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Abstract 
 
In 1920, Moses Schönfinkel provided the first rough details of what later became 
known as combinatory logic. This endeavour was part of Hilbert’s program to 
formulate mathematics as a consistent logic system based on a finite set of axioms 
and inference rules. This program’s importance to the foundations and 
philosophical aspects of mathematics is still celebrated today. In the 1930s, Haskell 
Curry furthered Schönfinkel’s work on combinatory logic, attempting – and failing – 
to show that it can be used as a foundation for mathematics. However, in 1947, he 
described a high-level functional programming language based on combinatory 
logic. Research on functional programming languages continued, reaching a high 
point in the eighties. However, by this time, object-oriented programming 
languages began taking over and functional languages started to lose their appeal. 
Lately, however, a resurgence of functional languages is being noted. Indeed, many 
of the commonly-used programming languages nowadays incorporate functional 
programming elements in them, while functional languages such as Haskell, OCaml 
and Erlang are gaining in popularity. Thanks to this revival, it is appropriate to 
breathe new life into combinatory logic by presenting its main ideas and 
techniques in this paper. 
 
Keywords: combinatory logic, combinator, functional programming, logic and 
philosophy, foundations of mathematics. 
 
 
Introduction: Schönfinkel’s Idea 
 
In first-order logic, well-formed formulas such as the following are frequently 
encountered: 

  (     (      ))  
   here means ‘  is a number’, while     means ‘  is greater than  ’. The above 
well-formed formula thus reads ‘For all  , if   is a number, then there exists   such 
that   is a number and   is greater than  .’ 
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     Schönfinkel wanted to write down well-formed formulas in first-order logic in a 
way that did not require variables (Bimbó, 2016). To do this, he invented a new 
symbol   and defined it as follows: 

       (     )  
     The above reads ‘There does not exist   such that both    and    are true’. For 
example, the logical sentence ‘No rabbit eats meat’ can be written as    , where 
   means ‘  is a rabbit’ and    means ‘  eats meat’. In this way, the variable   is 
eliminated. 
     To do the same thing for the expression   (     (      )), the 
implication symbol   is first converted into a conjunction symbol  . This is done by 
noticing that     means the same as      (Mendelson, 1997, p.12). In other 
words, the statement ‘If  , then  ’ is equivalent to the statement ‘either   is false 
or   is true’. It is assumed that the semantics of the word ‘or’ allow at least one of 
  or   to be true. For instance, the sentences ‘If it is raining, then it is cloudy’ and 
‘it is either not raining or it is cloudy (or both)’ mean the same thing. Furthermore, 
the expression  (   ) means the same as       – in other words, ‘it is not 
the case that both   and   are true’ and ‘either   is false or   is false (or both)’ are 
equivalent (Mendelson, 1997, pp.11-12). In this fashion, the bracket    
  (      ) first gets transformed into       (      ) and then into 
 (      (      )). Lastly, the well-formed formula   (   ) is equivalent 
to    (  ) (Mendelson, 1997, p.52). In layman’s terms, the statements ‘all   do 
not satisfy property  ’ and ‘there exists no   that satisfies property  ’ mean the 
same thing. For example, the sentences ‘all rabbits do not eat meat’ and ‘there is 
no rabbit that eats meat’ are synonymous. Thus, the well-formed formula 
  (     (      )) is converted to   ( (      (      ))) as 
explained beforehand, and then to the well-formed formula 

   (      (      ))  
     The reason why these transformations were performed is that the above 
expression is much more amenable to using the   symbol mentioned above. For 
example, the subexpression 

   (      ) 
is almost of the form    (     ) needed. Unfortunately, the variable   in the 
expression     needs to be in the end for these two expressions to match. Thus, 
Schönfinkel introduced the following combinators (1924), having the following 
rules: 

       (  )  
       
      
      (  )  
          

