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Abstract

Compiling Bayesian networks (BNs) into secondary structures to implement

efficient exact inference is a hot topic in probabilistic modeling. One class

of algorithms to compile BNs is to transform the BNs into Zero-Suppressed

Binary Decision Diagrams (ZDDs) to perform efficient exact inference. This

method has attracted much attention. A ZDD is a data structure for manipulat-

ing boolean functions and item combinations efficiently. By compiling a BN

into ZDDs, computation time for exact inference using ZDDs is reduced to lin-

ear time in the size of the ZDDs. Also, cache memory techniques further help

to accelerate the inference. However, as the size of BN grows, compiling ZDDs

becomes unacceptable in both time consumption and ZDD size which hinders

BN practical applications. In this thesis, we focus on improving the ZDD-based

method to efficiently execute the exact inference of BNs. We take into account

two aspects, condensing ZDD size through factorizations and compiling de-

composition forms of BNs instead of the whole networks.

In Chapter 3, to condense ZDD size, we propose a fast factorization

method based on the d-separation structures in BNs to factor the ZDDs with

large size into small ones. The weak divison algorithm is used to factorize

a large sum-of-product into several compact sum-of-products. It is known as
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the most successful and prevalent technique of logic synthesis and optimiza-

tion. Minato et al. proposed an improvement of this algorithm, known as the

fast weak division algorithm for ZDD-based logic operations. In this algo-

rithm, variables appearing many times are iteratively extracted and then used

as divisors to factorize a ZDD. We can use this algorithm to factorize a large

ZDD into small ones. However, for a ZDD representing a BN, the approach to

use every multiply appearing variables as divisors to factorize a ZDD leads to

unacceptable time consumption for factorization. We improve this factorization

algorithm by extracting divisors using d-separations in BNs. In our method,

variables appearing multiple times are extracted once so that time consump-

tion are largely reduced. What is more, the resulting ZDD is largely condensed

which would result in big improvements in time of exact inference.

In Chapter 4, we propose a fast message passing algorithm using ZDD-

based local structure compilation. The idea of factorizing ZDDs is based on

the fact that we are able to generate ZDDs for a BN. As BN gets large, the size

of resulting ZDD will be too large to generate at the first place. Therefore, we

consider to compile the decomposition form of a BN instead of a whole BN

into ZDDs. A junction tree is one of the most prevalent decomposition forms

of a BN whose node is a clique consisting of BN vertexes. Performing the mes-

sage passing algorithm on a junction tree for exact inference is currently one of

the most prominent BN inference algorithms. The algorithm works by passing

real-valued functions called messages along with the edges between the two

nodes in a junction tree. The performance of this algorithm depends on a BN’s

treewidth or the optimal maximal clique size of a corresponding junction tree.

In our method, a junction tree is directly compiled into ZDDs. We introduce

message variables in ZDDs to pass messages. Then, the message passing al-

gorithm can be performed on ZDDs. By utilizing techniques of node sharing
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and cache memory in ZDDs, parameters in BNs which share the same value

can compactly represented. Moreover, repetitive local computations during the

message passing algorithm are avoided. Our method of conducting message

passing on ZDDs performs much faster than the performing on the original

junction tree which is generated through a well known heuristic way called

min-fill method.

In Chapter 5, we present the method of separate compilation of BNs

for efficient exact inference. We propose to combine these two approaches

that using the d-separation structure in BNs to partition a large BN into several

components. For every given BN, serial pattern d-separation sets are found and

used to partition the BN into conditionally independent components. Then we

compile these components into small ZDDs and perform exact inference us-

ing these ZDDs. Separately compiling these components into ZDDs is more

efficient than generating giant ZDDs for a whole network. However, parti-

tioning a BN into too many components may give rise to considerable time

consumption which grows exponentially with the number of vertexes in serial

pattern d-separations. To trade off the off-line time consumption (for finding

d-separations and compiling ZDDs) and on-line time consumption (for infer-

ence using ZDDs), the d-separations used to partitioning BNs are restricted to

one-vertex and found using Tarjan’s vertex-cut algorithm which can be per-

formed linear time in the number of BN vertexes. The experiments illustrate

that one-vertex d-separations exist in most BNs. Partitioning BNs with one-

vertex d-separations improves the speed for both compilation and inference

significantly than the conventional ZDD-based method.

In Chapter 6, we conclude our remarks and discuss the future work and

open problems. We show that ideas in this thesis are valuable since not only for
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ZDDs, they are also usable for other data structures. We hope to improve other

logic operation based approaches such as d-DNNF, an efficient logic circuit

used in BN inference recently. We expect that using fast logic operations can

bring a big improvement for the exact inference of BNs.
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Chapter 1

Introduction

1.1 Background

Probabilistic graphical models (PGMs), which are widely used as statis-

tical analysis tools that estimate the probability of events occurring on the basis

of historical data, have become more and more popular [5, 31, 51, 17]. A PGM

is a compact or factorized representation of a set of independencies over a set of

random variables. One branch of PGMs, namely, Bayesian networks (BNs) are

commonly used in the artificial intelligence [2, 7, 43, 44]. A BN is a compact

representation of joint probability distributions of a set of random variables.

Their conditional dependencies are explicitly expressed via a directed acyclic

graph (DAG). Usually, we have prior knowledge and some observations over

variables. Then we want to infer the posterior knowledge of variables based on

these observations to find the most possible reason that leads to these observa-

tions. Such tasks are called exact inference which is NP-hard even in the simple

case that the structure of a BN is singly connected [27, 54, 24]. A great amount
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of efforts has been tried to improve the efficiency of exact inference.

Inference with a junction tree (also known as jointree ) transformed

from a BN, is currently among the most prominent BN inference algo-

rithms [15, 28, 36, 53]. The junction tree transformed from a given BN is

a tree where each node and edge in this tree is labeled by a set of variables

of the given BN [32]. Inference using junction trees is executed through a

well-known message passing procedure. Given some evidence (observed

variables), the junction tree algorithm propagates messages (information of

evidence) between nodes, also indicated as clusters. After a full round of

message passing, one can compute the marginal probability for every cluster.

The junction tree is not an arbitrary tree of clusters as it must satisfy some

conditions. Firstly, each variable and its parents in a BN are treated as a

family. Every family in the BN must belong to some tree cluster. Secondly, if

a variable of the BN appears in two clusters in the tree, it must also appear in

every cluster on the path connecting them. These two conditions legitimize the

message passing algorithm. Ensuring these conditions may lead to clusters that

are large. The performance of junction tree algorithms depends on the BN’s

treewidth, the optimal maximum cluster size [37]. Thus, how to construct a

junction tree with minimum width becomes the main issue [4, 47]. However,

this is also an NP-hard problem.

To break the barrier of treewidth in the exact inference, approaches of

using structured representations, such as logical formalism, to compactly rep-

resent the probability distribution of BNs have been proposed [11]. The main

breakthrough is to exploit the local structures in BNs. Local structures [9],

which refer to the specific properties attained by the probabilities quantify-

ing the network, can imply independence that is not visible at the structural
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level. Such independence may be utilized computationally. Using structured

representations allow the inference to be performed quite efficiently. Time con-

sumption for inference of these methods strongly depends on the size of data

structure into which a BN is compiled. Approaches of compiling BNs into

structured representations such as, Zero-suppressed Binary Decision Diagrams

(ZDDs) [39], Affine Algebraic DDs (AADDs) [50] and Probabilistic Senten-

tial Decision Diagrams (PSDDs) [30] have been widely used for efficient exact

inference in BNs. Experiment results of these compilation approaches have

shown that they yield significant time and space savings over the conventional

tabular representations on probability computations [28, 11, 42, 50]. In this

thesis, we mainly deal with the ZDD-based compilation method and propose

methods to improve the exact inference based on ZDD’s logic operations.

A BN can be characterized by an Multi-Linear Function (MLF) [12]:

a polynomial combination of propositional variable sets corresponding to real-

izations of random variables. The ZDD-based method compiles the MLF into

ZDDs to compactly represent the BN. Each ZDD represents the MLF of a BN

vertex. The ZDD for a BN vertex depends only on the ZDDs of its ancestor

vertices. Through node-sharing techniques in ZDDs, MLFs can be compactly

represented. Exact inference is carried out in a time almost linear in the ZDD

size based on the multi-value multiplication algorithm of ZDDs [42]. Node

sharing techniques of ZDDs help exploit local structures such as different vari-

ables sharing the same value and local computation [33, 18, 8, 19]. Cache

memory techniques of ZDDs further accelerate the inference significantly [42].

However, since the size of MLFs is exponential to the number of variables,

when the BN gets large, the size of ZDDs becomes unacceptable. Furthermore,

considerable time for compiling a BN into ZDDs puts limits to the usefulness

of the ZDD-based compilation approach.
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1.2 Our Contributions

In this thesis, we focus on improving the conventional ZDD-based

method to efficiently execute the exact inference of BNs. We take into account

two aspects, condensing ZDD size through factorizations and compiling

decomposition forms of BNs instead of the whole networks. To condense he

ZDD size, we improve the existing ZDD factorization method to factor the

ZDDs with large size into small ones. Through our factorization algorithm,

the ZDD size compiling a BN is largely condensed so that exact inference

is expected to be accelerated. Secondly, we proposed to directly compile a

junction tree into ZDDs. Then, the message passing algorithm is conducted

on ZDDs. By utilizing techniques of node sharing cache memory in ZDDs,

parameters in BNs which share the same value can be compactly represented.

Moreover, repetitive local computations during the message passing algo-

rithm are avoided. Finally, we proposed a method which combines these

two approaches. First, a large BN is partitioned into several conditionally

independent components. Then, we separately compile these components

into ZDDs. For every given BN, a set of vertices are found in linear time to

partition the BN into conditionally independent components. Then we compile

these components into small ZDDs and perform exact inference using these

ZDDs. Separately compiling these components into ZDDs is more efficient

than generating a giant ZDD for a whole network. Partitioning BNs into

several components improves the speed for both compilation and inference

largely than the conventional ZDD-based method.

The idea of separately compiling BNs in this thesis is valuable, since

it also fits other logic-based data structures. We expect that using fast logic
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operations can bring a big improvement for the exact inference of BNs.

1.3 Related Works

Darwiche [12] proposed the MLFs to represent the joint distribution in-

duced by a BN and compile MLFs into logical formalism to exploit local struc-

tures. In their method, they compile a BN into conjunctive normal form (CNF)

and then compile the CNF into smooth deterministic negation normal form (d–

DNNF). They claimed that time consumption for probability calculation using

a d-DNNF is strongly related to the size of the d-DNNF. This approach has

been shown successful in a number of instances where other algorithms that

utilize local structures are overwhelmed [13, 6].

1.4 Structure of This Thesis

The rest of this thesis is organized as follows. Chapter 2 provides pre-

liminaries of this thesis, such as knowledge about probability theory, Bayesian

networks and ZDDs. We also introduce basic definitions and notations we use

in this thesis. In Chapter 3, we show our method of efficiently factorizing ZDDs

into small ones. In Chapter 4, we explain how to compile a junction tree with

ZDDs and perform message passing on ZDDs. The approach of separately

compiling BNs is presented in Chapter 5. Control experiments with the effi-

cient d-DNNF-based compilation method are exhibited in this chapter. Finally

in Chapter 6, we conclude our remarks and discuss the open problems.
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Chapter 2

Preliminaries

In this chapter, we introduce the basic background knowledge

about probability theory, such as probabilities, random variables

and independence among random variables. Based on these basic

knowledge, the definition of BNs is given and the main task of ex-

act inference in BNs is explained. We also present how to transform

a BN into a multi-linear function and then compile this BN using

ZDDs. Inference can be performed with ZDD logic operations in

almost linear time in ZDD size. Thus, condensing ZDD size to ac-

celerate inference is the main issue in this thesis. We also introduce

notations we use in the later chapters.
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2.1 Probability Theory

The word "probability" we use nowadays, is used to describe our belief

in some uncertainties, such as "How possible it will rain tomorrow since we

felt the strong wind this afternoon". Probability theory [16, 3, 22, 29] provides

the rules one should obey and the formal foundations when discussing such

estimates [31]. Before we come to the definition of probability, we first declare

the basic knowledge about probability. In what follows, we denote by N =

{0, 1, . . . } the set of all non-negative integers, and by R the set of all real

numbers.

2.1.1 Events and Probabilities

Suppose an experiment of tossing a coin three times under exactly

the same conditions. All the possible outcomes of this experiment would be

{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT} (where "H" refers to Head and

"T" refers to Tail). We refer the statement of "get two heads in the first and

second tossing and one tail in this last tossing" as an event which describes an

outcome of the experiment. There can be other statements which corresponds

to some outcomes. For example, the event "two heads and one tail" is related

to the outcomes of {HHT, HTH, THH}. Formally, we use a countable set

Ω, called a sample space, to indicate all the possible outcomes of a random

experiments.

Definition 1 An event space is a set S ⊂ 2Ω of events satisfying the following

conditions (i)–(iii):
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(i) ∅ ∈ S and Ω ∈ S hold.

(ii) For any countably many events α0, . . . , αi, · · · ∈ S (i ∈N), (α0 ∪ · · · ∪

αi ∪ . . . ) ∈ S holds.

(iii) For any event α ∈ S, then Ω \ α ∈ S holds.

In this thesis, we restrict ourselves to finite and discrete sample spaces.

Definition 2 The probability function is a function P : S→ R that maps each

event α ∈ S to a real number P(α) ∈ R that satisfies the following conditions

(i)–(iii):

(i) For any event α ∈ S, 0 ≤ P(α) ≤ 1 holds.

(ii) P(Ω) = 1 holds.

(iii) If countably many events α0, . . . , αi, · · · ∈ S (i ∈ N) are mutually

exclusive, then P(α0 ∪ · · · ∪ αi ∪ . . . ) = P(
∪

i∈N αi) = ∑i∈N P(αi)

holds.

There are many interpretations for probabilities [31]. In the coin toss-

ing experiment, we treat probabilities as frequencies of events. Intuitively, the

probability P(α) of an event α quantifies the degree of confidence that α will

occur. If P(α) = 1, we are certain that one of the outcomes in α occurs, and

if P(α) = 0, we consider all of them impossible. Other probability values

represent options that lie between these two extremes. For P(α) = 0.3, the

probability of an event is the fraction of times the event occurs if we repeat the

experiment indefinitely.
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2.1.2 Rules in Probabilities

There are some important rules in probabilities we should obey when

estimating the uncertain events.

