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Abstract 

Augmentative and Alternative Communication (AAC) embodies all methods of 
communication, serving to augment or function as an alternative to speech. Maltese 
children having complex communication needs use various AAC devices on a daily 
basis. Their conversation skills are mainly limited by two key factors. The fact that 
AAC users communicate up to 20 times slower than those who use regular speech is 
the first of these two limiting factors. The second one is the unavailability of an AAC 
app for the Maltese language. This paper presents the development of an AAC app 
targeted for the Maltese language, which provides an intelligent word suggestion 
mechanism to improve AAC rates. The app is based on a trigram language model 
which is able to predict the subsequent word by considering the previous two. 
The model was trained by means of a specifically created corpus and uses the 
Interpolated Kneser-Ney Smoothing technique to correctly resolve contexts which 
were not observed during training. The app enables users to retrain and update the 
language model, such that it may provide additional personalised word suggestions. 
The app was evaluated by a number of clinicians and educators who regularly work 
with AAC users. They remarked that it will be potentially helpful in aiding Maltese 
children during intervention sessions in view of its effective features. The underlying 
language model features an average perplexity of 90.47 when tested with non-similar 
training and test data and an average perplexity of 3.61 when evaluated for highly 
similar training and test data. The low perplexity values suggest that the language 
model employed in this app is remarkably accurate and is effectively performing as 
other trigram language models reported in the literature.
 
Keywords: AAC, Natural Language Processing, n-grams, Statistical Language 
Modelling, App Development

Introduction 
 
For most people, the process of converting thoughts into words and making the 
necessary muscle movements to speak them out loud occurs naturally. However, 
there are some individuals who are either unable to speak or whose speech in 
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unintelligible. This creates the need for an AAC system. AAC is the term used to refer 
to any method of communication serving to augment or as an alternative to speech 
(Glennen and DeCoste, 1997). Common examples of AAC systems include unaided 
systems which do not require any equipment, such as gestures and facial expressions, 
and aided systems including communication boards and speech generating devices 
(SGD) containing pictograms that correspond to different words (Agius and Vance, 
2015; Borg et al., 2015). Aided AAC systems are in turn categorised into low and high 
tech systems. Low tech AAC systems enable the user to communicate by pointing to 
pictures on a picture board or in a communication book, as shown in Figure 1a, while 
high technology systems refer to SGDs which produce spoken words in response to 
the user touching the computer screen (Figure 1b). 

The main limitation of AAC systems is the communication rate. While most 
people communicate their thoughts effortlessly using speech, AAC users must 
type letters in a text box or choose pictures from a display to construct sentences. 
In practice, AAC users have communication rates which are below 10 words per 
minute, compared to speech rates which may range between 130 and 200 words 
per minute (Trnka et al., 2009). Communication rates in high tech AAC systems can, 
however, be improved significantly by implementing next word prediction (Trnka et 
al., 2009; Garay-Vitoria and Abascal, 2006; Langer and Hickey, 1999).

Figure 1. Low technology and high technology AAC systems.

The Access to Communication and Technology Unit (ACTU) is an agency 
responsible for assessing children for AAC solutions and providing AAC interventions 
in Malta (Agius and Vance, 2015). Emerging studies show that children require more 
effort to use a low technology AAC system as opposed to a smart SGD such as a tablet 
(Borg et al., 2015). Therefore, in order to facilitate AAC interventions, the agency also 
recommends high technology AAC systems. Unfortunately, AAC technologies are still 
very limited in Malta, as no AAC app is currently available for the Maltese language. 
As an alternative, the ACTU customises existing AAC apps which were designed for 
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the English language. This is inadequate, since the structure of the English language 
is very dissimilar to that of Maltese. In addition, this approach is limited, as only very 
basic Maltese structures can be created. Furthermore, customisation to the Maltese 
language is extremely time consuming. Due to these issues, Maltese children have, 
currently, no other option but to use the English language for communication 
purposes. The aim of this project is to develop a mobile app (MaltAAC), with the 
intention of breaking the barrier between the Maltese language and high tech AAC 
systems. The app was developed to:
i) 	 allow Maltese children with speech, motor, or cognitive impairments to 

communicate in their native language;
ii) 	 reduce the amount of effort they require to communicate their message by 

improving their communication rates when making use of AAC.

