the Pi into a simplicial A-algebra as follows. Note first

that given an A-algebra B, its identity map induces an A-algebra homomorphism
κB : A[B] → B, and also a map of sets τB : B → A[B] in the other direction.
Whence for 0 ≤ j ≤ i face maps

∂ji : Pi = A[A[. . . [B]] . . . ]︸ ︷︷ ︸
i

→ Pi−1 = A[A[. . . [B]] . . . ]︸ ︷︷ ︸
i−1

induced by applying κA[Pj ], and degeneracy maps

σji : Pi−1 = A[A[. . . [B]] . . . ]︸ ︷︷ ︸
i−1

→ Pi = A[A[. . . [B]] . . . ]︸ ︷︷ ︸
i

induced by applying τA[Pj ]. Direct computation shows that this defines a simplicial
resolution of the A-algebra B; this fact may also be deduced from the general
categorical result of ([47], Proposition 8.6.8).

For later use, note that in a similar fashion we obtain a standard simplicial
resolution for an A-module M , by iterating the functor associating with M the free
A-module with basis the underlying set of M . Finally, the construction may be
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carried out for simplicial algebras B• (or modules M•) over a simplicial ring A•: it
yields a bisimplicial object whose associated double complex gives a free resolution
in each column.

The standard resolution has the following important property.

Lemma 2.4. Assume B = A[X] is a free algebra on the generating set X. Then
the standard simplicial resolution P•(A[X]) → A[X]• defined above is a homotopy
equivalence.

Here A[X]• denotes the constant simplicial object associated with A[X], as in
Definition A.3 of the Appendix.

Proof. Define f• : A[X]• → P•(A[X]) and g• : P•(A[X])→ A[X]• by iterat-
ing the operations τB and κB :

fn := τ ◦ · · · ◦ τ︸ ︷︷ ︸
n+1

,

gn := κ ◦ · · · ◦ κ︸ ︷︷ ︸
n+1

.

These indeed define morphisms of simplicial objects, and by construction we have
g• ◦ f• = idA[X]• . We define a simplicial homotopy between f• ◦ g• and idP•(A[X])

as follows. For αi : [n]→ [1] (i = −1, 0, . . . , n) with α−1
i (0) = {0, . . . , i} we put

Hαi
: Pn

τ ◦ · · · ◦ τ︸ ︷︷ ︸
n−i // Pi

κ ◦ · · · ◦ κ︸ ︷︷ ︸
n−i // Pn.

Taking the sum of these maps over all αi defines a simplicial homotopy

H : P•(A[X])×∆[1]• → P•(A[X])

between f• ◦ g• and idP•(A[X]). �

Now we come to the fundamental definition of Illusie [29].

Definition 2.5. Consider an A-algebra B, and take the standard resolution
P• → B. The cotangent complex LB/A of the A-algebra B is defined as the complex
of B-modules

LB/A := C(B• ⊗P• Ω1
P•/A

).

Like in the previous lemma, here B• stands for the constant simplicial ring
associated with B (see Definition A.3). It is a simplicial P•-algebra via the aug-
mentation map P• → B• (see Definition A.6). The simplicial A-module Ω1

P•/A
is

obtained by applying the functor B → Ω1
B/A to the terms of the resolution P•, and

C denotes the associated chain complex.
The cotangent complex is related to the module of differentials as follows.

Proposition 2.6. We have a natural isomorphism of B-modules

H0(LB/A) ∼= Ω1
B/A.

Proof. Since ε• : P• → B• is an augmentation for the simplicial object P•,
we have ε0d0 = ε0d1. Therefore the composed map in the associated chain complex

B ⊗P1
Ω1
P1/A

→ B ⊗P0
Ω1
P0/A

→ Ω1
B/A
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is the zero map. Thus we have a morphism of complexes LB/A → Ω1
B/A, with Ω1

B/A

considered as a complex concentrated in degree 0. The induced map H0(LB/A)→
Ω1
B/A is surjective because so is the ring homomorphism P0 → B. By Fact 2.1 (4)

we have an exact sequence

I/I2 → B ⊗P0
Ω1
P0/A

→ Ω1
B/A,

where I is the kernel of the augmentation map ε0 : P0 → B. But since P• → B is
a resolution, here I is also the image of the map d0 − d1 : P1 → P0, and therefore
the image of I/I2 in B ⊗P0

Ω1
P0/A

is covered by B ⊗P1
Ω1
P1/A

, as desired. �

We now show that the cotangent complex may be calculated by other free
resolutions as well.

Theorem 2.7. Let Q• → B be a simplicial resolution of the A-algebra B whose
terms are free A-algebras. We have a quasi-isomorphism

LB/A ∼= C(B• ⊗Q• Ω1
Q•/A

)

of complexes of B-modules.

The proof will be in several steps. We begin with a general lemma that will
serve in other contexts as well.

Lemma 2.8. Let A• be a simplicial ring, and let E• → F• be a morphism of
A•-modules that induces a quasi-isomorphism on associated chain complexes. Ten-
soring by an A•-module L• that is termwise flat over A• yields a map E• ⊗A• L• →
F• ⊗A• L• that also induces a quasi-isomorphism.

Proof. Assume first that A• is a constant simplicial ring defined by a ring
A. In this case the lemma is a consequence of the Künneth formula applied to
the tensor products of the associated complexes of A-modules. In the general case
consider the standard simplicial resolution F (Ln)• → Ln of each An-module Ln.
These assemble to a bisimplicial object F (L•)• equipped with a map F (L•)• → L•.
Moreover, we have a commutative square of bisimplicial objects

E• ⊗A• F (L•)• //

��

F• ⊗A• F (L•)•

��
E• ⊗A• L• // F• ⊗A• L•

viewing the simplicial objects in the lower row as ‘constant bisimplicial objects’. For
fixed n ≥ 0 the vertical maps En⊗An

F (Ln)• → En⊗An
Ln and Fn⊗An

F (Ln)• →
Fn⊗An

Ln are quasi-isomorphisms because F (Ln)• → Ln is a flat resolution of the
flat An-module Ln. It follows that both vertical arrows induce quasi-isomorphisms
on total chain complexes, and therefore it suffices to verify the same for the upper
horizontal arrow. By construction of the standard resolution, for fixed m,n ≥ 0
the Am-module F (Ln)m is isomorphic to the free An-module A(Xn,m)

n with basis a

set Xn,m. Denoting by Z(Xn,m) the similarly constructed free Z-module, we thus

have isomorphisms of simplicial modules E• ⊗A• F (L•)m ∼= E• ⊗Z• Z(X•,m) for
each m, where Z• is the constant simplicial ring defined by Z. The same holds
for F• in place of E•, and therefore by the case of a constant base ring the maps
E•⊗A• F (L•)m → F•⊗A• F (L•)m induce quasi-isomorphisms for all m. This gives
a quasi-isomorphism on total complexes, as required. �
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Corollary 2.9. If Q• → B• is a simplicial resolution of the A-algebra B with
free terms, we have a quasi-isomorphism of complexes

CΩ1
Q•/A

∼= C(B• ⊗Q• Ω1
Q•/A

).

Proof. Apply the lemma with A• = E• = Q•, F• = B• and L• = Ω1
Q•/A

. �

Next, assume given a simplicial A-algebra B•. The standard resolutions
P•(Bn) → Bn for each n assemble to a bisimplicial A-algebra P•(B•). Applying
the functor Ω1

·/A yields a bisimplicial A-module Ω1
P•(B•)/A

, whence an associated

double complex CΩ1
P•(B•)/A

and finally a total complex Tot(CΩ1
P•(B•)/A

), taken
with the direct sum convention.

Lemma 2.10. Let C• → B be a simplicial resolution of A-algebras. The induced
map

Tot(CΩ1
P•(C•)/A

)→ CΩ1
P•(B)/A

is a quasi-isomorphism.

Proof. By Propositions A.20 and A.21 the underlying morphism C• → B•
of simplicial sets induces a homotopy equivalence. Applying the functor X 7→
Pn−1(A[X]) for fixed n ≥ 0 (with the convention P−1 = id) we obtain a homotopy
equivalence Pn(C•)→ Pn(B•) of simplicial A-algebras, whence a homotopy equiv-
alence Ω1

Pn(C•)/A
→ Ω1

Pn(B•)/A
of simplicial A-modules. As the latter is a constant

simplicial module, it follows that Ω1
Pn(C•)/A

→ Ω1
Pn(B)/A is a simplicial resolution

for each n. Thus the columns of the double complex CΩ1
P•(C•)/A

give free resolu-

tions of the terms of the complex CΩ1
P•(B)/A, and therefore the total complex is

indeed quasi-isomorphic to CΩ1
P•(B)/A. �

Proof of Theorem 2.7. Applying the previous lemma to the simplicial resolution
Q• → B yields a quasi-isomorphism

Tot(CΩ1
P•(Q•)/A

) ' CΩ1
P•(B)/A ' LB/A

using Corollary 2.9.
On the other hand, for each fixed n the simplicial map P•(Qn) → (Qn)• is a

homotopy equivalence by Lemma 2.4, and therefore so is Ω1
P•(Qn)/A → (Ω1

Qn/A
)
•
,

so that CΩ1
P•(Qn)/A is an acyclic resolution of Ω1

Qn/A
. It follows that we have a

quasi-isomorphism

Tot(CΩ1
P•(Q•)/A

) ' CΩ1
Q•/A

which concludes the proof, again taking Corollary 2.9 into account.

Remark 2.11. In the model category of simplicial modules defined by Quillen
[39] the cofibrant replacements of an object correspond to projective resolutions of
modules. In the model category structure on simplicial algebras (see [39] or [40])
the simplicial resolutions considered in Theorem 2.7 will not necessarily be cofi-
brant replacements. However, one may obtain cofibrant replacements by imposing
an extra simplicial coherence condition. The resulting simplicial resolutions will
be homotopy equivalent as simplicial algebras, whereas the ones in 2.7 are only
homotopy equivalent as simplicial sets. See also [27] on these issues.
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If A′ is another A-algebra, we have a natural base change morphism

A′ ⊗LA LB/A → LA′⊗AB/A′ ,

noting that the map B → A′ ⊗A B naturally extends to an A•-algebra map of
corresponding standard simplicial resolutions.

Before stating the next lemma, recall that two A-algebras A′ and B are called
Tor-independent if TorAi (A′, B) = 0 for i > 0. If A′ is flat over A, then A′ and any
B are Tor-independent.

Lemma 2.12. If A′ and B are Tor-independent A-algebras, the base change
map induces a quasi-isomorphism

A′ ⊗LA LB/A
∼→ LA′⊗AB/A′

of complexes of A′ ⊗B-modules.

Proof. Let P• → B be a standard simplicial resolution of the A-algebra B.
Since A′ and B are Tor-independent, the associated chain complex of A′ ⊗A P• is
acyclic outside degree 0 where its homology is A′ ⊗A B. In particular, A′ ⊗A P•
is a free simplicial resolution of the A′-algebra A′ ⊗A B and hence may be used to
compute LA′⊗AB/A′ by Theorem 2.7. Finally, note that

(A′ ⊗A B)⊗A′⊗AP• (Ω1
A′⊗AP•/A

) ∼= A′ ⊗A (B ⊗P• Ω1
P•/A

)

computes A′ ⊗LA LB/A using again the Tor-independence of A′ and B, noting that
LB/A is a complex of free B-modules. �

We now come to one of the most important properties of the cotangent complex.

Theorem 2.13 (Transitivity triangle). A sequence A → B → C of ring maps
induces an exact triangle in the derived category of complexes of C-modules

C ⊗LB LB/A → LC/A → LC/B → C ⊗LB LB/A[1] .

Proof. Let P• → B• be the standard resolution of the A-algebra B, and
consider the constant simplicial module C• as a P•-module via the composite ho-
momorphism P• → B• → C•. The standard simplicial resolutions of each Cn as a
Pn-algebra assemble to a bisimplicial A-algebra Q••. The diagonal Q∆

• of Q•• is
a free P•-algebra in each degree, therefore the first exact sequence of differentials
induces for each n ≥ 0 a short exact sequence

0→ Q∆
n ⊗Pn Ω1

Pn/A
→ Ω1

Q∆
n /A
→ Ω1

Q∆
n /Pn

→ 0

of Q∆
n -modules which splits since Ω1

Q∆
n /Pn

is a free module. Tensoring with C then

gives rise to a short exact sequence

(2.1) 0→ C• ⊗P• Ω1
P•/A

→ C• ⊗Q∆
•

Ω1
Q∆
• /A
→ C• ⊗Q∆

•
Ω1
Q∆
• /P•

→ 0

of simplicial C-modules. We now show that after taking associated chain complexes
this sequence represents the exact triangle of the theorem in the derived category.

The complex C• ⊗P• Ω1
P•/A

represents C ⊗LB LB/A as the simplicial B-module

B• ⊗P• Ω1
P•/A

has free terms and the map P• → C• factors through B• by construc-

tion. Next, note that each term of Q∆
• is free as an A-algebra, the Pn being free over

A and the Q∆
n free over Pn. On the other hand, since the total complex CQ•• is

acyclic by construction, the Eilenberg–Zilber Theorem (Theorem A.16) implies that
Q∆
• is a free simplicial resolution of the A-algebra C. Theorem 2.7 then yields that
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the associated chain complex of C• ⊗Q∆
•

Ω1
Q∆
• /A

represents the cotangent complex

LC/A.

Finally, put Q• := B• ⊗P• Q∆
• . Since each Q∆

n is free over Pn, Lemma 2.8
applied to the resolution P• → B implies that the map Q∆

• → Q• induces a
quasi-isomorphism on normalized complexes. Since Q∆

• is a free simplicial res-
olution of C as an A-algebra, so is Q• as a B-algebra. The base change prop-
erty of differentials implies that we have an isomorphism of simplicial C-modules
C• ⊗Q∆

•
Ω1
Q∆
• /P•

∼= C•⊗Q• Ω1
Q•/B

, so Theorem 2.7 yields that the associated chain

complex of C ⊗Q∆
•

Ω1
Q∆
• /P•

represents the cotangent complex LC/B . �

Theorem 2.13 and Lemma 2.6 now imply:

Corollary 2.14. In the situation of the theorem there is a long exact homology
sequence

· · · → H1(LB/A ⊗LB C)→ H1(LC/A)→ H1(LC/B)→
→ Ω1

B/A ⊗B C → Ω1
C/A → Ω1

C/B → 0.

We close this subsection by computing the cotangent complex in important
special cases.

Proposition 2.15. If B = A[X] is a free algebra on a set X of generators,
then the cotangent complex LB/A is acyclic in nonzero degrees.

Proof. By Lemma 2.4 we have a homotopy equivalence between the constant
simplicial algebra A[X]• and its standard resolution P•. Applying the functor
Ω1
·/A gives a homotopy equivalence between Ω1

P•/A
and Ω1

A[X]•/A
, whence a quasi-

isomorphism on associated chain complexes. But CΩ1
A[X]•/A

is a complex of free
modules that is acyclic in nonzero degrees, so we conclude by Corollary 2.9. �

The following case will be crucial for the calculations in the next section.

Proposition 2.16. Assume that A → B is a surjective ring homomorphism
with kernel I = (f) generated by a nonzerodivisor f ∈ A. Then LB/A is quasi-

isomorphic to the complex I/I2[1].

Proof. We first treat the special case A = Z[x], B = Z, f = x. Consider the
exact triangle

LZ[x]/Z ⊗LZ[x] Z→ LZ/Z → LZ/Z[x] → LZ[x]/Z ⊗LZ[x] Z[1]

associated by Theorem 2.13 to the sequence of ring maps Z → Z[x] → Z. Lemma
2.6 and Proposition 2.15 imply that LZ/Z is acyclic and LZ[x]/Z is quasi-isomorphic

to Ω1
Z[x]/Z placed in degree 0. As the latter is a free module of rank 1, tensoring

with Z over Z[x] yields that LZ[x]/Z⊗Z[x]Z is quasi-isomorphic to Z placed in degree
0. Hence the exact triangle implies that LZ/Z[x] is acyclic outside degree 1. The

isomorphism H1(LZ/Z[x]) ∼= I/I2 follows from Fact 2.1 (4).
To treat the general case, consider the map Z[x]→ A sending x to f . The Z[x]-

modules A and Z are Tor-independent, because tensoring the short exact sequence

0→ Z[x]
x→ Z[x]→ Z→ 0

by A over Z[x] yields the sequence

0→ A
f→ A→ B → 0
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which is exact by the assumption that f is nonzerodivisor. Therefore we may apply
Lemma 2.12 to obtain a quasi-isomorphism A ⊗LZ[x] LZ/Z[x]

∼→ LB/A, reducing the
proposition to the special case treated above. �

Remark 2.17. The above proposition can be easily extended to the case when
I is not necessarily principal but generated by a regular sequence.

2.2. First-order thickenings and the cotangent complex. We continue
the study of the cotangent complex by discussing its relation to first-order thicken-
ings of A-algebras. Given an A-algebra B, a first-order thickening of B is given by
an extension

0→ I → Y → B → 0

of A-algebras, where I is an ideal satisfying I2 = 0. Note that the condition I2 = 0
implies that the natural Y -module structure on I induces a B-module structure.
Two first-order thickenings Y1, Y2 of B whose kernels I1, I2 are isomorphic to I
as B-modules are called equivalent if there is a morphism Y1 → Y2 inducing the
identity map on B and a B-module isomorphism I1 ∼= I2. A Baer sum construction
defines an abelian group structure on equivalence classes, denoted by ExalA(B, I).

Proposition 2.18. For a B-module I we have a canonical isomorphism

ExalA(B, I)
∼→ Ext1

B(LB/A, I).

Proof. We construct a set-theoretic bijection and leave the verification of
additivity to the reader.

Consider the standard resolution P• → B of the A-algebra B. Given a first-
order thickening Y of B with ideal I, we may lift the surjection ε0 : P0 → B to an
A-algebra map θ : P0 → Y by freeness of P0. By composing with the differential
d1 = ∂0 − ∂1 : P1 → P0 of the chain complex CP•, we obtain a map D = θ ◦ d1

from P1 to I ⊂ Y which is readily seen to be an A-derivation. It thus induces a
P1-linear map Ω1

P1/A
→ I, whence also a B-linear map D : B ⊗P1 Ω1

P1/A
→ I ⊂ Y

by base extension, noting that the P1-module structure on Y (and hence on I) is
given by the augmentation ε1 : P1 → B. Next, note that the differential d2 of CP•
induces a map B⊗P2

Ω1
P2/A

→ B⊗P1
Ω1
P1/A

. Its composite with D factors through

the map B ⊗P2 Ω1
P2/A

→ B ⊗P0 Ω1
P0/A

induced by d1 ◦ d2, and hence is the zero
map. Since

Ext1
B(LB/A, I) = H1(Hom(B ⊗P• Ω1

P•/A
, I)),

the map D defines a class in Ext1
B(LB/A, I). This class does not depend on the

choice of the lifting θ. Indeed, if θ′ : P0 → Y , the relation I2 = 0 implies that
the difference θ − θ′ : P0 → I is an A-derivation and hence gives rise to a map
B ⊗P0 Ω1

P0/A
→ I as above. Composition with the differential d1 then yields

a map in HomB(B ⊗P1
Ω1
P1/A

, I) which is D − D′ by construction, where D
′ ∈

HomB(B⊗P1
Ω1
P1/A

, I) is the map coming from θ′. Thus D and D
′

define the same

class in Ext1
B(LB/A, I).

We construct an inverse map Ext1
B(LB/A, I) → ExalA(B, I) by reversing the

above procedure. A class α in Ext1
B(LB/A, I) is represented by a B-linear map

D : B ⊗P1 Ω1
P1/A

→ I whose restriction to the second factor gives rise to an A-

derivation D : P1 → I such that D ◦ d2 = 0. Since Im(d2) = Ker(d1), we have
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Ker(d1) ⊆ Ker(D). Note that this implies that the augmentation map ε1 : P1 → B
defining the P1-module structure on I has a set-theoretic section with values in
Ker(D). Indeed, for p0 ∈ P0 we have equalities ∂0(σ0(p0)) = ∂1(σ0(p0)) = p0 where
σ0 : P0 → P1 is the degeneracy map and ∂i : P1 → P0 the face maps, and therefore
sending x ∈ I to σ0(p0) with some p0 ∈ ε−1

0 (x) defines such a section. It follows
that D(P1) is a B-submodule of I, because for p1 ∈ P1 and the above p0 and b we
have bD(p1) = ε1(σ0(p0))D(p1) = D(σ0(p0)p1) by the Leibniz rule.

This being said, consider the A-module direct sum P0 ⊕ I equipped with the
multiplication defined by (p0, i)(p

′
0, i
′) = (p0p

′
0, p0i

′ + p′0i). It is an A-algebra in
which (0, I) is an ideal of square zero. Moreover, the A-module Y defined as the
cokernel of the A-module map (d1, D) : P1 → P0⊕I inherits an A-algebra structure
from P0 ⊕ I. Indeed, Im(d1, D) is an ideal in P0 ⊕ I as all p′0 ∈ P0, p1 ∈ P1 and
x ∈ I satisfy

(d1(p1), D(p1))(p′0, x) = (d1(p1)p′0, d1(p1)x+ p′0D(p1)) =

= (d1(p1)p′0, ε0(p′0)D(p1)) ∈ Im(d1, D)

since d1(p1) ∈ Ker(ε0) which is an ideal in P0, and D(p1) ⊂ I is a B-submodule. It
now follows that the surjection (ε0, 0) : P0⊕ I → B induces an A-algebra extension

0→ I → Y → B → 0,

defining an object of ExalA(B, I). We recover D : P1 → I as the derivation
associated with the thickening Y by the procedure of the previous paragraph, which
shows that the two constructions are inverse to each other. �

Given an A-algebra B, first-order thickenings of B naturally form a category
ExalA(B) whose morphisms are A-algebra homomorphisms compatible with the
surjections onto B.

Proposition 2.19. If Ω1
B/A = 0, the category ExalA(B) has an initial object.

Proof. In view of Lemma 2.6, the assumption Ω1
B/A = 0 implies that we may

identify Ext1
B(LB/A, I) with HomB(H1(LB/A), I) for allB-modules I. In particular,

the identity map of H1(LB/A) yields a class in Ext1
B(LB/A, H1(LB/A)), which in

turn corresponds to a first-order thickening Yuniv of B by Proposition 2.18, with
kernel H1(LB/A). That Yuniv is an initial object follows by a Yoneda type argument

from the functoriality of the isomorphism ExalA(B, I)
∼→ HomB(H1(LB/A), I) in

I. �

We shall call Yuniv the universal first-order thickening of B.

Example 2.20. In the case when A→ B is a surjective morphism with kernel
J , the condition Ω1

B/A = 0 holds. In this case it is easy to describe Yuniv by hand:
it is given by the extension

0→ J/J2 → A/J2 → B → 0.

In particular, we have an isomorphism ExalA(B, I) ∼= HomB(J/J2, I).

Starting from Proposition 2.18, Chapter III of [29] develops a deformation
theory of algebras with the aid of the cotangent complex. We shall need two
statements from this theory which we now explain.
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Assume given a ring A and an ideal I ⊂ A of square zero. Given moreover an
A/I-algebra B and a B-module J together with an A-module map λ : I → J , one
may ask whether there exists an A-algebra extension B making the diagram

(2.2) 0 // J // B // B // 0

0 // I //

λ

OO

A //

OO

A/I //

OO

0

commute.

Proposition 2.21. If LB/(A/I) = 0, there is an A-algebra extension B of B

by J making diagram (2.2) commute, and such a B is unique up to isomorphism.

