
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Access right management by extended password
capabilities

Lanfranco Lopriore

Received: date / Accepted: date

Abstract With reference to a classic protection system featuring active subjects
that reference protected objects, we approach the important problem of identifying
the objects that each subject can access, and the operations that the subject
can carry out on these objects. Password capabilities are a classical solution to
this problem. We propose a new form of password capability, called extended
password capability (or e-capability, for short). An e-capability can specify any
combination of access rights. A subject that holds a given e-capability can generate
new e-capabilities for reduced sets of access rights. Furthermore, a subject that
created a given object is in a position to revoke the access permissions granted
by every e-capability referencing this object, completely or in part. The size of
an e-capability is comparable to that of a traditional password capability. The
number of passwords that need to be stored in memory permanently is kept to a
minimum, and is equal to a single password for each object.

Keywords Access right · Distribution · Password · Reduction · Revocation

1 Introduction

We shall refer to a classic protection system featuring active entities, called sub-
jects, that reference passive entities, the protected objects [15], [22]. In a system
of this type, an important problem is to identify the objects that each subject can
access, and the operations that the subject can carry out on these objects [24].
We shall refer to typed objects, so that each given object B is associated with a
type T . The definition of T states a set of operations op0, op1, . . . , opp−1, and a
set of access rights ar0, ar1, . . . , arn−1, where quantities p and n are type-specific.
The type definition also states the subset of all access rights that is necessary to
accomplish each given operation successfully.

L. Lopriore
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa,
Italy.
Tel.: +39-050-2217511
Fax: +39-050-2217522
E-mail: l.lopriore@iet.unipi.it

Manuscript Click here to download Manuscript manuscript.tex 

Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/185549566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.editorialmanager.com/ijis/download.aspx?id=94642&guid=2680fa69-f78c-4bce-a92f-bca347337d52&scheme=1
http://www.editorialmanager.com/ijis/download.aspx?id=94642&guid=2680fa69-f78c-4bce-a92f-bca347337d52&scheme=1
http://www.editorialmanager.com/ijis/viewRCResults.aspx?pdf=1&docID=4925&rev=1&fileID=94642&msid={1350BC58-6719-490A-8FD9-BE70A1D33AE0}


2 L. Lopriore

1.1 Capabilities

In a classical approach, the protection problem is solved by taking advantage of
capability-based techniques [14]. A capability C is a pair (B,AR), where B is the
identifier of a protected object, and AR is a set of access rights for this object.
A subject that holds capability C can take advantage of this capability to access
object B to carry out the operations that are made possible by the access rights
in AR. In a typical implementation, the AR field is encoded in n bits, one bit
for each access right defined by the type T of B; if a given bit is asserted, the
capability grants the corresponding access right.

Capabilities should be segregated in protected memory regions [4]. This means
that a process should be prevented from using ordinary machine instructions to
modify a capability, for instance, to set bits in the AR field to obtain an undue
amplification of access rights, or even to modify the object identifier to forge a
new capability referencing a different object. Solutions have been devised to the
capability segregation problem. In a segmented memory environment, special seg-
ments, which we shall call capability segments, can be used for capability storage
[5], [11], [27]. The instruction set of the processor is augmented with a set of
special instructions for capability processing, the capability instructions. If an or-
dinary machine instruction is used to access the contents of a capability segment,
an exception of violated protection is raised, and execution of the instruction ter-
minates with failure. This approach leads to segment proliferation and an undue
complication of the structure of the protected objects, e.g. at least one capability
segment is necessary for each given object to store the capabilities referencing the
data segments reserved for the internal representation of this object.

In a different approach, capability segregation is obtained by taking advantage
of a tagged memory [9], [19]. In this approach, a one-bit tag is associated with
each memory cell. The tag specifies whether this cell contains a capability, or an
ordinary information item. A capability instruction can be executed on a given
memory cell only if this cell is tagged to contain a capability; if this is not the
case, execution of the capability instruction generates an exception of violated
protection. This approach requires special memory modules apt to store the cell
tags, and is contrary to the requisite of hardware standardization.

1.2 Password capabilities

Password capabilities are an important improvement on the classical capability
concept [1], [3], [8], [16], [20]. In the password capability approach, a collection of
passwords is associated with each object. Each password corresponds to a set of
access rights for this object. A password capability P is a pair (B,W ), where B is
the identifier of a protected object, and W is a password. A subject that possesses
P can access object B to carry out the actions permitted by the access rights
associated with W . If passwords are large and randomly distributed, it is virtually
impossible to guess a password to forge a valid password capability [2]. It follows
that password capabilities do not need to be segregated in memory. They can be



Access right management 3

freely mixed with ordinary information items, and are an effective solution to the
segregation problem.1

A peculiar problem of password capabilities is password proliferation. If we are
aimed at distributing several distinct subsets of access rights, a password should be
associated with each of these subsets. Alternatively, we shall reserve a password for
each access right, and in this case, several password capabilities will be necessary
to express a complex access permission defined in terms of several access rights.
Of course, this is an undue complication of access right management.