The app features a user interface (UI) which is similar to that of most high 
technology AAC systems, and an initial dictionary of around 400  Maltese words 
which are commonly used by children to express their needs. The central UI 
component is the image grid, which may display categories, words, or predictions 
at any point in the life-cycle of the app (Figure 2). The app also includes a smoothed 
trigram language model which generates a list of the most probable next word each 
time the user selects a new word, thus improving a child’s communication rate and 
reducing the amount of effort required to exchange information. MaltAAC includes 
a mechanism which enables the user to add new words, delete unused words, 
change images and sounds, change the category to which a particular word pertains 
or change the word itself.

Figure 2. Central user interface of the developed AAC.

A search icon is available on the action bar at the top of the screen. When this 
icon is tapped, the search bar is expanded and the on-screen keyboard is displayed 
to the user. One can search for words using the keyboard, and word suggestions are 
shown based on the characters which have already been typed. MaltAAC provides 
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the option to set a security pin. If this pin is set, then an incorrect pin entry would 
deny access to settings and certain features of the app, such as profile backup/
restore, screen un/pinning, and updating predictions (Abela, 2018).

Background 

Natural Language Processing (NLP) is a branch of Artificial Intelligence in which 
natural languages are studied from a computing perspective to enable human 
beings to have flowing language interactions with computers (Kumar, 2011). Next 
word prediction in NLP is concerned with predicting the next word in a sentence 
given a sequence of words. This can be achieved by making use of a statistical 
language model which estimates the probabilities of all the possible words that 
can follow a given context. In next word prediction applications, training a language 
model involves using an algorithm to calculate next word probabilities based on 
what is observed in the training data (Jurafsky and Martin, 2009). The collection of 
sentences on which a language model is trained is called the training corpus, which 
is a collection of written words that are gathered based on specific criteria (Manning 
and Schütze, 1999). In order for the language model to provide satisfactory results, 
this collection of sentences should be taken from the same genre of words which is 
likely to be encountered in the NLP application (Jurafsky and Martin, 2009). In this 
work, a new corpus was created to train the language model on Maltese sentences 
which are commonly used by children to express their needs, thus maximising the 
accuracy of the word suggestions provided by the app.

Rosenfeld (2000) surveyed the various language models that can be used for 
word prediction applications, namely the n-gram language model, the context-
free grammar model, decision tree models and maximum entropy models, among 
others. Subsequently, Goodman (2001) compared the accuracy of these models and 
found that the n-gram language model has the best performance. While some of the 
other models result in more accurate predictions than the n-gram model, this comes 
at the expense of much greater time and space complexity, making them impractical 
to use in mobile applications. An n-gram model is a type of probabilistic language 
model for predicting the next item in a sequence in the form of an 
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applications, namely the n-gram language model, the context-free grammar model, decision 
tree models and maximum entropy models, among others. Subsequently, Goodman (2001) 
compared the accuracy of these models and found that the n-gram language model has the 
best performance. While some of the other models result in more accurate predictions than 
the n-gram model, this comes at the expense of much greater time and space complexity, 
making them impractical to use in mobile applications. An n-gram model is a type of 
probabilistic language model for predicting the next item in a sequence in the form of an 
    order Markov model. Two benefits of n-gram models are simplicity and scalability – 
with a larger order n, a model can store more context with a well-understood space–time 
trade-off, enabling an efficient scale up. In practice, it is not necessary to consider the entire 
sequence of words to determine the probability of the next word. Thus, in an n-gram 
language model, the probability of the next word is approximated by limiting the context for 
conditional probability to the preceding     words (Jurafsky and Martin, 2009). The 
probability of each n-gram (sequence of n words) is calculated during the language model 
training. The simplest method to calculate n-gram probabilities is the Maximum Likelihood 
Estimation (MLE) (Abela, 2018). 
 
