
1

Abstract— Over the last decade, e-Learning and in particular Computer-Supported

Collaborative Learning (CSCL) needs have been evolving accordingly with more and

more demanding pedagogical and technological requirements. As a result, high

customization and flexibility are a must in this context, meaning that collaborative

learning practices need to be continuously adapted, adjusted, and personalized to

each specific target learning group. These very demanding needs of the CSCL domain

represent a great challenge for the research community on software development to

satisfy.

This contribution proposes a innovative approach in the form of a generic software

infrastructure called Collaborative Learning Purpose Library (CLPL) with the aim of

meeting the current and demanding needs found in the CSCL domain. To this end, we

propose an advanced reuse-based service-oriented software engineering

methodology for developing CSCL applications in an effective and timely fashion. A

CLPL: Providing Software Infrastructure for
the Systematic and Effective Construction of
Complex Collaborative Learning Systems

© 2010 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185531653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=3295&rev=0&fileID=42776&msid={D39A1246-34A3-4326-B893-EE5939D37CD3}

2

validation process is provided by reporting the use of the CLPL platform as the

primary resource for the Master’s thesis courses at the Open University of Catalonia

when developing complex software in the CSCL domain.

The ultimate aim of this research is to yield effective CSCL software systems

capable of supporting and enhancing the current on-line collaborative learning

practices.

Index Terms—Software architecture and design, software engineering methods,

software reuse, component-based software engineering, model-driven engineering,

service orientation, SOA, computer-supported collaborative learning, e-learning,

software and systems education.

3

1. INTRODUCTION

Over the last years, e-Learning and in particular CSCL needs have been evolving

accordingly with more and more demanding pedagogical and technological requirements.

Current educational organizations' needs involve extending and moving to highly customized

learning and teaching forms in timely fashion, each incorporating its own pedagogical

approach, each targeting a specific learning goal, and each incorporating its specific

resources. Moreover, organizations' demands include a cost-effective integration of legacy

and separated learning systems, from different institutions, departments and courses, which

are implemented in different languages, supported by heterogeneous platforms and

distributed everywhere, to name some of them (Ateyeh and Lockemann, 2006).

As a result, modern CSCL environments no longer depend on homogeneous groups, static

content and resources, and single pedagogies, but high customization and flexibility are a

must in this context, meaning that collaborative learning practices need to be continuously

adapted, adjusted, and personalized to each specific target learning group. These very

demanding needs represent a great challenge for the CSCL research community to satisfy.

To this end, a generic, robust, flexible, interoperable, reusable computational model that

meets the fundamental functional needs shared by any collaborative learning experience is

largely expected by the research community and industry (Czarnecki and Eisenecker, 2000).

Indeed, CSCL applications are extensively used by all forms of higher education and

especially in on-line distance education where open universities have a central role and use

CSCL tools massively in all their formation cycles.

4

Due to this extensive use, CSCL becomes very attractive for domain software developers

who have recently provided a number of architecture solutions (Pahl, 2007) with the aim of

reusing the large number of common requirements shared by CSCL applications. Common

needs in CSCL include support for three essential aspects of collaboration, namely

coordination, collaboration and communication; with communication being the base for

reaching coordination and collaboration in synchronous (i.e., cooperation at the same time)

or asynchronous (i.e., cooperation at different times) collaboration modes (Roseman &

Greenberg, 1996). In addition, the representation and analysis of group activity interaction

forms one of the paradigmatic principles of the CSCL domain (Dillenbourg, 1999a) and

should form part of the very rationale of all CSCL applications (Martínez, de la Fuente and

Dimitriadis, 2003). Finally, in order to improve collaboration in a group it is essential to

provide measures and rules to resolve authentication and authorization issues and so

protect the system from intentional or accidental ill use as well as to perform all the system

control and maintenance for the correct administration of the system.

Generic platforms, frameworks and components are normally developed for the

construction of complex software systems through software reuse techniques, such as

Generic Programming, Domain-based Analysis, Feature Modeling, Service-Oriented

Architecture, and so on (Czarnecki and Eisenecker, 2000; Bacelo, 2002; Gomaa, 2005).

Indeed, in the context of generic architectures and platforms, software reuse is by far one of

the main concerns in the software industry and it is increasingly recognized its strategic

importance in terms of productivity, quality and cost (Czarneki, 2005).

5

However, despite the advance in software reuse, reuse capacity is still in an incipient

status, mainly due to the short in scope of the reuse techniques such as classes,

components, and frameworks, also so-called "reuse in the small". There is, therefore, a need

for increasing the level of reuse by extending the scope and, as a consequence, the impact

on the software development, also so called "reuse in the large" (Ateyeh and Lockemann,

2006). This is chiefly fulfilled by extracting the commonality and variability features of

systems given a specific, wide domain and then reusing them for the construction of single

systems in the same domain (Gomaa, 2005). Thus, neither longer is necessary to "reinvent

the wheel" nor to develop a new system from scratch. This way, organizations can

consolidate and adapt their existing key software assets to meet the ever changing

requirements and needs. These approaches have been successfully applied to different

domains thus providing cost-effective applications of increased quality in timely fashion. The

rapid change and evolution of requirements in the CSCL domain raises new challenges to

software developers, who in turn demands more powerful reuse-based software techniques

that provide more flexible, adaptable, modular, and maintainable software.

Therefore, leveraging the latest software reuse principles, a generic service-oriented

component-based computational model in the collaborative learning context is intended to

form the very rationale of complex CSCL environments in a wide range of learning situations

and pedagogical goals. As a result, domain developers can derive specific CSCL

applications by systematically adapting and tailoring this reusable computational model for

the construction of effective, affordable and timely newly CSCL tools, which are modular,

flexible, interoperable and maintainable, and a fast adaptation of existing applications to

newly learning and teaching requirements (Caballé et al., 2004).

6

This contribution proposes a innovative approach in the form of a software infrastructure

for collaborative learning with the aim of meeting the current and demanding needs found in

the CSCL domain. To this end, we propose an advanced reuse-based software engineering

methodology for developing CSCL applications in an effective and timely fashion. A

validation process of the effects of this approach is provided by the on-line software

development courses found in the real context of the Open University of Catalonia.

The development of the resulting ideas of this research represents an attractive but quite

laborious challenge that will yield CSCL systems capable of providing more effective

answers on how to improve and enhance the on-line collaborative learning experience as

well as to achieve a more effective collaboration (McGrath, 1991; MacDonald, 2003; Sfard,

1998; Soller, 2001; Webb, 1992).

The paper is organized as follows. Section 2 presents the aims and the theoretical

background to the research and the development of our study. Section 3 describes the

collection methodologies and adopted analysis procedures for elaboration on the resulting

data. Section 4 analyses and discusses on the results obtained from the validation

processes. The paper concludes by summarizing the main ideas of this contribution and

outlining ongoing and further research.

7

2. AIMS AND BACKGROUND

In this section, a brief overview of the existing technologies and paradigms related to this

work is presented, namely Computer-Supported Collaborative Learning, Generic

Programming, Service-Oriented Architecture, and Model-Driven Architecture. This overview

will serve as background for the next sections and becomes the very rationale of the CSCL

software infrastructure presented in this paper.

2.1. Computer-Supported Collaborative Learning

 Computer-Supported Collaborative Learning (CSCL) is one of the most influencing

research paradigms dedicated to improve teaching and learning with the help of modern

information and communication technology (Koschmann, 1996; Dillenbourg, 1999a; Strijbos

et al., 2006; Stalh, 2006; Daradoumis et al., 2006). Collaborative or group learning refers to

instructional methods where students are encouraged to work together on learning tasks. As

an example, project-based collaborative learning proves to be a very successful method to

that end (Dillenbourg, 1999b). Therefore, CSCL applications aim to create virtual

collaborative learning environments where students, teachers, tutors, etc., are able to

cooperate with each other in order to accomplish a common learning goal.