Conditional Probabilities: Knowing that α happens, how do we change

our belief on β occurring? The answer can be represented with the notion of

conditional probability. Formally, the conditional probability of β given α is

defined as:

P(β | α) =
P(α ∪ β)

P(α)
, P(α) ̸= 0. (2.1)

Chain Rule: we can express the probability of a combination of several

events in terms of the probability of the first, the probability of the second given

the first, and so on.

P(α ∩ β) = P(β | α) P(α) . (2.2)

More generally, if α1, . . . , αk are events, then we can write:

P(α1 ∩ · · · ∩ αk) = P(α) P(α2 | α1) . . . P(αk | α1 ∩ · · · ∩ αk−1) . (2.3)

It is important to notice that we can expand this expression using any order of

events.

Bayes’ Rule: it is a very important rule that allows us to compute the

posterior probability P(α |β) observing α happen through conditional proba-

bility P(β |α) and P(α) and P(β) which come from our prior knowledge for
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α and β.

P(α | β) =
P(β | α) P(α)

P(β)
, P(β) ̸= 0. (2.4)

Usually, given some observations and hypothesis, calculating posterior proba-

bilities is called probability inference.

2.1.3 Random Variables and Independence

Random variables can be used to discuss attributes of outcomes. It is a

function from the sample space Ω to the real numbers. Random variables can

be discrete or continuous. In this thesis, we only discuss discrete random vari-

ables. Once we define a random variable X, we can consider the distribution for

X. In this thesis, we use Xi to represent a random variable. Every random vari-

able has a discrete domain of Dom({Xi}) = {xi,1, xi,2, . . . , xi,ki
}. There are

some distributions used a lot. The marginal probability of X: the probability

distribution over events that can be described using X. In many situations, we

are interested in questions that involve the values of several random variables

which indicate the joint distribution written as P(X1, X2): Usually, we use

P(X1 = x1,1, X2 = x2,1) denotes likelihood of two or more random variables

occurring together .

One of the most important conception in probability theory is the con-

ditional independence. Given three events α, β and γ, we say α is conditionally

independent of β given γ if P(α | β ∩ γ) = P(α | γ) or if P(β ∩ γ) = 0.

This means that if γ occurs, whether β occurs or not will not change my

belief for α occurring. Similarly, we have the conditional independence

for variables as: For three random variables X1, X2, and X3. we say that

X1 is conditionally independent of X2 given X3 is instantiated if we have:
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P
(
X1 = x1,k1 | X2 = x2,k2 , X3 = x3,k3

)
= P

(
X1 = x1,k1 | X3 = x3,k3

)
or

P
(
X3 = x2,k2 ∩ X3 = x3,k3

)
= 0 for all x1,k1 ∈ Dom({X1}), x2,k2 ∈ Dom

({X2}), x3,k3 ∈ Dom ({X3}).

2.2 Bayesian Networks and Exact Inference

2.2.1 Bayesian Networks

In a realistic world, there can be hundreds of factors, in terms of vari-

ables. It is difficult to direct calculate posterior probabilities using probability

rules with so many variables. There is a straightforward algorithm for comput-

ing them which is to using the joint distribution of all related variables. Then

summing out the irrelevant variables. The table size for represent the joint

distributions grows exponentially in the number of variables assuming that ev-

ery variable is binary-valued. Such calculation has exponential space and time

complexity. BNs were developed to compactly represent joint distributions

over a large number of variables using little space by exploiting conditional in-

dependencies. We are also able to perform probabilistic inference with BNs in

an acceptable amount of time [45].

A Bayesian Network (BN) [49] is a Directed Acyclic Graph (DAG)

which defines a joint distribution over a set of random variables. A BN is

defined as B ≜ ⟨G, Θ⟩, where G ≜ ⟨V, A⟩ is a DAG that each vertex repre-

sents a random variable and arcs between vertexes represent the dependencies

among corresponding variables. We use V ≜ {X1, . . . , Xn} to represent all

the n vertexes and A ⊂ V × V as the set of directed arcs that represent de-

pendencies between vertexes. The set of parents of Xi in a BN is defined as

Πi ≜ {Xi′ ∈ V | (Xi′ , Xi) ∈ A}. The second parameter Θ ≜ {θi,j,k}i,j,k
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denotes a set of conditional probabilities of vertexes, where θi,j,k indicates the

probability of Xi taking the k-th value xi,k given its set of parents Πi taking

the j-th instantiation πi,j: θi,j,k ≜ P
(
Xi = xi,k |Πi =πi,j

)
. A BN assumes that

each vertex is independent of its non descendent vertices when its parents are

instantiated. Thus, given a BN B, the joint distribution of vertexes in V defined

by B is represented as:

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi | Πi). (2.5)

A BN which consists of vertexes {X1, X2, X3, X4} is shown in Fig 2.1.

The conditional probability distribution (CPD) for every vertex is presented

in tables known as Conditional Probability Tables (CPTs). Parameters such as

θ4,1,1 for X4 means that X4 takes its first value x4,1 with its parents set {X2, X3}

instantiated with the first instantiation {(x2,1, x3,1)}. Similarly, θ4,4,2 means

that X4 takes the second value x4,2 with its parents instantiated with the fourth

instantiation {(x2,2, x3,2)}.

In this thesis, a boldface letter X ⊂ V indicates a set of vertexes. Its

domain is referred as Dom(X) = {xl}l∈N where xl is the l-th instantiation

of X and l ranges from 1 to the total number of instantiations of variables

in X. For the BN in Fig 2.1, for each vertex, we have Dom({X1}) =

{x1,1, x1,2}, Dom({X2}) = {x2,1, x2,2}, Dom({X3}) = {x3,1, x3,2},

Dom({X4}) = {x4,1, x4,2}. Also, for any given vertex set such as {X2, X3},

Dom({X2, X3})= {(x2,1, x3,1), (x2,1, x3,2), (x2,2, x3,1), (x2,2, x3,2)}. The

joint distribution for vertexes in X is represented as P(X). P(X = xl)

indicates the probability of X instantiated with xl . Usually, we write P(xl) for

short. We use the notation Ances(X) to represent all the ancestor vertexes of

X in the BN: Ances(X) = {Xi | at least one of the vertexes in X is reachable
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Figure 2.1 An example of BN

from Xi}. Thus, we have Ances({X4}) = {X1, X2, X3}.

2.2.2 Exact Inference in Bayesian Networks

Given a BN representing a joint distribution over all the vertexes, the

probability of any given vertex set X ⊂ V instantiated with xl can be calculated

by summing over all possible instantiations of all other vertexes:

P(xl) = ∑
V\X

P(X1, . . . , X = xl , . . . , Xn) ,

where V \ X means the complement of X in V.
(2.6)

Usually, ∑Xi
refers to summing over all possible values that Xi can take. We

use notation ∑X as a shorthand for ∑X1 ∑X2
... ∑Xi

, summing over all vertexes

in X = {X1, X2, ..., Xi} For example, the probability of P(x4,2) in Fig 2.1 can

be computed as:

∑
X1,X2,X3

P(X1) P(X2 | X1) P(X3 | X1) P(X4 = x4,2 | X2, X3). (2.7)
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Usually, the task of exact inference in a BN is to calculate the prob-

ability of some instances x(1)l given some observations x(2)k : P
(

x(1)l | x(2)k

)
.

According to equation (2.1), we have:

P
(

x(1)l | x(2)k

)
=

P
(

x(1)l , x(2)k

)
P
(

x(2)k

) . (2.8)

If we can efficiently calculate P
(

x(1)l , x(2)k

)
and P

(
x(2)k

)
, the proba-

bility of this query can be easily obtained. Thus, our task in this thesis mainly

focus on the exact value of P
(

x(1)l , x(2)k

)
.

Note that even in the simplest case that every vertex is binary-valued,

if we calculate the probability of any given vertex sets directly from the joint

distribution induced by a BN, computation time grows exponentially with the

number of vertexes in a BN. Such computation is usually prohibitive in exact

inference. One direct method for improve the computation is to use Multi-

Linear Functions (MLFs) [26, 10, 13].

2.2.3 Multi-linear Functions for BNs

An MLF consists of two types of variables: an indicator variable λi,k ∈

{0, 1} and a parameter variable θi,j,k. λi,k = 1 means that vertex Xi takes its

k-th value and λi,k = 0 otherwise. An MLF contains terms for all instantiations

of vertexes:

MLFV = ∑
l:vl∈Dom(V)

∏
i,j,k:xi,k∈vl ,πi,j⊂vl

λi,kθi,j,k. (2.9)

∏i,j,k: refers to the multiplication of variables ranging with all values that i, j, k

can take. Likewise, ∑l: refers to the summation over variables ranging with all
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values that l can take. An MLF represents the joint distribution induced by a

BN. The MLF for the example in Fig 2.1 is given by:

MLFV =λ1,1λ2,1λ3,1λ4,1θ1,1,1θ2,1,1θ3,1,1θ4,1,1

+λ1,2λ2,1λ3,1λ4,1θ1,1,2θ2,2,1θ3,2,1θ4,1,1

+λ1,1λ2,2λ3,1λ4,1θ1,1,1θ2,1,2θ3,1,1θ4,2,1

. . .

+λ1,2λ2,2λ3,2λ4,2θ1,1,2θ2,2,2θ3,2,2θ4,4,2.

(2.10)

Computing the probability of an instantiation of any vertices using

MLFs is performed by setting all indicators variables consistent with the

instantiation to 1 and otherwise to 0. For example, the marginal probability

of x4,2 can be computed by evaluating this MLF through respectively setting

λ4,1 ← 0, λ4,2 ← 1 (other λs are set to 1 and θs are set to the values in

CPT). Time of exact inference using this MLF is linear in the numbers of

variables in the MLF [12]. Because the number of variables in the MLF grows

exponentially with the number of vertexes in the BN, exact inference with a

MLF is quite time-consuming. However, if the MLF is factored into a compact

arithmetic expression, it is possible to speed up the inference. One way to do

factorization using Zero-suppressed BDDs has been proposed in [42].

2.3 ZDD-Based Exact Inference

2.3.1 Zero-Suppressed BDDs

A Zero-suppressed Binary Decision Diagrams (ZDD)[39] is a variant

of a BDD (Binary Decision Diagram) [1]. A BDD is well known as a data

structure to manipulate Boolean functions. ZDDs are much more efficient than

BDDs in dealing with combinatorial item sets.



2.3 ZDD-Based Exact Inference 17

(b) Node Sharing 
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f 

jump 

(a) Node elimination 

Figure 2.2 ZDD reduction rules

A ZDD consists of two terminal nodes*1, 0-terminal node and 1-

terminal node, and decision nodes with exactly two outgoing edges, called

0-edge and 1-edge. Each decision node is labeled by a Boolean variable and

1-edge (0-edge) indicates that the variable is true (false).

The reduction is based on the following rules [41] (See Fig 2.2).

• Delete all nodes whose 1-edge directly points to a 0-terminal node, and

jump through to the 0-edge’s destination, as shown in Fig. 2.2 on the

right.

• Sharing equivalent nodes having the same variable and the same pair of

child nodes

The ZDDs package proposed by [39] supports a set of various basic

logic operations (i.e., AND, OR and XOR) for given a pair of operand ZDDs.

These operations take an exponential time for the number of variables in a

given combinatorial item set in the worst case. By using cache memory to

*1 We use the terms "nodes" and "edges" in ZDDs to distinguish with the terms "vertexes" and
"arcs" in BNs.
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( , , )F a b c abc bc 

As a combinatorial item set: 

( , , ) { , , }S a b c ab ac c
ab 

c 
ac 

(a) Truth table for Boolean Function (b) A ZDD for a combinatorial 
 itemset 

Figure 2.3 An example of a ZDD

avoid duplicate executions for equivalent subgraphs, ZDDs can be generated

and manipulated within a time almost proportional to the size of ZDD itself.

By using those inter-ZDD operations, one can construct ZDDs for any given

Boolean functions. The details of ZDDs are described in [39].

ZDD rules help to delete the items which never appear in a combina-

tions. Thus, ZDDs are efficient representation of not only Boolean functions but

also combinatorial itemsets [41]. A combinatorial itemset can be represented

as a Boolean space of m input binary variables. For example, the truth table

of the Boolean function F = (abc̄) ∨ (b̄c) in 2.3(a) also represents the com-

binatorial itemset S = {ab, ac, c}, which is the family of input itemsets that

makes F true. An example of ZDD representing S is shown in Fig 2.3(b) [41].

A path in the ZDD from the root node to the 1-terminal node corresponds to

an itemset of S. Nodes of irrelevent items (never appeared in this itemset) are

automatically deleted from the path.

Given multiple combinatorial itemsets of the same items, isomorphic

subgraphs of their ZDDs can be shared under the same fixed input binary vari-
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Figure 2.4 An example of sharing ZDD

able order. Fig 2.4 [41] shows an example of the shared ZDDs for combinato-

rial itemsets I and S. Using node-sharing techniques, one can handle a number

of combinatorial itemsets in the time approximately proportional to the com-

pressed ZDD size but not the number of terms of the combinatorial itemset.

2.3.2 Compiling BNs into ZDDs

An MLF is an multi-variant polynomial in the indicator and parameter

variables. Since each term of MLF is simply a combination of variables, it

can be represented compactly by a ZDD. The conventional ZDD-based method

compiles each BN vertex into one MLF based on the MLFs of its parents. Mul-

tiplying all the MLFs can get the MLF representing the joint distribution of

the given BN equivalent to equation (2.9). For each BN vertex Xi, the MLF is
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Figure 2.5 A ZDD for MLFX2 .

recursively defined as:

MLFXi = ∑
k:xi,k∈Dom(Xi)

MLFxi,k , (2.11)

MLFxi,k = λi,k ∑
j:πi,j∈Dom(Πi)

(θi,j,k ∏
xi′k′∈πi,j

MLFxi′k′ ) (2.12)

For the example in Fig 2.1, the MLF at vertex X1 is:

MLFX1 = MLFx1,1 + MLFx1,2

= λ1,1θ1,1,1 + λ1,2θ1,1,2.
(2.13)

Then the MLF for X2 can be written as:

MLFX2 =λ2,1(θ2,1,1MLFx1,1+θ2,2,1MLFx1,2)

+λ2,2(θ2,1,2MLFx1,1+θ2,2,2MLFx1,2)

=λ1,1λ2,1θ1,1,1θ2,1,1+λ1,1λ2,2θ1,1,1θ2,1,2

+λ1,2λ2,1θ1,1,2θ2,2,1+λ1,2λ2,2θ1,1,2θ2,2,2.

