
1

Development of an Augmentative and Alternative
Communication App for the Maltese Language

Sylvan Abela, Owen Casha, May Agius
owen.casha@um.edu.mt

Abstract

Augmentative and Alternative Communication (AAC) embodies all methods of
communication, serving to augment or function as an alternative to speech. Maltese
children having complex communication needs use various AAC devices on a daily
basis. Their conversation skills are mainly limited by two key factors. The fact that
AAC users communicate up to 20 times slower than those who use regular speech is
the first of these two limiting factors. The second one is the unavailability of an AAC
app for the Maltese language. This paper presents the development of an AAC app
targeted for the Maltese language, which provides an intelligent word suggestion
mechanism to improve AAC rates. The app is based on a trigram language model
which is able to predict the subsequent word by considering the previous two.
The model was trained by means of a specifically created corpus and uses the
Interpolated Kneser-Ney Smoothing technique to correctly resolve contexts which
were not observed during training. The app enables users to retrain and update the
language model, such that it may provide additional personalised word suggestions.
The app was evaluated by a number of clinicians and educators who regularly work
with AAC users. They remarked that it will be potentially helpful in aiding Maltese
children during intervention sessions in view of its effective features. The underlying
language model features an average perplexity of 90.47 when tested with non-similar
training and test data and an average perplexity of 3.61 when evaluated for highly
similar training and test data. The low perplexity values suggest that the language
model employed in this app is remarkably accurate and is effectively performing as
other trigram language models reported in the literature.

Keywords: AAC, Natural Language Processing, n-grams, Statistical Language
Modelling, App Development

Introduction

For most people, the process of converting thoughts into words and making the
necessary muscle movements to speak them out loud occurs naturally. However,
there are some individuals who are either unable to speak or whose speech in

mailto:owen.casha@um.edu.mt

2

unintelligible. This creates the need for an AAC system. AAC is the term used to refer
to any method of communication serving to augment or as an alternative to speech
(Glennen and DeCoste, 1997). Common examples of AAC systems include unaided
systems which do not require any equipment, such as gestures and facial expressions,
and aided systems including communication boards and speech generating devices
(SGD) containing pictograms that correspond to different words (Agius and Vance,
2015; Borg et al., 2015). Aided AAC systems are in turn categorised into low and high
tech systems. Low tech AAC systems enable the user to communicate by pointing to
pictures on a picture board or in a communication book, as shown in Figure 1a, while
high technology systems refer to SGDs which produce spoken words in response to
the user touching the computer screen (Figure 1b).

The main limitation of AAC systems is the communication rate. While most
people communicate their thoughts effortlessly using speech, AAC users must
type letters in a text box or choose pictures from a display to construct sentences.
In practice, AAC users have communication rates which are below 10 words per
minute, compared to speech rates which may range between 130 and 200 words
per minute (Trnka et al., 2009). Communication rates in high tech AAC systems can,
however, be improved significantly by implementing next word prediction (Trnka et
al., 2009; Garay-Vitoria and Abascal, 2006; Langer and Hickey, 1999).

Figure 1. Low technology and high technology AAC systems.

The Access to Communication and Technology Unit (ACTU) is an agency
responsible for assessing children for AAC solutions and providing AAC interventions
in Malta (Agius and Vance, 2015). Emerging studies show that children require more
effort to use a low technology AAC system as opposed to a smart SGD such as a tablet
(Borg et al., 2015). Therefore, in order to facilitate AAC interventions, the agency also
recommends high technology AAC systems. Unfortunately, AAC technologies are still
very limited in Malta, as no AAC app is currently available for the Maltese language.
As an alternative, the ACTU customises existing AAC apps which were designed for

Sylvan Abela, Owen Casha & May Agius

3

the English language. This is inadequate, since the structure of the English language
is very dissimilar to that of Maltese. In addition, this approach is limited, as only very
basic Maltese structures can be created. Furthermore, customisation to the Maltese
language is extremely time consuming. Due to these issues, Maltese children have,
currently, no other option but to use the English language for communication
purposes. The aim of this project is to develop a mobile app (MaltAAC), with the
intention of breaking the barrier between the Maltese language and high tech AAC
systems. The app was developed to:
i) 	 allow Maltese children with speech, motor, or cognitive impairments to

communicate in their native language;
ii) 	 reduce the amount of effort they require to communicate their message by

improving their communication rates when making use of AAC.

The app features a user interface (UI) which is similar to that of most high
technology AAC systems, and an initial dictionary of around 400 Maltese words
which are commonly used by children to express their needs. The central UI
component is the image grid, which may display categories, words, or predictions
at any point in the life-cycle of the app (Figure 2). The app also includes a smoothed
trigram language model which generates a list of the most probable next word each
time the user selects a new word, thus improving a child’s communication rate and
reducing the amount of effort required to exchange information. MaltAAC includes
a mechanism which enables the user to add new words, delete unused words,
change images and sounds, change the category to which a particular word pertains
or change the word itself.

Figure 2. Central user interface of the developed AAC.

A search icon is available on the action bar at the top of the screen. When this
icon is tapped, the search bar is expanded and the on-screen keyboard is displayed
to the user. One can search for words using the keyboard, and word suggestions are
shown based on the characters which have already been typed. MaltAAC provides

Development of an Augmentative and Alternative Communication App for the Maltese Language

4

the option to set a security pin. If this pin is set, then an incorrect pin entry would
deny access to settings and certain features of the app, such as profile backup/
restore, screen un/pinning, and updating predictions (Abela, 2018).