Proof. The extension class of A defines a class in Ext1
A/I(L(A/I)/A, I) by

Proposition 2.18, mapping to a class in Ext1
A/I(L(A/I)/A, J) ∼= Ext1

B
(L(A/I)/A⊗LA/I

B, J) via the map induced by λ on Ext-groups. The assumption LB/(A/I) = 0

yields a quasi-isomorphism L(A/I)/A ⊗LA/I B ∼= LB/A by applying Theorem 2.13 to

the sequence of maps A → A/I → B. We thus obtain a class in Ext1
B

(LB/A, J),

giving rise to an A-algebra extension B of B by J via Proposition 2.18. Going
through the constructions in the proof of the said proposition one checks that up
to isomorphism B is the unique extension making diagram (2.2) commute. �

Now assume an A-algebra extension B as above exists, and moreover J = IB
(and hence B = B/IB). We have a natural surjection I ⊗A/I (B/IB)→ IB which
is an isomorphism if B is flat over A. Thus if B is a flat A-algebra and C an
arbitrary A-algebra, every A/I-algebra map φ : B/IB → C/IC gives rise to an
A/I-algebra map IB → IC by tensoring with I. The map φ thus gives rise to a
diagram with exact rows

(2.3)

0 −−−−→ IB −−−−→ B −−−−→ B/IB −−−−→ 0

φ⊗idI

y yφ
0 −−−−→ IC −−−−→ C −−−−→ C/IC −−−−→ 0

Proposition 2.22. In the above situation assume moreover L(B/IB)/(A/I) = 0.

Then there exists a unique map φ̃ : B → C making the diagram commute.

Proof. First a word on uniqueness. The difference of two liftings of φ is
an A/I-derivation B/IB → IC. But the assumption L(B/IB)/(A/I) = 0 implies

Ω1
(B/IB)/(A/I) = 0 in view of Proposition 2.6, so this derivation must be trivial.

For existence, observe first that the diagram (2.3) gives rise to two natural

A-algebra extensions of B/IB by IC: an extension B̃ obtained as a pushout of the

upper row by the map φ⊗ idI , and an extension C̃ obtained as the pullback of the
lower row by the map φ. The universal properties of pushout and pullback imply

that a map φ̃ : B → C as in the statement exists if and only if the extensions B̃

and C̃ are isomorphic.
By Proposition 2.18 both extensions have a class in Ext1

B/IB(L(B/IB)/A, IC).

Theorem 2.13 applied to the sequence A→ A/I → B/IB gives an exact triangle

(B/IB)⊗LA/I L(A/I)/A → L(B/IB)/A → L(B/IB)/(A/I) → (B/IB)⊗LA/I L(A/I)/A[1].
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Applying the functor Ext1
B/IB(·, IC) gives an exact sequence

Ext1
B/IB(L(B/IB)/(A/I), IC)→ Ext1

B/IB(L(B/IB)/A, IC)
ρ→ Ext1

A/I(L(A/I)/A, IC)

where we may identify the last group with HomA/I(I, IC) by Proposition 2.18
and the Example 2.20. Furthermore, going through the constructions shows

that the map ρ sends both the class of B̃ and that of C̃ to the natural map
I → IC induced by the structure map A → C. But ρ is injective since we have

Ext1
B/IB(L(B/IB)/(A/I), IC) = 0 by assumption. This shows B̃ ∼= C̃ as required. �

2.3. The derived de Rham algebra. We now come to the definition of the
derived de Rham algebra LΩ•B/A.

Let B be an A-algebra, and P• → B the standard simplicial resolution of B.
The de Rham complex associated with the simplicial A-algebra P• is given by the
diagram

.. .
...

...
...

· · · //////
//
Ω2
P2/A

//////

OO

Ω2
P1/A

////

OO

Ω2
P0/A

OO

· · · //////
//
Ω1
P2/A

//////

OO

Ω1
P1/A

////

OO

Ω1
P0/A

OO

· · · //////
//
P2 // ////

OO

P1 ////

OO

P0.

OO

We may view it as a simplicial object in the category of differential graded A-
algebras. By passing to the associated chain complex in the horizontal direction,
we obtain a double complex Ω•P•/A.

Definition 2.23. The total complex (with the direct sum convention) of the
double complex Ω•P•/A is the derived de Rham complex of B. We denote it by

LΩ•B/A.

We sometimes view the derived de Rham algebra as an object in the bounded
above derived category of A-modules, and sometimes as the complex itself. In the
latter setting, we define the Hodge filtration F iLΩ•B/A on LΩ•B/A as the filtration
induced by

F i(Ω•P•/A) = Ω≥iP•/A
on the double complex Ω•P•/A.

The completion of LΩ•B/A with respect to the Hodge filtration will play a crucial
role in what follows. There is only one way to define it:

Definition 2.24. The Hodge-completed derived de Rham complex of B is de-

fined as the projective system of complexes LΩ̂•B/A := (LΩ•B/A/F
i).

To justify the terminology ‘de Rham algebra’, we equip LΩ•P•/A with the struc-
ture of a commutative differential graded algebra over A. We first define a product
structure Pi ⊗Pj → Pi+j on the complex CP• as the multiplication map on P0 for
i = j = 0 and otherwise as the shuffle map
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x⊗ y 7→
∑
(µ,ν)

ε(µ, ν)(σν1σν2 . . . σνjx)(σµ1σµ2 . . . σµiy)

where σνk and σµl
are the degeneracy maps in P•, the pair (µ, ν) runs through the

(i, j)-shuffles of the ordered set (1, 2, . . . , i+j) and ε(µ, ν) is the sign of the shuffle as
a permutation. (Recall that an (i, j)-shuffle is a permutation τ : (1, 2, . . . , i+ j)→
(1, 2, . . . , i+j) with τ(1) < τ(2) < · · · < τ(i) and τ(i+1) < τ(i+2) < · · · < τ(i+j);
this also makes sense if one of i or j is 0.)

The above product structure on CP• induces a product structure on the double
complex Ω•P•/A and hence on the total complex LΩ•P•/A; we may therefore call it the

derived de Rham algebra of B. In fact, with this product structure LΩ•P•/A becomes
a differential graded algebra over A. Moreover, one checks that the multiplicative
structure on Ω•P•/A is compatible with the Hodge filtration, and hence we may

consider LΩ̂•B/A as a projective system of differential graded algebras.

The i-th graded piece with respect to the Hodge filtration on LΩ•P•/A is com-
puted as follows.

Proposition 2.25. There is a quasi-isomorphism of complexes of A-modules

(2.4) griFΩ•P•/A
∼→ L ∧i LB/A[−i]

where LB/A is the cotangent complex of B.

Here the object L∧iLB/A is represented by C∧i (B•⊗P• Ω1
P•/A

), in accordance
with Remarks A.24 and A.11.

Proof. First, note that

griFLΩ•P•/A
∼= ΩiP•/A[−i] = (· · · → ΩiPj/A

→ · · · → ΩiP1/A
→ ΩiP0/A

)

where on the right-hand side the term ΩiPj/A
has degree j − i in the complex.

Consider now the constant simplicial ring B•, and view the augmentation map
P• → B• as a morphism of simplicial P•-modules inducing a quasi-isomorphism on
associated chain complexes. As ΩiP•/A is a simplicial P•-module with free terms,
Lemma 2.8 gives rise to the first quasi-isomorphism in the chain

P• ⊗P• ΩiP•/A
∼→ B• ⊗P• ΩiP•/A

∼= B• ⊗P• ∧iΩ1
P•/A

∼= ∧i(B• ⊗P• Ω1
P•/A

).

The quasi-isomorphism of the proposition follows.

We next discuss the analogue of Theorem 2.7.

Theorem 2.26. Let Q• → B be a simplicial resolution of the A-algebra B
whose terms are free A-algebras. We have a quasi-isomorphism of complexes

LΩ•B/A ' Tot(Ω•Q•/A)

compatible with the product structure and the Hodge filtration.

Here the product structure and the Hodge filtration on the right hand side are
defined in the same way as on Ω•Q•/A.

The presentation below is influenced by unpublished notes of Illusie.
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Proof. The proof proceeds along the lines of that of Theorem 2.7 but we have
to be more careful concerning convergence issues.

We first fix n ≥ 0 and start with the homotopy equivalence Pn(Q•)→ Pn(B•)
obtained during the proof of Lemma 2.10. By functoriality it induces a homotopy
equivalence Ω•Pn(Q•)

→ Ω•Pn(B•)
of simplicial objects in the category of complexes

of A-modules, whence a quasi-isomorphism Tot(Ω•Pn(Q•)
) ' Tot(Ω•Pn(B•)

) of asso-
ciated complexes.

Consider now the double complex CQp,q = Tot(Ω•Pp(Q•)
)
q

with horizontal differ-

entials those of the complex associated with the simplicial object [p] 7→ Tot(Ω•Pp(Q•)
)

in the category of complexes of A-modules and vertical differentials given by those
of Tot(Ω•Pp(Q•)

). We have a total complex Tot(CQp,q) taken with the direct sum

convention and a morphism of complexes Tot(CQp,q) → Tot(CBp,q) with Tot(CBp,q)

defined similarly starting from CBp,q = Tot(Ω•Pp(B•)
)
q
. We claim that this map is a

quasi-isomorphism.

Define subcomplexes CQ≤p0
⊂ Tot(CQp,q) (resp. CB≤p0

⊂ Tot(CBp,q)) by replacing

the columns with p > p0 in CQp,q (resp. CBp,q) by 0 and taking the associated

total complexes. We have morphisms of complexes CQ≤p0
→ CB≤p0

that form a
direct system as p0 goes to infinity. In the direct limit we recover the morphism
of complexes Tot(CQp,q) → Tot(CBp,q) considered above. It thus suffices to prove

that each morphism CQ≤p0
→ CQ≤p0

is a quasi-isomorphism. This follows by finite
induction using the exact sequences

0→ CQ≤p0−1 → CQ≤p0
→ Tot(Ω•Pp0 (Q•)

)→ 0,

0→ CB≤p0−1 → CB≤p0
→ Tot(Ω•Pp0

(B•)
)→ 0

together with the quasi-isomorphisms Tot(Ω•Pp0 (Q•)
) ' Tot(Ω•Pp0 (B•)

) established

above. (Note that the above short exact sequences are actually split exact, as their
terms are free A-modules.)

We thus obtain quasi-isomorphisms Tot(CQp,q) ' Tot(CBp,q) ' LΩ•B/A as B• is a
constant simplicial algebra. On the other hand, starting from the homotopy equiva-
lences P•(Qn)→ (Qn)• given by Lemma 2.4 for each fixed n and performing a simi-

lar construction as above, we obtain a quasi-isomorphism Tot(CQp,q) ' Tot(Ω•Q•/A).
Finally, compatibility with products and Hodge filtrations follows as the construc-
tions involved in the above proof satisfy them. �

Remark 2.27. If one only wishes to prove the independence of the Hodge-

completed derived de Rham algebra LΩ̂•B/A of the resolution, the above argu-
ment simplifies as we do not have to worry about unbounded filtrations. Alter-
natively, once the Hodge-truncated versions of the maps Tot(CQp,q) → Tot(CBp,q)

and Tot(CQp,q) → Tot(Ω•Q•/A) used in the above proof have been constructed, we
may reduce to Theorem 2.7 by means of Proposition 2.25.

Example 2.28. An important example of a simplicial resolution with free terms
other than the standard resolution is given by the bar resolution Q• in the case
A = R[x], B = R where the ring R is viewed as an R[x]-algebra R via the map
x 7→ 0. Here

Qn := R[x][x1, . . . , xn]
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and the face (resp. degeneracy) maps ∂0, . . . , ∂n : Qn → Qn−1 (resp.
σ0, . . . , σn : Qn → Qn+1) are defined by

∂i(xj) =


xj if n 6= j ≤ i
xj−1 if j > i

0 if j = i = n ,

σi(xj) =

{
xj if j ≤ i
xj+1 if j > i

where by convention we put x0 := x. That this is indeed a simplicial resolution is
verified by direct computation.

Given the theorem, we can establish the analogue of Lemma 2.12 for derived
de Rham algebras.

Corollary 2.29. Given Tor-independent A algebras A′ and B, we have a
canonical quasi-isomorphism

A′ ⊗LA LΩ•B/A ' LΩ•A′⊗AB/A′

of associated derived de Rham algebras.

Proof. This is similar to the proof of Lemma 2.12, the main point being that
for the standard resolution P• → B the base change A′⊗AP• → A′ ⊗A B gives a
free resolution of A′⊗AB by Tor-independence, and hence may be used to compute
LΩ•A′⊗AB/A′

by the theorem. �

We now use the derived de Rham algebra to give an explicit construction of
the universal first-order thickening of the previous section. Note first that by the
compatibility of the multiplicative structure of LΩ•P•/A with the filtration the group

H0(LΩ•P•/A/F
2) is an A-algebra.

Theorem 2.30. Assume Ω1
B/A = 0. Then H0(LΩ•P•/A/F

2) is a universal first
order thickening of the A-algebra B.

Proof. The truncated derived de Rham complex LΩ•P•/A/F
2 is the total com-

plex

(2.5) · · · → Ω1
P2/A

⊕ P1 → Ω1
P1/A

⊕ P0 → Ω1
P0/A

of the double complex

(2.6) · · · // 0 // 0 // 0

· · · // Ω1
P2/A

//

OO

Ω1
P1/A

//

OO

Ω1
P0/A

OO

· · · // P2
//

OO

P1
//

OO

P0

OO

If we use homological indexing for the complex (2.5), then Ω1
P0/A

sits in degree

−1 and Ω1
P1/A

⊕ P0 in degree 0. In view of Lemma 2.6 the assumption Ω1
B/A = 0

implies
H0(Ω1

P•/A
) = H0(Ω1

P•/A
⊗P• P•) = H0(Ω1

P•/A
⊗P• B•) = 0
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and hence the complex (2.5) has trivial H−1. On the other hand, applying Propo-
sition 2.25 for i = 0, 1 yields an exact sequence

(2.7) 0→ H1LB/A → H0(LΩ•B/A/F
2)→ B → 0.

By definition of the multiplication on LΩ•B/A the square of Ω1
P1/A

lies in Ω2
P2/A

, and

therefore H1LB/A has square zero in H0(LΩ•B/A/F
2), which shows that we have

obtained a first-order thickening of the A-algebra B.
Now let

0→ I → Y → B → 0

be a first-order thickening of B. We view Y as a differential graded algebra con-
centrated in degree zero. Lift the augmentation ε0 : P0 → B to a morphism
θ : P0 → Y , and construct the derivation D = θ ◦ d1 as in the proof of Proposition
2.18. This gives rise to a morphism of differential graded A-algebras given by the
diagram

(2.8) degree 1 0 −1

· · · // 0 // Y // 0

· · · // Ω1
P2/A

⊕ P1
//

OO

Ω1
P1/A

⊕ P0
//

D⊕θ

OO

Ω1
P0/A

OO

which commutes in view of the identities ε0 ◦ d1 = D ◦ d2 = 0 seen in the proof
of Proposition 2.18. By passing to 0-th homology we obtain an A-algebra homo-
morphism ϕY : H0(LΩ•B/A/F

2)→ Y lifting the map H0(LΩ•B/A/F
2)→ Y in (2.7).

In the case Y = Yuniv, where Yuniv is as in Proposition 2.19, the restriction of
ϕYuniv to the term H1LB/A in (2.7) is the identity map by construction, and we
are done. �

3. Differentials and the de Rham algebra for p-adic rings of integers

3.1. Modules of differentials for p-adic rings of integers. Let K be
a finite extension of Qp with fixed algebraic closure K. Denote by OK (resp.
OK) their respective rings of integers and by v the unique extension of the p-adic
valuation. The goal of this section is to present a fundamental calculation, due to
Fontaine [24], of the module of differentials Ω1

OK/OK
.

Denote, as usual, by µp∞ the torsion Zp-module of all p-primary roots of unity

in K. The logarithmic derivative defines a map of Zp-modules

dlog : µp∞ → Ω1
OK/OK

, ζpr 7→ dζpr/ζpr

with OK-linear extension

dlog : OK ⊗Zp
µp∞ → Ω1

OK/OK
.

Now taking the inverse limit Zp(1) of the modules µpr for all r, we have Qp/Zp(1) =
(Qp/Zp) ⊗ Zp(1) ∼= µp∞ , and therefore after tensoring by the Zp-module OK we
obtain an isomorphism

(3.1) (K/OK)⊗Zp
Zp(1) ∼= OK ⊗Zp

µp∞

recalling that K = OK [p−1].
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Theorem 3.1 (Fontaine). Denote by K0 the maximal unramified subextension
of K|Qp and by DK|K0

the associated different. The map

dlog : (K/OK)⊗Zp Zp(1)→ Ω1
OK/OK

induces an isomorphism

(K/IK)⊗Zp
Zp(1)

∼→ Ω1
OK/OK

where

IK := {a ∈ K : v(a) ≥ −v(DK/K0
)− 1/(p− 1)}.

Here are some easy corollaries of the theorem.

Corollary 3.2. The dlog map induces an isomorphism

CK(1)
∼→ Vp(Ω

1
OK/OK

).

Here, as usual, for a Zp-module A the Tate module Tp(A) is defined as the
inverse limit of the pr-torsion submodules prA, and Vp(A) := Tp(A)⊗Zp Qp.

Proof. We have isomorphisms of Zp-modules

pr (K/IK) = p−rIK/IK ∼= IK/p
rIK ∼= OK/p

rOK .

Passing to the inverse limit, we obtain the p-adic completion of OK which is the
ring of integers of CK . It remains to invert p and apply the theorem. �

Corollary 3.3. The module of differentials Ω1
OK/OK

is p-primary torsion and

p-divisible. Moreover, the derivation d : OK → Ω1
OK/OK

is surjective.

Proof. The first statement is immediate from the theorem together with for-
mula (3.1). As for the second, pick an element adb ∈ Ω1

OK/OK
. As Ω1

OK/OK

is p-primary torsion, we find r > 0 such that prda = prdb = 0. Since K is alge-

braically closed, there exists an element x ∈ OK satisfying xp
2r

+prx = b and hence

also pr(prxp
2r−1 + 1)dx = db. On the other hand, we have (prxp

2r−1 + 1)db = db

as prdb = 0. Note that (prxp
2r−1 + 1) is invertible in OK , being congruent to 1

modulo pr. Therefore the above equalities yield db = (prxp
r−1 + 1)−1db = prdx,

whence

adb = pradx = d(prax)− xd(pra) = d(prax)− xprda = d(prax)

showing adb ∈ Im(d). �

Before starting the proof of the theorem we first recall some basic facts con-
cerning extensions of local fields. All of them can be found in [41], Chapter III,
§§6,7.

Facts 3.4. Let L be a finite extension of K, with ring of integers OL. There
exists b ∈ OL such that OL = OK [b]. As an OK-module OL is freely generated by
finitely many powers of b. The module of differentials Ω1

OL/OK
is generated by a

single element db over OL. Its annihilator is the different DL/K of the extension

L|K; it is the principal ideal generated by f ′(b), where f ∈ OK [x] is the minimal
polynomial of b.
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Example 3.5. As an example that will serve later, let us compute the different
of the totally ramified extension Qp(ζpr )|Qp, where ζpr is a primitive pr-th root of

unity. The minimal polynomial of ζpr over Zp is f = (xp
r

− 1)/(xp
r−1

− 1) with
derivative

f ′ = (prxp
r−1(xp

r−1

− 1)− pr−1xp
r−1

(xp
r

− 1))/((xp
r−1

− 1)2).

Thus f ′(ζpr ) = pr/ζpr (ζp
r−1

pr − 1), so setting ζp := ζp
r−1

pr we see that the sought-
after different is the principal ideal of Zp[ζpr ] generated by pr/(ζp − 1). The p-adic
valuation of this element is −1/(p− 1) + r, as ζp − 1 is a uniformizer in the degree
p− 1 totally ramified extension Qp(µp)|Qp.

As observed by Beilinson, the use of the cotangent complex considerably sim-
plifies Fontaine’s original calculation, so we next compute LOK/OK

.

Lemma 3.6. Let L|K be a finite extension of p-adic fields. The cotangent
complex LOL/OK

is acyclic in nonzero degrees.

Proof. Writing OL = OK [x]/(f) a some monic polynomial f ∈ OK [x] as
above, we may consider the sequence of ring maps OK → OK [x] → OL where the
second map is the quotient map. The associated transitivity triangle (Theorem
2.13) reads

(3.2) LOK [x]/OK
⊗LOK [x] OL → LOL/OK

→ LOL/OK [x] → LOK [x]/OK
⊗LOK [x] OL[1].

Here LOK [x]/OK
is acyclic in nonzero degrees by Proposition 2.15, and LOL/OK [x]

is acyclic in degrees 6= 1 by Proposition 2.16 where its homology is (f)/(f2). It
thus remains to check H1(LOL/OK

) = 0. A piece of the long exact sequence of (3.2)
reads

0→ H1(LOL/OK
)→ H1(LOL/OK [x])→ H0(LOK [x]/OK

⊗LOK [x] OL).

By Lemma 2.6 and Proposition 2.16 we may identify the last map in this sequence
with

(f)/(f2)→Ω1
OK [x]/OK

⊗OK [x] OL
which is a nonzero map of free OL-modules of rank 1 sending the class of f to df .
This shows H1(LOL/OK

) = 0 as desired. �

Remark 3.7. We remark for later use that the same argument as in the above
proof shows LL/K = Ω1

L/K = 0 for a finite separable extension L|K of arbitrary
fields.

Corollary 3.8. The natural map

LOK/OK
→ H0(LOK/OK

) ∼= Ω1
OK/OK

is an isomorphism.

Proof. Writing OK as the direct limit of the OK-algebras OL for each finite

subextension K ⊂ L ⊂ K induces an isomorphism Ω1
OK/OK

∼= lim
→

Ω1
OL/OK

. Sim-

ilarly, the standard resolution P•(OK) → OK is the direct limit of the standard

resolutions P•(OL)→ OL, so after applying the functor Ω1
·/OK

and tensoring with
OL we obtain an isomorphism LOK/OK

∼= lim
→
LOL/OK

. It remains to apply the

isomorphisms LOL/OK

∼→ Ω1
OL/OK

given by the lemma. �
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We now assemble some auxiliary statements to be used in the proof of the
theorem.

Lemma 3.9.

(1) The maps Ω1
OL/OK

→ Ω1
OK/OK

appearing in the above proof are injective.

(2) If ω ∈ Ω1
OK/OK

comes from Ω1
OL/OK

and IL is its annihilator as an

element of Ω1
OL/OK

, then its annihilator IK in OK is ILOK . In particular,
IK is principal.

(3) If K0 is the maximal unramified subextension of K|Qp and DK/K0
is the

associated different, we have an exact sequence

0→ OK/DK/K0
OK → Ω1

OK/OK0
→ Ω1

OK/OK
→ 0.

Moreover, there is an isomorphism

Ω1
OK/OK0

∼= Ω1
OK/Zp

.

Proof. The transitivity triangle of the cotangent complex (Theorem 2.13)
associated with the sequence of maps OK → OL → OK reduces to a short exact
sequence

0→ OK ⊗OL
Ω1
OL/OK

→ Ω1
OK/OK

→ Ω1
OK/OL

→ 0

in view of Corollary 3.8. Moreover, since OK is a directed union of free OL-
submodules as recalled in Facts 3.4, it is faithfully flat overOL and hence the natural
map Ω1

OL/OK
→ OK⊗OL

Ω1
OL/OK

is injective. Thus so is the composite Ω1
OL/OK

→
Ω1
OK/OK

, whence statement (1). Statement (2) follows from the injectivity of the

map OK⊗OL
Ω1
OL/OK

→ Ω1
OK/OK

. Finally, for the exact sequence in statement (3)

we use the transitivity triangle associated with the sequence OK0
→ OK → OK to

obtain

0→ OK ⊗OK
Ω1
OK/OK0

→ Ω1
OK/OK0

→ Ω1
OK/OK

→ 0

and apply the definition of the different (Facts 3.4). The last isomorphism is induced
by the exact sequence of differentials associated with the sequence of maps Zp →
OK0

→ OK , noting that Ω1
OK0

/Zp
= 0 as the ring extension OK0

|Zp is unramified.

�

Proof of Theorem 3.1. Using Lemma 3.9 (3) we reduce to the case K = Qp. In this
case IK = (1/(ζp−1))OK for a primitive p-th root of unity ζp as v(ζp−1) = 1/(p−1).

