
233

Speed Aware – a Mobile App Prototype for the
Promotion of Responsible Driving

Francesco Cremona, Adrian Muscat, Maria Attard
adrian.muscat@um.edu.mt

Abstract

This paper addresses the promotion and awareness of responsible driving and
road safety through the development of a very simple to use mobile application
prototype, Speed Aware. This application provides users with speed limit information
on roads they are travelling on, together with a journey logging feature that allows
off-line self-review of driving behaviour. Tracked journeys can be displayed on a
map and the trace shown as a heatmap, comparing the vehicle speed to the road
speed limit. Furthermore, an audible alarm is emitted whenever the vehicle is
travelling at a speed higher than the legal limit. At the heart of this app is a map
matching algorithm, which matches raw Global Positioning System (GPS) data to
the road network. Five map matching algorithms are implemented and compared
on the basis of real-time performance and accuracy. A ground truth dataset of GPS
traces in dense, urban, and sub-urban environments, together with TraceView, a
trace visualisation and management tool, were developed. A modified version of a
weight-based topological algorithm achieved accuracy of 94.9% at a GPS sampling
frequency of 1Hz. This algorithm, together with three of the reviewed map matching
algorithms, were implemented on a mobile device and subjectively tested for real-
time performance.

Keywords: Map-matching, GPS, Vehicle speed monitor, Safe driving, Mobile app

Introduction

Car owners’ choice to drive at illegal speeds is the leading cause of grievous and
fatal accidents, (Hoel & Garber, 2008). Less safe road conditions lead to people
preferring to use their own vehicle instead of taking greener modes of transport,
resulting in less cycling and walking (Road Safety Strategy Malta, 2014). The use
of personal vehicles is increasing without bounds, with an average of 71 vehicles
per day registered in the third quarter of 2017 (National Statistics Office, n.d.). This
paper describes the development of a mobile app designed specifically to address
irresponsible driving, by discouraging speeding over the legal limits and raising
awareness on safer roads among the general public.

mailto:adrian.muscat%40um.edu.mt?subject=

234

Real time navigational aids that include road network data and speed limit
information are available on the Android Google Play Store, for example Speed
Cameras & Traffic Sygic (Sygic, n.d.) and Velociraptor - Speed Limits & Speedometer
(Ciao, n.d.). However, these features are either not simple to use (because the main
application is navigation), not freely available (since they may be in-app purchase
premium add-ons), make use of information that is incomplete for local maps, or
have to be overlaid on another host app. On the other hand, Speed Aware, the app
described in this paper, is independent of any other navigational app, very simple
to use, does not require any configuration and is tailor-made for the local scene.
Speed Aware makes use of Open Street Maps (OSM), Global Positioning System
(GPS) technology and map matching algorithms to display speed information, as
well as audible and visual alerts when the driver exceeds speed limits. Additionally,
the app provides a data logging option.

GPS receivers determine their position by measuring distance to multiple
satellites, using triangulation to find the position of the receiver. This position
determination has multiple sources of errors, mainly due to clock synchronisation
issues, atmosphere phenomena and multipath effects (Langley, 1997). The latter
is of particular interest in this paper and is the main source of error in matching
GPS points to maps. Therefore, the app makes use of a map matching algorithm
(Bernstein & Kornhauser, 1996; Quddus et al., 2007) which greatly reduces the
number of errors, especially in dense urban areas. To develop and finetune the
algorithm, a ground truth dataset of GPS traces in dense, urban, and sub-urban
environments, together with TraceView, a trace visualisation and management tool,
were developed.

This section introduced the topic of this paper and explained its position in
the literature. The rest of the paper is organised as follows. First, map matching
algorithms are reviewed, followed with a description of the implementation and
experimental setup used to study a selection of map-matching algorithms. The
results are then discussed, followed with an account on the development of the
app, Speed Aware, at which point the paper is concluded.

Map matching algorithms

The mobile app Speed Aware makes use of GPS and road network data to retrieve
road information. In addition, map-matching algorithms are used to mitigate noise
in GPS data, (Quddus et al., 2007; Bernstein & Kornhauser, 1996; Velaga et al., 2009).
Once coordinates are obtained, the algorithms are used to identify the correct road
segment on which a vehicle is travelling on (Greenfeld, 2002; Quddus et al., 2003)
and provide a more accurate vehicle location estimate by supplementing the GPS
data with spatial road network data. This section reviews various map-matching
algorithms, including a comparison of their performance and complexity.