A language model trained using MLE incorrectly assigns a probability of zero to sequences 
of words which are never observed during training. In order to improve the probabilities of n-
grams having zero or low-frequency counts in the training corpus, smoothing must be 
implemented when training the model. In statistical language modelling, smoothing refers to 
adjusting the MLE probabilities to produce more accurate probabilities for word sequences 
which rarely or never occur in the training corpus (Chen and Goodman, 1999). This is 
achieved by reducing some of the probability mass from n-grams with large counts in the 
training corpus and redistributing it to n-grams with zero or low-frequency counts, resulting 
in a smoother probability distribution. This is known as discounting (Jurafsky and Martin, 
2009; Manning and Schütze, 1999). Various smoothing methods have been proposed to 
improve the accuracy of n-gram probabilities, namely Laplace smoothing, Good-Turing 
discounting, Jelinek-Mercer smoothing, Katz smoothing, Witten-Bell smoothing, absolute 
discounting, and Kneser-Ney smoothing. These smoothing techniques have been compared 
and evaluated by Chen and Goodman (1999) and Kneser-Ney smoothing was found to be the 
most accurate method. This is why Kneser-Ney smoothing was adopted in this 
work (Abela, 2018). 
 
Design Considerations  
 
The top two mobile operating systems for smart devices are Android and iOS, with market 
shares greater than 70% and 25% respectively (StatCounter, 2018). In order to create a 
widely accessible AAC tool, the proposed app was targeted for Android, since it has the 
largest mobile operating system market share and since Android devices are generally 
cheaper than their Apple counterparts. This AAC app was developed using a combination of 
Java and Extensible Markup Language (XML). XML was used to create the outline of the 
app’s graphical user interface (GUI) and Java was used to create the app’s functional 
components and make programmatic changes to the GUI. Java was chosen as the 
programming language since it is an official language of the Android platform and therefore 
all Android operating system features can be accessed through application programming 
interfaces (APIs) written in Java (AndroidDevelopers, 2018a). 
 
Storage 
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A language model trained using MLE incorrectly assigns a probability of zero to 
sequences of words which are never observed during training. In order to improve 
the probabilities of n-grams having zero or low-frequency counts in the training 
corpus, smoothing must be implemented when training the model. In statistical 
language modelling, smoothing refers to adjusting the MLE probabilities to produce 
more accurate probabilities for word sequences which rarely or never occur in the 
training corpus (Chen and Goodman, 1999). This is achieved by reducing some 
of the probability mass from n-grams with large counts in the training corpus 
and redistributing it to n-grams with zero or low-frequency counts, resulting in 
a smoother probability distribution. This is known as discounting (Jurafsky and 
Martin, 2009; Manning and Schütze, 1999). Various smoothing methods have 
been proposed to improve the accuracy of n-gram probabilities, namely Laplace 
smoothing, Good-Turing discounting, Jelinek-Mercer smoothing, Katz smoothing, 
Witten-Bell smoothing, absolute discounting, and Kneser-Ney smoothing. These 
smoothing techniques have been compared and evaluated by Chen and Goodman 
(1999) and Kneser-Ney smoothing was found to be the most accurate method. This 
is why Kneser-Ney smoothing was adopted in this work (Abela, 2018).

Design Considerations 

The top two mobile operating systems for smart devices are Android and iOS, with 
market shares greater than 70% and 25% respectively (StatCounter, 2018). In order 
to create a widely accessible AAC tool, the proposed app was targeted for Android, 
since it has the largest mobile operating system market share and since Android 
devices are generally cheaper than their Apple counterparts. This AAC app was 
developed using a combination of Java and Extensible Markup Language (XML). 
XML was used to create the outline of the app’s graphical user interface (GUI) and 
Java was used to create the app’s functional components and make programmatic 
changes to the GUI. Java was chosen as the programming language since it is an 
official language of the Android platform and therefore all Android operating system 
features can be accessed through application programming interfaces (APIs) written 
in Java (AndroidDevelopers, 2018a).

Storage

Database Selection 

The need for a storage method that can archive categories and words together 
with their relationship was identified. An intuitive way to model and store related 
pieces of information is to use a relational database (Halpin and Morgan, 2008). 
Since the app is targeted for mobile devices, a set of criteria had to be met when 
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deciding on which database to use. The database had to provide a lightweight 
solution, since storage space is limited on most mobile devices. Moreover, it had to 
provide server-less functionality, since internet connectivity is not always available. 
Lastly, the selected database had to provide a very fast access, with very low 
memory and power consumption. Several database options exist for the Android 
operating system, namely BerkeleyDB, CouchbaseLite, LevelDB, ORMLite, Realm, 
and SQLite. Most of these databases fulfil the specified criteria, but SQLite was the 
most ideal solution for this work since it is the only database which is fully supported 
by Android (AndroidDevelopers, 2018b).