 To achieve this goal, CSCL applications provide support to three essential aspects of

collaboration, namely coordination, collaboration and communication; with communication

being the base for reaching coordination and collaboration (Roseman & Greenberg, 1996).

Collaboration and communication might be synchronous or asynchronous. The former

means cooperation at the same time and the shared resource will not typically have a

8

lifespan beyond the sharing while the latter means cooperation at different times being the

shared resource stored in a persistent support.

2.2. Generic Programming

In all advanced forms of engineering it can be observed that new products are usually

developed by reusing tried and tested parts rather than developing them from scratch. The

reuse of previously created product parts leads to reduced costs and improved productivity

and quality to such an extent that industrial processes will take a great leap forward. Generic

Programming (GP) (Czarnecki & Eisenecker, 2000) has emerged over the last years to

facilitate this possibility in the software engineering field.

GP is an innovative paradigm that attempts to make software as general as possible

without losing efficiency. It achieves its goal by identifying interrelated high-level family from

a common requirement set. By the application of this technique, especially in design phases,

software is developed offering a high degree of abstraction which is applicable to a wide

range of situations and domains.

By applying GP to develop computer software important objectives are achieved (Caballé

and Xhafa, 2003):

• Reuse. This means to be able to reuse and extend software components widely so that it

adapts to a great number of interrelated problems.

• Quality. Here ”quality” refers to the correctness and robustness of implementation which

provides the required degree of reliability.

9

• Efficiency. It is also essential to guarantee the efficiency of components as if this not

done the performance repercussions will be noted, just as with lack of quality, in all of the

systems involved.

• Productivity. Inherent to reutilization is the saving through not having to create software

components again that already exist. Hence, there is an increase in computing

production.

• Automation. The aim is to automate the processes so that general requirements with a

high level of abstraction and specially designed tools can be used to produce operative

programmes.

• Personalisation. As the general requirements are made more particular, so the product

that is generated becomes more optimised to meet the specific needs of the client.

GP also represents one important technique to achieve effective Product Lines (PL)

following the Product-Line Architecture(PLA) approach (Gomma, 2004). PLA promotes

developing large families of related software applications quickly and cheaply from reusable

components. In PLA, a certain level of automation is provided in the form of generators (also

known as component configuration tools) to realize solutions for large parts of the systems

being developed.

2.3. Service-Oriented Architecture.

Service-Oriented Architecture (SOA) (W3C, 2004) represents the next step in the software

development to help organizations meet their ever more complex set of needs and

challenges, especially in distributed systems (GuiLing et al., 2005). This is achieved by

10

dynamically discovering and invoking the appropriate services to perform a request from

heterogeneous environments, regardless of the details and differences of these

environments. By making the service independent from the context, SOA provides software

with important non-functional capabilities for distributed environments (such as scalability,

heterogeneity and openness), and makes the integration processes much easier to achieve.

SOA relies on services. According to W3C (W3C, 2004), a service is a set of actions that

form a coherent whole from the point of view of service providers and service requesters. In

other words, services represent the behaviour provided by a provider and used by any

requesters based only on the interface contract. Within SOA, services

• stress location transparency by allowing services to be implemented, replicated and

moved to other machines without the requester’s knowledge,

• enable dynamic access as services are located, bound and invoked at runtime,

• promote interoperability making it possible for different organisations sup-ported by

heterogeneous hardware and software platforms to share and use the same services,

• facilitate integration of other existing systems and thus protect previous in-vestments

(e.g. legacy assets),

• rely on encapsulation as they are independent from other services and their context,

• enhance flexibility by allowing services to be replaced without causing repercussions on

the underlying systems involved,

• foster composition from other finer-grained services.

11

Although SOA can be realised with other technologies, over the last few years Web

services has come to play a major role in SOA due to lower costs of integration along with

flexibility and simplification of configuration. The core structure of Web services is formed by

a set of widely adopted protocols and standards, such as XML, SOAP, WSDL, and UDDI

(W3C, 2004), which provide a suitable technology to implement the key requirements of

SOA. This is so because these protocols allow a service to be platform - and language -

independent, dynamically located and invoked, interoperable over different organization

networks, and supported by large organisations (e.g., W3C consortium).

2.4. Model-Driven Architecture

The Model-Driven Development (MDD) paradigm and the framework supporting it, namely

Model-Driven Architecture (MDA) (OMG, 2006) have been recently attracting a lot of

attention given that it allows software developers and organizations to capture every

important aspect of a software system through appropriate models (Gomma, 2004). MDA

provides great advantages in terms of complete support to the whole cycle development,

cost reduction, software quality, reusability, independence from the technology, integration

with existing systems, scalability and robustness, flexible evolution of software and

standardization, as it is supported by the Object Management Group (OMG, 2006).

In proposing MDA, two key ideas have had significant influence in OMG aiming at

addressing the current challenges in software development (OMG, 2006): service-oriented

architectures (SOA) and product line architectures (PLA). As to the former, SOA provides

great flexibility to system architectures by organizing the system as a collection of

encapsulated services. Hence, SOA relies on services which represent the behavior

12

provided by a component to be met and used by any other components based only on the

interface contract. As to the latter, PLA promotes developing large families of related

software applications quickly and cheaply from reusable components.

There are many views and opinions about what MDA is and is not. However, the OMG, as

the most authoritative view, focuses MDA on a central vision (OMG, 2006): Allow developers

to express applications independently of specific implementation platforms (such as a given

programming language or middleware). To this end, OMG proposes the following principles

for MDA developments: first, the development of a UML-based Platform Independent Model

(PIM), second, one or several models which are Platform Specific Models (PSM). Finally, a

certain degree of automation by means of descriptions is necessary for mapping from PIM to

PSM.

2.5. A generic gaze at the collaborative learning applications

In this section, a generic view of the CSCL domain is given by analyzing and taking into

account the commonality found in the requirements of most of collaborative learning

environments.

In the last years there has been an explosion of new CSCL applications aiming to create

collaborative learning environments where students, teachers, tutors, etc., are able to

cooperate with each other in order to accomplish a common learning goal. To achieve this

goal, the collaborative applications must provide support to three essential aspects:

coordination, collaboration and communication; with communication being the base for

reaching coordination and collaboration (Roseman & Greenberg, 1996). Collaboration and

13

communication might be synchronous or asynchronous. The former (Stahl, 2006) means

cooperation at the same time with typically fine-grained notifications giving immediate

feedback about the activities of other participants whereby the shared resource (such as a

text document and a message) will not have a lifespan beyond the sharing. The latter

(Dillenbourg, 1999b) means cooperation at different times and the shared resource will be

stored in a persistent support.

Figure 1. The essential aspects in any collaborative learning (CSCL) application.

The different areas overlap each other (see Figure 1) and any collaborative system must

support all of them (Ochoa et al., 2002):

• Coordination is an important aspect of any collaborative activity. It entails the

combination and sequencing of otherwise independent work toward the accomplishment

of a larger goal (McGrath, 1991). In a collaborative learning environment, coordination

mostly refers to the tasks toward the learning group formation and the definition and

14

planning of the group objectives. Moreover, the group coordinator may track task status,

deadlines, resource usage, working results, or other critical process parameters to

correctly lead the group.

• Collaboration relies on students sharing all kind of documents. The sharing of resources

between several participants is therefore a central functionality of CSCL systems (Stahl,

2006). Sharing may be synchronous, with several participants accessing the same

resource at the same time (that is, they work on the same copy of the document), or

asynchronous, with different participants accessing the same resource at different times

(each of them works on a different copy of the same document).