     In our case,     is written as     , so that    (      ) becomes 
   (       ). The   symbol may now be applied to this expression, replacing 
it with   (   ).     The well-formed formula    (      (      )) hence 
becomes    (     (   )). 
     Moreover, the   combinator is used to convert   (   ) into  (  )(  ) . 
This allows the use of the   symbol again;    (     (   )) is converted to 
   (    (  )(  ) ), and then, finally, to   ( (  )(  )). 
     In this manner, Schönfinkel showed how to convert first-order well-formed 
formulas into expressions involving no variables at all by using the combinators  , 
 ,  ,   and  . This new way of writing well-formed formulas became known as 
combinatory logic (Bimbó, 2016). Combinatory logic completely solves the problem 
of deciding how variables are bounded to the quantifiers   and  , by dispensing of 
variables altogether. The disadvantage is that the final expression 
  ( (  )(  )) is less readable than the original expression   (   
  (      )). However, this is of no concern to a computer, and, indeed, 
combinatory logic is the basis upon which computer functional programming 
languages work (Peyton Jones, 1987, pp.260-280). 
 
 
Computer Science 
 
     In computer science, Schönfinkel’s  ,  ,  ,   and   combinators are treated as 
functions, each of which behaves in the way defined above. This idea is the basis of 
what is nowadays called functional programming. For example, the combinator  , 
having the rule     , is treated as a function that takes a variable   as input and 
returns   itself as output. Similarly, the   combinator can be interpreted as being a 
function that takes two inputs   and   and returns   as output, completely 
ignoring the second input   (Bird & Wadler, 1988, pp.8-9). 
     This interpretation of combinators as functions allows the input variables, like   
and   above, to be functions themselves. Indeed, they may even be other 
combinators. For example, the   combinator, having the rule       (  ), is 
interpreted as being a function taking three inputs  ,   and   and which outputs 
the result obtained after applying the function   to the result of applying the 
function   to  . This means, essentially, that the expression    means, from a 
functional programming perspective, ‘the function   applied to  ’ (Bird & Wadler, 
1988, p.9). In mathematics, such an expression is usually written as  ( ). 
     Another useful idea in functional programming is the fact that the output of a 
function may be a function itself. This is illustrated by the   combinator      
   , which takes three inputs  ,   and  . The   combinator first applies the 
function   to  , resulting in the function   . This function    is then applied to the 
variable  , and the output of this final function application is the output of the   

Alexander Farrugia



309
   

     Schönfinkel wanted to write down well-formed formulas in first-order logic in a 
way that did not require variables (Bimbó, 2016). To do this, he invented a new 
symbol   and defined it as follows: 

       (     )  
     The above reads ‘There does not exist   such that both    and    are true’. For 
example, the logical sentence ‘No rabbit eats meat’ can be written as    , where 
   means ‘  is a rabbit’ and    means ‘  eats meat’. In this way, the variable   is 
eliminated. 
     To do the same thing for the expression   (     (      )), the 
implication symbol   is first converted into a conjunction symbol  . This is done by 
noticing that     means the same as      (Mendelson, 1997, p.12). In other 
words, the statement ‘If  , then  ’ is equivalent to the statement ‘either   is false 
or   is true’. It is assumed that the semantics of the word ‘or’ allow at least one of 
  or   to be true. For instance, the sentences ‘If it is raining, then it is cloudy’ and 
‘it is either not raining or it is cloudy (or both)’ mean the same thing. Furthermore, 
the expression  (   ) means the same as       – in other words, ‘it is not 
the case that both   and   are true’ and ‘either   is false or   is false (or both)’ are 
equivalent (Mendelson, 1997, pp.11-12). In this fashion, the bracket    
  (      ) first gets transformed into       (      ) and then into 
 (      (      )). Lastly, the well-formed formula   (   ) is equivalent 
to    (  ) (Mendelson, 1997, p.52). In layman’s terms, the statements ‘all   do 
not satisfy property  ’ and ‘there exists no   that satisfies property  ’ mean the 
same thing. For example, the sentences ‘all rabbits do not eat meat’ and ‘there is 
no rabbit that eats meat’ are synonymous. Thus, the well-formed formula 
  (     (      )) is converted to   ( (      (      ))) as 
explained beforehand, and then to the well-formed formula 

   (      (      ))  
     The reason why these transformations were performed is that the above 
expression is much more amenable to using the   symbol mentioned above. For 
example, the subexpression 

   (      ) 
is almost of the form    (     ) needed. Unfortunately, the variable   in the 
expression     needs to be in the end for these two expressions to match. Thus, 
Schönfinkel introduced the following combinators (1924), having the following 
rules: 