Adrian Muscat, Francesco Cremona & Maria Attard

235

The earliest map matching algorithm for car navigation in real time was based
on a simple geometry-based method (Kim et al., 1996). This was not accurate at
intersections and parallel roads as it was dependent on the shape of the road segment
(Hashemi & Karimi, 2014). Different techniques were subsequently developed,
taking advantage of topological analysis of spatial road network data and comparing
GPS bearing and position readings to road direction and position. Additionally,
more advanced techniques based on probabilistic theory (Zhao, 1997), Kalman
filters (Li et al., 2013), fuzzy logic (Quddus et al., 2006) and belief theory (Najjar
& Bonnifait, 2005) were implemented. These vary in complexity, computational
efficiency and matching accuracy. Hashemi and Karimi (2014) categorise map-
matching algorithms as simple, weight-based and advanced, while Quddus, Ochieng
and Noland (2007) group the algorithms into geometrical, topological, probabilistic
and other advanced methods.

Map matching can be carried out on-line (real time) or off-line (post-processing)
(Hashemi & Karimi, 2014). In real-time map matching algorithms, also known as
online, GPS points are mapped on the go (Bernstein & Kornhauser, 1996; Velaga
et al., 2009; Li et al., 2013). This means that as the mobile app receives the new
updated location, it is immediately processed and set to a road segment. Off-line
algorithms operate by first collecting GPS data over a journey, then passing all
the points and vehicle movement information as a batch through the algorithm,
outputting the solution (Newson & Krumm, 2009). This obviously brings advantages
over a real time system in terms of accuracy, since all points preceding and following
a certain point are known, making it easier to predict the point on the road where it
was located (Marchal et al., 2004). On the other hand, a real-time system has only
previous points to help in predicting the correct position, thus resulting in a less
accurate but a potentially more responsive experience, enabling features such as
real time over-speeding checks. Therefore, this paper considers real time algorithms.
A review of the algorithms follow, taking into account the classification proposed by
Quddus, Ochieng and Noland (2007).

Geometric

A geometry-based map-matching algorithm makes use of geometric information of
the spatial road network data, considering only the shape of roads and does not
consider the way roads are connected to each other (Greenfeld, 2002; Quddus et
al., 2007).

Point-to-Point Map Matching (Bernstein & Kornhauser, 1996) is the simplest of
such algorithms and matches the point to the closest node or shape point of a road
segment. Its implementation is fast and easy, but has the drawback of being sensitive
to the way the road network data is structured, as well as inaccuracies in urban
environments. Curved roads with more than a start and end node are much more

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

236

likely to be chosen as the road on which the vehicle is travelling. Therefore, these
multiple shape node roads produce errors (Quddus et al., 2007). The closest point
is found by selecting the node with the least Euclidean distance from the GPS point,
Pt. In practice, it is not necessary to determine the distance between the GPS point
and every node in the network. Instead, one can first identify those nodes that are
within a certain radius using a range query and then calculate the distance to them.
Range queries are carried out by pre-processing N points in k-space and storing the
points in an ordered tree. This leads to faster query times but has the drawback of
higher storage use (Bernstein & Kornhauser, 1996; Bentley & Maurer, 1980).

Point-to-Curve Map Matching (Bernstein & Kornhauser, 1996) is an upgrade to
the point-to-point technique and attempts to find the closest link to Pt instead of
the nodes. To find the closest road, the minimum distance is found from the GPS
point to all the road segments forming part of each road. This is because the roads
are stored as piecewise linear curves made up of nodes and links. The shortest
distance is taken as the perpendicular distance from the point to the road. If the
perpendicular line does not intersect with the line segment, the shortest distance
between the GPS point and the two end-point nodes of the road is taken. The road
segment with the smallest distance is selected as the road. This, however, gives
unstable results with increased road densities, and the closest link may not always
be the correct link in dense areas.

Curve-to-Curve Map Matching (Bernstein & Kornhauser, 1996; White et al.,
2000) constructs a linear piecewise curve using n previous GPS points, where n=3.
The distance between the constructed curve and the surrounding road curves is
measured and the closest curve is then selected as the road on which the vehicle
is travelling. There are multiple ways of evaluating distances between curves. One
way of doing this is to find the average of the closest Euclidean distances between
the GPS points and the curve. Another curve to curve approach proposed by White
et al. (2000) is to make use of the distance travelled between GPS points. This
consists of finding the distance between equal lengths of the two curves. The last 3
GPS points are used to create a curve. The road is segmented into three segments
with equal lengths as the GPS curve. Curve to curve distance is determined by the
distance between the respective nodes of the curves.