• Communication is another functional aspect of collaboration systems aiming to support

the communication between two or more collaborative learning participants (Baloian,

2002). Communication includes text messages, spoken interactions, or non-verbal

exchanges like gestures in a video conference. Communication may take place

asynchronously (different participants communicate at different times such as email,

debate, etc.) or synchronously (participants communicate at the same time such as chat,

video conference, etc.). The communication support is based on four elements involved:

a message as the information carrier between a sender process and a recipient process

(which receives and possibly process the message) through a channel (Ochoa et al.,

2002). Moreover, in this context, it is necessary to implement different ways of message

addressing such as point-to-point, multicast and broadcast.

• Awareness (Gutwin et al., 1995) is essential for any of the three forms of cooperation

seen above. It allows for implicit coordination of collaborative learning, opportunities for

informal, spontaneous communication and gives users the necessary feedback

15

(Zumback et al., 2003) about what is happening in the system. In particular, on the one

hand, synchronous awareness lets users know exactly what other co-participants are

doing (e.g. during a shared editing session shows who is editing what) and when

documents are in use by others. On the other hand, asynchronous awareness

determines who, when, how and where shared resources have been created, changed or

read by others.

In order to improve the collaboration within a group it is important to take into account both

current and future behavior of all user types and the fact that user objectives or intentions

may change as they interact with the system. To that end, it is essential to design some kind

of user and group models describing, for example, the user characteristics, intentions,

beliefs, knowledge, skills, roles and collaborative activities (Brusilovski, 1996). Moreover, the

user and group models should be open enough to let add new services and collaborative

activities to them according to the participant needs.

The design of the CSCL user interface offers many more challenges than the design of

interfaces for single user applications (e.g. multi-user editors). The user interface must

provide information about what others are doing to efficiently support collaborative tasks and

additional information has to be presented. The latter refers to the effects of other users'

activities which must be communicated by visual or audio signals. Therefore, the user

interface is the main way to support awareness in multi-user collaborative environments.

Finally, although most research efforts in CSCL areas have been dedicated to developing

distance learning environments, most learning activities still take place in the traditional face-

16

to-face classroom (Baloian et al., 2002). To that end, the generic approach presented in this

paper should support the common basis from both scenarios and it is possible to instantiate

CSCL applications both for virtual learning (i.e. most of participants are physically in different

places) and for traditional learning (i.e. all the participants are physically found in the same

place, usually in a classroom). In this paper, though it mostly refer to virtual CSCL

environments, the principles are the same for both scenarios.

2.6. Software infrastructure for CSCL applications

The main contribution of this paper is a generic, reusable, robust, flexible, interoperable,

component-based and service-oriented platform called Collaborative Learning Purpose

Library (CLPL)
1
 (Caballé et al., 2007).

The CLPL is based on the Generic Programming paradigm so as to enable a complete

and effective reutilization of its generic components as the skeleton for the construction of

any collaborative learning application. This generic platform implements the

conceptualization of the fundamental needs existing in any collaborative learning

experience.

In order to meet these requirements, the development of the CLPL is based on the Model-

Driven Development (MDD) paradigm and the framework supporting it, namely Model-Driven

Architecture (MDA) (Czarnecki, 2005). In proposing MDA, the CLPL development takes

advantage of two key ideas that have had significant influence in addressing the current

1
 Last release of the CLPL is version 1.1, which can be found at:

http://clpl.uoc.edu/docs/CLPLdevelopment.zip (Web page as of November 2009).

17

challenges in software development (Caballé, 2008): Service-Oriented Architectures (SOA)

and Product Line Architectures (PLA). As to the former, SOA provides great flexibility to

system architectures by organizing the system as a collection of encapsulated services.

 Hence, SOA relies on services which represent the behavior provided by a component to

be met and used by any other components based only on the interface contract. As to the

latter, PLA promotes developing large families of related software applications quickly and

cheaply from reusable components. In PLA, a certain level of automation is provided in the

form of generators (also known as component configuration tools) to realize solutions for

large parts of the systems being developed (Czarnecki, 2005). Taking these approaches into

consideration, the CLPL is based on SOA and the Generic Programming paradigm

(Czarnecki, and Eisenecker, 2000; Caballé, and Xhafa, 2003) as the central part of the

development in MDD.

In particular, in developing the CLPL, a Platform Independent Model (PIM) was first

created by applying the following Generic Programming ideas (see Caballé and Xhafa,

2003): (i) define the semantics of the properties and domain concepts, (ii) extract and

specify the common and variable properties and their dependencies in the form of

abstractions found in the CSCL domain, and (iii) isolate the fundamental parts in the form of

abstractions from which the basic requirements were obtained, analyzed and designed as a

traditional three-layer architecture (i.e. presentation, business and information).

In order to achieve these goals, first, the PIM was expressed using UML as the standard

18

modeling language promoted by the OMG (see Figure 2). Second, two different Platform

Specific Model (PSM) have been constructed so far from the PIM: A Java implementation in

the form of a generic component-based library and a service-oriented approach by using

Web-services technology.

Figure 2: UML-based use case diagram with the general requirements of the CLPL.

The ultimate aim of the CLPL is to enable a complete and effective reutilization of its

generic services and components as the skeleton for the construction of any collaborative

learning application, and in particular CSCL applications. Thus, this platform implements the

19

conceptualization of the fundamental needs existing in any collaborative learning

experience. In addition, the CLPL is highly interoperable in distributed environments

permitting complete flexibility of the services offered in terms of implementation languages

and underlying software and hardware platforms.

For the rest of this section an UML-based PIM model for the CLPL is described by means

of a general view of the CLPL architecture
2
. Next sub section faces the PSM approach by

incorporating specific technology to the CLPL.

2.6.1. The CLPL architecture

The CLPL (Caballé et al., 2007) is made up of five components (see Figure 3) handling

user management, administration, security, knowledge management, and functionality,

which map the essential issues involved in any collaborative learning application.

Figure 3. Graphical representation of the CLPL components.

2 The complete PIM of the CLPL is found at http://clpl.uoc.edu/docs/CLPLdevelopment.pdf

20

• CSCL User Management component: this contains all the behavior related to user

management in applications, which can act as a group coordinator, group member,

group-entity and system administrator. It will tackle both the basic user management

functions in a learning environment (namely registration, deregistration, modifications,

joining a group, or meeting group members) and the user profile management. The latter

implements the user and group models within a collaborative environment, thus this

component provides the generic ProfileElement entity which dynamically allows new user

and group needs to be met.

• CSCL Security Management component: this contains all the generic descriptions of the

measures and rules decided upon to resolve authentication and authorization issues and

so protect the system from both unknown users and the intentional or accidental ill use of

its resources. Its genericity lets programmers implement these issues with the latest

cryptographic security mechanisms.

• CSCL Administration Management component: this contains the specific data from log

files and those analyzes (i.e. statistical computations) required to perform all the system

control and maintenance for the correct administration of the system and to improve it in

terms of performance and security. Moreover, it will manage the resources of the

collaborative workspace, which can be managed by a group member acting as an

administrator within the group.

21

Figure 4. A class diagram to collect and classify all events generated during the group

activity.