We first determine the kernel of the dlog map. As finitely generated submodules
of µp∞ are cyclic, we may write each element of OK ⊗ µp∞ in the form a⊗ ζpr for
some a ∈ OK and ζpr ∈ µp∞ . This element is in the kernel of the dlog map if
and only if a annihilates dζpr . Applying Lemma 3.9 (2) with L = Qp(ζpr ) and the
calculation in Example 3.5, we obtain that a ∈ (pr/(ζp− 1))OK ⊂ (1/(ζp− 1))OK ,
as desired.

For surjectivity, pick ω ∈ Ω1
OK/Zp

. By Lemma 3.9 (2) we have OKω ∼= OK/IK
where IK ⊂ OK is a principal ideal. If aω ∈ IK is a generator, we have

(3.3) v(aω) ≤ −1/(p− 1) + r

for r large enough. Now choose a finite extension L|Qp such that ω comes from

Ω1
OL/Zp

and moreover pr/(ζp − 1) ∈ OL. As OL is a discrete valuation ring whose
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valuation is a multiple of v, the inequality (3.3) implies OLaω ⊃ OL(pr/(ζp − 1)).
But then

OKω ∼= OK/OKaω ⊂ OK/OK(pr/(ζp − 1)) ∼= OKdlog(ζpr )

by the calculation recalled above.

3.2. The universal p-adically complete first order thickening of
OCK

/OK . We now combine the results of the previous two sections to compute
the truncated de Rham algebra LΩ•B/A/F

2 in the special case A = OK/(pn) and

B = OK/(p
n) for an integer n > 0.

Proposition 3.10. Let K be a p-adic field with algebraic closure K, and let
n > 0 be a fixed integer.

(1) The truncated de Rham algebra LΩ•(OK/(p
n))/(OK/(pn))/F

2 is concentrated

in degree 0.
(2) We have a short exact sequence

(3.4) 0→ pnΩ1
OK/OK

→ H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2)→ OK/(p
n)→ 0

where the term on the left identifies with the image of
H0(F 1LΩ•(OK/(p

n))/(OK/(pn))/F
2).

(3) The OK/(pn)-algebra H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2) is the universal first

order thickening of OK/(p
n).

Proof. Consider the standard resolution P̃• of OK/(p
n) as an OK/(pn)-

module. The complex LΩ•(OK/(p
n))/(OK/(pn))/F

2 is computed by the total complex

of

· · · // 0 // 0 // 0

· · · // Ω1
P̃2/(OK/(pn))

//

OO

Ω1
P̃1/(OK/(pn))

//

OO

Ω1
P̃0/(OK/(pn))

OO

· · · // P̃2
//

OO

P̃1
//

OO

P̃0

OO

Here the bottom row is the resolution P̃• of OK/(p
n). The middle row computes

the cotangent complex L(OK/(p
n))/(OK/(pn)) which is quasi-isomorphic to the com-

plex LOK/OK) ⊗LOK
(OK/(pn)) by Lemma 2.12 as OK is flat over OK . But by

Corollary 3.8 we have a quasi-isomorphism LOK/OK
' Ω1

OK/OK
, so we have quasi-

isomorphisms

L(OK/(p
n))/(OK/(pn)) ' LOK/OK

⊗LOK
(OK/(pn)) ' Ω1

OK/OK
⊗OK

[OK
pn→ OK ].

Therefore LΩ•(OK/(p
n))/(OK/(pn))/F

2 is computed by the total complex of

Ω1
OK/OK

pn−−−−→ Ω1
OK/OK

d

x xd
OK

pn−−−−→ OK
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which is placed in degrees −1, 0 and 1. Since OK has no p-torsion and d is surjective
by Corollary 3.3, this complex is indeed concentrated in degree 0. Using the p-
divisibility of Ω1

OK/OK
we see that we have an exact sequence as in (3.4). The last

statement follows from Theorem 2.30 once we check Ω1
(OK/(p

n))/(OK/(pn)) = 0. But

by the base change property of differentials

Ω1
(OK/(p

n))/(OK/(pn))
∼= Ω1

OK/OK
⊗OK

OK/(pn)

and the right hand side is 0 as Ω1
OK/OK

is p-divisible (Corollary 3.3). �

Corollary 3.11. The inverse limit

lim←−
n

H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2)

fits into a short exact sequence

0→ Tp(Ω
1
OK/OK

)→ lim←−
n

H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2)→ OCK
→ 0

and defines a universal first-order thickening of the OK-algebra OCK
in the category

of p-adically complete OK-algebras.

Proof. In view of the proposition it remains to note that the inverse system
of the exact sequences (3.4) satisfies the Mittag-Leffler condition and that OCK

is
none but the p-adic completion of OK . �

There is also an arithmetic approach to universal p-adically complete thicken-
ings via Fontaine’s ring Ainf that we explain next. We first begin with a quick proof
of the basic facts concerning Witt rings of perfect rings by means of the cotangent
complex, based on ideas of Bhatt.

Proposition 3.12. Let R be a perfect ring of characteristic p > 0.

(1) Up to isomorphism there is a unique p-adically complete flat Zp-algebra
W (R) with W (R)/(p) ∼= R.

(2) Given moreover a p-adically complete ring S, every ring homomorphism
R → S/(p) lifts uniquely to a p-adically continuous homomorphism
W (R)→ S.

Proof. To prove (1), we construct by induction on n flat Z/pnZ-algebras
Wn(R) such that W1(R) = R and Wi(R) ∼= Wn(R)/(pi) for all 1 ≤ i ≤ n. Assuming
that Wn(R) has been constructed, apply Proposition 2.21 with A = Z/pn+1Z,
I = pnZ/pn+1Z, J = R, B = Wn(R) and λ : pnZ/pn+1Z → R the natural map
to obtain a Z/pn+1Z-algebra extension Wn+1(R) of Wn(R) by R. To be able to
apply the proposition, we need to know that LWn(R)/(Z/pnZ) = 0. This vanishing
follows from a more general statement, Lemma 3.27 (1) below that we shall prove
by an argument that uses only properties of the cotangent complex encountered
so far. Note that pnWn(R) = 0 implies R ⊂ pnWn+1(R), and this inclusion is in
fact an equality as the Wn+1(R)-module structure on R coming from the extension
structure is given by the composite of the surjections Wn+1(R) → Wn(R) → R.
Thus we have isomorphisms piWn+1(R)/pi+1Wn+1(R) ∼= R for all i ≤ n, whence
we deduce piWn+1(R) = pn+1−iWn+1(R) for all 1 ≤ i ≤ n using the perfectness of

R. This implies the flatness of Wn+1(R) over Z/pn+1.
As for (2), by p-adic completeness it suffices to lift the map R → S/(p) in-

ductively to maps Wn(R) → S/(pn). Assume that a unique mod pn lifting exists.
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In view of the vanishing of LWn(R)/(Z/pnZ) already used above, the existence of a

unique mod pn+1 lifting follows from applying Proposition 2.22 with A = Z/pn+1Z,
B = Wn+1(R), C = S/(pn+1) and I = (pn). �

The ring W (R) is the Witt ring of R as constructed e.g. in [41], §II.5. For
computational proofs of statement (2), see [10], Section 4.4 or [34].

Assume now that R is a ring of characteristic p > 0 on which the Frobenius
morphism x 7→ xp is surjective. We define the perfection of R as the inverse limit

Rperf := lim←−
x7→xp

R.

Thus Rperf consists of sequences (xi) with xpi = xi−1. On such sequences the map

x 7→ xp is bijective, hence Rperf is a perfect ring.
Following Fontaine, we set

Ainf := W ((OK/(p))
perf).

Since OCK
is the p-adic completion of OK , we have OK/(p) ∼= OCK

/(p). By
Proposition 3.12 (2), the natural surjection

θ̄ : (OK/(p))
perf � OK/(p)

lifts to a surjection

θ : Ainf � OCK
.

Note that Ainf is complete with respect to its ker(θ)-adic filtration. This follows
from p-adic completeness and the fact that (OK/(p))

perf is complete with respect
to the ker(θ̄)-adic filtration.

Now a surjection ρ : B → A of p-adically complete OK-algebras is an order
k thickening for some k > 0 if ker(ρ)k+1 = 0. For fixed A such pairs (B, ρ) form
a natural category, and an initial element in this category (if exists) is called a
universal p-adically complete OK-thickening of order k.

Proposition 3.13 (Fontaine). For each k > 0 the OK-algebra OCK
has a

universal p-adically complete OK-thickening of order k, given by

(Ainf/ ker(θ)k+1)⊗Zp OK .

Proof. It suffices to treat the case OK = Zp, as then the general case follows
by base change. Furthermore, in view of Proposition 3.12 (2), given an order k
thickening ρ : B → OCK

it suffices to construct a map τ : (OK/(p)
perf → B/(p).

For an element x ∈ OCK
/(p) = OK/(p) choose some lifting x̂ ∈ B/(p) via the

mod p reduction ρ̄ of ρ. Given an element (. . . , xn, . . . , x0) ∈ (OK/(p))
perf , set

τ(. . . , xn, . . . , x0) := lim
n→∞

x̂n
pn ∈ B/(p).

Note that this limit exists since ker(ρ̄)k = 0 and we obtain a ring homomorphism.
Also, this is the only possible definition as τ(. . . , xn+r, . . . , xr) ≡ x̂r (mod ker(ρ̄))
forces

τ(. . . , xn, . . . , x0) = τ(. . . , xn+r, . . . , xr)
pr ≡ x̂rp

r

(mod ker(ρ̄))

for all r ≥ 0. �
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Corollary 3.14. We have a canonical isomorphism of OK-algebras

(Ainf/ ker(θ)2)⊗Zp
OK ∼= lim←−

n

H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2).

In particular, we have an isomorphism

ker(θ)/ ker(θ)2 ⊗Zp
OK ∼= Tp(Ω

1
OK/OK

).

and therefore the ideal ker(θ)⊗Zp OK ⊂ Ainf ⊗Zp OK is principal.

Proof. The two isomorphisms result from putting Corollary 3.11 and Propo-
sition 3.13 together. By Theorem 3.1 the OCK

-module Tp(Ω
1
OK/OK

) is free of rank

1, hence so is the OCK
-module ker(θ)/ ker(θ)2. The last statement follows as Ainf

is ker(θ)-adically complete. �

3.3. Derived de Rham algebra calculations. Our next goal is to compute
the p-adic completion of the derived de Rham algebra LΩ•OK/OK

for a finite exten-

sion K|Qp. The methods to do so stem from the preprint [8] of Bhargav Bhatt.
This section is devoted to preliminary calculations.

Arguably the key step is the computation of LΩ•(Z/pnZ)/(Z/pnZ[x]), where Z/pnZ
is viewed as a Z/pnZ[x]-algebra via the natural projection sending x to 0. To
describe it, we need the divided power algebra Γ•A(M) introduced in Lemma A.26
of the Appendix in the case where M ∼= An is a free A-module on generators
t1, . . . , tn. We set

A〈t1, . . . , tn〉 := Γ•A(An).

We denote the kernel of the natural augmentation map A〈t1, . . . , tn〉 → A by
〈t1, . . . , tn〉. The divided powers of the ideal 〈t1, . . . , tn〉 are defined as follows.
First, the maps γi : At1 ⊕ · · · ⊕ Atn → A〈t1, . . . , tn〉 extend to a unique divided
power structure on A〈t1, . . . , tn〉 by 〈t1, . . . , tn〉 by setting

(3.5) γk(γi1(x1) . . . γin(xn)) :=

∏n
l=1(kil)!

k! ·
∏n
l=1(il!)k

γki1(x1) . . . γkin(xn).

Next, one defines the divided powers of the ideal by

〈t1, . . . , tn〉[i] := A[γi1(x1) · · · γir (xr) | xj ∈ 〈t1, . . . , tn〉, i1 + · · ·+ ir ≥ i].

Remark 3.15. These formulas are unfortunately complicated, but notice for
later use that in the case where A is a domain with fraction field K, the filtration by
〈t1, . . . , tn〉[i]⊗AK on K〈t1, . . . , tn〉 becomes the filtration by powers of 〈t1, . . . , tn〉.

Proposition 3.16 (Bhatt). The derived de Rham algebra LΩ•(Z/pnZ)/(Z/pnZ[x])

is concentrated in degree 0 and we have an isomorphism

H0(LΩ•(Z/pnZ)/(Z/pnZ[x]))
∼= Z/pnZ〈x〉.

Moreover, under this isomorphism the Hodge filtration on the left hand side coin-
cides with the filtration by divided powers 〈x〉[i] on the right.

We start the proof of the proposition with the case n = 1. It is based on the
following splitting lemma.

Lemma 3.17. We have a quasi-isomorphism

LΩ•Fp/Fp[x] '
∞⊕
i=0

L ∧i L(Fp[x]/(xp))/Fp[x][−i]



THE p-ADIC HODGE DECOMPOSITION ACCORDING TO BEILINSON 31

where Fp[x]/(xp) is viewed as an Fp[x]-algebra via the natural projection.

The proof of the lemma, which is a version of the decomposition technique of
[17] for the de Rham complex, will use some basic facts about relative Frobenii
that we now recall.

Facts 3.18. Assume A and B are Fp-algebras, and consider the A-algebra A(1)

defined by A with its A-algebra structure given by the Frobenius map a 7→ ap. We
have a morphism of A-algebras A→ A(1) induced by Frobenius, whence a morphism
B → B(1) := B ⊗A A(1) by base change. Furthermore, the commutative square of
A-algebras

A −−−−→ B

p

y yp
A −−−−→ B

induces a morphism B(1) → B. When A is perfect, the morphism A → A(1) is an
isomorphism by definition, hence so is the base change B → B(1). If moreover B
is perfect, the morphism B(1) → B induced by the diagram is an isomorphism as
well.

Proof. For n ≥ 0 set Qn := Fp[x][x1, . . . , xn] and consider the above situa-
tion for A = Fp[x] and B = Qn. Identifying Fp[x] with Fp[xp] via the Frobenius

map, the map Q(1)
n → Qn becomes identified with the map Fp[x][x1, . . . , xn] →

Fp[x][x1, . . . , xn] that is the identity on Fp[x] and sends xj to xpj . We may lift this

map to a morphism of Z/p2Z[x]-algebras

(Z/p2Z)[x][x1, . . . , xn]→ (Z/p2Z)[x][x1, . . . , xn]

sending xj to xpj . For all i ≥ 1 there is an induced map

Fi : Ωi(Z/p2Z)[x][x1,...,xn]/(Z/p2Z)[x] → Ωi(Z/p2Z)[x][x1,...,xn]/(Z/p2Z)[x]

on differential forms whose image is contained in piΩi(Z/p2Z)[x][x1,...,xn]/(Z/p2Z)[x].

As the p-torsion of the free Z/p2Z-modules Ωi(Z/p2Z)[x][x1,...,xn]/(Z/p2Z)[x] is

pΩi(Z/p2Z)[x][x1,...,xn]/(Z/p2Z)[x], the map

ω 7→ (1/p)Fi(ω)

induces a well-defined map

(1/p)Fi : Ωi
Q

(1)
n /Fp[x]

→ ΩiQn/Fp[x]

after reducing modulo p; it is the zero map for i > 1 but nonzero for i = 1. Thus
by construction we obtain a commutative diagram

Ω1

Q
(1)
n /Fp[x]

//

d

��

Ω1
Qn/Fp[x]

d

��
Ω2

Q
(1)
n /Fp[x]

// Ω2
Qn/Fp[x]

whose horizontal maps are respectively given by (1/p)F1 and (1/p)F2 modulo p.
As the latter map is zero, we get a well-defined map of complexes

Ω1

Q
(1)
n /Fp[x]

[−1]→ Ω•Qn/Fp[x].
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Taking the direct sum of the i-th wedge powers of (1/p)F1 for all i and applying a
similar argument, we obtain a map

(3.6)
⊕
i

Ωi
Q

(1)
n /Fp[x]

[−i]→ Ω•Qn/Fp[x].

This map is a quasi-isomorphism for n = 0, 1 by direct computation, and therefore
for general n by passing to tensor powers and using that Ω•Qn/Fp[x]

∼= (Ω•Q1/Fp[x])
⊗n

.

(The learned reader will recognize that (3.6) induces the Cartier isomorphism on
cohomology groups.)

Now consider the bar resolution of the Z/p2Z[x]-algebra Z/p2Z introduced in
Example 2.28. Reducing modulo p we obtain the bar resolution Q• of the Fp[x]-

algebra Fp. Twisting by relative Frobenius gives the bar resolution Q
(1)
• → F(1)

p .
Notice that

F(1)
p
∼= Fp[x]⊗Fp[x] Fp ∼= Fp[x]/(xp)

where the Fp[x]-module structure on Fp[x] in the tensor product is given by x 7→ xp.
Applying the inverse of the isomorphism (3.6) to the terms of the bar resolution,
we obtain using Theorems 2.7 and 2.26 quasi-isomorphisms

LΩ•Fp/Fp[x] ' Ω•Q•/Fp[x] '
⊕
i

ΩiQ•/Fp[x][−i] '
⊕
i

L ∧i LFp[x]/(xp)/Fp[x][−i]

as desired. �

Next we compute the right hand side of the quasi-isomorphism in Lemma 3.17.

Lemma 3.19. The complex L ∧i LFp[x]/(xp)/Fp[x] is acyclic outside degree i. Its
degree i homology is isomorphic to a free (Fp[x]/(xp))-module generated by γi(y),

where y is a generator of the rank 1 free module (xp)/(x2p).

Proof. By Proposition 2.16 the cotangent complex LFp[x]/(xp)/Fp[x] is concen-

trated in degree 1 where its homology is (xp)/(x2p). This is a free module of rank
1 over Fp[x]/(xp). Denoting by y a free generator, we have a quasi-isomorphism of
complexes

LFp[x]/(xp)/Fp[x] ' (Fp[x]/(xp))y[1].

Taking derived exterior powers, we obtain

L ∧i LFp[x]/(xp)/Fp[x]
∼= L ∧i ((Fp[x]/(xp))y[1]) ∼= LΓi(Fp[x]/(xp))y)[i]

using Quillen’s shift formula (Proposition A.27). Finally, since free modules are
acyclic for the functor Γi, we obtain

LΓi((Fp[x]/(xp))y) = Γi((Fp[x]/(xp))y) ∼= (Fp[x]/(xp))γi(y).

�

Now we can handle the case n = 1 of Proposition 3.16.

Corollary 3.20. The derived de Rham algebra LΩ•Fp/Fp[x] is concentrated in

degree 0, and we have an isomorphism

H0(LΩ•Fp/Fp[x])
∼= Fp〈x〉.
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Proof. Applying the previous two lemmas, we compute

LΩ•Fp/Fp[x]
∼=
∞⊕
i=0

L ∧i L(Fp[x]/(xp))/Fp[x][−i] ∼=

∼=
∞⊕
i=0

Γi((Fp[x]/(xp))y)[i][−i] ∼= Fp[x]/(xp)〈y〉 .

Finally, we identify the right hand side with Fp〈x〉 as follows. Noting that

Fp[x]/(xp)〈y〉 is generated over Fp by the elements xjγi(y) (0 ≤ j ≤ p − 1), we

define a map Fp[x]/(xp)〈y〉 → Fp〈x〉 by sending xjγi(y) to j!γj(x)γi(γp(x)). A

calculation using formula (3.5) and the fact that (ip)!/(i!pi) is a unit in Fp shows
that this map is an isomorphism. �

We shall need a consequence of this result for the analogous situation with
Zp-coefficients.

Corollary 3.21. The derived de Rham algebra LΩ•Zp/Zp[x] is concentrated in

degree 0, and H0(LΩ•Zp/Zp[x]) is a torsion-free Zp-module.

Proof. If we compute LΩ•Zp/Zp[x] as the total complex of Ω•Q•/Zp[x] where

Q• → Zp is the bar resolution, we have ΩiQn/Zp[x] = 0 for i > n, which shows that

LΩ•Zp/Zp[x] is concentrated in nonnegative homological degrees. Furthermore, we

have quasi-isomorphisms

Fp ⊗LZp
LΩ•Zp/Zp[x] ' Fp[x]⊗LZp[x] LΩ•Zp/Zp[x] ' LΩ•Fp/Fp[x] ' Fp〈x〉

by Corollaries 2.29 and 3.20, so Fp ⊗LZp
LΩ•Zp/Zp[x] is a complex concentrated in

degree 0. On the other hand, its homologies are computed by the Künneth spectral
sequence

Eij2 = Tor
Zp

i (Fp, Hj(LΩ•Zp/Zp[x]))⇒ Hi+j(Fp ⊗LZp
LΩ•Zp/Zp[x]).

Since Zp has flat cohomological dimension 1, we have Eij2 = 0 for i > 1, and there-
fore the spectral sequence degenerates at E2. Thus the vanishing of the abutment

for i + j 6= 0 implies Tor
Zp

1 (Fp, Hj(LΩ•Zp/Zp[x])) = 0 for all j, i.e. all homologies of

LΩ•Zp/Zp[x] are torsion free. To finish the proof, we show that they are also torsion

for j > 0. To do so, we compute the complex Qp ⊗LZp
LΩ•Zp/Zp[x] ' LΩ•Qp/Qp[x]

by means of the bar resolution Qp ⊗Zp
Q•. For fixed n we have Ω•(Qp⊗Qn)/Qp[x]

∼=
(Ω•Qp[x,x1]/Qp[x])

⊗n, and there is a quasi-isomorphism

Ω•Qp[x,x1]/Qp[x] = (Qp[x, x1]
d→ Qp[x, x1]dx1) ' (Qp[x]→ 0).

Thus Tot(Ω•(Qp⊗Q•)/Qp[x]) is the chain complex associated with the constant sim-

plicial object Qp[x]•; in particular, it is acyclic in positive degrees. �

To pass from the case n = 1 of Proposition 3.16 to the general case, we need:

Lemma 3.22 (Dévissage). Let φ : A• → B• be a morphism of complexes of
Z/pnZ-modules. If the base change map A• ⊗LZ/pnZ Fp → B• ⊗LZ/pnZ Fp is a quasi-
isomorphism, then so is φ.
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Proof. By exactness of the derived tensor product we reduce to the case B• =
0. Moreover, after replacing A• by a complex with free terms we may assume A• has
free terms. Thus we have to show that the acyclicity of A•⊗Z/pnZFp implies that of
A•. We use induction on n. If αi ∈ Ai satisfies dαi = 0, we have αi = dαi+1 + pβi
for some αi+1 ∈ Ai+1 and βi ∈ Ai by acyclicity of A•/pA• = A•⊗Z/pnZFp. Since A•
has free terms, multiplication by p induces an isomorphism A•/pA• ∼= pA•/p

2A•,
and hence the complex of Z/pn−1Z-modules pA• is acyclic by induction on n. As
d(pβi) = 0 by construction, we then find βi+1 ∈ Ai+1 such that pβi = d(pβi+1), so
finally αi = d(αi+1 + pβi+1). �

Proof of Proposition 3.16. The key point is the construction of a map

Zp〈x〉 → LΩ•Zp/Zp[x]

that lifts the map Fp〈x〉 → LΩ•Fp/Fp[x] inducing the isomorphism of Corollary 3.20

and is compatible with the filtrations on both sides. Once such a map has been
constructed, we obtain maps

Z/pnZ〈x〉 → LΩ•(Z/pnZ)/(Z/pnZ)[x]

for all n by reducing modulo pn. These maps are isomorphisms modulo p by
Corollary 3.20, hence isomorphisms by Lemma 3.22.

The idea of the following construction is due to Bhargav Bhatt (private com-
munication). By Corollary 3.21 we may replace LΩ•Zp/Zp[x] by its H0 and con-

sider it as an honest Zp[x]-algebra. We then claim that the structure map
ϕ : Zp[x] → LΩ•Zp/Zp[x] extends to a map ϕ̃ : Zp〈x〉→LΩ•Zp/Zp[x]. To see this,

denote by I the kernel of the augmentation map LΩ•Zp/Zp[x] → Zp. After reducing

modulo p we have

LΩ•Zp/Zp[x] ⊗Zp
Fp ∼= LΩ•Fp/Fp[x]

∼= Fp〈x〉

by Corollary 3.20, with I mapping to the ideal 〈x〉. In particular, for f ∈ I with
image f in 〈x〉 we have

fp = f
p

= p!γp(f) = 0,

showing that fp is divisible by p in LΩ•Zp/Zp[x]. As LΩ•Zp/Zp[x] is torsion free by

Corollary 3.21, there is a unique element fp/p ∈ LΩ•Zp/Zp[x] with p(fp/p) = fp.