Topological Topological map matching algorithms make use of spatial and
historical data to aid in the matching of GPS points. Previously matched roads, road
connectivity, and directional and turn restriction information are all parameters that
have been used to supplement geometric algorithms (Quddus et al., 2007).

Weight-based topological map matching (Velaga et al., 2009) splits the matching
problem into three parts and defines procedures that are used in each of these
different situations. These are: (a) matching the first GPS point, (b) matching when
traversing a road, and (c) matching at a junction. Weights are given to candidate
roads depending on heading difference and distance from the GPS reading. At an
intersection, a positive or negative weight is given to roads, whether or not they are

Adrian Muscat, Francesco Cremona & Maria Attard

237

connected to the previous road, depending on whether there is a legal restriction to
cross from the previous road to the candidate road. In urban environments, heading
difference is prioritised over distance, which adds heavy weighting to connected
roads and is not restricted to the previous road. Suburban environments have more
accurate GPS readings, therefore heading difference and distance have similar
weightings due to the point being closer to the correct road. Rural areas result in
accurate GPS readings so that distance is given the greatest weight. Following is a
description of the three procedures.

Matching the first GPS point:
a)	 Determine the candidate road segments: An error region is used to determine

candidate segments. All segments that are present or passing through the
region are chosen as candidates.

b)	 Determine the correct segment by giving a weight depending on heading
weight, Wh, and proximity weight, Wp, where Wh is taken to be the cosine
function of the difference between the road and vehicle bearings:

Wh = Hw f (θr , θv), where f (θr , θv) = cos(θr −θv).

Here, Hw is the weight coefficient for the heading information’s importance,
θr and θv are the road and vehicle’s bearings, respectively, and Wp is the
weight based on the perpendicular distance from the road segments and is
computed as,

Wp = Dw f (D), where f (D) =[(80-D)/80],

Dw is the weight coefficient for the road’s proximity and D is the
perpendicular distance from the point to the road. The total weight score
(TWS) determines which candidate segment will be chosen and consists of
the addition of the two heading and direction weights.

Matching when traversing a road:
a)	 If the vehicle’s speed is 0, the same road segment as before is assumed.
b) If the vehicle is moving, the algorithm checks whether or not there is an

intersection ahead. Two checks are put in place: (i) whether the current point
is within 20m of an upcoming intersection, and (ii) whether the heading
difference between the vehicle and the road is greater than the root mean
square of all the previous errors on the same road. If one of these is found to
be positive, then it is deduced that the vehicle is at an intersection. Otherwise,
the GPS point is perpendicularly projected onto the previous road.

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

238

Matching at a junction:
This process is the same as the matching for the first GPS point using the total
weight score to select a road. However, two additional weights are used: (i) If a
vehicle approaches a junction and is not legally permitted to turn to one of the
road segments, directional knowledge is used to then give the candidate road
less turn restriction weight. The weight is positive for a legal turn, and negative
for an illegal turn. (ii) A road segment is given more weight if it is directly
connected to the previous road segment, known as the link connectivity weight.
The weight is positive for a connected road and i s negative for a road that is
not connected to the previous road.

In the Hashemi and Karimi (2014) review of real-time map-matching algorithms,
it was concluded, after taking into account its accuracy, simplicity and performance,
that the Velaga algorithm (Velaga et al., 2009) was better than all the other examined
geometric, topological and weight-based algorithms, having outputs which compete
with the results obtained from advanced algorithms. The Velaga algorithm achieved
a 96.71% matching accuracy when tested. Nevertheless, some drawbacks were
identified. Firstly, the direction difference between consecutive GPS points is
not considered. Secondly, skewed results are provided if a vehicle passes a short
segment between consecutive GPS points, when illegal turns are made and in off
road conditions. Lastly, the weights were derived empirically, which is less desirable
than if they were derived analytically.

Advanced map matching algorithms

Advanced map matching algorithms are more complex processes that make use of
concepts such as Kalman Filters (Kim et al., 2000), Fuzzy Logic (Quddus et al., 2006)
and Hidden Markov Models (Newson & Krumm, 2009). Goh Dauwels, Mitrovic, Asif,
Oran, and Jaillet (2012) use an HMM with a variable sliding window to compute
transition probabilities on a real time basis or delay by one output if the probability
calculated is below a threshold. The sliding window works by eliminating nodes
in the calculation that were received before a certain timestamp, thus being able
to efficiently compute probabilities with just the latest points. These advanced
algorithms add a level of computational complexity and resource usage to the
process, causing more battery consumption and heating up of devices when used
as a mobile app.

