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Abstract

This article elaborates on an extension to the classical stiffness matrix method

to obtain the Green’s functions for two-and-a-half dimensional (2.5D) elasto-

dynamic problems in homogeneous and horizontally layered half-spaces. Exact

expressions for the three-dimensional (3D) stiffness matrix method for isotropic

layered media in Cartesian coordinates are used to determine the stiffness ma-

trices for a system of horizontal layers underlain by an elastic half–space. In the

absence of interfaces, virtual interfaces are considered at the positions of exter-

nal loads. The analytic continuation is used to find the displacements at any

receiver point placed within a layer. The responses of a horizontally layered half-

space subjected to a unit harmonic load obtained using the present method are

compared with those calculated using a well-established methodology, achieving

good agreement.
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1. Introduction

Elastic wave propagation is a very significant topic in fields such as seismology,

soil dynamics, noise and vibration, and soil-structure interaction. Specifically,

elastodynamic fundamental solutions for homogeneous and layered elastic solid

media are of great interest in ground modeling. Calculation of the dynamic

response of a homogeneous or layered soil in response to some specific dynamic

sources calls for methods that depend on how the loads are distributed in space.

If the loads are two-dimensional (2D) or they satisfy plane–strain conditions,

the problem can be addressed by various well–known 2D (plane–strain) formu-

lations. Otherwise, when the 2D load is allowed to change harmonically in the

third dimension, the resulting dynamic problem ceases to be plane–strain or ax-

isymmetric, and is referred to instead as the 2.5D problem. 2.5D elastodynamic

fundamental solutions, also known as 2.5D elastodynamic Green’s functions,

for these types of problems correspond to the system’s response to spatially

sinusoidal harmonic line load.

Regarding homogeneous elastic media, Tadeu and Kausel analytically derived

the 2.5D elastodynamic fundamental solution for a homogeneous full-space [1].

In addition, semi-analytical solutions have been obtained for the case of a ho-

mogeneous half-space [2] and that of a free solid layer [3]. These analytical and

semi-analytical expressions have been employed by numerous authors in various

problems such as railway-induced vibration [4], acoustics [5] and soil-structure

interaction [6].

Several researchers have focused on methodologies to determine the 2.5D elas-

todynamic fundamental solutions for elastic, horizontally layered media. The

thin-layer method (TLM) [7, 8], direct stiffness matrix method [9] and the
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method of potentials [10] are the approaches most commonly used to obtain

Green’s functions for layered media. In some research fields, authors prefer to

use the direct stiffness matrix method to calculate the Green’s functions rather

than other methods; for instance, those dealing with railway-induced ground-

borne vibration [11–13]. Kausel and Roësset first introduced the stiffness matrix

approach in the analysis of elastodynamic wave propagation [9]. More compu-

tationally efficient versions of their method were presented later [14]. The direct

stiffness matrix method for two-dimensional (2D) problems in Cartesian coordi-

nates and for 3D ones in cylindrical coordinates were proposed by Kausel [15].

An extension of the stiffness matrix method to elastodynamic systems composed

of cylindrical and of spherical layers is also included in Ref. [15].

The aim of this paper is to present a method to calculate 2.5D Green’s functions

for both homogeneous and layered half-spaces in the wavenumber-frequency

domain. Derived Green’s functions are based on explicit expressions of the

3D stiffness matrices for layered media in Cartesian coordinates rather than in

cylindrical coordinates. The rest of the paper is organized as follows: firstly, it

addresses explicit expressions of the 3D stiffness matrices for a horizontal layer

and a lower half-space; secondly, it explains how to use the stiffness matrices

to compute 2.5D Green’s functions; and finally, 2.5D Green’s functions for a

layered half-space, calculated using the proposed method, are compared against

the established formulations based on the stiffness matrix method in cylindrical

coordinates.

2. Stiffness matrices of a layer and a lower half-space in Cartesian

coordinates

Consider a free, horizontal, homogeneous, isotropic and elastic layer with arbi-

trary thickness h subjected to arbitrarily distributed tractions Pu and Pl on

the upper and lower interfaces, respectively. The displacements and tractions
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at the upper and lower interfaces can be related through the stiffness matrix K̂

as:

P̂u

P̂l

 =

K̂11 K̂12

K̂21 K̂22

Ûu

Ûl

 , (1)

where capital letters with hat (e.g. K̂) denote variables cast in the frequency–

wavenumber domain, i.e. (kx, ky, ω), with ω being the frequency in rad/s and

kx, ky the two horizontal wavenumbers, in m-1.

