
Intelligent Services for Big Data Science

C. Dobrea,1,∗, F. Xhafab

aUniversity Politehnica of Bucharest, Splaiul Independentei 313, Bucharest, Romania
bUniversitat Politecnica de Catalunya, Girona Salgado 1-3, 08034 Barcelona, Spain

Abstract

Cities are areas where big data is having a real impact. Town planners and
administration bodies just need the right tools at their fingertips to consume
all the data points that a town or city generate and then be able to turn that
into actions that improve peoples lives. In this case big data is definitely a
phenomenon that has a direct impact on the quality of life for those of us
that choose to live in a town or city. Smart Cities of tomorrow will rely not
only on sensors within the city infrastructure, but also on a large number of
devices that will willingly sense and integrate their data into technological
platforms used for introspection into the habits and situations of individuals
and city-large communities. Predictions say that cities will generate over
4.1 terabytes per day per square kilometer of urbanized land area by 2016.
Handling efficiently such amounts of data already is already a challenge. In
this paper we present our solutions designed to support next-generation Big
Data applications. We first present CAPIM, a platform designed to automate
the process of collecting and aggregating context information on a large scale.
It integrates services designed to collect context data (location, users profile
and characteristics, as well as the environment). We next present a concrete
implementation of an Intelligent Transportation System designed on top of
CAPIM. The application is designed to assist users and city officials better
understand traffic problems in large cities. Finally, we present a solution to
handle efficient storage of context data on a large scale. The combination
of these services provide support for intelligent Smart City applications, for

∗Corresponding author.
Email addresses: ciprian.dobre@cs.pub.ro (C. Dobre),

fatos@lsi.upc.edu (F. Xhafa)
1This work was supported by project “ERRIC -Empowering Romanian Research on

Intelligent Information Technologies/FP7-REGPOT-2010-1”, ID: 264207.

© 2013 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://ees.elsevier.com/fgcs/viewRCResults.aspx?pdf=1&docID=5220&rev=0&fileID=158747&msid={F0795F5E-62A6-4701-A122-203183EC2F20}

actively and autonomously adaptation and smart provision of services and
content, using the advantages of contextual information.

Keywords: intelligent services, big data, context-awareness, mobile
computing

1. Introduction

Every day we create 2.5 quintillion bytes of data; so much that 90% of the
data in the world today has been created in the last two years alone. This
data comes from sensors used to gather climate information, from posts to
social media sites, digital pictures and videos, purchase transaction records,
or cell phone GPS signals, to name only a few. This data is big data. Ana-
lyzing large data sets already underpins new waves of productivity growth,
innovation, and consumer surplus. Big data is more than simply a matter
of size; it is an opportunity to find insights in new and emerging types of
data and content, to make businesses more agile, and to answer questions
that were previously considered beyond our reach. Until now, there was no
practical way to harvest this opportunity. But today we are witnessing an
exponential growth in the volume and detail of data captured by enterprises,
the rise of multimedia, social media, and the Internet of Things.

Many of Big Data challenges are generated by future applications where
users and machines will need to collaborate in intelligent ways together. In
the near future information will be available all around us, and will be served
in the most convinient way - we will be notified automatically when a con-
gestion occurs and the car will be able to decide how to optimize our driving
route, the fridge will notify us when we the milk supply is out, etc. Tech-
nology becomes more and more part of our daily life. New technologies have
finally reached a stage of development in which they can significantly im-
prove the lives of any city’s inhabitants. Our cities are fast transforming into
artificial ecosystems of interconnected, interdependent intelligent digital “or-
ganisms”. They are transforming into smart cities, as they benefit more and
more from intelligent applications designed to drive a sustainable economic
development and an incubator of innovation and transformation that merges
the virtual world of Mobile Services, Internet of Things and Social Networks
with the physical infrastructures of Smart Building, Smart Utilities (i.e. elec-
tricity, heating, water, waste, transportation, and unified communication &
collaboration infrastructure). The transformation of the metropolitan land-

2

Figure 1: The vision of integrated community-enabled intelligent services.

scape is driven by the opportunity to embed intelligence into any component
of our towns and connect them in real-time, merging together physical world
of objects, humans and virtual conversation and transactions.

There are already examples of Smart Cities like Malaga, Amsterdam, or
Boston. In Europe projects such as “European Initiative on Smart Cities”
(SETIS) ignited many local Public administrations to launch new initiatives
to take advantage of the opportunity of funding for Smart Cities [1]. Several
ICT companies (e.g. IBM: Smart Planet, Accenture: Intelligent City Net-
work, CISCO: Connected Urban Development, Ericsson Smart City, etc.)
and research institutions (e.g. MIT: Smart City SENSEable lab, Terreform
One, etc.) already offer services and solutions’ components that can help
to build more livable, sustainable cities by innovative ICT usage. In many
towns such as Boulder or Amsterdam many ICT companies are working to-
gether with utilities, universities and other organization to provide integrated
solutions. In 2016, it is estimated that $39.5 billion will be spent on smart
city technology, up from $8.1 billion in 2010 [2].

We came a long way since the original “wired city” vision advocated in
the 1980s [3]. The notion of wiring the city then was needed to support net-
working very diverse activities and routine services such as those provided by
municipalities - libraries, welfare services - over WANs. Today, the develop-
ment of ubiquitous devices of comparatively low cost that can be deployed to
sense what is happening over very small time scales, as well as over very fine
levels of spatial resolution. Such devices that range from purpose-built sen-

3

sors to individual hand-held devices that are as mobile as those using them
provide massive capability to store and transmit data that pertains to move-
ment and activity levels across space and time. Some of the most elaborate
applications involve transport, but other services can easily be integrated
all-together as well (see Figure 1).

However, today there is no unique model for a Smart City, and each city
approaches the concept in its own particular way, with different projects and
objectives. One of the obvious but much misunderstood features of these
new urban technologies is the fact that they produce massive streams of data
in real time and space. We are just beginning to grasp the nature of this
‘big data’. So far, most of the datasets from which scientists and researchers
were able to extract real meaning are quite small in comparison with the
sort of data that can be captured by smart city applications. Imagine the
movements of people in a large city like London, for example, where there are
something like 3 million travellers a day using some form of public transport.
If the municipality could capture data about locations of these travellers
to extract meaningful information, with technology available today probably
much of this data can be reduced or aggregated. Thus, sequences with evident
meaning could be in extracted. But things become more complicated if we
think that such kind of data is available continuously. Over sufficiently long
periods of time, one can begin to extract changes to the structure and form
of the city and the way people behave. But this yields for solutions to store
and manage tremendous amounts of data. And all this data will probably
need to be supplemented with all kind of other information (e.g., transport
data, data relating to social and economic interactions).

We have barely begun to get a sense of the dimensions of this kind of
data, of the privacy implications, of ways in which we can code it with
respect to meaningful attributes in space and time. As we move into an
era of unprecedented volumes of data and computing power, the benefits
aren’t for business alone. Data can help citizens access government, hold
it accountable and build new services to help themselves. In one sense,
all this is part of a world that is fast becoming digital in all its dimensions,
where we can develop our understanding and our design ideas digitally, using
representations and data that are also digital and developing new ideas for
the future which will be implemented and will change the digital basis of
everyday urban and social life.

In this paper we present our solutions designed to support next-generation
Big Data applications. The contribution of this paper is as follows: We

4

present first CAPIM, a platform designed to automate the process of col-
lecting and aggregating context information on a large scale. It integrates
services designed to collect context data (location, users profile and charac-
teristics, as well as the environment). These smart services are dynamically
loaded by mobile clients, and make use of the sensing capabilities provided by
modern smartphones, possibly augmented with external sensors. The data
is collected and aggregated into context instance. This is also possible aug-
mented with external and inferred data about possible situations, relations,
or other events.

The platform is specifically designed for collaborative environments where
people collect and share data to support the understanding of their surround-
ings. For example, people can use their smartphones or tabletPCs to collect
information about traffic (congestions, pollution, or safety-related events),
and we present next as a case study a concrete implementation of such an
Intelligent Transportation System designed on top of CAPIM. The appli-
cation is designed to assist users and city officials better understand traffic
problems in large cities.

