

HOKKAIDO UNIVERSITY

Title	Downward migration of Cs-137 within the humus layer under temperate coniferous stands in the Czech Republic
Author(s)	Takahashi, Shunsuke; Suchara, Ivan; Sucharova, Julie; Okamoto, Kazumasa; Umegaki, Kikuo; Fujiyoshi, Ryoko
Citation	Journal of Soils and Sediments, 18(1), 276-286 https://doi.org/10.1007/s11368-017-1802-5
Issue Date	2018-01
Doc URL	http://hdl.handle.net/2115/72256
Rights	"The final publication is available at link.springer.com".
Туре	article (author version)
File Information	JSSS-D-16-00171_R3.pdf

Journal of Soils and Sediments Downward migration of ¹³⁷Cs within the humus layer under temperate coniferous stands in the Czech Republic --Manuscript Draft--

Manuscript Number:	JSSS-D-16-00171R3
Full Title:	Downward migration of ¹³⁷ Cs within the humus layer under temperate coniferous stands in the Czech Republic
Article Type:	Research Article
Section/Category:	Soils
Corresponding Author:	Ryoko Fujiyoshi, Ph.D Hokkaido University Sapporo, JAPAN
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Hokkaido University
Corresponding Author's Secondary Institution:	
First Author:	Shunsuke Takahashi, Master
First Author Secondary Information:	
Order of Authors:	Shunsuke Takahashi, Master
	Ivan Suchara
	Julie Sucharova
	Kazumasa Okamoto
	Kikuo Umegaki
	Ryoko Fujiyoshi
Order of Authors Secondary Information:	
Funding Information:	
Abstract:	Abstract Purpose This study examined the current distribution and downward migration of 137Cs in the humus horizon under temperate coniferous stands in the Czech Republic. Depth distribution profiles of lithogenic alkali metals (K, Rb and Cs) were also traced to find any indication regarding the 137Cs dynamics within the humus horizon. Materials and methods Soil (bulk soil) samples were collected manually from the uppermost down to a depth of 20 cm at three points situated 10-20 m apart in three locations diversely affected by the Chernobyl accident in 1986. Humus samples (about 6 cm in thickness) were separately collected at three points adjacent to the bulk soil sampling. The humus samples were divided into three fractions (upper, middle and lower) denoted to Hu, Hm and HI, respectively depending on their depths. Activity concentration of 137Cs and the amount of alkali metals (K, Rb and Cs) in each humus fraction were determined with gamma spectrometry and ICP spectrometry, respectively. Some properties (pH, density, SOM and identification of clay minerals), of both bulk soils and humus horizons were also investigated. Results and discussion The highest activity concentration of 137Cs (Bq kg-1) appeared in the upper portion of the soil (mainly humus horizon) under three coniferous stands about 30 years after the Chernobyl accident. Increasing activity of 137Cs (Bq) was found in the lower humus fraction (HI, 4~6 cm depth range) with no appreciable amounts of clay minerals like illite and smectite in the investigated sites. The findings suggest that the fallout 137Cs moves downward at a speed of 0.13~0.19 cm yr-1 with degrading organic matter within the humus horizon. Possible association of 137Cs with alkali metals (K, Rb and Cs) was suggested by depth distribution profiles of lithogenic

	alkali metals (K, Rb and Cs) in humus. Conclusion The humus horizon under temperate coniferous stands plays an important role in retaining fallout 137Cs for a long time. Comparing the depth distributions of the fallout nuclide 137Cs with the depth distributions of lithogenic alkali metals (K, Rb and Cs) gives valuable information for clarifying mechanism of 137Cs movement in humus. Further investigation is needed to elucidate mechanism of 137Cs migration within humus horizon by tracing 137Cs speciation and decomposing soil organic matter simultaneously. Keywords Cesium-137 * Forest soil * Humus * Vertical migration rate, Alkali metals
Response to Reviewers:	Please check the docx file [Reply to the reviewer (JSSS-D-16-00171R3)].

Click here to view linked References

1		
2	1	
3	1	SEDIMENTS, SEC 2 • PHYSICAL AND BIOGEOCHEMICAL PROCESSES • RESEARCH ARTICLE
4		
5	2	
0		
8	3	Downward migration of ¹³⁷ Cs within the humus layer under temperate coniferous stands in the
9		
10	4	Czech Republic
11		
12	5	
13	5	
14	C	Shun mba Takakashila Inan Suakana ² a India Suakanan ² a Kamunasa Okamatala Kilma Umasahil
15	0	Shunsuke Takanashi • Ivan Suchara • June Sucharova • Kazumasa Okamoto • Kikuo Umegaki
10 17	_	
18	1	• Ryoko Fujiyoshi
19		
20	8	
21		
22	9	¹ Faculty of Engineering, Hokkaido University, Sapporo 060-8620, Japan
23		
24	10	² Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Květnové náměstí 391, CZ
25		
20 27	11	252 43 Pruhonice. Czech Republic
28		
29	12	
30	12	
31	12	
32	15	
33		
34	14	Ryoko Fujiyoshi
35 26		
30 37	15	Tel: +81 11 706 6674
38		
39	16	Fax: +81 11 706 6675
40		
41	17	<u>fuji@eng.hokudai.ac.jp</u>
42		
43	19	
44	10	
45 46		
47		
48		
49		
50		
51		
52		
53		
54 55		
56		
57		
58		
59		
60		
61		1
62		
03 64		
65		

19 Abstract

20 Purpose This study examined the current distribution and downward migration of ¹³⁷Cs in the humus 21 horizon under temperate coniferous stands in the Czech Republic. Depth distribution profiles of lithogenic 22 alkali metals (K, Rb and Cs) were also traced to find any indication regarding the ¹³⁷Cs dynamics within 23 the humus horizon.

Materials and methods Soil (bulk soil) samples were collected manually from the uppermost down to a depth of 20 cm at three points situated 10-20 m apart in three locations diversely affected by the Chernobyl accident in 1986. Humus samples (about 6 cm in thickness) were separately collected at three points adjacent to the bulk soil sampling. The humus samples were divided into three fractions (upper, middle and lower) denoted to H_u, H_m and H_l, respectively depending on their depths. Activity concentration of ¹³⁷Cs and the amount of alkali metals (K, Rb and Cs) in each humus fraction were determined with gamma spectrometry and ICP spectrometry, respectively. Some properties (pH, density, SOM and identification of clay minerals), of both bulk soils and humus horizons were also investigated.

Results and discussion The highest activity concentration of ¹³⁷Cs (Bq kg⁻¹) appeared in the upper portion of the soil (mainly humus horizon) under three coniferous stands about 30 years after the Chernobyl accident. Increasing activity of ¹³⁷Cs (Bq) was found in the lower humus fraction (H₁, 4~6 cm depth range) with no appreciable amounts of clay minerals like illite and smectite in the investigated sites. The findings

suggest that the fallout ¹³⁷Cs moves downward at a speed of 0.13~0.19 cm yr⁻¹ with degrading organic matter within the humus horizon. Possible association of ¹³⁷Cs with alkali metals (K, Rb and Cs) was suggested by depth distribution profiles of lithogenic alkali metals (K, Rb and Cs) in humus. Conclusion The humus horizon under temperate coniferous stands plays an important role in retaining fallout ¹³⁷Cs for a long time. Comparing the depth distributions of the fallout radionuclide ¹³⁷Cs with the depth distributions of lithogenic alkali metals (K, Rb and Cs) gives valuable information for clarifying mechanism of ¹³⁷Cs movement in humus. Further investigation is needed to elucidate mechanism of ¹³⁷Cs migration within humus horizon by tracing ¹³⁷Cs speciation and decomposing soil organic matter simultaneously.