       (  )  
       
      
      (  )  
          

     In our case,     is written as     , so that    (      ) becomes 
   (       ). The   symbol may now be applied to this expression, replacing 
it with   (   ).     The well-formed formula    (      (      )) hence 
becomes    (     (   )). 
     Moreover, the   combinator is used to convert   (   ) into  (  )(  ) . 
This allows the use of the   symbol again;    (     (   )) is converted to 
   (    (  )(  ) ), and then, finally, to   ( (  )(  )). 
     In this manner, Schönfinkel showed how to convert first-order well-formed 
formulas into expressions involving no variables at all by using the combinators  , 
 ,  ,   and  . This new way of writing well-formed formulas became known as 
combinatory logic (Bimbó, 2016). Combinatory logic completely solves the problem 
of deciding how variables are bounded to the quantifiers   and  , by dispensing of 
variables altogether. The disadvantage is that the final expression 
  ( (  )(  )) is less readable than the original expression   (   
  (      )). However, this is of no concern to a computer, and, indeed, 
combinatory logic is the basis upon which computer functional programming 
languages work (Peyton Jones, 1987, pp.260-280). 
 
 
Computer Science 
 
     In computer science, Schönfinkel’s  ,  ,  ,   and   combinators are treated as 
functions, each of which behaves in the way defined above. This idea is the basis of 
what is nowadays called functional programming. For example, the combinator  , 
having the rule     , is treated as a function that takes a variable   as input and 
returns   itself as output. Similarly, the   combinator can be interpreted as being a 
function that takes two inputs   and   and returns   as output, completely 
ignoring the second input   (Bird & Wadler, 1988, pp.8-9). 
     This interpretation of combinators as functions allows the input variables, like   
and   above, to be functions themselves. Indeed, they may even be other 
combinators. For example, the   combinator, having the rule       (  ), is 
interpreted as being a function taking three inputs  ,   and   and which outputs 
the result obtained after applying the function   to the result of applying the 
function   to  . This means, essentially, that the expression    means, from a 
functional programming perspective, ‘the function   applied to  ’ (Bird & Wadler, 
1988, p.9). In mathematics, such an expression is usually written as  ( ). 
     Another useful idea in functional programming is the fact that the output of a 
function may be a function itself. This is illustrated by the   combinator      
   , which takes three inputs  ,   and  . The   combinator first applies the 
function   to  , resulting in the function   . This function    is then applied to the 
variable  , and the output of this final function application is the output of the   

Combinatory Logic: From Philosophy and Mathematics to Computer Science



310   

combinator. In essence, the expression     really means (  ) . Likewise, the 
expression   (  ) taken from the definition of the   combinator means (  )(  ), 
and the expression      means (  )   or even ((  ) ) . This idea is called 
currying (Bird & Wadler, 1988, p.12; Peyton Jones, 1987, p.10), after Haskell Curry, 
who rediscovered combinatory logic independently of Schönfinkel and dedicated a 
lot of research on it. 
     As an aside, Schönfinkel only published two papers during his lifetime, one in 
1924 (1924) and another in 1929 (Bernays & Schönfinkel, 1929). Only the 1924 
paper was on combinatory logic and this idea of currying. This lack of proficiency by 
Schönfinkel is attributed to a mental illness, starting from 1927 till his death in 
1942 (Kline & Anovskaa, 1951). Indeed, his second paper in 1929 was only 
published due to the efforts of his coauthor Paul Bernays. Curry always credited 
the concept of currying to Schönfinkel, although it must be said that the idea of 
currying had already been mentioned by the philosopher Gottlob Frege even 
before Schönfinkel (Quine, 1967). Nowadays, the programming language Haskell is 
named after Haskell Curry (Hudak et al, 2007). 
 