Kausel presented the elements of matrix K̂ for the plane strain case [15]. The

same process can be followed for the case of 3D wave propagation, resulting in

the following closed-form expressions for the elements of matrix K̂:

K̂11 =
µ

D

k2β
k2

A1 + µA2, (2)

K̂12 =
µ

D

k2β
k2

A3 + µA4, K̂21 = K̂T
12, (3)

K̂22 = K̂11 ◦


1 1 −1

1 1 −1

−1 −1 1

 , (4)

where matrices A1, A2, A3 and A4 are defined in the ensuing in Eqs. 10, 13,

14 and 18, respectively. Also, in the above equations, µ is the shear modulus

(Lamé’s second parameter), the superscript T denotes the transpose operator,

◦ is the Hadamard product and
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k =
√
k2x + k2y, kα =

ω

α
, kβ =

ω

β
, (5)

where α and β represent the phase velocities of the P- and S-waves, respectively.

Coefficient D is calculated from:

D = 2e(υβ−υα)h − 2CαCβ +

(
k2

υαυβ
+
υαυβ
k2

)
BαBβ , (6)

υα =

√
k2 − kα

2, υβ =

√
k2 − kβ

2, (7)

Bα =
1 − e−2υαh

2
, Bβ =

1 − e−2υβh

2
, (8)

Cα =
1 + e−2υαh

2
, Cβ =

1 + e−2υβh

2
. (9)

The matrices A1, A2, A3 and A4 are obtained from:

A1 =



k2x
υβ
D1

kxky
υβ

D1 kxD3

kxky
υβ

D1

k2y
υβ
D1 kyD3

kxD3 kyD3
k2

υα
D2


, (10)

D1 = BβCα − υαυβ
k2

BαCβ , D2 = BαCβ − υαυβ
k2

BβCα, (11)
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D3 = e−(υα+υβ)h − CαCβ +

(
k2

υαυβ

)
BαBβ , (12)

A2 =



υβ
k2y
k2
Cβ
Bβ

−υβ
kxky
k2

Cβ
Bβ

−2kx

−υβ
kxky
k2

Cβ
Bβ

υβ
k2x
k2
Cβ
Bβ

−2ky

−2kx −2ky 0


, (13)

A3 =



−k
2
x

υβ
D4 −kxky

υβ
D4 kxD6

−kxky
υβ

D4 −
k2y
υβ
D4 kyD6

−kxD6 −kyD6 − k2

υα
D5


, (14)

D4 = Bβe−υαh − υαυβ
k2

Bαe−υβh, D5 = Bαe−υβh − υαυβ
k2

Bβe−υαh, (15)

D5 = Bαe−υβh − υαυβ
k2

Bβe−υαh, (16)

D6 = Cβe−υαh − Cαe−υβh, (17)

and
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A4 =



−υβ
k2y
k2

e−υβh

Bβ
υβ
kxky
k2

e−υβh

Bβ
0

υβ
kxky
k2

e−υβh

Bβ
−υβ

k2x
k2

e−υβh

Bβ
0

0 0 0


. (18)

Now consider a homogeneous, isotropic and elastic lower half-space subjected

to an arbitrarily distributed surface traction. The displacements and traction

at the upper interface can be related by means of the stiffness matrix for that

half–space. The elements of the 3D stiffness matrix for the lower half-space,

K̂h, can be found as

K̂h =
µ

k2 − υαυβ


k2yυβα + k2βυα −kxkyυβα kxDH

−kxkyυβα k2xυβα + k2βυα kyDH

kxDH kyDH k2βυβ


, (19)

where

υβα = υβ − υα, DH = 2υαυβ − υβ
2 − k2. (20)

3. 2.5D Green’s functions for homogeneous and layered half-spaces

Consider an arbitrarily layered half-space with an arbitrary distribution of re-

ceiver points and sources located within the half-space. Based on the method-

ology proposed in this paper, the following steps must be taken to obtain the

2.5D Green’s functions that relate all the desired receiver points and sources:

1. Add a virtual interface for every source that has not been placed on any

of the physical layer interfaces.
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2. Follow the same approach used in the finite element method to assemble

the global stiffness matrix for the layered media while considering physical

and virtual interfaces.

3. Use the concept of analytic continuation, as described by Kausel [15], to

obtain the displacements at receiver points within a layer, i.e. those not

located at physical or virtual interfaces, in terms of the layers’ interface

displacements. Then, by means of the inverse of the global stiffness matrix,

Ĥ(kx, ky, ω) which defines the displacements of all the receiver points as

a function of the tractions at the sources’ location can be constructed.

4. Compute the 2.5D Green’s functions of the system H̄, in the (kx, y, ω)

domain, accounting for all the selected receiver points and sources by ap-

plying an inverse Fourier transform (FT) in the y direction on Ĥ(kx, ky, ω).

4. Results and discussion

We applied the proposed method to determine 2.5D Green’s functions for a lay-

ered half-space subjected to a buried harmonic load. The results were compared

with those obtained using an alternative methodology [16], which formulates the

stiffness matrices in cylindrical coordinates [9].