Since fp ∈ I and Zp is torsion free, we in fact have fp/p ∈ I. Applying this to fp/p

in place of f we find fp
2

/pp ∈ pI. Iterating k times we deduce p
pk−1
p−1 | fp

k

. For a
positive integer n with p-adic expansion n = arp

r + · · ·+ a1p+ a0 this implies the
divisibility

p
∑r

k=0 ak
pk−1
p−1 | f

∑r
k=0 akp

k

= fn .

Here the left hand side is exactly the p-part of n!, so we conclude (using tor-
sion freeness again) that there is a unique element (fn/n!) ∈ LΩ•Zp/Zp[x] with

n!(fn/n!) = fn. Applying this to f = ϕ(x) ∈ I we may then unambiguously

set ϕ̃(γn(x)) := ϕ(x)n/n! for all n, which defines φ̃.
For the compatibility of the divided power filtration with the Hodge filtration it

suffices to show that ϕ̃(γn(x)) ∈ FnLΩ•Zp/Zp[x] for all n. Since F 1LΩ•Zp/Zp[x] is the

kernel of the augmentation map to Zp, it contains ϕ(x), and therefore FnLΩ•Zp/Zp[x]
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contains ϕ(x)n = ϕ̃(xn) = n!ϕ̃(γn(x)). However, the graded pieces of the Hodge
filtration are given by

L ∧i LZp/Zp[x][−i] ∼= Γi((x)/(x2))

by Propositions 2.25, 2.16 and A.27, and these Zp-modules are torsion free for all
i ≥ 0. We deduce ϕ̃(γn(x)) ∈ FnLΩ•Zp/Zp[x] as required.

The last result in this section may be viewed as an analogue of Proposition
2.16.

Theorem 3.23 (Bhatt). Assume that A → B is a surjective homomorphism
of flat Z/pnZ-algebras with kernel I = (f) generated by a nonzerodivisor f ∈ A.
The derived de Rham algebra LΩ•B/A is concentrated in degree 0 and we have an
isomorphism of A-algebras

H0(LΩ•B/A) ∼= A〈t〉/(t− f).

Moreover, the Hodge filtration on LΩ•B/A corresponds on the right hand side to the

filtration induced by the divided power filtration of A〈t〉.

The proof uses the following lemma.

Lemma 3.24. The Z/pnZ[x]-algebras A and Z/pnZ〈x〉 are Tor-independent,
where A is considered as a Z/pnZ[x]-algebra via the map x 7→ f .

Proof. Take a resolution F• → Z/(pn)〈x〉 by free Z/pnZ[x]-modules. We
show that A ⊗Z/(pn)[x] F• is acyclic in positive degrees. To do so, we reduce by
dévissage (Lemma 3.22) to proving acyclicity of

Fp ⊗Z/pnZ (A⊗Z/pnZ[x] F•) ∼= (Fp ⊗Z/pnZ A)⊗Fp[x] (Fp ⊗Z/pnZ F•).

Since both Z/pnZ〈x〉 and the terms of F• are free over Z/pnZ, the base change
Fp ⊗Z/pnZ F• is a free resolution of Fp〈x〉 over Fp[x], so we reduce to proving
acyclicity of A ⊗Z/(pn)[x] F• in the case n = 1. But then Fp〈x〉 is isomorphic to a
direct sum of copies of Fp[x]/(xp) as an Fp[x]-module, so it suffices to show Tor-
independence of A and Fp[x]/(xp) over Fp[x]. This is verified as in the proof of
Proposition 2.16. �

Proof of theorem 3.23. As in the proof of Proposition 2.16, we see that the Z/pnZ[x]-
algebras Z/pnZ and A are Tor-independent, and therefore by the base change prop-
erty of derived de Rham algebras we have a quasi-isomorphism

LΩ•(Z/pnZ⊗Z/pnZ[x]A)/A ' LΩ•(Z/pnZ)/(Z/pnZ[x]) ⊗
L
Z/pnZ[x] A.

On the other hand, we have

LΩ•(Z/pnZ)/(Z/pnZ[x]) ⊗
L
Z/pnZ[x] A ' Z/pnZ〈x〉 ⊗LZ/pn[x] A

∼= Z/pnZ〈x〉 ⊗Z/pn[x] A

in view of Proposition 3.16 and the lemma above.
So we obtain that LΩ•B/A is concentrated in degree zero and compute its 0-th

cohomology as

Z/pnZ〈x〉 ⊗Z/pnZ[x] A ∼= coker (Z/pnZ[x]〈t〉 (x−t)·→
(x−t)·→ Z/pnZ[x]〈t〉)⊗Z/pnZ[x] A ∼= A〈t〉/(f − t).

The equality of the Hodge filtration with the PD filtration follows from the equality
of these filtrations in Proposition 3.16.
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Remark 3.25. Note that the divided power structure on A〈t〉 induces one one
the quotient by (f − t). Indeed, since f is not a zerodivisor in B, for α ∈ A〈t〉 we
have (f−t)α ∈ 〈t〉 if and only if α ∈ 〈t〉, so we may consider the A〈t〉/(t−f)-module
〈t〉/(t − f)〈t〉 and induce divided power operations on the quotient using axioms
(3) and (4) of Definition A.25.

3.4. The p-completed derived de Rham algebra of OCK
/OK . We now

apply the theorem to the surjection θ : Ainf → OCK
introduced in the previous

section. Modulo pn it induces a map θn : Ainf/(p
n) → OCK

/(pn). By Corollary
3.14 the kernel of θn is a principal ideal; denote by ξn a generator.

Corollary 3.26. The derived de Rham algebra LΩ•(OCK /(p
n))/(Ainf/(pn)) is con-

centrated in degree 0, and we have a filtered isomorphism

H0(LΩ•(OCK /(p
n))/(Ainf/(pn)))

∼= (Ainf/(p
n))〈t〉/(t− ξn).

Proof. In order to be able to apply Theorem 3.23 we have to check that the
generator ξn of ker(θn) is not a zero-divisor. Denote by ξ1 its image in Ainf/(p) =

(OK/(p))
perf , and represent ξ1 by a sequence (ξ

(k)
1 ) of elements of the form ξ

(k)
1 =

λk + (p) with some choice λk = pk
√
p of a compatible system of p-power roots of p.

Were ξ1 a zero divisor in Ainf/(p), there would be a sequence (µk) ⊂ OCK
with

µpk+1 = µk such that vp(µkλk) ≥ 1 for all k ≥ 0. Since vp(λk) = 1/pk, we obtain

vp(µk) ≥ 1 − 1/pk for all k ≥ 0. However, this means that vp(µk) = pvp(µk+1) ≥
p−1/pk ≥ 1 for all k ≥ 0, so the class of the sequence (µk+(p)) is zero in Ainf/(p),
a contradiction. Thus ξ1 is not a zero-divisor, and neither is ξn by a dévissage
argument. �

Assume now that K|Qp is an unramified extension. In this case Ainf =

W ((OK/(p))
perf) has an OK-algebra structure via the canonical map

OK = W (OK/(p))→W ((OK/(p))
perf)

lifting the inclusion OK/(p) → (OK/(p))
perf according to Proposition 3.12 (2).

Moreover, we have an OK-algebra map Ainf → OCK
. An important observation of

Bhatt is that modulo pn we may compare the associated derived de Rham algebra
with that of OK over OK . This is enabled by the following general lemma.

Lemma 3.27. Let A→ B be a flat map of Z/pnZ-algebras such that both A/pA
and B/pB are perfect Fp-algebras.

(1) We have LB/A ' 0.
(2) If C is a B-algebra, we have a quasi-isomorphism

LΩ̂•C/B ' LΩ̂•C/A

of Hodge-completed derived de Rham algebras.

In the second statement the quasi-isomorphism is to be understood as a pro-
jective system of compatible quasi-isomorphisms LΩ•C/B/F

i ' LΩ•C/A/F
i.

Proof. It is enough to verify the first statement for n = 1 by dévissage
(Lemma 3.22). So assume A and B are perfect Fp-algebras, and recall the ba-

sics about relative Frobenii explained in Facts 3.18. The A-isomorphism B(1) ∼→ B
established there induces an isomorphism of cotangent complexes LB(1)/A

∼→ LB/A.
To compute it, consider the standard resolution P• → B. As in the proof of
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Lemma 3.17, for a free A-algebra P = A[xi | i ∈ I] if we identify A with A(1)

via the Frobenius map, the morphism of A-algebras P (1) → P constructed above
becomes identified with the map P → P which is the identity on A and sends each
xi to xpi . In view of the equalities dxpi = pxp−1

i dxi = 0 in characteristic p, the

map Ω1
P (1)/A → Ω1

P/A induced by the morphism P (1) → P is 0. Applying this to

the terms of P•, we obtain that the isomorphism B(1) ∼→ B induces the zero map
LB(1)/A → LB/A, which is only possible if LB/A = 0.

For the second statement, observe that by functoriality of modules of differ-
entials the morphism A → B induces a morphism of derived de Rham algebras
LΩ•C/A → LΩ•C/B compatible with the Hodge filtration, whence also a morphism

LΩ̂•C/A → LΩ̂•C/B on Hodge completions. It is an isomorphism if and only if the
induced map on associated graded objects is, so by Proposition 2.25 it suffices to
show that LC/A → LC/B is an isomorphism. In view of the transitivity triangle for
cotangent complexes (Proposition 2.13), this in turn follows from the vanishing of
LB/A, which is statement (1). �

Remark 3.28. In ([8], Corollary 3.8 and Lemma 8.3(5)), Bhatt proves that
the conclusion of statement (2) holds also for the uncompleted derived de Rham
algebras: under the assumptions of the lemma we have a quasi-isomorphism
LΩ•C/B ' LΩ•C/A. The proof follows the same pattern as above, except that in-

stead of the Hodge filtration on LΩ•B/A it uses the conjugate filtration F conj. It is an
increasing filtration induced by canonical truncations on the de Rham complexes
Ω•Pn/A

:

F conj
i (ΩjPn/A

) :=


ΩjPn/A

if j < i

Ker(ΩiPn/A
d→ Ωi+1

Pn/A
) if j = i

0 if j > i .

The key point then is that modulo p the Cartier isomorphism splits the conjugate
filtration: there is a direct sum decomposition

griFconj
(LΩ•B/A) ∼= L ∧i LB(1)/A[i]

for a map of Fp-algebras A→ B induced by the Cartier isomorphism ([8], Lemma
3.5). The rest of the argument is then the same as above.

Corollary 3.29. Assume K|Qp is unramified. The OK-algebra map Ainf →
OCK

induces an isomorphism of Hodge-completed derived de Rham algebras

(3.7) LΩ̂•(OCK /(p
n))/Ainf/(pn) ' LΩ̂•(OCK /(p

n))/(OK/(pn)) = LΩ̂•(OK/(p
n))/(OK/(pn))

for all n > 0. Hence LΩ̂•(OK/(p
n))/(OK/(pn)) is concentrated in degree 0, where its

homology is isomorphic to the completion of (Ainf/(p
n))〈t〉/(t− ξn) with respect to

its divided power filtration.

Proof. As K|Qp is unramified, the ring OK/(p) is a finite field, so the map

of Fp-algebras OK/(p) → Ainf/(p) = (OK/(p))perf is a morphism of perfect Fp-
algebras. Therefore Lemma 3.27 applies to the map OK/(pn) → Ainf/(p

n) and
yields isomorphism (3.7). The second statement follows from Corollary 3.26. �
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Finally, define the derived p-adic completion of LΩ̂•OK/OK
by

LΩ̂•OK/OK
⊗̂Zp := R lim←−(LΩ̂•OK/OK

⊗L Z/pnZ)

(see e.g. [47], §3.5 for derived inverse limits). Here the right hand side is to be
understood as the projective system of the R lim←−(LΩ•OK/OK

/F i ⊗L Z/pnZ) for all

i. Since OK is flat over OK , we have

LΩ̂•OK/OK
⊗L Z/pnZ ' LΩ̂•(OK/(p

n))/(OK/(pn))

by base change (Corollary 2.29). The complexes on the right hand side are com-
puted by Corollary 3.29. In particular, they are concentrated in degree 0 and the
maps in their inverse system are surjective. Hence the derived inverse limit is the
usual inverse limit over n (see [47], Proposition 3.5.7), and we obtain

Corollary 3.30. If K|Qp is unramified, the derived p-adic completion of

LΩ̂•OK/OK
is concentrated in degree 0, where its homology is isomorphic to the

completion of Ainf〈t〉/(t− ξ) with respect to its divided power filtration.

Here ξ is a generator of the kernel of θ : Ainf → OCK
(Corollary 3.14), and we

have used the p-adic completeness of Ainf .

Remark 3.31. Using Remark 3.28 we also obtain that the uncompleted de-
rived de Rham algebra LΩ•OK/(p

n)/(OK/(pn)) is concentrated in degree 0, where its

homology is isomorphic to (Ainf/(p
n))〈t〉/(t − ξn). In the inverse limit we obtain

that LΩ•OK/OK
⊗̂Zp is isomorphic to the p-adic completion of Ainf〈t〉/(t− ξ). This

is Fontaine’s ring Acris,K as defined in [25].

4. Construction of period rings

4.1. Construction and basic properties of BdR. Let K be a finite exten-
sion of Qp, with algebraic closure K. Following Beilinson, we define

AdR,K := LΩ̂•OK/OK

and

B+
dR := AdR,K⊗̂Qp = (AdR,K⊗̂Zp)⊗Qp.

Note that by construction these objects are equipped with an action of GK :=
Gal(K|K) and are complete with respect to the Hodge filtration.

When clear from the context, we shall drop the subscript K from the notation
AdR,K . However, B+

dR does not depend on K any more, as the following lemma
shows.

Lemma 4.1. Let K ′|K be a finite extension. The natural map AdR,K→AdR,K′

induced by the maps Ω•·/K → Ω•·/K′ on modules of differentials gives rise to an
isomorphism

AdR,K⊗̂Qp
∼→ AdR,K′⊗̂Qp.

Proof. By Theorem 2.13 the sequence of maps OK → OK′ → OK yields an
exact triangle

OK ⊗
L
OK

LOK′/OK
→ LOK/OK

→ LOK/OK′
→ OK ⊗

L
OK

LOK′/OK
[1]
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of cotangent complexes. By Lemma 3.6 we have a quasi-isomorphism LOK′/OK
'

Ω1
OK′/OK

. According to the structure of Ω1
OK′/OK

recalled in Facts 3.4, the latter

is a finitely generated torsion Zp-module, i.e. a finite abelian p-group, whence

LOK′/OK
⊗̂Qp = 0.

Since the derived tensor product with Qp is an exact functor, we conclude that
there is a quasi-isomorphism

(4.1) LOK/OK
⊗̂Qp → LOK/OK′

⊗̂Qp.

Now we use the Hodge filtration on AdR,K . By Proposition 2.25 we have quasi-
isomorphisms

griFAdR,K ' L ∧i LOK/OK
[−i]

and similarly for AdR,K′ . So from (4.1) we derive quasi-isomorphisms

griFAdR,K⊗̂Qp ' griFAdR,K′⊗̂Qp

for all i, whence quasi-isomorphisms

(AdR,K/F
i)⊗̂Qp ' (AdR,K′/F

i)⊗̂Qp

for all i by induction on i. As by definition AdR,K is the projective system of the

AdR,K/F
i and similarly for AdR,K′ , we are done. �

By the lemma, when computing B+
dR we may assume it is defined as AdR,K⊗̂Qp

with a finite unramified extension K|Qp. Corollary 3.30 then implies that we may
view B+

dR as a complete filtered ring and not just as a projective system of com-
plexes.

Proposition 4.2. The ring B+
dR is a complete discrete valuation ring with

residue field CK . Moreover, its filtration Fili by powers of the maximal ideal satisfies
a GK-equivariant isomorphism

(4.2) Fili/Fili+1 ∼= CK(i).

Proof. As already remarked, by the previous lemma we may assume K is
unramified over Qp. Then by Corollary 3.30 the Hodge filtration on AdR⊗̂Zp is
the filtration by divided powers of the ideal ker(θdR), where θdR is the natural
surjection AdR⊗̂Zp → (AdR/F

1)⊗̂Zp = OCK
. After tensoring by Q this becomes

the filtration by powers of ker(θdR ⊗ Q) which is the maximal ideal of B+
dR as the

associated quotient is OCK
⊗Q = CK . Moreover, B+

dR is complete with respect to
the filtration since AdR is the Hodge-completed de Rham algebra. By Corollaries
3.11 and 3.2 we have a GK-equivariant isomorphism

(4.3) (ker(θdR)/ ker(θdR)2)⊗Q ∼= CK(1)

which shows in particular that this is a CK-vector space of dimension 1, and there-
fore ker(θdR)⊗Q is a principal ideal by completeness of B+

dR. Its powers define the

filtration Fili, and the isomorphism (4.2) follows from (4.3). �

Proposition 4.3. There exists a GK-equivariant embedding K ↪→ B+
dR such

that the composite K → B+
dR � CK is the natural embedding K ↪→ CK .
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Proof. By Corollaries 3.3 and 3.8 the cotangent complex LOK/OK
is concen-

trated in degree 0 where its homology is torsion. Thus LOK/OK
⊗ Q ' 0 and

therefore
LΩ̂•OK/OK

⊗Q ' (LΩ̂•OK/OK
/F 1)⊗Q = K.

Thus the natural map LΩ̂•OK/OK
→ LΩ̂•OK/OK

⊗̂Zp induces the required map after

tensoring with Q. �

Remark 4.4. There does not exist a GK-equivariant splitting CK ↪→ B+
dR.

This would entail a GK-equivariant isomorphism B+
dR
∼= CK [[t]] which is not the

case.

Corollary 4.5. We have (B+
dR)GK = K.

Proof. By Tate’s theorem cited in the introduction, we have CK(i)GK = 0 for
i > 0, hence (Fil1)GK = 0 by induction from the second statement of Proposition
4.2 and completeness. We thus obtain an injection (B+

dR)GK ↪→ (B+
dR/Fil1)GK ∼=

CGK

K = K. Since we also have an injection K = K
GK

↪→ (B+
dR/Fil1)GK by the

proposition, the corollary follows.

Definition 4.6. The field BdR of p-adic periods is the fraction field of the
discrete valuation ring B+

dR.

Thus BdR comes equipped with a GK-action for which BGK

dR = K by the last

corollary, and a filtration Fili inherited from B+
dR. Its associated graded ring is

BHT := gr•FilBdR
∼=
⊕
i∈Z

CK(i)

in view of the last statement of Proposition 4.2.

4.2. Deformation problems and period rings. In Proposition 3.13 we saw
that truncations of Fontaine’s ring Ainf yield solutions to a universal deformation
problem. In [25], Fontaine shows a similar universal deformation property for the
ring Acris considered in Remark 3.31. Our main goal in this subsection is establish
a property of this type for the ring AdR, thereby making the link with Fontaine’s
original constructions.

As AdR carries a divided power structure, the deformation problem will have
to take it into account. First some definitions. A divided power ideal, or PD-ideal
for short, in a ring B is an ideal I ⊂ B together with a divided power structure on
B by I in the sense of Definition A.25, such that the maps γi : I → B moreover
satisfy γ1 = idI , γi(I) ⊂ I for i > 1 as well as the supplementary axiom

(4.4) γn(γm(a)) =
(mn)!

(m!)nn!
γnm(a).

Examples 4.7.

(1) If B is a Q-algebra, the usual divided power operations γi(a) = ai/i! equip
every ideal I ⊂ B with a PD-structure.

(2) If K|Qp is a finite unramified extension, restricting the above divided power
operations on K to (p) ⊂ OK equips (p) with the structure of a p-ideal. This
follows from the well-known formula vp(n!) = [n/p] + [n/p2] + [n/p3] . . . However,
there may not be a PD-structure on (p) for general K; in fact, such a PD-structure
exists if and only if the ramification index of K|Qp is < p (see [9], Example 3.2(3)).
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The divided powers of a PD-ideal I ⊂ B are defined by

I [i] := (γi1(x1) · · · γir (xr) | xj ∈ I, i1 + · · ·+ ir ≥ i)

generalizing the special case discussed before Remark 3.15. Note that I [2] = I2 but
these ideals differ in general if i > 2.

Finally, in the case when B is an OK-algebra for K|Qp unramified, we say that

the PD-structure on I ⊂ B is compatible with that on (p) ⊂ OK if γi(bp) = bipi/i!
for all b ∈ B for which bp ∈ I.

Definition 4.8. A surjection ρ : B → A of p-adically complete OK-algebras
is an order i PD-thickening for some i > 0 if ker(ρ) is a PD-ideal with PD-structure

compatible with that of (p) ⊂ OK , and moreover ker(ρ)[i+1] = 0.

For fixed A such pairs (B, ρ) form a natural category, and an initial element in
this category (if exists) is called a universal p-adically complete PD-thickening of
order i.

Theorem 4.9. If K|Qp is unramified, then for all i the OK-algebra

(AdR/F
i+1)⊗̂Zp is the universal p-adically complete PD-thickening of order i of

OCK
over OK .

Proof. We use the description of Corollary 3.30. For simplicity we treat the
case K = Qp; the general case follows by base change to OK . Given a p-adically
complete PD-thickening ρ : B → OCK

of order i over OK , we first show that there
exists a unique p-adically continuous homomorphism Ainf → B making the diagram

0 −−−−→ ker(θ) −−−−→ Ainf
θ−−−−→ OCK

−−−−→ 0y y yid

0 −−−−→ ker(ρ) −−−−→ B
ρ−−−−→ OCK

−−−−→ 0

commute. As B is p-adically complete, we reduce by Proposition 3.12 (2) to con-
structing a unique map τ : Ainf/(p) → B/(p) making the mod p diagram com-
mute. Given an element (xn) in Ainf/(p) = (OK/(p))

perf , consider the unique
p-th root of (xn) in Ainf/(p), namely the shifted sequence (xn+1). We must have
τ((xn+1))p = τ((xn))p, and (xn+1) maps to x1 in OK/(p). Therefore we must have
τ(xn) = x̂p1 for a lifting x̂1 ∈ B/(p) of x1 ∈ OK/(p). On the other hand, the p-th
power x̂p1 does not depend on x̂1, for if y1 is another lifting of x1, then x̂1−y1 ∈ ker(ρ
mod p), and therefore x̂1

p − yp1 = (x̂1 − y1)p = p!γp(x̂1 − y1) = 0 by compatibility
of the PD-structure on ker(ρ) with that on (p) ⊂ OK . This shows that the map
τ(xn) := x̂p1 is well defined, and is the only possible choice for τ .

Next, consider Ainf as a Zp[t]-algebra via the map t 7→ ξ, where ξ is a generator
of ker(θ) (Corollary 3.14). By the diagram the composite map Zp[t] → Ainf → B
sends t to an element of the PD-ideal ker(ρ), hence it extends uniquely to a Zp-
algebra map Zp〈t〉 → B. The commutative diagram

Zp[t] −−−−→ Ainfy y
Zp〈t〉 −−−−→ B
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induces a map Zp〈t〉 ⊗Zp[t] Ainf → B. But

Zp〈t〉 ⊗Zp[t] Ainf
∼= Ainf〈t〉/(t− ξ)

and the map respects the filtration by powers of PD-ideals, so we conclude by
Corollary 3.30. �

Remarks 4.10.

(1) The proof above shows that AdR⊗̂Zp is the universal p-adically complete
pro-PD-thickening of OCK

over OK , where a pro-PD thickening (B, ρ) is
a PD-thickening complete with respect to divided powers of ker(ρ). After
inverting p, the divided power structure gets killed, which shows that
AdR⊗̂Qp identifies with Fontaine’s ring B+

dR as defined in ([25], §1.5).