45 Keywords Cesium-137 • Forest soil • Humus • Vertical migration rate, Alkali metals

1 Introduction

Many highly-contaminated forest areas have been abandoned without any effective remediation in the thirty years since the Chernobyl accident (Beresford et al. 2016). Considerable amounts of ¹³⁷Cs still remain in the surface portion of forest soils (Winkelbauer et al. 2012; Szabó et al. 2012; Vahabi-Moghaddam and Khoshbinfar 2012; Petrovič et al. 2016). Transportation of deposited ¹³⁷Cs on the forest floor are affected by various environmental factors including surface runoff, microbial activity, root uptake and water movement in soil. Among the many studies that have focused on the dynamics of ¹³⁷Cs in forest ecosystems, clay mineralogy was found to be an important factor controlling the rather low mobility of ¹³⁷Cs caused by sorption and fixation by certain clay minerals (Sawhney 1972; Cornell 1993, Dołhańczuk-Śródka et al. 2006, Szabó et al. 2012). Recently, Fujii et al. (2016) investigated vertical migration of radiocesium (134Cs and ¹³⁷Cs) deposited on several forest sites due to the accident of Fukushima Daiichi Nuclear Power Plant in Japan in 2011. They concluded that both organic components and clay minerals had enough capacities for retaining radiocesium in the surface soils during the initial stage of contamination. In our previous paper on ¹³⁷Cs retention with soil components under selected forest sites in the Czech Republic (Takahashi et al. 2017), the highest proportion of ¹³⁷Cs in soil was found in the organic horizons (O_f and O_h) under temperate coniferous stands diversely affected by the atmospheric fallout from the Chernobyl accident. We obtained relatively low apparent burial rate of 137 Cs (0.04-0.08 cm yr⁻¹) in the upper soil layer (< 15 cm depth), which contained no significant amounts of clay minerals, suggesting that

64	the ¹³⁷ Cs may be associated with humic macromolecules in the upper soil layer down to a depth of about
65	15 cm. Humus has a much longer life span than any other organic materials among the various forest
66	components. The "environmental memory" of an area can be traced back for at least the last 60-100 years
67	(Sucharova et al. 2011). In a study of the interactions of radiocesium with humus in forest soils, Strebl et
68	al. (1995) investigated distribution of ¹³⁷ Cs in surface soils and found that the transfer rate of ¹³⁷ Cs from
69	forest soils to plants was much more strongly influenced by the quality of humus components rather than
70	by their amounts. Kruse-Irmer and Gian (2003) reported that radiocesium would be involved in a shortcut
71	element cycle in the system of humus layer-plant uptake-litter, considering the high bioavailability and low
72	migration of radiocesium in the humus layers. High bioavailability and low migration rate of ¹³⁷ Cs in humus
73	obtained in their study suggested that ¹³⁷ Cs may be rather strongly associated with humic components with
74	appreciable amounts of ionic and/or exchangeable ¹³⁷ Cs. Therefore, evaluating the distribution and mobility
75	of ¹³⁷ Cs in the humus layer in considerable detail is necessary for long-term fate of ¹³⁷ Cs deposited in forest
76	floors.
77	It is also important to consider the distribution of alkali metals (K, Rb and Cs) as well as ¹³⁷ Cs in humus,
78	because i) all belong to the alkali metal group with similar physicochemical properties, ii) stable alkali
79	metals are from lithogenic (natural) source, whereas ¹³⁷ Cs is originated from the atmosphere by accidental
80	release (anthropogenic source), and iii) little is known about the distribution of the alkali metals as well as
81	¹³⁷ Cs in forest humus. There are several papers describing analytical results of K, Rb and Cs in spruce
	5

82	needles (Picea abies Karst.) and in the associated soils in Switzerland (Wyttenbach et al. 1995). Mean
83	concentrations of these elements in soils were found in the order $K >> Rb > Cs$, which were consistent with
84	the average composition of the upper continental crust. They concluded that the change of the concentration
85	with soil depth was completely explained by the dilution of the mineral soil with organic matter in near
86	surface. Vinichuk et al. (2010) carried out a comparative study of accumulation of alkali metals (K, Rb, Cs)
87	and ¹³⁷ Cs in soil and fungi in a Swedish forest. They found a similar mechanism of Cs uptake by fungi to
88	that of Rb, different with K uptake. These studies were aimed at understanding bioavailability of
89	radionuclides to prevent ultimate exposure to living organisms.
90	The present study has especially focused on the current distribution and downward migration of ¹³⁷ Cs in
91	the humus horizon under the same stands as those previously investigated to elucidate site-specific and
92	common properties of ¹³⁷ Cs retention within the humus horizons. Depth distribution profiles of a lithogenic
93	stable cesium (¹³³ Cs) and other alkali metals (K and Rb) were also investigated to compare those of ¹³⁷ Cs,
94	and to find any relationships among them within the humus horizon 30 years after the Chernobyl accident.
95	
96	2 Material and methods
97	2.1 Location, site description, and sample collection
98	

The sites for investigation in this study were the same as those described in our previous paper (Takahashi et al. 2017), i.e. three temperate coniferous (Picea abies) stands with a mean stand age of 60-120 years in the Czech Republic. These sites were Přemyslov (50.101°N; 17.078°E), Opatovice (49.962°N; 15.196°E) and Prühonice (49.990°N; 14.543°E), as denoted sites I, II and III, respectively. Soil (bulk soil) samples were manually collected every 2 cm from the uppermost down to a depth of 12 cm (6 subsamples), and one subsample each from 12 to 15 cm, and 15 to 20 cm in depth with a stainless frame $(10 \times 10 \times 10 \text{ cm})$ at three points situated 10-20 m apart in each location in September 2014. Humus samples were separately collected at three points adjacent to bulk soil sampling. Mean thickness of the humus horizon was 6 cm, which was divided into three fractions of equal thickness (2 cm). The separated humus fractions were denoted by the upper (H_u) middle (H_m) and lower (H_l) depending on their depth. 2.2 Analytical procedures All samples were air-dried and sieved with a 2-mm mesh filter in the laboratory. Soil pH (H₂O) was measured directly on each soil sample with a pH meter (HI-99121, Hanna Instruments, Ltd., Woonsocket, RI, USA). The amount of soil organic matter (SOM) was estimated by ignition weight loss (%) of each sample before and after heating at 500 °C for 2 hrs. Powder X-ray diffraction analyses (RINT-2000m, Rigaku, Tokyo, Japan) of all the samples investigated in this study were carried out under identical

experimental conditions (X-ray source; CuKα, applied voltage; 40 kV, maximum current; 30 mA,
diffraction angle 2θ; 3-40°).

The activity concentration of ¹³⁷Cs in each soil component was determined by gamma spectrometry with a HPGe detector (GMX20P4-70; EG&G ORTEC, Oak Ridge, TN, USA). Acquisition time was set to be 144000 s for all measurements including a background check. Certified reference materials purchased from the International Atomic Energy Agency (IAEA-372) and from the Japan Society for Analytical Chemistry (JSAC0471, JSAC0472 and JSAC0473) to evaluate the ¹³⁷Cs activity concentration of individual samples from count data obtained with the same geometry under identical operating conditions. The lowest limit of detection was found to be 0.34 Bq kg⁻¹ with a confidence level of 95 % for ¹³⁷Cs activity concentration under the experimental conditions in this study. Inductively coupled plasma (ICP) analyses were carried out for all the samples to evaluate distribution of some alkali metals (K, Rb and Cs) in humus and in bulk soils. Both Rb and Cs were determined with ICP-mass spectrometry (ELAN 6000; Perkin Elmer Inc., Waltham, MA, USA), and K was analyzed with ICP-atomic emission spectrometry (OPTIMA 5000; Perkin Elmer Inc., Waltham, MA, USA). Details of the analytical procedures were described in our previous paper (Sucharová and Suchara 2006). 2.3 Amount of alkali metals (K, Rb and Cs) and activity of ¹³⁷Cs in humus fraction

Determination of the alkali metal in humus gives its concentration (C_X ; mg kg⁻¹). The amount (X_{hum} ; mg) of an alkali metal (K, Rb or Cs) contained in humus fraction of a definite thickness (d; cm) and dry density (ρ ; g cm⁻³) could be calculated from the equation (1).

$$X_{hum} = C_X \times \rho \times S \times d \times 10^{-3} \tag{1}$$

140 where S is the surface area of the humus fraction defined to be 100 cm^2 in this study.

141 Activity of 137 Cs (Bq) in humus fraction is also obtained from its activity concentration (Bq kg⁻¹) through 142 the equation (1).