Finally, we present our solution, called Context Aware Framework, to deal
with efficient storage of context data on a large scale, on top of a popular
Cloud storage system called BlobSeer. Context Aware Framework automates
the provisioning of context data, and sits between a persistence layer, where
data is actually stored in the Cloud environment, and the actual context-
aware application (CAPIM), running on the users mobile devices. In our
vision, a truly context-aware system is one that actively and autonomously
adapts and provides the appropriate services or content to the users, using
the advantages of contextual information without too much user interaction.
Thus, providing efficient mechanisms for provisioning context-sensitive data
to users is an important challenge for these systems. Context Aware Frame-
work is designed to support the storage of context data for such context-aware
systems. It manages every problem related to, for example, the unpredictable
wireless network connectivity and data privacy concerns over the network,
providing transparent access to the data to such systems.

The work extends on our previous work [4] with extensions designed for
handling Big Data, as well as with a concrete implementation of a Smart
City application that uses the CAPIM’s capabilities.

The rest of this paper is organized as follows. Section 2 presents Related
Work. Section 3 presents an analysis of Big Data challenges and requirements
coming from Smart City applications. We next present a platform designed

5

to support automatic acquisition and handling of context data, specifically
designed in support for such applications. As a case study, Section 5 presents
an application designed for traffic handling in large cities. In Section 6 we
present the solution designed in such applications to handle the efficient
storage of large amounts of contextual information. Section 7 concludes the
paper.

2. Related Work

The ubiquity of mobile devices and sensor pervasiveness, e.g., as in smart
city initiatives, call for scalable computing platforms to store and process the
vast amounts of the generated streamed data. Because of the complexity in
dealing with large amounts of data, several platforms were previously devel-
oped to service Smart City applications and hide the complexities related to
how the context information is gathered, stored and processed. This way,
the Smart City developer is left only with the implementation of the neces-
sary business logic, which can use the already-serviced high-level situation
information.

Several architectures and frameworks have been proposed in order to sup-
port the development of context-aware systems. One of the first implemented
approaches is the Context Toolkit [5]. The framework presents an architec-
ture composed of different functional modules in order to acquire, aggregate
and interpret context information. It uses (key/value) pairs in order to model
context data. Other approaches like CASS [6] propose a layered middleware
architecture that uses a relational data model to represent context data.
JCAF [7] is a framework and a runtime environment to develop and de-
ploy contextual computing applications. It uses an object oriented model to
represent context data. These three approaches use interpreters to convert
acquired raw data into higher level context data, but these transformations
cannot be very complex because there is no inference mechanism.

The CoBra [8] middleware proposes a different approach, where software
agents are used in order to acquire and process context data in a smart
meeting room environment. SOCAM [9] uses three different layers, namely
a sensing layer, a middleware layer and an application layer. Still, these
middleware are designed to work only with limited collections of data. The
context is discussed in only few works in relation with Cloud Computing.
For example, Boloor et al [10] studied the dynamic request allocation and
scheduling for context aware applications in geographically distributed data

6

centers. But, to our knowledge, treating the specific issues and requirements
of context-awareness for Big Data storage is practically missing in actual
works.

Cloud computing provides some of the features needed for these mas-
sive data streaming applications. For example, the dynamic allocation of
resources on an as-needed basis addresses the variability in sensor and loca-
tion data distributions over time. According to the Association for Computer
Operations Management (AFCOM), in 2011 90.9 percent of data center sites
used more storage space than they did three years ago. During the same
three-year period, 37 percent were able to reduce their staff, and 29 percent
kept their staffing levels the same. This trend is in large part due to the de-
velopment and implementation of new tools and processes that have allowed
IT departments and data centers to store massive amounts of data efficiently
and inexpensively. The advent of cloud-based storage systems has had since
then a profound impact on the way businesses collect and store their infor-
mation. However, todays cloud computing platforms lack very important
features that are necessary in order to support the massive amounts of data
streams envisioned by the massive and ubiquitous dissemination of sensors
and mobile devices of all sorts in smart-city-scale applications.

For massive context data streaming applications, M3 [11] is a prototype
data streaming system that is being realized at Purdue using Hadoop. M3
eliminates all of Hadoop’s disk layers, including the distributed file system
(HDFS), and the disk-based communication layer between the mappers and
the reducers. It proposes a hybrid memory-based and disk-based processing
layer, includes dynamic rate-based load-balancing and multi-stream parti-
tioning algorithms, and fault-tolerance techniques. However, M3 can han-
dle only streaming data and does not handle queries that mix streaming
with disk-based data. A context awareness extensible layer for M3 has been
demonstrated separately in Chameleon [12]. However, Chameleon lacks gen-
eral context-based indexing techniques for realizing context awareness, thus
when the context changes the system cannot easily augment the query being
executed by additional predicates to reflect that change.

Similar to CAPIM, [13] presents a large scale system, called Federated
Brokers, for context-aware applications. In order to avoid the centralized
design(single point of failure) found in previous papers, the authors propose
a context-aware platform that includes multiple brokers. In addition to this,
CAPIM (and the Context Aware Framework, its component designed for
data storage) uses also a metadata manager for all stored information (which

7

relieves much of the burden impose for managing data on the mobile appli-
cation). We also offer prediction capabilities based on the provisioned data.
Also notable is that the evaluation of Federated Brokers was conducted over
a small-size homogeneous environment. We actually tested Context Aware
Framework over a large grid environment, with more brokers and clients,
considering a large distributed storage configuration.

From an utility point of view, CAPIM can also be compared with Google
Now [14] and Microsoft On{X} [15]. Google Now [14] is able to predict what
information an user need, based on his previous searches and on his context
data. Microsoft On{X} lets the user set actions for states defined by his
context data. When a certain state (previous defined by the user) is reached,
a trigger is fired. Our platform supports this kind of approaches, being build
as a framework for developers, not as a stand alone application, like Google
Now or Microsoft On{X}.

These and similar other middlewares support differently pervasive and
mobile computing based on context information. They all provide some
method of adapting to changes in the context, and methods for collecting
context, but otherwise use different entities and have different focus. We
present a more complete and complex context model that integrates a wider
spectrum of information, ranging from location to users profile and social
capabilities. The middleware allows collecting context information from a
wide-area of data sources, aggregation including providing semantic relations,
and an engine that is able to mimic the behavior of various context-aware
applications.

3. Big Data challenges and requirements for Smart City applica-
tions

Smart City applications are highly dependent of their execution context.
The term ‘context’ itself was considered by different authors as either the
surroundings of the interaction between the user and the application [16], the
information about the activity or the task the user is currently performing
[17], or the needed information to characterise the situation of a given entity
[5]. More generically, context is considered as any information that can be
obtained and processed by a system to identify the situation of an entity
(person, place or object), and adapt the system’s behavior to that situation.
It can be the GPS signal monitored using the user’s smartphones, from which
the system can infer the user’s current location.

8

A context-aware platform designed to handle context information on a
large scale should deal with several specific requirements:

• Mobility and locality. A context-aware application can help users aug-
ment their reality. In this case, the user might be interested to receive
information about neighbouring places or buildings (e.g., in a tourism
application). We assume that users are generally moving, and typical
context data includes elements such as current locality, time, and user’s
status.

• Proximity is also important for provisioning. The amount of data is po-
tentially too large to be served entirely on the user’s mobile device, thus
a selection of only the most relevant context data, from the immediate
surrounding environment, is preferred.

• Real-time guarantees. Context-aware applications should provide real-
time guarantees for data provisioning. The user should not receive
events that happened too far in the past (if events are too old they
become obsolete). For example, if a tourist is looking for information
about objectives in his surroundings, he will not be very happy receiv-
ing data for things in the other part of the town simply because the
application is answering requests made some while ago.