• CSCL Knowledge Management component: this manages all the specific and large user

events in order to handle the data of user interaction as crucial information for the

extraction of the essential knowledge to notify users of what is going on in the system as

well as to monitor user behavior and control system resources. To this end, this

component has been split into the CSCL Activity Management and CSCL Knowledge

Processing subsystems. The former aims to collect and classify the user events captured

according to a complete hierarchy of user events (see Fig. 4) provided, which is based on

the above-mentioned three generic group activity parameters: task performance, group

functioning (i.e., interaction behavior) and scaffolding. The latter is responsible for the

22

performance of the statistical analysis of the event information previously handled and

includes another generic hierarchy (see Fig. 5) that contains those statistical criteria

which are most common in these environments (e.g., the number of students connected

over a period of time, the average student working session). Furthermore, it will enable

log information to be exported and extracted in different formats for later statistical

analysis in external statistical packages. The final objective of this component is to

extract valuable information from the events generated with the aim of revealing useful

knowledge.

Figure 5. A hierarchy to classify criteria in Web-based applications.

23

• CSCL Functionality component: this forms, along with the previous component, the basis

of the collaborative learning environments by defining the three basic elements involved

in any groupware application (see Figure 1) namely, coordination, communication and

collaboration. The different areas overlap each other, and any collaborative system must

support all three aspects. Due to their importance, this component provides several

subsystems or modules so as to provide direct support to each of these areas, namely

CSCL Coordination, CSCL Communication and CSCL Collaboration (see Figures 6 and

7). The coordination support module offers the basic tools to facilitate group organization

in planning and accomplishing the members' objectives as well as group monitoring by

modeling the awareness of its participants. The communication support module involves

four basic elements, the sender, message, channel and receiver (Ochoa, 2002), and can

be implemented in several ways depending on the means of message transmission

(point-to-point, multicast and broadcast). Moreover, each message can be delivered

asynchronously (as in the case of an email, where the message is made persistent by

default) or synchronously (as in a chat, where conversation is made persistent so that it

can later be processed). Finally, the collaboration support module lets members share

both software and hardware resources in both synchronous (e.g. real-time editors) and

asynchronous (e.g. file sharing) modes.

24

Figure 6. Graphical representation of the subsystems making up the CSCL Functionality
component.

The CSCL Functionality component also supports the presentation of the information (to

be collected and processed by the component CSCL Knowledge Management) by

means of a subsystem called CSCL Awareness (see Figure 7) with the aim of providing

participants with immediate awareness of what is going on in the group. Furthermore, in

the last few years, feedback is receiving a lot of attention due to its positive impact in on-

line collaborative learning in such areas as group motivation, interaction, or problem-

solving abilities (Zumbach, at al, 2003). This characteristic is also supported in this

component by another subsystem called CSCL Feedback (see Figure 7), which also

takes advantage of the knowledge extracted from the group activity to provide

participants with a constant flow of as much feedback as possible.

25

Figure 7. The analysis of the CSCL Functionality component.

These CLPL components can be directly reused in the construction of specific efficient,

robust, multiplatform and reusable CSCL environments. The following are important

decisions made and guidelines that led the development of the CLPL:

• In order to improve collaboration within a group, it is important to take into account both

current and future behavior of all user types and the possibly changing objectives and

intentions of the users as they interact with the system. To this end, generic user and

26

group models have been designed to describe the users' characteristics, intentions,

beliefs, knowledge, skills, roles and collaborative activities amongst others. Moreover, the

user and group models are sufficiently open as to allow new services and collaborative

activities to be added in accordance with the needs of the participants.

• The design of the user interface in collaborative learning applications offers many more

challenges than the design of interfaces for single user applications (e.g. multi-user

editors). The user interface must provide information about what others are doing to

efficiently support collaborative tasks, and awareness information regarding the effects of

other users' activities has to be communicated by visual or audio signals. The user

interface is therefore the main way to support awareness in multi-user collaborative

environments. Furthermore, the user interface is generically focused so as to make

particularization in graphical and text modes possible. Even though the user interface in

collaborative learning environments will usually be in graphic mode, it is necessary to

consider generic focusing in order to make the logic part of the application independent

from the specific design of the graphic user interface.

• The design of the persistence in the CLPL is also generic and thus a disk manager

abstraction has been considered. The disk manager acts as a bridge between the future

application and its data to make the design of the persistence independent from the

specific technology that will manage the data. This way, it is possible to treat both

ordinary text files and different database system managers during particularization.

Furthermore, a complete technology-independent conceptual data model is provided as

27

part of the PIM (see Figure 8), which may be realized in different technologies managing

generic persistence.

Figure 8. ER diagram representing the conceptual design of the database.

28

• Robustness is offered through a complete hierarchy of error treatment and so a high

degree of the component quality and reliability is guaranteed without depending on the

error treatment of the specific platform supporting the software.

So far, the Platform Independent Model has been described to model a generic, reusable

approach of the CSCL domain. Next section deals with the provision of technology to the

PIM model in order to achieve the PSM model.

2.7. Software technology for systematically engineering CSCL applications

Following the principles for GP and MDA developments, once these five components

forming the PIM of the CLPL have been fully analyzed and designed, they are to be realized

using specific technologies. To this end, two different Platform Specific Model (PSM) have

been constructed so far from the PIM: An Object-Oriented (OO) approach by means of a

Java implementation and an approach that follows the Service Oriented Architecture (SOA)

principles. Both technology approaches are described next and their use is justified for the

realization of the CLPL, especially from the GP standpoint.

2.7.1. The feasibility of Java for the construction of reusable CSCL software

The first PSM of the CLPL is based on the Java programming language due to its great

predisposition to the adaptation and correct transmission of generic software design (see

Caballé and Xhafa, 2003 and an example in Figure 9). To this end, in order to encourage the

reusability of the CLPL components the basic requirements forming the PIM are designed

29

separately with OO methodology. In order to maintain intact the ideas of GP design that are

found, an implicit logical layer is implemented that creates a correspondence between the

GP and OO design (see Fig. 9).

Figure 9. An example of the Java-based PSM of CLPL as coded design

In codifying the PIM of the CLPL in Java the main objectives of GP and Java's

characteristics were matched:

• Reusability and extensibility allow software to adapt to many interrelated problems, which

is the main aim of GP. Java has many mechanisms such as Object type and interface

and abstract class which make the CLPL fully susceptible to reutilization. The

independence of the platform makes this skeleton portable to most known environments.

• The great potential for the reutilization of GP makes it necessary to guarantee a level of

maximum quality. Java has a powerful mechanism of exception management which

increases the robustness of the library and hence its quality.

30

• The Javadoc documentation provided by Java also increases quality by facilitating the

test phase and maintenance. GP aims to create software which is as general as possible

without losing efficiency by finding the most abstract form of software.

• The simplicity of Java allows the programmer to concentrate on the mechanics of

specialisation without having to control minor details. Applications with strong user

interaction, such as the library, minimize both the relative decrease in performance due

to java being interpreted and the penalization for the casting on use of Object.

• The increase in productivity is obtained by the reutilization of existing components. Java

has large stores of highly reusable useful code (data structures, etc.) that allows code to

be written better and faster and so clearly favoring increased productivity. This Java-

based PSM is faithful to this idea.

• Once generic software based on GP has been built, it is then necessary to personalize it

to a subgroup of particular requirements so that a specific use within an iterative cycle of

abstraction/personalization can be made of it. Due to Java's capacity, it is feasible to

specialize the components of a generic library such as the CLPL components in different

ways.

As a result this Java-based PSM is made up of five packages which constitute the skeleton

of the basic structure of whatever application of this domain is constructed using this PSM
3
.

3 The Javadoc documentation and source code of the Java-based PSM of the CLPL is found at

http://clpl.uoc.edu and http://clpl.uoc.edu/src/clpl-java.zip.

31

2.7.2. On the advantages of using service-oriented architectures for CSCL

The second PSM of the CLPL was developed following the principles of Service-Oriented

Architecture (SOA) and realized using Web-services (Caballé, 2008).