Fig. 1 shows an example of a layered half-space. A virtual interface, represented

by the dashed line, was added where the load was applied. A receiver point was

located within the first physical layer of the layered half-space.
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Fig. 1: A three-layered half-space with a virtual interface (dashed line) placed at the position
of the buried load.

The receiver point and the source were placed at (yr, zr) = (6, 8) m and (yf , zf ) =

(2, 23) m, respectively. We calculated the 2.5D Green’s functions for this partic-

ular case. A sampling vector with 29 points and increments of 0.01 rad/m was

selected for kx. To transform the Green’s functions from (kx, ky, ω) domain to

the 2.5D domain (kx, y, ω), the inverse fast Fourier transform (FFT) is carried

out over a set of 210 values of ky with increments of 0.04 rad/m. Noteworthy, if

the response is needed only at a small subset of ky, a direct evaluation of the FT

is more effective. The mechanical parameters of the soil used in the calculations

are given in Table 1. Hysteretic damping ratios Dp and Ds corresponding to P-

and S-waves, respectively, were used to account for viscoelasticity; an outcome

of the damping is preventing large oscillations in the integrands of the FFT, i.e.

to minimize integration errors.

Table 1: Mechanical parameters used to model the layered half-space

Soil parameters 1st layer 2nd layer 3rd layer

E (MPa) 366 390 420
ρ (kg m−3) 2000 2200 2500

ν (-) 0.3 0.25 0.2
Dp (-) 0.03 0.03 0.03
Ds (-) 0.03 0.03 0.03

Fig. 2 features a comparison between the results obtained using the method

presented herein and those calculated following the method proposed in [16].

The values presented in the figure correspond to a frequency of 30 Hz. As can
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be noted, this is good agreement between these two sets of results.

From a computational point of view, the two methods follow different schemes.

In our method, the computational steps were: i) inversion of the global matrix

based on 6 × 6 elementary matrices; ii) an inverse FT along ky; and iii) a

one-dimensional (1D) interpolation. On the other hand, the method based

on stiffness matrices in cylindrical coordinates was developed according to the

following steps: i) inversion of the global matrices associated with P-SV and

SH waves, separately, to obtain the Green’s functions in the (kr, ω) domain;

ii) computation of the Green’s functions in the (r, θ, ω) domain by means of an

inverse Hankel transform and an inverse Fourier series expansion in the radial

and circumferential directions, respectively; iii) a 2D interpolation process to

find the Green’s functions in the (x, y, ω) domain; and iv) a numerical FT along

x to obtain the 2.5D Green’s functions in the (kx, y, ω) domain.

Fig. 3 shows an example of a sampling grid for computing the 2.5D Green’s

function with the proposed method. The y axis could be linear or logarithmic,

depending on the sampling used for the FT. Interpolation is only needed along

the y direction, since the required positions may not coincide with the sampling

associated with the FT.

Fig. 4 is an example of a sampling grid for the method based on stiffness matrices

in cylindrical coordinates. Black solid points represent the sampling associated

with the direct output of the method. Grey circles correspond to the required

sampling points. This example considers the same sampling along x for any

required y value. The data obtained directly from this method must be trans-

lated from a cylindrical to a Cartesian sampling grid using 2D interpolation.

This process will generally induce larger numerical errors than the proposed

method, particularly for large values of y, due to the geometrical relationship

between cylindrical and Cartesian coordinate systems.
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Fig. 2: Amplitude (a) and phase value (b) of the 2.5D Green’s functions at 30 Hz. Solid and
dotted lines are used to represent the results obtained using the stiffness matrix method in
cylindrical coordinates [16] and the present method, respectively.
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Fig. 3: Sampling grid obtained directly using the proposed method (black solid points). The
required points are denoted by grey circles.
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Fig. 4: Sampling grid obtained directly from the method based on the stiffness matrices in
cylindrical coordinates (black solid points). The required points are denoted by grey circles.
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5. Conclusions

We have put forward an extension of the stiffness matrix method that allows

calculating the Green’s functions for a homogeneous and layered medium when

it is subjected to 2.5D loads. The method is based on explicit expressions

of the 3D stiffness matrices in Cartesian coordinates defined in the (kx, ky, ω)

domain. The 2.5D Green’s functions can be derived by applying an inverse

Fourier transform in the y direction on the inverse of the global stiffness matrix,

which is calculated using the 3D stiffness matrices in the (kx, ky, ω) domain.

The results obtained through the present method are in good agreement with

those obtained using the method based on stiffness matrices in cylindrical coor-

dinates. However, the present method can be used to improve the accuracy of

the required interpolations, especially for large values of y. As explained above,

the present method requires fewer numerical steps to obtain the 2.5D Green’s

functions of the system. In general, this more streamlined process should result

in more accurate results.
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