
307

Combinatory Logic: From Philosophy
and Mathematics to Computer Science

 Alexander Farrugia
 alex.farrugia@um.edu.mt

Abstract

In 1920, Moses Schönfinkel provided the first rough details of what later became
known as combinatory logic. This endeavour was part of Hilbert’s program to
formulate mathematics as a consistent logic system based on a finite set of axioms
and inference rules. This program’s importance to the foundations and
philosophical aspects of mathematics is still celebrated today. In the 1930s, Haskell
Curry furthered Schönfinkel’s work on combinatory logic, attempting – and failing –
to show that it can be used as a foundation for mathematics. However, in 1947, he
described a high-level functional programming language based on combinatory
logic. Research on functional programming languages continued, reaching a high
point in the eighties. However, by this time, object-oriented programming
languages began taking over and functional languages started to lose their appeal.
Lately, however, a resurgence of functional languages is being noted. Indeed, many
of the commonly-used programming languages nowadays incorporate functional
programming elements in them, while functional languages such as Haskell, OCaml
and Erlang are gaining in popularity. Thanks to this revival, it is appropriate to
breathe new life into combinatory logic by presenting its main ideas and
techniques in this paper.

Keywords: combinatory logic, combinator, functional programming, logic and
philosophy, foundations of mathematics.

Introduction: Schönfinkel’s Idea

In first-order logic, well-formed formulas such as the following are frequently
encountered:

 (())
 here means ‘ is a number’, while means ‘ is greater than ’. The above
well-formed formula thus reads ‘For all , if is a number, then there exists such
that is a number and is greater than .’

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/185533754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

308

 Schönfinkel wanted to write down well-formed formulas in first-order logic in a
way that did not require variables (Bimbó, 2016). To do this, he invented a new
symbol and defined it as follows:

 ()
 The above reads ‘There does not exist such that both and are true’. For
example, the logical sentence ‘No rabbit eats meat’ can be written as , where
 means ‘ is a rabbit’ and means ‘ eats meat’. In this way, the variable is
eliminated.
 To do the same thing for the expression (()), the
implication symbol is first converted into a conjunction symbol . This is done by
noticing that means the same as (Mendelson, 1997, p.12). In other
words, the statement ‘If , then ’ is equivalent to the statement ‘either is false
or is true’. It is assumed that the semantics of the word ‘or’ allow at least one of
 or to be true. For instance, the sentences ‘If it is raining, then it is cloudy’ and
‘it is either not raining or it is cloudy (or both)’ mean the same thing. Furthermore,
the expression () means the same as – in other words, ‘it is not
the case that both and are true’ and ‘either is false or is false (or both)’ are
equivalent (Mendelson, 1997, pp.11-12). In this fashion, the bracket
 () first gets transformed into () and then into
 (()). Lastly, the well-formed formula () is equivalent
to () (Mendelson, 1997, p.52). In layman’s terms, the statements ‘all do
not satisfy property ’ and ‘there exists no that satisfies property ’ mean the
same thing. For example, the sentences ‘all rabbits do not eat meat’ and ‘there is
no rabbit that eats meat’ are synonymous. Thus, the well-formed formula
 (()) is converted to ((())) as
explained beforehand, and then to the well-formed formula

 (())
 The reason why these transformations were performed is that the above
expression is much more amenable to using the symbol mentioned above. For
example, the subexpression

 ()
is almost of the form () needed. Unfortunately, the variable in the
expression needs to be in the end for these two expressions to match. Thus,
Schönfinkel introduced the following combinators (1924), having the following
rules:

 ()

 ()

 In our case, is written as , so that () becomes
 (). The symbol may now be applied to this expression, replacing
it with (). The well-formed formula (()) hence
becomes (()).
 Moreover, the combinator is used to convert () into ()() .
This allows the use of the symbol again; (()) is converted to
 (()()), and then, finally, to (()()).
 In this manner, Schönfinkel showed how to convert first-order well-formed
formulas into expressions involving no variables at all by using the combinators ,
 , , and . This new way of writing well-formed formulas became known as
combinatory logic (Bimbó, 2016). Combinatory logic completely solves the problem
of deciding how variables are bounded to the quantifiers and , by dispensing of
variables altogether. The disadvantage is that the final expression
 (()()) is less readable than the original expression (
 ()). However, this is of no concern to a computer, and, indeed,
combinatory logic is the basis upon which computer functional programming
languages work (Peyton Jones, 1987, pp.260-280).