As an example of an object type, let us refer to the File type that defines four
access rights, namely delete, write, read and execute. The delete access right for a
given file F makes it possible to delete F ; as will be illustrated later, this access
right is also necessary to revoke the access permissions for the file. The write access
right allows us to access F for write. This is similar to the read access right for
read access, and to the execute access right for the execution of the file contents
(supposedly, machine code). In this example, if subject S should possess access
rights write, read and execute, and a password exists that corresponds to these
three access rights, S will be granted a password capability defined in terms of
this password. If the password does not exist, it is generated [1], [2]. Alternatively,
we can associate a password with each access right, for a total of four passwords;
in this case, S will possess three password capabilities, defined in terms of the read
password, the write password, and the execute password, respectively.

In a different approach, we can modify the definition of a password capability
to contain several passwords. In this approach, a generalized password capability
G assumes the form (B,W0,W1, . . .), where W0,W1, . . . are passwords for object
B. The access rights granted by G on B are those specified by these passwords.
Of course, we can define a generalized password capability corresponding to an
arbitrary combination of access rights. However, the size of generalized password
capabilities is variable, and can be very large for several access rights. In our ex-
ample of the File type, a generalized password capability specifying access rights
write, read and execute will contain three passwords. If the size of an object iden-
tifier is 64 bits, and the size of a password is 128 bits, the size of this generalized
password capability is 56 bytes.

1.3 Reduction

An important feature of capability-based protection is simplicity in access right
transmission between subjects. A subject S that holds capability C = (B,AR)
specifying a set AR of access rights for object B can grant these access rights to a
different subject S′ simply by transferring a copy of C to S′. A related aspect is that

1 If a subject steals a password capability, it can take advantage of this password capability,
to access the object it references illegitimately. In fact, the validity of a password capability
is independent of the subject that holds this password capability and extends system-wide,
and a copy of a password capability cannot be distinguished from the original. This is a
different aspect of the segregation problem. Password capability stealing can be precluded by
a separation of the address spaces enforced by the underlying operating system kernel [2].
Alternatively, we can assign a cryptographic key to each application; the password capabilities
held by the subjects of a given application are encrypted by using the key of this application
[16]. This mechanism prevents stealing between subjects of different applications, but cannot
protect the subjects of the same application, which should be considered mutually trustworthy.



4 L. Lopriore

of capability reduction, i.e. to transform C into a new capability C′ = (B,AR′),
where AR′ specifies a subset of the access rights contained in AR, so that subject
S can transfer only part of the access rights in the original capability C. To this
aim, the instruction set of the processor will be extended to include capability
instructions aimed at altering the access right field in a strictly controlled fashion,
so that any form of access right amplification is prevented.

Access right reduction is arduous in password capability environments [16].
Suppose that subject S holds password capability P = (B,W ) referencing object
B with password W , and let AR be the set of access rights associated with W .
Suppose also that S is aimed at granting subject S′ a password capability P ′ =
(B,W ′) for the same object B, where W ′ corresponds to a subset AR′ of AR. In
a situation of this type, intervention of a software component is necessary, which
we shall call the password capability manager MB , associated with B and aimed
at password capability reduction. Subject S sends password capability P to MB .
In turn, MB transforms P into P ′, and returns P ′ to S. If no password exists that
corresponds to the reduced set of access rights AR′, a new password is generated,
and is associated with the object [1], [2].

In our example of the File type, suppose that subject S holds password capa-
bility P = (F,W ) for file F , where W corresponds to access rights write, read, and
execute. Suppose also that S is aimed at granting subject S′ permission to read
and to execute (but not to write) the file. To this aim, S will ask for intervention
of the password capability manager MF of file F . MF will transform password ca-
pability P into a new password capability P ′ = (F,W ′) for file F , where password
W ′ corresponds to access rights read and execute. If no such password exists, it is
generated. Alternatively, MF will return two password capabilities, one for access
right read and one for access right execute. This is an undue complication of the
whole password management process.

Of course, generalized password capabilities featuring several passwords are an
effective solution to the problem of access right reduction. Let G = (F,Wwrite,
Wread, Wexecute) be a generalized password capability for file F , where Wwrite,
Wread and Wexecute are the passwords for access rights write, read and execute,
respectively. Subject S that holds G can apply reduction to eliminate access right
write simply by removing password Wwrite from G to obtain generalized password
capability G′ = (F, Wread, Wexecute).

In this paper, we approach the problem of access right representation in pass-
word capabilities. We propose a new model of password capability, which we call
extended password capability, or e-capability for short. In this model:

– An e-capability can specify any combination of access rights;
– The size of an e-capability is comparable to that of a traditional password

capability featuring a single password, and is independent of the number of
access rights granted by this e-capability;

– A subject that holds a given e-capability is in a position to reduce this e-
capability to eliminate one or more access rights. The subject can carry out
this action autonomously; no intervention is required of a form of password
capability manager.

The rest of this paper is organized as follows. Sect. 2 introduces the e-capability
model with special reference to the relation existing, in an e-capability referencing
a given object, between the password and an owner password generated when the



Access right management 5

object is created. E-capability validation and reduction are analyzed in depth.
Sect. 3 extends the e-capability concept by classes aimed at supporting the review
of access permissions, so that the owner of a given object is given the ability to
revoke the validity of the e-capabilities referencing this object. Sect. 4 discusses
the motivations for the e-capability model with respect to a number of important
viewpoints, which include the fraudulent forging of e-capabilities, the properties
of the proposed form of access right revocation, e-capability reduction, and the
memory requirements for password storage. Sect. 5 gives concluding remarks.