(2.14)

A ZDD for each MLF is constructed by the multi-valued multiplication

algorithm in [42]. The product of MLFs produces all possible combinations
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Figure 2.6 ZDD construction

of terms from the respective MLFs. Variables such as λi,k and λi,k′ (k ̸= k′)

(variables representing different instance of the same vertex) do not coexist in

the same term as they are mutually exclusive. Also, the multi-valued multipli-

cation algorithm with ZDDs operations makes sure that no term can contain the

same variable more than once, so instead of λ2
1,1 for duplicate variables, simply

λ1,1 will appear in the result.

An implicit factored representation of MLFX2 in equation (2.14) with

node sharing ZDDs are presented in Fig 2.5. The ZDD for MLFX2 containing

only variables relevant to X2 and its ancestor X1. In this example, there are four

paths from the root node to the 1-terminal node, each of which corresponds to a

term of MLFX2 . All MLFs for respective BN vertexes are compactly represent

by the shared ZDDs as shown in Fig 2.6 [42].

Comparing with equation (2.6), computing marginal probability for any

given vertexes using the conventional ZDD-based method is reduced to the sum

of joint distributions over their ancestor vertexes. Irrelevant variables of non-



22 Chapter 2 Preliminaries

descendants are out of consideration automatically.

P(X) = ∑
Ances(X)

P(X, Ances(X)) . (2.15)

Using ZDDs, the exponential size of MLFs for any given BN can be

condensed to ZDD size. However, when the number of vertexes in Ances(X) is

too large, the time for compilation and computing P(X, Ances(X)) in equation

(2.15) would be extremely time consuming. Therefore, methods to reduce time

for both compilation and inference need to be put forward.
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Chapter 3

Factorizing ZDDs Based on
d-Separation Structures

In this chapter, to condense ZDD size, we represent an improve-

ment of compiling MLFs using ZDDs by combining weak division

algorithm with d-separation. In our method, we use the d-separation

structure in BN to quickly find a good divisor to factor MLFs into

compact representations and we get much more compact MLFs than

the conventional ZDD-based method. For example, ZDD size for

network of HAILFINDER is reduced about 3 times. For network

of MILDEW, ZDD size is reduced about 5 times.
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3.1 Introduction

We present an improvement of the conventional ZDD-based method of

compiling MLFs into more factored forms based on ZDDs using d-separations.

We first introduce the weak division algorithm the most successful and preva-

lent technique of logic synthesis and optimization and show that if we treat

MLFs as logic polynomials, we can use this algorithm to factor MLFs into

compressed forms. These operations can be executed in a time almost linear

with the ZDD size [38, 41, 40]. Then we explain that for this algorithm, finding

a good divisor to factor MLFs is the key to success. Finally, we illustrate that

the structure of d-separation used to check some conditional independence in

BNs is effective to help us to find a good divisor to execute this factorization.

3.2 Fast Weak Division Algorithm

The weak divison algorithm [21] is the most successful and prevalent

technique of logic synthesis and optimization. For optimizing a two-level logic

(a form of the Boolean expressions with the AND-OR two level structure), we

first generate multi-level logics from it and then apply weak division algorithm

to factor the two-level logics. When we determine a intermediate logic, we

make a new variable to present it and regard it as a divisor. Then we reduce

the other existing logics by factoring them with the divisor. Eventually, we

construct a multi-level logic that consists of a number of small two-level logics.

The weak division algorithm is executed to computing the common part of

quotients for respective items in the divisor. For example, suppose the two
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expressions are

f = abd + abe + abg + cd + ce + ch, (3.1)

and

p = ab + c. (3.2)

If we write f as:

f = ab(d + e + g) + c(d + e + h), (3.3)

we factor f by divisor p and the quotient ( f = p) can then be computed as:

( f /p) = ( f /(ab)) ∩ ( f /c) = (d + e + g) ∩ (d + e + h) = d + e (3.4)

The remainder ( f %p) is computed using the quotient:

( f %p) = f − p( f /p) = abg + ch. (3.5)

Using the quotient and the remainder, we can rewrite f as follows:

f = p(p = f ) + ( f %p) = pd + pe + abg + ch. (3.6)

In this example, equation (3.1) with 15 literals is reduced to 12 literals

( f = pd + pe + abg + ch has 9 literals and p = ab + c has 3 literals).

Then if we have divisor like d + e, we can continue factorization as above

to condense the size of f furthermore. Minato [41] has proposed a fast weak

division algorithm to refine this algorithm as described in Algorithm 1.
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Algorithm 1 procedure(P/Q)
1: if Q=1; then
2: return P;
3: end if
4: if P==0 or P == 1 then
5: return 0;
6: end if
7: if P == Q; then
8: return 1;
9: end if

10: R←cache ("P/Q")
11: if R exists then
12: return R;
13: end if
14: //the highest variable in Q
15: v← Q.top;
16: (P0, P1)← factors of P by v;
17: (Q0, Q1)← factors of Q by v (Q1 ̸= 0);
18: R← P1/Q1;
19: if R ̸= 0 and Q ̸= 0 then
20: R← R ∩ P0/Q0;
21: end if
22: cache ("P/Q")← R;
23: return R

They implicitly represent logics using ZDDs and manipulate them us-

ing ZDD operations. The fast weak division algorithm is computed in a time

almost proportional to the number of nodes in ZDDs, which are usually much

smaller than the number of literals in logics, and is much faster than conven-

tional methods [41]. Thus if we have a proper divisor, we can quickly condense

the size of a given polynomial by using this fast weak division algorithm. So

we consider to use this approach to factor a given MLF and the main problem

now is how to find a proper divisor for a MLF.
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3.2.1 Problem in Factoring MLFs

For an MLF of a given BN, if we consider it as a polynomial, we can

extract repeatedly appeared variables by using the fast weak division algorithm

to condense its size. Here we use MLFX2 in Fig. 2.1 as an example.

MLFX2 =λ1,1λ2,1θ1,1,1θ2,1,1+λ1,1λ2,2θ1,1,1θ2,1,2

+λ1,2λ2,1θ1,1,2θ2,2,1+λ1,2λ2,2θ1,1,2θ2,2,2.
(3.7)

If we use λ2,1θ2,1,1 + λ2,2θ2,2|1,1 as a divisor P, according to the algorithm,

MLFX2 can be factored as follows:

MLFX2 /(λ2,1θ2,1,1 + λ2,2θ2,1,2)

= (MLFX2 /(λ2,1θ2,1,1) ∩ (MLFX2 /λ2,2θ2,1,2)

= (λ1,1θ1,1,1) ∩ (λ1,1θ1,1,1)

= λ1,1θ1,1,1

(3.8)

Finally, MLFX2 can be rewritten as:

MLFX2 = λ1,1θ1,1,1 ∗ P + λ1,2λ2,1θ1,1,2θ2,2,1 + λ1,2λ2,2θ1,1,2θ2,2,2 (3.9)

However, if we factor MLFX2 using factor P = λ1,1θ1,1,1 + λ1,2θ1,1,2,

the quotient will be the empty set so MLFX2 can not be rewritten by divisor P.

Therefore, the quality of the results of this algorithm greatly depends on the

choice of divisors.

3.2.2 Divisor Extraction Based on BN Vertexes

The MLF of a vertex in a given BN is based on its parents nodes. For the

vertex X2 in Fig. 2.1, MLFX2 contains information about vertex X1. Here we
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refer to this information with parameters x1,1 and x1,2. Also, if the number of

parameters of vertex X1 and X2 are given, we can forecast the size of MLFX2

and the frequency of characters λ and θ. Therefore, we consider factoring an

MLF of a vertex with the MLF of its parents directly. But, this fails when we

implement MLFX2 /MLFX1 . We give the details next.

MLFX2 /MLFX1

= MLFX2 /(MLFx1,1 + MLFx1,2)

= (MLFX2 /(MLFx1,1) ∩ (MLFX2 /(MLFx1,2)

= {(λ1,1λ2,1θ1,1,1θ2,1,1 + λ1,1λ2,2θ1,1,1θ2,1,2)/λ1,1θ1,1,1} ∩
{(λ1,1λ2,1θ1,1,1θ2,1,1 + λ1,1λ2,2θ1,1,1θ2,1,2)/λ1,2θ1,1,2}

= (λ2,1θ2,1,1 + λ2,2θ2,1,2) ∩ (λ2,1θ2,2,1 + λ2,2θ2,2,2)

= ∅.

(3.10)

We refer to the division of MLFX2 /MLFX1 as blotting out information about

vertex X1. Why we get the empty set is that though we try to blot out x1,1 by

MLFX2 /MLFx1,1 , x1,1 is still left in θ2,1,1 and θ2,1,2. The same applies to x1,2.

When we intersect the quotients, which are obtained by factoring MLFX2 with

MLFx1,1 and MLFx1,2 , x1,1 and x1,2 are contrary, hence we obtain the empty

set. But, if we omit the intersection, which means we perform the factorization

as MLFX2 /MLFx1,1 , MLFX2 /MLFx1,2 , MLFX2 can be rewritten as:

MLFX2 = MLFx1,1(λ2,1θ2,1,1 + λ2,2θ2,1,2) + MLFx1,2(λ2,1θ2,2,1 + λ2,2θ2,2,2)

(3.11)

However, even this works only in the case of a vertex which has only

one parent vertex like vertex X2. If it has more than one parent vertex, for

example, vertex X3 in Fig. 2.1, the representations of MLFx2,1 , MLFx2,2 are
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not capable of factoring MLFX3 .

MLFX4 /MLFx2,1

= (λ3,1λ4,1θ3,1,1θ4,1,1 + · · ·+ λ3,2λ4,3θ3,1,1θ4,2,3) ∩
(λ3,1λ4,1θ3,2,1θ4,1,1 + · · ·+ λ3,2λ4,3θ3,2,2θ4,2,3)

= ∅

(3.12)

The reason we get the empty set is since MLFX2 is based on vertex X1,

when we try to blot out the information about MLFx2,1 by MLFX3 /MLFx2,1 , we

are also blotting out information about x1,1 and x1,2 contained in MLFX4 . The

blotting out is inadequate because for x1,1 and x1,2 are also contained in MLFX3

and they contradict to each other when we intersect the quotients. Thus, this

motivates us to find a vertex set that can separate vertex X1 and vertex X4 as

independent vertexes so that after we factoring MLFX4 , the information about

vertex X1 can be cleared up thoroughly. We propose an idea of factoring MLFs

using the combinations of variables of d-separation vertex sets so solve the

problems mentioned above.

3.3 Divisor Extraction Based on d-Separations

3.3.1 d-Separations

The structure of d-separation is used to check conditional independence

between variables in BNs. It can be presented as three graph patterns [28]

as shown in Fig 3.1. The d-separation has an important property that if we

substitute the observed values to the d-separation vertexes, vertexes in both

sides cut by the d-separation become independent. The approach we propose

is based on d-separation of serial pattern.
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Figure 3.1 An example of d-separation.
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Figure 3.2 An example of one-vertex d-separation.

For a given MLF to be factored which is represented by ZDD, first we

try to find suitable d-separation vertex set and multiply their MLFs. Then we

consider the result of multiplication as a divisor to factor the MLF using fast

weak algorithm. We first try from the most simple d-separation which consists

of only one vertex (one-vertex d-separation). Since the one d-separations not

always exist in BNs, we use d-separations which consist of two or three ver-

texes (multi-vertex d-separations). However, the multi-vertex d-separations are

found manually.

3.3.2 Divisor Selection by One-vertex d-Separations

For an MLF to be factored by one-vertex d-separation, we use the MLF

of every variable of this vertex as its divisor. For the example in Fig. 3.2, the
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MLF of vertex X3 is:

MLFX3 = λ1,1λ2,1λ3,1θ1,1,1θ2,1,1θ3,1,1 + λ1,1λ2,1λ3,2θ1,1,1θ2,1,1θ3,1,2

+ λ1,1λ2,2λ3,1θ1,1,1θ2,1,2θ3,1,2 + λ1,1λ2,2λ3,2θ1,1,1θ2,1,2θ3,2,2

+ λ1,2λ2,1λ3,1θ1,1,2θ2,2,1θ3,1,1 + λ1,2λ2,1λ3,2θ1,1,2θ2,2,1θ3,1,2

+ λ1,2λ2,2λ3,1θ1,1,2θ2,2,2θ3,1,2 + λ1,2λ2,2λ3,2θ1,1,2θ2,2,2θ3,2,2

(3.13)

The MLFs of variables of vertex X2 are:

MLFx2,1 = λ1,1λ2,1θ1,1,1θ2,1,1 + λ1,2λ2,1θ1,1,2θ2,2,1

MLFx2,2 = λ1,1λ2,2θ1,1,1θ2,1,2 + λ1,2λ2,2θ1,1,2θ2,2,2
(3.14)

We can factor MLFX3 using MLFx2,2and MLFx2,1 because X2 is the single

vertex that separates vertex X1 and X3.

MLFX3 /MLFx2,1 =(λ1,1λ2,1λ3,1θ1,1,1θ2,1,1θ3,1,1 + . . . λ1,2λ2,2λ3,2θx2,2 θ2,2,2θ3,2,2)

/(λ1,1λ2,1θ1,1,1θ2,1,1 + λ1,2λ2,1θ1,1,2θ2,2,1)

=(λ3,1θ3,1,1 + λ3,2θ3,1,2) ∩ (λ3,1θ3,1,1 + λ3,2θ3,1,2)

=λ3,1θ3,1,1 + λ3,2θ3,1,2

(3.15)

MLFX3 /MLFx2,2 =(λ1,1λ2,1λ3,1θ1,1,1θ2,1,1θ3,1,1 + . . . λ1,2λ2,2λ3,2θx2,2 θ2,2,2θ3,2,2)

/(λ1,1λ2,2θ1,1,1θ2,1,2 + λ1,2λ2,2θ1,1,2θ2,2,2)

=(λ3,1θ3,1,2 + λ3,2θ3,2,2) ∩ (λ3,1θ3,1,2 + λ3,2θ3,2,2)

=λ3,1θ3,1,2 + λ3,2θ3,2,2

(3.16)

Finally, we rewrite MLFX3 as follows:

MLFX3 = MLFx2,1(λ3,1θ3,1,1 + λ3,2θ3,1,2) + MLFx2,2(λ3,1θ3,1,2 + λ3,2θ3,2,2)

(3.17)
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3.3.3 Divisor Selection by Multi-vertex d-Separations

We use the BN of Fig 2.1 to show how to perform the factorization

based on multi-vertex d-separation. For vertex X1 and X4, {X2, X3} is the d-

separation vertex set that separates them as independent vertexes. Since both

vertex X2 and X3 have two values, there are four combinations of of their in-

stantiations {x2,1x3,1, x2,1x3,2, x2,2x3,1, x2,2x3,2}. According to [42], we mul-

tiply their MLFs as follows. There are two terms in each of these MLFs, so

the number of terms after multiplication should be 2 ∗ 2 = 4. But since the

parameters λ are eliminated if they contradict each other, only two of the four

terms are left. Following shows the details of the multiplication.