Algorithm comparative Study

This section describes the comparative study carried out to determine which

Adrian Muscat, Francesco Cremona & Maria Attard

239

algorithm is implemented in the app. Factors considered were accuracy of data
and delay in alerting the user. Point-to-point, point-to-curve, curve-to-curve and
the weight-based topological map matching algorithms were implemented. Output
accuracies were examined with respect to different GPS sampling rate and urban
density. In theory, geometric map-matching algorithms’ accuracy is not affected by
different GPS sampling rates, since only the most recent point is used. On the other
hand, the accuracy of Topological map-matching algorithms is dependent on the
GPS sampling rate.

Road network data

Map matching algorithms require a map data source to be able to relate GPS retrieved
data to the road network. Google Maps (GM), (Google Maps Platform, n.d.), and
Open Street Maps (OSM), (Open Street Map, n.d.) were considered for selecting
the most suitable map data provider. Open Street Maps was chosen, since it is a
crowd sourced, open source map database with the possibility of adding speed limit
information. Two files were created from the OSM data. One w a s c r e a t e d for
the querying of road network data by the algorithms via a SQL Spatialite database,
and another in ‘.map’ format which was used to display the map on screen. This
enables the mobile app to function without the need of an internet connection.

Firstly, the algorithm queries all OSM nodes that are marked as highway
or road nodes within a radius of 290m, so that i t retrieves a list of all the
candidate roads. This radius was determined by finding the longest single road
segment within the OSM data. The radius used accommodates for the vehicle
being in the middle of the longest road, at around 283m equidistant from the start
and end nodes of the road. Roads are then filtered to only those within a radius of
160m, as determined by Velaga, Quddus and Bristow (2009). The algorithms were
implemented in Java and SQL with the Spatialite plugin, which is an environment
compatible with the Android platform.

Implementation of Map matching algorithms

1)	 Point-to-Point: An SQL Spatialite query is executed to sort road nodes around
the GPS point in descending order by distance from the current point, and the
shortest one is chosen. The OSM way in which the node is part of is chosen
as the road on which the vehicle is travelling. Since intersection nodes have
more than one way associated with them, priority is given to roads that have
names over those that don’t, otherwise, the way is chosen randomly. A curve
is constructed using all the nodes within the way, and the GPS point is then
projected onto the closest point on the road.

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

240

2)	 Point-to-Curve: A curve is constructed for each road within the 160m radius
and the shortest distance from the point to the curve is calculated for each
road. The distances are then ordered in ascending order and the road with the
shortest distance is chosen. The GPS point is then projected to the closest point
on the curve.

3)	 Curve-to-Curve: Two approaches are used to calculate the distance between
two curves. The first point is matched using a point to curve technique while the
second point is matched by finding the average minimum distance from the 2
points to the roads.
a)	 The first approach to curve-to-curve matching is to find the minimum

distance from the last 3 points to each road, and the average of these 3
values is found. The road with the shortest average distance is chosen, and
the GPS point is projected to the closest point on the road.

b)	 The second approach to curve-to-curve matching was implemented by
finding the average of the distances between equal lengths of the curves
formed from the road and the GPS trace. The line constructed from 3 GPS
points is made up of two segments. A point on the line is perpendicularly
projected from the oldest GPS point, and a curve is constructed starting from
that point, with an equal length of the GPS trace. The distance between each
respective node of the two lines is calculated and the average taken. The
road with the lowest average distance is chosen.

4) Weight-based topological map matching: I n this algorithm the heading
difference weighting is calculated differently for one-way and two-way roads.
The heading weighting’s cosine function is only used as described when a road
is one-way. When a road is two-way, the absolute value of the cosine function
between the heading difference of the road and vehicle is used, due to such
roads having two bearings, the one calculated and its supplementary angle.
The heading differences for each matched point is saved in order to calculate
the root mean square for each road. Once a point is matched to a new road,
this list is cleared. In some cases, the point is matched to roads which have
no intersections. In these cases, it is assumed that the point is always near
a junction, since if this precaution isn’t taken, then the point would remain
on the road, since it is impossible for it to ever be near a junction and would
therefore be continuously matched to the same road.

Visualisation Tool and Dataset

TraceView was created to visualise GPS traces. All nodes that form part of the road
network are displayed as red nodes on the map. This serves as a visual aid when

Adrian Muscat, Francesco Cremona & Maria Attard

241

comparing different map matching algorithms and the relationship between the
GPS points and the surrounding road nodes. Fig.1 shows TraceView’s main interface.