2 The e-capability model

Let T be an object type, let ar0, ar1, . . . , arn−1 be the access rights defined by T ,
and let B be an object of type T . An e-capability E is a triple (B,W,R), where
W is a password and R is the reduction field. The reduction field encodes the
access rights granted by E; as will be made clear later, this field also specifies the
relation existing between password W and a password, called the owner password
and denoted by Wown, which is associated with B and corresponds to full access
rights.

Reduction field R is partitioned into n− 1 reduction subfields, r0, r1, . . . , rn−2,
of size n bits. In a reduction subfield, the i-th bit corresponds to access right
ari. The access rights granted by e-capability E are expressed by quantity AR =
r0∧ r1∧ . . .∧ rn−2, i.e. the result of the logical AND of all the reduction subfields;
if the i-th bit is set in AR, then E includes access right ari. This means that,
for each bit that is cleared in a given reduction subfield, this subfield eliminates
the corresponding access right from the result of the preceding subfields, and
consequently, from E. A reduction subfield of all 1’s is called a flat subfield and
eliminates no access right at all. All flat subfields are always placed at the highest
order numbers, in the most significant positions of the R field. If all subfields are
flat, i.e. R = 11 . . . 1, we have a situation of no reduction at all. In this situation,
e-capability E grants full access rights, and W = Wown.

In our example of the File type, we have four access rights, so n = 4. An e-
capability E = (F,W,R) referencing file F with password W features a reduction
field R of size 12 bits, which is partitioned into three subfields of size 4 bits
(Fig. 1). In each subfield, let us suppose that bit 0 corresponds to access right
delete, and bits 1 to 3 correspond to access rights write (w), read (r) and execute
(e), respectively. If the reduction field is configured as is illustrated in Fig. 1a,
the least significant bit of subfield r0 is cleared to indicate that access right delete
is lacking from E; this is similar to the meaning of subfield r1 for access rights
write and read. The remaining subfield r2 is flat, so it produces no access right
reduction. We may conclude that e-capability E grants access right execute on
file F . In the configuration of Fig. 1b, bits 0 and 1 of subfield r0 are cleared to
indicate that access rights delete and write are lacking from E; this is similar to
the meaning of subfield r1 for access right read. The remaining subfield r2 is flat.
In this case, too, the resulting e-capability grants access right execute on F . As
will be illustrated shortly, different configurations of the reduction field always
correspond to different passwords, even if these configurations specify the same
set of access rights. In fact, we may have several passwords for the same set of
access rights. However, only one password, the owner password Wown, needs to



6 L. Lopriore

Fig. 1 Two different configurations of the reduction field R, both corresponding to access
right execute. The bits in each subfield, from bit 0 to bit 3, correspond to access right delete
(d), write (w), read (r) and execute (e), respectively.

be permanently stored with the object, so the memory requirements for password
storage are low.

2.1 Password derivation

Function h is one-way if it is easy to compute but hard to invert [12]. This means
that given a value x, it is computationally easy to compute h(x), but given a value
y, it is computationally unfeasible to determine a value x such that y = h(x). The
design and implementation efforts connected with the construction of a one-way
funciton can be kept to a minimum starting from a good cryptosystem [17], [21].
For instance, a publicly known constant c is encrypted using x as the key, i.e., if Ex

is a symmetric cypher, we have h(x) = Ex(c) [23]. Function hr(x) is a parametric
one-way function if, given a value y and a parameter r, it is computationally
unfeasible to determine a value x such that y = hr(x) [26]. Thus, a parametric
one-way function is a family of one-way functions, one function for each value of
parameter r, and can be implemented as hr(x) = Ex(r) [23]. In the following, we
shall take advantage of a parametric one-way function in password derivation.

When subject S creates an object B, the owner password Wown of this object is
generated at random. Then, e-capability Eown = (B,Wown, 11 . . . 1) referencing B
is assembled and is returned to S. Eown is called the owner e-capability. In Eown,
all the subfields of the reduction field are flat, and the password is the owner
password. Thus, Eown grants full access rights. All the other passwords of B are
derived from Wown by taking advantage of a password derivation mechanism based
on the iterated application of a parametric one-way function hr(W ), which we call
the password generation function. The parameter of h is a reduction subfield, and
the argument is a password.

In detail, let us refer to e-capability E = (B,W,R), and let r0, r1, . . . , rn−2

be the subfields of reduction field R. Password W corresponding to R is obtained
iteratively, by evaluating Wi+1 = hri(Wi), i = 0, 1, . . . , n − 2, where W0 = Wown

and W = Wn−1. If one or more reduction subfields are flat, the iterations terminate



Access right management 7

at the subfield that precedes the first flat subfield (it should be recalled that all
flat subfields are always placed in the most significant positions of the reduction
field). Thus, password W is the last of a sequence of passwords that starts from
owner password Wown. Each password in this sequence corresponds to a set of
access rights smaller than that associated with the previous password.