MLFx2,1MLFx3,1

= (λ2,1λ1,1θ1,1,1θ2,1,1 + λ2,1λ1,2θ1,1,2θ2,2,1)

(λ3,1λ1,1θ1,1,1θ3,1,1 + λ3,1λ1,2θ1,1,2θ3,2,1)

= λ2,1λ3,1λ1,1θ1,1,1θ2,1,1θ3,1,1 + λ2,1λ3,1λ1,2θ1,1,1θ2,2,1θ3,2,1.

(3.18)

MLFx2,1MLFx3,2

= (λ2,1λ1,1θ1,1,1θ2,1,1 + λ2,1λ1,2θ1,1,2θ2,2,1)

(λ3,2λ1,1θ1,1,1θ3,1,2 + λ3,2λ1,2θ1,1,2θ3,2,2)

= λ2,1λ3,2λ1,1θ1,1,1θ2,1,1θ3,1,2 + λ2,1λ3,2λ1,2θ1,1,1θ2,2,1θ3,2,2.

(3.19)

MLFx2,2MLFx3,1

= (λ2,2λ1,1θ1,1,1θ2,1,2 + λ2,2λ1,2θ1,1,2θ2,2,2)

(λ3,1λ1,1θ1,1,1θ3,1,1 + λ3,1λ1,2θ1,1,2θ3,2,1)

= λ2,2λ3,1λ1,1θ1,1,1θ2,1,2θ3,1,1 + λ2,2λ3,1λ1,2θ1,1,1θ2,2,2θ3,2,1.

(3.20)
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MLFx2,2MLFx3,2

= (λ2,2λ1,1θ1,1,1θ2,1,2 + λ2,2λ1,2θ1,1,2θ2,2,2)

(λ3,2λ1,1θ1,1,1θ3,1,2 + λ3,2λ1,2θ1,1,2θ3,2,2)

= λ2,2λ3,2λ1,1θ1,1,1θ2,1,2θ3,1,2 + λ2,2λ3,2λ1,2θ1,1,1θ2,2,2θ3,2,2.

(3.21)

After these multiplication, we factor the MLFX4 with the four combinations

respectively. We give an example of MLFX4 /MLFx2,1 MLFx3,1 in details.

MLFX4 /MLFx2,1MLFx3,1

= MLFX4 /(λ2,1λ3,1λ1,1θ1,1,1θ2,1,1θ3,1,1+

λ2,1λ3,1λ1,2θ1,1,1θ2,2,1θ3,2,1)

= MLFX4 /(λ2,1λ3,1λ1,1θ1,1,1θ2,1,1θ3,1,1)∩
MLFX4 /(λ2,1λ3,1λ1,2θ1,1,1θ2,2,1θ3,2,1)

= λ4,1θ4,1,1 + λ4,2θ4,1,2 + λ4,3θ4,1,3.

(3.22)

Finally, we can rewrite MLFX4 as follows:

MLFX4 =MLFx2,1 MLFx3,1(λ4,1θ4,1,1 + λ4,2θ4,1,2 + λ4,3θ4,1,3)+

MLFx2,1 MLFx3,2(λ4,1θ4,3,1 + λ4,2θ4,2,2 + λ4,3θ4,3,3.)+

MLFx2,2 MLFx3,1(λ4,1θ4,2,1 + λ4,2θ4,3,2 + λ4,3θ4,2,3.)+

MLFx2,2 MLFx3,2(λ4,1θ4,4,1 + λ4,2θ4,4,2 + λ4,3θ4,2,3.).

(3.23)

3.4 Experiments and Results

We implement our experiments on the platform of a Intel Core Quad

CPU Q9550@2.83GHz * 4 PC with Ubuntu 12.04LTS and 3.8GiB of main

memory. We manipulate up to 40,000,000 nodes of ZDDs. We use data set of

BN Benchmark [23] ALARM, HAILFINDER, INSURANCE and MILDEW

to implement our experiment.

We try to choose the vertexes which have the biggest size of ZDD in

ALARM and HAILFINDER. For INSURANCE and MILDEW. considering
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node33 

node14 

node36 

MLF(node36)/MLF(node14)*MLF(node33)

Figure 3.3 The example of ALARM36(n14n33)

time consumption, we do not use the vertexes with biggest ZDD size but choose

the vertexes which seem to have suitable d-separation vertex sets.

To compare with our method, we use a simple criterion to extract di-

visors from MLFs, that is abstracting variables that appear more than twice in

the MLFs. The experiment results are shown in Table 3.2. The first column

shows the vertex with its number in the BN. For example, ALARM36 means
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Table 3.1 Original MLFs and ZDDs before factorization.

Dataset
BN specifications Before factorization

BN
vertexes

Indi-
cators

Para-
meters

ZDD
size

Total
terms

Total
literals

Generating
ZDD

ALARM36 37 105 187 4,551 >100b∗ >500b 0.647s
HAILFINDER43 56 223 835 73,700 >2b >210m∗ 45.902s
INSURANCE5 27 – – 6,182 628,992 >10m 11.768s
INSURANCE14 27 – – 56,490 >70m >2b 11.603s
MILDEW14 35 616 6,709 80,248 >2b >2b 946.35s
MILDEW20 35 616 6,709 107,828 >2b >2b 947.73s

∗’b’ means billion and ’m’ means million

Table 3.2 Factorization without d-separation.

Dataset and vertex ID Factorization without d-separation

ZDD size Total terms Total literals Time for
factorization

ALARM36 6,784 3,500 13,512 1969.77ss
HAILFINDER43 overflow – – –
INSURANCE5 5,256 3,026 10,483 2.169s
INSURANCE14 overflow – – –
MILDEW14 overflow – – –
MILDEW20 overflow – – –

Table 3.3 Factorization with d-separation.

Dataset and vertex ID and
d-separation vertex set

After factorization based on d-separation

ZDD size Total
terms

Total
literals Factorization

ALARM36(n14n33) 5,178 2662 9,796 51.425s
ALARM36(n20n32) 4,247 2,423 8,776 4.825s
ALARMN36(n14n33/n20n32) 4,133 2,342 8,422 3.427s
HAILFINDER43(n14n20) 24,353 >2G >2G 391.648s
HAILFINDER43(n14n20/n4n12) 22,833 14,512 50,113 303.641s
INSURANCE5(n4n8n9) 1,985 1,359 3,924 0.24s
INSURANCE14(n2n3n9) 34,222 22,088 72,882 2427.79s
MILDEW14(n11n12) 14,727 11,785 33,355 619.391s
MILDEW20(n17n18) 22,356 16,784 51,242 754.577s
MILDEW20(n17n24) overflow – – –

we factor the MLF of vertex 36 in ALARM. The other columns show the ZDD

specifications after factoring and time consumption with the simple divisor ex-

tracting algorithm to show the upper limits of consumption of calculation and

inference based on MLFs without any compression techniques.
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For the vertexes we use in Table 3.2, we use algorithm to find one-vertex

d-separation and manually find multi-vertex d-separations and use our method

to factor the MLFs. The experiment results are shown in Table 3.3. The first

column in this table lists vertexes with numbers and d-separation sets we choose

in BN. For instance, ALARM36(n14n33) means factoring the MLF of vertex

36 with d-separation set MLFs of vertex 14 and vertex 33 (Fig. 3.3). Accord-

ing to Table 3.3, we could always achieve quite smaller ZDDs and condense

MLFs quite efficiently using our method comparing to Table 3.1 and Table 3.2.

However, we get a bigger ZDDs due to the factorization in ’ALARM36’. This

is because the number of newly introduces variables to represent divisors are

more than the reduction of ZDD nodes. Since the size of ZDD is depended on

the structure of BN itself and the probability of every instance, we can not pre-

cisely tell how much we can condense MLFs. We hope to find the d-separation

vertex sets with minimum number of combinations of variables to reduce the

newly introduces variables. This is the reason why we just use one or two

nodes d-separations but not more. For ALARM36 and HAILFINDER43, we

get different results with different d-separation sets. That is to say, if we can

find suitable d-separations, we will further condense ZDD size which is impor-

tant because it determines the time and space requirements for online inference

which is linear in ZDD size.

3.5 Summary

We represented an improvement of compiling MLFs using ZDDs by

combining weak division algorithm with d-separations. In our method, we use

the d-separation structures in BNs to quickly find good divisors to factor MLFs

into compact representations and we get much more compact MLFs than the
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conventional ZDD-based method [42].

In our method, we first generate ZDDs for the whole given BN, and

then factor the ZDDs using d-separation vertexes. The process of factoring

costs too much time and sometime the ZDD for a BN is too large to factor,

such as MILDEW20(n17n24) in Table 3.3, though we could find proper

d-separation nodes. To improve the factorization, we expect to develop simple

and fast heuristic algorithms to find d-separation sets as divisors instead of

finding d-separation sets manually. For example, utilizing the structure of

junction tree. Also we want to consider not to generate the ZDD for the

whole network but just generate the ZDD for the newfound divisor, we may

avoid the time consumption and get quite compact ZDDs. For example,

ALARM36(n14n33/n20n32) shows that if we first factor vertex 36 with set

of vertex 14 and 33, then factor the result with set of vertex 20 and 32, we

can get a smaller ZDD using this two-level d-separations. It gives us a hint

that in the process of generating the ZDD from the MLF of ALARM, we can

first generate a ZDD for divisor of vertex 20 and 32, then using this ZDD to

generate a ZDD of divisor vertex 14 and 33. Finally, we use the two ZDDs to

generate the ZDD of the whole network so that we avoid the time consumption

of factoring and also reduce the ZDD. These expectations help bring about the

ideas in the next two chapters.
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Chapter 4

Fast Message Passing
Algorithm Using ZDD-Based
Local Structure Compilation

We have shown a method of condensing ZDDs by factorizing

large ZDDs into small one. However, this method is limited when a

BN is too large to compile into ZDDs. Naturally, we think of com-

piling some parts of BNs instead of the whole BNs into ZDDs. The

junction tree is a factorized form of a BN. It decomposes a BN into

a tree structure and message passing algorithm [48], the most popu-

lar and prevalent algorithm for exact inference of BNs is carried out

on this tree. We propose to accelerate this algorithm by compiling a

junction tree into ZDDs and perform message passing algorithm on

ZDDs. Experiments show that through our compilation, inference

are much faster than the original junction tree algorithm. For the
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networks of ALARM and INSURANCE, inference is accelerated

about 10 times than the original junction algorithm.

4.1 Introduction

A junction tree [33], also known as jointree, one of the most essential

tree structure in exact inference of BNs, whose nodes and edges are labeled

with subsets of variables in a BN. By performing message passing algorithm on

junction trees, the computation complexity of inference is bound to treewidth

of a junction tree [48, 46]. Given a junction tree with treewidth w, all marginal

probabilities of BN vertexes can be computed in time and space exponential

in w. To generate a junction tree, one needs to triangulate the moral graph

of the given BN. Finding the best order to triangulate a moral graph will lead

to a junction tree with minimum treewidth. However, this is known as an NP

hard problem. Constructing a junction tree with minimal width is a hot topic

for junction tree based approaches [47, 34, 35]. Local structures [33] in the

forms of variables sharing the same values or repetitive local computations are

known as the breakthrough of the treewidth barrier. The ability to exploit local

structures to avoid redundant calculations are known as a significant impact on

exact inference [18].

In this chapter, we discuss how to accelerate the essential inference al-

gorithm, message passing algorithm by exploiting local structures with ZDDs.

We directly compile a junction tree into ZDDs. We introduce message vari-

ables whose values dynamically change according to different messages so that

we can perform the message passing algorithm on ZDDs. We will show that
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through the compilation, we can perform exact inference much more efficiently

than the conventional message passing algorithm.

4.2 Junction Tree and Message Passing

A junction tree T = ⟨N, A⟩ for BN B is a tree structure, where N =

{1, 2, ..., m} is a set of nodes and A ⊂ N × N is a set of undirected edges

*1 (a, b) where a, b ∈ N, a ̸= b. Each node and each edge is labeled by a

subset of variables V: Ca ⊆ V denotes the label of node a ∈ N that is called a

cluster, and Sab ≜ Ca ∩ Cb denotes the label of edge (a, b) ∈ A that is called

a separator. We use ca,m to denote the m-th instantiation of Ca and sab.ℓ to

denote the ℓ-th instantiation of Sab. The size for node Ca represented as |Ca| is

the number of variables in Ca. Thus the treewidth of a T equals the size of the

largest node. We here define a family Fa ≜ {Xi ∈ V | Xi ∪Πi ⊆ Ca}. Then,

if T is a junction tree, clusters in T satisfies the following properties:

• Running intersection: ∀a, b ∈ N, ∀c ∈ N on the unique path between a

and b, Ca ∩ Cb ⊆ Cc.

• Family preserving: ∀Xi ∈ V, ∃a ∈ N, Xi ∈ Fa.

In general, Xi can belong to multiple families. For each Xi, here we

choose one family Fa s.t. Xi ∈ Fa in arbitrary manner and say that Xi is

assigned to Ca. We use SN(Ca) to denote the set of all variables that are

assigned to Ca. Without loss of generality, we assume that T is rooted and

use r to denote the root node of T. We use d(a) to denote the depth of a that

*1 To distinguish with the vertexes and arcs in B = ⟨G, Θ⟩, we use nodes and edges in a
junction tree.
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Figure 4.1 A junction tree for the BN in Fig 2.1.

is the distance from r, and use Nd ≜ {a ∈ N | d(a) = d} and d(T) ≜

maxa∈N d(a). We use par(a) ∈ N and child(a) ⊂ N to denote the parent and

the set of children of a in T, respectively.

Message passing algorithm is an algorithm that can compute all

marginal probabilities P(Xi) (Xi ∈ V) on a BN B using junction tree T [33].

In the message passing procedure, a potential, which is a function over a set

of variables, is recursively updated by messages that are computed from the

other potentials. We define the potential over Ca and Sab as ΦCa(Ca) and

ΦSab(Sab), respectively. We use ϕca,m ≜ ΦCa(ca,m) and ϕsab,ℓ ≜ ΦSab,ℓ(sab,ℓ),

respectively. We use Φ to denote the set of all potentials ΦCa(Ca) and

ΦSab(Sab). For the sake of simplicity, we omit the arguments of potentials

afterward. The message passing is summed up in Algorithm 2.