 
The sufficiency of   and   
 
     Incredibly, Schönfinkel (1924) also showed that the combinators  ,   and   are 
superfluous, because they can be defined in terms of the other two combinators,   
and  . Indeed: 

       
   (  )   
   (   )(  )  

For example,      reduces to   (  ) by using the   combinator rule, and then 
  (  ) reduces to   by using the   combinator rule. This may be written down as 

       (  )   
or simply as 

        
     But since      using the   combinator rule,   and     affect the variable   in 
the same way. Because of this, the   combinator is said to be extensionally equal to 
the combinator expression    , written       (Peyton Jones, 1987, p.266; 
Barendregt, 1984, pp.151-163; Hindley & Seldin, 2008, p.26). In a similar way, the   
combinator may be proved to be extensionally equal to the combinator expression 
 (  ) : 

 (  )        (  )    (  )      (  )  (  )  
     Here is the proof that the   combinator is extensionally equal to the combinator 
expression  (   )(  ): 

 (   )(  )        (   )    (  )(   )   
   (    )    (     )   (   )      

Turing Completeness 
 
Even more surprisingly, any computable function can be expressed using any or all 
of Schönfinkel’s five combinators  ,  ,  ,   and  . This means that any computer 
program may be written using these five combinators only (Hindley & Seldin, 2008, 
p.47). The combinators  ,  ,  ,   and   are said to be Turing complete. In fact, by 
applying the results of the previous section, since  ,   and   may be themselves 
expressed in terms of   and  , the two combinators   and   alone suffice to write 
any computer program – a result that is as astounding as it is beautiful. 
     The following recursive algorithm converts any function  , having the   inputs 
             , into a combinator expression involving some or all the 
combinators  ,  ,  ,   and   (Peyton Jones, 1987, p.270; Curry & Feys, 1958). This 
provides an informal proof for the claim in the previous paragraph. 
 
Algorithm: 

Step 1.     Step 1: If the function   has no arguments and is defined as the combinator 
expression  , then output     and halt. 

Step 2.      Step 2: Otherwise,                 is equivalent to the function 
             [ ] , where [ ]  is defined as follows: 

a. [ ]   ; 
b. [ ]    , if the expression   does not contain the variable  ; 
c. [ ]   , if the expression   is the function application    and   does not 

contain the variable  ; 
d. [ ]      [  ] , if the expression   is the function application     , where 
   does not contain the variable   and    contains the variable  ; 

e. [ ]   [  ]    , if the expression   is the function application     , where 
   contains the variable   and    does not contain the variable  ; 

f. [ ]   [  ]  [  ] , if the expression   is the function application     , 
where both    and    contain the variable  . 

 
     As an illustration, the function  , defined as        , will be converted 
into a combinator expression using the above algorithm. Since this function has 
two arguments, Step 2 of the algorithm is invoked, writing down         as 
   [(  ) ]   By Step 2f., [(  ) ]   [  ]  [ ] . By Step 2c. and Step 2a. 
respectively, [  ]    and [ ]   . Hence 

        is the same as         
     The variable   has been eliminated. To eliminate variable  , Step 2 of the 
algorithm is again used, so that        is written down as   [(  ) ] . By 
Step 2e., [(  ) ]   [  ]  . Moreover, by Step 2c., [  ]   . Thus 

       is the same as      . 
     Step 1 of the algorithm is now called to finalize the function   as the 
combinator expression    . The expression       is now checked to confirm that 
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it indeed reduces to the expression    , proving that both   and     produce the 
same output: 

             (  )      
     The above algorithm may be thought of as a compiler that translates any 
function into a combinator expression. Indeed, compilers that translated code into 
combinators were used for the functional programming languages SASL and 
Miranda (Peyton Jones, 1987, p.2). These two programming languages later 
inspired the creation of the much more successful Haskell functional programming 
language. 
     Perhaps so far, the reader is not very convinced that combinatory logic may be 
used to write any computer program. The following sections should alleviate this 
concern. 
 
 
Boolean Values 
 
One very important feature of any programming language is the presence of 
conditional statements, in which different parts of a program are evaluated 
depending on whether a Boolean value is true or false. This idea may be 
encapsulated using so-called Church Booleans, named after Alonzo Church (1940) 
as follows: 

       
       

     The symbols   and   stand for ‘true’ and ‘false’ respectively. If a Boolean value is 
 , then   is evaluated, while if it  , then   is evaluated. By using the algorithm in 
the previous section to compile these Boolean values into combinators, the 
following are obtained (Smullyan, 2000, p.212): 

     
      