Storage of Media Files

Initially, storing media files as binary large objects (BLOBs) in the database 
looked promising, since it was the best way to keep the words, images and sounds 
consolidated in one structure  (Shapiro, 1999). However, during the testing phase 
of the app, it became evident that this approach had to process excessively large 
amounts of data, resulting in slower response times. Indeed, Shapiro (1999) found 
that the query response time is inversely proportional to the size of the database. To 
improve the app’s performance and usability, the image and audio files were stored 
in the app folder and accessed directly from the internal storage. As a result, query 
response times became considerably shorter and independent of the image and 
audio file sizes.

Storage of User Preferences

While storing user preferences as records in a relational database was possible, 
it was more feasible to use the SharedPreferences interface from the Android 
software development kit (SDK). Primarily, storing or retrieving a user preference 
can be achieved in a simpler way by calling the required method provided by the 
SharedPreferences interface, as opposed to constructing structured query language 
(SQL) queries. Secondly, the SharedPreferences interface works in tandem with the 
PreferenceActivity class from the Android SDK. By inheriting this class, it was possible 
to create an activity which displays a hierarchy of preferences that can be set by 
the user. These preferences are stored as key-value pairs of primitive data types 
(Wei, 2012) and are used to determine the app’s behaviour in different scenarios, 
according to the user’s preference.
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Performance Considerations

Multithreading

Accessing a file from internal storage is a rather slow operation compared to, 
say, fetching a message from a String variable and displaying it on screen, since 
secondary storage has a much slower access speed than main memory (Hamacher 
et al., 2012). If such a lengthy operation were to be carried out on the same thread 
which is responsible for generating the UI (known as the main thread or UI thread), 
then any other operations would be blocked until it completes, hence causing the UI 
to hang. Thus, lengthy operations are carried out on separate threads.

Foreground Services

Users can continue using their device while backing up or restoring a profile, since 
the cloud backup and restore operations were implemented as foreground services 
(MacLean, Komatineni and Allen, 2015). MaltAAC gives a foreground notification 
while uploading the backup file to the cloud, which displays the progress as a 
percentage, and provides the option to cancel the upload. Similarly, a foreground 
notification displaying progress is shown while restoring a user profile.

Data Structure Selection

An appropriate data structure was required to store n-grams in main memory 
together with the occurrence frequency of each n-gram in the training corpus. 
The main criteria for selecting the data structure were insertion time, searching 
time and memory consumption. Robenek, Platos and Snasel (2013) compared 
the performance of seven data structures for indexing n-grams, and the HashMap 
data structure was found to be the fastest solution in terms of insertion time and 
searching time. The HashMap data structure ranked fourth in terms of memory 
consumption, but since training speed was a priority for MaltAAC, the HashMap 
structure was still the most practical option.

Optimal Order of n-gram

Initially, MaltAAC was based on a 5-gram language model that needed an excessively 
long training time. Goodman (2001) tested the performance of n-gram models up 
to an order of 
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a trigram language model instead. 
 
Results and Evaluation 
 
Perplexity 
 
A language model can either be evaluated extrinsically, i.e. embedding the model into the 
application and measuring end-to-end performance, or intrinsically, where the performance of 
the model is measured independently of the application. The most common metric for 
intrinsic evaluation of n-gram models is perplexity (Jurafsky and Martin, 2009). Perplexity is 
used to measure how effectively a language model can predict the next word, where a low 
value indicates a high model accuracy. The calculation of the perplexity of a language model 
for a given test data set was implemented in Java. The program uses the HashMaps 
containing the n-gram probabilities to calculate the conditional probability of each word in 
the test set. The developed language model was trained and tested on 10 different pairs of 
training and on test data sets which were randomly generated from a corpus specifically 
created for this project. An average perplexity of 3.61 was obtained (refer to Table I). 
 