When the message passing ends, these potentials satisfy the following

equations:

ΦCa = P(Ca) , ΦSab = P(Sab) , P(V) =
∏a∈N ΦCa

∏(a,b)∈A ΦSa,b

. (4.1)
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Algorithm 2 MessagePassing(T)
1: // Initialize
2: ϕca,m ← ∏Xi∈SN(Ca) P(xi,k | πi,j) for all a ∈ N and m, where xi,k ∪

πi,j ⊆ ca,m

3: ϕsab,ℓ ← 1 for all (a, b) ∈ A and ℓ

4: // Collect messages : child to parent
5: for d = d(T)− 1 to 0 do
6: for all b ∈ Nd do
7: for all a ∈ child(b) do
8: Pass(a, b, ΦCa , ΦCb , ΦSab)

9: end for
10: end for
11: end for
12: // Distribute messages : parent to child
13: for d = 1 to d(T) do
14: for all b ∈ Nd do
15: for all a ∈ par(b) do
16: Pass(a, b, ΦCa , ΦCb , ΦSab)

17: end for
18: end for
19: end for
20: return Φ

Algorithm 3 Pass(a, b, ΦCa , ΦCb , ΦSab)

1: ϕold
sab,ℓ
← ϕsab,ℓ for all ℓ

2: ϕsab,ℓ ← ∑ca,m\sab,ℓ
ϕca,m , for all ℓ and m where sab,l ⊂ ca,m

3: ϕcb,m ← ϕcb,m

ϕsab,ℓ
ϕold

sab,ℓ
for all ℓ and m where sab,l ⊂ cb,m

Once we finish the computation for P(Ca), we can easily get P(Xi)

(Xi ∈ Ca) by marginalizing out all Xj ∈ Ca\{Xi} from P(Ca) as follows:

P(Xi) = ∑
Ca\{Xi}

P(Ca). (4.2)
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Figure 4.2 An example of local computation.

4.3 Local Structures

Though message passing on junction trees is an efficient method, for

each cluster in a junction tree, we need to prepare a table for the potential whose

size is exponential to the size of the cluster. Operations on these tables incur in

considerable costs in message passing. If we can exploit all the local structures,

in the form of equal parameters and local computation, during message passing,

the algorithm can be significantly accelerated.

For the example CPTs in Fig 2.1, there are 18 parameters in total in the

CPTs and yet only 8 of them are distinct. Compact representations for these

CPTs are expected. Also while calculating different probabilities who are shar-

ing the same local computation, for example calculating P(x1,2, x2,1, x3,1) =

θ1,2,1θ2,1,1θ3,1,1 and P(x1,2, x2,1, x3,2) = θ1,2,1θ2,1,1θ3,2,1, multiplication for

θ1,2,1θ2,1,1 are repetitive. If we can cache local computations in advance, there

is no need to calculate it again while evaluating a new query which shares the

same local computations with queries already calculated.
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4.4 Fast Message Passing Algorithm

In this section, we introduce our fast message passing algorithm using

ZDDs. We first convert all updates of potentials of naive message passing into

MLFs. Then, we compile them into ZDDs in the same manner as the con-

ventional ZDD-based method [42]. First, we define MLFs that we use in our

method, then we explain how we can simulate the message passing using those

MLFs.

4.4.1 MLFs for Message Passing

Before generating the ZDD, we need to convert potentials in junction

tree into MLFs. While converting these components into MLFs, we introduce

three types of variables: indicator variable λi,k; parameter variable θi,j,k, with

the same definition in Section 2; and message variables βa
sab,ℓ

, βb
sab,ℓ

for instan-

tiation sab,ℓ.

In our method, we need to generate MLFs for P(Xi | Πi), ΦSab and

ΦCa , for each Xi ∈ V, (a, b) ∈ A, a ∈ N. We use MLFXi , MLFSab , MLFCa to

represent MLFs for them respectively. We define the corresponding MLFs for

these components as follows:

• For all Xi ∈ V, we define

MLFXi ≜ ∑
j,k

λi,kΛi,jθi,j,k, Λi,j ≜ ∏
xi′ ,k′∈πi,j

λi′ ,k′ . (4.3)
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• For all (a, b) ∈ A, define

MLFa
Sab

≜ ∑
l

Λab,ℓβa
sab,ℓ

, MLFb
Sab

≜ ∑
l

Λab,ℓβb
sab,ℓ

, Λab,ℓ ≜ ∏
xi,k∈sab,ℓ

λi,k.

(4.4)

• For all a ∈ N, using the above MLFXi and MLFa
Sab

, we define

MLFCa ≜ ∏
Xi∈SN(Ca)

MLFXi ∏
(a,b)∈A

MLFa
Sab

. (4.5)

Using the multi-valued multiplication algorithm [42] in ZDD opera-

tions, the product of these MLFs produces all possible combinations of their

terms. Variables such as λi,k and λi,k+1 (variables representing different in-

stances of the same variable) does not coexist in the same term as they are

mutually exclusive. Also, union operations of ZDDs make sure that no term

can contain the same variable more than once, so instead of λ2
1,1 for duplicate

variables, simply λ1,1 will appear in the result.

For example the junction tree in Fig 4.1, first we generate the MLF for

every CPT as follows:

MLFX1 = λ1,1θ1,1,1 + λ1,2θ1,1,2. (4.6)

MLFX2 = λ1,1λ2,1θ2,1,1 + λ1,1λ2,2θ2,1,2 + λ1,2λ2,1θ2,2,1 + λ1,2λ2,2θ2,2,2.
(4.7)

MLFX3 = λ1,1λ3,1θ3,1,1 + λ1,1λ3,2θ3,1,2 + λ1,2λ3,1θ3,2,1 + λ1,2λ3,2θ3,2,2.
(4.8)

MLFX4 = λ2,1λ3,1λ4,1θ4,1,1 + λ2,1λ3,1λ4,2θ4,2,1 + ... + λ2,2λ3,2λ4,2θ4,4,2.
(4.9)
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Then we have MLF1
S12

and MLF2
S12

for C1 and C2 respectively:

MLF1
S12

= λ2,1λ3,1β1
x21,x31

+ λ2,1λ3,2β1
x21,x32

+ λ2,2λ3,1β1
x22,x31

+ λ2,2λ3,2β1
x22,x32

.
(4.10)

MLF2
S12

= λ2,1λ3,1β2
x21,x31

+ λ2,1λ3,2β2
x21,x32

+ λ2,2λ3,1β2
x22,x31

+ λ2,2λ3,2β2
x22,x32

.
(4.11)

By multiplying these MLFs, we get MLFs for ΦC1 and ΦC2 respectively

as:

MLFC1 = MLFX1MLFX2MLFX3MLF1
S12

(4.12)

= λ1,1λ2,1λ3,1θ1,1,1θ2,1,1θ3,1,1β1
x21,x31

+ λ1,1λ2,1λ3,2θ1,1,1θ2,1,1θ3,1,2β1
x21,x32

(4.13)

+ λ1,1λ2,2λ3,1θ1,1,1θ2,1,2θ3,2,1β1
x22,x31

+ λ1,1λ2,2λ3,2θ1,1,1θ2,1,2θ3,2,2β1
x22,x32

(4.14)

... (4.15)

+ λ1,2λ2,2λ3,1θ1,1,2θ2,2,2θ3,4,1β1
x22,x31

+ λ1,2λ2,2λ3,2θ1,1,2θ2,2,2θ3,4,2β1
x22,x32

.
(4.16)

(4.17)

MLFC2 = MLFX4MLF2
S21

(4.18)

= λ2,1λ3,1λ4,1θ4,1,1β2
x21,x31

+ λ2,1λ3,1λ4,2θ4,1,2β2
x21,x31

(4.19)

... (4.20)

+ λ2,2λ3,2λ4,1θ4,4,1β2
x22,x32

+ λ2,2λ3,2λ4,2θ4,4,2β2
x22,x32

. (4.21)

4.4.2 Message Passing with MLFs

If we can manipulate MLFs to compute the same components as in

the message passing algorithm, we can accelerate the algorithm by compiling

MLFs into ZDDs and utilizing ZDD techniques.

For the three types of variables λi,k, θi,j,k, and βa
sab,ℓ

in MLFs as defined
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above, λi,k ∈ {0, 1}, θi,j,k, βa
sab,ℓ
∈ [0, 1]. During our method, parameter vari-

ables θi,j,k keep the values consistent to P
(
xi,k | πi,j

)
all the time. Values in

message variables βa
sab,ℓ

dynamically change according to the messages passed

between nodes a, b ∈ N . For any set of variables W ⊆ V, we define MLFW

representing probability distribution over W in the following sense. For any

instantiation w of W, we can evaluate MLFW so it returns the probability over

w denoted by αW(w).

Definition 3 The value of MLFW at instantiation w, denoted by αW(w), is

the result of replacing each indicator variable λi,k in MLFW with 1 if λi,k is

consistent with w, and with 0 otherwise.

While using MLFs, messages over variables Sab passed from a to b are

obtained by calculating αCa(sab,ℓ) for all ℓ. The message passing algorithm

with MLFs is summed up in Algorithm 4. It works in accordance with the mes-

sage passing algorithm introduced in Section 2 except operations on potentials

are transformed to operations on MLFs. We evaluate and change the values in

message variables of MLFs to implement the same computation on potentials.

In the initialization step (line 2 in Algorithm 4), we initialize all message

variables to 1. With this assignment, all MLFs satisfy the following equations

which are consistent with the initialization in Algorithm 2 (line1-7):

MLFCa(βa
sab,ℓ

= 1) = ∏
Xi∈SN(Ca)

P(Xi | Πi), for all a ∈ N, (4.22)

MLFa
Sab

(βa
sab,ℓ

= 1) = ∑
l

Λab,ℓ, MLFb
Sab

(βb
sab,ℓ

= 1) = ∑
l

Λab,ℓ, for all (a, b) ∈ A.

(4.23)
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Algorithm 4 MessagePassingwithMLF(T)
1: // Initialize
2: βa

sab,ℓ
← 1, βb

sab,ℓ
← 1, For all (a, b) ∈ A, and ℓ

3: // Collect messages : child to parent
4: for d = d(T)− 1 to 0 do
5: for all b ∈ Nd do
6: for all a ∈ child(b) do
7: Collect(a, b, MLFCa , MLFCb)

8: end for
9: end for

10: end for
11: // Distribute messages : parent to child
12: for d = 1 to d(T) do
13: for all b ∈ Nd do
14: for all a ∈ par(b) do
15: Distribute(a, b, MLFCa , MLFCb)

16: end for
17: end for
18: end for
19: return evaluate all MLFs and return the results

Compared to the conventional algorithm, a message passing from node

a to b in the collecting and distributing operations is performed differently. In

the message collecting operation, a message passing from a to b done as

follows:

• evaluate MLFCa on all instantiations of Sab to get the messages

αCa(sab,ℓ) for all ℓ, and preserve them in corresponding message

variables βa
sab,ℓ

in MLFCa (refer to line 1 in Algorithm 5)

• Node b absorbs messages αCa(sab,ℓ) by updating corresponding mes-

sages variables βb
sab,ℓ

for all ℓ in MLFCb . (refer to line 3 in Algorithm 5)
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Algorithm 5 Collect(a, b, MLFCa , MLFCb )

1: βa
sab,ℓ
← αCa(sab,ℓ), for all ℓ // equivalent to ϕsab,ℓ ← ∑ca,m\sab,ℓ

ϕca,m for

all ℓ

2: βb
sab,ℓ
← αCa (sab,ℓ)

βb
sab,ℓ

, for all ℓ

In the message distributing operation, a message passing from a to

b is evaluated as follows:

• evaluate MLFCa on all instantiations of Sab to get messages αCa(sab,ℓ),

and node b absorbs messages by updating message variables (refer to

line 1 in Algorithm 6).

Algorithm 6 Distribute(a, b, MLFCa , MLFCb )

1: βb
sab,ℓ
← αCa (sab,ℓ)

βb
sab,ℓ

, for all (a, b) ∈ A and ℓ

Note that in the distributing operation, since a has absorbed messages in the col-

lecting operation, there is no need to change the message variables in MLFCa ,

thus we only need to pass messages out to MLFCb .

After a full round of message passing, the MLFs for any ΦCa represents

the joint distributions over variables in Ca:

MLFCa = P(Ca) . (4.24)

Also, if messages over Sab are passed outward from a and collected inward to

a, then we have:

MLFa
Sab

= P(Sab) . (4.25)
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Table 4.1 BN specifications for Chapter 4

Dataset BN vertexes Indicators Parameters
ALARM 37 105 509
ASIA 8 16 18
HAILFINDER 56 223 2656
INSURANCE 27 89 984
HEPAR2 70 162 1453
WIN95PTS 76 152 574
PIGS 441 1323 5618
WATER 32 116 10083

Similarly, we can calculate the probability of any variable Xi ∈ V by evaluating

the MLFCa where Xi ∈ Ca. For the example in Fig 4.1, after performing

the message passing algorithm on MLFs generated according to the procedure

explained above, we can get the MLFs satisfying:

MLFC1 = P(X1, X2, X3) , MLFC2 = P(X2, X3, X4) , (4.26)

MLF1
S12

= P(X2, X3) . (4.27)

4.5 Experiment and Results

We implement our method on an Intel Core Quad CPU Q9550@2.83GHz

* 4 PC with Ubuntu 12.04LTS and 3.8GiB of main memory. We manipulate up

to 40,000,000 nodes of ZDDs using the ZDD package implemented by Minato

[41]. We used dataset of BN Benchmark [23] ALARM, HAILFINDER,

INSURANCE, etc. In our experiment. BN specifications with number of

vertexes and parameters are shown in Table 4.1. The experiment results of our

method comparing with conventional message passing algorithm are shown in

Table 4.2 and Table 4.3.

We first show the time of generating a junction tree and time of message
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Table 4.2 Exact inference with the junction tree algorithm.

Dataset
Junction tree algorithm

Clus
-ters

Separ
-ators

Compile
(ms)

Maximum
separator

Inference
(ms)

ALARM 27 26 117 3(36) 56
ASIA 6 5 67 2(4) 5
HAILFINDER 43 42 160 4(297) 321
INSURANCE 19 18 114 6(2400) 4273
HEPAR2 58 57 123 6(96) 109
WIN95PTS 50 49 190 7(128) 103
PIGS 368 367 697 10(59049) 3148153
WATER 19 18 197 9(110592) 6119

Table 4.3 Exact inference with fast message passing algorithm.