In the example of Fig. 1a, password W is obtained starting from Wown. Reduc-
tion subfield r0 is 1110 (14 in decimal notation), thus we have W1 = h14(Wown).
In the next step, reduction subfield r1 is 1001, thus we have W2 = h9(W1). Re-
duction subfield r2 is flat; this terminates the iterations, and W = W2. In the
example of Fig. 1b, we start from Wown, then we have W1 = h12(Wown) and
finally, W = W2 = h11(W1). In both cases, the resulting password corresponds
to access right execute. Thus we have two different passwords for the same access
right.

2.2 E-capability validation

In our system, all authentication and authorization decisions are taken locally to
the protected object being accessed [10]. In detail, when e-capability E = (B,W,R)
is presented to object B to execute operation op, execution includes the actions
necessary to validate E. The e-capability is valid if password W matches the
password that is obtained by applying password generation function h iteratively,
starting from the owner password Wown of B and using the reduction subfields
that are not flat. Execution of op is as follows:

1. The access rights granted by E on B are evaluated. To this aim, quantity
AR = r0 ∧ r1 ∧ . . . ∧ rn−2 is computed, where ri denotes the i-th subfield of
reduction field R.

2. If AR does not include the access rights that are necessary to execute operation
op, an exception of violated protection is raised, and execution of op terminates
with failure; otherwise

3. The subfields r0, r1, . . . , rn−2 of reduction field R are used to evaluate password
W ′ corresponding to R, by applying password generation function h iteratively,
starting from the owner password Wown of B, as follows: W0 = Wown, W1 =
hr0(W0), W2 = hr1(W1), . . . etc. The sequence terminates at the reduction
subfield, say ri, that precedes the first flat subfield, and in this case W ′ = Wi+1;
if no reduction subfield is flat, the sequence terminates at the last reduction
subfield rn−2, when W ′ = Wn−1.

4. If W ′ 6= W , i.e. the password evaluated at step 3 does not match the password
in e-capability E, an exception of violated protection is raised, and execution
of op terminates with failure; otherwise

5. The actions involved in the execution of op are carried out.

2.3 E-capability reduction

Let us consider a subject S that holds e-capability E = (B,W,R) for object B of
type T , where W is a password, and R is a reduction field. Let ar0, ar1, . . . , arn−1

be the access rights defined by T , let r0, r1, . . . , rn−2 be the subfields of R, and



8 L. Lopriore

let AR be the set of access rights specified by E, which is given by relation AR =
r0 ∧ r1 ∧ . . . ∧ rn−2. Subject S can grant these access rights to a different subject
S′ by transferring a copy of E to S′. Subject S may even grant a reduced set of
access rights to S′. To this aim, S will forge a new e-capability E′ = (B,W ′, R′)
corresponding to this reduced set. An action of this type is called an e-capability
reduction.

In detail, access right ari can be eliminated from E by carrying out the actions
that follow:

1. Quantity R′ is obtained by modifying the first subfield of R that is flat, say
subfield r∗, to clear the i-th bit, which corresponds to ari;

2. Quantity W ′ is obtained by applying password generation function h, i.e. W ′ =
hr∗(W ).

At step 1, an e-capability can be reduced only if it specifies at least two access
rights, and consequently, it contains at least one flat reduction subfield; in fact, we
have n access rights and n− 1 reduction subfields. Of course, reduction may well
involve more than a single access right, and in this case more bits will be cleared
in subfield r∗, i.e. the bits corresponding to each of these access rights.

3 Access right revocation

As seen in Sect. 1, a salient feature of capability-based protection is simplicity in
capability transmission between subjects. If e-capabilities are used, this feature is
made even more evident by the fact that e-capabilities do not need to be segregated
in memory. It follows that access rights tend to spread throughout the system. A
related problem is access right revocation; a subject that holds the delete access
right for a given object should be granted the ability to revoke the validity of
the e-capabilities referencing this object, and the effects of the revocation should
extend system-wide.

3.1 Classes

We shall now extend the e-capability model, presented in the foregoing sections,
to introduce effective support to e-capability revocation. As seen in Sect. 2 and
illustrated in Fig. 1, different e-capabilities may co-exist in memory, which grant
the same set of access rights and originate from different sequences of reduction
subfields. The extension we are introducing now is based on the concept of e-
capability class: different e-capabilities can originate from the same sequence of
reduction subfields, if these e-capabilities belong to different classes.

Let us refer to the generic e-capability E = (B,W,R,C). In this new form, we
have a class field, which is denoted by C. As seen in Sect. 2, the set AR of the
access rights granted by E is expressed by relation AR = r0 ∧ r1 ∧ . . . ∧ rn−2, i.e.
the logical AND of all the subfields of reduction field R. These access rights are
nominal, and can be revoked. The class field is used to determine the set EAR
of the effective access rights corresponding to the nominal access rights specified
by AR, as follows. Each object maintains a table, called the revocation table RT ,
featuring one entry for each value of the class field. The size of an entry is equal to



Access right management 9

Fig. 2 Revocation table of an object of the File type, and different configurations of the R
and C fields.

the size of a reduction subfield, i.e. n bits. Entry RTc, corresponding to a specific
value c of the class field C, specifies a possible revocation of access rights, as results
from relation EAR = AR∧RTc. This means, in particular, that if RTc contains all
0’s, e-capability E is completely revoked (it cannot be used for successful object
access). A constraint for RT is that RT0 always contains all 1’s. This means that
an e-capability in class 0 (i.e. with C = 0) grants all the access rights in AR (all
the nominal access rights are effective), and cannot be revoked.