• it Support for communication imperfection. We acknowledge the im-
perfections of today’s wireless communication infrastructures. No ap-
plication should, in fact, assume that user is always connected to Inter-
net (a wireless connection might not always be available, or in roam-
ing the connection might not come cheap). Thus, the context-aware
paltform should support the use of context data even when an Inter-
net connection is not available. Alternatives such as opportunistically
using the data accessed by others from distributed caches using only
short-range communication (in form of Bluetooth and/or WiFi) can be
used in such situations.

• Efficient data access. An application should allow efficient access to
the data - in terms of speed of access, as well as support for complex
queries. Applications should be able to express their interests using
complex queries, in forms of naturally-expressed filters. For example,
the application should be able to request the data using an expression

9

similar to “get prediction of my friends’ location, but only for those in
town”. Or, an aggregated request could be expressed as “get prediction
of road traffic on a particular street”.

• Support for efficient data storage. Context-aware platform should pro-
vide discovery and registration of data sources (e.g., sensors and exter-
nal services such as a weather service), access to data using different
granularities, and the aggregation of information. They also need to
be scalable. For a typical collaborative traffic application, the num-
ber of users could potentially be in the range of millions. The sensed
data should further be persistently stored; the history of data should
be preserved for traceability and advanced data mining processing.

In summary, data intensive context-aware applications have common re-
quirements concerning the high data volumes and fast access to data. Such
requirements have to be satisfied by the services provided at the platform
level, where the complexities related to handling context data should be
shielded from the Smart City application. Obviously, achieving highly scal-
able data management is a critical challenge, as the overall application per-
formance is highly dependent on the properties of the data management ser-
vice. Cloud computing responds to this challenge by its computing and cost
models: on-demand use of resources, pay-as-you-go pricing model, offering
resources (CPU, storage) as utilities, etc. The highly scalable storage stays
at the base of the “infinite capacity” slogan used for attracting customers.
Users can reserve capacities in advance and release them when they are no
longer needed.

On the other hand, supporting a large number of concurrent accesses and
the interoperability with various (mobile) devices via Internet connections
respond to the needs of modern interactive applications. In this respect,
Clouds use different access methods and corresponding APIs (Web service,
file based, block based, etc.), improved transport protocols (e.g. the Fast
and Secure Protocol - FASPTM), and distribution of resources, including
the geographic distribution of data storage resources [18].

Context-aware applications have additional requirements and a special
profile, since context data can be used not only to accurately understand the
semantics of business data in the benefit of applications, but it can be ex-
ploited for improving the performance and facilitate the management of Big
Data store services. Due to the heterogeneity of data sources (from sensors

10

to users and applications), various types of context data, in different for-
mats must be persistently stored and offered to collaborative applications.
Also, the guarantee of real-time exchange of data is required to address the
reactiveness of context-aware applications. These various storage, transfor-
mation, delivery or archiving requirements make the task of context data
management very complex, and claim for new architectural features and
functionalities to be added to the data storage.

4. Case study: CAPIM, a platform to support intelligent context
sensing

CAPIM (Context-Aware Platform using Integrated Mobile services) is a
monitoring platform [4] that integrates services designed to collect context
data (location, user’s profile and characteristics, as well as the environment).
Such smart services make use of the sensing capabilities of modern smart-
phones and tabletPCs, possibly augmented with external sensors. CAPIM’s
architecture consists of several layers (see Figure 2), each one providing a spe-
cific function: 1) collecting context information, 2) storing and aggregation
of context information, 3) construction of context-aware execution rules, and
4) visualization and user interaction. All layers are composed of several com-
ponents, making the platform suitable for experimenting with a wide range
of context-aware methods, techniques, algorithms or technologies. It can be
used to construct context-aware applications using a service-oriented com-
position approach: load the core container, instruct it to load the necessary
context-gathering services, deploy a corresponding context-aware business
workflow and call the actions to be executed when context is met.

First the user installs on his smartphone or tabletPC the platform con-
tainer. This is the execution framework on which all layers are built. The
monitoring services are dynamically discovered, downloaded as needed, loaded
and executed inside this container. So, for collecting context information,
the first layer includes sets of monitoring services (collecting and first-stage
storing on the local mobile device) for the context data. Each monitoring
service is packed in a digitally signed monitoring module. These modules are
downloadable from remote repositories, resembling application stores. The
monitoring services can be developed/maintained by third party organiza-
tions (for example, a manufacturer might construct a module to collect data
from its own sensor, therefore integrating its data within the user’s context).
Each monitoring service is also executed inside a separate container. This

11

Figure 2: CAPIM’s architecture.

allows separation of concerns (no service needs to know what other modules
are deployed) and fault isolation.

The monitoring flow is under the control of a Context Manager (see Fig-
ure 3), orchestrating the flow of information between the monitoring services.
Depending on the function supported, the monitoring services are grouped
in several categories. The Push and Pull monitoring services are directly
responsible for collecting context information. They collect context informa-
tion generally directly from sensors. The Push service reacts to changes of
the context, which in turn triggers notifications to be sent to the Context
Manager. The Pull service is periodically or on-request interrogated for the
current values of the monitoring parameters.

The context information is sent to Filter, Storage and Networking ser-
vices. The Filter service subscribes to specific context information. The
Context Manager forwards the data of interest to the Filter service, which
in turns can produce new context information (possible from multiple data
sources). Such a construction allows for first-stage aggregation of context
information. The Storage service can store data locally for better serving the
context-execution rules. Finally, the Networking service is responsible for
sending the collected context information remotely to aggregation services
(the Remote Context Repository component located in the next layer). Here

12

Figure 3: Flow of monitoring information.

we can experiment with different network protocols and methods of sending
data, whilst balancing between costs and energy-consumption.

The second layer deals with the aggregation and storing of context data.
These components are running on the server (in Cloud) - the data aggre-
gation involves collecting information from multiple mobile sources (users
running around and sensing data within the city send their data here) and
sending it to the server-side aggregation service, where it is semantically orga-
nized. Thus, at this layer the information is aggregated from several context
sources. The data from several sensors (GSM, WiFi, Bluetooth) is, for ex-
ample, aggregated into current Location. CAPIM uses for that a semantic
model2.

For semantic aggregation, CAPIM uses the Jena Semantic Web Toolkit [19].
The framework provides functions to add, remove, query even to infer data
on generic RDF models. CAPIM uses a semnatic network (see Figure 4).
This context ontology can capture context information and model the basic
concepts of person, interests and activities, describing relationships between
such entities. The ontology is composed of domain-specific ontologies: The
FOAF [20] ontology is used to describe user activities and relations with other
people and objects . To describe events, dates or locations we use the ICAL
and GEO [21] / WAIL [22] ontologies. Thus, we use common vocabulary to
manage and share context data. The advantage of such an approach is shar-
ing a common understanding of information to users, devices and services,
because the ontology includes machine-interpretable definitions of basic con-
cepts and relations. Using domain-specific ontologies we can dynamically

2However, other models are supported as well. For example, data can also be collected
as time series, for long-term and near real-time processing guarantees.

13

Figure 4: Part of CAPIM’s Semantic Network.

plug and unplug them from our model when the environment has changed.
Also because the CAPIM’s ontology is based on already implemented on-
tologies, the redundancy can be avoided and the semantic stored data can
be easier linked with other information on the web.

Next, CAPIM is able to automate the execution of context-dependent
actions. Changes in the context can trigger actions on the mobile phone
according to a predefined rule set. The rules are expressed in an XML-
based format (these are either community-built rules that can be remotely
downloaded, or the user can contruct his own rules).

First, the context information is translated into a list of parameters (key-
value pairs) that are used for defining the conditions inside the rules config-
uration file.

The rule definition contains a list of rule elements that are periodically
evaluated by the engine. A rule is composed of several elements: Conditions
(expressed as Boolean expressions, based on rule implementations), Actions
(an action is triggered when the rule conditions are met), and Action param-
eters (strings which are passed as parameters to the action).