There are a great deal of similarities between collaborative learning needs and benefits

provided by SOA (See Section 2 for further information on SOA). As a result of this

matching, SOA appears to be the best choice to support the development of the most

pervasive and challenging collaborative learning environments. In the CSCL context, SOA

enhances educational organizations by increasing the flexibility of their pedagogical

strategies, which can be continuously adapted, adjusted, and personalized to each specific

target learning group. Moreover, SOA facilitates the reutilization of successful collaborative

learning experiences and makes it possible for the collaborative learning participants to

easily adapt and integrate their current best practices and existing well-known learning tools

into new learning goals.

Therefore, in order to increase flexibility and interoperability, the second PSM of the CLPL

relies on SOA as it represents an ideal context to support and take advantage of both the

latest trends of software development and the benefits provided by distributed systems for

the demanding requirements of the CSCL applications to be completely satisfied. Using SOA

in the context of the CLPL offers the following key advantages (Caballé et al., 2008):

• Simplifies the encapsulation mechanism that is necessary behind a common interface of

diverse implementations

• Adapts CSCL applications to changing technologies.

32

• Easily integrates CSCL applications with legacy learning systems and tools.

• Updates pedagogical models and learning tools without causing repercussions on the

underlying learning systems and platforms.

• Quickly and easily create and update a learning process from existing services.

Web-services were the implementation technology chosen for this CLPL's PSM
4
 given the

widely adopted protocols and standards, which represents the rationale of the Web-services

approach. These standards represent a suitable context to guarantee interoperability and

scalability by taking great advantage of the distributed technologies. This results in a

collection of WSDL files organized in directories that are automatically turned into generic,

functional Web-services implemented in the desired programming language and allowing

developers to implement these services according to specific needs (Caballé et al., 2007;

see also Figures 10 and 11).

Figure 10. Excerpt of a WSDL file as an example of the service-oriented PSM.

4 Both the WSDL files and the Web-services of this entire CLPL's PSM are found at

http://clpl.uoc.edu/src/clpl-wsdl.zip

33

Figure 11. An example of a Web-service generated in a specific programming language.

To sum up, the combination of MDA, SOA, and Web-services results in a platform-specific

model (PSM) as a collection of WSDL files organized in directories. They are automatically

turned into generic web-services by Apache Axis
5
, allowing developers to implement the

services according to specific needs and using the most appropriate language.

The ultimate aim of the CLPL is to enable a complete and effective reutilization of its

generic services and components as the skeleton for the construction of any collaborative

learning application, and in particular CSCL applications. Thus, this platform implements the

conceptualization of the fundamental needs existing in any collaborative learning

experience. In addition, the CLPL is highly interoperable in distributed environments

permitting complete flexibility of the services offered in terms of implementation languages

and underlying software and hardware platforms.

34

3. METHODOLOGY

This section presents a methodological approach to validate the previous software platform

to develop CSCL applications. To this end, first, an application example is shown in the form

of a new interactive collaborative learning tool to support the online discussion processes

happening in the virtual classrooms of the Open University of Catalonia
6
. This application is

then described from the intensive use of the CLPL platform to built it and as basis for final

project’s students to extend this application and achive effective and timely developments of

CSCL systems. Finally, the statistical models used for the elaboration on the data collected

from the experiments are described.

3.1. An application example: a structured discussion forum

To illustrate the use of the CLPL platform presented in Section 2, a prototype of a Web-

based structured discussion forum was developed
7
 to validate the possibilities offered by this

platform during the construction of new software to support collaborative learning in online

environments. Therefore, the objective of this sub section is to show a representative

example of the development of a Web-based structured discussion forum called Discussion

Forum (DF) (see Caballé and Fatos, 2009, for a complete description of this application) and

provide an implementation prototype of this application through the extensive use of the

CLPL platform described above to support the discussion process. The ultimate goal is to

5 Apache Axis forms part of the Apache Project, found at http://apache.org/axis (Web page as of

November 2009).
6
 The Open University of Catalonia (UOC) is located in Barcelona, Spain. The UOC offers distance

education through the Internet since 1994. About 50,000 students, lecturers and tutors participate in

some of the 600 on-line official courses available from 23 official degrees and other PhD and post-

graduate programs. The UOC is found at http://www.uoc.edu (Web page as of November 2009).
7 see http://clpl.uoc.edu/df for reaching the portal of the Discussion Forum application.

35

set the grounds of the evaluation process of this platform in terms of effectiveness, quality

and development time of new software in the domain.

To this end, we first describe the pedagogical requirements of the DF and then provide the

main guidelines that conducted the development of a prototype of this application that gives

new opportunities to learning methodologies, such as learning by discussion, and be applied

to new learning scenarios (Caballé and Xhafa, 2009). This application provides significant

benefits for students in the context of project-based learning, and in education in general.

3.1.1. Pedagogical background and requirements

In collaborative learning environments, the discussion process forms an important social

task where participants can think about the activity being performed, collaborate with each

other through the exchange of ideas that may arise, propose new resolution mechanisms,

and justify and refine their own contributions and thus acquire new knowledge (Stahl, 2006).

To this end, a complete discussion and reasoning process is proposed based on three

types of generic contributions, namely specification, elaboration and consensus.

Specification occurs during the initial stage of the process carried out by the tutor or group

coordinator who contributes by defining the group activity and its objectives (i.e. statement of

the problem) and the way to structure the group activity in sub-activities. Elaboration refers to

the contributions of participants (mostly students) in which a proposal, idea or plan to reach

a solution is presented. The other participants can elaborate on this proposal through

different types of participation such as questions, comments, explanations and

36

agree/disagree statements. Finally, when a correct proposal of solution is achieved, the

consensus contributions take part for its approval (this includes different consensus models

such as voting); when a solution is accepted the discussion terminates.

In a discussion process, participants perform a role according to their profile (e.g.

coordinator, member, guest, etc.), have personal collaborative preferences (e.g. language)

and must set up environment features (e.g. sound or visual effects, text or voice warnings,

etc.) according to their personal characteristics. Participant needs are not static and they

evolve as the discussion moves forward.

3.1.2. The design of the application

During the design of this application, the interesting features and requirements mentioned

above were supported by allowing the application to take advantage of the CLPL

components. Representative correspondences are described here.

The CSCL Functionality component provided suitable support in the design of the virtual

places where the discussions take place. For instance, the room entity was recursively used

in different levels of abstractions, such as folders to hold the debate, and discussion threads

inside each debate (see Fig. 13-a). This also eased the implementation by reusing the same

code for both purposes. Another important purpose of this component was to support the

provision of feedback to users from the interaction data collected and analysed. (see Fig. 13-

b).

37

Figure 13. Two snapshots of the DF prototype: a) A list of discussion threads; b) an example

of the provision of complex feedback to participants

In designing the specification phase, coordination needs are to be supported by essential

elements such as an agenda and a calendar so as to perform all the typical tasks in this

initial stage of the discussion process (such as group formation, definition of objectives,

structuring the task in sub-activities and labor division). During this phase the CSCL

Coordination subsystem provided support by certain generic entities that were particularized

into specific needs of this application. In order to enable the tutor to both monitor and assess

the discussion process, the application took advantage of the generic report system provided

by this subsystem so as to keep track of the performance of participants and assess their

contributions.

38

Figure 14. A list of tags to qualify a contribution.

The application design includes certain thematic annotation cards (such as question, idea,

response, etc.) that structure the elaboration phase and can offer full help support as well

(see Fig. 14). All events generated are recorded as user actions, analyzed and presented as

information to participants either in real time (to guide directly students during the learning

activity) or after the task is over (in order to understand the collaborative process).