The amount of an alkali metal (K, Rb Cs or 137 Cs) in the mineral component (X_{min}) of a humus fraction could be estimated from the intercept of a linear relationship between SOM (%) and X_{hum} (mg, or Bq in the case of 137 Cs), assuming that the forest humus is exclusively composed of organic (SOM) and mineral (min) components.

 $X_{hum} = a \cdot [SOM] + X_{min} \tag{2}$

Where X = K, Rb and Cs, and the subscripts of X, hum and min, denote humus and soil organic component, respectively. A symbol a is the slope of the linear regression in the equation (2).

2.4 Vertical migration rate of ¹³⁷**Cs**

Vertical migration of ¹³⁷Cs in humus was investigated based on its depth distribution profiles obtained in this study at all three sites. Equation (3) was used to estimate a vertical migration rate of ¹³⁷Cs (Arapis and Karandinos 2004): $\bar{x} = \sum_i x_i g_i$ (3) where \bar{x} is the weighted mean depth (cm) of the vertical concentration distribution, x_i is the mean depth of the layer (cm), and g_i is the fraction of ¹³⁷Cs in the corresponding depth x_i . The vertical migration rate of ¹³⁷Cs (R, cm yr⁻¹) was estimated from the mean depth values (\bar{x} , cm) divided by elapsed time (*t*, years) after the Chernobyl accident in 1986 ($R = \bar{x}/t$). Results and discussion 3.1 Soil and site properties Table 1 summarizes site-specific properties of soil including those (location, climate, soil type, forest type, stand age, ¹³⁷Cs inventory, apparent annual burial rate to mineral horizon and ecological half-life of ¹³⁷Cs) described in our previous paper (Takahashi et al. 2017). Among three sites investigated, soil and forest types are similar in properties, while other environmental factors are different, especially climatic conditions and stand age. The humus horizons in three sites (I, II and III) were selected to be similar

Table 1

170	thickness (~6 cm), which was further divided into three parts with equal thickness (2 cm); upper (H_u),
171	middle (H_m) and lower (H_l) . Moisture and the amount of soil organic matter (SOM) within each humus
172	fraction decreased gradually to lower portion. Mean pH value was relatively constant (3.4 \leq pH \leq 3.7)
173	independent of the sites with an exception in the site I (pH 4.5 at H_u). All the soils were classified into
174	acidic Cambisol suggesting that the amounts of dissolved chemical species are relatively large in soil water.
175	Gonet et al. (2008) investigated compositional and chemical changes of humus with depth in undisturbed
176	forest soils in Slovakia. They showed that down the profile gave higher hydrophilic property of humus with
177	higher carboxyl groups. Higher concentration of hydrophilic humic acids at deeper portion of the soil may
178	result from increasing amount of decomposed SOM. Paul et al. (2015) investigated acidic and metal
179	complexing properties of humic acids extracted from tea garden soils of different depths (surface, 15 and
180	30 cm in depth) in India. They obtained different properties of the humic acids with depth, e.g. decreasing
181	moisture content and increasing pKa values with depth. The pH value of each humus fraction was relatively
182	low (pH; 3.4~4.5), which may result from pH buffer effects of hydrophilic humic acids with carboxylic and
183	hydroxylic functional groups (Paul et al. 2015). Such low values are generally observed in humus layers of
184	non-calcareous sandy soils summarized by De Vries and Leeters (2001) in forest stands in the Netherlands.
185	These factors may facilitate dissociation of ${}^{137}Cs^+$ with anionic humus components at low pH in the lower
186	humus horizon in our investigated sites.
187	

3.2 Depth distribution profiles of alkali metals (K, Rb and Cs) in bulk soil and in humus horizon

190	Uptake of nutrients from soil is an important process in biological cycling in forest environment, in which
191	radiocesium may be indiscriminately taken up by plant roots together with other alkaline elements such as
192	rubidium (Rb) and stable cesium (Cs) as well as an essential nutrient potassium (K).

Fig. 1

193	Figure 1 shows linear relationships between SOM and concentration of alkali metals (K, Rb and Cs) in bulk
194	soil in the site III (Plühonice). The plots suggest that the concentrations of alkali metals increase linearly
195	with increasing soil depth. The correlation coefficients between them were obtained for K (R=0.998, n=8,
196	p<0.01), Rb (R= 0.994, n=8, p<0.01) and Cs (R =0.622, n=8, p<0.01). Assuming that the soil is simply
197	composed of organic and mineral components, the results in Fig. 1 indicate that these alkali metals are of
198	lithogenic origin. There is scare information available for comparing the amounts of alkali metals in humus.
199	Among them Sucharova et al. (2011) conducted chemical analyses of 39 elements including alkali metals
200	(K, Rb, Cs) in humus samples collected in coniferous forest sites across the Czech Republic. Median values
201	in humus samples were reported as 3240, 19 and 2.2 mg Kg ⁻¹ for K, Rb and Cs, respectively. Using
202	analytical data obtained on these elements, they investigated a trend analysis of the spatial distribution.
203	They found that most anomalies of typical elements in the distribution could directly be linked to known
204	industrial sites, mines, power plants or urbanization. Johanson et al. (2004) determined many chemical

205	elements including alkali metals (K, Rb and Cs) in forest soils close to the Nuclear Power Plant at Forsmark
206	in Sweden. They summarized concentrations (median values) of K, Rb and Cs in bulk soil to be 605 (370-
207	986), 2.52 (1.48-10.1) and 0.21 (0.080-0.68) mg kg ⁻¹ , respectively. They also showed two to five times
208	higher values of K and Rb concentrations in rhizosphere than those in bulk soil except for Cs which
209	remained at low levels independent of soil compartments. Vicichuk et al. (2010) investigated the
210	distribution of K, Rb and Cs in forest soil fractions including bulk soil and rhizosphere. Results in bulk soil
211	(mean \pm standard deviation) were 642 \pm 215, 3.9 \pm 2.7 and 0.3 \pm 0.2 (mg kg^-1) for K, Rb and Cs
212	concentrations, respectively. The similar trends appeared with higher K and Rb concentrations, and constant
213	Cs level in rhizosphere compared with those in bulk soil. All these results may partly support our finding
214	shown in Fig. 1, in which the alkali metal contents in soil vary at different soil compartments, probably
215	depending on the fraction of mineral components.
216	To estimate the amounts of alkali metals (K, Rb and Cs) contained in the mineral components (X_{min} ; mg)
217	of a humus fraction of known thickness (d; cm), their amounts (x; mg), not concentration (mg kg ⁻¹) were
218	calculated using the equations (1) and (2) explained in the Material and methods section. Table 2 lists the
219	results of regression analysis between SOM (%) and the amounts of alkali metals (mg) in each humus
220	fraction in three sites (Sites I, II and III), where the symbols r, n, p, a and X_{min} in the table denote Pearson's
221	correlation coefficient, number of data, probability, slope and intercept of the regression line, respectively.
222	As seen in Table 2, estimated amounts of K, Rb and Cs in mineral components (X_{min} , the value at the
	13

Table 2

223	intercept) decreased in the order, Site II > Site I > Site III, suggesting that the underlying minerals in the
224	Site II contain the highest amounts of the alkali metals among others. Another finding in Table 2 is that
225	increasing ratios (the ratio of slopes) of Rb to K ($3 \sim 4 \times 10^{-4}$), and of Cs to K ($1 \sim 3 \times 10^{-4}$) against SOM
226	resulted in similar values in all the investigated sites. Although there appeared some variability for Cs to K
227	values, degradation and/or weathering mechanisms may play a role controlling the amounts of alkali metals
228	in humus horizon. Regarding uptake of K and Rb by plants, Simonsson et al. (2016) investigated sources
229	of K and its relation with K/Rb ratio in soil and biomass under a Norway spruce stand (Picea abies Karst.).
230	They showed quite low K/Rb ratios in the forest floor as well as interlayers of 2:1 clay minerals and biomass
231	to conclude the importance of clay minerals as fixing and releasing K and Rb in the cycling of nutrients in
232	forest soil environment.
233	The results in Table 2 offer a new finding that concentration of alkali metals in humus varies at different
234	depths (or with elapsed time after deposition of fresh soil organic matter) suggesting that the importance of
235	humus fractions to be considered. The properties of humus components are supposed to change gradually,
236	and to affect downward migration of ¹³⁷ Cs in humus horizon. To elucidate a long-term behavior of ¹³⁷ Cs in
237	the forest ecosystem, Karadeniz and Yaprak 2007 investigated distribution of both ¹³⁷ Cs and stable ¹³³ Cs in
238	forest ecosystems. They attributed observed higher concentration of Cs in O2 horizon to its possible
239	bioaccumulation in the horizon. They suggested that differences in the ¹³⁷ Cs and stable ¹³³ Cs depth profiles
240	reflect the latter being enclosed in bedrock particles in the mineral horizons.
	14