With reference to our example of the File type and an object of this type,
Fig. 2 shows the revocation table and two configurations of the reduction and
class fields. Entry RT0 contains all 1’s, and in fact, an e-capability in class 0
cannot be revoked. In entry RT1, two bits are cleared, i.e. bit 0 corresponding to
access right delete, and bit 1 corresponding to access right write; it follows that
these access rights are revoked in all the e-capabilities in class 1. Finally, in entry
RT2 a single bit is asserted, i.e. bit 3 corresponding to access right execute; it
follows that all access rights except execute are revoked in the e-capabilities in
class 2. In the configuration of the reduction and class fields shown in Fig. 2a,
the nominal set of access rights AR, given by relation r0 ∧ r1 ∧ r2, includes access
rights write and read. The value of the class field is 1, and consequently, access
right write is revoked. In the configuration of Fig. 2b, AR includes access rights
read and execute. The value of the class field is 2, and consequently, access right
read is revoked.

3.2 E-capability generation

When subject S creates a new object B, all the entries of the revocation table of
this object are initialized to all 1’s. Subject S receives the owner e-capability Eown

that grants all access rights for B, including the delete access right. The class of
Eown is 0; its composition is Eown = (B,Wown, R, C), where R = (r0, r1, . . . , rn−2),
all ri’s are flat, and C = 0. Eown cannot be revoked, as follows from the fact that,
for class 0, the corresponding entry RT0 of the revocation table always contains
all 1’s. The delete access right in Eown makes it possible to change the contents
of the revocation table.



10 L. Lopriore

Owner e-capability Eown can be used to generate e-capabilities for object B
in different classes. In detail, an e-capability E = (B,W ′, R′, C′) with full access
rights and a class c′ 6= 0 can be generated starting from Eown, as follows:

1. The class field C′ contains quantity c′;
2. All the subfields of reduction field R′ are flat;
3. Quantity W ′ is obtained by using password generation function h, i.e. W ′ =

hc′(Wown).

We wish to remark that both the owner e-capability Eown and the new e-
capability E include full access rights, however Eown is in class 0 and is not subject
to revocation, whereas E is in class c′ 6= 0 and can actually be revoked. Further-
more, e-capability E cannot be used to generate an e-capability in a different class,
as this action requires a knowledge of the owner password Wown, which is only
contained in Eown. As will be shown shortly, this important requisite prevents
actions of e-capability forging.2

3.3 E-capability validation

When a subject presents e-capability E = (B,W,R,C) to object B to execute a
given operation op, execution of op includes the actions necessary for validation
of E. Let c be the class of E, as is specified by the class field C. Execution is as
follows:

1. Quantity EAR = AR ∧RTc is evaluated, as illustrated in Sect. 3.1.
2. If EAR does not include the access rights required by op, execution of op fails;

otherwise
3. The contents c of class field C and subfields r0, r1, . . . , rn−2 of reduction field

R are used to evaluate password W ′ corresponding to C and R, as follows.
First we have W0 = Wown, or, if c 6= 0, W0 = hc(Wown). Then, we apply
password generation function h iteratively, starting from W0 to obtain W ′, as
follows: W1 = hr0(W0), W2 = hr1(W1), . . . etc. The sequence terminates at
the reduction subfield, say ri, that precedes the first flat subfield, and in this
case W ′ = Wi+1; if no reduction subfield is flat, the sequence terminates at
the last subfield rn−2, when W ′ = Wn−1.

4. If W ′ 6= W , i.e. the password evaluated at step 3 does not match the password
in e-capability E, then execution of op fails; otherwise

5. The actions involved in the execution of op are carried out.

2 Suppose that subject S transfers a copy of the owner e-capability referencing object B to
subject S′. As a result, S′ acquires full access rights for B, including the delete access right
that makes it possible to delete the object and to modify its revocation table. In fact, there
is no way to distinguish the original owner e-capability from its copy. Furthermore, S′ will be
able to generate e-capabilities for B in different classes, as it possesses the owner password. If
this should not be the case, S will preventively transform the owner e-capability into a different
class, thereby changing the password.



Access right management 11

4 Discussion

4.1 Forging e-capabilities

Let us consider a malevolent subject S that holds no access permission for object
B, and intends to forge a valid e-capability E = (B,W,R) referencing B (we
shall consider the class field later). To this aim, S generates a value for the R
field that corresponds to the intended set of access rights, e.g. all 1’s for an e-
capability featuring all access rights. Password W will be chosen at random. Of
course, if passwords are large and sparse, the probability to guess a valid password
is vanishingly low, and the e-capability forging attempt is destined to fail.

Let us now suppose that subject S holds a valid e-capability E = (B,W,R) for
object B, and intends to forge a new e-capability E′ = (B,W ′, R′) for B, where
the set of access rights included in E′ is larger than that in E. A result of this type
implies that reduction field R is transformed into reduction field R′ corresponding
to more access rights; this an easy task, which can be accomplished by modifying
of one or more subfields of R into flat subfields, for instance. However, password
generation function h cannot be inverted. It follows that it is not possible to eval-
uate password W ′ corresponding to R′ starting from password W corresponding
to R. Once again, if passwords are large and sparse, a valid password cannot be
guessed, and the access right amplification attempt will fail.