Dataset
ZDD-based message passing

ZDD
size

Message
variables

Compile
(ms)

Infer
-ence(ms)

ALARM 6770 482 100 4
ASIA 278 64 4 1
HAILFINDER 45815 3116 3571 83
INSURANCE 359963 13712 6313 545
HEPAR2 18678 1376 336 67
WIN95PTS 26477 1756 548 31
PIGS – 248922 – –
WATER – 515856 – –

passing algorithm. We generated a junction tree for a BN using the heuristic

algorithm known as min-fill-in [36]. We show the number of clusters and sepa-

rators in a junction tree in the first and second columns. We show the maximum

size of a separator in the third column. The first number in the third column is

the number of variables in the maximum separator and the second number in the

bracket is the number of all instantiations of these variables. The fourth column

shows time for performing message passing algorithm once on the junction tree

to get joint distribution over variables in clusters and separators.

The last four columns are the results of our proposed method with the

size of ZDDs, time for generating ZDDs and time of message passing on ZDDs.
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As the same in junction trees, we perform a full round message passing on

ZDDs and get all MLFs representing joint distributions over variables in clus-

ters and separators. And then we evaluate these MLFs to get these joint prob-

abilities. We also show the number of message variables introduced in our

approach which play an important role in our ZDD-based message passing al-

gorithm. While passing messages with ZDDs, we need to evaluate all instan-

tiations of separators. Thus time consumption of our method is linear time to

the ZDD size and exponential to the size of separators. From the results, we

can see that the inference with our ZDD-based message passing algorithm are

more efficient comparing to the conventional one. Especially for the network

INSURANCE, time for message passing accelerates about 8 times.

Unfortunately, for the networks PIGS and WATER, we could not con-

duct our method since the numbers of massage variables become too large for

our ZDD package. This is mainly because there are too many message vari-

ables to generate ZDDs. While constructing a junction tree for a given BN,

most research considers to construct a junction tree that has a treewidth as small

as possible. However in our approach, the size of separators factors the most

since we have to generate two message variables for every instantiation of the

separators (See equation (4.4)). According to the result of message variable

numbers, for the BN of WATER, it has only about 10000 parameters but we

need to generate about 1 million message variables.

4.6 Summary

We proposed an improved method for exact inference in BNs to per-

form the message passing algorithm on ZDDs to accelerate the inference ef-

ficiency by exploiting local structures in the message passing algorithms. In
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some cases, the junction tree with small clusters works well in the conven-

tional message passing algorithm, but it gives rise to a considerable number

of ZDDs in our method. This is because directly comping a junction tree into

ZDDs, node sharing and cache memory can not be fully utilized because there

are too many independent clusters sharing few local structures. What is more,

decomposing a BN into too many clusters gives rise to the blow up of mes-

sage variables. In the next chapter, we will introduce our proposed method to

find proper d-separation structure to partition a given BNs into several condi-

tional independent subgraphs and then compile these small graphs into ZDDs

to further improve the exact inference.
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Chapter 5

Separate Compilation of
Bayesian Networks for
Efficient Exact Inference

In this chapter, we introduce a method which combines the

ideas in the previous chapters together to further improve the exact

inference using ZDDs. We propose an approach of partitioning

and separately compiling BNs. For every given BN, serial pattern

d-separation sets are found and used to partition the BN into

conditionally independent components. Separately compiling these

components into ZDDs is more efficient than generating a giant

ZDD for a whole network. However, partitioning a BN into too

many components may give rise to considerable time consumption

just as discussed in the previous chapter. Such time consumption

grows exponentially with the number of vertexes used to partition
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a BN. To trade off the off-line time consumption (for finding

d-separations and compiling ZDDs) and on-line time consumption

(for inference using ZDDs), the d-separations used to partitioning

BNs are restricted to one-vertex and found using Tarjan’s vertex-cut

algorithm which can be performed linear time in the number of BN

vertexes. The experiments illustrate that one-vertex d-separations

exist in most BNs. Partitioning BNs with one-vertex d-separations

improves the speed for both compilation and inference largely

than the conventional ZDD-based method. To show the validity

of partitioning with one-vertex d-separations, we also conduct the

experiments of partitioning with two-vertex d-separations and the

comparative experiments of junction tree algorithms.

5.1 Introduction

We have introduced two methods to improve the conventional ZDD-

based method in the previous chapters. However, there are still some problems

need to be taken into account in these two methods. First, for the factorization

method in Chapter 3, though it can condense the ZDD size through factorizing a

large ZDD into several small ones, their method is based on a large ZDD repre-

senting the whole BN using the conventional ZDD-based method. The original

ZDD for the whole BN is too large and too time consuming to generate. Also,

the d-separations used are found manually in an ad-hoc way. Moreover, they

only compare the ZDD size with the conventional ZDD-based method but did

not conduct experiments for exact inference, as they assume that computation
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time of inference is linear to the ZDD size. Secondly, for the method in Chap-

ter 4, they improve the conventional junction tree algorithm by compiling a

junction tree into ZDDs and perform message passing on ZDDs. Through local

structure exploiting and cache memory techniques, message passing algorithms

for exact inference are indeed accelerated. But the main problem that junction

tree with large clusters failed to be compiled into ZDDs still exists and exhibits

the application of ZDD-based message passing algorithm.

In this chapter, we introduce a method which combines the two ideas to-

gether to solve these problems we met. We propose an idea of first partitioning

a given BN into several conditionally independent components using serial pat-

tern d-separations. Then, these components are separately compiled into ZDDs.

Though there may be many serial pattern d-separations in a given BN, partition-

ing a BN into too many components would slow down the inference. To trade

off the time between compilation and inference, the serial pattern d-separations

are restricted to one-vertex and found using Tarjan’s vertex-cut algorithm[52]

which costs linear time in the number of BN vertexes. Comparing with the con-

ventional ZDD-based method, the total ZDD size and time for compilation are

largely reduced. The efficiency of inference using ZDDs is guaranteed by re-

stricting the d-separation size to one vertex. To show the validity of partitioning

with one-vertex d-separations, we also conduct the experiments of partitioning

with two-vertex d-separations. The results show that one-vertex d-separations

exist in most networks and partitioning with them works better than partitioning

with two-vertex d-separations while performing on-line inference.
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5.2 Partitioning BNs using d-Separations

5.2.1 Partitioning BNs

To resolve the problem of taking too long to constructing ZDDs for a

large BN, naturally we think of partitioning the BN into a set of small compo-

nents.

First, we would like to review the conception of d-separations in BNs.

A d-separation[20] is a vertex set which is usually used to check conditional

independence among vertexes in BN structure learning[25]. Let X1, X2 and Xd

be three vertexes. Then their dependence is categorized in three graph patterns

shown in Fig 3.1, the serial pattern, diverging pattern and converging pattern.

If the three vertexes satisfy serial pattern d-separation and diverging pattern

d-separation as shown in Fig 3.1, we say Xd is a d-separation of X1 and X2.

This implies that if d-separation Xd is given, X1 and X2 become independent

to each other (The converging pattern is normally treated as a d-connection: X1

and X2 becomes dependent if Xd is given).

The independence property prompts us the idea of partitioning a BN

using d-separation vertex sets,that is, finding a vertex set Xd that partitions the

BN vertexes into two disjoint vertex sets X(1) and X(2) separately. We use

X(m) to indicate different vertex set with different m ∈ N+. If X(1), X(2) and

Xd satisfy the d-separation patterns of (a) and (b), vertexes in X(1) is indepen-

dent to vertexes in X(2) given Xd. Then, the BN can be partitioned into two

components as shown in 5.1.
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(a) serial pattern  
(b) diverging pattern  

d
X

d
X

d
X

d
X

(1)
X (2)

X

(1)
X

(2)
X

Figure 5.1 Partitioning with d-separations.

Definition 4 Partition a BN: Given a BN G = ⟨V, A⟩, find a vertex

set Xd to partition it into two components G1 =
⟨

X(1) ∪ Xd, A1
⟩

,

G2 =
⟨

X(2) ∪ Xd, A2
⟩

such that:

• X(1) ∩ X(2) = ∅, X(1) ∪ X(2) ∪ Xd = V.

• Xd d-separates X(1) and X(2).

• ∀Xi ∈ X(1), ∀Xj ∈ X(2), Xi is a non-descendant of Xj.

• A1 = {
⟨

Xi, Xj
⟩
|
⟨

Xi, Xj
⟩
∈ A, Xi, Xj ∈ V1},

A2 = {
⟨

Xi, Xj
⟩
|
⟨

Xi, Xj
⟩
∈ A, Xi, Xj ∈ V2},

where V1 = X(1) ∪ Xd, V2 = X(2) ∪ Xd.

First, we consider the partitioning with serial pattern d-separation. After

the partitioning shown in 5.1(a), the joint distribution of this BN is factorized

as:

P
(

X(1),Xd,X(2)
)
=P

(
X(2) |Xd

)
P
(

Xd |X(1)
)

P
(

X(1)
)

=P
(

X(2) |Xd
)

P
(

X(1), Xd
)

.
(5.1)

Our method separately compiles the MLFs for P
(

X(1), Xd
)

and P
(

X(2) | Xd
)
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into ZDDs. Marginal probability such as P
(

X(2) = x(2)l

)
can be computed

by summing out irrelevant vertex set X(1) in advance:

P
(

x(2)l

)
= ∑

Xd

P
(

X(2) = x(2)l | Xd
)

∑
X(1)

P
(

X(1), Xd
)

. (5.2)

In the conventional ZDD-based method, it compiles

P
(

X(1), Xd, X(2)
)

into one large ZDD (according to equation (2.15))

and computes:

P
(

x(2)l

)
= ∑

X(1)∪Xd

P
(

X(1), Xd, X(2) = x(2)l

)
. (5.3)

Comparing with the conventional ZDD-based method, first, our method

reduces time consumption of compiling P
(

X(1), Xd, X(2)
)

by separately

compiling P
(

X(2) | Xd
)

and P
(

X(1), Xd
)

. Secondly, the computation for

P
(

x(2)l

)
are accelerated by summing out irrelevant vertexes X(1) in advance.

Thirdly, if the on-line inference is only about vertexes X ′(2) ⊂ X(2) which

is computed using the probability P
(

Xd
)

, it can be accelerated through this

partitioning by first computing and storing P
(

Xd
)

off-line.

Next, we consider the partitioning with diverging pattern d-separation.

Partitioning in 5.1(b) means that if we partition this BN with vertex set Xd,

its descendant vertexes in different branch with Xd form different compo-

nents. While compiling them into ZDDs, we construct ZDDs for X(1) and X(2)

separately only based on the ZDDs of their common ancestor Xd. Note the

ZDD construction strategy is the same to the conventional ZDD-based method.

Therefore, in our method, we only consider to use the serial pattern d-separation

to partition a BN.
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5.2.2 On-line Inference Time Consumption

For any given BN, it can be recursively partitioned into several com-

ponents to further reduce ZDD size until no serial pattern d-separations are

found. One main problem is that as the number of components increases, time

for on-line inference may increase unacceptably.

As the partitioning shown in equation (5.2), to perform the summing

over operations∑X(1) P
(

X(1), Xd
)

, marginal probabilities P
(

Xd
)

need to be

calculated first. After compiling them into ZDDs, this calculation can be im-

plemented by evaluating all the ZDD paths containing variables corresponding

to P
(

xd
l

)
for all xd

l ∈ Dom(Xd). These evaluations may lead to considerable

time consumption which is exponential to |Dom(Xd)|, the number of instanti-

ations over vertexes in Dom(Xd). Thus partitioning a BN with a d-separation

consisting of too many vertexes will lead to a blow up in the number of in-

stantiations in the d-separation. As a result, the best choice of a serial pattern

d-separation would be the vertex sets that can result in a partitioning with min-

imum |Dom(Xd)| and minimum ZDD size. Find a set of such d-separations is

a very complex task.

To trade-off time consumption for compiling and inference, we decided

to use only the set of all d-separations consisting of one vertex because they are

highly effective and easily extracted without any complicated evaluation. We

use one-vertex d-separation to denote the d-separation consisting of only one

vertex. To enumerate all one-vertex d-separations, we use Tarjan’s vertex-cut

algorithm which can be carried out in linear time in the number of BN vertexes.

Using all one-vertex d-separations, a BN in partitioned into several condition-
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ally independent components. The experiments will show that most of BNs

contain one-vertex d-separations. Partitioning BNs using all the one-vertex d-

separations can improve both compilation and inference a lot and even works

better than partitioning with two-vertex d-separations, d-separations consisting

of two vertexes.

5.2.3 Enumerating One-vertex d-Separations

Tarjan’s vertex-cut algorithm [52] is known as one of the most famous

algorithms used in an undirected graph to enumerate all cut vertexes (a vertex

such that deleting edges connected to the vertex can decompose an undirected

graph into two or more components). The algorithm is implemented in time

linear in the number of vertexes in the given graph based on the idea of Depth

First Search (DFS). In our method, we use this algorithm on an equivalent

undirected graph of the given BN to get a set of cut vertexes that contains

all one-vertex d-separation candidates. Then we pick out the serial pattern d-

separations and use all of them to partition a BN.

To use Tarjan’s vertex-cut algorithm, first we need to transfer a BN into

its equivalent undirected form which is known as Moral Graph.

Definition 5 The Moral Graph M(V) of a Bayesian Network G is the undi-

rected graph over V that contains an undirected edge between vertexes Xi and

Xj if:

• there is a directed edge between them (in either direction) or

• Xi and Xj are both parents of the same vertex [31].
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Given a BN, first we add edges between very pair vertexes sharing the

same children. Then we delete directions for all edges. A BN is therefore

moralized into a corresponding moral graph M(V). We use M(V) as the input

of Tarjan’s vertex-cut algorithm and run this algorithm once on M(V). We can

get the output of a vertex set Xs. Thus, ∀Xi ∈ Xs is a cut vertex of M(V) such

that deleting edges connected to Xi separates M(V) into several components.

Details for the algorithms are summed up in Algorithm 7 and 8. Having all the

cut vertexes, next we explain that vertexes in different components of M(V)

separated by these cut vertexes are independent to each other.

Algorithm 7 Tarjan’s vertex-cut algorithm
Input:

M(V);
Output:

set of cut vertexes Xs;
1: Xs = ∅;
2: for Xi ∈ V do
3: parent[Xi]=NULL; cut[Xi]=FALSE;
4: visit[Xi]=-1;
5: end for
6: time=0;
7: for Xi ∈ V do
8: if visit[Xi]==-1; then
9: DFS_Visit(Xi);

10: end if
11: end for
12: for Xi ∈ V do
13: if cut[Xi] ==TRUE then
14: Xs = Xs ∪ Xi;
15: end if
16: end for
17: return Xs
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Algorithm 8 DFS_Visit(Xi)
1: low[Xi] = d[Xi] =++time
2: visit[Xi] = 0, children[Xi] = 0
3: for X′i ∈ Adj(Xi) do
4: if visit[X′i ] ==-1 then
5: children[Xi]++, parent[X′i ] = Xi
6: DFS_Visit(X′i )
7: low[Xi] = min(low[X′i ], low[Xi])

8: if parent[Xi]! =NULL and low[X′i ] ⩾ d[Xi] then
9: cut[Xi] =TRUE

10: end if
11: if parent[Xi] ==NULL and children[Xi] > 1 then
12: cut[Xi] =TRUE
13: end if
14: else
15: if visit[X′i ] == 0 and parent[Xi] ̸= X′i then
16: low[Xi] = min(low[Xi], d[X′i ])
17: end if
18: end if
19: end for
20: visit[Xi] = 1

Theorem 1 Let X(1), X(2),X(3) be three disjoint vertex sets in a BN and V =

X(1) ∪ X(2) ∪ X(3). We say that X(1) is independent to X(2) given X(3) if

X(1) is separated from X(2) by X(3) in M(V) [31].