Figure 1. TraceView tool displaying traces and road nodes

An SQL table is used to store details on the GPS points and traces, with the related
fields describing the trace they belong to; predicted road, expected road, latitude,
longitude, time, speed, bearing, binary variable indicating if the match is correct,
binary variable indicating if the point should be shown and road density around the
point. TraceView also provides the option to add or export traces from/to CSV files
and to annotate traces and their related GPS points. Ground truth road annotations
allow for an accuracy statistic to be calculated; this is derived by comparing the
ground truth road to the road predicted by the map matching algorithms. Each GPS
point is manually labeled with the density of the area it is situated in, facilitating
testing of the map matching algorithm in different environments. Densities are
grouped in four categories; open spaces, low density rural roads, medium density
residential roads and high density roads with 4+ floor buildings.

Figure 2. Example traces from the dataset

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

242

A dataset of GPS traces was developed for the comparative analysis study,
where the performances of the various algorithms are compared in different
urban environments. An Android app was developed to collect the GPS traces at
a frequency of 1Hz. The collected 13993 GPS points were spread out across the
different densities, distributed as follows: 32% in open areas, 24% in low, 27%
in medium and 17% in high density areas. Using TraceView, the GPS traces were
manually labeled with the ground truth road name and area density. Fig.2 depicts
part of the dataset.

Results and Analysis

This section includes the testing of the implemented map matching algorithms and
the comparison of their results at different sampling intervals and environments.
TraceView was used to evaluate the algorithms’ performance. The frequency was
down sampled to time intervals of 2s, 4s and 8s by skipping GPS readings at random
intervals, with interval ranges that average the required interval.

Point-to-point is the simplest algorithm, providing the lowest performance.
Table 1(a) shows the accuracies of point to point at different intervals and densities.
Since this algorithm, makes use of only one reading, intervals don’t have a large
effect on accuracy. Open areas provide the highest performance for this algorithm
due to the presence of less neighbouring nodes. Low and medium density reduce
the accuracy further due to increased road nodes. Denser areas result in higher
GPS errors. However, in such areas, there may be shorter roads and more nodes/
distance, resulting in better overall scores than Low and Medium density areas.
Table 1(b) shows an example from TraceView, where the blue trace consists of the
raw GPS points while the green trace is the map matched trace.

Point-to-curve, like point-to-point, makes use of the most recent GPS point,
therefore the interval between readings has little effect on accuracy. Results are
tabulated in Table 1(c). In an open area, the result has the highest accuracy due to
better GPS accuracy combined with less roads in the area. As the density increases,
both the GPS error and the number of roads in the region increase, resulting in an
accuracy of 79.5% in urban areas, which is significantly better than point-to-point.
Table 1(d) depicts the improvement over point-to-point matching along the road,
only for point-to-curve to fail at the junction.

Curve-to-curve has reduced performance as intervals increase, Tables 1(a, b),
since the vehicle could have travelled between roads while readings are being
processed. The algorithm is similar to the point-to-curve algorithm, but with an error
smoothing effect achieved by using multiple points. Once a vehicle has passed an
intersection, the three points used to calculate the distances may be spread across
different roads. This is especially the case at higher intervals. The two approaches to
calculate distances in curve-to-curve matching have similar accuracies.

Adrian Muscat, Francesco Cremona & Maria Attard

243

Table 1: (a) Point to Point, and (b) Point to curve results (% accuracy)

Table 2. (a) Curve to Curve (Distance between equal segments, % accuracy),
(b) Curve to Curve (Closest distance, % accuracy)

Weight-based Topological Algorithm proposed by Velaga, Quddus and Bristow
(2009) provides different weightings for urban and suburban environments. On the
local dataset and in open areas, the urban weighting resulted in a 94.8% score, but
accuracy degrades in dense areas, 75.2%. This is due to the number of roads in the
area and the variation in road curvature. This means that at an intersection, if there
is an error in the GPS heading information, then it is likely that the matching jumps
to a nearby road with a similar heading. The algorithm checks if a junction is within
20m distance. As the interval between readings increases, the chance of missing a
junction increases. This means that the point is projected onto the previous road.
With urban weights at 1s interval the overall score is 85.3%. Suburban weighting
results in a better overall score, 93.5%. Intervals have less of an effect on the
accuracy, with an overall 90.7% correct matches compared to the urban weighting’s
78.3% at an interval of 8s. This algorithm is the most accurate, having an overall
accuracy of over 90.7% for all intervals.