The rule implementations specify different expressions used to evaluate
the context. For example, rules.StringFieldEquals expresses equality between
a context parameter and a string. This rule can be applied to context pa-
rameters which have string values, such as the user’s name. By default
CAPIM provides several such rule implementations: StringFieldEquals, Int-
FieldEquals, IntFieldGreaterThan, IntFieldLessThan, IntFieldBetween, etc.

14

Figure 5: Example of rule definition and implementation.

The user can also specify higher-level functions: he can combine rules using
boolean algebra, or he can implement custom-made aggregation functions.
In the second case, the data is first passed to that component, and the result
is further used in the rule evaluation.

The rules represent operations between basic types, and allow one to
formulate different restrictions on context parameter values. When combined
they can lead to more complex conditions:

Rule = Rule OR Rule | Rule AND Rule | RuleImpl

The rule XML file is structured in two parts: rule-definitions and rule-
implementations (see Figure 5). The rules specified in the rule-definitions
part under the rule-def tag are complex rules, the ones that trigger a certain
action if they are evaluated to true. Complex rules are described with a
name attribute, an attribute to specify the action to trigger and possibly an
attribute for the parameter of the action.

In defining a complex condition as a list of simple rules, if the or-next-rule
attribute of a simple rule is not specified as having the value “true”, then
the current rule is in an logical AND relation with the next rule. On the
other hand, simple rules may have the inverse attribute set to true such that
we obtain a negation of the rule. Taking this into consideration, the rule in
Figure 5 can be translated to the following logical proposition:

1 if user is near OR user is interested in the subject
2 of the presentation AND (NOT user is in meeting)
3 then inform user about presentation

15

Finally, the fourth layer is responsible with the applications, expressed
as rules and actions, which can be used for orientation, information and rec-
ommendation purposes. At this layer there are local utilities that can help
with context-triggered actions. Also applications can use the context data
to improve response to stimulus (an interior or exterior request). An appli-
cation can react to changes in the current context and take specific actions
depending on some predefined rules. For this, conditions are evaluated pe-
riod as the data is retrieved. Third party applications and services can use
the API provided by the context-aware services. They can use functions for
obtaining particular context data, using filters, or can subscribe for context
data. They can also declare new execution rules for users to install on their
mobile devices.

4.1. Analysis of requirements and lesson learned from CAPIM to support
Smart City applications

By developing CAPIM, we encountered several challenges related to effi-
ciency of storing large volumes of sensed data. These challenges were further
incorporated into the intelligent storage system presented further in Sec-
tion 6.

In terms of data accesses, in CAPIM users write frequently, while they
read the data in a sparse way. They have also an interest in storage of large
data volumes, for mining and processing relevant high-level context informa-
tion. Such requirements are generally encoutered in many other Smart City
applications. To cope with them, for persistance, collaborative and mobility
support, we designed the layered architecture: the data is first stored locally,
on the mobile device itself, for a short period of time. It is also stored with
different granularities on the server-side (the first aggregation layer). Fi-
nally, for persistence, data is further stored for long-term on a Cloud storage
support.

For persistance storage, a typical relational database has the disadvantage
that accesses to the same data units should be synchronized for strong con-
sistency guarantees. This cannot support well a typical scenario envisioning
millions of concurrent users writing their context data. Thus, we turned our
attention to alternative solutions. BlobSeer [23] is a large-scale, distributed,
binary storage service. It keeps versions for all records, so that concurrent
read/write accesses are facilitated without affecting the high throughput of
the system. BlobSeer allows concurrent accesses to the data, and for that is
uses a versioning mechanism. Another benefit is that BlobSeer allows fine

16

grain access to the data: it is possible to access small chunks, without having
to read the entire Blob for example. BlobSeer also offers high throughput
for read and write operations: clients can write new information in a chunk
while others can read the old information, without needing to synchronize.
Thus, BlobSeer [23] offers an appropriate alternative, as it provides real-time
guarantees, large concurrent access guarantees, and support for eventual con-
sistency through an advanced versioning mechanism.

5. Case study: an Intelligent Transportation System

We present a real-world application that uses the benefits of CAPIM. Ap-
plications designed for Intelligent Transportation have the potential to solve
problems related to traffic congestions, by support a more efficient use of
existing road networks, resulting in reduced traffic congestion, delays, emis-
sions, energy consumption and improved safety. The success of City Hall
strategies for transportation depends, to a large extent, on the quality and
accuracy of the information given to the drivers. Technologies related to In-
telligent Transportation Systems (ITS), with advanced traveller information
systems (ATIS), travel advisories, variable message signs (VMS) and others,
attempt to relieve congestion and decrease travel time by assisting drivers on
selecting routes, departure times, and even mode of travel. Also, such tech-
nologies rely on a large extent on collective and computational intelligence -
which is why CAPIM was selected as an ideal candidate [24].

The service, called Traffic Collector , was designed as an extension of
CAPIM to gather information about daily traffic. Traffic Collector is in-
stalled on smartphones, tabletPCs, or computers inside cars, to collect traf-
fic data. Unlike previous solutions that rely on sensors placed within the
road infrastructure, here the drivers help sensing the traffic: the application
automatically collects data about speeds, travelling conditions, etc. Such
a crowd-based approach can produce a more accurate model of the traffic
inside a city, and does not require the use of additional sensing devices. In
return, to motivate users collect data, we rely on several crowd-sensing in-
centives: the driver receives feedback to optimize his cruising experience, he
can obtain personalized driving statistics. We also introduce a social driver
experience, where the driver more easily interacts with his environment and
people around.

Traffic Collector captures data collected from sensors, stores it locally on
the mobile device, and uploads it when an WiFi connection becomes available

17

(but it can also send data in real-time over 3G, WiMAX and other protocols).
For Traffic Collector first we had to insert mechanisms to get a critical mass
of users to give up parts of its (limited) computation and energy power and
run the application while in traffic. So, incentives are very important to
sustain such collective data sensing technologies.

The application is intended for users that drive their cars around the city.
It targets users that drive every day and do not have a fixed pattern (from
work to home and back or from school to work and back etc.) like lorry
drivers, taxi drivers and others. However, we also consider bus drivers, as
they can provide accurate data concerning the driving conditions.

Getting a critical mass of users to participate and collect was a challenge.
Kauffmann and Schulze [25] suggest that there are intrinsic and extrinsic
motivations that cause people to contribute to crowd sourcing solutions. In-
trinsic motivations refer to enjoyment-based (related to fun and enjoinment
that the contributor experiences) and community-based motivations (refer
to community participation and include community identification and social
contact). The extrinsic motivations are broken into three parts: immedi-
ate payoffs, delayed payoffs and social motivations. Since payoffs (gaining
money from offering services) are not considered, we turned our attention
towards the implications of social incentives, as altruistic motivations for
sensing within a given community.

Based on the initial feedback from some of our (student) users, we first
integrated into Traffic Collector the ability for the user to keep a detailed
log of his travels. Therefore, the user is presented with with different statis-
tics about the traveling speeds on different roads, average traveling times,
itinerary information, etc. This is done using Google Maps API, on top of
which we placed different markers to color-code speeds (see Figure 6). Next
we added more visual information, such as a custom gause capable to present
the current traveling speed, the current altitude, or the distance covered by
the driver. The user can also use statistics related to the maximum speed,
the average speed, etc. The third feature added was for people to enter social
networking information (name, Facebook username and Twitter username).
The idea was to let the driver see the position of his/her (Facebook or other
online social networks) friends, and post text related to his/her current po-
sition on Facebook or Twitter.

The application has been released to Android Google Play [26], and we
had over 100 installs in one month from its publishing.

In addition to the Traffic Collector mobile application (the one using

18

Figure 6: Speed statistics presented to the user/driver.

Figure 7: Interfaces from the TrafficCollector application.

CAPIM’s context collection services), we also developed a Website where
users can view aggregated personalized statistics of their own data traces.
The mobile application is responsible for collecting the data, and has limited
capabilities to present simple statistics (like the maximum travelling speed,
the distance covered, average speed and current speed). The data can be
further sent and aggregated over longer time intervals on the server-side. In
fact, data coming from multiple sources is used to generate a model of the
traffic at the city-level, which can be used futher to determine the congestion
status for different roads in the city.