(2) The proof also shows that the ring Acris = LΩ•OK/OK
⊗̂Zp introduced in

Remark 3.31 is the universal p-adically complete PD-thickening of OCK

over OK , where the definition of a PD-thickening is the same as in 4.8
except that we do not require ker(ρ)[i+1] = 0 (compare [25], §2.2).

4.3. The Fontaine element. Recall that we defined the GK-module Zp(1)
as the inverse limit lim

←
µpr ; it can be also viewed as the Tate module of the torsion

Zp-module µp∞ . Our aim is now to construct a canonical GK-equivariant map

Zp(1)→ Fil1B+
dR.

The image of a generator of Zp(1) will be an analogue of the complex period 2πi
called the Fontaine element.

Construction 4.11. Represent an element of Zp(1) by a sequence (εn) of p-
power roots of unity with ε0 = 1 and εpn+1 = εn. Reducing the sequence modulo p

we obtain an element ε in (OK/(p))
perf with multiplicative representative [ε] in the

Witt ring W (OK/(p))
perf) = Ainf . As the canonical surjection θ : Ainf � OCK

lifts

the projection (OK/(p))
perf → OCK

/(p) sending the mod p class of ε to 1, we have

θ([ε]) = 1. On the other hand, we may view [ε] as an element of AdR⊗̂Zp ⊂ B+
dR

via the embedding Ainf ↪→ AdR⊗̂Zp given by Corollary 3.30. It follows that the
assignment

(4.5) (εn) 7→
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n

gives a well-defined map

ι : Zp(1)→ Fil1B+
dR

as [ε] − 1 lies in the maximal ideal Fil1B+
dR = ker(θ ⊗ Q) of the complete discrete

valuation ring B+
dR. We may also view the right hand side of (4.5) as the p-adic

logarithm of [ε] in the p-adically complete ring B+
dR. This shows that ι is GK-

equivariant (for K = Qp): given g ∈ GK , we have by definition gε = εχ(g) where

χ is the cyclotomic character, whence g[ε] = [ε]χ(g) by the multiplicativity of the
lifting [ε] 7→ ε. Taking the logarithm finally gives gι((εn)) = χ(g)ι((εn) as desired.

Definition 4.12. We define the Fontaine element t ∈ Fil1B+
dR as the image of

a fixed generator of Zp(1) under ι.
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Thus the Fontaine element depends on the choice of a generator up to multi-
plication by an element in Z×p and the Galois group acts on it via the cyclotomic
character. This is the promised analogue of the complex period 2πi.

In Subsection 6.1 we shall see that the Fontaine element may also be defined
by means of the p-adic comparison isomorphism. Here is a first step towards this
claim. By passing to the quotient by Fil2B+

dR the map ι induces a GK-equivariant
embedding

ι : Zp(1) ↪→ gr1B+
dR.

Another such map is constructed as follows. Recall from Subsection 3.1 that the
dlog map µp∞ → Ω1

OK/OK
induces an embedding Zp(1) = Tp(µp∞)→ Tp(Ω

1
OK/OK

)

and the latter is identified with gr1
FLΩ̂•OK/OK

⊗̂Zp ⊂ gr1B+
dR by Corollary 3.11. So

we have another Galois-equivariant embedding

(4.6) Zp(1)→ gr1B+
dR.

Proposition 4.13. The map (4.6) coincides with ι.

Proof. Note first that since [ε] − 1 ∈ Fil1B+
dR, the element ι((εn)) is the

class of [ε] − 1 in gr1B+
dR. We have to show that this class corresponds to that of

dlog(εn) ∈ Tp(µp∞) under the identification of Corollary 3.11. We do this modulo
pn.

The map Ainf → H0(LΩ̂•OK/(p
n)/OK/(pn)/F

2) coming from Corollary 3.29

takes the multiplicative representative [ε] to the p-adic limit of the elements

ε̃n+m
pn+m

, where ε̃n+m is an arbitrary lift of the class of εn+m under the surjection

H0(LΩ̂•(OCK /p
n)/(OK/pn)/F

2) � OCK
/(pn). Let P• be the standard free simplicial

resolution of the OK-algebra OK and for an element b ∈ Pi put xb ∈ Pi+1 = OK [Pi]
for the corresponding variable for all i ≥ −1 (with the convention P−1 := OK).

By definition, LΩ̂•OK/(p
n)/OK/(pn)/F

2 ' (LΩ̂•OK/OK
/F 2) ⊗L [Z pn→ Z] is quasi-

isomorphic to the total complex of the double complex

(4.7) · · · // P1 ⊕ Ω1
P2/OK

// P0 ⊕ Ω1
P1/OK

// Ω1
P0/OK

// 0

· · · // P1 ⊕ Ω1
P2/OK

//

pn

OO

P0 ⊕ Ω1
P1/OK

//

pn

OO

Ω1
P0/OK

//

pn

OO

0.

As each term in (4.7) is torsion free, the total complex is quasi-isomorphic to

(4.8) · · · → P1/(p
n)⊕Ω1

P2/OK
/pn

d1→ P0/(p
n)⊕Ω1

P1/OK
/pn

d0→ Ω1
P0/OK

/(pn)→ 0,

a complex placed in homological degrees ≥ −1. By Proposition 3.10 (2) we have
an exact sequence

0→ pnΩ1
OK/OK

→ H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2)→ OK/(p
n)→ 0,

and the proof of the proposition shows that the term pnΩ1
OK/OK

comes from setting

the summands Pi/(p
n) in the terms of (4.7) to 0. Now the element (xp

n

ε2n+m
, 0) ∈

P0 ⊕ Ω1
P1/OK

has image dxp
n

ε2n+m
= pnxp

n−1
ε2n+m

dxε2n+m
in Ω1

P0/OK
, hence its mod

pn class lies in the kernel of the map d0 of (4.7). Therefore (xp
n

ε2n+m
, 0) defines a

class ε̃n+m in H0(LΩ̂•(OCK /p
n)/(OK/pn)/F

2) which lifts that of εn+m in OCK
/(pn)
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by the above description of the map H0(LΩ•(OK/(p
n))/(OK/(pn))/F

2) → OK/(p
n).

So we have to compute the class of (xp
2n+m

ε2n+m
− 1, 0) in (LΩ̂•OK/OK

/F 2) ⊗L Z/pnZ.

The mod pn class of (xp
2n+m

ε2n+m
− 1, 0) in (4.8) is again in the kernel of d0, and under

the quasi-isomorphism of the total complex of (4.7) with (4.8) it corresponds to the

class of (xp
2n+m

ε2n+m
−1, 0, pn+mxp

2n+m−1
ε2n+m

dxε2n+m
) ∈ P0⊕Ω1

P1/OK
⊕Ω1

P0/OK
in the total

complex of (4.7). As xp
2n+m

ε2n+m
− 1 maps to 0 under the map P0 → OK , this class

represents an element of pnΩ1
OK/OK

, and therefore comes from the double complex

obtained by deleting the Pi terms. Chasing through the construction shows that

the element of pnΩ1
OK/OK

thus obtained is the image of pn+mxp
2n+m−1
ε2n+m

dxε2n+m ,

which is pn+mεp
2n+m−1

2n+m dε2n+m = pn+md log ε2n+m = d log εn. �

Corollary 4.14. The Fontaine element t generates the maximal ideal of the
discrete valuation ring B+

dR, and hence BdR = B+
dR[t−1].

Remark 4.15. It can be checked that the same construction as in 4.11 realizes t
as an element of Acris. One defines Bcris = Acris[t

−1]. The Frobenius endomorphism
of OCK

/(p) lifts uniquely to an endomorphism ϕ of Acris, and satisfies ϕ(t) = pt
(see [25], 2.3.4).

5. Beilinson’s comparison map

5.1. Sheaf-theoretic preliminaries. In this section we construct the map
comparing de Rham and p-adic étale cohomology following Beilinson’s approach.
We begin by assembling general facts about sheaves in certain Grothendieck topolo-
gies needed for the construction. First a general comparison result for Grothendieck
topologies due to Verdier:

Theorem 5.1. Assume F : C → C ′ is a functor between small categories, and
C ′ is equipped with a Grothendieck topology. Equip C with the induced Grothendieck
topology, i.e. the finest topology in which the pullback of a sheaf on C ′ by F is a
sheaf on C.

If F is fully faithful, and moreover every object of C ′ has a covering by objects
in the image of F , then the pullback functor induces an equivalence of category of
sheaves on C ′ with the category of sheaves on C.

See [2], Exposé III, Theorem 4.1 or [44], Chapter I, §3.9. The main point of the
proof is that under the conditions of the theorem one may construct a push-forward
functor from sheaves on C to sheaves on C ′ which is right adjoint to pullback.

Beilinson needs a refinement of the above theorem for functors that are faithful
but not necessarily fully faithful. He therefore replaces the covering condition in
Verdier’s theorem by the following more complicated one:

Condition (*). For every V ∈ C ′ and a finite family of pairs (Wα, fα) with Wα ∈ C
and fα : V → F (Wα) morphisms in C ′ there exists a set of objects Wβ ∈ C together
with morphisms F (Wβ)→ V in C ′ satisfying:

• The morphisms F (Wβ)→ V form a covering family of V .
• Every composite morphism F (Wβ) → V → F (Wα) is in the image of a

morphism Wβ →Wα via F .

Under this condition Beilinson proves in §2.2 of [3]:
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Theorem 5.2. If C,C ′ are as in the previous theorem and F : C → C ′ is
a faithful functor satisfying condition (*), then the pullback functor induces an
equivalence of the category of sheaves on C ′ with the category of sheaves on C for
the topology induced by F .

In the case where the initial Bα form an empty set, Beilinson’s condition reduces
to Verdier’s.

We now recall the notion of Godement resolutions. This is a canonical way to
construct a flabby resolution of a sheaf on a site that has enough points.

Construction 5.3. Suppose for simplicity that F is a sheaf for the Zariski
topology on a scheme Y ; this is the only case we need. Given a point y ∈ Y , we
may consider the inclusion map iy : Spec k(y) → Y and the push-forward sheaf
iy∗Fy, where Fy is the stalk of F at y considered as a constant sheaf. The rule

U 7→ C0(F)(U) :=
∏
y∈U

iy∗Fy

with the obvious restriction maps defines a flabby sheaf C0(F) on X and there is
a natural injective morphism of sheaves

ι : F → C0(F), s 7→ (sy)

where sy is the image of a section s in the stalk Fy. Now we define

C1(F) := C0(coker (ι)).

By construction, there is a natural map

d0 : C0(F)→ C1(F).

We now construct inductively sheaves

Ci(F) := C0(coker (di−2)).

and maps

di−1 : Ci−1(F)→ Ci(F).

In this way we obtain a flabby resolution F → C•(F) canonically attached to F and
functorial in F , the Godement resolution. By definition, the complex Γ(X,C•(F))
represents RΓ(X,F) in the bounded below derived category of abelian groups. This
construction extends in the usual way from sheaves to bounded below complexes
of sheaves.

Finally, we need the definition of Voevodsky’s h-topology.

Definition 5.4. A morphism φ : X → Y of schemes is a topological epi-
morphism if on underlying spaces it induces a topological quotient map (i.e. φ is
surjective and the topology of Y is the same as the quotient topology induced by
φ.) It is a universal topological epimorphism if for every morphism Z → Y the base
change map X ×Y Z → Z is a topological epimorphism.

An h-covering of a scheme X is a finite family of morphisms of finite type
Xi → X such that qXi → X is a universal topological epimorphism. We equip
the category of schemes with the induced Grothendieck topology and call it the
h-topology.
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Étale surjective maps and proper surjective maps are universal topological epi-
morphisms, so the h-topology is finer than the étale or proper topologies (defined
respectively by finite surjective families of étale and proper maps). The following
geometric fact is nontrivial, however.

Fact 5.5. Assume X is a reduced connected Noetherian excellent scheme (for
instance a reduced scheme of finite type over a field or a discrete valuation ring
of characteristic 0). Every h-covering qXi → X has a refinement qYj → X that
factors as qYj → Y → X, where qYj → Y is a Zariski open covering and Y → X
is proper and surjective (but usually not flat). See [43], Corollary 10.4.

This fact has an important consequence for h-hypercoverings, i.e. hypercover-
ings for the class of coverings in the h-topology. Namely, we may apply Theorem
A.32 of the Appendix to obtain:

Corollary 5.6.

(1) In the category of reduced connected excellent schemes h-hypercoverings
satisfy cohomological descent for torsion étale sheaves.

(2) In the category of reduced C-schemes of finite type h-hypercoverings satisfy
cohomological descent for the complex topology.

Moreover, applying Theorem A.33 of the Appendix we obtain:

Corollary 5.7. Let X be as above, and let A be a torsion abelian group.
Denoting by Aét and Ah the associated constant étale and h-sheaves on X, we have
a canonical quasi-isomorphism

RΓ(Xét, Aét) ∼= RΓ(Xh, Ah).

Proof. For all i > 0 we have a series of canonical isomorphisms

(5.1) Hi
h(X,Ah) ∼= lim

→
Hi(C(Aét(Y•))) ∼= lim

→
Hi

ét(Y•, A
•
ét)

where the first isomorphism comes from applying Theorem A.33 of the Appendix
to the system of h-hypercoverings Y• → X, and the second is proven by the same
argument as the analogous fact for Čech cohomology (see e.g. [44], Chapter I,
Theorem 2.2.3). Here A•ét denotes the constant simplicial sheaf coming from Aét.
Since A•ét is the pullback of the constant sheaf Aét on X to Y•, the direct system
on the right hand side of (5.1) is constant by Corollary 5.6 (1).

5.2. Preliminaries on logarithmic structures. We now give a summary
of the notions from logarithmic geometry we shall use; they will be needed from
Section 5.4 onwards. Our basic reference for log structures is Kato’s paper [33].
A gentle introduction is contained in sections 2-3 of [1]; a textbook by A. Ogus is
expected.

A monoid is a commutative semigroup with unit. Every monoid M has a
group completion Mgp which is the universal object for monoid morphisms of M
into groups. It can be constructed as the quotient of M ×M where two pairs (x, y)
and (z, t) are identified if axt = ayz for some a ∈ M . There is a natural map
M → Mgp induced by x 7→ (x, 1); if it is injective, then M is called an integral
monoid.

A pre-logarithmic ring (or pre-log ring for short) is a triple (A,M,α), where A is
a commutative ring with unit, M is a monoid and α : M → A is a homomorphism
in the multiplicative monoid of A. Morphisms (A,M,α) → (B,N, β) of pre-log
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rings are given by pairs of morphisms M → N and A→ B compatible via α and β.
A pre-log ring is a log ring if the map α induces an isomorphism α−1(A×)

∼→ A×,
where A× is the group of units in A. Every pre-log ring as above has an associated
log ring given by a morphism αa : Ma → A, where Ma is the quotient of A× ×M
where two pairs (a, x) and (b, y) are identified if there exist c, d ∈ A× such that
aα(d) = bα(c) and cx = dy. One checks that this is indeed a log ring, with αa

induced by the map (a, x) 7→ aα(x).
Given a scheme X, one can define pre-log structures and log structures on X

by sheafifying the above notions for the étale topology. Thus a pre-log scheme is a
triple (X,M,α), where X is a scheme, M is a sheaf of monoids on the small étale
site of X and α : M → OX is a morphism of étale monoid sheaves, where OX is
considered as a monoid for its multiplicative structure. A morphism (Y,N, β) →
(X,M,α) of pre-log schemes is given by a morphism φ : Y → X of schemes and a
morphism φ−1M → N of étale monoid sheaves whose composite with β equals the
composite φ−1M → φ−1OX → OY , where the first map is the pullback of α and
the second is induced by φ. A pre-log scheme is a log scheme if moreover α induces
an isomorphism α−1(O×X)

∼→ O×X . From now on we shall drop α from the notation
when considering (pre-)log schemes.

One may define an associated log scheme (X,Ma) for every pre-log scheme
(X,M) by sheafifying the construction for pre-log rings described above. A log
scheme (X,M) is coherent (resp. integral) if étale locally there exists a morphism
PX → OX whose associated log structure is isomorphic to M , where PX is a
constant sheaf of monoids defined by a finitely generated (resp. integral) monoid
P . The log structure is fine if it is coherent and integral. We shall only use the
two most important examples of log structures: the trivial log structure, given by
M = O×X and the natural inclusion α : O×X → OX , and the canonical log structure
associated with a pair (X,D), where X is a regular scheme and D ⊂ X a normal
crossing divisor (see the beginning of the next section for a reminder). In the latter
case the map M → OX is given by the inclusion of (OX ∩ j∗O×U ) → OX , where
j : U → X is the inclusion map of the open complement U of D in X.

Given a morphism (A,M,α) → (B,N, β) of pre-log rings, one defines
the B-module Ω1

(B,N)/(A,M) of log differentials as the quotient of the module

Ω1
B/A ⊕ (B ⊗Z coker (Mgp → Ngp)) by the submodule generated by elements of

the form (dβ(n), 0) − (0, β(n) ⊗ n) for n ∈ N . It comes equipped with natu-
ral maps d : B →Ω1

(B,N)/(A,M), dlog : N → Ω1
(B,N)/(A,M) related by the formula

β(n)dlog(n) = dβ(n) for all n ∈ N . One can show that the operation of taking
associated log rings induces an isomorphism on log differentials.

Given a morphism φ : (Y,N)→ (X,M) of pre-log schemes, one defines the OY -
module Ω1

(Y,N)/(X,M) of log differentials by performing the above construction in the
context of étale monoid sheaves. If moreover φ is a morphism of fine log schemes,
one says that φ is log smooth if the underlying scheme morphism is locally of finite
presentation and f satisfies a log analogue of the infinitesimal lifting property ([33],
3.3 or [1], Definition 3.10). In this case one can show that the sheaf Ω1

(Y,N)/(X,M)

is locally free of finite rank. The fundamental example of a log smooth morphism
is given by a regular flat scheme X → S, where S is the spectrum of a discrete
valuation ring and X has semi-stable reduction over S. Here the log structures on
X and S are the canonical ones associated with the special fibre of X → S and the
closed point of S, respectively.
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Once log differentials have been defined, one has a notion of a log cotangent
complex. Olsson’s paper [37], which is the main reference on the subject, contains
two constructions; Beilinson works with that of Gabber, explained in Section 8 of
[37]. The main point is that Gabber defines an analogue of the free A-algebra
A[B] used in the construction of the usual cotangent complex LB/A for a morphism
(A,M) → (B,N) of pre-log rings. This is the pre-log ring given by the free A-
algebra A[BqN ] on the disjoint union on the underlying sets of B and N together
with the morphism of monoids M ⊕NN → A[BqN ] induced by the structure map
M → A and the map sending the basis element of the free monoid NN corresponding
to n ∈ N to the generator of A[B q N ] given by n. There is a natural morphism
(A,M) → (A[B q N ],M ⊕ NN ) of pre-log rings and the associated module of log
differentials is isomorphic to the free B-module with basis B qN .

With the notion of a free algebra attached to (A,M) → (B,N) at hand, one
defines a canonical free resolution P(A,M)(B,N)• → (B,N) in this context by

mimicking Construction 2.3 (resolution meaning here that the underlying morphism
of simplicial sets is a trivial fibration). One then defines

L(B,N)/(A,M) := Ω1
P(A,M)(B,N)•/(A,M) ⊗P(A,M)(B,N)•

B

where the tensor product is taken over the underlying simplicial ring of
P(A,M)(B,N)•.

Similarly, one defines the log de Rham algebra

LΩ•(B,N)/(A,M) := Tot(Ω•P(A,M)(B,N)•/(A,M))

which has a Hodge filtration and a Hodge-completed version LΩ̂•(B,N)/(A,M). The
graded pieces of the Hodge filtration are given by shifts of derived exterior powers
of L(B,N)/(A,M) as in Proposition 2.25. All these notions reduce to the usual ones
in case the pre-log structures are trivial (i.e. given by the unit submonoids).

It is proven in Olsson’s paper ([37], Theorem 8.20) that passing to associated
log rings for a morphism (A,M)→ (B,N) of pre-log rings induces an isomorphism
on associated log cotangent complexes. Furthermore, the logarithmic cotangent
complex enjoys properties analogous to those of the usual one. In particular, one
has a natural map L(B,N)/(A,M) → Ω1

(B,N)/(A,M) which induces an isomorphism

on H0 and is a quasi-isomorphism if (B,N) is a free algebra over (A,M) defined
by Gabber’s construction ([37], Lemmas 8.9 and 8.10). Most importantly, there
is a log analogue of the exact transitivity triangle (Theorem 2.13) for a sequence
(A,M)→ (B,N)→ (C,L) of morphisms of pre-log rings ([37], Theorem 8.18).

Finally, given a morphism φ : (Y,N)→ (X,M) of pre-log schemes, one defines

sheafified variants L(Y,N)/(X,M), LΩ•(Y,N)/(X,M) and LΩ̂•(Y,N)/(X,M) of the above
constructions by performing analogous operations starting from the natural mor-
phism (φ−1OX , φ−1M) → (OY , N) of pairs of étale sheaves induced by φ. In the
case when φ is a morphism of fine log schemes that is log smooth and integral (the
latter is a technical condition satisfied in our basic example of semistable reduc-
tion), the natural morphism L(Y,N)/(X,M) → Ω1

(Y,N)/(X,M) is a quasi-isomorphism

(see [37], 3.7 and 8.34).

5.3. The geometric side of the comparison map. In what follows, by
‘variety’ we mean a separated scheme of finite type over a field.
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Let Y be a smooth variety over a field k of characteristic 0. Choose a smooth
compactification j : Y ↪→ Y such that D := Y \Y is a divisor with normal crossings.
Such a compactification exists by Hironaka’s theorem.

Recall the notion of divisor with normal crossings: there is a family of étale

morphisms φi : Y i → Y with
⋃

Im (φi) = Y (i.e. a covering of Y in the étale

topology) such that each Yi sits in a cartesian square

D ×Y Y i −−−−→ Y iy yρi
V (t1 · · · tr) −−−−→ An

k

where the morphism ρi is étale, the t1, . . . , tn are coordinate functions on An
k and

r ≤ n.
In the above situation, we have the notion of the logarithmic de Rham complex.

Definition 5.8. Given a pair (Y ,D) as above, the logarithmic de Rham com-
plex Ω•

Y /k
(logD) is the subcomplex of j∗Ω

•
Y/k whose terms have local sections

ω ∈ j∗ΩiY/k(U) such that both ω and dω have a simple pole along D (i.e. fω is

a section of Ωi
Y /k

and fdω is a section of Ωi+1

Y /k
for a local equation f of D in U

sufficiently small).

Remark 5.9. It can be shown (see [14], §3 and [15], §3.1) that Ωi
Y /k

(logD) =

∧iΩ1
Y /k

(logD) and if we pull back Ω1
Y /k

(logD) to an étale neighbourhood Y i as

above, it becomes freely generated by dt1/t1, . . . , dtr/tr, dtr+1, . . . , dtn.

Now set

RΓdR(Y/k) := RΓ(Y ,Ω•
Y /k

(logD)),

Notice that RΓdR(Y/k) is an object in the bounded derived category of abelian
groups, and its cohomologies are the groups

Hi
dR(Y/k) = Hi(Y ,Ω•

Y /k
(logD)).

These groups are equipped with the Hodge filtration defined by

F pHi
dR(Y/k) := Im (Hi(Y , F pΩ•

Y /k
(logD))→ Hi(Y ,Ω•

Y /k
(logD)))

where

F pΩ•
Y /k

(logD) = (0→ Ωp
Y /k

(logD)→ Ωp+1

Y /k
(logD)→ · · · )

In case Y is proper, we may take Y = Y and hence

Hi
dR(Y/k) = Hi(Y,Ω•Y/k).

Remarks 5.10.

(1) Deligne has shown (see [15], Theorem 3.2.5) that RΓdR(Y/k) does not
depend on the choice of Y .