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

244

In some situations where the vehicle is travelling at a relatively high speed,
junctions are not detected. Therefore, when the conjunction condition (vehicle is
assumed to be traversing a road, not close to a junction and the projected point
is more than 160m away) is detected, it is assumed that a junction has just been
passed. This change brought about a noticeable improvement in accuracy at higher
intervals, shown in Tables 3(c, d), since junctions are more likely to be missed at
these frequencies. Additionally, the overall frequency at 1Hz also improved from
93.5% to 94.4% for the suburban weights, and from 85.3% to 85.6% for the urban
weights.

Table 3. Percentage accuracy for the Velaga Algorithm with (a) Urban weights,
(b) Suburban weights, (c) Suburban weights and 160m check, (d) Urban weights and 160m check.

Modified Weight-based Topological Algorithm: The Velaga algorithm was modified
to lower its computational complexity. The routine is executed as if it was always at
an intersection instead of checking for a nearby intersection. The turn restriction
check is removed, as this data on OSM is lacking and adds computational time for
little effect. If the speed is 0, then the point is still matched to the previous road.
The Suburban weights provided a higher accuracy than the Urban weights. The
Urban weight gives the heading a higher weight, while the Suburban gives an equal
weighting to distance and heading. For this modified algorithm, the heading weight
was therefore reduced to achieve the weights given in Table 4(a). Additionally,
the modified algorithm provided the best results out of all the algorithms, having
negligible 1.3% accuracy loss when changing the interval from 1s to 8s.

Adrian Muscat, Francesco Cremona & Maria Attard

245

Table 4. Modified Velaga Algorithm (a) Modified weights, (b) Percentage accuracy

Summary: Table 5 displays the overall accuracies of all the algorithms studied. The
accuracies are displayed for each frequency tested.

Design Consideration for the Mobile App

The prototype mobile app, Speed Aware, assists drivers in observing speed limits
whilst driving. The app informs users on whether they are under-speeding, over-
speeding or driving at the right speed, which arbitrarily is defined as the 10% range
below the speed limit. The map matching algorithm is to be used to match the GPS
point to the road network, from which the speed limit information is obtained. Fig.3
depicts the system in a flow-diagram.

Table 5: Percentage accuracies for all the algorithms

Algorithm 1s 2s 4s 8s
Point to Point 68.2 68.0 67.5 68.2
Point to Curve 90.0 89.4 89.3 89.3
Curve to Curve 1 91.2 89.8 85.3 77.7
Curve to Curve 2 90.7 89.9 86.5 79.7
Suburban weighted 94.4 93.9 93.3 93.4
Urban weighted 85.6 85.8 85.1 79.0
Modified weighted 94.9 94.1 93.3 93.6

The choice of the optimal map matching algorithm is based on accuracy and delay,
which depend on sampling rate and computational complexity. The average time
taken from when a GPS point is collected to the point being matched to the road
network was measured (Table 6). The processing time, tproc, is a function of the
number of roads sampled. If the modified Velaga algorithm was to be selected as
the algorithm, then the GPS interval would have to be set at 2s, since the average
tproc is 1504ms. The total delay is then 2s + tproc. A delay of 3.5s is not suitable for the
app and therefore the point-to-curve algorithm is chosen for the app, which has the
lowest tproc=951ms. The time interval between GPS points is set to the processing

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

246

time of the previous GPS point, adding an extra 5% margin to prevent stalling of the
app. If 105% of tproc is 1000ms or lower, then the interval is set at 1000ms.

Fig 3. The system diagram for the prototype mobile app, speed aware.

Table 6: Map Matching Algorithm delay

Algorithm Processing delay tproc (ms)

Velaga et al. (2009) with Suburban weights 2365

Modified Velaga et al. (2009) 1504

Point to curve 951

Curve to curve 2236

The mobile interface was designed to be as simple as possible, and usable by anyone.
The application was split up into 3 pages; (a) Home: The home page displays speed,
speed limit, a start and stop button, and the correct speed or over/under-speeding
ranges. When over-speeding, a beeping alarm is sounded; (b) Journeys: The page
in which the users can access their past journeys. Traces are coloured depending
on driving performance compared to the speed limit, being clickable to view more
detailed information on the speed and limit; (c) About: Displays terms of service,
use, privacy policy and contact information. Figure 4 gives examples of the pages.