We allow users to view their current location based on a unique id. For
privacy, the user can also hide its identity.

Examples of graphical user interfaces within the application are presented

19

in Figure 7.
The server supports simple HTTP POST requests. It can hold a large

number of uploads without the users seeing any delays, also there are some
fail-safe mechanisms: for example, if the server or the connection fail, the
Android app still saves the data on the local SQLite and file storage (so when
the server is back online the data will still be available).

In terms of energy consumption, the data exchanged between the client
and the server is compacted. We studied the impact of the application on the
battery and on network traffic (for 3G and real-time mode). We made several
experiments, where we evaluated the battery consumption over a period of
usage: for example, in 2 hours of using the application when driving the
battery decreased with about 10% (we used Samsung Galaxy S smartphones
- statistics report that its battery life supports 7 hours of talk time and
approx. 312 hours of idle time). At this moment, the real-time mode of the
Traffic Collector application sends only data that is not stationary (the speed
is greater than zero).

The application needs to be ready for use by many people (Google uses
millions of users) to generate large amount of data that can be accessed and
analyzed accordingly. Thus, we next present a service designed to support
the intelligent storage and processing of such large quantities of sensed data.

6. Case study: intelligent data storing service

In all previous scenarios we had to face one important challenge: how to
efficiently store high volumes of data which need to be available in real-time,
and support the user’s need for events even in high-mobility situations. For
this, we propose Context Aware Framework, a service specifically designed to
cope with such Big Data challenges. Its architecture is presented in Figure 8
and includes several components (see Figure 8): Data and Metadata Clients,
Brokers, the Metadata Manager, and a Cloud-based storage layer.

The Metadata Client and Data Client connect Context Aware Framework
with context-aware applications. Both these software components are part of
CAPIM’s storage layer. The Metadata Client is responsible for creating and
accessing the metadata information that describes the context data schema
used by a particular application. We acknowledge that different context-
aware applications have different requirements in terms of the data scheme
used internally. Consequently, this component allows each application to use
a different data schema to model the context.

20

Figure 8: The proposed architecture.

A Data Client can write, retrieve, and store context data necessary to a
particular context-aware application. Here we assume a one-to-one relation,
each application being served by a dedicated Data Client. Each Data Client
is responsible for supporting the mobility of the user, supporting seamless
access to the nearest Broker. The Data Client works with its own local cache
- used for offline situations, when the user cannot connect to the Broker.

A dedicated Discovery Service is used for the registration and discovery of
the existing Metadata Manager and Brokers. In the architecture we assume
the existence of one Metadata Manager, but several Brokers. The Discovery
Service is, therefore, also responsable for finding the Broker most convenient
for a particular Client.

The Metadata Manager manages the connections between the meta-information
describing the data, and the information regarding the actual physical data
storage. When a new context-aware application is registered for the first
time, the Metadata Client connects to the Metadata Manager and writes
meta-information describing that particular application. The information
contains, among others, the datatype formats to describe the context data
collected/stored by the application. Next, when the Data Client writes con-
text data, it connects to the nearest Broker. The context data is sent to
the Broker, which in turn writes it to the Persistance layer. The process
involves two steps: first the Client writes the data, and next asynchronously

21

the Broker handles transparently (in background) the actual writing into the
Persistance layer. The Broker also writes information describing the physi-
cal storage parameters to the Metadata Manager. For persistent storage we
decided to adopt the use of Blobs. A Blob stores the context data needed
by one context-aware application. The Metadata Manager actually links the
meta-information all the way to a particular Blob and to an offset inside
it where the particular data resides. The Metadata Manager also manages
the relation between the persistent Blobs (the ones used for history preser-
vation of context data) and the Brokers, where the real-time information is
preserved.

The Context Aware Framework assumes the existence of several dis-
tributed Brokers. The Broker is responsible for handling real-time guarantees
specified when an application wants to access context data. The Broker han-
dles requests coming from a limited number of users, grouped based on their
locality. It supports distributed writing of data, and processing of requests
coming from clients.

For accessing the context data, a Client application generates a filter
(expressing the parameters of interest) for finding it. This filter is further
received and processed by the Broker. The resulting data is sent back to the
Client, and is also temporarily stored in a cache, local to the Broker. This
cache is used to speed up the response time for subsequent requests for similar
data. If another client sends a similar request, the Broker is capable to reply
directly with the data from its own cache (unless the data was invalidated
by a subsequent write).

For the Persistence layer we use the BlobSeer [23] storage distributed
system. BlobSeer consists of a set of distributed entities that cooperate
to enable a high throughput storage. Data providers physically store the
blocks corresponding to the data updates; new providers may dynamically
join and leave the system. The provider manager keeps information about
the available storage space and schedules the placement of newly generated
blocks, according to a load balancing strategy. Metadata providers store the
information that allows identifying the blocks that make up a version of the
data. The version manager is in charge of assigning version numbers in such
a way that serialization and atomicity are guaranteed. In addition, clients
can access Blobs with full concurrency, even if they all access the same Blob.
One can get data from the system (read), update it by writing a specific range
within the Blob (write) or add new data to existing Blobs (append). Rather
than updating the current pages, each such operation generates a new set

22

of pages corresponding to a new version. Metadata is then generated and
“weaved” together with the old metadata in such way as to create the illusion
of a new incremental snapshot; this actually shares the unmodified pages of
the Blob with the older versions.

For Context Aware Framework, Clients can sometimes access the second
to the last version of the context-aware data until one write-in-progress op-
eration is finished. Context Aware Framework uses this to provide to the
higher-lever applications eventual consistency support for read/write opera-
tions.

Typical context-aware applications [4] usually generate big amounts of
unstructured or semistructured data. Applications can interpret this data in
particular ways, by defining appropriate meta-information associated with
it. The applications can decide on their own different granularities - for
example, an application can write several chunks of data at once, for the
data corresponding to several events, and define one single meta-entry to
describe this. It is entirely left in the responsibility of the application to
define its use and schema corresponding to the context data and associated
model.

6.1. Overall Architectural Benefits

The architecture of Context Aware Framework brings several capabilities:
The framework is designed for context-aware applications that work with

data represented mostly as time-based series, where entries are in the form
〈timestamps,Object〉.

The architecture supports scalable applications. Once deployed, the sys-
tem can support a large number of applications, involving potentially large
number of users, each with its own context data. This is because each appli-
cation runs in a separate environment.

Context Aware Framework provides Locality, Mobility and Real-time ac-
cess guarantees. In order to have good response times, a client will connect
to the closest Broker before launching a request. All read operations are
cached on two levels: one is on the Data Client side, and one on the Broker
side. If two clients issue the same request, the response for the second one
will be fetched from the Broker’s cache. This ensures both a good response
time.

Persistence is also supported. Clients write their data, which in turn is
saved in the storage system (where we use BlobSeer).

23

Later on, clients can ask for data, through complex search filters. Also,
we support Prediction. In order to benefit from the large amount of stored
data, clients can activate predictions for a specific set of data. When this
is hapening, the context data is pre-fetched on the Broker cache, based on
complex prediction algorithms. This can be used to cache in advance data
for certain data types.

6.2. Implementation

As explained, the Metadata Manager is responsible for handling the logi-
cal relation between the description of the context data and its actual physical
storage. To illustrate this, we assume the following example: in a large city
many users might send GPS data to collaboratively support an application
capable to aggregate this information and offer a traffic model. Some users
are capable to also send data about pollution (they have sensors for moni-
toring the air quality). We assume this information is sent and stored using
the previously described Context Aware Framework.