Let us now consider the case that subject S holds a valid e-capability E =
(B,W,R) for object B, and tries to take advantage of this e-capability to forge a
new e-capability E′ = (B′,W,R) for a different object B′ of the same type as B.
Let us suppose that S is aimed at using E′ to access B′ to execute operation op,
in the hypothesis that the access rights corresponding to reduction field R make it
possible to accomplish op successfully. In this hypothesis, the access right check in
the first phase of the validation of E′, as is delineated at step 2 of Sect. 2.2, will be
successful. However, at step 3, password W ′ corresponding to R will be evaluated
starting from the owner password of B′ instead of the owner password of B that
was used to generate W . Consequently, W ′ will not match W , and execution of
op will fail.

Further e-capability forging attempts could be conceived, which involve e-
capability classes. Let us consider a subject S that holds a valid e-capability
E = (B,W,R,C), let c denote the value of the class field C, and suppose that
c corresponds to a form of revocation, i.e. one or more bits are cleared in entry
RTc of the revocation table. Suppose that subject S replaces value c with a new
value c′, corresponding to a class with a less stringent revocation or even no re-
vocation at all (as is always the case for class 0). An action of this type would
imply a password change; the new password W ′ should be the last password of
the sequence W0 = hc′(Wown), W1 = hr0(W0), W2 = hr1(W1), . . . etc., which
involves quantity c′ and all the reduction subfields that are not flat. This requires
a knowledge of owner password Wown, which is only the case if subject S holds
the owner e-capability.



12 L. Lopriore

4.2 E-capability revocation

Several solutions have been proposed in the past to the problem of access privilege
revocation, with reference to classical capability and password-capability envi-
ronments. A propagation graph can be associated with every given capability to
keep track of all copies of this capability [6], [7]. This solution is contrary to a
main requisite of the capability-passing model, i.e. simplicity in access privilege
transmission between subjects. Capabilities can be short-lived, and in this case, a
process that holds a given capability maintains the corresponding access privilege
for a limited time interval [13]. This solution tends to overburden the protection
system with explicit requests to extend the capability lifetime. A resource monitor
can be associated with a protected object to mediate with the subjects that hold
access privileges for this object, so that the object owner may ask for actions of
selective revocation of access privileges [18], [25]. This approach complicates the
structure of the protected objects, and is prone to affect the system performance
adversely, owing to the need of mediated access.

As seen in Sect. 3, in our system, a subject that possesses the owner e-capability
for a given object is in a position to review and revoke the access permissions
granted by the existing e-capabilities for this object, completely or in part, a sin-
gle exception being the owner e-capability itself, which cannot be revoked. To the
aim of revocation, the subject modifies the contents of the revocation table, accord-
ing to the e-capability classes to be actually revoked. Despite its simplicity, this
e-capability revocation mechanism possesses a number of interesting properties.
Revocation is [6]:

– Partial. A subject that possesses the owner e-capability for a given object can
revoke any subset of the access rights for this object. To this aim, the subject
accesses the entry of the revocation table corresponding to the intended class
to clear the bits corresponding to the access rights to be revoked in this class.

– Independent. Different e-capabilities for the same object can be revoked inde-
pendently of each other, if these e-capabilities belong to different classes.

– Transitive. The effects of the revocation of a given e-capability propagate to
all the copies of this e-capability, transitively. In fact, a copy of an e-capability
cannot be distinguished from the original, and e-capabilities have no memory
of successive copy actions.

– Temporal. The effects of an e-capability revocation obtained by modifying an
entry of the revocation table can be reversed simply by restoring the original
value of this entry, through the same mechanism as for revocation.

4.3 E-capability reduction

In Sect. 2.3, we have seen that an e-capability can be transformed into a new
e-capability for a reduced access privilege. This capability reduction process may
well be iterated. In fact, we may have different reduction paths that start from
the owner e-capability to generate different e-capabilities granting the same set of
access rights; these e-capabilities are expressed in terms of different passwords.

Let us refer again to our example of the File type, and let us suppose that
subject S0 creates file F and consequently receives owner e-capability Eown =



Access right management 13

(F,Wown, 1111 1111 1111) (to simplify the presentation, here we ignore the class
field). In Eown, all the reduction subfields are flat to indicate that the password
is the owner password. Let us now suppose that S0 wants to transfer all access
rights for F except the delete access right to subject S1. To this aim, S0 transforms
e-capability Eown into e-capability E1 = (F,W1, 1111 1111 1110). In E1, the value
1110 of reduction subfield r0 indicates that access right delete is lacking. Password
W1 is given by relation W1 = h14(Wown), where h is the password generation
function. Let us now suppose that in turn S1 wants to transfer a single access
right for F , the execute access right, to subject S2. To this aim, S1 reduces e-
capability E1 further, to obtain e-capability E2 = (F,W2, 1111 1001 1110), where
W2 = h9(W1). Now consider the case of a direct transmission of access right execute
from S0 to S2. A single reduction is necessary, which starts from e-capability Eown

to generate e-capability E′2 = (F,W ′2, 1111 1111 1000), where W ′2 = h8(Wown).
Thus, we have two e-capabilities, E2 and E′2, which correspond to the same access
right execute. They originate from different reduction paths, and consequently,
they are expressed in terms of different passwords.