Computer Science

 In computer science, Schönfinkel’s , , , and combinators are treated as
functions, each of which behaves in the way defined above. This idea is the basis of
what is nowadays called functional programming. For example, the combinator ,
having the rule , is treated as a function that takes a variable as input and
returns itself as output. Similarly, the combinator can be interpreted as being a
function that takes two inputs and and returns as output, completely
ignoring the second input (Bird & Wadler, 1988, pp.8-9).
 This interpretation of combinators as functions allows the input variables, like
and above, to be functions themselves. Indeed, they may even be other
combinators. For example, the combinator, having the rule (), is
interpreted as being a function taking three inputs , and and which outputs
the result obtained after applying the function to the result of applying the
function to . This means, essentially, that the expression means, from a
functional programming perspective, ‘the function applied to ’ (Bird & Wadler,
1988, p.9). In mathematics, such an expression is usually written as ().
 Another useful idea in functional programming is the fact that the output of a
function may be a function itself. This is illustrated by the combinator
 , which takes three inputs , and . The combinator first applies the
function to , resulting in the function . This function is then applied to the
variable , and the output of this final function application is the output of the

Alexander Farrugia

309

 Schönfinkel wanted to write down well-formed formulas in first-order logic in a
way that did not require variables (Bimbó, 2016). To do this, he invented a new
symbol and defined it as follows:

 ()
 The above reads ‘There does not exist such that both and are true’. For
example, the logical sentence ‘No rabbit eats meat’ can be written as , where
 means ‘ is a rabbit’ and means ‘ eats meat’. In this way, the variable is
eliminated.
 To do the same thing for the expression (()), the
implication symbol is first converted into a conjunction symbol . This is done by
noticing that means the same as (Mendelson, 1997, p.12). In other
words, the statement ‘If , then ’ is equivalent to the statement ‘either is false
or is true’. It is assumed that the semantics of the word ‘or’ allow at least one of
 or to be true. For instance, the sentences ‘If it is raining, then it is cloudy’ and
‘it is either not raining or it is cloudy (or both)’ mean the same thing. Furthermore,
the expression () means the same as – in other words, ‘it is not
the case that both and are true’ and ‘either is false or is false (or both)’ are
equivalent (Mendelson, 1997, pp.11-12). In this fashion, the bracket
 () first gets transformed into () and then into
 (()). Lastly, the well-formed formula () is equivalent
to () (Mendelson, 1997, p.52). In layman’s terms, the statements ‘all do
not satisfy property ’ and ‘there exists no that satisfies property ’ mean the
same thing. For example, the sentences ‘all rabbits do not eat meat’ and ‘there is
no rabbit that eats meat’ are synonymous. Thus, the well-formed formula
 (()) is converted to ((())) as
explained beforehand, and then to the well-formed formula

 (())
 The reason why these transformations were performed is that the above
expression is much more amenable to using the symbol mentioned above. For
example, the subexpression

 ()
is almost of the form () needed. Unfortunately, the variable in the
expression needs to be in the end for these two expressions to match. Thus,
Schönfinkel introduced the following combinators (1924), having the following
rules:

 ()

 ()

 In our case, is written as , so that () becomes
 (). The symbol may now be applied to this expression, replacing
it with (). The well-formed formula (()) hence
becomes (()).
 Moreover, the combinator is used to convert () into ()() .
This allows the use of the symbol again; (()) is converted to
 (()()), and then, finally, to (()()).
 In this manner, Schönfinkel showed how to convert first-order well-formed
formulas into expressions involving no variables at all by using the combinators ,
 , , and . This new way of writing well-formed formulas became known as
combinatory logic (Bimbó, 2016). Combinatory logic completely solves the problem
of deciding how variables are bounded to the quantifiers and , by dispensing of
variables altogether. The disadvantage is that the final expression
 (()()) is less readable than the original expression (
 ()). However, this is of no concern to a computer, and, indeed,
combinatory logic is the basis upon which computer functional programming
languages work (Peyton Jones, 1987, pp.260-280).

Computer Science

 In computer science, Schönfinkel’s , , , and combinators are treated as
functions, each of which behaves in the way defined above. This idea is the basis of
what is nowadays called functional programming. For example, the combinator ,
having the rule , is treated as a function that takes a variable as input and
returns itself as output. Similarly, the combinator can be interpreted as being a
function that takes two inputs and and returns as output, completely
ignoring the second input (Bird & Wadler, 1988, pp.8-9).
 This interpretation of combinators as functions allows the input variables, like
and above, to be functions themselves. Indeed, they may even be other
combinators. For example, the combinator, having the rule (), is
interpreted as being a function taking three inputs , and and which outputs
the result obtained after applying the function to the result of applying the
function to . This means, essentially, that the expression means, from a
functional programming perspective, ‘the function applied to ’ (Bird & Wadler,
1988, p.9). In mathematics, such an expression is usually written as ().
 Another useful idea in functional programming is the fact that the output of a
function may be a function itself. This is illustrated by the combinator
 , which takes three inputs , and . The combinator first applies the
function to , resulting in the function . This function is then applied to the
variable , and the output of this final function application is the output of the

Combinatory Logic: From Philosophy and Mathematics to Computer Science

310

combinator. In essence, the expression really means () . Likewise, the
expression () taken from the definition of the combinator means ()(),
and the expression means () or even (()) . This idea is called
currying (Bird & Wadler, 1988, p.12; Peyton Jones, 1987, p.10), after Haskell Curry,
who rediscovered combinatory logic independently of Schönfinkel and dedicated a
lot of research on it.
 As an aside, Schönfinkel only published two papers during his lifetime, one in
1924 (1924) and another in 1929 (Bernays & Schönfinkel, 1929). Only the 1924
paper was on combinatory logic and this idea of currying. This lack of proficiency by
Schönfinkel is attributed to a mental illness, starting from 1927 till his death in
1942 (Kline & Anovskaa, 1951). Indeed, his second paper in 1929 was only
published due to the efforts of his coauthor Paul Bernays. Curry always credited
the concept of currying to Schönfinkel, although it must be said that the idea of
currying had already been mentioned by the philosopher Gottlob Frege even
before Schönfinkel (Quine, 1967). Nowadays, the programming language Haskell is
named after Haskell Curry (Hudak et al, 2007).