Background

Natural Language Processing (NLP) is a branch of Artificial Intelligence in which
natural languages are studied from a computing perspective to enable human
beings to have flowing language interactions with computers (Kumar, 2011). Next
word prediction in NLP is concerned with predicting the next word in a sentence
given a sequence of words. This can be achieved by making use of a statistical
language model which estimates the probabilities of all the possible words that
can follow a given context. In next word prediction applications, training a language
model involves using an algorithm to calculate next word probabilities based on
what is observed in the training data (Jurafsky and Martin, 2009). The collection of
sentences on which a language model is trained is called the training corpus, which
is a collection of written words that are gathered based on specific criteria (Manning
and Schütze, 1999). In order for the language model to provide satisfactory results,
this collection of sentences should be taken from the same genre of words which is
likely to be encountered in the NLP application (Jurafsky and Martin, 2009). In this
work, a new corpus was created to train the language model on Maltese sentences
which are commonly used by children to express their needs, thus maximising the
accuracy of the word suggestions provided by the app.

Rosenfeld (2000) surveyed the various language models that can be used for
word prediction applications, namely the n-gram language model, the context-
free grammar model, decision tree models and maximum entropy models, among
others. Subsequently, Goodman (2001) compared the accuracy of these models and
found that the n-gram language model has the best performance. While some of the
other models result in more accurate predictions than the n-gram model, this comes
at the expense of much greater time and space complexity, making them impractical
to use in mobile applications. An n-gram model is a type of probabilistic language
model for predicting the next item in a sequence in the form of an

Page 4 of 12

Rosenfeld (2000) surveyed the various language models that can be used for word prediction
applications, namely the n-gram language model, the context-free grammar model, decision
tree models and maximum entropy models, among others. Subsequently, Goodman (2001)
compared the accuracy of these models and found that the n-gram language model has the
best performance. While some of the other models result in more accurate predictions than
the n-gram model, this comes at the expense of much greater time and space complexity,
making them impractical to use in mobile applications. An n-gram model is a type of
probabilistic language model for predicting the next item in a sequence in the form of an
 order Markov model. Two benefits of n-gram models are simplicity and scalability –
with a larger order n, a model can store more context with a well-understood space–time
trade-off, enabling an efficient scale up. In practice, it is not necessary to consider the entire
sequence of words to determine the probability of the next word. Thus, in an n-gram
language model, the probability of the next word is approximated by limiting the context for
conditional probability to the preceding words (Jurafsky and Martin, 2009). The
probability of each n-gram (sequence of n words) is calculated during the language model
training. The simplest method to calculate n-gram probabilities is the Maximum Likelihood
Estimation (MLE) (Abela, 2018).

A language model trained using MLE incorrectly assigns a probability of zero to sequences
of words which are never observed during training. In order to improve the probabilities of n-
grams having zero or low-frequency counts in the training corpus, smoothing must be
implemented when training the model. In statistical language modelling, smoothing refers to
adjusting the MLE probabilities to produce more accurate probabilities for word sequences
which rarely or never occur in the training corpus (Chen and Goodman, 1999). This is
achieved by reducing some of the probability mass from n-grams with large counts in the
training corpus and redistributing it to n-grams with zero or low-frequency counts, resulting
in a smoother probability distribution. This is known as discounting (Jurafsky and Martin,
2009; Manning and Schütze, 1999). Various smoothing methods have been proposed to
improve the accuracy of n-gram probabilities, namely Laplace smoothing, Good-Turing
discounting, Jelinek-Mercer smoothing, Katz smoothing, Witten-Bell smoothing, absolute
discounting, and Kneser-Ney smoothing. These smoothing techniques have been compared
and evaluated by Chen and Goodman (1999) and Kneser-Ney smoothing was found to be the
most accurate method. This is why Kneser-Ney smoothing was adopted in this
work (Abela, 2018).

Design Considerations

The top two mobile operating systems for smart devices are Android and iOS, with market
shares greater than 70% and 25% respectively (StatCounter, 2018). In order to create a
widely accessible AAC tool, the proposed app was targeted for Android, since it has the
largest mobile operating system market share and since Android devices are generally
cheaper than their Apple counterparts. This AAC app was developed using a combination of
Java and Extensible Markup Language (XML). XML was used to create the outline of the
app’s graphical user interface (GUI) and Java was used to create the app’s functional
components and make programmatic changes to the GUI. Java was chosen as the
programming language since it is an official language of the Android platform and therefore
all Android operating system features can be accessed through application programming
interfaces (APIs) written in Java (AndroidDevelopers, 2018a).