A perplexity value of k suggests that on average, the language model is as uncertain as it 
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Results and Evaluation
 
Perplexity

A language model can either be evaluated extrinsically, i.e. embedding the 
model into the application and measuring end-to-end performance, or intrinsically, 
where the performance of the model is measured independently of the application. 
The most common metric for intrinsic evaluation of n-gram models is perplexity 
(Jurafsky and Martin, 2009). Perplexity is used to measure how effectively a language 
model can predict the next word, where a low value indicates a high model accuracy. 
The calculation of the perplexity of a language model for a given test data set was 
implemented in Java. The program uses the HashMaps containing the n-gram 
probabilities to calculate the conditional probability of each word in the test set. The 
developed language model was trained and tested on 10 different pairs of training 
and on test data sets which were randomly generated from a corpus specifically 
created for this project. An average perplexity of 3.61 was obtained (refer to Table I).

A perplexity value of k suggests that on average, the language model is as 
uncertain as it would be if it were to predict the next word out of k equally probable 
words (Manning and Schütze, 1999). The obtained results were remarkably low due 
to the high similarity between the training and test data sets. Children with complex 
communication needs often tend to use the same simple sentence structure (Binger 
and Light, 2008) and so most sentences formed using MaltAAC will have the same 
syntax as the ones used to train the language model, which is essentially equivalent to 
having identical training and test data sets. Hence, in spite of its artificially low value, 
the resulting average perplexity implies that the language model is able to predict the 
next word in a given sequence by choosing one out of four equally probable words. 
Since the initial dictionary contains 400 distinct words, the language model is capable 
of narrowing the list of possible next words to 1% of the initial dictionary size. This 
performance is quite satisfactory and results in reasonably accurate word predictions.

Test Number Perplexity
1 3.615
2 3.636
3 3.582
4 3.631
5 3.635
6 3.556
7 3.562
8 3.517
9 3.612

10 3.776
Average 3.6122

Table I. The language model’s average perplexity 
for training and test data sets taken 

from the created corpus.
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Table II presents the perplexity results obtained by the language model when trained 
and tested on data sets taken from the same genre, but which were not as similar as 
the training and test data sets generated from the created corpus. The training and 
test data were taken from the same children’s book, so as to maintain the same style 
of vocabulary. An average perplexity value of 90.47 was obtained. 

Book
Number of 

Training Words
Number of 
Test Words Perplexity

Roses and Forget-Me-Nots 1,925 240 76.048

Marjorie’s Three Gifts 3,169 376 90.88

Jack and Jill 47,286 504 77.171

The Lost Prince 7,649 849 89.197

The Secret Garden 11,879 1,409 119.047

Average 90.4686
 

Table II. The language model’s average perplexity for training and test data sets of the same genre.

This is marginally lower than typical perplexity values reported in literature. 
Indeed, with a vocabulary size of 19,979 words, Jurafsky and Martin (2009) obtained 
a perplexity of 109 for a trigram model which was trained on 38 million words taken 
from the Wall Street Journal and tested on 1.5 million words, whereas Kneser and 
Ney (1995) obtained a perplexity of 105.4 for a trigram model which was trained 
and tested on data sets generated from the 30,000 word German Verbmobil 
corpus, with a vocabulary of 2,000 words. The improved perplexity value does 
not necessarily imply that the developed language model is any better than other 
trigram models, but merely suggests that sentences in children’s books are typically 
more uniform and easier to predict than newspaper contents. Nonetheless, the 
obtained perplexity results show that the developed language model can perform 
at least as well as other trigram language models, when trained and tested on data 
sets taken from the same genre.

Book Perplexity
Roses and Forget-Me-Nots 117.716

Marjorie’s Three Gifts 128.060
Jack and Jill 120.720

The Lost Prince 120.792
The Secret Garden 162.704

Average 129.998
Table III. The language model’s 

average perplexity for training and 
test data sets of different genres.
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Table III shows the perplexity results of the developed language model when trained 
on data taken from the technology genre and tested on sentences from children’s 
books. The average perplexity was 43.7% higher than the average perplexity 
acquired for training and test data sets taken from the same genre. This increase in 
perplexity is quite significant and it confirms that the language model’s accuracy is 
highly dependent on the genre of the training and test data sets. Especially when 
compared to the average perplexity value presented in Table  I, this result proves 
that creating a training corpus which was tailor-made for MaltAAC was indeed more 
practical than using generic training data.