The sufficiency of and

 Incredibly, Schönfinkel (1924) also showed that the combinators , and are
superfluous, because they can be defined in terms of the other two combinators,
and . Indeed:

 ()
 ()()

For example, reduces to () by using the combinator rule, and then
 () reduces to by using the combinator rule. This may be written down as

 ()
or simply as

 But since using the combinator rule, and affect the variable in
the same way. Because of this, the combinator is said to be extensionally equal to
the combinator expression , written (Peyton Jones, 1987, p.266;
Barendregt, 1984, pp.151-163; Hindley & Seldin, 2008, p.26). In a similar way, the
combinator may be proved to be extensionally equal to the combinator expression
 () :

 () () () () ()
 Here is the proof that the combinator is extensionally equal to the combinator
expression ()():

 ()() () ()()
 () () ()

Turing Completeness

Even more surprisingly, any computable function can be expressed using any or all
of Schönfinkel’s five combinators , , , and . This means that any computer
program may be written using these five combinators only (Hindley & Seldin, 2008,
p.47). The combinators , , , and are said to be Turing complete. In fact, by
applying the results of the previous section, since , and may be themselves
expressed in terms of and , the two combinators and alone suffice to write
any computer program – a result that is as astounding as it is beautiful.
 The following recursive algorithm converts any function , having the inputs
 , into a combinator expression involving some or all the
combinators , , , and (Peyton Jones, 1987, p.270; Curry & Feys, 1958). This
provides an informal proof for the claim in the previous paragraph.

Algorithm:

Step 1. Step 1: If the function has no arguments and is defined as the combinator
expression , then output and halt.

Step 2. Step 2: Otherwise, is equivalent to the function
 [] , where [] is defined as follows:

a. [] ;
b. [] , if the expression does not contain the variable ;
c. [] , if the expression is the function application and does not

contain the variable ;
d. [] [] , if the expression is the function application , where
 does not contain the variable and contains the variable ;

e. [] [] , if the expression is the function application , where
 contains the variable and does not contain the variable ;

f. [] [] [] , if the expression is the function application ,
where both and contain the variable .

 As an illustration, the function , defined as , will be converted
into a combinator expression using the above algorithm. Since this function has
two arguments, Step 2 of the algorithm is invoked, writing down as
 [()] By Step 2f., [()] [] [] . By Step 2c. and Step 2a.
respectively, [] and [] . Hence

 is the same as
 The variable has been eliminated. To eliminate variable , Step 2 of the
algorithm is again used, so that is written down as [()] . By
Step 2e., [()] [] . Moreover, by Step 2c., [] . Thus

 is the same as .
 Step 1 of the algorithm is now called to finalize the function as the
combinator expression . The expression is now checked to confirm that

Alexander Farrugia

311

combinator. In essence, the expression really means () . Likewise, the
expression () taken from the definition of the combinator means ()(),
and the expression means () or even (()) . This idea is called
currying (Bird & Wadler, 1988, p.12; Peyton Jones, 1987, p.10), after Haskell Curry,
who rediscovered combinatory logic independently of Schönfinkel and dedicated a
lot of research on it.
 As an aside, Schönfinkel only published two papers during his lifetime, one in
1924 (1924) and another in 1929 (Bernays & Schönfinkel, 1929). Only the 1924
paper was on combinatory logic and this idea of currying. This lack of proficiency by
Schönfinkel is attributed to a mental illness, starting from 1927 till his death in
1942 (Kline & Anovskaa, 1951). Indeed, his second paper in 1929 was only
published due to the efforts of his coauthor Paul Bernays. Curry always credited
the concept of currying to Schönfinkel, although it must be said that the idea of
currying had already been mentioned by the philosopher Gottlob Frege even
before Schönfinkel (Quine, 1967). Nowadays, the programming language Haskell is
named after Haskell Curry (Hudak et al, 2007).

The sufficiency of and

 Incredibly, Schönfinkel (1924) also showed that the combinators , and are
superfluous, because they can be defined in terms of the other two combinators,
and . Indeed:

 ()
 ()()

For example, reduces to () by using the combinator rule, and then
 () reduces to by using the combinator rule. This may be written down as

 ()
or simply as

 But since using the combinator rule, and affect the variable in
the same way. Because of this, the combinator is said to be extensionally equal to
the combinator expression , written (Peyton Jones, 1987, p.266;
Barendregt, 1984, pp.151-163; Hindley & Seldin, 2008, p.26). In a similar way, the
combinator may be proved to be extensionally equal to the combinator expression
 () :

 () () () () ()
 Here is the proof that the combinator is extensionally equal to the combinator
expression ()():

 ()() () ()()
 () () ()

Turing Completeness

Even more surprisingly, any computable function can be expressed using any or all
of Schönfinkel’s five combinators , , , and . This means that any computer
program may be written using these five combinators only (Hindley & Seldin, 2008,
p.47). The combinators , , , and are said to be Turing complete. In fact, by
applying the results of the previous section, since , and may be themselves
expressed in terms of and , the two combinators and alone suffice to write
any computer program – a result that is as astounding as it is beautiful.
 The following recursive algorithm converts any function , having the inputs
 , into a combinator expression involving some or all the
combinators , , , and (Peyton Jones, 1987, p.270; Curry & Feys, 1958). This
provides an informal proof for the claim in the previous paragraph.