Storage

order
Markov model. Two benefits of n-gram models are simplicity and scalability – with a
larger order n, a model can store more context with a well-understood space–time
trade-off, enabling an efficient scale up. In practice, it is not necessary to consider
the entire sequence of words to determine the probability of the next word. Thus,
in an n-gram language model, the probability of the next word is approximated
by limiting the context for conditional probability to the preceding

Page 4 of 12

Rosenfeld (2000) surveyed the various language models that can be used for word prediction
applications, namely the n-gram language model, the context-free grammar model, decision
tree models and maximum entropy models, among others. Subsequently, Goodman (2001)
compared the accuracy of these models and found that the n-gram language model has the
best performance. While some of the other models result in more accurate predictions than
the n-gram model, this comes at the expense of much greater time and space complexity,
making them impractical to use in mobile applications. An n-gram model is a type of
probabilistic language model for predicting the next item in a sequence in the form of an
 order Markov model. Two benefits of n-gram models are simplicity and scalability –
with a larger order n, a model can store more context with a well-understood space–time
trade-off, enabling an efficient scale up. In practice, it is not necessary to consider the entire
sequence of words to determine the probability of the next word. Thus, in an n-gram
language model, the probability of the next word is approximated by limiting the context for
conditional probability to the preceding words (Jurafsky and Martin, 2009). The
probability of each n-gram (sequence of n words) is calculated during the language model
training. The simplest method to calculate n-gram probabilities is the Maximum Likelihood
Estimation (MLE) (Abela, 2018).

A language model trained using MLE incorrectly assigns a probability of zero to sequences
of words which are never observed during training. In order to improve the probabilities of n-
grams having zero or low-frequency counts in the training corpus, smoothing must be
implemented when training the model. In statistical language modelling, smoothing refers to
adjusting the MLE probabilities to produce more accurate probabilities for word sequences
which rarely or never occur in the training corpus (Chen and Goodman, 1999). This is
achieved by reducing some of the probability mass from n-grams with large counts in the
training corpus and redistributing it to n-grams with zero or low-frequency counts, resulting
in a smoother probability distribution. This is known as discounting (Jurafsky and Martin,
2009; Manning and Schütze, 1999). Various smoothing methods have been proposed to
improve the accuracy of n-gram probabilities, namely Laplace smoothing, Good-Turing
discounting, Jelinek-Mercer smoothing, Katz smoothing, Witten-Bell smoothing, absolute
discounting, and Kneser-Ney smoothing. These smoothing techniques have been compared
and evaluated by Chen and Goodman (1999) and Kneser-Ney smoothing was found to be the
most accurate method. This is why Kneser-Ney smoothing was adopted in this
work (Abela, 2018).

Design Considerations

The top two mobile operating systems for smart devices are Android and iOS, with market
shares greater than 70% and 25% respectively (StatCounter, 2018). In order to create a
widely accessible AAC tool, the proposed app was targeted for Android, since it has the
largest mobile operating system market share and since Android devices are generally
cheaper than their Apple counterparts. This AAC app was developed using a combination of
Java and Extensible Markup Language (XML). XML was used to create the outline of the
app’s graphical user interface (GUI) and Java was used to create the app’s functional
components and make programmatic changes to the GUI. Java was chosen as the
programming language since it is an official language of the Android platform and therefore
all Android operating system features can be accessed through application programming
interfaces (APIs) written in Java (AndroidDevelopers, 2018a).

Storage

 words
(Jurafsky and Martin, 2009). The probability of each n-gram (sequence of n words)
is calculated during the language model training. The simplest method to calculate
n-gram probabilities is the Maximum Likelihood Estimation (MLE) (Abela, 2018).

Sylvan Abela, Owen Casha & May Agius

5

A language model trained using MLE incorrectly assigns a probability of zero to
sequences of words which are never observed during training. In order to improve
the probabilities of n-grams having zero or low-frequency counts in the training
corpus, smoothing must be implemented when training the model. In statistical
language modelling, smoothing refers to adjusting the MLE probabilities to produce
more accurate probabilities for word sequences which rarely or never occur in the
training corpus (Chen and Goodman, 1999). This is achieved by reducing some
of the probability mass from n-grams with large counts in the training corpus
and redistributing it to n-grams with zero or low-frequency counts, resulting in
a smoother probability distribution. This is known as discounting (Jurafsky and
Martin, 2009; Manning and Schütze, 1999). Various smoothing methods have
been proposed to improve the accuracy of n-gram probabilities, namely Laplace
smoothing, Good-Turing discounting, Jelinek-Mercer smoothing, Katz smoothing,
Witten-Bell smoothing, absolute discounting, and Kneser-Ney smoothing. These
smoothing techniques have been compared and evaluated by Chen and Goodman
(1999) and Kneser-Ney smoothing was found to be the most accurate method. This
is why Kneser-Ney smoothing was adopted in this work (Abela, 2018).

Design Considerations

The top two mobile operating systems for smart devices are Android and iOS, with
market shares greater than 70% and 25% respectively (StatCounter, 2018). In order
to create a widely accessible AAC tool, the proposed app was targeted for Android,
since it has the largest mobile operating system market share and since Android
devices are generally cheaper than their Apple counterparts. This AAC app was
developed using a combination of Java and Extensible Markup Language (XML).
XML was used to create the outline of the app’s graphical user interface (GUI) and
Java was used to create the app’s functional components and make programmatic
changes to the GUI. Java was chosen as the programming language since it is an
official language of the Android platform and therefore all Android operating system
features can be accessed through application programming interfaces (APIs) written
in Java (AndroidDevelopers, 2018a).