3.3 Depth distribution profiles of ¹³⁷Cs in bulk soil and in humus horizon

244	Figure 2 shows the depth distribution profiles of ¹³⁷ Cs activity concentration (Bq kg ¹) in bulk soil	
245	investigated in this study. Significant portion of 137 Cs was still found in the upper soil horizon (< 8 cm	
246	depth) 30 years after the Chernobyl accident in 1986, which had already been reported at different sampling	
247	points within the same sites in our previous paper (Takahashi et al. 2017). The highest activity concentration	
248	of 137 Cs were found to be 880 (± 5), 932 (± 6) and 240 (± 3) Bq kg ⁻¹ at 4-6 cm (Site I), 2-4 cm (Site II) and	
249	6-8 cm (Site III), respectively. All these depths were included in humus horizon of soil, in which the site	_
250	III of the oldest stand age (100-120 years) gave the lowest ¹³⁷ Cs level among all. Figure 3 shows distribution	
251	of mean 137 Cs activity concentration (Bq kg ⁻¹) in each fraction (H _u ; 2-4 cm, H _m ; 4-6 cm, and H _l ; 6-8 cm in	
252	depth range) of humus horizon, in which the highest concentration of ¹³⁷ Cs was found in the middle fraction	
253	(H _m) of humus in all the three sites.	
254	Absolute activity (Bq) of ¹³⁷ Cs was calculated using equation (1) in Material and methods to compare the	
255	amount of ¹³⁷ Cs remaining in each humus fraction within 2 cm in thickness (200 cm ³ in volume). Figure 4	
256	summarizes the results on ¹³⁷ Cs activity (Bq) as well as the amounts of alkali metals (K, Rb and Cs) in each	
257	humus fraction of in the three sites. Contrary to the results in Fig. 3, the ¹³⁷ Cs activity clearly increased	
	15	

Fig. 2

Fig. 3

Fig. 4

258	towards deeper humus fraction to reach the maximum value at the deepest portion (H_1 , 6-8 cm) in any sites.
259	This fact confirms the ¹³⁷ Cs deposited on the forest floor moved downward within humus horizon. The
260	presence of a ¹³⁷ Cs peak in organic (O _h , or O _f) horizons has been reported in the literature (e.g. Ylipieti et
261	al. 2008; Karandeniz and Yaprak 2011; Alexery et al. 2014; Takahashi et al. 2017; Karandeniz et al. 2015a).
262	However, few papers have addressed distribution of ¹³⁷ Cs profile within humus horizon using sets of ¹³⁷ Cs
263	activity (Bq) data. The results must be the first finding to clarify the ¹³⁷ Cs distribution in humus horizon.
264	The same trend was observed on each alkali metal (K, Rb and Cs) distribution in humus fraction in Fig. 4,
265	in which the amount of alkali metal increased towards deeper portion of humus fraction $(H_u < H_m < H_l)$ as
266	in the case of ¹³⁷ Cs. Possible interactions of atmospheric ¹³⁷ Cs with lithogenic alkali metals occur in
267	biological uptake of nutrients in surface organic horizons. Chao et al. (2008) determined ¹³⁷ Cs and alkali
268	metals (K, Rb and K) in a perhumid montane forest ecosystem. They found that the ¹³⁷ Cs/Cs ratio varied
269	with soil horizons depending on the persistent supply of lithogenic Cs via weathering processes of minerals
270	in deeper soil layers. They concluded that the ¹³⁷ Cs/Cs ratio can be an indicator for monitoring the
271	distribution and uptake of ¹³⁷ Cs in the forest ecosystem.
272	
273	3.4 Downward migration of ¹³⁷ Cs in humus horizon

275	In the previous sections two important findings were obtained on behavior of ¹³⁷ Cs and alkali metals (K,
276	Rb and Cs) in humus, i) ¹³⁷ Cs moved downward within humus horizon and its highest proportion was in
277	the lowest fraction (H ₁ , 6-8 cm in depth range) at the sampling time in 2014, and ii) the amounts of alkali
278	metals increased with increasing fraction of mineral components (or decreasing SOM) suggesting them as
279	lithogenic origin.
280	The following two possibilities are now considered as explanations of the distribution of ¹³⁷ Cs within humus
281	horizon: 1) clay minerals such as illite and smectite fixing ¹³⁷ Cs in their structures may be contained in the
282	humus, and 2) downward movement of ¹³⁷ Cs within humus horizon may be accompanied with degrading
283	SOM. The first possibility came from the results in the literature that some clay minerals fix ¹³⁷ Cs strongly
284	within their layered structure, especially on micaceous clay minerals (Kruyts and Delvaux 2002; Nakao et
285	al. 2014; Fuller et al. 2015).
286	No appreciable diffraction peaks corresponding to these clay minerals were detected in the lower range of
287	diffraction angle ($3^{\circ} < 2\theta < 18^{\circ}$) on X ray diffraction (XRD) spectra of all the humus fractions (H _u , H _m and
288	H_{l}) investigated in this study. An example of X ray diffraction pattern of a humus sample in the site I was
289	shown in our previous paper (Takahashi et al. 2017). Table 3 lists major diffraction peaks (2θ, d-spacing)
290	and assignment of the mineral in each humus fraction in the site III investigated in this study, in which only
291	quartz was detected in all the cases. Amorphous materials, such as some alumino-silicates, hydrous iron
	17

Table 3

292	oxides and strongly resistant organic residues may be contained in the lower portion of the humus horizon.
293	All of them are supposed to be insignificant for the ¹³⁷ Cs uptake (April and Deller 1990; Zhao et al. 2016).
294	In our previous paper (Takahashi et al. 2017), the ecological half-life of ¹³⁷ Cs in humus layer in the sites
295	I, II and III were estimated to be 21.7, 19.8 and 24.8 years, respectively. A similar estimation reported by
296	Alexey et al. (2014) gave values of the ¹³⁷ Cs effective half-life in the fermentative forest litters to be 8-19
297	years in Ukraine and Russian Federation forest sites. Several authors acknowledged that forest humus
298	represents a sink for radiocesium recycling in a forest ecosystem, and that this sink for radiocesium will
299	persist for many years (Melin et al. 1994; Bunzl et al. 1995; Schell et al. 1996). Furthermore, the time scale
300	for this persistence will be decades rather than years (Rafferty et al. 2000).
301	The mean depth of the humus layer was obtained in each site and ranged from 3.6 to 5.4 cm using Eq.
302	(3). When considering the elapsed time after the Chernobyl accident in 1986 (28 years as of 2014), the
303	137 Cs vertical migration rate was estimated to be in the range of 0.13-0.19 cm yr ⁻¹ (n=45) in this study.
304	Similar values have been reported in the literature (Belli et al. 1994; Arapis and Karandinos 2004;
305	Almgren and Isaksson 2006; Karandeniz et al. 20015b) in other forest soils under different geological and
306	climatic conditions. Takahashi et al. (2017) estimated apparent burial rate from humus to mineral soil
307	horizon to be in the range of 0.04-0.08 cm yr ⁻¹ (n=27). Higher migration rate of ¹³⁷ Cs within humus layer
308	compared with that into mineral horizon supports previous findings in the literature in which humus does
309	not strongly retain ¹³⁷ Cs within its structure compared with weathered micaceous minerals (Rigol et al.
	18