Algorithm:

Step 1. Step 1: If the function has no arguments and is defined as the combinator
expression , then output and halt.

Step 2. Step 2: Otherwise, is equivalent to the function
 [] , where [] is defined as follows:

a. [] ;
b. [] , if the expression does not contain the variable ;
c. [] , if the expression is the function application and does not

contain the variable ;
d. [] [] , if the expression is the function application , where
 does not contain the variable and contains the variable ;

e. [] [] , if the expression is the function application , where
 contains the variable and does not contain the variable ;

f. [] [] [] , if the expression is the function application ,
where both and contain the variable .

 As an illustration, the function , defined as , will be converted
into a combinator expression using the above algorithm. Since this function has
two arguments, Step 2 of the algorithm is invoked, writing down as
 [()] By Step 2f., [()] [] [] . By Step 2c. and Step 2a.
respectively, [] and [] . Hence

 is the same as
 The variable has been eliminated. To eliminate variable , Step 2 of the
algorithm is again used, so that is written down as [()] . By
Step 2e., [()] [] . Moreover, by Step 2c., [] . Thus

 is the same as .
 Step 1 of the algorithm is now called to finalize the function as the
combinator expression . The expression is now checked to confirm that

Combinatory Logic: From Philosophy and Mathematics to Computer Science

312

it indeed reduces to the expression , proving that both and produce the
same output:

 ()
 The above algorithm may be thought of as a compiler that translates any
function into a combinator expression. Indeed, compilers that translated code into
combinators were used for the functional programming languages SASL and
Miranda (Peyton Jones, 1987, p.2). These two programming languages later
inspired the creation of the much more successful Haskell functional programming
language.
 Perhaps so far, the reader is not very convinced that combinatory logic may be
used to write any computer program. The following sections should alleviate this
concern.

Boolean Values

One very important feature of any programming language is the presence of
conditional statements, in which different parts of a program are evaluated
depending on whether a Boolean value is true or false. This idea may be
encapsulated using so-called Church Booleans, named after Alonzo Church (1940)
as follows:

 The symbols and stand for ‘true’ and ‘false’ respectively. If a Boolean value is
 , then is evaluated, while if it , then is evaluated. By using the algorithm in
the previous section to compile these Boolean values into combinators, the
following are obtained (Smullyan, 2000, p.212):

 The definition of as being the combinator shouldn’t be surprising, as clearly
 and have the same behaviour.
 Using these definitions of and , logical connectives such as (AND), (OR)
and (NOT) may be implemented (note that the prefix notation and is
being used here, instead of the more usual infix notation and) (Church,
1940):

 The first definition, , states that if is , then evaluates to ,
while if is , then evaluates to . This is, of course, what is expected from the
behaviour of the NOT logical connective. The definition of the AND logical
connective, , states that if is , then evaluates to , while if is

 , then evaluates to . This may be verified by the reader to conform with the
usual interpretation of the AND logical connective that returns if and only if both
inputs and are . Finally, states that if is , then returns ,
while if is , then returns . Again, this corresponds with how the OR logical
connective is usually defined, returning if and only if both inputs and are .
 Compiling these definitions using the algorithm in the previous section results in
the following combinator expressions for , and :

 ()

 Below, the expression ()() is evaluated, to illustrate that these
definitions do indeed work as intended:

 ()()
 ()() () () ()
 () () ()
 () ()
 () ()
 ()

 Since evaluates to and evaluates to , ()() is equivalent to
 , which evaluates to . This shows that the above output is, indeed, the correct
one.

Pairs

Combinatory logic can also model pairs of objects. One way to do this is to denote
a pair () as , and then define the left and right functions and as
follows:

 ()
 ()

 To accomplish this behaviour, the symbols , and may be defined as
underneath (Pierce, 2002):

 In this way, () would reduce to and then to , which outputs the
correct value . Similarly, () would reduce to , which outputs .
 Compiling these definitions of , and into combinator expressions using the
algorithm described earlier yields:

 ()

Alexander Farrugia

313

it indeed reduces to the expression , proving that both and produce the
same output:

 ()
 The above algorithm may be thought of as a compiler that translates any
function into a combinator expression. Indeed, compilers that translated code into
combinators were used for the functional programming languages SASL and
Miranda (Peyton Jones, 1987, p.2). These two programming languages later
inspired the creation of the much more successful Haskell functional programming
language.
 Perhaps so far, the reader is not very convinced that combinatory logic may be
used to write any computer program. The following sections should alleviate this
concern.