First, the Client will write in the Metadata Manager the datatypes used
by the application:

object Location
float lat, long;
string hw_description;

object COLevel
float level;
string hw_description;

Next, different Clients will write the actual context data:

arrayTimestamp, Location ==>
243452343L, 14.5, 34.45, ’Nexus Galaxy’,
243452354L, 14.51, 34.467, ’Nexus Galaxy’,
243452368L, 14.53, 34.473, ’Nexus Galaxy’

arrayTimestamp, COLevel ==>

24

243452344L, 45.3, ’Air Quality Sensor’,
243452360L, 45.4, ’Air Quality Sensor’,
243452412L, 45.37, ’Air Quality Sensor’

The data is written in a Blob, inside the Persistence layer - the actual
data is stored in BlobSeer. In this example, the data is written in bursts.
We support this feature in cases, for example, when a car can collect data
and sent it only when a WiFi connection becomes available. The actual
information used to describe the physical storage looks similar to:

UUID, BlobID, BlobVers, BlobOffs, Size

, where UUID refers to the application id that generated the data, BlobID,
BlobVers, BlobOffs and Size identify the blob, its version, the data offset
and size in the Blob where the information was written. Next, the Metadata
Manager adds an entry linking the UUID to the

TimestampStart, TimestampEnd, DataType, UUID,
BlobID, BlobVers, BlobOffs, Size, NoRecords

A concrete realisation of such an entry is:

243452343L, 243452368L, ’Location’, 0x242,
213412L, 34, 0, 1234402L, 3

The actual implementation of the Metadata Manager uses Mongodb [27],
a flexible open source document-oriented NoSQL database system. Mon-
godb includes support for master-slave replication and load balancing. For
searching, it also supports regex queries. For Context Aware Framework,
the database system was preferred for several reasons: The number of en-
tries kept by the Metatada Manager - entries previously described - is small.
Each entry follows a structured object-oriented data schema. Consequently,
an object-oriented database model is preferred.

Also, when the number of metadata access requests becomes high enough,
the system should be able to scale. MongoDB, the distributed object rela-
tional database, is the natural choice, because it support distributed deploy-
ment and high scalability [27].

The Metadata Manager is also collaboratively used by different applica-
tions. For security and management reasons, in the actual implementation
each application stores its related data in separate sandboxes.

25

6.3. Filtering

As previously described, for accessing the data the Client builds a search
filter. This can include different custom data types defined by an application.
The filter specifies the restrictions for searching particular datatypes. For
instance, a filter can include restrictions for retrieving specific location and
pollution levels. In this example, the filter looks similar to:

class Filter
Location l;
COLevel c;
...
bool filter()

return l.lat > 10.53 and
l.long < 20.45 and
c.level < 15;

The filter result is in format (timestamp, location, level).
The Client sends the serialized version of this filter class, and the Broker

loads it and instantiate it with values that match the implementation of the
filter instance.

6.4. Prediction

Prediction is done using linear interpolation (Lagrange interpolation was
used in the pilot implementation). The prediction module is extensible, and
the user/application can easily replace it.

For predicting a future value based on a time-dependent series, the user
specifies several parameters. The predictability pattern specifies how the
data varies (possible values include daily, weekly, or hourly patterns). For
example, a daily pattern considers that data is similar for the same hours
each day, while a weekly pattern assumes data is similar for the same days
each week.

To optimize the prediction process, we consider that only a subset of
all data in history is used by the prediction algorithm (a time-window like
approach, considering only the last most relevant values). The interpolation
considers the set of last values and depends on the type of prediction pattern
selected.

26

To use this facility, the API allows the user to specify N , and two times-
tamp values. N specifies the number of predicted values the user is requesting
- and it is used to define the granularity of the sampling history data. The
two timestamps specify the interval in the future of interest for the prediction
- the prediction returns in this case the N values spread over the requested
interval, by mediating the obtained predicted values. Obviously, if the pre-
diction cannot be performed (or the error is too high), the returned answer
can be also none.

We applied the prediction facility to implement an adaptive cache. Such
a cache is filled with values that it predicts the user will need in the near
future - thus, it can support the losing of the connectivity, or it can support
an optimization by requesting data asynchronously from the persistence layer
before the actual request for data takes place.

Let us consider the example of an application requesting data about
weather. In this case weather is considered to be a function of hour and
location. A predictive cache could predict the location of the user in the
near future, as well as the time moment he/she will get there. Thus, it will
be able to further interrogate a weather service and request the weather val-
ues in advance. We tested this assuming that a client requests a new weather
value every 30 minutes, and the cache replenishes the weather values in ad-
vance, such that by the time client makes the actual request, the cache is
able to opportunistically serve him/her the data (i.e., even in case an Internet
connection is no longer in place).

6.5. Experiments, Evaluation and Results

For evaluating Context Aware Framework, we used the following scenario:
many taxis from a city are equipped with mobile devices that run a context-
aware application. This application collects GPS data, and sends it to a
server. Clients are presented with context-aware capabilities, such as search-
ing for nearby free taxis or inspecting routes (for example, the municipality
can learn the popularity of routes).

As input data, we used a real-world dataset publically available on CRAW-
DAD [28]. The dataset contains mobility traces of taxi cabs in San Francisco,
USA, in the form of GPS coordinates for approximately 500 taxis collected
over 30 days in the San Francisco Bay Area (it includes approximately 11
millions unique entries).

These taxis were considered as clients for our context-aware middleware.
They were able to write data, and use different access patterns to obtain

27

context-based information. Each client runs on a different node inside a
distributed system. For these experiments we used Grid’5000 [29], a large-
scale distributed testbed specifically designed for research experiments in
parallel, of large-scale distributed computing and networking applications.

To evaluate the performance of Context Aware Framework we had to first
filter the data for each unique taxi in the experiment. Therefore, we used
500 different input files, with an average of approximately 20.000 records per
file. Each record is specified as [latitude, longitude, occupancy, time]. For
example, a record is expressed as [37.75134 -122.39488 0 1213084687], where
latitude and longitude are in decimal degrees, occupancy shows if a cab has
a fare (1 = occupied, 0 = free) and time is in UNIX epoch format.

For the storage layer, we used BlobSeer. The total data written by each
taxi is approximately 5MB.

In Grid’5000 we used 112 dedicated parallel nodes for the clients, and
4 other dedicated parallel nodes for 4 Brokers. One other dedicated node
was used for the Metadata Manager, and another one for BlobSeer. In these
experiments we used an increasing number of Brokers - ending with the 4-
based Broker experiment. We assume the city is equally split between these
Brokers - if a taxi always connects to the nearest Broker, the mobility data
is equilibrated such that we obtained an approximately even number of data
sent to each Broker. Thus, the number of clients distributed per broker is
uniform.

During the experiment we varied configuration parameters such as: the
parameters used for BlobSeer configuration (number of data providers, and
page size was progressively increased up to 12 MB), the number of clients
and brokers, the maximum records written per chunk. We were particularly
interested in time taken to perform different operations (to illustrate the
capability to support real-time traffic), as well as in the consumed data traffic
(to evaluate the optimization obtained when adding the caches).

First, we evaluated the writing performance. For this we conducted sev-
eral experiments where we increased the number of clients that write data
(entire input files) to Context Aware Framework. Since we used 112 ded-
icated nodes, the evaluation is relevant up to this limit - the results are
presented in Figure 9. Figures 10a and 10b show the result obtained for dif-
ferent read access patterns. Compared to these figures, the write operation
is more time consuming. Still, the time increases by small amounts, thus the
system shows good scalability results.

For evaluating the read operations, we considered two different scenarios.

28

Figure 9: Write Test.

First, a simple search consists in a query where a driver wants to obtain
all data relevant for a particular location (given as latitude and longitude
limits) and time period. A more complex search operation is one where a
client queries the system for the nearest free taxi considering a particular
time moment and location. For such a query the system has to aggregate
data from two different data types.

Again, we varied the number of clients assumed in the experiment, up to
112. The experiment ran until Context Aware Framework has all the context
data persistently written. When all data is written, next all clients issue a
filter such that all queries will always return results. In a first experiment, we
used the same filter, but the caches will return always the value and the time
penalty is minimal. We next assumed that each client issues a unique filter,
thus each query is served by questioning the last layer: BlobSeer. We were
interested to see the Broker’s capability to support parallel client requests.
Figures 10a and 10b show the results obtained in this case.