To that end, the CSCL Knowledge Management component provided full support to event

management. In particular, during the elaboration phase, a complete treatment of the

structured task performance events generated enables the system to keep participants

aware of the contributing behavior of others, to check certain argumentative structures

during the discussion and also to open up the possibility to provide feedback based on the

data produced (see Fig. 13-b). Equally, group analysis outcomes produced by the treatment

of group functioning events constitute an important data source that can assist in achieving a

more satisfactory solution to the problem during the consensus phase. Furthermore, the

39

coordinator can use this same information to organize well-balanced groups during the

specification phase.

Personal features of the discussion group participants (their role, collaboration preferences

and so on) were taken into account and a user and group model were designed so as to

allow participants to add new services whilst their needs evolve as the discussion moves

forward. All these user features were included by the CSCL User Management component

through the user profile management subsystem, providing a solid support for building and

maintaining the user and group model.

Therefore, on the one hand, the structured discussion forum supports a complete

discussion process through the realization of three generic contribution types and an open

user and group model. On the other hand, this application constitutes a valuable resource

that takes advantage of the computational model to greatly improve essential features of a

discussion process such as awareness of participant contributions and enhance the abilities

of users by increasing their knowledge of each other in terms of motivation, interaction

behavior and so on.

3.1.3. Implementation and exploitation of the tool

 Taking advantage of the flexibility of the service-oriented approach, we used different

languages for the development of a prototype of the structured discussion forum for both the

client and the server sides. Thus, on the one hand, PHP resulted in a very suitable

programming language to implement the web pages forming the user interface on the client

40

side. On the other hand, the generic web-services supporting the business and data layers

on the server side were implemented in Java as a powerful and experienced language

featuring very well as to robustness, portability, ease of use and extensibility, which created

an ideal context for the implementation on the server side.

The real context of this tool is the virtual learning environment of the Open University of

Catalonia (UOC) , which offers higher education over the Internet. Given the added value of

asynchronous discussion groups, the UOC have incorporated on-line discussions as one of

the pillars of its pedagogical model. Therefore, great efforts are being made to develop

adequate on-line tools to support the essential aspects of the discussion process, which

include students’ monitoring and evaluation.

To this end, this prototype is currently working as a typical client-server Web-based

application at the Open University of Catalonia and evolving rapidly to be completed. Several

online courses are using this tool to support their discussion processes as part of the very

rationale of their pedagogical goals. As a result, a total of more than 700 graduate and

undergraduate students from three courses in Computer Science have been involved

directly or indirectly in collaborative learning experiences by using this tool (see Caballé and

Xhafa, 2009, for a full description and the results achieved from these experiences).

3.2. Adopted analyses procedures for data elaboration

Master and Bachelors thesis courses offered by the UOC dispose specific areas related to

software engineering and in particular the development of software applications for

collaborative learning. The interested areas are called “Web-based applications for

41

collaborative work” and “Computer-Supported Collaborative Learning”. These courses are

intended to provide the needed resources and framework in support for students who

develop collaborative tools for e-learning by exclusively using the CLPL platform as a

primary resource.

The ultimate goal of these courses is to extend the structured discussion forum (DF)

presented in the previous sub section with complete, autonomous new functionality (such as

a collaborative agenda and calendar, and a voting system) and forming entire software

development projects to be fully completed within a 14-week course. Considering the course

time is rather short and the novelty for students to develop real complex software projects,

the use of the CLPL becomes a major resource to fulfill the task and pass the course.

The main support provided from the course is two-fold, the lecturer's guidance during the

whole development, and the organization of the course's curricula into a few deliverables

that students are required to submit in deadline fashion. These deliverables are planned to

fit the different phases of the traditional software development process (i.e., specification,

design, and implementation) plus both an initial stage to plan and organize the whole project

and a thesis' defense at the end of the course.

From the beginning (i.e., early this decade), a great deal of graduate and undergraduate

students of the UOC have chosen these interest areas to develop their thesis. The courses

involved in these areas were quite demanding in terms of time and efforts to develop and

deploy a full software application in the real learning context in a short time. As a result,

many students dropped out the courses because they could not fulfill the courses curricula,

42

such as the submission of required deliverables in time and the low quality of the

developments. The teaching staff decided then to alleviate the course load by incorporating

technical documentation exemplifying similar software developments performed in previous

courses as well as standard code libraries. This novelty provided students with an initial

reuse capability though very poor and informal and as a result the benefits in terms of

reusability were also very little (see Table 1 on the row on productivity with Standard

resources).

Since the Fall term of 2004, and for 10 academic terms so far, all graduate and

undergraduate students of the UOC that have chosen these interest areas are required to

use the CLPL as the main course’s resource to perform their software developments.

Despite some students still drop out because of personal reasons
8
, they can perform part of

work. Representative efforts are four applications, namely a group and user manager, file

repository, collaborative agenda and calendar - all of them intended to support the personal

and group management and work - as well as an electronic voting system to support the

consensus part in the discussion process
9
. Each student is required to intensively use and

reuse the CLPL as much as possible from the very first step of the project development. In

addition, students can still make the most of the technical documentation with similar

developments existing in the course’s repository from the very beginning of these courses.

8 Because of the particular profile of the UOC (students are about 30 years old on average and 95%

with a job), the dropout ratio is about 50%.

43

3.2.1. Quantitative and qualitative evaluation procedures

Two different approaches are combined to analyze the data collected from the

experiments performed by using both the Standard resources offered by the course (e.g.,

past developments repositories, code libraries, etc.) and, in addition, the CLPL platform for

developing new software in the real learning context of the Open University of Catalonia.

The benefits from using both resources are compared and evaluated.

In particular, a first approach is a quantitative evaluation which involves the identification of

the number of diagramatic artifacts reused when modeling in UML the stages of specification

and design of the software application in hand, including the amount of code reused in the

implementation phase. In addition, the number of deliverables submitted in time and their

qualification were also considered. To sum up, the variables of interest are: the increase of

productivity (i.e., number of UML artifacts reused), effectiveness (i.e., development time in

terms of timely deliverables submitted) and quality (i.e., work assessment by the instructor).

The aim is to evaluate the level of guidance and support for students of the CLPL through

the different stages of the software development in comparison to the use of the standard

resources offered by the course.

The second approach is a qualitative evaluation which was addressed to students to share

their experiences when using the CLPL for developing new software. To this end, students

were asked to fill out and submit a questionnaire reporting on their degree of satisfaction,

confidence and motivation during the course by focusing on the CLPL as a primary resource.

9
 An example of a deliverable based on the CLPL for an electronic voting system (EVS) application

for is found at: http://clpl.uoc.edu/docs/EVS_Specification_Nov2009.pdf. Please note that student’s

44

4. RESULTS AND DISCUSSIONS

In this section the results achieved are shown and then discussed on the benefits and

problems from using the CLPL platform for developing new software for meeting

collaborative learning needs.

Projects Total

(on average)

Variable of interest Resources

User & group

management

Agenda &

Calendar

Electronic

voting system

File repository

Standard 20 5 5 10 10 # Productivity

(reused diagrams in %) CLPL 90 75 60 85 77.5

Standard 60 50 30 40 45 # Effectiveness

(timely deliverables in %) CLPL 90 80 80 80 82.5

Standard 6.5 6.5 5.0 6.5 6.1 # Quality (assessment by

instructor on average, scale 0-10) CLPL 8.0 8.0 7.5 8.0 7.8

Table 1. Variables of interest and data collected from using the Standard and the CLPL

resources for 4 representative projects.

4.1. Quantitative results

Both types of resources (i.e., CLPL platform and Standard software resources) are

considered for the derived variables: (a) number of UML diagrams and other artifacts reused

from other sources, (b) number of deliverables submitted in time during the course, and (c)

average final marks achieved for the whole course. Both types of resources offered by the

course are involved in all experiments (i.e., projects) and thus are used to collect the data.