Storage

Database Selection

The need for a storage method that can archive categories and words together
with their relationship was identified. An intuitive way to model and store related
pieces of information is to use a relational database (Halpin and Morgan, 2008).
Since the app is targeted for mobile devices, a set of criteria had to be met when

Development of an Augmentative and Alternative Communication App for the Maltese Language

6

deciding on which database to use. The database had to provide a lightweight
solution, since storage space is limited on most mobile devices. Moreover, it had to
provide server-less functionality, since internet connectivity is not always available.
Lastly, the selected database had to provide a very fast access, with very low
memory and power consumption. Several database options exist for the Android
operating system, namely BerkeleyDB, CouchbaseLite, LevelDB, ORMLite, Realm,
and SQLite. Most of these databases fulfil the specified criteria, but SQLite was the
most ideal solution for this work since it is the only database which is fully supported
by Android (AndroidDevelopers, 2018b).

Storage of Media Files

Initially, storing media files as binary large objects (BLOBs) in the database
looked promising, since it was the best way to keep the words, images and sounds
consolidated in one structure (Shapiro, 1999). However, during the testing phase
of the app, it became evident that this approach had to process excessively large
amounts of data, resulting in slower response times. Indeed, Shapiro (1999) found
that the query response time is inversely proportional to the size of the database. To
improve the app’s performance and usability, the image and audio files were stored
in the app folder and accessed directly from the internal storage. As a result, query
response times became considerably shorter and independent of the image and
audio file sizes.

Storage of User Preferences

While storing user preferences as records in a relational database was possible,
it was more feasible to use the SharedPreferences interface from the Android
software development kit (SDK). Primarily, storing or retrieving a user preference
can be achieved in a simpler way by calling the required method provided by the
SharedPreferences interface, as opposed to constructing structured query language
(SQL) queries. Secondly, the SharedPreferences interface works in tandem with the
PreferenceActivity class from the Android SDK. By inheriting this class, it was possible
to create an activity which displays a hierarchy of preferences that can be set by
the user. These preferences are stored as key-value pairs of primitive data types
(Wei, 2012) and are used to determine the app’s behaviour in different scenarios,
according to the user’s preference.

Sylvan Abela, Owen Casha & May Agius

7

Performance Considerations

Multithreading

Accessing a file from internal storage is a rather slow operation compared to,
say, fetching a message from a String variable and displaying it on screen, since
secondary storage has a much slower access speed than main memory (Hamacher
et al., 2012). If such a lengthy operation were to be carried out on the same thread
which is responsible for generating the UI (known as the main thread or UI thread),
then any other operations would be blocked until it completes, hence causing the UI
to hang. Thus, lengthy operations are carried out on separate threads.

Foreground Services

Users can continue using their device while backing up or restoring a profile, since
the cloud backup and restore operations were implemented as foreground services
(MacLean, Komatineni and Allen, 2015). MaltAAC gives a foreground notification
while uploading the backup file to the cloud, which displays the progress as a
percentage, and provides the option to cancel the upload. Similarly, a foreground
notification displaying progress is shown while restoring a user profile.

Data Structure Selection

An appropriate data structure was required to store n-grams in main memory
together with the occurrence frequency of each n-gram in the training corpus.
The main criteria for selecting the data structure were insertion time, searching
time and memory consumption. Robenek, Platos and Snasel (2013) compared
the performance of seven data structures for indexing n-grams, and the HashMap
data structure was found to be the fastest solution in terms of insertion time and
searching time. The HashMap data structure ranked fourth in terms of memory
consumption, but since training speed was a priority for MaltAAC, the HashMap
structure was still the most practical option.

Optimal Order of n-gram

Initially, MaltAAC was based on a 5-gram language model that needed an excessively
long training time. Goodman (2001) tested the performance of n-gram models up
to an order of

Page 6 of 12

completes, hence causing the UI to hang. Thus, lengthy operations are carried out on separate
threads.

Foreground Services

Users can continue using their device while backing up or restoring a profile, since the cloud
backup and restore operations were implemented as foreground services (MacLean,
Komatineni and Allen, 2015). MaltAAC gives a foreground notification while uploading the
backup file to the cloud, which displays the progress as a percentage, and provides the option
to cancel the upload. Similarly, a foreground notification displaying progress is shown while
restoring a user profile.

Data Structure Selection

An appropriate data structure was required to store n-grams in main memory together with
the occurrence frequency of each n-gram in the training corpus. The main criteria for
selecting the data structure were insertion time, searching time and memory consumption.
Robenek, Platos and Snasel (2013) compared the performance of seven data structures for
indexing n-grams, and the HashMap data structure was found to be the fastest solution in
terms of insertion time and searching time. The HashMap data structure ranked fourth in
terms of memory consumption, but since training speed was a priority for MaltAAC, the
HashMap structure was still the most practical option.

Optimal Order of n-gram

Initially, MaltAAC was based on a 5-gram language model that needed an excessively long
training time. Goodman (2001) tested the performance of n-gram models up to an order of
 and found that the performance of Kneser-Ney smoothing saturates at the order of
 . Since training speed was a priority for MaltAAC, and little performance
improvements could be obtained by training a model of order , it was decided to opt for
a trigram language model instead.