(2) When k = C and Y is not necessarily proper but smooth, we have iso-
morphisms

Hi(Y,Ω•Y/k)
∼→ Hi(Y an,C)

∼← Hi(Y ,Ω•
Y /k

(logD)).
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However, the filtration on Hi(Y an,C) coming from the filtration on the
left hand side induced by

F pΩ•Y/k = (0→ ΩpY/k → Ωp+1
Y/k → · · · )

is not the same as the Hodge filtration coming from the right hand side
(in fact, it is often trivial).

We now discuss a sheafified variant of the above notions. Fix an algebraically
closed base field k of characteristic 0, and consider pairs (U,U), where U is a smooth
k-variety with smooth compactification U such that U \U is a divisor D with normal

crossings. These form a category Pk whose morphisms (U,U)→ (U ′, U
′
) are defined

as morphisms U → U
′

mapping U into U ′. We have a contravariant functor on this
category given by

(5.2) (U,U) 7→ Ω•
(U,U)/k

:= Ω•
U/k

(logD).

We consider this functor as a presheaf on Pk and would like to sheafify its total
derived functor but the latter takes values in a derived category. However, fol-
lowing Illusie [32], we may use Godement resolutions to find a canonical complex
representing it:

(5.3) (U,U) 7→ Γ(U,C•(Ω•
(U,U)/k

))

We thus have a presheaf on the category Pk that is a derived version of (5.2). Via
the forgetful functor Pk → Vark given by (U,U) 7→ U we may restrict Voevodsky’s
h-topology on Vark to Pk, and therefore the following definition makes sense.

Definition 5.11. We define AdR to be the complex of h-sheaves associated
with the presheaf (5.3) on the category Pk.

Note that AdR carries a Hodge filtration induced from the one on Ω•
(U,U)/k

.

The good news is that AdR defines a filtered complex of h-sheaves on the whole
of Vark, by virtue of the following theorem.

Theorem 5.12. The forgetful functor Pk → Vark induces an equivalence of
categories between h-sheaves on Pk and h-sheaves on Vark.

Proof. Apply Beilinson’s Theorem 5.2 in the situation where C ′ is Vark
equipped with the h-topology, and F is the (faithful) forgetful functor (V, V )→ V
from the category P ′k of pairs (V, V ) consisting of a k-variety V and a proper k-
variety V containing V as a dense open subset. Notice that condition (*) is satisfied:
given a finite family of maps V → Vα with Vα having a compactification V α, embed
V in a proper k-variety V ′ (such a V ′ exists by Nagata’s theorem) and let V be the

closure of the image of the embedding V → V
′×
∏

V α. Then V is proper and the

second projection induces maps (V, V )→ (Vα, V α).
Next notice that the inclusion functor Pk → P ′k is fully faithful, hence we may

apply Verdier’s Theorem 5.1 to it: we have to check that each pair (V, V ) in P ′k
has an h-covering (U,U) → (V, V ) by a pair in Pk. This follows from Hironaka’s
theorem or de Jong’s alteration theorem over fields [13]. �

We now come to the main result of this subsection. The morphism of filtered
complexes of presheaves

C•(Ω•
(U,U)/k

)→ AdR
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gives rise to a morphism

(5.4) RΓdR(Y/k)→ RΓh(Y,AdR)

for a smooth k-variety Y , inducing maps

Hn
dR(Y/k)→ Hn(Y,AdR).

Theorem 5.13. For a smooth variety Y over k the maps (5.4) are filtered
quasi-isomorphisms.

Proof. By a ‘Lefschetz principle’ type argument we reduce to the case k = C.
Choose a smooth normal crossing compactification Y for Y with complement

D. By ([16], (6.2.8)) or in more detail ([11], Theorem 4.7) there exists an h-
hypercovering V• → Y such that each Vn is a smooth k-scheme of finite type and
furthermore there is a simplicial compactification V• ↪→ V • → Y such that V n is
proper and smooth with Dn := V n \ Vn a normal crossing divisor. On V• consider
the simplicial complex of presheaves Ω•

V •/k
(logD•).

According to Grothendieck [28] (see also [15]), we have a filtered quasi-
isomorphism

RΓ(V •,Ω
•
V •/C

(logD•)) ∼= RΓsing(V •,C)

where on the right hand side we have complex singular cohomology. Similarly, we
have

RΓ(Y ,Ω•
Y /C(logD) ∼= RΓsing(Y ,C).

The two isomorphisms induce commutative diagrams for all n

Hn(V •,Ω
•
V •/C

(logD•))
∼=−−−−→ Hn

sing(V •,C)y y
Hn

dR(Y ) = Hn(Y ,Ω•
Y /C(logD))

∼=−−−−→ Hn
sing(Y ,C)

By Corollary 5.6 the right vertical map is an isomorphism, hence so is the left
one. Recall that RΓ(Y ,Ω•

Y /C(logD)) is computed (in the Zariski topology) by

Γ(Y ,C•(Ω•
(Y,Y )/C)) and similarly for the simplicial version. It follows that the

direct system Hn(V •, C
•Ω•

V •/C
(logD•)) for all V• as above is constant. Since the

direct limit of this system is Hn(Y,AdR) by Theorem A.33, we are done. �

We shall in fact need a Hodge-completed version of the above theorem. Define

the Hodge-completed de Rham complex Ω̂•
(U,U)/k

as the projective system defined

by the quotients Ω̂•
(U,U)/k

/F i by steps of the Hodge filtration. Next, denote by ÂdR

the h-sheaf (of projective systems of complexes) associated with

(U,U) 7→ Γ(U,C•(Ω̂•
(U,U)/k

)).

As above, this gives rise to an h-sheaf on the category of varieties, whence mor-
phisms

(5.5) RΓdR(Y )∧ → RΓh(Y, ÂdR)

where on the left-hand side we have hypercohomology of the Hodge-completed de
Rham complex. Its cohomology groups are the same as those of the non-completed
complex as the Hodge filtration on each fixed group Hn

dR(Y ) is finite. Hence we
have:
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Theorem 5.14. For a smooth variety Y over k the maps (5.5) are filtered
quasi-isomorphisms.

5.4. The arithmetic side of the comparison map. We now consider an
arithmetic version of the previous constructions. Let K be a finite extension of
Qp, and OK its ring of integers, with residue field κ. A semistable pair over K
will consist of a smooth K-variety U and an open immersion j : U → U , where
U is a regular scheme proper and flat over OK , and U \ U is a divisor D with
normal crossings. This divisor consists of two parts. There is a ‘horizontal part’
Dh consisting of the components that are flat (hence surjective) over OK . It yields
a normal crossing divisor UK \ U after passing to the generic fibre. The other
components form the ‘vertical part’ Dv; it is concentrated in the special fibre Uκ.
Locally the situation can be described as follows. Assume that a point u ∈ U
lies on r components of Dv and s components of Dh. Then there is an étale
morphism V → U whose image contains u and another étale morphism V →
SpecOK [t1, . . . , tn]/(t1 · · · tr − π), where r ≤ n and π is a uniformizer in OK .
Moreover, the trace Dh ×U V is described by the cartesian diagram:

Dh ×U V −−−−→ Vy yρi
V (tr+1 · · · tr+s) −−−−→ SpecOK [t1, . . . , tn]/(t1 · · · tr − π)

A semi-stable pair over K will be a pair (V,V) defined by an open immersion of
a K-variety V in a flat proper OK-scheme V which comes by base change from
a semi-stable pair (U ′,U ′) defined over some finite extension K ′|K in the above
sense.

Equip V with the canonical log structure defined by M = OV∩j∗O×V ; we denote
this log scheme again by (V,V). There is a morphism of log schemes (V,V) →
SpecOK induced by the composite V → SpecOK → SpecOK ; here SpecOK is

equipped with the trivial log structure given by O×K . It therefore makes sense to
consider the derived log de Rham algebra LΩ•(V,V)/OK

and its completed version

LΩ̂•(V,V)/OK
introduced in Subsection 5.2. As above, the rule

(V,V) 7→ Γ(V, LΩ̂•(V,V)/OK
)

defines a contravariant functor on the category of semi-stable pairs over K. To

make the derived functor RΓ(V, LΩ̂•(V,V)/OK
) a presheaf on this category, we again

use the Godement resolution for the Zariski topology:

(V,V) 7→ Γ(V, C•(LΩ̂•(V,V)/OK
))

By definition, the right hand side is a projective system of complexes of Zariski
sheaves (Γ(V, C•(LΩ•(V,V)/OK

/F i))).

Now consider the h-topology on the category VarK of K-varieties, and pull

it back to the category SSK of semistable pairs over K via the forgetful functor
SSK → VarK . Sheafifying the above presheaf on SSK for the h-topology, we obtain

an h-sheaf that we denote by A\dR following Beilinson.

Again this defines an h-sheaf on the whole category of K-varieties by the fol-
lowing analogue of Theorem 5.12:
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Theorem 5.15. The forgetful functor SSK → VarK induces an equivalence of
categories between h-sheaves on SSK and h-sheaves on VarK .

Proof. As in the proof of Theorem 5.12, we proceed in two steps. We first ap-
ply Beilinson’s Theorem 5.2 in the situation where C ′ is VarK equipped with the
h-topology, and F is the forgetful functor (V,V) → V from the category PPK of

pairs (V,V) consisting of a K-variety V and a reduced proper flat OK-scheme V
containing V as a dense open subscheme. By the same arguments as in the geo-
metric case, condition (∗) is satisfied, hence we obtain an equivalence of categories
of h-sheaves.

Next we apply Theorem 5.1 to the fully faithful inclusion of categories SSK →
PPK . We have to check that each pair (V,V) in PPK has an h-covering (U,U)→
(V,V) by a pair in SSK . This follows from one of de Jong’s alteration theorems [13]:
choosing a model (V ′,V ′) of (V,V) over a finite extension K ′|K, there exists, up
to replacing K ′′ by a finite extension, a semistable pair (U ′,U ′) over K ′ equipped
with an alteration (U ′,U ′) → (V ′,V ′). As alterations are surjective and proper
(and generically finite), this is an h-covering.

We now compare the sheaf A\dR with the sheaf ÂdR defined at the end of the
previous subsection.

Proposition 5.16. We have a canonical isomorphism

A\dR ⊗Q ∼= ÂdR

of projective systems of complexes of h-sheaves on VarK .

Proof. First, consider a pair (U,U) of K-varieties such that U is proper smooth
over K and U \U is a normal crossing divisor. As before, equip U with the canonical
log structure and K with the trivial log structure. Consider the derived logarithmic
de Rham complex LΩ•

(U,U)/K
arising from these data. Since U is log smooth and

integral over K, we have

LΩ•
(U,U)/K

' Ω•
(U,U)/K

where on the right hand side we have the non-derived logarithmic de Rham complex
of the previous section.

Furthermore, we have LK/K = Ω1
K/K

= 0 by Remark 3.7 and a direct limit

argument, so

LΩ•
(U,U)/K

' LΩ•
(U,U)/K

.

Finally, assume that U is the generic fibre of a proper flat OK-scheme U such that

(U,U) is a semistable pair over K in the sense defined above, equipped with its log
structure. Then by construction

LΩ•
(U,U)/K

' LΩ•(U,U)/OK
⊗Q.

Putting everything together, we thus have

LΩ•(U,U)/OK
⊗Q ' Ω•

(U,U)/K

Passing to global sections of the associated Godement resolutions, we obtain an
isomorphism of projective systems of filtered complexes

(Γ(U , C•(LΩ̂•(U,U)/OK
/F i))⊗Q) ' (Γ(U,C•(Ω̂•

(U,U)/K
/F i))).
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Passing to associated h-sheaves on VarK , we finally obtain the stated isomorphism.

Now recall that we defined AdR := LΩ̂•OK/OK
. Consider the morphisms of log

schemes

(U,U)
π→ SpecOK → SpecOK

where the latter two schemes are equipped with a trivial log structure. This gives
rise to a transitivity triangle of log cotangent complexes, whence a map

π∗LOK/OK
→ L(U,U)/OK

.

Similarly, there is a map of derived log de Rham complexes

π∗LΩ•OK/OK
→ LΩ•(U,U)/OK

.

Modding out by F i, we may identify the left hand side with the constant (Zariski)
sheaf on U associated with AdR/F

i. As its higher cohomologies are trivial, we have
a morphism of complexes (with AdR/F

i placed in degree 0)

AdR/F
i → Γ(U , C•(LΩ•(U,U)/OK

/F i)).

Sheafifying for the h-topology we obtain morphisms

AdR/F
i → A\dR/F

i

for all i, where we have a constant h-sheaf on the left hand side. Now we have:

Theorem 5.17 (Beilinson’s p-adic Poincaré lemma). The above maps induce
quasi-isomorphisms

(AdR/F
i)⊗̂Zp → (A\dR/F

i)⊗̂Zp
for all i.

The proof will be given in the next section.

Corollary 5.18. Assume X is a smooth K-variety having a smooth normal
crossing compactification. There are filtered quasi-isomorphisms

RΓét(XK ,Zp)⊗Zp
(B+

dR/F
i)
∼→ RΓh(XK ,A

\
dR/F

i)⊗̂Qp
for all i, giving rise to a filtered quasi-isomorphism

RΓét(XK ,Zp)⊗Zp
B+

dR
∼→ RΓh(XK ,A

\
dR)⊗̂Qp

in the limit.

Proof. We start with the quasi-isomorphisms

RΓét(XK ,Zp)⊗
L
Zp

(AdR/F
i) ' RΓét(XK , AdR/F

i).

Taking completed tensor product with Zp (which is an exact functor) we obtain

RΓét(XK ,Zp)⊗
L
Zp

(AdR/F
i)⊗̂Zp ' RΓét(XK , (AdR/F

i)⊗̂Zp).

Next, Corollary 5.7 yields a quasi-isomorphism

RΓét(XK , (AdR/F
i)⊗̂Zp) ' RΓh(XK , (AdR/F

i)⊗̂Zp)

Applying the Poincaré lemma yields

RΓh(XK , (AdR/F
i)⊗̂Zp) ' RΓh(XK , (A

\
dR/F

i)⊗̂Zp)
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so, putting the above together (and using exactness of ⊗̂Zp again)

RΓét(XK ,Zp)⊗
L
Zp

(AdR/F
i)⊗̂Zp ' RΓh(XK ,A

\
dR/F

i)⊗̂Zp.

On the other hand, by definition we have

(AdR/F
i)⊗̂Zp ⊗Q ∼= B+

dR/F
i,

so the corollary follows by tensoring with Q.

Construction 5.19. We are finally in the position to construct the comparison
maps

compn : Hn
dR(X)⊗K BdR → Hn

ét(XK ,Zp)⊗Zp
BdR

for X as in the previous corollary following Beilinson’s approach.
First recall that by Corollary 5.14 and Proposition 5.16 we have filtered quasi-

isomorphisms

RΓdR(XK)∧ ' RΓh(XK , ÂdR) ' RΓh(XK ,A
\
dR)⊗Q.

On the other hand, there is a natural map

RΓh(XK ,A
\
dR)→ RΓh(XK ,A

\
dR)⊗̂Zp

so after tensoring by Q and composing with the preceding isomorphisms we obtain
a map

RΓdR(XK)∧ → RΓh(XK ,A
\
dR)⊗̂Qp.

Applying the previous corollary, we therefore have a natural map

RΓdR(XK)∧ → RΓét(XK ,Zp)⊗Zp B
+
dR.

Composing by the natural map RΓdR(X)∧ → RΓdR(XK)∧ and extending B+
dR-

linearly, this yields a map

RΓdR(X)∧ ⊗K B+
dR → RΓét(XK ,Zp)⊗Zp

B+
dR

compatible with filtrations. Passing to the fraction field of B+
dR and taking coho-

mology, we obtain the announced comparison maps

compn : Hn
dR(X)⊗K BdR → Hn

ét(XK ,Zp)⊗Zp
BdR

that are compatible with filtrations and Galois action. (Here we have used again
that the Hodge filtration on the groups Hn

dR(X) is finite.)

6. The comparison theorem

6.1. Proof of the comparison isomorphism. This subsection is devoted
to the proof of:

Theorem 6.1. (De Rham comparison theorem) The maps compn are filtered
isomorphisms for all smooth quasi-projective X and all n.

We begin with the crucial case X = Gm,K = SpecK[x, x−1]. Since it is
connected of dimension 1, only the case n = 1 is nontrivial.

Proposition 6.2. The map comp1 induces a Galois-equivariant filtered iso-
morphism

H1
dR(Gm,K)⊗K BdR → H1

ét(Gm,K ,Qp)⊗Qp BdR.
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Proof. We may assume K = Qp by a base change argument and drop the
subscript from Gm,Qp . Since comp1 is compatible with filtrations, it suffices to show
that it induces an isomorphism on associated graded rings. By Proposition 4.2 we
have griFilBdR

∼= Cp(i) for all i. On the other hand, since Gm is affine of dimension

1, we have F 0H1
dR(Gm) = F 1H1

dR(Gm) = H1
dR(Gm) and F iH1

dR(Gm) = 0 for i > 1,
whence an isomorphism gr1

FH
1
dR(Gm) ∼= H1

dR(Gm). Thus it will suffice to show that
comp1 induces an isomorphism

(6.1) H1
dR(Gm)⊗Qp

Cp
∼→ H1

ét(Gm,Qp
,Qp)⊗Qp Cp(1)

as on the other graded pieces the maps will be just Galois twists of this one.
Both sides of (6.1) are 1-dimensional Cp-vector spaces. A generator for the left

hand side is given by the logarithmic differential dlog(x), and of the right hand
side by the compatible system cx of the images of the coordinate function x by the
Kummer maps

H0
ét(Gm,Qp

,Gm)→ H1
ét(Gm,Qp

, µpn)

for all n. Another description of the class cx is as follows. The étale fundamental
group Π := π1(Gm,Qp

) is pro-cyclic, whence an isomorphism H1
ét(Gm,Qp

, µpn) ∼=
Z/pnZ, a generator being given by the class of the µpn-torsor G̃m coming from the

map x 7→ xp
n

on Gm,Qp
. The compatible system of these for all n forms a pro-torsor

whose class generates H1
ét(Gm,Qp

,Zp(1)).

It thus suffices to check that comp1 sends the class of dlog(x) to that of cx
modulo the identification gr1

FilBdR
∼= Cp(1). As we have seen in Subsection 3.1,

this isomorphism is induced by the map µpn → pnΩ1
OK/OK

∼= gr1
FAdR ⊗L Z/pnZ.

The latter group, viewed as a constant h-sheaf, is isomorphic to gr1
FA

\
dR⊗

L Z/pnZ
by the Poincaré lemma (Theorem 5.17). Restricting to the étale topology we thus

have a map ρ : H1
ét(Gm,Qp

, µpn) → H1
ét(Gm,Qp

, gr1
FA

\
dR ⊗

L Z/pnZ). On the other

hand, we may identify dlog(x) ∈ gr1
FH

1
dR(Gm) with a class in H1

h(Gm,Qp
, gr1

FAdR)

via Theorem 5.13. As this class is defined over OK , we may view it as a cohomology

class with values in gr1
FA

\
dR (as an h-sheaf on VarQp

) and send it to a class in

H1
h(Gm,Qp

, gr1
FA

\
dR ⊗

L Z/pnZ) ∼= H1
ét(Gm,Qp

, gr1
FA

\
dR ⊗

L Z/pnZ). We compute the

latter group as group cohomology of Π with values in A\dR⊗ [Z pn→ Z]. Both classes

are represented by an element in the 1-cochain group C0(Π,A\dR[1])⊕C1(Π,A\dR).

The 0-cochain group C0(Π,A\dR[1]) maps to this group via multiplication by pn

in the first component and the natural identification in the second with a minus

sign. Now let x̃ be the coordinate function on the µpn -torsor G̃ ∼= Gm
pn→ Gm. We

represent dlog(x̃) by a 0-cochain with values in A\dR[1] and compute pndlog(x̃) =

dlog(x̃p
n

) = dlog(x). On the other hand, under the identification C0(Π,A\dR[1]) ∼=
C1(Π,A\dR) the class dlog(x̃) goes over to the 1-cocycle σ 7→ σ(dlog(x̃)) − dlog(x̃)
which represents ρ(cx). Therefore the two 1-cocyles are cohomologous. �

Remark 6.3. The isomorphism of the proposition sends the class of the element
dlog(x)⊗1 inH1

dR(Gm,K)⊗K BdR to cx⊗(ι⊗Cp) ∈ H1
ét(Gm,K ,Qp(1))⊗Qp

BdR(−1),

where cx is as in the above proof and ι : Zp(1) → BdR is the map of Construc-
tion 4.11 defining the Fontaine element. Indeed, the elements dlog(x) ⊗ 1 and cx
are equal up to multiplication by an element λ ∈ BdR(−1) in the 1-dimensional
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BdR-vector space H1
ét(Gm,K ,Qp) ⊗Qp BdR, and the calculation in the above proof

together with Proposition 4.13 shows that λ and ι⊗Cp coincide modulo Fil2. Hence

their difference is a Galois-invariant element in Fil2BdR(−1), which must be 0 by
Proposition 4.2 and Tate’s theorem cited in formula (1.2) of the introduction.

This is analogous to the isomorphism of complex de Rham theory for Gm that
maps dlog(x) to the linear map H1(Gm,Z) → C with value 2πi on a generator of
H1(Gm,Z) ∼= Z.

The next crucial point is compatibility of the comparison map with Gysin maps
in codimension 1. We explain these for the étale theory; the de Rham theory is
similar. In fact, as explained in ([9], §2), both étale cohomology and algebraic de
Rham cohomology satisfy the axioms of a ‘Poincaré duality theory with supports’
in the sense of that paper, and the properties of cohomology we are to use are all
valid for theories satisfying these axioms.

Given a pair Y ⊂ X of K-varieties, there are cohomology groups with support
Hi
Y (X,Qp(r)) fitting into a long exact sequence

· · · → Hn
ét(X,Qp(r))→ Hn

ét(X \ Y,Qp(r))→ Hn+1
Y (X,Qp(r))→ · · ·

One can in fact construct this sequence (and the similar one in de Rham co-
homology) by defining RΓY (X) to be the cone of the natural pullback map
RΓ(X) → RΓ(X \ Y ). As a consequence of this cone construction, we may ex-
tend the definition of the comparison maps compn to cohomology with support in
Y .

If moreover both X and Y are smooth and Y is of codimension 1 in X, there
are purity isomorphisms (sometimes called Gysin isomorphisms)

Hn
ét(Y,Qp(r)) ∼= Hn+2

Y (X,Qp(r + 1))

for cohomology with support. Composing with the natural map

Hn+2
Y (X,Qp(r + 1))→ Hn+2

ét (X,Qp(r + 1))

we obtain the Gysin maps

Hn
ét(Y,Qp(r))→ Hn+2

ét (X,Qp(r + 1))

We first study the Gysin map in a special situation. Consider a line bundle
L on a smooth Y ; this is a locally free OY -module of rank 1. The corresponding
geometric line bundle is denoted by V (L) → Y . As such, it is equipped with the
zero section Y → V (L) which identifies Y with a smooth codimension 1 closed
subscheme in V (L).

Lemma 6.4. The maps compn are compatible with Gysin isomorphisms asso-
ciated with closed embeddings i : Y ↪→ V (L) as above.

Proof. In both the étale and the de Rham theories, the projection π : V (L)→ Y
induces a map of cohomology rings π∗ : H∗(Y ) → H∗Y (V (L)) that equips the
latter ring with an H∗(Y )-module structure induced by the cup-product. The
map i∗ respects this module structure, and therefore for all α ∈ Hn(Y ) we have
i∗(α) = i∗(1)∪ π∗(α) where 1 ∈ H0(Y ). Thus we reduce to showing that the maps
comp2 preserve the classes i∗(1) ∈ H2

Y (V (L)). Pick an open covering trivializing
the line bundle L. By the Mayer-Vietoris sequences

· · · → Hn−1(U ∩ V )→ Hn(U ∪ V )→ Hn(U)⊕Hn(V )→ · · ·
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in both theories (and their analogues with support) we reduce to the case where L
is trivial, i.e. V (L) ∼= Y ×A1. Now consider the commutative diagram of pairs

(Y ×A1, Y × {0}) −−−−→ (A1, {0})x x
(Y, Y ) −−−−→ (SpecK, SpecK)

inducing a commutative diagram

H2
Y×{0}(Y ×A1) ←−−−− H2

{0}(A
1)

i∗

x xi∗
H0(Y )

∼=←−−−− H0(SpecK)

It shows that when identifying i∗(1) we may reduce to the case where Y is a point.
But then the localization sequence induces an isomorphism

H1(Gm,K)
∼→ H2

{0}(A
1)

since Hn(A1) = 0 for n > 0, and one checks that under this isomorphism the
elements i∗(1) map to the distinguished elements described in Proposition 6.2.
Thus the statement follows from the proposition.