Table 1 shows the results for the variables of interest considered, namely # Productivity, #

Effectiveness, and #Quality. Finally, our experience by using the CLPL shows a high level of

reusability, which reaches about 70% on average.

personal data has been removed not to disclose the anonymity.

45

The results in Table 1 lead us to formulate and discuss on the following statements

regarding the variables of interest:

• Students showed a dramatic increase on productivity when using the CLPL platform.

Although by using other standard software resources (e.g., documentation repositories

from previous courses) slightly increased the productivity in comparison to earlier

courses, the great reusability potential of the CLPL caused a dramatic increase in

production since its incorporation into the courses. In addition, considering

implementation is usually the only benefited stage from software reusability (Czarnecki

and Eisenecker, 2000), the CLPL also provides great reusability capabilities on the early

stages of the software development by reusing modeling artifacts during the specification

and design stages. For instance, use case, class and collaboration diagrams were just

copied as such from the CLPL and particularized into the specific needs (see Fig. 15).

This procedure guarantees not to oversight any important aspect nor make simple

modeling mistakes and gives clear and correct guidelines to lead all stages of

development. In overall, the impact is much greater than just simply reusing code.

• The increase of effectiveness is also significant when comparing the use of the CLPL to

previous experiences with standard software libraries and development repositories.

Almost twice as many deliverables were submitted on time as previous experiences.

Indeed, by reusing many modeling and code artifacts as such from the CLPL, students

speeded up their work and were capable of submitting the courses’ deliverables in time

or at worst case with a slight delay upon the course’s schedule. In addition to saving time,

46

by the high level of reusability achieved students produced more exhaustive and detailed

developments and of more quality.

• The last variable of interest, quality, was also significantly improved from previous CLPL

experiences. Final marks assessing the whole software project developments increased

about 30%. As seen in Section 2, quality is another main repercussion when reusing at

large scale. Indeed, by reusing well experimented pieces of software, the resulting new

software inherits a high and increasing level of correctness and robustness, which

provides the required degree of software reliability. During both the software modeling

and the implementation stages, the resulting students’ deliverables were implicitly correct

in those parts that were fully reused from the CLPL. Just the particularization processes

as well as new software forming the nuclear needs of the project’s developments (i.e.,

less than 30% of the total development) showed certain level of inaccuracy.

To sum up, by reusing the UML diagrams and other modeling artifacts from the CLPL during

the specification and design phases of their developments, students became more

productive, saving time and efforts without being worried about the quality of the reused

material, which was guaranteed to be high. The implementation phase was also largely

benefited from reusing the code skeleton generated by the CLPL (either as Java or Web-

services PSM).

4.2. Qualitative results

Table 5 shows an extract of the results of the questionnaire addressed to students. They

were asked about their experience of using the CLPL.

47

Selected questions

Average of

responses

(0 – 5)

Excerpt of

students’ comments

Assess in general the CLPL to help

develop new software

4

Evaluate the increase of productivity by

using the CLPL

5

Evaluate how the CLPL impacted on the

development time

5

Evaluate how the CLPL improved the

quality of your software

4

Compare the CLPL with the standard

software resources offered in the course

5

“Despite the learning curve is high I became very productive and could finish my

project on time. I could reuse not only code but specially modelling diagrams.”

 “It was impressive to develop a complex software in such a short time (…) and with

high marks!”

“Just copying the diagrams I could make progress fast and without making errors. It

would be great if importing and editing the diagrams into my modelling tool.”

“After two academic terms failing the course due to lack of time I could submit the

deliverables and the final project in time. I wish I could have used the CLPL before”

“I plan to use the CLPL in my future developments, some components are generic

enough to serve in other domains. The saving of time and efforts is immense!”

 Table 5. Excerpt of a questionnaire’s results on the use of the CLPL platform.

From the qualitative results obtained from these questionnaires, students show a high

degree of satisfaction, confidence and motivation when extensively using the CLPL in their

software developments. As a result, the identification of the requirements and their analysis

and design by reusing the UML diagrams of the CLPL were highly satisfactory and of good

quality. Similar effects are found when extensively reusing any PSM of the CLPL during the

implementation stages.

In particular, students reported saving time and effort by avoiding to start from scratch but

having 70% on average of the development already fulfilled instead. Most importantly, they

reported on feeling highly confident in developing the applications since the CLPL provided

them with strong guidance and support in terms of going through the different stages of the

software development and the UML modeling at any stage. Indeed, the idea of copying

existing modeling diagrams and other artifacts rather than creating them from scratch,

fosters students to go on their developments. Diagrams are then particularized in a simple

manner (see Fig. 15), which saves a lot of time and efforts while keeping quality high by

inheriting well tested material.

48

Figure 15. An example of particularization by using the CLPL. The business model of the

CLPL is particularized into the business model of an electronic voting system (EVS) for

CSCL purposes. Both diagrams are the same and just the names in the general use cases

are particularized. Please note that both diagrams were drawn with different modeling tools.

CSCL administration

CSCL user management

CSCL segurity management

CSCL functionality

Administrator

User

CSCL knowledge management

49

On the other hand, students reported on having to overcome a high learning curve when

first facing the CLPL documentation and procedures. A reason may be found on the lack of

previous courses focusing on essential issues of software reutilization, such as the generic

programming paradigm. In addition, students reported on having problems to take on the

great amount of technological issues imposed by the CLPL (e.g., SOA and Web-services

approach). However, these issues were largely compensated for reusing at large scale and

eventually students benefited from the CLPL as shown in Table 1.

From the instructors’ perspective, the CLPL approach also benefited them by bringing a

systematic way to monitor and assess the students’ deliverables. Instructors reported that

this software platform alleviates them from the tedious work of paying attention on the details

of the common parts of the developments (70% on average). Instead, they rely on the CLPL

experience and evaluate on the reuse degree achieved. Indeed, the CLPL proves to work on

the common parts where it is most reused (e.g., user management, authentication and

authorization, system administration, etc.). Therefore, instructors concentrate just on the

specific aspects of the developments (30% on average).

In overall, these results are not conclusive but they encourage us to undertake more

experimentation and especially validation processes on the large scale reuse possibilities

provided by the CLPL platform.

50

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

This paper proposes a step further in the current software development methodologies by

taking advantage of the most advance and latest techniques in software engineering, such

as Generic Programming and Service-Oriented Architectures. The goal is to greatly improve

software development in terms of quality, productivity and timely developments, as well to

provide effective solutions to meet demanding and changing requirements. To this end, an

architectural solution in the form of a generic, highly reusable software infrastructure called

CLPL has been presented to help develop complex, modern and advanced collaborative

learning applications.

Both the development experience of the CLPL and of a specific application, called

Discussion Forum, based on this platform are reported to validate the key ideas proposed in

this contribution. In addition, more validation process is provided by reporting the use of this

software platform as the primary resource for Master’s thesis students to develop new

software in the CSCL domain. From the main results extracted after analyzing the

experiences achieved in different courses for about 10 academic terms we conclude that the

CLPL platform is a promising effort towards the timely and effective development of CSCL

applications of high quality.

Despite encouraging, these results are not conclusive due to the exploratory nature of the

approach. More experiences are expected to come and validate the CLPL as the de facto

platform to support students’ thesis at he UOC when developing complex and demanding

applications for collaborative learning.

51

Following students’ suggestions, ongoing work is to make the CLPL’s modeling artifacts

importable into current modeling tools in order to avoid rewriting them. This is indeed an

improvement that we plan to offer shortly. To this end, the latest research results are

leading us to deal with XMI files (see OMG, 2006, for details), which are XML-tagged files as

the result of coding UML diagrams, so that the CLPL’s PIM can be editable on any modeling

tool and thus can save even more time and effort by avoiding to draw them in the designer’s

favorite modeling tool. Lack of comply with standard of the existing UML case tools is the

major problem to face next.