A salient feature of our approach to e-capability reduction is that a subject
S can carry out reduction autonomously. This is in sharp contrast with classical
password capability environments. As seen in Sect. 1.3, in an environment of this
type, the intervention an external entity is necessary, which we have called the
password capability manager. It receives a password capability and returns a new
password capability for the reduced set of access rights.

4.4 Considerations concerning performance

4.4.1 Execution times

Let E = (B,W,R) be an e-capability for object B of type T , let n be the number
of access rights defined by T , and let m be the number of subfields of reduction
field R that are not flat, where m ≤ n − 1. As seen in Sect. 2.2, validation of
E requires m subsequent evaluations of password generation function h, starting
from owner password Wown. The result will be compared with password W in E;
if a match is found, E is valid, and it grants the access rights specified by R. Thus,
the cost Tv in terms of execution time of an e-capability validation is a function
of m and is given by relation Tv = m · Th, where Th denotes the execution time
of h. The maximum cost, corresponding to m = n− 1, is (n− 1) · Th. The cost is
lower if one or more reduction subfields are flat, and the lowest limit corresponds
to a flat R (i.e. all 1’s), when m = 0, W = Wown, and Tv = 0.

As seen in Sect. 2, we may have different reduction fields that correspond
to the same set of access rights. Consequently, we may have different password
validation costs for e-capabilities expressing the same access permission. Consider,
for instance, a situation of four access rights, ar0 to ar3, i.e. n = 4. In this case,
the reduction field consists of three subfields. Examples of reduction fields are
R′ = (1011 1101 1110) and R′′ = (1111 1111 1000), both corresponding to a single
access right, ar3. In R′, no subfield is flat, and m = 3; it follows that validation of
an e-capability featuring this reduction field implies the maximum cost in terms
of execution times, Tv = 3 · Th. In R′′, two subfields are flat, m = 1, and Tv = Th.



14 L. Lopriore

4.4.2 Memory requirements

In a classical password capability environment, a set of passwords is associated
with each object, and each password corresponds to an access permission defined
in terms of a subset of all access rights. If a password is necessary that corresponds
to a given access permission, and this password is not available, it is generated [1],
[2]. Thus, the number of passwords associated with each given object tends to be
high.

In contrast, in our e-capability environment, a single password, the owner
password, is permanently stored in memory for each given object. Every other
password is evaluated dynamically, when an e-capability is generated by reduction,
or is validated. In fact, e-capability reduction processes that originate from the
owner password can generate e-capabilities for all possible combinations of access
rights.

As seen in Sect. 4.3, we may have two or more passwords that correspond to
the same set of access rights. Situations of this type can occur, in particular, as a
consequence of independent reduction activities, carried out by different subjects.
No memory cost is associated with these multiple passwords, which in fact are not
stored in memory permanently, but are evaluated dynamically, as part of actions
of e-capability validation.

A final consideration is relevant to the memory requirements for capability
storage. For 64-bit object identifiers and 128-bit passwords, the size of a classi-
cal password capability is 24 bytes. In an e-capability, for four access rights, the
reduction field consists of three subfields of size 4 bits. A 4-bit class field makes
it possible to define up to 16 different classes, which allow an accurate control
over password review and revocation. In a configuration of this type, the size of
an e-capability is 26 bytes. We may conclude that the memory size increase for
storage of an e-capability with respect to a classical password capability is a neg-
ligible fraction of the total. Conversely, as seen above, we have noticeable memory
space savings for password storage, and this is especially true if we are aimed at
expressing several different access permissions. For instance, permanent storage of
15 passwords is necessary in a classical password capability system for a complete
coverage of all possible combinations of four access rights; in contrast, a single
password, i.e. the owner password, is sufficient in our e-capability environment.

5 Concluding remarks

We have considered an important protection problem, i.e. to identify the objects
that each subject can access, and the operations that the subject can carry out
on these objects. We have proposed a new model of password capability, called
e-capability. In this model, an e-capability for a given object has the form of a
password capability, i.e. an object name and a password, extended to contain a
reduction field and a class field. The reduction field specifies the relation existing
between the password and an owner password, generated when the object is cre-
ated. This relation is expressed in terms of access rights. The class field is used
to link each given password with a class, to the aim of the review and revocation
of access permissions. The following is a summary of the main results we have
obtained:



Access right management 15

– A subject that holds a given e-capability is in a position to generate new e-
capabilities for subsets of the access rights. This capability reduction process
can be iterated to eliminate more access rights.

– A subject that holds an e-capability defined in terms of the owner password
of a given object is in a position to revoke the access permissions granted by
every other e-capability referencing this object, completely or in part. The e-
capability revocation mechanism is based on e-capability classes. Revocation
results to possess a number of interesting properties; it is partial, independent,
transitive and temporal.

– If owner passwords are large, sparse and chosen at random, it is impossible for
a malevolent subject to forge new e-capabilities. Any attempt to amplify the
access permission granted by a given e-capability by adding new access rights,
or to change the e-capability class, is destined to fail.

– The size of an e-capability is comparable to that of a traditional password
capability.