Again, in this case Context Aware Framework is able to successfully han-
dle the queries coming from distinct clients. The results show that time
increases by small amounts, thus the system shows again good scalability
results.

6.6. Evaluation of prediction

Next, we evaluated the prediction component. In this experiment the
prediction is activated for each taxi within the dataset. We splitted the input
data file in two parts: 80% of the data was used as input for learning, and

29

(a) Simple Search. (b) Complex Search.

Figure 10: Results for searching.

then 20% of the data was used for the evaluation of the prediction accuracy.
The predictor in this case uses the data to predict where a cab will be for
future time moments, considering daily repeatability patterns - it can be used
by a client to search for the nearest taxis, for example, at a future moment of
time. In this case, as mentioned, we were particularly interested to measure
the prediction accuracy.

The results in Figure 11 show a cumulative graph for number of values
passing a prediction acceptance threshold. A threshold of 10% means, for
example, that for a variation range of 40km, a value predicted with a 4km
error is still accepted as being correct. For the experiment, a 10% threshold
means that a value is predicted such that, when compared to the real observed
value in the input file, it gives a variation of no more than 10% of the entire
city area, assuming that each car drives through the entire city during its
experimental lifetime and has an equal probability to be at a certain moment
of time in any of the next probable locations.

Looking at Figure 11, when accuracy acceptance percent goes down, there
is a random factor that determines some of the values to still be correct; when
the percent goes up, there are some “unpredictable” values that make the
prediction slightly lower then 100%.

Also, it can be observed that a good threshold is around the value 0.2
for accuracy acceptance, where the prediction becomes very good (yielding
approximately 80% correct predicted results).

We next varied the prediction type (considering hourly or weekly pat-
terns). We observed that the correct prediction behavior is similar, but it
depends on the nature of the dataset and assumed prediction pattern. For
example, predicting with one hour pattern for a too large time interval re-
sults in inaccurate prediction results, because the cabs’ moving patterns is

30

Figure 11: Accuracy Acceptance.

not hourly based (8am traffic, for example, is different than the 11am one).

6.7. Predictive cache

A good use of the prediction module consists in the implementation of a
predictive cache that can be used by a mobile application. The cache sits on
the mobile device, tightly coupled with the application, and uses prediction
to obtain in an opportunistic way data from the storage layer.

We assumed first an experiment designed to test the prediction accuracy
of the predictor in a real application. In this experiment, from time to time
(e.g., once an hour), a background process asks for a predicted value for the
location (e.g., using a pattern such as ’predict my location after an hour’).
Then, the process uses this predicted location to ask further for the weather,
having both the location and the time for the next interval (hour). Then,
the answer is saved into the cache. So, after an hour, the user can ask for
the weather in his/her locations, and the answer can be found in the cache
with a 80-100% location prediction accuracy.

These experiments were done on a machine with the following character-
istics Core i5, 2.5 GHz, 4GB RAM. Unlike the next series of experiments, in
this case we assumed that all Clients are always connected to the Internet
(and, thus, can access at all times the Broker).

To test the implementation, we have used one Broker. Clients are peri-
odically (every 30 minutes) asking for their predicted location. The obtained
results (Figure 12) show that the answer time increases logarithmicaly with

31

Figure 12: Predictive Cache.

the number of clients; thus, we can say that the predictive cache scales very
well for a big number of clients.

For evaluating this capability, we next simulated an application that runs
on the user’s mobile device and present him/her with traffic information.
This kind of data is context-aware because the user is interested to receive
traffic information depending on his/her both time and location.

The scenario consists in cabs from San Francisco moving inside the town
and trying to acquire the traffic information using a public service. Their
only way to connect to the Internet is using WiFi hotspots (3G/4G is too
expensive for a large scale system), distributed in a grid configuration through
all the town.

The grid was chosen because it provides a good covering of the town with
fewer resources than other configurations. The active area of the town is
around 250 square km, taking into account our users moving pattern from
the input dataset.

We assume that the prediction component is available in the form of a
Web service, reachable over the Internet. In our scenario we assumed users
ask for new traffic information every 30 minutes (access the Web service).

We also assumed the traffic data does not dependent necessarly on the
real-time information. For a typical traffic navigator, the traffic data is gen-
erally served by aggregating the traffic data for a certain period of time. This
assumption was needed because we assume the information is still valid, even
if it is kept in cache for 30 minutes.

Next, we envisioned the following scenario:

32

From time to time (30 minutes), the user tries to access relevant traffic in-
formation (related to his/her time and location). In the implementation this
is accomplished by a background process continuoulsy waking up periodically
in order to ask the Context Aware Framework about the most “possible“ fu-
ture location of a particular car. This process, which actually simulates the
behavior of the Client cache, then downloads traffic information related to
his/her future predicted location - for this, it sends to the traffic predicton
Web service the time in future for which it wants the information. The re-
quest will be served only if there is an Internet connection available at the
moment the request is issued. If not, the service will fail to bring results.
If successful, the returning pair (future time, future location) will be locally
cached (on the Client cache).

When the client will actually need the traffic data, if the predicted value
for its future location was computed correctly it will actually use the cached
data. This means that this client will not need an Internet connection to
access this new data, and it will have it fast (since it is already cached
locally).

Because traffic information is very sensitive to the current user location,
we considered in our experiments relevant only location values predicted with
an accuracy error lower than 5%.

Considering the scenario and the experiment conditions described above,
we plotted the average time for one request, having the predictive cache on
or off. In the experiment, we varied the number of hotspots in the town’s
WiFi grid, from 40 to 120 different access points. The obtained results are
presented in Figures 13a and 13b.

First, comparing the case when the cache is active and the one when
it is not active, we can observe the following. When cache is active the
time necessary to serve each request is actually decreasing. When the cache
is active, a large amount of requests are finishing under 1 second, with or
without Internet connection. When we stop the cache, only requests which
are issued by clients within WiFi coverage zones are still served within good
time limits, while for the others taxis are not capable to aquire the data until
they reach Internet connectivity.

Since there is a compromise between the time for a request and the den-
sity of WiFi hotspots, as seen in the plots, the number of hotspots has an
important impact over how well the queries are served when using the predic-
tive cache. However, we cannot assume a too much density of such hotspots,
considering our scenario that covers only approximately 250 sq km. For in-

33

(a) Predictive Cache ON. (b) Predictive Cache OFF.

Figure 13: Predictive Cache Results.

stance, a more detailed analysis for 66 hotspots, when we vary the acceptance
level of the prediction to 0.13 (if the predicted location doesn’t need to be so
precise) revealed that only 12.5% of the requests need an Internet connection
(the rest of them were cache hits). This, combined with the fact that only
20% of requests are issued when cabs have Internet connection, leads to only
10% probability for a request not to be solved at the moment it was made.

7. Conclusions and Further Work

Data-intensive computing is now starting to be considered as the basis for
a new, forth paradigm for science. Two factors are encouraging this trend.
First, vast amounts of data are becoming available in more and more appli-
cation areas. Second, the infrastructures allowing to persistently store these
data for sharing and processing are becoming a reality. This allows unify-
ing knowledge acquired through the previous three paradigms for scientific
research (theory, experiments and simulations) with vast amounts of multi-
disciplinary data. The technical and scientific issues related to this context
have been designated as the “Big Data” challenges and have been identified
as highly strategic by major research agencies.

In this paper we presented incrementally services designed to support sev-
eral hot challenges related to Big Data management, by focusing on a partic-
ular class of applications: context-aware data-intensive applications. A rep-
resentative application category is that of Smart Cities, which covers a large
spectrum of needs in public safety, water and energy management, smart
buildings, government and agency administration, transportation, health,

34

education, etc. Today, many Smart City applications are context-based and
event-driven, which means they react to new events and context changes.
Such applications have specific data access patterns (frequent, periodic or
ad-hoc access, inter-related data access, etc.) and address specific QoS re-
quirements to data storage and processing services (response time, interro-
gation rate, etc.). With the advent of mobile devices (such as smartphones
and tablets) that contain various types of sensors (like GPS, compass, mi-
crophone, camera, proximity sensors, etc.), the shape of context-aware (or
pervasive) systems changed. Previously, context was only collected from
static sensor networks, where each sensor had a well-defined purpose and
the format of the data returned was well-known in advance and could not
change, regardless of any factors. Nowadays, mobile devices are equipped
with multimodal sensing capabilities, and the sensor networks have a much
more dynamic behavior due to the high levels of mobility and heterogeneity.