Adrian Muscat, Francesco Cremona & Maria Attard

247

Speed limits are obtained from Open Street Maps. If the value is not found, the
speed limit defaults to 50km/hr and the user is notified. Short term variations in
GPS speed readings are smoothed out and, after comparing different window sizes,
a steady change in speed is achieved with a 4 second window. All GPS points from
the last 4 seconds are used, adapting to algorithm delay.

Conclusion and Future Work

In this project, a review of map matching algorithms was carried out to compare
various proposed geometric and topological algorithms. Geometric and topological
algorithms map matching algorithms were implemented, together with a modified
version of the Velaga et al. (2009) algorithm. The highest accuracy of 94.9% was
obtained from the modified weight-based topological algorithm.

A visualisation and annotation tool, TraceView, was developed and used
to assemble a labelled dataset of GPS traces obtained from different urban
environments. Advanced algorithms that use Hidden Markov Models, for example,
could be considered as they provide better results in terms of accuracy, at the cost
of having larger computational and implementational complexity. The feasibility of
running such algorithms on phones could be tested.

An Android app, Speed Aware, was developed, giving users road speed
information in real time. Additionally, saved journeys are displayed on a map and
the trace is shown as a heatmap, indicating under-speeding or over-speeding and
neutral, and a beeping alarm alerts the driver when speeds exceed the limit for that

Fig.4. The mobile app display, (a) Home interface, (b) Notification shown
when speed limit defaults to 50km/hr , (c) Saved journey viewer

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

248

particular road. The map matching algorithms were tested in the app to determine
which is the most suitable algorithm to use, that is, the one having accurate speed
information with the least delay. The most accurate algorithm was found to have an
average processing time of 1504ms. On the other hand, the point-to-curve algorithm
has a processing time of 951ms, which translates into more timely road updates.
The GPS reading interval adapts to 105% of the time taken for the previous point to
be matched to the road network, to prevent the app from stalling. A smoothing filter
was used to smooth out short term sharp changes in the speed reading. This filter
was set to a moving window of 4s, which, at a 1Hz GPS frequency, takes 4 readings,
but when the intervals increase, the number of readings decrease so that a 4 second
window is never exceeded.

In the testing of the accuracy of correct road identification, the original GPS
traces were manually labelled with the road name on which the vehicle was actually
driving on. At intersections, there is some ambiguity on which road should the point
be matched, by matching a GPS point which is in the middle of an intersection to the
road which wasn’t labelled. As an improvement, the road annotation feature could
be changed to multi-label, so as to provide two road names at intersections, and if
the matched road is one of the two, the matching is set as correct.

The algorithms were tested using a mix of Java and SQLite queries with the
functionality of the Spatialite SQL plugin for geometric functions. It should be
examined whether better data structures and schemas could be used to reduce the
computational complexity of the algorithms.

Speed limits are derived from OSM data which are updated in a crowdsourced
manner. During testing, it was determined that some road speed limits are not up
to date or missing. For the app to provide more accurate information and be more
reliable, complete speed limit information should be uploaded to the open source
OSM database. Currently, the speed limit defaults to 50km/hr when no data is
available for the road, which may be high for residential roads.

References

Bentley, J. and Maurer, H. (1980). Efficient worst-case data structures for range searching.
Departments of Computer Science and Mathematics, Carnegie-Mellon University.

Bernstein, D. and Kornhauser, A. (1996). An introduction to map matching for personal
navigation assistants. New Jersey TIDE Center Technical Report.

Ciao, D. (n.d.). Velociraptor - Speed Limits Speedometer. Available at https://play.google.com/
store/apps/details?id=com.pluscubed.velociraptor [Accessed 25 April 2018].

Goh, C., Dauwels, J., Mitrovic, N., Asif, M., Oran, A. and Jaillet, P. (2012). Online map-matching
based on hidden markov model for real-time traffic sensing applications. Intelligent
Transportation Systems (ITSC), 2012 15th International IEEE Conference on, 776-781.

Google Maps Platform (n.d.). Maps SDK for Android. Available at https://developers.google.
com/maps/documentation/android-sdk/intro [Accessed 15 February 2018].

Adrian Muscat, Francesco Cremona & Maria Attard

https://play.google.com/store/apps/details?id=com.pluscubed.velociraptor
https://play.google.com/store/apps/details?id=com.pluscubed.velociraptor
https://developers.google.com/maps/documentation/android-sdk/intro
https://developers.google.com/maps/documentation/android-sdk/intro

249

Greenfeld, J. S. (2002). Matching GPS observations to locations on a digital map.
Hashemi, M. and Karimi, H. A. (2014). A critical review of real-time map-matching algorithms:

Current issues and future directions. Computers, Environment and Urban Systems,
48, 153–165.