– The number of passwords that need to be stored in memory permanently is
kept to a minimum, and is equal to a single password, the owner password,
for each object. Every other password is evaluated dynamically, as part of the
actions involved in password validation and reduction.

Acknowledgements The author thanks the anonymous reviewers for their insightful com-
ments and constructive suggestions.

This work has been partially supported by the TENACE PRIN Project (Grant no.
20103P34XC 008) funded by the Italian Ministry of Education, University and Research.

References

1. M. Anderson, R. D. Pose, and C. S. Wallace. A password-capability system. The Computer
Journal, 29(1):1–8, February 1986.

2. M. D. Castro, R. D. Pose, and C. Kopp. Password-capabilities and the Walnut kernel.
The Computer Journal, 51(5):595–607, 2008.

3. J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey. Lightweight shared objects
in a 64-bit operating system. ACM SIGPLAN Notices, 27(10):397–413, October 1992.

4. M. de Vivo, G. O. de Vivo, and L. Gonzalez. A brief essay on capabilities. ACM SIGPLAN
Notices, 30(7):29–36, July 1995.

5. D. M. England. Capability concept mechanism and structure in System 250. In Proceedings
of the International Workshop on Protection in Operating Systems, pages 63–82, IRIA,
Paris, France, 1974.

6. V. D. Gligor. Review and revocation of access privileges distributed through capabilities.
IEEE Transactions on Software Engineering, SE-5(6):575–586, November 1979.

7. D. A. Grove, T. C. Murray, C. A. Owen, C. J. North, J. A. Jones, M. R. Beaumont,
and B. D. Hopkin. An overview of the Annex system. In Proceedings of the Twenty-
Third Annual Computer Security Applications Conference, pages 341–352, Miami Beach,
Florida, USA, December 2007. IEEE.

8. G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The Mungi single-
address-space operating system. Software – Practice and Experience, 28(9):901–928, July
1998.

9. M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM System/38 support for capability-
based addressing. In Proceedings of the 8th Annual Symposium on Computer Architecture,
pages 341–348, Minneapolis, Minnesota, USA, May 1981. IEEE Computer Society Press.

10. J. King-Lacroix and A. Martin. BottleCap: a credential manager for capability systems. In
Proceedings of the Seventh ACM Workshop on Scalable Trusted Computing, pages 45–54,
Raleigh, NC, USA, October 2012. ACM.



16 L. Lopriore

11. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, et al. seL4: formal verification of an OS kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems Principles, pages
207–220, Big Sky, MT, USA, October 2009. ACM.

12. L. Lamport. Password authentication with insecure communication. Communications of
the ACM, 24(11):770–772, November 1981.

13. A. W. Leung and E. L. Miller. Scalable security for large, high performance storage sys-
tems. In Proceedings of the Second ACM Workshop on Storage Security and Survivability,
pages 29–40, Alexandria, Virginia, USA, October 2006. ACM.

14. H. M. Levy. Capability-Based Computer Systems. Digital Press, Bedford, Mass., USA,
1984.

15. L. Lopriore. Encrypted pointers in protection system design. The Computer Journal,
55(4):497–507, April 2012.

16. L. Lopriore. Password capabilities revisited. The Computer Journal, 58(4):782–791, April
2015.

17. R. C. Merkle. One way hash functions and DES. In Proceedings of the 9th Annual
International Cryptology Conference – Advances in Cryptology, pages 428–446, Santa
Barbara, California, USA, August 1989. Springer.

18. M. S. Miller, K.-P. Yee, and J. Shapiro. Capability myths demolished.
Technical report, Systems Research Laboratory, Johns Hopkins University.
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf, 2003.

19. P. G. Neumann and R. J. Feiertag. PSOS revisited. In Proceedings of the 19th An-
nual Computer Security Applications Conference, pages 208–216, Las Vegas, NV, USA,
December 2003. IEEE.

20. R. Pose. Password-capabilities: their evolution from the Password-Capability System into
Walnut and beyond. In Proceedings of the Sixth Australasian Computer Systems Archi-
tecture Conference, pages 105–113, Gold Coast, Australia, January 2001. IEEE.

21. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: a syn-
thetic approach. In Proceedings of the 13th Annual International Cryptology Conference,
pages 368–378, Santa Barbara, California, USA, August 1993. Springer.

22. P. Samarati and S. De Capitani Di Vimercati. Access control: policies, models, and mech-
anisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and
Design, pages 137–196. Springer, Berlin, Heidelberg, 2001.

23. R. S. Sandhu. Cryptographic implementation of a tree hierarchy for access control. Infor-
mation Processing Letters, 27(2):95–98, 1988.

24. L. Seitz, J.-M. Pierson, and L. Brunie. Key management for encrypted data storage in
distributed systems. In Proceedings of the Second IEEE International Security in Storage
Workshop, pages 20–30, Washington, DC, USA, October 2003. IEEE.

25. J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system. ACM
SIGOPS Operating Systems Review, 34(2):170–185, 2000.

26. W. Trappe, J. Song, R. Poovendran, and K. J. Liu. Key management and distribution for
secure multimedia multicast. IEEE Transactions on Multimedia, 5(4):544–557, 2003.

27. M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer and its Operating
System. North-Holland, New York, 1979.