Results and Evaluation

Perplexity

A language model can either be evaluated extrinsically, i.e. embedding the model into the
application and measuring end-to-end performance, or intrinsically, where the performance of
the model is measured independently of the application. The most common metric for
intrinsic evaluation of n-gram models is perplexity (Jurafsky and Martin, 2009). Perplexity is
used to measure how effectively a language model can predict the next word, where a low
value indicates a high model accuracy. The calculation of the perplexity of a language model
for a given test data set was implemented in Java. The program uses the HashMaps
containing the n-gram probabilities to calculate the conditional probability of each word in
the test set. The developed language model was trained and tested on 10 different pairs of
training and on test data sets which were randomly generated from a corpus specifically
created for this project. An average perplexity of 3.61 was obtained (refer to Table I).

A perplexity value of k suggests that on average, the language model is as uncertain as it
would be if it were to predict the next word out of k equally probable words (Manning and

 and found that the performance of Kneser-Ney smoothing
saturates at the order of

Page 6 of 12

completes, hence causing the UI to hang. Thus, lengthy operations are carried out on separate
threads.

Foreground Services

Users can continue using their device while backing up or restoring a profile, since the cloud
backup and restore operations were implemented as foreground services (MacLean,
Komatineni and Allen, 2015). MaltAAC gives a foreground notification while uploading the
backup file to the cloud, which displays the progress as a percentage, and provides the option
to cancel the upload. Similarly, a foreground notification displaying progress is shown while
restoring a user profile.

Data Structure Selection

An appropriate data structure was required to store n-grams in main memory together with
the occurrence frequency of each n-gram in the training corpus. The main criteria for
selecting the data structure were insertion time, searching time and memory consumption.
Robenek, Platos and Snasel (2013) compared the performance of seven data structures for
indexing n-grams, and the HashMap data structure was found to be the fastest solution in
terms of insertion time and searching time. The HashMap data structure ranked fourth in
terms of memory consumption, but since training speed was a priority for MaltAAC, the
HashMap structure was still the most practical option.

Optimal Order of n-gram

Initially, MaltAAC was based on a 5-gram language model that needed an excessively long
training time. Goodman (2001) tested the performance of n-gram models up to an order of
 and found that the performance of Kneser-Ney smoothing saturates at the order of
 . Since training speed was a priority for MaltAAC, and little performance
improvements could be obtained by training a model of order , it was decided to opt for
a trigram language model instead.

Results and Evaluation

Perplexity

A language model can either be evaluated extrinsically, i.e. embedding the model into the
application and measuring end-to-end performance, or intrinsically, where the performance of
the model is measured independently of the application. The most common metric for
intrinsic evaluation of n-gram models is perplexity (Jurafsky and Martin, 2009). Perplexity is
used to measure how effectively a language model can predict the next word, where a low
value indicates a high model accuracy. The calculation of the perplexity of a language model
for a given test data set was implemented in Java. The program uses the HashMaps
containing the n-gram probabilities to calculate the conditional probability of each word in
the test set. The developed language model was trained and tested on 10 different pairs of
training and on test data sets which were randomly generated from a corpus specifically
created for this project. An average perplexity of 3.61 was obtained (refer to Table I).

A perplexity value of k suggests that on average, the language model is as uncertain as it
would be if it were to predict the next word out of k equally probable words (Manning and

. Since training speed was a priority for MaltAAC,
and little performance improvements could be obtained by training a model of order

Page 6 of 12

completes, hence causing the UI to hang. Thus, lengthy operations are carried out on separate
threads.

Foreground Services

Users can continue using their device while backing up or restoring a profile, since the cloud
backup and restore operations were implemented as foreground services (MacLean,
Komatineni and Allen, 2015). MaltAAC gives a foreground notification while uploading the
backup file to the cloud, which displays the progress as a percentage, and provides the option
to cancel the upload. Similarly, a foreground notification displaying progress is shown while
restoring a user profile.

Data Structure Selection

An appropriate data structure was required to store n-grams in main memory together with
the occurrence frequency of each n-gram in the training corpus. The main criteria for
selecting the data structure were insertion time, searching time and memory consumption.
Robenek, Platos and Snasel (2013) compared the performance of seven data structures for
indexing n-grams, and the HashMap data structure was found to be the fastest solution in
terms of insertion time and searching time. The HashMap data structure ranked fourth in
terms of memory consumption, but since training speed was a priority for MaltAAC, the
HashMap structure was still the most practical option.

Optimal Order of n-gram

Initially, MaltAAC was based on a 5-gram language model that needed an excessively long
training time. Goodman (2001) tested the performance of n-gram models up to an order of
 and found that the performance of Kneser-Ney smoothing saturates at the order of
 . Since training speed was a priority for MaltAAC, and little performance
improvements could be obtained by training a model of order , it was decided to opt for
a trigram language model instead.

Results and Evaluation

Perplexity

A language model can either be evaluated extrinsically, i.e. embedding the model into the
application and measuring end-to-end performance, or intrinsically, where the performance of
the model is measured independently of the application. The most common metric for
intrinsic evaluation of n-gram models is perplexity (Jurafsky and Martin, 2009). Perplexity is
used to measure how effectively a language model can predict the next word, where a low
value indicates a high model accuracy. The calculation of the perplexity of a language model
for a given test data set was implemented in Java. The program uses the HashMaps
containing the n-gram probabilities to calculate the conditional probability of each word in
the test set. The developed language model was trained and tested on 10 different pairs of
training and on test data sets which were randomly generated from a corpus specifically
created for this project. An average perplexity of 3.61 was obtained (refer to Table I).