Proposition 6.5. The maps compn are compatible with all Gysin isomor-
phisms associated with closed embeddings of smooth codimension 1 subvarieties.

The proof uses a ‘deformation to the normal cone’ (in this case, normal bundle)
construction that we recall next. A reference is [19].

Construction 6.6. Let Y ⊂ X be a smooth codimension 1 pair as above,
and denote by N the normal bundle of Y in X. There exists a closed embedding
Y ×A1 ↪→ M◦ in a K-variety M◦ equipped with a projection p : M◦ → A1 such
that the composite Y ×A1 ↪→M◦ → A1 is the natural projection p2, and moreover
the following properties hold.

(1) There is an isomorphism p−1(A1 \ {0}) ∼= X × (A1 \ {0}) making the
diagram

p−1
2 (A1 \ {0}) −−−−→ p−1(A1 \ {0})

=

y y∼=
Y × (A1 \ {0}) −−−−→ X × (A1 \ {0})

commute, where the bottom horizontal map is the natural inclusion.
(2) There is an isomorphism p−1(0) ∼= V (N ) making the diagram

p−1
2 (0) −−−−→ p−1(0)

∼=
y y∼=
Y −−−−→ V (N )

commute, where the bottom horizontal map is the embedding of Y via
the zero section.
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The construction of M◦ is as follows. Consider the closed embedding Y ×A1 ↪→
X×A1 and blow up the closed subscheme Y ×{0} in X×A1. The resulting blowup
M → X ×A1 is equipped with a natural projection p : M → A1 compatible with
p2 : Y ×A1 → A1. Now over A1 \{0} the situation is as above because the blowup
did not change X× (A1 \{0}). The fibre p−1(0) decomposes in two components Z1

and Z2. The component Z1 is isomorphic to the blowup of Y in X, and Z2 is the
projective line bundle P(N ⊕OY ). Furthermore, the inclusion Z1∩Z2 ↪→ Z2 is the
inclusion of the ‘hyperplane at infinity’ in P(N ⊕ OY ); its complement is V (N ).
Setting M◦ := M \ Z1 we thus arrive at the situation described above.

Proof of Proposition 6.5. The geometric construction described above gives rise to
commutative diagrams in both cohomology theories

Hn+2
Y (X) ←−−−− Hn+2

Y×A1(M◦) −−−−→ Hn+2
Y (V (N ))x∼= x∼= x∼=

Hn(Y )
∼=←−−−− Hn(Y ×A1)

∼=−−−−→ Hn(Y )

The vertical maps are Gysin isomorphisms and the horizontal maps are pullbacks
associated with Y × {1} → Y × A1 on the left and Y × {0} → Y × A1 on the
right (and the inclusions X × {1} ↪→ M◦ ←↩ V (N ) above). The lower horizontal
maps are isomorphisms by homotopy invariance of de Rham and étale cohomology,
hence so are the upper horizontal maps. We thus reduce to the case treated in the
previous lemma.

Proof of Theorem 6.1. First assume X is smooth and projective of dimension d.
Consider a smooth hyperplane section H ⊂ X. It exists by the Bertini theorem
and is a smooth codimension 1 subvariety of X. It has a class η ∈ H2

ét(XK ,Qp(1))
which is the image of 1 by the Gysin map

H0
ét(XK ,Qp) ∼= H2

Y (XK ,Qp(1))→ H2
ét(XK ,Qp(1)).

Similar facts hold for de Rham cohomology. The second map here comes from a long
exact sequence associated to a cone of a pullback map, hence it commutes with the
comparison map. From the previous proposition we therefore conclude that comp2

is compatible with the above Gysin map. Furthermore, the d-fold cup-product ηd

generates the group

H2d
ét (XK ,Qp(d)) ∼= Qp

and similarly for de Rham cohomology. Since the maps compn are compatible with
the product structures on de Rham and étale cohomology, we conclude that these
isomorphisms are compatible with each other via comp2d; in particular, comp2d is
an isomorphism.

Now observe that both cohomology algebras are equipped with Poincaré duality
pairings which are non-degenerate. Thus if α ∈ Hn

dR(X) is a nonzero element, there

is β ∈ H2d−n
dR (X) such that α · β 6= 0. Therefore, since comp2d is an isomorphism

and the Poincaré duality pairing on étale cohomology is non-degenerate, we have
compn(α) 6= 0. But then compn is injective for all n. On the other hand, we know
that the source and the target of compn are finite-dimensional vector spaces of the
same dimension over BdR. This results by a Lefschetz principle argument from
the isomorphism Hn

dR(XC) ∼= Hn(Xan
C ,C) for complex smooth projective varieties

recalled in the introduction to this paper, i.e. the comparison between algebraic
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and analytic de Rham cohomology and the complex Poincaré lemma. We conclude
that compn is an isomorphism for all n.

Now if X is only assumed to be smooth and quasi-projective, by Hironaka’s
theorem it has a smooth projective compactification X with complement a normal
crossing divisor D whose components are smooth. We prove the theorem by a
double induction on the dimension d of X and the number r of components of D;
the case r = 0 is the projective case treated above. Now fix a component D0 of D,
and let D′ be the union of the other components. Then X \D′ has r−1 components
at infinity and (X \D′) \ (D0 \ (D0 ∩D′)) = X. There are localization sequences
in both theories of the form

Hn−2(D0 \ (D0 ∩D′))→ Hn(X \D′)→ Hn(X)→ Hn−1(D0 \ (D0 ∩D′))
coming from exact Gysin triangles, hence compatible with the comparison maps by
the previous proposition. The comparison maps are isomorphisms for D0\(D0∩D′)
by induction on d and for X \D′ by induction on r, so they are isomorphisms for
Hn(X) as well.

6.2. Proof of the Poincaré lemma. This section is devoted to the proof of
Beilinson’s Poincaré Lemma (Theorem 5.17). We begin with auxiliary statements
about log differentials.

Recall that for a semistable pair (U,U) over OK we have denoted by L(U,U)/OK

the log cotangent complex where OK is equipped with the trivial log structure,
and similarly for log differentials and the (derived) log de Rham algebra. We shall
also consider these objects in the case where OK (or an extension of it) is equipped
with the canonical log structure coming from the inclusion of the closed point in
SpecOK ; we denote the corresponding objects by L(U,U)/(K,OK) and similarly for
differentials. To compare the two, the following lemma will be handy.

Lemma 6.7. There is a natural quasi-isomorphism

L(SpecK,SpecOK)/OK

∼= Ω1
(K,OK)/OK

,

where we have logarithmic 1-forms on the right hand side, and OK carries the trivial
log structure. Moreover, the natural map

Ω1
OK/OK

→ Ω1
(K,OK)/OK

from usual differentials is an isomorphism.

Proof. The first statement is proven exactly as its non-logarithmic analogue
(Lemma 3.6). The proof of that statement was based on two properties of the
cotangent complex: the transitivity triangle and the computation of the cotangent
complex of a polynomial algebra. As recalled in Subsection 5.2, both of these
properties have analogues for Gabber’s log cotangent complex, to be found in [37].

For the second statement, we may replace K by its maximal unramified ex-
tension. Consider first a finite extension L|K generated by a uniformizer π of OL
with minimal polynomial f . As recalled in Facts 3.4, the OL-module Ω1

OL/OK
is

generated by dπ with annihilator the principal ideal generated by f ′(π). Similarly,
the construction of log differentials shows that Ω1

(L,OL)/OK
is a quotient of the free

module generated by dπ/π modulo the submodule generated by f ′(π). Thus the
natural map Ω1

OL/OK
→ Ω1

(L,OL)/OK
can be identified with the inclusion

(6.2) (OL/f ′(π)OL)dπ ↪→ (π−1OL/f ′(π)OL)dπ
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whose cokernel is killed by π and hence by p. By passing to the direct limit,
we deduce that the map Ω1

OK/OK
→ Ω1

(K,OK)/OK
is injective with cokernel killed

by p. To show that the cokernel is in fact trivial, it will suffice to verify that
Ω1
OK/OK

contains the p-torsion of Ω1
(K,OK)/OK

. Indeed, given ω ∈ Ω1
(K,OK)/OK

, we

have pω ∈ Ω1
OK/OK

, but the latter group is p-divisible by Corollary 3.3, so after

modifying ω by a p-torsion element we obtain an element in Ω1
OK/OK

.

Assume therefore ω ∈ Ω1
(K,OK)/OK

is a p-torsion element, coming from an

element ωL ∈ Ω1
(L,OL)/OK

for some finite extension L|K. As pωL maps to 0 in

Ω1
OK/OK

, we conclude pωL = 0 from Lemma 3.9 (1). On the other hand, by

Corollary 3.3 the OK-module Ω1
OK/OK

, which is the direct limit of the modules

Ω1
OL/OK

, is nonzero and p-divisible, and therefore for L large enough we must have

pΩ1
OL/OK

6= 0. In particular, p does not lie in the annihilator (f ′(π)) of Ω1
OL/OK

,

i.e. p/f ′(π) /∈ OL. But then f ′(π)/p ∈ OL and hence f ′(π)ωL = (f ′(π)/p)pωL = 0.
Since under the inclusion (6.2) the left hand side becomes identified with the part
of the right hand side killed by f ′(π), this means that ωL comes from Ω1

OL/OK
, as

desired.

Consider now a semi-stable pair (V,V) over K; recall that it comes from a
semistable pair (U,U) defined over a finite extension K ′|K.

Proposition 6.8. We have a natural quasi-isomorphism

L(V,V)/OK
∼= Ω1

(V,V)/OK
.

Moreover, the right hand side sits in a short exact sequence of log OV -modules

0→ OV ⊗OK
Ω1
OK/OK

→ Ω1
(V,V)/OK

→ Ω1
(V,V)/(K,OK)

→ 0.

Here the last term is locally free, hence the sequence is locally split.

Proof. Consider the exact triangle of log cotangent complexes

OV ⊗OK
LO(K,O

K
)/OK

→ L(V,V)/OK
→ L(V,V)/(K,OK) → OV ⊗OK

LO(K,O
K

)/OK
[1]

coming from the sequence of morphisms of log schemes

V → SpecOK → SpecOK ,

where the first two terms carry the canonical log structure and the third the triv-
ial one. Here the term L(V,V)/(K,OK) is a direct limit of cotangent complexes

L(UK′ ,UK′ )/(K′,OK′ )
for finite extensions K ′|K. Since by assumption for sufficiently

large K ′|K the morphisms (UK′ ,UK′) → (K ′,OK′) are log smooth and integral,
we have quasi-isomorphisms

L(UK′ ,UK′ )/(K′,OK′ )
∼= Ω1

(UK′ ,UK′ )/(K′,OK′ )

and the latter terms are locally free of finite rank independent of K ′. Hence the
same is true of L(V,V)/(K,OK). Using the first statement of the previous lemma we

may thus rewrite the triangle as

OV ⊗OK
Ω1

(K,OK)/OK
→ L(V,V)/OK

→ Ω1
(V,V)/(K,OK)

→ OV ⊗OK
Ω1

(K,OK)/OK
[1]
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We obtain the quasi-isomorphism L(V,V)/OK
∼= Ω1

(V,V)/OK
by comparing this trian-

gle with the one coming from the exact sequence

0→ OV ⊗OK
Ω1

(K,OK)/OK
→ Ω1

(V,V)/OK
→ Ω1

(V,V)/(K,OK)
→ 0

of log differentials (which is exact on the left again because (V,V)→ (K,OK) is a

limit of log smooth integral maps). Finally, we identify Ω1
(K,OK)/OK

with Ω1
OK/OK

using the second statement of the previous lemma.

Now recall that the graded pieces of the Hodge filtration on the logarithmic
derived de Rham algebra LΩ•(V,V)/OK

are described by

griF (LΩ•(V,V)/OK
) ∼= L ∧i L(V,V)/OK

[−i]

which we may rewrite using the previous proposition as

griF (LΩ•(V,V)/OK
) ∼= L ∧i Ω1

(V,V)/OK
[−i].

Using the exact sequence of the proposition, we may unscrew these objects further
as follows.

Proposition 6.9. There exists a filtration Ia on griFLΩ•(V,V)/OK
with graded

pieces given by

grIagriFLΩ•(V,V)/OK

∼= gri−aF AdR[−a]⊗OK
Ωa

(V,V)/(K,OK)
.

Proof. We apply Construction A.29 of the appendix to the exact sequence of
the preceding proposition. It gives a filtration

Ia = Im ((OV ⊗OK
L ∧i−a Ω1

OK/OK
)⊗OV Ωa

(V,V)/(K,OK)
)→ L ∧i Ω1

(V,V)/OK
)

on

L ∧i Ω1
(V,V)/OK

= griFLΩ•(V,V)/OK
[i].

Here the induced map on graded pieces is injective as the sequence is locally split.
Moreover, recall that by definition

gri−aF AdR = gri−aF LΩ•OK/OK
= L ∧i−a Ω1

OK/OK
[a− i]

whence the description of grIagriF (LΩ•(V,V)/OK
). �

We may sheafify the statement of the above proposition as follows. Apply the
functor RΓ(V, ·) to LΩ•(V,V)/OK

and take the associated h-sheaf (using Godement

resolutions in a by now familiar fashion). Further, denote by Ga the complex of
h-sheaves associated with

(V,V) 7→ RΓ(V,Ωa
(V,V)/K

) = Γ(V, C•Ωa
(V,V)/K

).

The proposition then yields:

Corollary 6.10. There exists a filtration Ia on griFA
\
dR with graded pieces

given by

grIagriFA
\
dR
∼= gri−aF AdR[−a]⊗L

OK
Ga.

This corollary enables us to make an important reduction in the proof of the
Poincaré lemma.
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Corollary 6.11. Theorem 5.17 follows from from the vanishing statements

τ>0G0 ⊗L Z/pZ = 0

and

Ga ⊗L Z/pZ = 0

for all a > 0.

Proof. To prove the theorem, it suffices to prove that the maps

(AdR/F
i)⊗L Z/prZ→ (A\dR/F

i)⊗L Z/prZ

are quasi-isomorphisms for all r > 0, for afterwards we may pass to the limit. Using
induction along the exact sequences

0→ Z/pr−1Z→ Z/prZ→ Z/pZ→ 0

we reduce to the case r = 1. This case amounts to proving that

Cone(griFAdR → griFA
\
dR)⊗L Z/pZ = 0.

Consider the 0-th step of the I-filtration on griFA
\
dR. By definition, it is given by

the term griFAdR ⊗L
OK
G0. The cohomology sheaf H0G0 is the h-sheaf associated

with (V,V) 7→ H0(V,OV). If the smooth proper K-scheme V is connected (which
we may assume), we have H0(V,OV) = OK , and therefore

griFAdR ⊗L
OK
H0G0 ∼= griFAdR,

which means that griFAdR already sits inside I0(griFA
\
dR), and the cone of the map

griFAdR → I0(griFA
\
dR) is griFAdR⊗L

OK
τ>0G0. Thus the nullity of Cone(griFAdR →

I0griFA
\
dR)⊗LZ/pZ follows from the first vanishing statement above, and the second

one yields the vanishing of the higher graded pieces of griFA
\
dR in view of the

previous corollary. �

Finally, we translate the vanishing conditions of the corollary in a more
tractable form.

Lemma 6.12. Assume that for every semistable pair (V,V) over K there is an
h-covering h : (V ′,V ′)→ (V,V) of semistable pairs such that the induced maps

h∗ : Hb(V,ΩaV,V)→ Hb(V ′,ΩaV ′,V′)

factor as

Hb(V,ΩaV,V)
p→ Hb(V,ΩaV,V)→ Hb(V ′,ΩaV ′,V′),

where the first map is multiplication by p. Then the vanishing statements of the
previous corollary hold.

Proof. The vanishing statements in question mean that the cohomology
sheaves HbGa are uniquely p-divisible for all (a, b) except for a = b = 0. The
condition above yields p-divisibility in view of the commutative diagram

Hb(V,ΩaV,V)
p−−−−→ Hb(V,ΩaV,V)y y

Hb(V ′,ΩaV ′,V′)
p−−−−→ Hb(V ′,ΩaV ′,V′).
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On the other hand, if α ∈ Hb(V,ΩaV,V) satisfies pf∗α = 0 for an h-covering

f : (V ′,V ′) → (V,V), taking a further h-covering h : (V ′′,V ′′) → (V ′,V ′) with
the property of the lemma ensures that (h ◦ f)∗α = 0. �

Since (V,V) come from a semistable pair (U,U) defined over some finite exten-
sion K ′|K and

Hb(V,ΩaV,V) ∼= Hb(U ,ΩaU,U )⊗OK′ OK ,

to verify the condition of the lemma it will suffice to prove the corresponding
statement over K ′. Without loss of generality we may assume K ′ = K, so the
proof of Theorem 5.17 finally reduces to proving

Theorem 6.13. For every semistable pair (U,U) over K there is an h-covering
h : (U ′,U ′)→ (U,U) of semistable pairs such that the induced maps

h∗ : Hb(U ,ΩaU,U )→ Hb(U ′,ΩaU ′,U ′)

factor through the multiplication-by-p map

Hb(U ,ΩaU,U )
p→ Hb(U ,ΩaU,U )

for all (a, b) 6= (0, 0).

We sketch the proof in the case where U is proper and a = 0; this was proven
by Bhargav Bhatt in his paper [7]. It turns out that in this case the map h can
be chosen to be proper and surjective. The general proof follows a similar pattern
but the technical details are a bit more complicated; see the original paper [3] of
Beilinson or Illusie’s survey [32].

The key lemma is the following.

Lemma 6.14. Let X be a proper curve over a field. There exists a proper smooth
curve Y with geometrically connected components defined over a finite extension of
k and a proper surjection h : Y → X such that the induced map h∗ : PicX → PicY
factors through the multiplication-by-p map PicX → PicX.

Proof. We are allowed to take finite covers of X and work with one component
at a time, so after extending the base field and normalizing X in a finite extension
of its function field we may assume X is smooth connected of positive genus and
has a k-point O. The Abel-Jacobi map P 7→ [P − O] defines a closed immersion

X → Pic0X ⊂ PicX. Define Ỹ by the fibre square

Ỹ −−−−→ Pic0Xy yp
X −−−−→ Pic0X

and take Y to be the normalization of Ỹ . This defines h : Y → X. The map
Ỹ → Pic0X induces a map Y → Pic0X and factors through Pic0Y by the universal
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property of the Jacobian. We thus obtain a commutative diagram

Y −−−−→ Pic0Y

id

y y
Y −−−−→ Pic0X

h

y yp
X −−−−→ Pic0X

The composite map Pic0Y → Pic0X on the right hand side is the map induced
by the composition Y → X → Pic0X. By autoduality of the Jacobian, the map
Pic0X → Pic0Y on dual abelian varieties is the pullback induced by h. By con-
struction it factors through the multiplication-by-p map of Pic0X.

Corollary 6.15. Let X be a proper curve over a field having a rational point
O. There exists h : Y → X as above such that the induced map h∗ : H1(X,OX)→
H1(Y,OY ) factors through the multiplication-by-p map on H1(X,OX).

Proof. Identify H1(X,OX) with the tangent space at 0 of Pic0X.

When X is semi-stable, then Pic0X is a semi-abelian variety. We can then use
properties of semi-abelian varieties to establish a relative version of the corollary.

Proposition 6.16. Assume X → T is a projective semi-stable relative curve
with T integral and excellent. There exists a pullback diagram

X ′
π−−−−→ X

φ′
y yφ
T ′

ψ−−−−→ T

where ψ′ : T ′ → T is an alteration, the base change curve X ′ → T ′ is projec-
tive semistable and the pullback map ψ∗R1φ∗OX → R1φ′∗OX′ is divisible by p in
Hom(ψ∗R1φ∗OX , R1φ′∗OX′).

Recall that a diagram as above always defines base change morphisms
ψ∗Rqφ∗F → Rqφ′∗(π

∗F) for a sheaf F on X. We apply this with F = OX and
compose with the morphism π∗OX → OX′ induced by π.

Proof. Let η be the generic point of T . By the lemma we find a finite map η′ → η
and a proper smooth curve Yη′ → Xη such that the induced map Pic0Yη′ → Pic0Xη

factors through multiplication by p. By a result of de Jong [13], after replacing T

by an alteration T̃ → T and base changing X we may extend Yη′ to a semistable
curve Y → X. (If Y has several components, we do this componentwise.) Now
Pic0(X/T ) and Pic0(Y/T ) are semi-abelian schemes. By a basic result on semi-
abelian schemes G over a normal base ([22], I 2.7), the restriction functor G→ Gη
to the generic point is fully faithful. Thus, since we know that the restriction of
Pic0(X/T ) → Pic0(Y/T ) to the generic point factors through multiplication by p,
the same is true for the map itself. Finally, we deduce the result on R1φ∗OX by
passing to the normal bundle of the zero section as in the previous corollary.

Proof of Theorem 6.13 for a = 0 and U proper. Since SpecOK is affine, by the
Serre vanishing theorem it will suffice to prove a relative result: there exists an
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alteration α : Ũ → U such that Rbf∗OU → Rb(f ◦ α)∗OU ′ is divisible by p in
Hom(Rbf∗OU , Rb(f ◦ α)∗OŨ ), where f is the structure map U → SpecOK .

We use induction on the relative dimension d of f : U → SpecOK . The case
of dimension 0 is easy using Kummer theory. By another result of de Jong, after
replacing U by an alteration, we find a factorization U → T → SpecOK such that
T is integral, φ : U → T is a projective semi-stable relative curve having a section
s : T → U , and f ′ : T → SpecOK is proper surjective of relative dimension d− 1.
Since φ is of relative dimension 1, the Leray spectral sequence

Rpf ′∗(R
qφ∗OU )⇒ Rp+qf∗OU

yields an exact sequence

0→ Rbf ′∗(φ∗OU )→ Rbf∗(OU )→ Rb−1f ′∗(R
1φ∗OU )→ 0.

As φ has connected fibres, we have φ∗OU = OT , so the exact sequence becomes

0→ Rbf ′∗(OT )→ Rbf∗(OU )→ Rb−1f ′∗(R
1φ∗OU )→ 0,

and the section s : U → T induces a splitting. By induction we find an alteration
π′ : T ′ → T such that π′∗Rbf ′∗OT → Rbg′∗OT ′ is divisible by p in the Hom-group,
where g′ = f ′ ◦ π′. Denote by φ : U ′ → T ′ the base change curve. By the previous
proposition, we find a further alteration π′′ : T ′′ → T ′ giving rise to a commutative
diagram

U ′′ −−−−→ U ′ −−−−→ Uyφ′′ yφ′ yφ
T ′′

π′′−−−−→ T ′
π′−−−−→ T

such that π′′∗R1φ′∗OU ′ → R1φ′′∗OU ′′ is also divisible by p in the Hom-group. We
conclude by putting these results together using the above split exact sequence.

A. Appendix: Methods from simplicial algebra

In this appendix we summarize some basics from simplicial algebra needed for
the study of cotangent complexes and derived de Rham algebras. For the first three
subsections our main reference is Chapter 8 of Weibel’s book [47].

A.1. Simplicial methods. Denote by ∆ the category whose objects are the
finite ordered sets [n] = {0 < 1 · · · < n} for each integer n ≥ 0, and the morphisms
are nondecreasing functions.