According to the Theorem 1, vertexes in different components decomposed by

Xi ∈ Xs are independent to each other. Now we know that every Xi ∈ Xs,

{Xi} can be treated as a separation which decomposes the BN into several

conditionally independent components. Next we check whether {Xi} and these

components satisfies serial pattern or not.

For every decomposition by {Xi}, vertex sets X(1) (where X(1) ∩Πi ̸=

∅) are treated as the upstream component, and all other vertexes are treated as
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the downstream component X(2). Then, {Xi} is a serial pattern d-separation

Xd such that:

• There are no streams flowing up to the upstream components from Xi:

∄Xj ∈ X(1), Xi ∈ Πj or

• There are no streams flowing up to Xi from downstream components:

∄Xj ∈ X(2), Xj ∈ Πi.

Using above checking rules, we can pick out all the one-vertex serial

pattern d-separations from the separation vertex set Xs. Then, we use them

all to recursively partition a given BN into several components. For the exam-

ple in 5.2(a), its corresponding moral graph is shown in (b). Vertexes X3 and

X5 are found as cut vertexes using Tarjan’s vertex-cut algorithm. Through the

checking rules, they are both confirmed as serial pattern d-separations. Then

we use this two vertexes to recursively partition a BN into three components

as shown in 5.2(c). Note that no matter in what order we use these one-vertex

d-separations, we can always get the same partitioning. If we iteratively par-

tition this BN by choosing X3 first and then choosing X5, we get the same

partitioning as using X5 first. However, for vertex sets {X3, X4} and {X4, X5}

in 5.2 which are both two-vertex serial pattern d-separations, if we consider

two-vertex d-separations, we have to choose one using some complicated eval-

uation since partitioning with either of them leads to different results. This is

another advantage of restricting serial pattern d-separations to one-vertex.
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5.3 Separate Compiling and On-line Inference

In this section, we introduce how to compile these components into

MLFs so that we can construct ZDDs and introduce how to use ZDDs to execute

exact inference.

5.3.1 MLFs for Independent Components

While partitioning a BN into G1, G2 with d-separation Xd as shown in

5.1(a), we take the same idea with the conventional ZDD-based method that

constructs a ZDD for one vertex depending on its parents’ ZDDs. Thus, for

the vertexes in G1, MLFs for them are the same as defined in equations (7),

(8) and (9). The difference is the MLFs for the vertexes in G2. For the vertex

who does not have Xd as its parent, the MLF for it is the same as defined in

the conventional ZDD-based method. But for vertexes which have Xd as their

parents, if Xi ∈ V2 only has Xd as its parents, the MLF for Xi is:

MLFXi = ∑
k:xi,k∈Dom({Xi})

MLFxi,k . (5.4)

MLFxi,k = ∑
j:xd

j ∈Dom(Xd)

λi,kθi,j,kMLFxd
j
,

where Xi ∈ V2 and Πi = Xd.

(5.5)

If Xi ∈ V2 also has other vertexes as its parents, then its MLF is given
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Figure 5.2 Example of partitioning.

by:

MLFXi = ∑
k:xi,k∈Dom({xi})

MLFxi,k (5.6)

MLFxi,k = ∑
j:πi,j∈Dom(Πi)

l:xd
l ∈Dom(Xd)

λi,kθi,j,kMLFxd
l

∏
i′ ,k′ :xi′ ,k′∈πi,j\xd

l

MLFxi′ ,k′

where Xi ∈ V2, Xd ⊂ Πi and xd
l is consistent with πi,j

(5.7)

For the MLF of Xd = {Xi} ⊂ V2, we introduce βi ≜ {βi,l}l as

separator variables that map each instantiation of Xd into a real number. we

define MLFXd as:

MLFXd =∑
l

MLFxd
l
, MLFxd

l
=λi,l βi,l , where Xd ={Xi}. (5.8)

Note that βi,l dynamically changes and takes the values calculated from up-

stream components according to different queries:

βi,l ← MLFxi,l , where {Xi} = Xd (5.9)

Given a BN, after partitioning it with a set of Xd, we generate ZDDs

Z(Xi) for every Xi ∈ V in the BN. In addition, we generate ZDDs Z(Xd) for

every Xd.

For the example in 5.2, suppose every vertex contains two values. For
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the vertexes {X1, X2, X3} in the first component, we have MLFs in the same

way as that of conventional ZDD-based method. Then for the vertexes in the

second component, MLFX4 is generated the same to conventional ZDD-based

method. The MLF for d-separation vertex X3 is:

MLFxd
3,1

= β3,1λ3,1, MLFxd
3,2

= β3,2λ3,2. (5.10)

Then,

MLFX5 =λ5,1(θ5,1,1MLFxd
3,1

MLFx4,1+θ5,2,1MLFxd
3,2

MLFx4,1)

+λ5,2(θ5,1,2MLFxd
3,1

MLFx4,2+θ5,2,2MLFxd
3,2

MLFx4,2).
(5.11)

Similarly, for the third component, MLFs for X5, X6 and X7 are:

MLFxd
5,1

=β5,1λ5,1, MLFxd
5,2

= β5,2λ5,2. (5.12)

MLFX6 =λ6,1(θ6,1,1MLFxd
5,1

+ θ6,2,1MLFxd
5,2
)

+λ6,2(θ6,1,2MLFxd
5,1

+ θ6,2,2MLFxd
5,2
).

(5.13)

MLFX7 =λ7,1(θ7,1,1MLFxd
5,1

+ θ7,2,1MLFxd
5,2
)

+λ7,2(θ7,1,2MLFxd
5,1

+ θ7,2,2MLFxd
5,2
).

(5.14)

5.3.2 Exact Inference with ZDDs

As we have showed in equation (2.8), for the exact inference in a BN,

if we can efficiently calculate P
(

x(1)l , x(2)k

)
and P

(
x(2)k

)
, the probability of

this query can be easily obtained. If the variables to be inferred and variables

observed are in the same component, the probability can be calculated the same

as the conventional ZDD-based method. The problem is when these variables
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are in different components, we need to take efforts on separation variables.

Whenever we visit a ZDD node representing a separate variable β, we get its

value by tracing corresponding ZDDs to collect the information passed from

other components.

Let’s considering the following example of calculating P(x2,1, x5,1)

with the BN in 5.2(c), . First, we have:

MLFx5,1 = λ3,1λ4,1λ5,1β3,1θ4,1,1θ5,1,1

+ λ3,2λ4,1λ5,1β3,2θ4,1,1θ5,2,1

. . .

+ λ3,2λ4,2λ5,1β3,2θ4,1,2θ5,4,1.

(5.15)

By setting λs to 1, we get:

MLFx5,1 = β3,1θ4,1,1θ5,1,1

+ β3,2θ4,1,1θ5,2,1

. . .

+ β3,2θ4,1,2θ5,4,1.

(5.16)

For parameter variable θs, they take values as in CPT. For separator variable

β3,1 and β3,2, we trace the upstream ZDD to get the information. Since we

already have:

MLFX2 = MLFx2,1 + MLFx2,2

= λ2,1θ2,1,1 + λ2,2θ2,1,2,
(5.17)

MLFX3 = MLFx3,1 + MLFx3,2

= λ1,1λ2,1λ3,1θ1,1,1θ2,1,1θ3,1,1

+ λ1,1λ2,1λ3,2θ1,1,1θ2,1,1θ3,1,2

. . .

+ λ1,2λ2,2λ3,2θ1,1,2θ2,1,2θ3,4,2.

(5.18)
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According to the query, we generate:

MLFx2,1MLFx3,1 = λ1,1λ2,1λ3,1θ1,1,1θ2,1,1θ3,1,1

+ λ1,2λ2,1λ3,1θ1,1,2θ2,1,1θ3,2,1,
(5.19)

MLFx2,1MLFx3,2 = λ1,1λ2,1λ3,2θ1,1,1θ2,1,1θ3,1,2

+ λ1,2λ2,1λ3,2θ1,1,2θ2,1,1θ3,2,2.
(5.20)

By setting λs to 1, we can get:

β3,1 ← MLFx2,1MLFx3,1

= θ1,1,1θ2,1,1θ3,1,1 + θ1,1,2θ2,1,1θ3,2,1,
(5.21)

β3,2 ← MLFx2,1MLFx3,2

= θ1,1,1θ2,1,1θ3,1,2 + θ1,1,2θ2,1,1θ3,2,2.
(5.22)

Substituting β3,1, β3,2 into MLFx5,1 , we can get P(x2,1, x5,1).

By using the same multiplication algorithm as in the conventional ZDD-

based method, no term can contain the same variable more than once. Con-

tradicting terms are automatically eliminated. We can always generate ZDDs

containing variables only related to the query so that unnecessary calculations

are avoided. An important point is that our idea of partitioning is independent

to queries. Once we partition a BN with d-separations and generate ZDDs, we

can use them to calculate probabilities for any queries.

One may question that whether this calculation is efficient enough for

calculating the conditional probability such as P(x2,1 | x5,1) since we have to

calculate P(x5,1) and P(x2,1, x5,1) first to get the final results. Note that

P(x2,1, x5,1)= ∑
X1,X3,X4

P(X1,X2= x2,1,X3,X4,X5= x5,1) , (5.23)

P(x5,1)= ∑
X1,X3,X4

P(X1,X2= x2,1,X3,X4,X5= x5,1)

+ ∑
X1,X3,X4

P(X1,X2= x2,2,X3,X4,X5= x5,1) .
(5.24)
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Table 5.1 BN specifications for Chapter 5

Dataset
BN specifications

Vertexes
Indi-
cators

Para-
meters

ALARM 37 105 509
WIN95PTS 76 152 574
HEAPR2 70 162 1,453
HAILFINDER 56 223 2,656
PATHFINDER 135 520 2,304
INSURANCE 27 89 984
MILDEW 35 616 6,709
WATER 32 116 3,578
PIGS 441 592 5,618
BARLEY 48 84 114,005
DIABETES 413 4,682 17,622

After we calculate P(x2,1, x5,1), we only need to calculate the second part in

formula (5.24) for P(x5,1). Repetitive calculations can be avoided using the

cache memory technique in ZDDs.

5.4 Experiments and Results

5.4.1 Overview

We conducted our experiments using the benchmark networks [23] and

the ZDD package implemented by Minato [41] on an intel Core i7-2700k CPU

@ 3.50ghz × 8PC with Ubuntu 16.04LTS and 31.4Gib of main memory. The

network specifications such as BN name, the number of vertexes, indicators,

and parameters are shown in Table 5.1.

The results of our proposed method comparing with the conventional

ZDD-method is shown in Table 5.3. Table 5.2 is the results for the conventional

ZDD-based method. For a given BN, first, we find one-vertex d-separations and
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Table 5.2 Experiment results for the conventional ZDD-based method

Dataset
Conventional ZDD-based method [42]

ZDD
Size

Compil-
ing(ms

Mar.
(ms)

Arb.
(ms)

ALARM 34,299 57 9 651
WIN95PTS 26,477 104 15 231
HEPAR2 51,000 126 12 885
HAILFINER 294,608 467 39 3,330
PATHFINDER 31,549 2,633 14 483
MILDEW 15,310,511 664,097 17,545 522,670
WATER 25,629 874 12 175
PIGS 73,715 517 28 97
BARLEY time out time out time out time out
DIABETES time out time out time out time out
WIN95PTS
(Problem1)

24,460 84 7 248

BARLEY
(ngtilg)

1,091,779 4,360 354 461,975

Table 5.3 Experiment results for partitioning with all one-vertex d-separations

Dataset
Proposed method

ZDD
Size

Compil-
ing(ms)

Mar.
(ms)

Arb.
(ms)

Time
(d-sep)

(ms)

No. of
d-sep

ALARM 10,291 26 2 106 15 5(27,5,3,2)
WIN95PTS 27,397 107 7 79 6 4(71,3,2)
HEPAR2 40,308 77 6 281 15 7(48,9,5,4,2)
HAILFINER 188,088 317 33 1,753 28 6(45,4,3,2)
PATHFINDER 31,553 2,621 20 461 3 1(108,2)
MILDEW 15,310,711 688,067 8,786 225,250 1 1(34,2)
WATER 25,629 874 12 175 1 0

PIGS 48,588 509 23 69 198
41
(324,13,8,6,4,3)

BARLEY time out time out time out time out 0.52 2(46,3)
DIABETES time out time out time out time out 23 2(409,3)
WIN95PTS
(Problem1)

5,299 62 4 46 1 3(26,8,3,2)

BARLEY
(ngtilg)

1,089,670 4,049 171 222,881 55 2(15,4,2)



5.4 Experiments and Results 73

Table 5.4 Results of partitioning with all d-separations consisting of one or
two vertexes

Dataset
Partitioning using all possible one- and

two-vertex d-separations

ZDD size
Compiling

(ms)
Mar.(ms)

No.of
d-sep

ALARM 1,304 10 5 11
WIN95PTS 6,812 55 5 10
HEPAR2 5,544 44 10 17
HAILFINER 29,756 84 90 10
PATHFINDER 31,553 2,621 20 1
MILDEW 7,440,861 740,035 98,081 3
WATER 25,670 821 13 3
PIGS 13,829 487 87 73
DIABETES time out time out time out 6
BARLEY time out time out time out 2

Table 5.5 Results of partitioning with heuristically chosen d-separations
consisting of one or two vertexes

Dataset
Partitioning with the best greedy selection

from one and two-vertex d-separations

ZDD size
Compiling

(ms)
Mar.(ms)

No.of
d-sep

ALARM 2,351 26 2 5
WIN95PTS 7,120 87 4 6
HEPAR2 9,020 82 3 10
HAILFINER 151,048 333 37 7
PATHFINDER 31,553 2,621 20 1
MILDEW 9,922,853 190,564 111,615 3
WATER 25,643 869 12 2
PIGS 68,441 462 30 22
DIABETES time out time out time out time out
BARLEY time out time out time out time out
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Table 5.6 Results for jointree algorithm: min-fill