     The definition of   as being the   combinator shouldn’t be surprising, as clearly 
  and   have the same behaviour. 
     Using these definitions of   and  , logical connectives such as   (AND),   (OR) 
and   (NOT) may be implemented (note that the prefix notation     and     is 
being used here, instead of the more usual infix notation     and    ) (Church, 
1940): 

        
         
         

     The first definition,       , states that if   is  , then    evaluates to  , 
while if   is  , then    evaluates to  . This is, of course, what is expected from the 
behaviour of the NOT logical connective. The definition of the AND logical 
connective,        , states that if   is  , then     evaluates to  , while if   is 

 , then     evaluates to  . This may be verified by the reader to conform with the 
usual interpretation of the AND logical connective that returns   if and only if both 
inputs   and   are  . Finally,         states that if   is  , then     returns  , 
while if   is  , then     returns  . Again, this corresponds with how the OR logical 
connective is usually defined, returning   if and only if both inputs   and   are  . 
     Compiling these definitions using the algorithm in the previous section results in 
the following combinator expressions for  ,   and  : 

    (   )   
        
        

     Below, the expression  (   )(  ) is evaluated, to illustrate that these 
definitions do indeed work as intended: 

 (   )(  ) 
    (   )(  )  (   ) (  )     (  ) 
       (  )      (  )     (  ) 
     (  )   (  ) 
    (  )  (  )    
  (   )                  
            

     Since     evaluates to   and    evaluates to  ,  (   )(  ) is equivalent to 
   , which evaluates to  . This shows that the above output is, indeed, the correct 
one. 
 
 
Pairs 
 
Combinatory logic can also model pairs of objects. One way to do this is to denote 
a pair (   ) as    , and then define the left and right functions   and   as 
follows: 

 (   )     
 (   )     

     To accomplish this behaviour, the symbols  ,   and   may be defined as 
underneath (Pierce, 2002): 

          
       
       

     In this way,  (   ) would reduce to      and then to    , which outputs the 
correct value  . Similarly,  (   ) would reduce to    , which outputs  . 
     Compiling these definitions of  ,   and   into combinator expressions using the 
algorithm described earlier yields: 

    (  )  
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     A very important construct in functional programming is the concept of a list, 
which may simply be interpreted as an appropriately nested pair (Pierce, 2002, 
p.500). 
 
 
Numbers 
 
Another surprising fact about combinatory logic is that it can model the natural 
numbers          . There are several ways of accomplishing this, for example 
using Church numerals (Church, 1933). Here, Barendregt’s construction of the 
natural numbers using combinatory logic (Barendregt, 1976; Smullyan, 2000, 
pp.215-216) is described: 

     
      

     The symbol   stands for the successor of a number. For example, the number   
is defined as   , the successor of the number  . Likewise,   is defined as   , or as 
 (  ), and so on. As defined above, then, the numbers           are defined as 
follows: 

     
       
    (   )  
    (  (   ))  
  

     In this way, Barendregt numerals define a number   as   nested pairs (1976). 
     A predicate is a function that returns a Boolean value. The way Barendregt 
numerals are defined makes it easy to create a function   that tests whether its 
input is zero or not: 

     
     Since nonzero numerals are pairs whose left element is always  , the symbol for 
‘false’, the definition of   is simply  , the function that extracts this left element. 
When   is applied to  , the following happens: 

                        
     This new predicate   may now be used to write a function   that returns the 
predecessor of a number. The predecessor of the number   is  , the predecessor of 
the number   is  , and so on. Unfortunately,   does not have a predecessor among 
the natural numbers. Because of this, the predecessor of   is defined as  . 

   (  ) (  )  
     The predecessor function   first tests whether the input number   is  , by 
invoking   . If this function    returns  , then   returns  . If    returns  , then 
  returns   , the right element of the pair that   is composed of. The function   
compiles to the following combinator expression using the algorithm presented 
earlier in this paper: 

   (   )   
 
     For example,    reduces to   in the following way: 

   
  (   )       (  )     (  ) 
      (  )      (  )     (  ) 
     (  )       (  )    (  )    (  ) 
  (   )   (  )        (  )       (  )      (  ) 
     (  )    (  ) 
    (  )   (  )     
             
            (  )    
  (   )                  
            

     The reduction process above shows how the predecessor of   is evaluated in a 
considerable number of very simple steps – a task that is very suitable to a 
computer. 
Of course, it would be relatively useless to define numbers if no operations, like 
addition or multiplication, were defined on them. Before doing this, the   
combinator needs to be discussed first. 
 