Definition A.1. A simplicial (resp. cosimplicial) object in a category C is a
contravariant (resp. covariant) functor X : ∆→ C.

Simplicial (resp. cosimplicial) objects in a category C form a category Simp(C)
(resp. cosimp(C)) whose morphisms are morphisms of functors.

Fix an integer n ≥ 1. For each 0 ≤ i ≤ n we define a face map εi : [n− 1]→ [n]
as the unique nondecreasing map whose image does not contain i. In the other
direction, we define for each 0 ≤ i ≤ n a degeneracy map ηi : [n] → [n − 1] as the
unique nondecreasing map that is surjective and has exactly two elements mapping
to i.

Lemma A.2. Giving a simplicial object X in a category C is equivalent to giving
an object Xn for each n ≥ 0 together with face operators ∂i = X(εi) : Xn → Xn−1
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and degeneracy operators σi = X(ηi) : Xn → Xn+1 for 0 ≤ i ≤ n satisfying the
identities

∂i∂j = ∂j−1∂i i < j ,

σiσj = σj+1σi i ≤ j(A.1)

∂iσj =


σj−1∂i i < j

id i = j or i = j + 1

σj∂i−1 i > j + 1 .

Proof. See [47], Proposition 8.1.3.

Example A.3. If B is an object in the category C, we define the constant
simplicial object B• associated with B by setting Bn := B for all n, and declaring
all face and degeneracy maps to be identity maps of B.

Example A.4. Fix an integer n ≥ 0. Setting ∆[n]m := Hom∆([m], [n]) defines
a simplicial set ∆[n]•, i.e. a simplicial object in the category of sets. Here the
simplicial structure is induced by contravariance of the Hom-functor. Moreover,
[n]→ ∆[n]• is a covariant functor from ∆ to the category of simplicial sets.

We also need the notion of augmented simplicial objects.

Definition A.5. Given an object B and a simplicial object X• in a category
C, we define an augmentation ε : X• → B to be a morphism X• → B•.

Lemma A.6. Let X• be a simplicial object. Defining an augmentation ε• : X• →
B is equivalent to giving a morphism ε0 : X0 → B satisfying ε0∂0 = ε0∂1.

Proof. Given a map ε• : X• → B• of simplicial objects, the degree 0 compo-
nent ε0 satisfies this identity by definition. Conversely, given ε0 as in the statement,
we may choose an arbitrary morphism α : [0] → [n] and set εn := ε0 ◦X(α). This
does not depend on the choice of α, because for a different choice β : [0] → [n] we
may find a morphism γ : [1] → [n] such that both α and β factor through γ, from
which the identity ε0∂0 = ε0∂1 implies that the resulting maps εn are the same.
The reader will check that the sequence εn indeed defines an augmentation. �

Next we define simplicial homotopies. To do so, we first need an auxiliary
construction.

Construction A.7. Let C be a category in which finite coproducts exist.
Assume given a simplicial object X• in C and a simplicial object U• in the category
of nonempty finite sets. We define the product X• × U• as a simplicial object in C
with terms given by

(X × U)n :=
∐
u∈Un

Xn

and the simplicial structure defined as follows: for γ : [m] → [n] the morphism
(X × U)(γ) maps the component Xn indexed by u ∈ Un to the component Xm

indexed by U(γ)(u) ∈ Um via the morphism X(γ).

In particular, it makes sense to speak about the product X• ×∆[n]• for each
n ≥ 0. Note that by functoriality the two morphisms ε0, ε1 : [0] → [1] induce
morphisms ei : X• × ∆[0]• → X• × ∆[1]• of simplicial objects in C for i = 0, 1.
Here we may identify X• ×∆[0]• with X• since by definition ∆[0]• is the constant
simplicial object associated with the one-point set.
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Definition A.8. Assume C has finite coproducts, and consider two morphisms
f•, g• : X• → Y• between simplicial objects of C. A simplicial homotopy from f• to
g• is a morphism h• : X• ×∆[1]• → Y• satisfying f• = h• ◦ e0 and g• = h• ◦ e1,
where e0, e1 are the maps defined above.

We say that f• and g• are homotopic if they are in the same class of the equiv-
alence relation on maps of simplicial objects generated by simplicial homotopies.
Given a morphism f• : X• → Y• of simplicial objects, a homotopy inverse of f is a
morphism g• : Y• → X• such that f• ◦ g• (resp. g• ◦ f•) is homotopic to the identity
map of Y• (resp. X•). If such f and g exist, we say that X• and Y• are homotopy
equivalent.

Remark A.9. If A is an abelian category, then the existence of a simplicial
homotopy between two simplicial maps f• to g• in A is already an equivalence
relation. See [47], Exercise 8.3.6.

A.2. Associated chain complexes. We now investigate simplicial objects
in abelian categories.

Definition A.10. Given a simplicial object X• in an abelian category A,
we define its associated (unnormalized) chain complex as the complex CX• with
CXn := Xn in degree n and with differential dn : Xn → Xn−1 defined by

dn :=

n∑
i=0

(−1)i∂i.

This is indeed a chain complex by the first identity in Lemma A.2. The nor-
malized chain complex of X• is the chain complex NX• with

NXn :=
⋂

0≤i≤n−1

Ker(∂i),

where ∂i : Xn → Xn−1 is the i-th face map. The differential NXn → NXn−1 is
defined to be (−1)n∂n. The homotopy groups of X• are given by

πn(X•) := Hn(NX•).

Remark A.11. By ([47], Theorem 8.3.8), the natural inclusion NX• → CX•
is a quasi-isomorphism. Therefore we also have πn(X•) = Hn(CX•).

The main theorem concerning the normalized chain complex is now the follow-
ing.

Theorem A.12 (Dold–Kan correspondence). Let A be an abelian category.
The functor N induces an equivalence of categories between the category of simpli-
cial objects in A and that of nonnegatively graded homological chain complexes in
A.

Under this equivalence simplicial homotopies between simplicial maps corre-
spond to chain homotopies on the associated normalized complexes.

Proof. See [47], Theorem 8.4.1.

The quasi-inverse to the functor N in the Dold–Kan correspondence is given
by the Kan transform KC• of a nonnegatively graded chain complex C• in A. It
is the simplicial object whose degree n term is defined by

KCn :=
⊕
p≤n

⊕
η:[n]→[p] surjective

Cp
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and whose maps are defined as follows. For a morphism α : [m] → [n] of simplices
and a surjective morphism η : [n] → [p] we may write the composite uniquely in
the form η ◦ α = ε′ ◦ η′ where ε′ is injective and η′ is surjective. We define the
morphism KC(α) : KCn → KCm on the direct summand Cp of KCn by

KCα |Cp :=


idCp

if ε′ = id[p]

d : Cp → Cp−1 if ε′ = ε0

0 otherwise,

where ε0 : [p − 1] → [p] denotes the unique injective morphism of simplices whose
image avoids 0.

A.3. Bisimplicial objects. We now turn to bisimplicial constructions.

Definition A.13. A bisimplicial object X•• in a category C is a simplicial
object in the category of simplicial objects in C.

We may regard X•• as a contravariant functor from ∆×∆ to C. We have hor-
izontal (resp. vertical) face maps ∂hi : Xpq → Xp−1,q (resp. ∂vi : Xpq → Xp,q−1) and

degeneracy maps σhi : Xpq → Xp+1,q (resp. σvi : Xpq → Xp,q+1). These satisfy the
simplicial identities horizontally and vertically, and horizontal operators commute
with each vertical operators.

Definition A.14. The diagonal X∆
• of a bisimplicial object X•• is the sim-

plicial object obtained by composing the diagonal functor ∆ → ∆ × ∆ with the
functor X.

Thus X∆
n = Xnn and the face (resp. degeneracy) operators are given by ∂∆

i =
∂hi ∂

v
i = ∂vi ∂

h
i (resp. σi = σhi σ

v
i = σvi σ

h
i ).

Construction A.15. We define the (unnormalized) first quadrant double
complex CX•• associated with a bisimplicial object X•• in an abelian category
A as follows. The horizontal differentials in the double complex are those of the
chain complex coming from the horizontal face maps. The vertical differentials are
those of the chain complex coming from the vertical face maps, multiplied by a
factor (−1)p for a differential starting from Xpq.

Theorem A.16 (Eilenberg-Zilber). Let X•• be a bisimplicial object in an
abelian category A. For all n ≥ 0 there are natural isomorphisms

πn(X∆
• ) ∼= Hn Tot(CX••),

where Tot(C••) denotes the total complex associated with a double complex C••
(with the direct sum convention).

Proof. See [47], Theorem 8.5.1. �

A.4. Simplicial resolutions. Our definition for a simplicial resolution is as
follows.

Definition A.17. An augmented simplicial object ε : X• → B in an abelian
category is a simplicial resolution of B if ε0 : X0 → B is surjective and the as-
sociated chain complex of X• is acyclic except in degree 0 where its homology is
B.
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As the associated chain complex of the constant simplicial object B• is acyclic in
positive degrees, the augmentation map in a simplicial resolution X• → B induces
a quasi-isomorphism CX•

∼→ CB•.
To elucidate the homotopical nature of this definition in the case of abelian

groups, we need the following notion.

Definition A.18. A morphism X• → Y• of simplicial sets is a trivial (Kan)
fibration if in every commutative solid diagram

Z•
a• //

��

X•

f•

��
W•

b•

//

==

Y•

of simplicial sets such that for all n ≥ 0 the maps Zn → Wn are injective a dotted
arrow exists making the diagram commutative.

Remark A.19. In fact, it is enough to require the right lifting property of
the above definition in the special case of the inclusions ∂∆[n]• → ∆[n]•, where
∂∆[n]• is the boundary of the simplicial set ∆[n]• of Example A.4. See ([39], §2.2,
Proposition 1) or ([42], Tag 08NK, Lemma 14.30.2).

Proposition A.20. A trivial fibration X• → Y• of simplicial sets has a homo-
topy inverse.

Proof. See ([42], Tag 08NK, Lemma 14.30.8). �

This being said, we have:

Proposition A.21. An augmented simplicial object ε : X• → B in the category
of abelian groups is a simplicial resolution if and only if the underlying morphism
of simplicial sets is a trivial fibration.

Proof. See ([39], §2.3, Proposition 2) or ([42], Tag 08NK, Lemmas 14.31.8
and 14.31.9). �

In particular, a simplicial resolution of abelian groups induces a homotopy
equivalence of underlying simplicial sets (but not necessarily of simplicial abelian
groups!).

A.5. Derived functors of non-additive functors. Simplicial methods may
also be used to construct derived functors of not necessarily additive functors be-
tween abelian categories, following Dold and Puppe [18].

Let A be an abelian category with enough projectives, and F : A → B a
functor to another abelian category B. For an object A ∈ A consider a projective
resolution P• → A. By the Dold–Kan correspondence (Theorem A.12) the Kan
transform KP• → A is a simplicial resolution of A with projective terms. Set

(A.2) LiF (A) := Hi(NF (KP•)).

Lemma A.22. The above definition does not depend on the choice of the pro-
jective resolution P•.
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Proof. Any two projective resolutions P•, Q• of A are chain homotopy equiva-
lent. Therefore KP• and KQ• are simplicially homotopy equivalent by the Dold–
Kan correspondence. As simplicial homotopies are preserved by arbitrary functors
on simplicial objects, so are F (KP•) and F (KQ•). Reading the Dold–Kan corre-
spondence backwards we see that NF (KP•) and NF (KQ•) are quasi-isomorphic.

Definition A.23. We define the i-th left derived functor LiF of F by means
of formula (A.2) above. Similarly, we define right derived functors RiF for functors
on abelian categories having enough injectives.

Remarks A.24.
1. In the case of an additive functor F we recover the standard definition of derived
functors as additive functors commute with the Kan transform.

2. More generally, we may define total left derived functors LF : D−(A) →
D−(B) for non-additive F and similarly for right derived functors. Instead of a
projective resolution we start with a bounded above complex with projective terms
representing an object in D−(A), and then apply the functor NFK.

A.6. Application: derived exterior powers and divided powers. Im-
portant examples of non-additive functors are given by the exterior power functors
M 7→ ∧nM on the category of modules over a commutative ring A. Another
example is given by divided powers, as we now recall.

Definition A.25. Let A be a commutative ring, M an A-module and B an
A-algebra. A divided power structure on B by M is given by a sequence of maps
γn : M → B for each n ≥ 0 satisfying

(1) γ0(m) = 1

(2) γs(m)γt(m) =

(
s+ t

s

)
γs+t(m)

(3) γn(m+m′) =
∑
s+t=n

γs(m)γt(m
′)

(4) γn(λm) = λnγn(m)

for all m ∈M , λ ∈ A, and s, t, n ≥ 0.

Note that if n is such that n! is invertible in B, the second relation forces
γn(m) = γ1(m)n/n!, whence the term ‘divided power structure’.

Lemma A.26. Fix A and M . The set-valued functor sending an A-algebra B
to the set of its divided power structures by M is representable by an A-algebra
Γ•A(M).

Proof. One constructs Γ•A(M) by taking the free A-algebra A[γn(m)] on gen-
erators γn(m) for all n ≥ 0 and m ∈M , and then taking the quotient by the above
four relations. �

Observe that A[γn(m)] has a natural graded algebra structure in which the
γn(m) for fixed n generate the degree n component. As the relations are homoge-
neous, this induces a grading on Γ•A(M) whose degree n component we denote by
ΓnA(M). We shall drop the subscript A when clear from the context.

The functors M 7→ Γn(M) are also non-additive functors on the category of
A-modules. Their derived functors are related to those of the exterior product
functors by the following identity.
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Proposition A.27 (Quillen’s shift formula). Let E be a bounded above complex
of A-modules. In the associated derived category we have isomorphisms

L ∧n (E[1]) ∼= (LΓn(E))[n]

for all n ≥ 0.

We give a proof for the sake of completeness, based on Quillen’s ideas sketched
in [40] and [29].

The proof uses an auxiliary construction. Assume given a sequence E
u→ F

v→
G of A-module homomorphisms with v ◦ u = 0. To these data we associate a
complex of A-modules

(A.3) 0→ Γn(E)→ Γn(F )→ Γn−1(F )⊗G→ · · · → Γ1(F )⊗∧n−1G→ ∧nG→ 0

for all n ≥ 0 as follows. The differential Γn(E)→ Γn(F ) is induced by u. For i ≥ 0
the differentials d : Γn−i(F )⊗ ∧iG→ Γn−i−1(F )⊗ ∧i+1G are defined by setting

d(γn−i(x)⊗ 1) := γn−i−1(x)⊗ v(x), d(1⊗ y) := 0

for x ∈ F and y ∈ G and extending by linearity. We obtain a complex in view of
the relations v ◦ u = v ∧ v = 0.

Lemma A.28. Assume given a short exact sequence

(A.4) 0→ E → F → G→ 0

of flat A-modules. The associated complexes (A.3) are exact for all n ≥ 0.

Proof. To begin with, the lemma holds in the special cases

0→ A→ A→ 0→ 0,(A.5)

0→ 0→ A→ A→ 0.(A.6)

In the first case the complexes (A.3) reduce to the isomorphisms Γn(A) ∼= Γn(A) and
in the second case one has to check that the maps Γn(A)→Γn−1(A)⊗A induced by
γn(a) 7→ γn−1 ⊗ a are isomorphisms. As these are nonzero maps of free A-modules
of rank 1, the statement follows.

Next one deals with the case where E, F and G are finitely generated and free
over A. In this case the short exact sequence (A.4) splits, and therefore we may
write it as a finite direct sum of short exact sequences of the form (A.5) and (A.6).
Starting from these special cases, one proves the proposition by induction on the
sum of the ranks by checking that the complex (A.3) associated with a direct sum
of two short exact sequences is a direct sum of tensor products of complexes of
type (A.3) associated with the individual short exact sequences. The lemma then
follows by the Künneth formula for complexes of free modules. Finally, the general
case follows by writing a short exact sequence of flat modules as a direct limit of
sequences of finitely generated free modules. �

Proof of Proposition A.27. Replacing E by a quasi-isomorphic complex of free
modules, we may assume that E has free terms. Consider the short exact sequence

0→ E → C(E)→ E[1]→ 0

of complexes, where C(E) is the cone of the identity map of E. By taking Kan
transforms we obtain a short exact sequence

0→ KE → KC(E)→ K(E[1])→ 0
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of simplicial A-modules with free terms. Applying Lemma A.28 in each degree and
taking associated normalized complexes, we obtain an exact sequence

0→ NΓnKE → NΓnKC(E)→ N(Γn−1KC(E)⊗K(E[1]))→ . . .

· · · → N(Γ1KC(E)⊗ ∧n−1K(E[1]))→ N ∧n K(E[1])→ 0(A.7)

of complexes of A-modules. Since C(E) is an acyclic complex with free terms,
we may view KC(E) as a free simplicial resolution of the zero module. Thus by
definition NΓnKC(E) = LnΓ(0) = 0. Applying Lemma 2.8 with E• = ΓpKC(E),
F• = 0, and L• = ∧n−pK(E[1]) we obtain that all complexes in the middle of
(A.7) are acyclic. It remains to note that by definition LΓnE = NΓnKE and
L ∧n (E[1]) = N ∧n K(E[1]).

We finish this subsection by constructing of a filtration on higher derived func-
tors of the exterior product attached to short exact sequences of modules.

Construction A.29. Given an exact sequence

0→M ′ →M →M ′′ → 0

of flat modules over a ring A, define an increasing filtration Ia ∧i (M) on ∧i(M) by
setting

Ia ∧iM := Im
(
∧i−aM ′ ⊗ ∧aM → ∧iM

)
.

We then have a natural map

∧i−aM ′ ⊗ ∧aM ′′ → grIa ∧iM.

In case the exact sequence splits, this map is an isomorphism and the wedge product
decomposes as a direct sum⊕

a

∧i−aM ′ ⊗ ∧aM ′′ ∼= ∧iM.

We construct a derived version of this filtration as follows. Choose a projective
resolution P ′• (resp. P ′′• ) of M ′ (resp. of M ′′). By the Horseshoe Lemma ([47],
Proposition 2.2.8) there is a projective resolution P• of M fitting in a short exact
sequence

0→ P ′• → P• → P ′′• → 0

of complexes. Applying the Kan transform gives a short exact sequence

0→ KP ′• → KP• → KP ′′• → 0

of simplicial A-modules. So for each n we have a map ∧i−aKP ′n⊗∧aKPn → ∧iKPn
giving rise to a map

∧i−aKP ′• ⊗ ∧aKP• → ∧iKP•
of simplicial A-modules. Passing to the normalized chain complex yields a filtration

IaL ∧iM := Im
(
L ∧i−aM ′ ⊗L L ∧aM → L ∧iM

)
with analogous splitting properties since by definition L ∧i M is represented by
the chain complex N ∧i KP• in the derived category of A-modules. A similar
construction holds for sheaves of modules.
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A.7. Cohomological descent. In this subsection and the next, we give a
utilitarian summary of the results of cohomological descent we need. The basic
reference is [2] but the notes of Conrad [11] and Laszlo [35] are much more readable.
There is also a brief summary in [16].

Let X• be a simplicial object in the category of topological spaces, or the
category of schemes equipped with a Grothendieck topology. A simplicial abelian
sheaf on X• is given by an abelian sheaf Fn on each Xn together with morphisms
[φ] : X(φ)∗Fn → Fm for each φ : [n] → [m] in ∆ subject to the compatibility
conditions [φ] ◦X(φ)∗[ψ] = [φ ◦ψ] for all composable pairs φ, ψ of morphisms in ∆.
(Recall that X(φ) is the morphism Xm → Xn induced by φ : [n]→ [m].)

Given an augmented simplicial space ε : X• → S, we have a natural pullback
functor ε∗ from the category of sheaves on S to simplicial sheaves on X• induced
by termwise pullback via the morphism of simplicial spaces X• → S• corresponding
to ε. The functor ε∗ has a right adjoint ε∗ sending a simplicial sheaf F• on X• to
ker((σ0−σ1) : ε0∗F0 → ε1∗F1). The functor ε∗ is exact and ε∗ is left exact, giving
rise to a total derived functor Rε∗.

Definition A.30. The augmented simplicial space ε : X• → S satisfies coho-
mological descent if the adjunction map id→ Rε∗ ◦ ε∗ is an isomorphism.

Define the functor Γ(X•, ·) by sending a simplicial abelian sheaf F• on X• to
Γ(S, ε∗F). The adjunction map induces a morphism

RΓ(S,F)→ RΓ(S,Rε∗ε
∗F)

∼→ R(Γ(S, ·) ◦ ε∗)(ε∗F) = RΓ(X•, ε
∗F)

for an abelian sheaf F on S. If cohomological descent holds, the first map is also
an isomorphism, and we obtain an isomorphism

RΓ(S,F)
∼→ RΓ(X•, ε

∗F).

Moreover, we have a spectral sequence

Epq1 = Hq(Xp, ε
∗
pF)⇒ Hp+q(S,F).

This construction extends to objects of the bounded below derived category D+(S).
For details, see e.g. [11], Theorem 6.11.

A.8. Hypercoverings. The method of hypercoverings enables one to con-
struct augmented simplicial objects satisfying cohomological descent.

To define hypercoverings, we first need the notion of (co)skeleta. For an integer
n ≥ 0 denote by ∆n the full subcategory of ∆ spanned by objects [m] for m ≤ n.
An n-truncated simplicial object in a category C is a contravariant functor ∆n →
C. These form a category Simpn(C). These notions have obvious augmented and
cosimplicial variants.

For each n ≥ 0 there is a natural functor

skn : Simp(C)→ Simpn(C)
induced by restriction of functors to ∆n. It is called the skeleton functor. When C
admits finite inverse limits, these functors have right adjoints

coskn : Simpn(C)→ Simp(C)
called coskeleton functors. See e.g. [11], §3 for an exhaustive discussion. Given an
object X• in Simpn(C), the degree p term coskn(X•)p is given by the finite inverse

limit lim
←
Xq indexed by maps [q]→ [p] for q ≤ n.
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Definition A.31. Let C be the category of topological spaces, or the category
of schemes equipped with a Grothendieck topology. Assume given a class P of
morphisms stable under base change and composition and containing isomorphisms
in C. An augmented simplicial object X• → S in C is a P -hypercovering if for all
n ≥ −1 the adjunction maps

X• → coskn(skn(X•))

are given in degree n+ 1 by a map

Xn+1 → coskn(skn(X•))n+1

that lies in P . (Here S is in degree −1 by convention.)

Theorem A.32. A P -hypercovering X• → S satisfies cohomological descent in
each of the following cases.

(1) C is the category of topological spaces or the category of schemes equipped
with a Grothendieck topology and P is the class of surjective covering maps
in this topology.

(2) C is the category of topological spaces and P is the class of proper surjective
maps.

(3) C is the category of schemes equipped with the étale topology, and P is the
class of proper surjective maps, provided we restrict to torsion sheaves.

(4) In the previous situation we may also take for P the class of maps that
are composites of proper surjective maps and étale coverings. In the topo-
logical situation we may take for P the maps that are composites of proper
surjective maps and open coverings.

For the proof, see the references cited above, more specifically [11], Theorems
7.7 and 7.10.

Hypercoverings can also be used to compute sheaf cohomology by a generaliza-
tion of the Čech method.

Theorem A.33. Let S be a topological space (resp. a scheme), and CS the cat-
egory of spaces (resp. schemes) over S. Assume CS is equipped with a Grothendieck
topology which in the topological case is the classical one, and let P be the class of
surjective covering maps.

The system of P -hypercoverings ε : X• → S form a filtered inverse system
indexed by the homotopy classes of simplicial maps between them. Given an abelian
presheaf F on CS with associated sheaf F ], we have canonical isomorphisms

Hi(S,F ]) ∼= lim
→
Hi(C(F(X•)))

for all i > 0, where the direct limit is taken over the dual of the above inverse
system.

For the proof, see [2], Exposé V, Theorems 7.3.2 and 7.4.1. The theorem holds
more generally for bounded below complexes of presheaves.
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[16] , Théorie de Hodge III, Publ. Math. IHES 44 (1974), 5–77.
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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
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