Context Aware Framework, in particular, is designed to support such re-
quirements. In a pervasive world, where the environment is saturated with all
kinds of sensors and networking capabilities, support is needed for dynamic
discovery of and efficient access to context sources of information. Such
requirements are mediated in our case through a dedicated context man-
agement layer, which is responsible for discovering and exchanging context
information. We presented the context storage system architecture for data
management that includes an additional set of components. This supports
the mapping between meta-information (describing the context) and the ac-
tual context data stored in BlobSeer, data caching and handling requests
coming from a distinct set of users or city area, and connecting the metadata
management layer to context-aware applications. In addition, we presented a
layer that is responsible for creating and accessing the metadata information
that describes the context data schema used by a particular application and
allows the mobile application to write, retrieve, and store context data. It
is also responsible for supporting user’s mobility. The components support
several requirements: user’s mobility and provisioning of data according to
his/her locality; real-time guarantees for data provisioning; allow efficient
access to the data in terms of speed of access, as well as support for complex
queries; discovery and registration of data sources and access to data using
different granularities; and scalability.

35

References

[1] Setis, european initiative on smart cities, http://setis.
ec.europa.eu/implementation/technology-roadmap/
european-initiative-on-smart-cities, 2013. [Accessed
March 9th, 2013].

[2] Navigant research, smart cities, http://navigantresearch.com/
research/smart-cities, 2013. [Accessed March 14th, 2013].

[3] W. H. Dutton, K. L. Kraemer, J. G. Blumler, Wired cities: Shaping the
future of communications, Macmillan Publishing Co., Inc., 1987.

[4] C. Dobre, Capim: A platform for context-aware computing, in: Pro-
ceedings of the 2011 International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 3PGCIC ’11, IEEE Computer Society,
Washington, DC, USA, 2011, pp. 266–272.

[5] A. K. Dey, G. D. Abowd, D. Salber, A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions, Human–Computer Interaction 16 (2001) 97–166.

[6] P. Fahy, S. Clarke, Cass–a middleware for mobile context-aware appli-
cations, in: Workshop on Context Awareness, MobiSys, Citeseer.

[7] J. E. Bardram, The java context awareness framework (jcaf)–a service
infrastructure and programming framework for context-aware applica-
tions, in: Pervasive Computing, Springer, 2005, pp. 98–115.

[8] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, D. Chakraborty, Intelli-
gent agents meet the semantic web in smart spaces, Internet Computing,
IEEE 8 (2004) 69–79.

[9] T. Gu, H. K. Pung, D. Q. Zhang, A service-oriented middleware for
building context-aware services, Journal of Network and computer ap-
plications 28 (2005) 1–18.

[10] K. Boloor, R. Chirkova, Y. Viniotis, T. Salo, Dynamic request allocation
and scheduling for context aware applications subject to a percentile re-
sponse time sla in a distributed cloud, in: Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference
on, IEEE, pp. 464–472.

36

http://setis.ec.europa.eu/implementation/technology-roadmap/european-initiative-on-smart-cities
http://setis.ec.europa.eu/implementation/technology-roadmap/european-initiative-on-smart-cities
http://setis.ec.europa.eu/implementation/technology-roadmap/european-initiative-on-smart-cities
http://navigantresearch.com/research/smart-cities
http://navigantresearch.com/research/smart-cities

[11] A. M. Aly, A. Sallam, B. M. Gnanasekaran, L.-V. Nguyen-Dinh, W. G.
Aref, M. Ouzzani, A. Ghafoor, M3: Stream processing on main-memory
mapreduce, in: Proceedings of the 2012 IEEE 28th International Con-
ference on Data Engineering, ICDE ’12, IEEE Computer Society, Wash-
ington, DC, USA, 2012, pp. 1253–1256.

[12] T. M. Ghanem, A. K. Elmagarmid, P.-A. Larson, W. G. Aref, Support-
ing views in data stream management systems, ACM Trans. Database
Syst. 35 (2008) 1:1–1:47.

[13] S. L. Kiani, A. Anjum, M. Knappmeyer, N. Bessis, N. Antonopoulos,
Federated broker system for pervasive context provisioning, 2012.

[14] Google now, http://www.google.com/landing/now/, 2013.
[Accessed February 9th, 2013].

[15] Microsoft onX, http://www.onx.ms, 2013. [Accessed March 9th,
2013].

[16] G. Chen, D. Kotz, et al., A survey of context-aware mobile comput-
ing research, Technical Report, Technical Report TR2000-381, Dept. of
Computer Science, Dartmouth College, 2000.

[17] K. Henricksen, A framework for context-aware pervasive computing ap-
plications, University of Queensland, 2003.

[18] M. tim jones, anatomy of a cloud storage infrastructure. models,
features, and internals, www.ibm.com/developerworks/cloud/
library/cl-cloudstorage/, 2010. [Accessed March 12th, 2013].

[19] B. McBride, Jena: a semantic web toolkit, Internet Computing, IEEE
6 (2002) 55 – 59.

[20] Foaf website, http://xmlns.com/foaf/spec, 2013. [Accessed
March 9th, 2013].

[21] Geo website, http://www.geonames.org/ontology/, 2013. [Ac-
cessed March 9th, 2013].

[22] Wail website, http://www.eyrie.org/˜zednenem/2002/
wail/, 2013. [Accessed March 9th, 2013].

37

http://www.google.com/landing/now/
http://www.onx.ms
www.ibm.com/developerworks/cloud/library/cl-cloudstorage/
www.ibm.com/developerworks/cloud/library/cl-cloudstorage/
http://xmlns.com/foaf/spec
http://www.geonames.org/ontology/
http://www.eyrie.org/~zednenem/2002/wail/
http://www.eyrie.org/~zednenem/2002/wail/

[23] B. Nicolae, G. Antoniu, L. Bougé, Blobseer: how to enable efficient
versioning for large object storage under heavy access concurrency, in:
Proceedings of the 2009 EDBT/ICDT Workshops, EDBT/ICDT ’09,
ACM, New York, NY, USA, 2009, pp. 18–25.

[24] N. Bessis, F. Xhafa, Next Generation Data Technologies for Collective
Computational Intelligence, volume 352, Springer, 2011.

[25] N. Kaufmann, T. Schulze, D. Veit, More than fun and money. worker
motivation in crowdsourcing–a study on mechanical turk, in: Proceed-
ings of the Seventeenth Americas Conference on Information Systems,
Detroit, MI.

[26] Traffic collector, http://play.google.com/store/apps/
details?id=ro.pub.acs.traffic.collector, 2013. [Ac-
cessed March 9th, 2013].

[27] R. Hecht, S. Jablonski, Nosql evaluation: A use case oriented survey, in:
Proceedings of the 2011 International Conference on Cloud and Service
Computing, CSC ’11, IEEE Computer Society, Washington, DC, USA,
2011, pp. 336–341.

[28] San francisco taxi dataset, http://crawdad.cs.dartmouth.edu/
meta.php?name=epfl/mobility, 2013. [Accessed March 14th,
2013].

[29] Grid’5000, https://www.grid5000.fr/, 2013. [Accessed March
9th, 2013].

38

http://play.google.com/store/apps/details?id=ro.pub.acs.traffic.collector
http://play.google.com/store/apps/details?id=ro.pub.acs.traffic.collector
http://crawdad.cs.dartmouth.edu/ meta.php?name=epfl/mobility
http://crawdad.cs.dartmouth.edu/ meta.php?name=epfl/mobility
https://www.grid5000.fr/