Boolean Values

One very important feature of any programming language is the presence of
conditional statements, in which different parts of a program are evaluated
depending on whether a Boolean value is true or false. This idea may be
encapsulated using so-called Church Booleans, named after Alonzo Church (1940)
as follows:

 The symbols and stand for ‘true’ and ‘false’ respectively. If a Boolean value is
 , then is evaluated, while if it , then is evaluated. By using the algorithm in
the previous section to compile these Boolean values into combinators, the
following are obtained (Smullyan, 2000, p.212):

 The definition of as being the combinator shouldn’t be surprising, as clearly
 and have the same behaviour.
 Using these definitions of and , logical connectives such as (AND), (OR)
and (NOT) may be implemented (note that the prefix notation and is
being used here, instead of the more usual infix notation and) (Church,
1940):

 The first definition, , states that if is , then evaluates to ,
while if is , then evaluates to . This is, of course, what is expected from the
behaviour of the NOT logical connective. The definition of the AND logical
connective, , states that if is , then evaluates to , while if is

 , then evaluates to . This may be verified by the reader to conform with the
usual interpretation of the AND logical connective that returns if and only if both
inputs and are . Finally, states that if is , then returns ,
while if is , then returns . Again, this corresponds with how the OR logical
connective is usually defined, returning if and only if both inputs and are .
 Compiling these definitions using the algorithm in the previous section results in
the following combinator expressions for , and :

 ()

 Below, the expression ()() is evaluated, to illustrate that these
definitions do indeed work as intended:

 ()()
 ()() () () ()
 () () ()
 () ()
 () ()
 ()

 Since evaluates to and evaluates to , ()() is equivalent to
 , which evaluates to . This shows that the above output is, indeed, the correct
one.

Pairs

Combinatory logic can also model pairs of objects. One way to do this is to denote
a pair () as , and then define the left and right functions and as
follows:

 ()
 ()

 To accomplish this behaviour, the symbols , and may be defined as
underneath (Pierce, 2002):

 In this way, () would reduce to and then to , which outputs the
correct value . Similarly, () would reduce to , which outputs .
 Compiling these definitions of , and into combinator expressions using the
algorithm described earlier yields:

 ()

Combinatory Logic: From Philosophy and Mathematics to Computer Science

314

 A very important construct in functional programming is the concept of a list,
which may simply be interpreted as an appropriately nested pair (Pierce, 2002,
p.500).

Numbers

Another surprising fact about combinatory logic is that it can model the natural
numbers . There are several ways of accomplishing this, for example
using Church numerals (Church, 1933). Here, Barendregt’s construction of the
natural numbers using combinatory logic (Barendregt, 1976; Smullyan, 2000,
pp.215-216) is described:

 The symbol stands for the successor of a number. For example, the number
is defined as , the successor of the number . Likewise, is defined as , or as
 (), and so on. As defined above, then, the numbers are defined as
follows:

 ()
 (())

 In this way, Barendregt numerals define a number as nested pairs (1976).
 A predicate is a function that returns a Boolean value. The way Barendregt
numerals are defined makes it easy to create a function that tests whether its
input is zero or not:

 Since nonzero numerals are pairs whose left element is always , the symbol for
‘false’, the definition of is simply , the function that extracts this left element.
When is applied to , the following happens:

 This new predicate may now be used to write a function that returns the
predecessor of a number. The predecessor of the number is , the predecessor of
the number is , and so on. Unfortunately, does not have a predecessor among
the natural numbers. Because of this, the predecessor of is defined as .

 () ()
 The predecessor function first tests whether the input number is , by
invoking . If this function returns , then returns . If returns , then
 returns , the right element of the pair that is composed of. The function
compiles to the following combinator expression using the algorithm presented
earlier in this paper:

 ()

 For example, reduces to in the following way:

 () () ()
 () () ()
 () () () ()
 () () () () ()
 () ()
 () ()

 ()
 ()

 The reduction process above shows how the predecessor of is evaluated in a
considerable number of very simple steps – a task that is very suitable to a
computer.
Of course, it would be relatively useless to define numbers if no operations, like
addition or multiplication, were defined on them. Before doing this, the
combinator needs to be discussed first.

Recursion

A very useful programming construct is the concept of a loop. In functional
programming, loops are expressed using recursion, where functions call themselves
(Bird & Wadler, 1988, pp.104-108). Recursion can be expressed in combinatory
logic using the combinator.
 Consider the function defined as follows:

 ()
 Using the algorithm presented earlier, this function compiles into the following
combinator expression:

 ()()
 Note that, from the first definition (), it is clear that reduces
to (). Of course, () reduces to (()), and then to
 ((())), and so on. Thus, the function is encapsulating the concept of
recursion, in the sense that keeps calling the function forever. This is exactly
how the notable computer scientist Alan Turing defined the combinator: as this
function (1937). In terms of the five combinators , , , and , the
combinator is defined as

 ()()(()())

Alexander Farrugia

315

 A very important construct in functional programming is the concept of a list,
which may simply be interpreted as an appropriately nested pair (Pierce, 2002,
p.500).