A perplexity value of k suggests that on average, the language model is as uncertain as it
would be if it were to predict the next word out of k equally probable words (Manning and

, it was decided to opt for a trigram language model instead.

Development of an Augmentative and Alternative Communication App for the Maltese Language

8

Results and Evaluation

Perplexity

A language model can either be evaluated extrinsically, i.e. embedding the
model into the application and measuring end-to-end performance, or intrinsically,
where the performance of the model is measured independently of the application.
The most common metric for intrinsic evaluation of n-gram models is perplexity
(Jurafsky and Martin, 2009). Perplexity is used to measure how effectively a language
model can predict the next word, where a low value indicates a high model accuracy.
The calculation of the perplexity of a language model for a given test data set was
implemented in Java. The program uses the HashMaps containing the n-gram
probabilities to calculate the conditional probability of each word in the test set. The
developed language model was trained and tested on 10 different pairs of training
and on test data sets which were randomly generated from a corpus specifically
created for this project. An average perplexity of 3.61 was obtained (refer to Table I).

A perplexity value of k suggests that on average, the language model is as
uncertain as it would be if it were to predict the next word out of k equally probable
words (Manning and Schütze, 1999). The obtained results were remarkably low due
to the high similarity between the training and test data sets. Children with complex
communication needs often tend to use the same simple sentence structure (Binger
and Light, 2008) and so most sentences formed using MaltAAC will have the same
syntax as the ones used to train the language model, which is essentially equivalent to
having identical training and test data sets. Hence, in spite of its artificially low value,
the resulting average perplexity implies that the language model is able to predict the
next word in a given sequence by choosing one out of four equally probable words.
Since the initial dictionary contains 400 distinct words, the language model is capable
of narrowing the list of possible next words to 1% of the initial dictionary size. This
performance is quite satisfactory and results in reasonably accurate word predictions.

Test Number Perplexity
1 3.615
2 3.636
3 3.582
4 3.631
5 3.635
6 3.556
7 3.562
8 3.517
9 3.612

10 3.776
Average 3.6122

Table I. The language model’s average perplexity
for training and test data sets taken

from the created corpus.

Sylvan Abela, Owen Casha & May Agius

9

Table II presents the perplexity results obtained by the language model when trained
and tested on data sets taken from the same genre, but which were not as similar as
the training and test data sets generated from the created corpus. The training and
test data were taken from the same children’s book, so as to maintain the same style
of vocabulary. An average perplexity value of 90.47 was obtained.

Book
Number of

Training Words
Number of
Test Words Perplexity

Roses and Forget-Me-Nots 1,925 240 76.048

Marjorie’s Three Gifts 3,169 376 90.88

Jack and Jill 47,286 504 77.171

The Lost Prince 7,649 849 89.197

The Secret Garden 11,879 1,409 119.047

Average 90.4686

Table II. The language model’s average perplexity for training and test data sets of the same genre.

This is marginally lower than typical perplexity values reported in literature.
Indeed, with a vocabulary size of 19,979 words, Jurafsky and Martin (2009) obtained
a perplexity of 109 for a trigram model which was trained on 38 million words taken
from the Wall Street Journal and tested on 1.5 million words, whereas Kneser and
Ney (1995) obtained a perplexity of 105.4 for a trigram model which was trained
and tested on data sets generated from the 30,000 word German Verbmobil
corpus, with a vocabulary of 2,000 words. The improved perplexity value does
not necessarily imply that the developed language model is any better than other
trigram models, but merely suggests that sentences in children’s books are typically
more uniform and easier to predict than newspaper contents. Nonetheless, the
obtained perplexity results show that the developed language model can perform
at least as well as other trigram language models, when trained and tested on data
sets taken from the same genre.

Book Perplexity
Roses and Forget-Me-Nots 117.716

Marjorie’s Three Gifts 128.060
Jack and Jill 120.720

The Lost Prince 120.792
The Secret Garden 162.704

Average 129.998
Table III. The language model’s

average perplexity for training and
test data sets of different genres.

Development of an Augmentative and Alternative Communication App for the Maltese Language

10

Table III shows the perplexity results of the developed language model when trained
on data taken from the technology genre and tested on sentences from children’s
books. The average perplexity was 43.7% higher than the average perplexity
acquired for training and test data sets taken from the same genre. This increase in
perplexity is quite significant and it confirms that the language model’s accuracy is
highly dependent on the genre of the training and test data sets. Especially when
compared to the average perplexity value presented in Table I, this result proves
that creating a training corpus which was tailor-made for MaltAAC was indeed more
practical than using generic training data.

Time Complexity

Since MaltAAC provides the option to update the word predictions by retraining
the language model, training time minimisation was key. However, as the number
of words in the training corpus increases, so does the number of possible n-grams
and the number of iterations in each HashMap. In order to assess how the training
time varies as the number of n-grams increases, the language model was trained on
different sized data sets obtained from the Gutenberg corpus. The plots presented in
Figure 3 show that the training time follows a cubic trend when plotted against the
number of n-grams. A time complexity of

Page 8 of 12

a trigram model which was trained on 38 million words taken from the Wall Street Journal
and tested on 1.5 million words, whereas Kneser and Ney (1995) obtained a perplexity of
105.4 for a trigram model which was trained and tested on data sets generated from the
30,000 word German Verbmobil corpus, with a vocabulary of 2,000 words. The improved
perplexity value does not necessarily imply that the developed language model is any better
than other trigram models, but merely suggests that sentences in children’s books are
typically more uniform and easier to predict than newspaper contents. Nonetheless, the
obtained perplexity results show that the developed language model can perform at least as
well as other trigram language models, when trained and tested on data sets taken from the
same genre.