 
Recursion 
 
A very useful programming construct is the concept of a loop. In functional 
programming, loops are expressed using recursion, where functions call themselves 
(Bird & Wadler, 1988, pp.104-108). Recursion can be expressed in combinatory 
logic using the   combinator. 
     Consider the function   defined as follows: 

     (   )  
     Using the algorithm presented earlier, this function compiles into the following 
combinator expression: 

   (  )(   )  
     Note that, from the first definition      (   ), it is clear that     reduces 
to  (   ). Of course,  (   ) reduces to  ( (   )), and then to 
 ( ( (   ))), and so on. Thus, the function    is encapsulating the concept of 
recursion, in the sense that     keeps calling the function   forever. This is exactly 
how the notable computer scientist Alan Turing defined the   combinator: as this 
function    (1937). In terms of the five combinators  ,  ,  ,   and  , the   
combinator is defined as 

      (  )(   )( (  )(   ))  
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     A very important construct in functional programming is the concept of a list, 
which may simply be interpreted as an appropriately nested pair (Pierce, 2002, 
p.500). 
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pp.215-216) is described: 

     
      

     The symbol   stands for the successor of a number. For example, the number   
is defined as   , the successor of the number  . Likewise,   is defined as   , or as 
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     The reduction process above shows how the predecessor of   is evaluated in a 
considerable number of very simple steps – a task that is very suitable to a 
computer. 
Of course, it would be relatively useless to define numbers if no operations, like 
addition or multiplication, were defined on them. Before doing this, the   
combinator needs to be discussed first. 
 
 
Recursion 
 
A very useful programming construct is the concept of a loop. In functional 
programming, loops are expressed using recursion, where functions call themselves 
(Bird & Wadler, 1988, pp.104-108). Recursion can be expressed in combinatory 
logic using the   combinator. 
     Consider the function   defined as follows: 

     (   )  
     Using the algorithm presented earlier, this function compiles into the following 
combinator expression: 

   (  )(   )  
     Note that, from the first definition      (   ), it is clear that     reduces 
to  (   ). Of course,  (   ) reduces to  ( (   )), and then to 
 ( ( (   ))), and so on. Thus, the function    is encapsulating the concept of 
recursion, in the sense that     keeps calling the function   forever. This is exactly 
how the notable computer scientist Alan Turing defined the   combinator: as this 
function    (1937). In terms of the five combinators  ,  ,  ,   and  , the   
combinator is defined as 
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     This combinator expression may be slightly simplified by evaluating the   
combinator rule, as follows: 

 (  )(   )( (  )(   ))    (   ( (  )(   )))  
     Thus 

    (   ( (  )(   )))  
     Thanks to the   combinator, addition of two numbers, for instance, may now be 
defined recursively, as follows: 

    (  ) ( ( (  ) ))  
     The sum of   and   (   ) is obtained by first testing if   is  . If it is, then the 
sum of   and   is  . If   is not  , then     outputs the successor of the sum of the 
predecessor of   and  . For example, the sum of   and   would be evaluated, 
informally, as follows: 

     (   )  ( (   ))   (  )       
     Since     is defined in terms of itself,   is a recursive function. In order to 
compile this function   into a combinator expression, the referral of   to itself 
needs to be removed first. This is accomplished by the compiler first defining the 
following very similar function to  : 

     (  ) ( ( (  ) ))  
     Essentially,   is like  , but it has an extra input   that replaces all instances of   
on the right-hand side. This new function   is, of course, not recursive, so it may be 
compiled into a combinator expression: 

   ( (   )) ( ( (  ))(   ))  
     Finally,   is compiled using the   combinator and the above   function, simply 
as: 

       
 
 
Functional Programming 
 
The combination of the previous sections has produced the makings of a crude 
functional programming language, which first compiles statements into combinator 
expressions, and then evaluates the user’s input. The combinator expressions 
would be hidden from the user’s view. In this section, therefore, the internal 
combinator expressions are hidden from the reader too. 
     For example, below is a possible definition of subtraction of two numbers, made 
in our crude programming language: 

    (  ) ( (  )(  ))  
    means     here. The subtraction     is equal to   if   is zero, otherwise it 
is equal to the subtraction of the predecessor of   from the predecessor of  . 