Numbers

Another surprising fact about combinatory logic is that it can model the natural
numbers . There are several ways of accomplishing this, for example
using Church numerals (Church, 1933). Here, Barendregt’s construction of the
natural numbers using combinatory logic (Barendregt, 1976; Smullyan, 2000,
pp.215-216) is described:

 The symbol stands for the successor of a number. For example, the number
is defined as , the successor of the number . Likewise, is defined as , or as
 (), and so on. As defined above, then, the numbers are defined as
follows:

 ()
 (())

 In this way, Barendregt numerals define a number as nested pairs (1976).
 A predicate is a function that returns a Boolean value. The way Barendregt
numerals are defined makes it easy to create a function that tests whether its
input is zero or not:

 Since nonzero numerals are pairs whose left element is always , the symbol for
‘false’, the definition of is simply , the function that extracts this left element.
When is applied to , the following happens:

 This new predicate may now be used to write a function that returns the
predecessor of a number. The predecessor of the number is , the predecessor of
the number is , and so on. Unfortunately, does not have a predecessor among
the natural numbers. Because of this, the predecessor of is defined as .

 () ()
 The predecessor function first tests whether the input number is , by
invoking . If this function returns , then returns . If returns , then
 returns , the right element of the pair that is composed of. The function
compiles to the following combinator expression using the algorithm presented
earlier in this paper:

 ()

 For example, reduces to in the following way:

 () () ()
 () () ()
 () () () ()
 () () () () ()
 () ()
 () ()

 ()
 ()

 The reduction process above shows how the predecessor of is evaluated in a
considerable number of very simple steps – a task that is very suitable to a
computer.
Of course, it would be relatively useless to define numbers if no operations, like
addition or multiplication, were defined on them. Before doing this, the
combinator needs to be discussed first.

Recursion

A very useful programming construct is the concept of a loop. In functional
programming, loops are expressed using recursion, where functions call themselves
(Bird & Wadler, 1988, pp.104-108). Recursion can be expressed in combinatory
logic using the combinator.
 Consider the function defined as follows:

 ()
 Using the algorithm presented earlier, this function compiles into the following
combinator expression:

 ()()
 Note that, from the first definition (), it is clear that reduces
to (). Of course, () reduces to (()), and then to
 ((())), and so on. Thus, the function is encapsulating the concept of
recursion, in the sense that keeps calling the function forever. This is exactly
how the notable computer scientist Alan Turing defined the combinator: as this
function (1937). In terms of the five combinators , , , and , the
combinator is defined as

 ()()(()())

Combinatory Logic: From Philosophy and Mathematics to Computer Science

316

 This combinator expression may be slightly simplified by evaluating the
combinator rule, as follows:

 ()()(()()) ((()()))
 Thus

 ((()()))
 Thanks to the combinator, addition of two numbers, for instance, may now be
defined recursively, as follows:

 () ((()))
 The sum of and () is obtained by first testing if is . If it is, then the
sum of and is . If is not , then outputs the successor of the sum of the
predecessor of and . For example, the sum of and would be evaluated,
informally, as follows:

 () (()) ()
 Since is defined in terms of itself, is a recursive function. In order to
compile this function into a combinator expression, the referral of to itself
needs to be removed first. This is accomplished by the compiler first defining the
following very similar function to :

 () ((()))
 Essentially, is like , but it has an extra input that replaces all instances of
on the right-hand side. This new function is, of course, not recursive, so it may be
compiled into a combinator expression:

 (()) ((())())
 Finally, is compiled using the combinator and the above function, simply
as:

Functional Programming

The combination of the previous sections has produced the makings of a crude
functional programming language, which first compiles statements into combinator
expressions, and then evaluates the user’s input. The combinator expressions
would be hidden from the user’s view. In this section, therefore, the internal
combinator expressions are hidden from the reader too.
 For example, below is a possible definition of subtraction of two numbers, made
in our crude programming language:

 () (()())
 means here. The subtraction is equal to if is zero, otherwise it
is equal to the subtraction of the predecessor of from the predecessor of .

 Note that if is smaller than , then returns . This can be used to test
whether is less than or equal to , by defining the predicate in our functional
programming language:

 ()

 Other relational tests may easily be written, too:

 ()
 ()
 ()
 ()()

 Note the use of the NOT () and AND () logical connectives that were defined
in an earlier section.
 To conclude, here is a short program that produces the th Fibonacci number,
that is, the th number of the sequence

 in which the first two elements are both and whose subsequent elements are
the sum of the previous two:

 ()(()())
 () ((()))
 (())

 The function takes a pair as input and outputs the pair whose left element is
the right element of and whose right element is the sum of the elements of .
For example, () outputs .
The function takes three inputs , and and outputs applied to times.
For example, outputs (), while outputs (()), which
represents the number .
 Finally, the function is our Fibonacci function. It takes a number as input and
applies the function to the pair times. After doing this, extracts the left
element of the resulting pair and produces it as its output. For example,
reduces to , informally, as follows:

 ((((())))) (((()))) ((()))