310	2002). Kruyts and Delvaux (2002) reviewed main processes and parameters controlling the mobility of
311	radiocesium in semi-natural soils. They showed that thick humus facilitates transfer of ¹³⁷ Cs from soil to
312	plant (biorecycling), because of weak interaction between ¹³⁷ Cs and soil organic matter. They further
313	investigated mobility of radiocesium in forest floors with different humus types of different mixing of
314	mineral and organic residues (Kruyts et al. 2004). They suggested that the mixing of organic residues
315	with Cs-fixing minerals is a key process in ¹³⁷ Cs mobility. Another important evidence for very low ¹³⁷ Cs
316	migration rate into mineral horizon was that there was a great gap in ¹³⁷ Cs activity concentration between
317	the lowest humus fraction (H_1) and the uppermost mineral phase as shown in Fig. 2. Further observations
318	should be continued to elucidate dynamics of ¹³⁷ Cs remaining in lower humus fraction.
319	It should be noted that all the fractions of humus horizon in this study did not contain appreciable amounts
320	of clay minerals, especially illites and smectites as determined by X-ray diffraction analysis (Table 3).
321	However, it is likely that mineral components of little or no ¹³⁷ Cs retention, such as amorphous oxides
322	(aluminum, iron and manganese) and quartz, were contained in each humus fraction, because the proportion
323	of organic components was not higher than 90 $\%$ even in the upper-most fraction (H _u) of humus horizon as
324	suggested in Fig. 1. The results, including the downward migration rate of ¹³⁷ Cs, indicate that organic
325	components of humus have certain capacity for retaining ¹³⁷ Cs within each humus fraction (Fuller et al.
326	2015).

327	Although little is known about interaction of ¹³⁷ Cs with SOM in humus horizon in the literature, possible
328	role of organic matter in radiocesium adsorption in soils was reviewed by Staunton et al. (2002), focusing
329	largely on their own results in the laboratory. They observed that soil organic matter appreciably reduced
330	the ability to immobilize Cs (decreasing distribution coefficient of radiocesium) on reference clay minerals
331	(illite and montmorillonite), despite the weak and non-specific interaction of Cs with soil organic matter.
332	Regarding possible interactions of ¹³⁷ Cs with SOM, soil microflora and microfauna may play a role in
333	retaining radiocesium in their bodies (Kruse-Imer and Giani 2003; Karandeniz et al. 2015a).
334	It is now speculated that radiocesium may be released from dead microorganisms, and then incorporated
335	again into newborn organisms; that is, radiocesium is circulated within the surface soil including humus
336	horizon. To elucidate the possible relationship between microbial activity and deposited radiocesium in the
337	profiles of forest soil, a change in their population with depth needs to be considered. Susyan et al. (2006)
338	investigated the state of the microbial community in forest soils in Russia by determining microbial biomass
339	and respiration, and population densities of micro-organisms. They found that the microbial activity
340	decreased with increasing soil depth. More than 50 % of microbial biomass in the entire soil profile was
341	concentrated in the upper portion (0-24 cm in depth) of the soil (humus horizon).
342	Decay of organic matter and nutrient cycling in forest soils are influenced by the interrelationships among
343	climate, litter types and the variety and abundance of soil organisms. Regardless of considerable research
	20
	20

on the effects of climate and litter quality, it is difficult to link the structure of soil communities to soil processes due to the lack of appropriate methods applicable to complex microbial communities (Leckie et al. 2004). To address this subject, they investigated the microbial communities (total microbial biomass and community composition) in forest floors of two forest sites contrasting in nitrogen availability in Canada. They found that bacterial and fungal communities were distinct in the fermentation (F), upper humus and lower humus layers of the forest floor and total biomass decreased in deep layers. Their results may support the results obtained in this study that abiotic properties of humus horizon were changed between upper and lower fractions. A genetic technique on DNA and RNA quantification was applied to distinguish activity distribution of microbial biomass, especially bacterial and fungal biomass, in coniferous forest sites in the Czech Republic (Baldrian et al. 2012). They found that bacterial and fungal communities differ in their spatial distributions with fungal taxa more distinctly confined to either the litter of the organic horizon of soil and more heterogeneously distributed in the ecosystem. They also suggested that low abundance of several fungal taxa sometimes contributes to decomposition processed in soil. Several studies have indicated the importance of mycelia on the accumulation of radiocesium in surface soils (Guillitte et al. 1994; Brückmann and Woters 1994; Vinichuk and Johanson 2003; Yoshida et al. 2014). Regarding the distribution of fine roots in soils under coniferous stands (Picea abies), Børja et al. (2008) found that the highest root biomass was in the upper soil layers (humus layer and upper portion of mineral soil). Pertritan et al. (2011) also

indicated that most fine roots were concentrated in the humus layer (more than 45 %) and in the top mineral
 soil (0-5 cm, about 15 %). This type of biological cycling is strongly associated with the downward
 movement of ¹³⁷Cs.

Based on these findings and reports in the literature, various organic compounds of the humus layer are likely to retain ¹³⁷Cs within their structures. Decomposition of the organic matter in soil is largely a biological process that occurs naturally. Humus is regarded as successive decomposition products with complex chemical structures, remaining in soil for relatively long time. It is expected that properties of humus may change gradually with degrading organic matter, i.e. with depth, in undisturbed forest soil, and that the organic compounds in lower humus fraction (H₁) may be much more resistant to microbial oxidation than those in the upper fraction (H_u) (Gonet et al. 2008; Schaeffer et al. 2015). Dynamics of soil organic matter in humus could be considered with a parameter, mean residence time, of organic components. Different values of mean residence time and even different concept on humus formation were reported, which were inevitably caused by the complexity of organic matter in composition and structure, environmental parameters and separation techniques (Certini et al. 2004; Delula and Aplet 2008; Schmidt et al. 2011). Dynamics of soil humus should be investigated through carbon isotopes (¹³C and ¹⁴C) technique, which enables possible sources (and date) of carbon contained in the humus component (Paul et al. 1964; Fujiyoshi et al. 2010, 2012). Decomposition of soil organic matter therefore depends both on biotic and abiotic environment, thus ecosystem property (Lehmann and Kleber 2015).

380	As shown in Fig. 4, the ¹³⁷ Cs activity (Bq) remained in humus fraction decreased consistently in the
381	order: $H_U < H_m < H_I$. The result together with those on ¹³⁷ Cs mean downward migration rate (0.1-0.2 cm
382	yr ⁻¹) estimated in this study suggests that ¹³⁷ Cs moved downward within humus horizon. Assuming that
383	¹³⁷ Cs is released within a humus fraction due to the decomposition of host organic components, the
384	downward migration of ¹³⁷ Cs may depend on degradation rate of the organic components. If this assumption
385	is appropriate, mean residence time of the host organic components may give similar mean residence time
386	of ~30 (29~36) years to that of 137 Cs estimated from the ecological half-life of 137 Cs in humus horizon (Site
387	I; 21.7, Site II; 19.8 and Site III; 24.8 years) estimated in our previous study (Takahashi et al. 2017). It is
388	suggested that speciation of ¹³⁷ Cs in humus fractions may be a potential approach to identify a target organic
389	component, and that mean residence time of the humus components should be evaluated to assess a
390	mechanism of downward migration of ¹³⁷ Cs in humus horizon, while applying powerful tools like genetic
391	and isotope (stable and radioactive) techniques.
392	
393	4 Conclusions
394	Bulk soil and its humus horizon were separately collected from three coniferous forest sites in the Czech
395	Republic in September 2014. The highest activity concentration of ¹³⁷ Cs (Bq kg ⁻¹) appeared in the upper
396	portion of the soil (mainly in humus horizon) about 30 years after the Chernobyl accident. Increasing
	23