Hoel, L. A. and Garber, N. J. (2008). Traffic and highway engineering, course technology.
Cengage Learning.

Kim, J. S., Lee, J., Kang, T. H., Lee, W. Y. and Kim, Y. G. (1996). Node based map-matching
algorithm for car navigation system. Proceedings of 29th international symposium on
automative technology and automation (ISATA), 121–126.

Kim, W., Jee, G. and Lee, J. (2000). Efficient use of digital road map in various positioning for
its. IEEE Symposium on Position Location and Navigation.

Langley, R. B. (1997). The GPS error budget. GPS World, 8, 51–56.
Li, L., Quddus, M. and Zhao, L. (2013). High accuracy tightly-coupled integrity monitoring

algorithm for map-matching. Transportation Research Part C: Emerging Technologies, 36,
13–26.

Marchal, F., Hackney, J. and Axhausen, K. W. (2004). Efficient map-matching of large GPS data
sets - tests on a speed monitoring experiment in Zurich. Technical Report, 244.

Najjar, M. E. E. and Bonnifait, P. (2005). A road-matching method for precise vehicle localization
using belief theory and kalman filtering. Journal of Intelligent Transportation Systems,
19(2), 173-191.

National Statistics Office (n.d.). News release: Motor vehicles: Q3/2017. Available at
https://nso.gov.mt/en/News_Releases/View_by_Unit/Unit_B3/Environment_Energy_
Transport_and_Agriculture_Statistics/Documents/2017/News2017_168.pdf [Accessed
19 November 2017].

Newson, P. and Krumm, J. (2009). Hidden Markov map matching through noise and sparseness.
GIS ’09 Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 336–343.

Open Street Map (n.d.). Available at https://www.openstreetmap.org/ [Accessed 15 February
2018].

Quddus, M. A., Noland, R. B. and Ochieng, W. Y. (2006). A high accuracy fuzzy logic based
map matching algorithm for road transport. Journal of Intelligent Transportation Systems,
10(3), 103–115.

Quddus, M. A., Ochieng, W. Y. and Noland, R. B. (2007). Current map-matching algorithms
for transport applications: State-of-the art and future research directions. Transportation
Research Part C: Emerging Technologies, 15(5), 312–328.

Road Safety Strategy Malta (2014), Ministry for Transport and Infrastructure.
Sygic (n. d). Speed cameras traffic sygic. Available at https://play.google.com/store/apps/

details?id=com.sygic.speedcamapp [Accessed 25 April 2018].
Velaga, N. R., Quddus, M. A. and Bristow, A. L. (2009). Developing an enhanced weight-based

topological map-matching algorithm for intelligent transport systems. Transportation
Research Part C: Emerging Technologies, 17(6), 672–683.

White, C., Bernstein, D. and Kornhauser, A. L. (2000). Some map matching algorithms for
personal navigation assistants. Transportation Research Part C Emerging Technologies,
8(1-6), 91-108.

Zhao, Y. (1997). Vehicle location and navigation system. Artech House, Inc., MA.

Speed Aware – a Mobile App Prototype for the Promotion of Responsible Driving

https://nso.gov.mt/en/
https://www.openstreetmap.org/
https://play.google.com/store/apps/details?id=com.sygic.speedcamapp
https://play.google.com/store/apps/details?id=com.sygic.speedcamapp

250

Bio-notes

Professor Adrian Muscat is Associate Professor at the Department of
Communications and Computer Engineering, University of Malta. His research
interests are in the application of pattern recognition models, discrete event
simulation and optimization applied to image understanding - with special
emphasis on semantic relations in images, and transport - mainly the study and
development of demand responsive transport systems.
Francesco Cremona was awarded a BSc in Computer Engineering by the
University of Malta. His main research interests and experiences are in the
application of machine learning algorithms and the development of mobile
apps. He is currently employed as a software engineer in the FinTech industry
and focuses on blockchain technology.
Professor Maria Attard is Head of Geography and Director of the Institute for
Climate Change and Sustainable Development at the University of Malta. She
studied at the University of Malta and completed her PhD in 2006 at UCL (London)
and has published in the areas of urban transport, planning and policy. She is Co-
Editor of Research in Transportation Business and Management, Associate Editor
of Case Studies in Transport Policy and co-editor of the Emerald Book Series on
Transport and Sustainability.

Adrian Muscat, Francesco Cremona & Maria Attard