 (()) ()
 In a real-life functional programming language such as Haskell, the above
program would have a much more readable form:
FibPairNext (a,b) = (b,a+b)
Apply 0 _ x = x
Apply n f x = f (Apply (n-1) f x)
Fibonacci n = fst (Apply n FibPairNext (0,1))

Alexander Farrugia

317

 This combinator expression may be slightly simplified by evaluating the
combinator rule, as follows:

 ()()(()()) ((()()))
 Thus

 ((()()))
 Thanks to the combinator, addition of two numbers, for instance, may now be
defined recursively, as follows:

 () ((()))
 The sum of and () is obtained by first testing if is . If it is, then the
sum of and is . If is not , then outputs the successor of the sum of the
predecessor of and . For example, the sum of and would be evaluated,
informally, as follows:

 () (()) ()
 Since is defined in terms of itself, is a recursive function. In order to
compile this function into a combinator expression, the referral of to itself
needs to be removed first. This is accomplished by the compiler first defining the
following very similar function to :

 () ((()))
 Essentially, is like , but it has an extra input that replaces all instances of
on the right-hand side. This new function is, of course, not recursive, so it may be
compiled into a combinator expression:

 (()) ((())())
 Finally, is compiled using the combinator and the above function, simply
as:

Functional Programming

The combination of the previous sections has produced the makings of a crude
functional programming language, which first compiles statements into combinator
expressions, and then evaluates the user’s input. The combinator expressions
would be hidden from the user’s view. In this section, therefore, the internal
combinator expressions are hidden from the reader too.
 For example, below is a possible definition of subtraction of two numbers, made
in our crude programming language:

 () (()())
 means here. The subtraction is equal to if is zero, otherwise it
is equal to the subtraction of the predecessor of from the predecessor of .

 Note that if is smaller than , then returns . This can be used to test
whether is less than or equal to , by defining the predicate in our functional
programming language:

 ()

 Other relational tests may easily be written, too:

 ()
 ()
 ()
 ()()

 Note the use of the NOT () and AND () logical connectives that were defined
in an earlier section.
 To conclude, here is a short program that produces the th Fibonacci number,
that is, the th number of the sequence

 in which the first two elements are both and whose subsequent elements are
the sum of the previous two:

 ()(()())
 () ((()))
 (())

 The function takes a pair as input and outputs the pair whose left element is
the right element of and whose right element is the sum of the elements of .
For example, () outputs .
The function takes three inputs , and and outputs applied to times.
For example, outputs (), while outputs (()), which
represents the number .
 Finally, the function is our Fibonacci function. It takes a number as input and
applies the function to the pair times. After doing this, extracts the left
element of the resulting pair and produces it as its output. For example,
reduces to , informally, as follows:

 ((((())))) (((()))) ((()))

 (()) ()
 In a real-life functional programming language such as Haskell, the above
program would have a much more readable form:
FibPairNext (a,b) = (b,a+b)
Apply 0 _ x = x
Apply n f x = f (Apply (n-1) f x)
Fibonacci n = fst (Apply n FibPairNext (0,1))

Combinatory Logic: From Philosophy and Mathematics to Computer Science

318

 However, this is only a question of syntax. What was presented in this paper
applies to the possible implementation of any functional programming language,
including Haskell.

References

Barendregt, H. P. (1976). A Global Representation of the Recursive Functions in the Lambda-
calculus. Theoretical Computer Science, 3, 225–242.

Barendregt, H. P. (1984). The Lambda Calculus, Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics. Volume 103. North Holland.

Bernays, P. & Schönfinkel, M. (1929). Zum Entscheidungsproblem der mathematischen
Logik. Mathematische Annalen (in German). 99, 342–372.

Bimbó, K. Combinatory Logic. The Stanford Encyclopedia of Philosophy (Fall 2018 Edition)
Edward N. Zalta (ed.). 10 November 2016. Available at
https://plato.stanford.edu/archives/fall2018/entries/logic-combinatory/ [Accessed 9 August
2018]

Bird, R. & Wadler, P. (1988). Introduction to Functional Programming. New York: Prentice
Hall.

Church, A. (1933). A set of postulates for the foundation of logic (second paper). The Annals
of Mathematics Second Series, 34(4), 839–864.

Church, A. (1940). A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic, 5(2), 56–68.

Curry, H. B. & Feys, R. (1958) Combinatory Logic, Volume I. Amsterdam: North-Holland Co.

Hindley, J. R., & Seldin, J. P. (2008). Lambda-calculus and Combinators, an Introduction.
Cambridge: Cambridge University Press.

Hudak, P., Hughes, J., Peyton Jones, S. and Wadler, P. (2007). A History of Haskell: Being Lazy
with Class. Proceedings of the third ACM SIGPLAN conference on History of programming
languages (HOPL III), 12, 1–55.

Kline, G. L. & Anovskaa, S. A. (1951). Review of Foundations of Mathematics and
Mathematical Logic. Journal of Symbolic Logic, 16(1), 46–48.

Mendelson, E. (1997). Introduction to Mathematical Logic. London: Chapman & Hall.