397	activity of ${}^{137}Cs$ (Bq) was found in the lower humus horizon (H ₁ , 4~6 cm depth range) in which no
398	appreciable amounts of micaceous clay minerals like illite and smectite were detected in all the sites. Similar
399	depth distribution profiles appeared for lithogenic alkali metals (K, Rb and Cs) in humus as in the case of
400	fallout nuclide ¹³⁷ Cs, suggesting that mineral components with little retention ability for ¹³⁷ Cs increased at
401	lower humus fraction. It is likely that organic components of humus layer have certain capacity of retaining
402	¹³⁷ Cs in their structures. Downward migration rate of ¹³⁷ Cs within the humus horizon (0.13-0.19 cm yr ⁻¹)
403	estimated in this study was about three times higher than those (0.04-0.06 cm yr ⁻¹) previously obtained from
404	the humus to mineral horizon. These findings suggest that ¹³⁷ Cs moves downward with degrading organic
405	matter within the humus horizon. Comparing depth distribution profiles between ¹³⁷ Cs activity (Bq) and
406	the amount (g) of alkali metals (K, Rb and Cs) may reflect possible association of ¹³⁷ Cs with the alkali
407	metals during biological activity within humus. Further investigation is needed to elucidate mechanism of
408	¹³⁷ Cs migration within humus horizon, especially interactions of ¹³⁷ Cs and degrading organic components.
409	
410	Acknowledgement The Center for Engineering Education Development, Hokkaido University, Japan.
411	supported this work.
412	
413	References
	24

414	Alexey IS, Olga BT, Alexey K (2014) The fate of Cs-137 in forest soils of Russian Federation and Ukraine
415	contaminated due to the Chernobyl accident. J Geochem Explor 142:75-81
416	Almgren S, Isaksson M (2006) Vertical migration studies of ¹³⁷ Cs from nuclear weapons fallout and the
417	Chernobyl accident. J Environ Radioact 91:90–12
418	April R, Keller D (1990) Mineralogy of the rhizosphere in forest soils of the eastern United States,
419	Mineralogic studies of the rhizosphere. Biogeochem 9:1-18
420	Arapis GD, Karandinos MG (2004) Migration of ¹³⁷ Cs in the soil of sloping semi-natural ecosystems in
421	Northern Greece. J Environ Radioact 77:133–142
422	Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J,
423	Vlček Č, Voříšková J (2012) Active and total microbial communities in forest soil are largely different
424	and highly stratified during decomposition. ISME J 6:248–258.
425	Belli M, Sansone U, Menegon S (1995) Behavior of radiocesium in a forest in the eastern Italian Alps.
426	Sci Total Environ 157:257-260
427	Beresford NA, Fesenko S, Konoplev A, Skuterud L, Smith JT, Voigt G (2016) Thirty years after the
428	Chernobyl accident: What lessons have we learnt? J Environ Radioact 157:77-89
429	Børja I, De Wit HA, Steffenrem A, Majdi H (2008) Stand age and fine root biomass, distribution and
430	morphology in a Norway spuruce chronosequence in southeast Norway. Tree Physiol 28:773-784
	25

440	rapport 424.1, 1551 1500-7197
445	solution of 150 forest stands in the Netherlands in 1990. Wageningen, Alterra, World Res. Alterra-
444	De Vries W, Leeters EEJM (2001) Chemical composition of the humus layer, mineral soil and soil
443	Front Ecol Environ 61(1); 18-24
442	Deluca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West.
441	Cornell RM (1993) Adsorption of cesium on minerals: A review. J Radioanal Nucl Chem 171:483–500
440	perhumic montane forest ecosystem. Appl Radiat Isot 66: 1287-1294
439	Chao JH, Chiu CY, Lee HP (2008) Distribution and uptake of ¹³⁷ Cs in relation to alkali metals in a
438	71; 299-316
437	weight fractions of organic matter extracted from two soils under different forest species. Biogeochem
436	Certini G, Agnelli A, Corti G, Capperucci A (2004) Composition and mean residence time of molecular
435	horizons of a forest soil under pine. J Environ Radioact 27(1):17-34
434	Bunzl K, Kracke W, Schimmack W (1995) Migration of fallout ²³⁹⁺²⁴⁰ Pu, ²⁴¹ Am and ¹³⁷ Cs in the various
433	Sci Total Environ 157:249–256
432	forest ecosystems: relationship to environmental conditions, humification and invertebrate activity.
431	Brückmann A, Wolters V (1994) Microbial immobilization and recycling of ¹³⁷ Cs in the organic layers of

447	Dołhańczuk-Śródka A, Majcherczyk T, Smuda M, Ziembik Z, Wacławek M (2006) Spatial ¹³⁷ Cs
448	distribution in forest soil. NUKLEONIKA 51: S69-S79
449	Fujii K, Ikeda S, Akama A, Komatsu M, Takahashi M, Kaneko S (2016) Vertical migration of radiocesium
450	and clay mineral composition in five forest soils contaminated by the Fukushima nuclear accident,
451	Soil Sci Plant Nutr 60:751-764
452	Fujiyoshi R, Haraki Y, Sumiyoshi T, Amano H, Kobal I, Vaupotič J (2010) Tracing the sources of
453	gaseous components (²²² Rn, CO ₂ and its carbon isotopes) in soil air under a cool-temperate
454	deciduous stand in Sapporo, Japan (2010) Environ Geochem Health 32(1): 73-82
455	Fujiyoshi R, Amano H, Amano H, Sakuta Y, Kazumasa O., Janja Vaupotič (2012) Practical evaluation of
456	carbon sources in forest soils in Slovenia from stable and radio-carbon isotope measurements (2012)
457	67(1), 133-140
458	Fuller A, Shaw S, Ward MB, Haigh SJ, Mosselmans JFW, Peacock CL, Stackhouse S, Dent AJ, Trivedi
459	D, Burke IT (2015) Appl Clay Sci 108:128-134
460	Gonet S S, Debska B, Zaujec A, Banach-Szott M (2008) Properties of humus of natural forest soil and
461	arable soil. Ekológia (Bratislava) 27 (4):351–366. (whole content translated by the authors)
	27

462	Guillitte O, Melin J, Wallberg L (1994) Biological pathways of radionuclides originating from the
463	Chernobyl fallout in a boreal forest ecosystem. Sci Total Environ 157:207-215
464	Johanson K, Nikolova I, Taylor AFS, Vinichuk MM (2004) Uptake of elements by fungi in the Forsmark
465	area. Technical Report (TR-04-26), Svensk Kärnbränslehantering AB, www.skb.se
466	Karandeniz Ö, Yaprak G (2007) Activity concentrations of natural radionuclides and ¹³⁷ Cs in soils of
467	coniferous forest sites in West Anatolia. Eur J Forest Res 130:271–276
468	Karandeniz Ö, Karakurt H, Çakır R, Çoban F, Büyükok E, Akal C (2015a) Persistence of ¹³⁷ Cs in the litter
469	layers of forest soil horizons of Mount IDA/Kazdagi, Turkey. J Environ Radioact 139:125-134
470	Karandeniz Ö, Rukiye C, Karakurt H (2015b) Estimating of vertical migration velocity of ¹³⁷ Cs in the
471	Mount IDA/Kazdagi, Turkey. J Environ Radioact 146: 27–34
472	Kruse-Irmer S, Giani L (2003) Vertical distribution and bioavailability of ¹³⁷ Cs in organic and mineral soils.
473	J Plant Nutri and Soil Sci 166:635–641
474	Kruyts N, Delvaux B (2002) Soil organic horizons as a major source for radiocesium biocycling in forest
475	ecosystems. J Environ Radioact 58:175-190
476	Kruyts N, Titeux H, Delvaux B (2004) Mobility of radiocesium in three distinct forest floors. Sci Total
477	Env 319:241-252
	28

478	Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Characterization of humus
479	microbial communities in adjacent forest types that differ in nitrogen availability. Microbial Ecol 48;
480	29-40
481	Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528; 60-68
482	
483	Melin J, Wallberg L, Suomela J (1994) Distribution and retention of cesium and strontium in Swedish oreal
484	forest ecosystems. Sci Total Environ 157:93–105
485	Nakao A, Ogasawara S., Sano O, Ito T, Yanai J (2014) Radiocesium sorption in relation to clay
486	mineralogy of paddy soils in Fukushima, Japan. Sci Total Environ 468-469:523-529
487	Paul EA, Campbell CA, Rennie DA, Callum JMC (1964) Investigations of the dynamics of soil humus
488	utilizing carbon dating techniques. 8th Int Congr Soil Sci p. 201-209, Bucharest, Romania
489	Paul S, Sharma T, Saikia D, Saikia P, Borah D, Baruah MK (2015) Evaluation of pKa values of soil
490	humic acids and their complexation properties. Int. J. Plant Soil Sci. 6(4):218-228
491	Petritan IC, Lupke BV, Petritan AM (2011) Fine roots of overstory Norway spruce (Picea abies):
492	distribution and influence on growth of underplanted beech (Fagus sylvatica) and Douglas-fir
493	(Pseudotsuga menziesii) saplings. Forest Systems 20 (3):407-419
	29