     Note that if   is smaller than  , then     returns  . This can be used to test 
whether   is less than or equal to  , by defining the   predicate in our functional 
programming language: 

     (   )  
      
     Other relational tests may easily be written, too: 

     (   )  
     (   )  
     (   )  
     (   )(   )  

     Note the use of the NOT ( ) and AND ( ) logical connectives that were defined 
in an earlier section. 
     To conclude, here is a short program that produces the  th Fibonacci number, 
that is, the  th number of the sequence 

                    
     in which the first two elements are both   and whose subsequent elements are 
the sum of the previous two: 

    (  )( (  )(  )) 
     (  ) ( ( (  )  )) 
    (   (   )) 

     The function   takes a pair   as input and outputs the pair whose left element is 
the right element of   and whose right element is the sum of the elements of  . 
For example,  (   ) outputs    . 
The function   takes three inputs  ,   and   and outputs   applied to     times. 
For example,      outputs  (  ), while      outputs  ( (  )), which 
represents the number  . 
     Finally, the function   is our Fibonacci function. It takes a number   as input and 
applies the function   to the pair       times. After doing this,   extracts the left 
element of the resulting pair and produces it as its output. For example,    
reduces to  , informally, as follows: 

    ( ( ( ( (   )))))   ( ( ( (   ))))   ( ( (   )))

  ( (   ))   (   )    
     In a real-life functional programming language such as Haskell, the above 
program would have a much more readable form: 
FibPairNext (a,b) = (b,a+b) 
Apply 0 _ x = x 
Apply n f x = f (Apply (n-1) f x) 
Fibonacci n = fst (Apply n FibPairNext (0,1)) 
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combinator rule, as follows: 
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     Essentially,   is like  , but it has an extra input   that replaces all instances of   
on the right-hand side. This new function   is, of course, not recursive, so it may be 
compiled into a combinator expression: 

   ( (   )) ( ( (  ))(   ))  
     Finally,   is compiled using the   combinator and the above   function, simply 
as: 
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functional programming language, which first compiles statements into combinator 
expressions, and then evaluates the user’s input. The combinator expressions 
would be hidden from the user’s view. In this section, therefore, the internal 
combinator expressions are hidden from the reader too. 
     For example, below is a possible definition of subtraction of two numbers, made 
in our crude programming language: 

    (  ) ( (  )(  ))  
    means     here. The subtraction     is equal to   if   is zero, otherwise it 
is equal to the subtraction of the predecessor of   from the predecessor of  . 

     Note that if   is smaller than  , then     returns  . This can be used to test 
whether   is less than or equal to  , by defining the   predicate in our functional 
programming language: 
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     Other relational tests may easily be written, too: 
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     Note the use of the NOT ( ) and AND ( ) logical connectives that were defined 
in an earlier section. 
     To conclude, here is a short program that produces the  th Fibonacci number, 
that is, the  th number of the sequence 

                    
     in which the first two elements are both   and whose subsequent elements are 
the sum of the previous two: 
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     The function   takes a pair   as input and outputs the pair whose left element is 
the right element of   and whose right element is the sum of the elements of  . 
For example,  (   ) outputs    . 
The function   takes three inputs  ,   and   and outputs   applied to     times. 
For example,      outputs  (  ), while      outputs  ( (  )), which 
represents the number  . 
     Finally, the function   is our Fibonacci function. It takes a number   as input and 
applies the function   to the pair       times. After doing this,   extracts the left 
element of the resulting pair and produces it as its output. For example,    
reduces to  , informally, as follows: 
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     In a real-life functional programming language such as Haskell, the above 
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Apply 0 _ x = x 
Apply n f x = f (Apply (n-1) f x) 
Fibonacci n = fst (Apply n FibPairNext (0,1)) 
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     However, this is only a question of syntax. What was presented in this paper 
applies to the possible implementation of any functional programming language, 
including Haskell. 
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