Book Perplexity
Roses and Forget-Me-Nots 117.716

Marjorie’s Three Gifts 128.060
Jack and Jill 120.720

The Lost Prince 120.792
The Secret Garden 162.704

Average 129.998

Table III. The language model’s average perplexity for training and test data sets of different
genres.

Table III shows the perplexity results of the developed language model when trained on data
taken from the technology genre and tested on sentences from children’s books. The average
perplexity was 43.7% higher than the average perplexity acquired for training and test data
sets taken from the same genre. This increase in perplexity is quite significant and it confirms
that the language model’s accuracy is highly dependent on the genre of the training and test
data sets. Especially when compared to the average perplexity value presented in Table I,
this result proves that creating a training corpus which was tailor-made for MaltAAC was
indeed more practical than using generic training data.

Time Complexity

Since MaltAAC provides the option to update the word predictions by retraining the language
model, training time minimisation was key. However, as the number of words in the training
corpus increases, so does the number of possible n-grams and the number of iterations in each
HashMap. In order to assess how the training time varies as the number of n-grams increases,
the language model was trained on different sized data sets obtained from the Gutenberg
corpus. The plots presented in Figure 3 show that the training time follows a cubic trend
when plotted against the number of n-grams. A time complexity of for the training
process falls short of being satisfactory. While the number of n-grams in this AAC app may
increase if the user chooses to add new words and retrain the language model, it is not likely
to grow to a point where the training time becomes excessively long, since the number of
words used by children is rather limited. Thus, in contrast to other NLP applications, the
language model training time is tolerable for the purposes of MaltAAC.

 for the training process falls short of
being satisfactory. While the number of n-grams in this AAC app may increase if the
user chooses to add new words and retrain the language model, it is not likely to grow
to a point where the training time becomes excessively long, since the number of
words used by children is rather limited. Thus, in contrast to other NLP applications,
the language model training time is tolerable for the purposes of MaltAAC.

App Functionality

White-box testing was useful to identify, debug and solve certain issues such as
memory leaks, out of memory exceptions caused by the loading of large bitmaps
and audio files into main memory, security exceptions due to missing permission
requests, unpredictable UI behaviour, and flawed input control mechanisms. The
app was given to seven professionals who work with AAC systems on a daily basis for
black-box testing. Among these professionals were three occupational therapists,
two speech and language therapists and two learning support educators who
work at the ACTU. This enabled them to test MaltAAC’s functionality from a user’s
perspective, identify any bugs which had been overlooked, and determine whether
the app is suitable for AAC purposes. MaltAAC was tested for a month, after which
a focus group was then formed to obtain feedback from the testers. The black-box
testing stage verified that the app satisfies the initial requirements, although there
is room for improvement. The suggested potential enhancements were taken into
consideration for integration in future releases of MaltAAC.

Sylvan Abela, Owen Casha & May Agius

11

Figure 3. The impact of increasing the number of n-grams on the training time.

Development of an Augmentative and Alternative Communication App for the Maltese Language

12

Conclusion

This paper presented the development of an app to provide an AAC solution for
the Maltese language. MaltAAC features a smoothed trigram language model which
predicts the next word given the sequence of previously selected words, with the
aim of improving children’s communication rates while reducing the effort required
to convey their message. Interpolated Kneser-Ney smoothing was used to train
the language model and calculate the n‑gram probabilities. The accuracy of the
developed trigram model was evaluated using the perplexity metric, and the app
functionality was assessed using white-box and black-box testing. The generated
word predictions were found to be remarkably accurate, especially when the
language model was trained on a corpus specifically created for this AAC app.

MaltAAC was tested by specialists who are well acquainted with AAC technologies.
These specialists commended MaltAAC, saying that it is a very helpful AAC tool.
One minor limitation of the app is the substandard time complexity of the language
model’s training process, although its impacts are somewhat insignificant, especially
for a small vocabulary size. On the whole, this app was completed successfully
and may greatly improve the quality of AAC interventions for Maltese children.
Nevertheless, there are still numerous improvements which can be made in future
releases of MaltAAC, in order to design an even more convenient and complete AAC
solution for the Maltese language, including an Android text-to-speech engine for
Maltese.

MaltAAC is a solid step forward towards promoting the use of the Maltese
language while providing an accessible solution to Maltese children having complex
communication needs. In addition to assisting native speakers, MaltAAC can
potentially be taken a step further and serve as a linguistic first aid to immigrants
coming over to Malta, in order to facilitate their communication and integration
with Maltese citizens. MaltAAC is currently available on the Google Play Store and
there are plans to initiate the work on an iOS implementation of the app.

References

Abela, S. (2018). Development of an Augmentative and Alternative Communication App for
the Maltese Language. Msida: Unpublished B.Sc. Dissertation, University of Malta.

AndroidDevelopers (2018a). Platform architecture. Available at https://developer.android.
com/guide/platform/ [Accessed 1 February 2018].