494	Petrović J, Dragović S, Drogović R, Đordević M, Đokič M, Ćujić M (2016) Spatial and vertical
495	distribution of 137Cs in soils in the erosive area of southeastern Serbia (Pčinja and South Morava
496	River Basins). J Soil Sed 16:1168-1175
497	Rafferty B, Brennan M, Dawson D, Dowding D (2000) Mechanisms of ¹³⁷ Cs migration in coniferous forest
498	soils. J Environ Radioact 48:131–143
499	Rigol A, Vidal M, Rauret G (2002) An overview of the effect of organic matter on soil-radiocaesium
500	interaction: implications in root uptake. J Environ Radioact 58:191-216
501	Sawhey BL (1972) Selective sorption and fixation of cations by clay minerals: A review. Clays Clay Miner
502	20:93–100
503	Schaeffer A, Nannipieri P, Kastner M, Schmidt B, Botterweck J (2015) From humic substances to soil
504	organic matter-microbial contributions. In honour of Konrad haider and James P. Martin for their
505	outstanding research contribution to soil science. J Soils Sediments 15:1865–1881
506	Schell W, Linkov I, Chistic O, Lutsko A Dvornik AM, Zhuchenko TA (1996) Model-directed sampling in
507	Chernobyl forests: general methodology and 1994 sampling program. Sci Total Environ 180:229-240
	20
	50

508	Schmidt MWL, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner
509	I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence
510	of soil organic matter as an ecosystem property. Nature 478; 49-56
511	Simonsson M, Court M, Bergholm J, Lemarchand D, Hillier S (2016) Mineralogy and biogeochemistry of
512	potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in
513	soil and biomass. Biogeochem 131: 77-102
514	Staunton S, Dumat C, Zsolnay A (2002) Possible role of organic matter in radiocaesium adsorption in
515	soils. J Environ Radioact 58(2-3); 163-173
516	Strebl F, Gerzabek MH, Karg V (1995) Soil-plant transfer factor s in forest ecosystems. IAEA
517	SEIBERSDORF REPORT 27 (15): OEFZS—4746 (ISSN 0253-5270)
518	Sucharava J, Suchara I (2006) Determination of 36 elements in plant reference materials with different Si
519	contents by inductively coupled plasma mass spectrometry: Comparison of microwave digestions
520	assisted by three types of digestion mixtures. Anal Chim Acta 576:163–176
521	Sucharová J, Suchara I, Hola M, Reimann C, Boyd R, Filzmoser P, Englmaier P (2011) Linking chemical
522	elements in forest humus (Oh-horizon) in the Czech Republic to contamination sources. Environ Pollut
523	159:1205–1214
	31

524	Susyan EA, Rybyanets DS, Ananyeva ND (2006) Microbial activity in the profiles of gray forest soil and
525	chernozems. Eurasian Soil Sci 39 (8):859–867
526	Szabó KZ, Udvardi B, Horvátah, A, Bakacsi Z, Pásztor L, Szabo J, Laczó L, Szabó C (2012) Cesium-137
527	concentration of soils in Pest County, Hungary. J Environ Radioact 110:38-45
528	Takahashi S, Suchara I, Okamoto K, Sucharova J, Umegaki K, Fujiyoshi R (2017) Retention of ¹³⁷ Cs in
529	forest floor at three temperate coniferous forest stands in the Czech Republic diversely affected by
530	fallout after the Chernobyl disaster in 1986. J Radioanal Nucl Chem 311:929-935
531	Vahabi-Moghaddam M, Khoshbinfar S (2012) Vertical migration of 137Cs in the South Caspian soil.
532	Radioprotec 47(4); 561-573.
533	Vinichuk MM, Johanson KJ (2003) Accumulation of ¹³⁷ Cs by fungal mycelium in forest ecosystems of
534	Ukraine. J Environ Radioact 64:27–43
535	Vinichuk M, Taylor AFS, Rosén, Johanson KJ (2010) Accumulation of potassium, rubidium and caesium
536	(¹³³ Cs and ¹³⁷ Cs) in various fractions of soil and fungi in a Swedish forest. Sci Total Environ 408:
537	2543–2548
538	Winkelbauer J, Völkel J, Leopold M (2012) A novel approach to monitoring the Cs-137 contamination of
539	forest soils in Bavaria. Germany. Die Erde 142(1-2):23-47
	32

540	Wyttenbach A, Bajo S, Bucher J, Furrer V, Schleppi P, Tobler L (1995) The concentrations of K, Rb and
541	Cs in spruce needles (Picea abies Karst.) and in the associated soils. Z Pfanzenernähr Bodenk 158:499-
542	504
543	Ylipieti J, Rissanen K, Kostiainen E, Salminen R, Tomilina O, Täht K, Gilucis A, Gregorauskiene V (2008)
544	Chernobyl fallout in the uppermost (0-3 cm) humus layer of forest soil in Finland, North East Russia
545	and the Baltic countries in 2000–2003. Sci Total Environ 407: 315–323
546	Yoshida S, Muramatsu Y, Dvornik AM, Zhuchenko TA, Linkov I (2004) Equilibrium of radiocesium with
547	stable cesium within the biological cycle of contaminated forest ecosystems. J Environ Radioact 75:
548	301–313
549	Zhao Q, Poulson SR, Obrist D, Sumaila S, Dynes JJ, McBeth JM, Yang Y (2016) Iron-bound organic
550	carbon in forest soils: quantification and characterization. Biogeosci 13:4777-4788
	33

Fig. 1

Figure caption

Figure. 1 Relationship between the amount of soil organic matter (SOM; %) and concentration of alkali metals (K; $\times 10^{-1}$ %, Rb; mg kg⁻¹, Cs; mg kg⁻¹) in surface soil down to a depth of 20 cm in the investigated sites (I, II, and III). Correlation coefficient of Cs with SOM was lower compared with those for K and Rb. Standard deviation (±1 S.D.) of each data set was 1.8~4.8, 1.1~3.5 and 0.98~4.5 % for K, Rb and Cs, respectively.

Figure 2 Depth distribution profiles of ¹³⁷Cs activity concentration (Bq kg⁻¹) in surface soil (<20 cm depth) in the sites I, II and III. Most of the Chernobyl derived ¹³⁷Cs still existed in the upper portion (< 8 cm depth) of the soil. The site III showed the lowest activity concentration of ¹³⁷Cs among the three sites.

Figure 3 Depth distribution profiles of 137 Cs activity concentration (Bq kg⁻¹) in each humus fraction of 2 cm in mean thickness. The highest 137 Cs activity concentration was found in the middle fraction (H_m) of humus in all the sites investigated.

Figure 4 Depth distribution of 137 Cs activity (Bq) and of the alkali metals (K, Rb and Cs) in each humus fraction (H_u, H_m, and H_l) in the sites I, II and III. Both the 137 Cs activity and the amounts of alkali metals consistently increased to deeper fraction of humus horizon, in which the site III gave the lowest levels compared with other sites.

Table 1 Summary of the site-specific properties of soil including those (location, climate, soil type, tree type, stand age, 137 Cs inventory, annual apparent burial rate of 137 Cs to mineral horizon and ecological half-life) described in our previous study (Takahashi et al. 2017). Also included properties (mean thickness, pH, moisture SOM and density) of humus fractions (H_u, H_m, H_l) in humus horizon.