Time Complexity

Since MaltAAC provides the option to update the word predictions by retraining 
the language model, training time minimisation was key. However, as the number 
of words in the training corpus increases, so does the number of possible n-grams 
and the number of iterations in each HashMap. In order to assess how the training 
time varies as the number of n-grams increases, the language model was trained on 
different sized data sets obtained from the Gutenberg corpus. The plots presented in 
Figure 3 show that the training time follows a cubic trend when plotted against the 
number of n-grams. A time complexity of 
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when plotted against the number of n-grams. A time complexity of       for the training 
process falls short of being satisfactory. While the number of n-grams in this AAC app may 
increase if the user chooses to add new words and retrain the language model, it is not likely 
to grow to a point where the training time becomes excessively long, since the number of 
words used by children is rather limited. Thus, in contrast to other NLP applications, the 
language model training time is tolerable for the purposes of MaltAAC.  

 for the training process falls short of 
being satisfactory. While the number of n-grams in this AAC app may increase if the 
user chooses to add new words and retrain the language model, it is not likely to grow 
to a point where the training time becomes excessively long, since the number of 
words used by children is rather limited. Thus, in contrast to other NLP applications, 
the language model training time is tolerable for the purposes of MaltAAC. 

App Functionality

White-box testing was useful to identify, debug and solve certain issues such as 
memory leaks, out of memory exceptions caused by the loading of large bitmaps 
and audio files into main memory, security exceptions due to missing permission 
requests, unpredictable UI behaviour, and flawed input control mechanisms. The 
app was given to seven professionals who work with AAC systems on a daily basis for 
black-box testing. Among these professionals were three occupational therapists, 
two speech and language therapists and two learning support educators who 
work at the ACTU. This enabled them to test MaltAAC’s functionality from a user’s 
perspective, identify any bugs which had been overlooked, and determine whether 
the app is suitable for AAC purposes. MaltAAC was tested for a month, after which 
a focus group was then formed to obtain feedback from the testers. The black-box 
testing stage verified that the app satisfies the initial requirements, although there 
is room for improvement. The suggested potential enhancements were taken into 
consideration for integration in future releases of MaltAAC.
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Figure 3. The impact of increasing the number of n-grams on the training time.
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Conclusion

This paper presented the development of an app to provide an AAC solution for 
the Maltese language. MaltAAC features a smoothed trigram language model which 
predicts the next word given the sequence of previously selected words, with the 
aim of improving children’s communication rates while reducing the effort required 
to convey their message. Interpolated Kneser-Ney smoothing was used to train 
the language model and calculate the n‑gram probabilities. The accuracy of the 
developed trigram model was evaluated using the perplexity metric, and the app 
functionality was assessed using white-box and black-box testing. The generated 
word predictions were found to be remarkably accurate, especially when the 
language model was trained on a corpus specifically created for this AAC app.

MaltAAC was tested by specialists who are well acquainted with AAC technologies. 
These specialists commended MaltAAC, saying that it is a very helpful AAC tool. 
One minor limitation of the app is the substandard time complexity of the language 
model’s training process, although its impacts are somewhat insignificant, especially 
for a small vocabulary size. On the whole, this app was completed successfully 
and may greatly improve the quality of AAC interventions for Maltese children. 
Nevertheless, there are still numerous improvements which can be made in future 
releases of MaltAAC, in order to design an even more convenient and complete AAC 
solution for the Maltese language, including an Android text-to-speech engine for 
Maltese.

MaltAAC is a solid step forward towards promoting the use of the Maltese 
language while providing an accessible solution to Maltese children having complex 
communication  needs. In addition to assisting native speakers, MaltAAC can 
potentially be taken a step further and serve as a linguistic first aid to immigrants 
coming over to Malta, in order to facilitate their  communication and integration 
with Maltese citizens. MaltAAC is currently available on the Google Play Store and 
there are plans to initiate the work on an iOS implementation of the app.
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