AndroidDevelopers (2018b). Data and file storage overview. Available at https://developer.
android.com/guide/topics/data/data-storage.html [Accessed 1 February 2018].

Agius, M.M. and Vance M. (2015). A Comparison of PECS and iPAD to teach requesting
to Pre-schoolers with Autistic Spectrum Disorders. Augmentative and Alternative
Communication, 32(11), 58–68.

Sylvan Abela, Owen Casha & May Agius

https://developer.android.com/guide/platform/
https://developer.android.com/guide/platform/
https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/topics/data/data-storage.html

13

Binger, C. and Light, J. (2008). The Morphology and Syntax of Individuals who use AAC:
Research Review and Implications for Effective Practice. Augmentative and Alternative
Communication, 24(2), 123–138.

Borg S., Agius M. and Agius L. (2015). A User and their Family’s Oerspective of the use of
a Low-tech vs a High-tech AAC System,” Studies in Health Technology and Informatics,
217(11), 811–818.

Chen, S.F. and Goodman, J. (1999). An Empirical Study of Smoothing Techniques for Language
Modelling. Computer Speech and Language. 13(10), 359–394.

Garay-Vitoria, N. and Abascal, J. (2006). Text Prediction Systems: A Survey. Universal Access in
the Information Society, 4(3), 188–203.

Glennen, S.L. and DeCoste, D.C. (1997). The Handbook of Augmentative and Alternative
Communication. San Diego: Singular Pub. Group.

Goodman, J. (2001). A Bit of Progress in Language Modeling. Computer Speech and Language,
15(10), 403–434.

Halpin, T. and Morgan, T. (2008). Information Modeling and Relational Databases. Morgan
Kaufmann.

Hamacher, C., Vranesic, Z., Zaky, S. and Manjikian, N. (2012). Computer Organization and
Embedded Systems. McGraw-Hill.

Jurafsky, D. and Martin, J.H. (2009). Speech and Language Processing - An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Upper
Saddle River, NJ, USA: Prentice Hall.

Kneser, R. and Ney, H. (1995). Improved Backing-off for m-gram Language Modeling,”
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 181–184.

Kumar, E. (2011). Natural Language Processing. I.K. International Publishing House PVT.
Langer, S. and Hickey, M. (1999). Augmentative and Alternative Communication and Natural

Language Processing: Current research activities and prospects. Augmentative and
Alternative Communication. 15(12), 260–268.

MacLean, D., Komatineni, S. and Allen, G. (2015). Pro Android 5. Apress.
Manning, C.D. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

Cambridge, MA: MIT Press.
Robenek, D., Platos, J. and Snasel, V. (2013). Efficient in-Memory Data Structures for n-grams

Indexing. Proceedings of the Annual International Workshop on Databases, Texts,
Specifications and Objects, 48–58.

Rosenfeld, R. (2000). Two Decades of Statistical Language Modeling: Where do we go from
here? Proceedings of the IEEE. 88(8), 1270–1278.

Shapiro, M. (1999). Managing Databases with Binary Large Objects. 16th IEEE Symposium on
Mass Storage Systems in cooperation with the 7th NASA Goddard Conference on Mass
Storage Systems and Technologies (Cat. No.99CB37098), 185–193.

StatCounter (2018). Statcounter Globalstats. Available at http://gs.statcounter.com/os-
market-share/mobile/malta [Accessed 26 August 2018].

Trnka, K., McCaw, J., Yarrington, D., McCoy, K.F. and Pennington, C. (2009). User Interaction
with Word Prediction: The effects of prediction quality. ACM Transactions on Accessible
Computing (TACCESS). 1(3), 17:1–17:34.

Wei, J. (2012). Android Database Programming. Packt Publishing.

Development of an Augmentative and Alternative Communication App for the Maltese Language

http://gs.statcounter.com/os-market-share/mobile/malta
http://gs.statcounter.com/os-market-share/mobile/malta

14

Bio-notes

Mr Sylvan Abela has recently completed a bachelor’s degree in Computer
Engineering at the Faculty of ICT within the University of Malta. As part of his final
year project, he developed the first AAC app targeted for the Maltese language
in collaboration with ACTU, with the intention to break the barrier between
the Maltese language and high technology AAC systems. His interests include
software development, microcontroller-based system design and artificial
intelligence, particularly natural language processing and robot learning.
Dr Ing. Owen Casha received his bachelor’s degree in electrical engineering
from the University of Malta in 2004. From September 2007 till June 2008,
he was on a research collaboration with CEA-LETI (Grenoble, France) and ST-
Microelectronics. He received a PhD in RFIC design from the University of Malta in
2010. He is currently a Senior Lecturer with the Department of Microelectronics
and Nanoelectronics. His research interests include the design of high speed
integrated circuits, embedded systems, RF MEMS and assistive devices.
Ms May Agius is currently a PhD candidate at the Manchester Metropolitan
University. She also works as a Speech and Language Therapist with ACTU.
Her interests include the use of AAC systems to support children with special
needs to communicate. Her current research focuses on factors which influence
the clinical decision making processes for children requiring AAC and have a
diagnosis of Autism Spectrum Disorder. She presented this research on a number
of occasions at international conferences such as ISAAC. She is particularly
interested in supporting the development of AAC systems for children who
require communication systems in Maltese.

Sylvan Abela, Owen Casha & May Agius