Finally, by combining XMI technology with XSL style sheets it is possible to turn the PIM’s

XMI files into WSDL files, which represent the input for a Web-service working environment

to transform them into a specific-language architecture design (PSM). Following this

procedure, we plan to automatically describe WSDL files from the PIM model so that it is

possible to generate PSM implementations of the CLPL in different programming languages.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish MCYT project TIN2008-01288/TSI.

Fatos Xhafa’s work is partially done at Birkbeck, University of London, on Leave from

Technical University of Catalonia (Barcelona, Spain). His research is supported by a grant

from the General Secretariat of Universities of the Ministry of Education, Spain.

52

REFERENCES

Ateveh, K. & Lockemann, P. C. (2006). Reuse- and Aspect-Oriented Courseware
Development. Educational Technology & Society, 9 (4), 95-113.

Bacelo Blois, A., Becker, K. (2002) A Component-Based Architechture to Support
Collaborative Application Design, In Haake and J. Pino Eds., Groupware: Design,
Implementation and Use. LNCS, Vol. 2440, pp. 134-143.

Baloian, N., Galdames, P., Collazos, C., & Guerrero, L. (2004). A model for a Collaborative
Recommender System for Multimedia Learning Material. Proceedings of the 10th
International Workshop on Groupware. Berlin: Springer.

Brusilovski, P. (1996). Methods and Techniques of Adaptive Hypermedia. User Modeling
and User-Adapted Interaction, 6(2-3), 87-129.

Caballé, S., & Xhafa, F. (2003). A Study into the Feasibility of Generic Programming for the
Construction of Complex Software. Proceedings of the 5th Generative Programming and
Component Engineering, Erfurt, Germany. ISBN: 3-9808628-2-8.

Caballé, S., Xhafa, F., Daradoumis, T., & Marquès, J.M. (2004). Towards a Generic Platform
for Developing CSCL Applications Using Grid Infrastructure. Proceedings of the First
International Workshop on Collaborative Learning Applications of Grid Technology, Chicago,
IL, USA.

Caballé, S., Daradoumis, T., & Xhafa, F. (2007). A Generic Platform for the Systematic
Construction of Knowledge-based Collaborative Learning Applications. Architecture
Solutions for e-Learning Systems. Idea Group Inc (IGI). Chp. XII (pp. 219-242). Press,
Hershey, PA: Idea Group, ISBN: 978-1-59904-633-4.

Caballé, S. (2008). Combining Generic Programming and Service-Oriented Architectures for
the Effective and Timely Development of Complex e-Learning Systems. Proceedings of
CISIS 2008. Barcelona, Spain. IEEE Computer Society.

Caballé, S., Xhafa, F. (2009). Fostering Collaborative Knowledge Building by the Effective
Provision of Knowledge about the Discussion Process. International Journal of Business
Intelligence and Data Mining (IJBIDM). Vol. 4, No. 2, pp. 141-158. ISSN: 1743-8187.
Inderscience Publishers.

Czarnecki, K. Overview of Generative Software Development (2005). In J.-P. Banâtre et al.
(Eds.): Unconventional Programming Paradigms (UPP) 2004, Mont Saint-Michel, France,
LNCS 3566, pp. 313–328.

Czarnecki, K. and Eisenecker, UW (2000). Generative Programming: Methods, Techniques,
and Applications. Addison-Wesley.

53

Daradoumis, T., Martínez, A., and Xhafa, F. (2006). A Layered Framework for Evaluating
Online Collaborative Learning Interactions. International Journal of Human-Computer
Studies. Academic Press: Elsevier Ltd.

Dillenbourg, P. (1999a). Introduction; What do you mean by “Collaborative Learning”? P.
Dillenbourg (Ed.), Collaborative learning. Cognitive and computational approaches, 1-19.
Oxford: Elsevier Science.

Dillenbourg, P. (1999b). Collaborative Learning. Cognitive and Computational Approaches.
Elsevier Science Ltd, 1-19.

Gomaa, H. Designing Software Product Lines wtih UML: From Use Cases to Pattern Based
Software Architectures. Reading, Massachusetts: Addison-Wesley, 2005.

GuiLing W., YuShun L., ShengWen Y., ChunYu M., Jun Xu, Meilin S., (2005). Service-
Oriented Grid Architecture and Middleware Technologies for Collaborative E-Learning. IEEE
SCC 2005: 67-74.

Gutwin, C., Stark, G., & Greenberg, S. (1995). Support for Workspace Awareness in
Educational Groupware. Proceedings of the ACM Conference on Computer Supported
Collaborative Learning, Bloomington, Indiana, USA.

Koschmann, T. (1996). Paradigm shifts and instructional technology. In T. Koschmann (Ed.),
CSCL: Theory and Practice of an Emerging Paradigm, Mahwah, New Jersey, Lawrence
Erlbaum Associates, (1-23).

Martínez, A., de la Fuente, P., and Dimitriadis, Y. (2003). Towards an XML-based
representation of collaborative interaction. B. Watson, S. Ludvigsen, & U. Hoppe (Eds.),
Proceedings of the International Conference on Computer Support for Collaborative
Learning 2003, Bergen (pp. 379–384). Dordrecht: Kluwer Academic Publishers.

McGrath, J.E. (1991). Time, Interaction and Performance: A Theory of Groups. Small Group
Research, 22, 147-174.

Ochoa, S., Guerrero, L.A., Fuller, D. and Herrera, O. (2002) Designing the Communication
Infrastructure of Groupware Systems. In Groupware: Design, Implementation, and Use. J.
Haake and J. Pino (eds.). Lecture Notes in Computer Sciences, Vol. 2440, Springer Verlag.
September, 1002. pp. 114-133.

OMG (2006), MDA specification guide. Version 1.0.1. Report – omg/03-06-01.

Pahl, C. (2007). Architecture Solutions for e-Learning Systems. Hershey, PA, USA: IGI
Global. ISBN: 978-1599046334.

Roseman, M. and Greenberg, S. (1996). Building Real Time Groupware with GroupKit, A
Groupware Toolkit. March. ACM Transactions on Computer Human Interaction, 3(1), p66-
106, ACM PressTeam New York, NY, USA

54

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one.
Educational Researcher 27(2) 4-13.

Soller, A. (2001). Supporting Social Interaction in an Intelligent Collaborative Learning
System. Int. J. of Artificial Intelligence in Education, 12: 40-62.

Stahl, G. (2006). Group Cognition: Computer Support for Building Collaborative Knowledge.
Acting with Technology Series, Cambridge, MA: MIT Press. ISBN: 978-0262195393.

Strijbos, J-W., Martens, R., Prins, F., & Jochems, W. (2006). Content analysis: What are
they talking about? Computers & Education. 46(1): 29-48, Academic Press: Elsevier Ltd,
January 2006.

Webb, N. (1992). Testing a theoretical model of student interaction and learning in small
groups. R. Hertz-Lazarowitz and N. Miller (Eds.), Interaction in Cooperative Groups: The
Theoretical Anatomy of Group Learning, 102-119. Cambridge Univ. Press, NY.

W3C Working Group (2004). Web Services Architecture Document..
http://www.w3.org/TR/ws-arch/ (Web page as of November 2009).

Zumbach, J., Hillers, A., & Reimann, P. (2003). Supporting Distributed Problem-Based
Learning: The Use of Feedback in Online Learning. T. Roberts (Ed.), Online Collaborative
Learning: Theory and Practice, 86-103. Hershey, PA: Idea.