Dataset
Min-fill triangulation

Cluster
Separators

(maximum)
Mar.
(ms)

Compil
ing(ms)

ALARM 27 36 30 55
WIN95PTS 50 128 74 100
HEPAR2 58 96 79 87
HAILFINER 43 297 250 86
PATHFINDER 91 8,064 33,397 265
MILDEW 29 28,800 time out 359
WATER 19 110,592 time out 131
PIGS 368 59,049 time out 168
BARLEY 36 1,125,600 time out 362
DIABETES 335 14,025 time out 607

Table 5.7 Results for jointree algorithm:min-degree

Dataset
Min-degree triangulation

Cluster
Separators

(maximum)
Mar.
(ms)

Compil
ing(ms)

ALARM 27 48 39 66
WIN95PTS 50 128 88 78
HEPAR2 58 96 74 72
HAILFINER 43 297 244 87
PATHFINDER 91 4,800 13,257 270
MILDEW 29 87,840 time out 415
WATER 19 442,368 time out 118
PIGS 368 531,441 time out 184
BARLEY 36 907,200 time out 296
DIABETES 336 39,270 time out 620

use them all to partition the BN. Time for finding d-separations and partitioning

are together shown in column "Time(d-sep)(ms)". The number of d-separations

we use are shown in the last column before the bracket. In the off-line compi-

lation, we generate ZDDs for this BN. Then, we calculate values of separator

variables βs by setting all λs to 1 in advance. Cache memories for these cal-

culations would help to improve on-line inference. The ZDD size is shown in
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Table 5.8 Results for CNF based method

Dataset
CNF based method in [8]

AC
Nodes

AC
Edges

Compil
ing(ms)

Mar.
(ms)

ALARM 1,570 2,848 5 2
WIN95PTS 3,004 5,638 9 3
HEPAR2 7,697 11,966 10 4
HAILFINER 8,594 16,532 11 4
PATHFINDER 17,825 33,786 35 9
MILDEW 1,118,179 2,219,244 241 53
WATER 28,741 56,496 54 12
PIGS 625,752 1,248,854 99 43
BARLEY 18,196,115 36,348,928 1,448 489,891
DIABETES 7,655,537 15,300,530 828 229

the first column. Time of generating ZDDs and calculating βs are shown as

"Compiling(ms)" represented in the second column. For the on-line inference,

we conduct two kinds of exact inference. First is to calculate the marginal

probability of every vertex in the BN. Time for the this inference is shown

in column "Mar.(ms)". The second is to infer one hundred of instantiations.

we randomly selected hundred pairs of BN vertexes and randomly instantiate

them. Then we calculate marginal probabilities over these instantiations. The

total time of computation for these instantiations are presented in the column

named "Arb.(ms)". Time limitation in our experiments is set within 30 minutes.

To show the validity of partitioning with one-vertex d-separations, we

also conducted the experiments of partitioning a BN using one- or two-vertex

d-separations in Table 5.4 and Table 5.5.
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5.4.2 Results and Discussion

According to Table 5.3, most of the BNs contain one-vertex serial pat-

tern d-separations. Our method performs quite well than the conventional

ZDD-based method on condensing ZDD size for networks such as ALARM,

HEPAR2 and PIGS, which present obviously layer-wised structures. Also, both

time of compilation and inference are reduced significantly on these networks.

But network WATER does not contain one-vertex serial pattern d-separations.

Vertexes in this network are structured just in 4 layers and closely connect to

each other. For networks such as MIDLEW and PATHFINDER, there are just

few one-vertex serial pattern d-separations. Some of the d-separations are lo-

cated in the corner of the networks so that partitioning with these d-separations

does not bring much improvement while compiling them into ZDDs. Also, the

inference time for hundred vertex pairs shown in column "Arb(ms)" are largely

reduced through reusing the results of probabilities over d-separations based

on the cache memory technique. An example of partitioning ALARM is shown

in 5.3.

One may question the validity of partitioning only with one-vertex d-

separations because intuitively, d-separations which can decompose a BN into

two balanced components are considered to be more likely to generate small

ZDDs. However, if the d-separation consists of too many vertexes, inference

time after partitioning may be unacceptable because inference time greatly de-

pends on |Dom(Xd)| which grows exponentially with the number of vertexes

in Xd (suppose every vertex is binary valued). By restricting d-separation to

one-vertex, partitioning with all one-vertex d-separations is always highly ef-

fective in both ZDD size and inference efficiency. In the last column in Ta-



5.4 Experiments and Results 77

Figure 5.3 Example of ALARM

ble 5.3, we list the different numbers of component sizes partitioned by the

one-vertex d-separations in the bracket. For the example of ALARM in Figure

8, it is partitioned into 6 components with size 27, 5, 3, 3, 2, 2 respectively, we

add (27,5,3,2) in the last column in Table 2. Note for networks of ALARM,

WIN95PTS, HEPAR2, HAILFINDER, and PIGS, although they are not parti-

tioned into very balanced components, by cutting off some small components

using one-vertex d-separations, ZDD size are still reduced a lot so that inference

time is also improved. Also, for networks of MILDEW and PATHFINDER

which are partitioned into apparently unbalanced large and small components,

the efficiency of compilation and inference is not badly affected a lot because

the increasing of ZDD nodes are just for compiling the separator variables
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whose number are controlled by limiting the d-separations to one-vertex.

To present the validity of partitioning with all one-vertex d-separations,

we also conducted the experiments of partitioning with two-vertex d-

separations shown in Table 5.4. First all one- and two-vertex serial pattern

d-separations are enumerated using a complete search approach which costs

time about O(|V|3). Then a serial pattern d-separation is chosen as the suitable

one such that partitioning with this d-separation could give rise to the largest

reductions of the number of MLF items, which is an approximation of ZDD

size. Using this d-separation, the given BN is partitioned into two components

and separately compiled into ZDDs. We repeated this procedure for these

components until no suitable d-separations are found. We generated ZDDs

and performed the inference for every iteration to see how the ZDD size and

inference time change as the number of components increases. Table 5.4 are

results for iteratively partitioning BNs using all possible one- and two-vertex

d-separations until no suitable d-separations are found. According to results,

the ZDD size and time for compilation are largely reduced through partitioning

BNs also with two-vertex d-separations, which is more likely to partition a BN

into balanced components than one-vertex d-separations. However, inference

time may increase incredibly such as HAILFIDER, MILDEW and PIGS.

What is more, we also present the results that we do not partitioning a

BN to the end until no suitable d-separations are found, but stop the partitioning

at the point that the inference is the fastest. These results are shown in the

Table 5.5. Though we stop the partitioning at a suitable stage, ZDD size and

inference time may be reduced for networks such as WIN95PTS and HEPAR2.

But we have to generate ZDDs and perform the inference repeatedly to the end

to choose the best result. Time consumption for such work is unacceptable.
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Also partitioning on network such as MILDEW still performs rather badly. It

is worthy of finding a good measurement of choosing suitable d-separation and

precise trade-off between time for compiling and inference as the future work.

At the present stage, our idea of using only one-vertex d-separations proposed

is a simple and easy-to-use heuristic method. What is more, it has no risk of

extremely reducing the inference efficiency.

One may query what if appropriate one-vertex serial pattern d-

separations do not generally exist in the practical BNs. Note one main

advantage of ZDD-based compiling approach is that when we query the

probability of a vertex, we can only focus on the subgraph which consists of

the concerned vertex and all its ancestors. Therefore, we do not have to find

the d-separations that partitions the whole BN but find the d-separation that

can partition the subgraph. The subgraph may contain suitable one-vertex

d-separations. For the example of subnetwork "WIN95PTS(Problem1)" which

is formed with vertex "Problem1" and all its ancestors (36 vertexes in total).

Partitioning in this subnetwork brings significant improvement in both ZDD

size and inference time than conventional ZDD-based method as shown in

Table 5.3. Also, for the subnetwork "BARLEY(ngtilg)", though we could not

generate ZDDs for the whole BARLEY, we still can query some of the vertexes

by constructing the subnetwork.

5.5 Experiment Results for Related Works

The Minimum fill-in method (min-fill) and minimum degree method

(min-degree) are known as the most two famous heuristic methods for the tri-

angulation to construct a junction tree [14]. The min-fill is to eliminate the

variable that leads to adding the smallest number of fill-in edges. The min-
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degree is to eliminate the variable that has the smallest number of neighbors

in the graph. We present the conventional jointree based method results using

min-fill and min-degree in Table 5.6 and Table 5.7 . According to this table, the

on-line inference using ZDD-based method works much better than jointree

based methods as long as we are able to generate ZDDs for a BN. Therefore,

efficiently generating ZDDs for BNs is quite valuable to be taken into account.

Another popular method to compile a BN using symbolic logics is the

CNF-based compiling method [13]. In their method, BNs is encoded into Con-

junctive Normal Forms (CNFs) which then can be factored and compactly rep-

resented by arithmetic circuits. Evaluating and Differentiating the arithmetic

circuits solves the exact inference efficiently. Their method also provides ex-

pressive frameworks for exploiting local structure and known as one of the

most efficient methods that compiles BN with Decision Diagrams. Our method

does not use the CNF representation but directly translates a BN into a set of

factored MLFs using ZDDs. Table 5.8 is the results of their method using the

same dataset in Table 5.1. For the networks ALARM and HEPAR2, the ZDD-

based method are competitive to theirs through partitioning. Also, our idea of

partitioning BNs is independent of data structures so that we hope it would also

fit their method.

5.6 Summary

We proposed a method of divide-and-conquer that partitions BNs

into conditionally independent components using one-vertex serial pattern

d-separations and separately compile these components. Through the parti-

tioning, we get much smaller ZDDs and largely reduce time for compilation

than the conventional ZDD-based method if there exists suitable one-vertex
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d-separations in given BNs. Through our experiments, we know that we can

partition a given BN with all one-vertex d-separations without worrying about

reducing the efficiency of compiling and inference.

In Chapter 4, we discussed the method to separately compile a BN by

compiling a given jointree into ZDDs and perform the message passing algo-

rithm on ZDDs. However, straightforwardly compiling a jointree into ZDDs

results in a large number of components and message variables so that the time

consumption for compiling and inference both are unacceptable. In this chap-

ter, through restricting the d-separations size to one-vertex, we avoid partition-

ing a BN into too many components and using too many message variables.

Thus,the inference efficiency is guaranteed.

As a future work, we hope to use d-separations consisting of more than

one vertex to partition a BN and inspecting the trade-off between compiling

and inference to further improve the ZDD-based method for BN inference.
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Chapter 6

Conclusions and Open
Problems

In this chapter, we conclude our contributions presented in this

thesis. We also give open problems for our proposed methods and

future works for this thesis.

6.1 Concluding Remarks

The exact inference problem in BNs is known NP hard and kinds of

efforts to accelerate the inference have been put forward to increase the prac-

ticality of BNs. In this thesis, we presented methods using ZDD-based logic

operations to accelerate the exact inference. Our works mainly deal with im-

proving the conventional ZDD-based inference method from two factors, to

condense ZDD size through factorizations and to compile decomposition forms
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of BNs instead of the whole networks.

In Chapter 3, we discussed how to condense the size of ZDDs in the

conventional ZDD-based method. We proposed to factorize a large ZDDs into

several small ones using the fast weak division algorithm in ZDDs. We use the

ZDDs of manually d-separation structures as divisors to factorize a large ZDD.

Through these factorizations, the ZDD size is largely condensed and time for

factorizations are significantly reduced comparing with the conventional fac-

torization algorithm. In Chapter 4, we considered to straightly compile a junc-

tion tree, one of the most prevalent decomposition forms of BN, using ZDDs.

Through introducing message variables into ZDDs, we can perform the pop-

ular message passing algorithm on ZDDs just as it is performed on a junc-

tion tree. Inference is largely accelerated though local structure exploiting and

cache memory techniques. The efficiency of this approach hints us that decom-

posing a BN to reduce the BN scale would bring large improvement for exact

inference. But experiments that failed to compile a junction tree into ZDDs

also alerts us that decomposing a BN into too many components would give

rise to a blow up of ZDD size. Correspondingly, in Chapter 5, we proposed

to partition and separately compile BNs using ZDDs. We use all one-vertex

d-separation sets to partition a BN into several conditionally independent com-

ponents. Then these components are separately compiled into node-sharing

ZDDs. By restricting to one-vertex d-separations, we avoid of partitioning a

BN into too many components and ensured the efficiency of exact inference.

Though this method, not only size of ZDDs are significantly condensed com-

paring with the conventional ZDD-based method, but also exact inference are

largely accelerated.

With above three propositions, we can establish a systematic strategy
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of accelerate exact inference of BNs using any other arithmetic circuits since

they are also suitable for any other logic based compilation method. Firstly,

using some vertex sets in a BN to partition a large scale of BN into several

small components. These vertex sets with these components should satisfy the

independence assertions in BNs to make sure the validity of synthesis calcula-

tion results from every component. Secondly, compile these small components

into arithmetic circuits and design inference algorithms capable to answer any

given queries on the circuits. Exploiting local structures and cache memory

techniques are two main advantages of logic based compilation method. Not

only BNs can be compactly represented but also exact inference can be accel-

erated significantly which breaks the barrier of treewidth bottleneck in exact

inference of BNs.

6.2 Open Problems and Future Directions

As future directions, there are still several challenges. Firstly, a precise

trade-off between the number of components and time of inference need to be

taken into account. In this thesis, we use all the one-vertex d-separation ver-

tex sets to partition a BN. As shown in the experiment results, the ZDD size

is further reduced if we partition a BN with two-vertex d-separations. Thus,

it is valuable to discuss partitioning with two- or more than two vertexes d-

separations and providing a practical constraints to find the most appropriate

d-separations so that the inference time can be accelerated, too. Secondly, a

fast algorithm to find appropriate d-separations in a BN need to be considered.

These d-separations should satisfy constrains of partitioning a BN into sev-

eral balanced components meanwhile the total number of instantiations over d-

separations is minimum. As far as the author know, there are some approaches
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to find a minimum d-separation given a BN using the maxflow-mincut based

method. There are also some algorithms to find a cut vertex set for a graph to

partition it into two balanced components. But methods satisfying both above

two constraints have not been touched before. In Chapter 3, we try to find d-

separations manually to factorize a large ZDD. In Chapter 5, we utilize Tarjan’s

cut vertex finding algorithm to find all one-vertex d-separations. We hope that a

convenient and fast algorithm to find d-separations would bring great improve-

ment for our method. Also, we hope to apply our method on the realistic BN

data.
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