Peyton Jones, S. L. (1987). The Implementation of Functional Programming Languages. New
York: Prentice-Hall.

Pierce, B. C. (2002). Types and Programming Languages. Cambridge: MIT Press.

Quine, W. V. O. (1967). On the building blocks of mathematical logic. In J. van Heijenoort, A
Source Book in Mathematical Logic, 1879–1931, USA: Harvard University Press, 355–366.

Schönfinkel, M. (1924). Über die Bausteine der mathematischen Logik. Mathematische
Annalen (in German), 92, 305–316.

Smullyan, R. (2000). To Mock a Mockingbird and Other Logic Puzzles Including an Amazing
Adventure in Combinatory Logic. Oxford: Oxford University Press.

Turing, A. M. (1937). The p-function in lambda-K-conversion. Journal of Symbolic Logic, 2,
164.

Bio-note

Dr Alexander Farrugia is Lecturer of Mathematics at the University of Malta, Junior
College and a part-time lecturer at the University of Malta. He was awarded a BSc.
(Hons) in Mathematics and Computer Science in 2001 and an MSc in Mathematics
in 2003 by the University of Malta. In 2016, he obtained his PhD from the same
university, studying under the supervision of Professor Irene Sciriha. His area of
expertise includes algebraic and spectral graph theory, with applications in
molecular chemistry and control theory. In his free time, he writes about
mathematics on Quora, a website where people share their knowledge with the
world. He was recognised as a Top Writer on Quora in 2017, with his writings
garnering more than 6.7 million views (as of February 2018).

References

Barendregt, H. P. (1976). A Global Representation of the Recursive Functions in the Lambda-
calculus. Theoretical Computer Science, 3, 225–242.

Barendregt, H. P. (1984). The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and
the Foundations of Mathematics. Volume 103. North Holland.

Bernays, P. & Schönfinkel, M. (1929). Zum Entscheidungsproblem der mathematischen Logik.
Mathematische Annalen (in German). 99, 342–372.

Bimbó, K. Combinatory Logic. The Stanford Encyclopedia of Philosophy (Fall 2018 Edition)
Edward N. Zalta (ed.). 10 November 2016. Available at https://plato.stanford.edu/archives/
fall2018/entries/logic-combinatory/ [Accessed 9 August 2018]

Bird, R. & Wadler, P. (1988). Introduction to Functional Programming. New York: Prentice Hall.
Church, A. (1933). A set of postulates for the foundation of logic (second paper). The Annals of

Mathematics Second Series, 34(4), 839–864.
Church, A. (1940). A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic,

5(2), 56–68.
Curry, H. B. & Feys, R. (1958) Combinatory Logic, Volume I. Amsterdam: North-Holland Co.
Hindley, J. R., & Seldin, J. P. (2008). Lambda-calculus and Combinators, an Introduction.

Cambridge: Cambridge University Press.
Hudak, P., Hughes, J., Peyton Jones, S. and Wadler, P. (2007). A History of Haskell: Being Lazy

with Class. Proceedings of the third ACM SIGPLAN conference on History of programming
languages (HOPL III), 12, 1–55.

Kline, G. L. & Anovskaa, S. A. (1951). Review of Foundations of Mathematics and Mathematical
Logic. Journal of Symbolic Logic, 16(1), 46–48.

Mendelson, E. (1997). Introduction to Mathematical Logic. London: Chapman & Hall.
Peyton Jones, S. L. (1987). The Implementation of Functional Programming Languages. New

York: Prentice-Hall.
Pierce, B. C. (2002). Types and Programming Languages. Cambridge: MIT Press.
Quine, W. V. O. (1967). On the building blocks of mathematical logic. In J. van Heijenoort, A

Source Book in Mathematical Logic, 1879–1931, USA: Harvard University Press, 355–366.
Schönfinkel, M. (1924). Über die Bausteine der mathematischen Logik. Mathematische

Annalen (in German), 92, 305–316.
Smullyan, R. (2000). To Mock a Mockingbird and Other Logic Puzzles Including an Amazing

Adventure in Combinatory Logic. Oxford: Oxford University Press.
Turing, A. M. (1937). The p-function in lambda-K-conversion. Journal of Symbolic Logic, 2, 164.

Alexander Farrugia

https://plato.stanford.edu/archives/fall2018/entries/logic-combinatory/
https://plato.stanford.edu/archives/fall2018/entries/logic-combinatory/

319

Bio-note

Dr Alexander Farrugia is Lecturer of Mathematics at the University of Malta,
Junior College and a part-time lecturer at the University of Malta. He was
awarded a BSc. (Hons) in Mathematics and Computer Science in 2001 and an
MSc in Mathematics in 2003 by the University of Malta. In 2016, he obtained his
PhD from the same university, studying under the supervision of Professor Irene
Sciriha. His area of expertise includes algebraic and spectral graph theory, with
applications in molecular chemistry and control theory. In his free time, he writes
about mathematics on Quora, a website where people share their knowledge
with the world. He was recognised as a Top Writer on Quora in 2017, with his
writings garnering more than 6.7 million views (as of February 2018).

Combinatory Logic: From Philosophy and Mathematics to Computer Science

320