Properties	Site									
	I (Přemyslov)		II (Op	atovice)		III (Průhonice)				
Location	50.111°N, 17.065 °E			49.962°N, 15.065 °E			49.986°N, 14.542 °E			
Altitude (m)	800			390			320			
Annual mean temperature (°C)	4-5			7-8			8-9			
Annual mean precipitation (°C)	800-10	00		500-5	500-550			500-550		
Soil type	Mesob	asic cam	bisol	Moda	Modal cambisol			Modal cambisol		
Tree type	Picea d	abies		Picea	Picea abies			Picea abies		
Stand age (y)	60-80			80-100			100-120			
¹³⁷ Cs inventory in 1986 (kBq m ⁻²)	9.46			1.16			5.56			
Annual apparent burial rate of ¹³⁷ Cs (cm y ⁻¹)	$0.06 \pm$	0.01		0.04 ± 0.01			0.08 ± 0.01			
Ecological half-life of ¹³⁷ Cs (y) in humus	19.8			24.8			21.7			
Humus horizon*	H_{u}	H_{m}	H_1	H_{u}	H_{m}	H_1	H_{u}	H_{m}	H_1	
Thickness (mean, cm)	2	2	2	2	2	2	2	2	2	
pH (mean)	4.5	3.7	3.4	3.7	3.5	3.6	3.5	3.4	3.5	
Moisture (mean, %)	55	40	30	42	30	27	39	37	22	
SOM (mean, %)	81	56	50	83	77	68	81	66	33	
Density (dry, mean, g cm ⁻³)	0.27	0.38	0.49	0.17	0.28	0.38	0.11	0.21	0.32	

* Upper fraction (H_u), Middle fraction (H_m), Lower fraction (H_l)

Table 2 Results of the regression analysis between SOM (%) and the amounts of alkali metals (K, Rb and Cs) contained in each humus fraction in the sites I, II and III. The symbols r, n, p, a and X_{min} in the table denote Pearson's correlation coefficient, number of probability, slope and intercept of the regression line, respectively. The X_{min} value is the content (mg or g) of each alkali metal contained in mineral components of humus horizon with a thickness of 6 cm. Increasing ratio of ¹³⁷Cs (Bq) with decreasing SOM was also shown as a slope (a) in this table.

Element	Site I (Přemyslov) II (Opatovice) I									III (P	růhonice)				
(radionucide)	r	n	р	a	\mathbf{X}_{\min}	r	n	р	a	\mathbf{X}_{\min}	r	n	р	a	\mathbf{X}_{\min}
K (g)	0.95	9	< 0.01	0.29 (0.06)	2.6	0.99	9	< 0.01	0.71 (0.14)	6.25	0.99	9	< 0.01	0.05 (0.01)	0.44
Rb (mg)	0.96	9	< 0.01	0.09 (0.02)	0.8	0.99	9	< 0.01	0.25 (0.05)	2.20	0.99	9	< 0.01	0.02 (0.01)	0.22
Cs (mg)	0.96	9	< 0.01	3.58 (0.77)	0.35	0.96	9	< 0.01	6.77 (1.33)	0.62	1.0	9	< 0.01	1.67 (0.32)	0.16
¹³⁷ Cs (Bq)	1.0	9	< 0.01	1.75 (0.33)	-	0.93	9	< 0.01	5.35 (0.66)	-	0.97	9	< 0.01	0.20 (0.04)	-

Site III	2θ °(CuKa)	d (Å)	Assignment
H_{u}	20.88	4.26	Quartz
	26.62	3.34	Quartz
	36.54	2.46	Quartz
H_{m}	20.88	4.26	Quartz
	26.61	3.34	Quartz
	36.57	2.46	Quartz
H_1	20.82	4.26	Quartz
	26.66	3.34	Quartz
	36.54	2.46	Quartz

Table 3 Major diffraction peaks (2 θ and d-spacing) and assignment of the mineral observed in each humus fraction (H_u, H_m and H_l) in the site III (3° < 2 θ < 38°).

±

Reply to the reviewer's comments and advices

We would greatly appreciate your help to refine our current revised manuscript. Reading the general comments of yours, we reconsidered the important findings obtained in the present study to shorten the extra discussion. We also thank you for suggesting many mistakes in English. We checked all of them to be revised as shown in red in the text (The corrected parts in blue were undertaken by the authors themselves). The followings were the reply to the reviewer's comments.

General comments

Page 21, lines 354-360

We erased whole the paragraph on biotic and abiotic effects on the sorption of stable cesium and strontium in soil components conducted in the laboratory (Seeprasert et al. 2016). As the reviewer suggested, this part was not directly connected to our results.

Page 22, lines 374-402

This part, concerned with "mean residence time" of soil organic components, may beyond the scope of this paper. We decided to shorten this part, and only to add a potential usefulness of carbon (¹³C and ¹⁴C) isotope technique to elucidate the source and date of soil organic components obtained in our previous studies (Fujiyoshi et al. 2010, 2012) as well as a work in the literature (Paul et al. 1964).

Typographical corrections

We corrected all the suggestions by the reviewer (as shown in red in the text), except for one: Page 9, line 138 Unit of dry density is [g cm⁻³]. The value 10⁻³ is multiplied to the right side in the equation (1).

The corresponding author, Ryoko FUJIYOSHI (July 25 2017)

July 26 2017

List of changes

The table below lists changes in the previous manuscript, according to the comments given by the Editor and Reviewer. All the corrections were written in red in the text of the revised manuscript.

Line(s)	Line(s)	Comment	Response	Note
	revised			
		Correct numbering of Figures	Done	Editor
		(Figs. 2, 3 and 4)		
Abstract				
20	20	Change the word	Done	Reviewer
21	21-22	Delete dangling phrases	Done	Reviewer
35	34	Delete dangling phrases	Done	Reviewer
41	39	Add "The"	Done	Reviewer
41	39	Change the phrase	Done	Reviewer
42	40-41	Re-write the phrase	Done	Reviewer
Introductio	n			
48	46-47	Revise the sentence	Done	Reviewer
53	51	Re-write the phrase	Done	Reviewer
59	56-57	Replace the words	Done	Reviewer
64	61	Replace the word	Done	Reviewer
65	62	Re-write the phrase	Done	Reviewer
79	76	Add "the"	Done	Reviewer
80	77	Re-write the phrase	Done	Reviewer
82	79	Add "the"	Done	Reviewer
92	89	Change the word	Done	Reviewer
96	93	Add "the"	Done	Also line 91
Material an	d methods			
99	96	Replace the phrase	Done	
138	135	Unit of dry density	Unit of dry	Explanation
			density is [g cm ⁻³].	
			The value 10^{-3} is	
			multiplied to the	
			right hand side of	
			the equation (1).	
Results and	l discussion			

166	163	Replace subsection title	Done	Reviewer
187-188	184	Replace the phrase	Done	Reviewer
210	208	Re-write the phrase	Done	Reviewer
211	208	Add "the"	Done	Reviewer
214	211	Replace the word	Done	Reviewer
277	274	Replace the word	Done	Reviewer
319	316	Replace the word	Done	Reviewer
324	321	Add "the"	Done	Reviewer
326	323-324	Re-write the sentence	Done	Reviewer
349	346	Move the word	Done	Reviewer
350	347	Define the word	Added the full	Reviewer
			spelling	
354-360		Not directly connected to the	The whole	Reviewer
		present study	paragraph on	(Authors)
			biotic and abiotic	
			effects on the	
			sorption of stable	
			cesium and	
			strontium in soil	
			components	
			conducted in the	
			laboratory	
			(Seeprasert et al.	
			2016).	
374-402	375-377	Beyond the scope of this study	This part was	Reviewer
			shortened, and	(Authors)
			added a potential	
			usefulness of	
			carbon (^{13}C and	
			¹⁴ C) isotope	
			technique to	
			elucidate the	
			source and date of	
			soil organic	
			components	
			obtained in our	

			studies (Fujiyoshi	
			et al. 2010, 2012)	
			as well as a work	
			in the literature	
			(Paul et al. 1964).	
411	387	Delete "then" and "highly"	Done	Reviewer
412	388	Replace the word	Done	Reviewer
413	390	Delete the phrase	Done	Reviewer
Conclusion	l			
423	399	Replace the word	Done	Reviewer
430	406	Adjust the style	Done	Reviewer
431	407	Delete the phrase	Done	Reviewer