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Abstract 

 

During the last years, the smartphone industry has really advanced by leaps 

and bounds. In 2017, the number of smartphone users was 2.4 billion, with an 

increase of 10,8% respecting the year before. As we can see, there is a huge 

market, and more people get used to use the mobile phone to do daily things 

such as online shopping, visiting webpages or sending emails.  

The following project covers an aspect that very few people worked in, the 

people who disappeared. Nowadays, the data of disappeared people has not 

been digitized, or if it has, is outdated in the current times. 

The aim is to create an Android application for disappeared people. The app 

will collect and share information among users, whose use will be helping in 

the research of people who disappeared. Also, the idea is to offer a database 

and allow people to access data easily. 

In this document is explained all the process of making the app, starting from 

analysing similar apps in the actual market, all the technologies that were 

used (from backend to frontend) and in which order was the app made. 

Finally, we will test the app and see how it works. Also, a manual for the 

backend and the app will be attached. 
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1. Introduction 

There was an incredible increase of smartphones during the last years. 

According to a survey in 2015, most of the countries of Europe there is a 

percentage of 50% or more users that has an smartphone. Also, there is a 

tendency that says that users are replacing desktop PCs for smartphones 

when we are doing daily things such as visiting web pages, check for new 

email or chatting. Statistics say that mobile users consume more than 2x 

minutes vs desktop users. 

 
 

Figure 1: Graph of utilization between desktop devices and mobile phone  

Consequently, mobile apps have also been increased. If we check Play Store 

(the app market of Android devices) in March 2018 it contains 3.600.000 

apps. In the other side, App Store (the app market of Apple devices) in 

January 2017 has reached 2.220.000 apps. 
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1.1. Objectives 

 

The main objectives of the app are: 

• Make an app from scratch that allows mobile users help in the research 

of disappeared people 

• Make a database (collecting data from users) from people who is 

disappeared 

• Make a web service that allows users to get information from the 

database 

• Understand the programming and general logic of a mobile application 

• Make a 1.0 version that includes 

o Full map of the Earth and display, using markups, the location of 

disappeared people in live (update depending on the zone that is 

looking the user) 

o When a user clicks on the markup, show all the information 

o Let users add people 

 

1.2. Choosing the operating system 

 

In this section we will analyse the different operating systems that we have on 

mobile devices and see which one that suits best for our needs. 

 

1.2.1. Windows Phone 

 

Windows Phone it’s a mobile operating system developed by Microsoft. It uses 

a user interface called Metro design language. It’s built in C and C++ and 

released in November 10, 2010 in North America and October 21, 2010 in the 

rest of the world. Actually, it’s discontinued. 
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Figure 2: Logo of Windows Phone 

 

 

1.2.2. iOS 

 

iOS is a mobile operating created and developed by Apple. It’s built in C,C++, 

Objective-C, Swift and it’s Unix based. As a matter of fact, only the devices 

that are from Apple can run this OS, and these devices are iPhone, iPad and 

iPod Touch. 

 

Figure 3: Logo of iOS 

 

1.2.3. Android 

 

Android is the mobile operating system, now managed and maintained by 

Google. It’s based on a modification of the Linux kernel. It’s open source and, 

as iOS, it’s Unix based. Google bought Android in 2005 to Android Inc, and in 

2008 it released the first version (Android 1.0). Actually, Android can be run in 

smartphones, tablets, smart TVs (Android TV), cars (Android Auto) or 

smartwatches (Wear OS). 

 

Figure 4: Android logo 
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1.2.4. General overview 

 

In this section we will analyse all the OS and see which one is the best for our 

needs. First of all, we will compare the market share of all mobile phone 

operating systems. According to a study, in April 2018, Android is installed in 

the 75,66% of the devices, followed by iOS with 19,23% and Windows Mobile 

with 0.54%. 

 

Figure 5: Graph containing the market share 

As we can see, Windows Phone has a low market share, and also in September 

2017 Microsoft decided to end support. Now we have to choose between 

Android and iOS. 

Referring to the graph above, Android is the one that predominates in the 

mobile scenario, so I’ve chosen Android, and not only for the market share, 

but also for the following reasons: 

• The tools for programming an Android app are in the most common 

desktop operating systems (macOS, Windows, Ubuntu…). In the case 

of iOS, we need the latest version of macOS with XCode. 

• We will program in Java, which is very similar to C, that I’ve used in all 

of my career. If I have to program for iOS, I have to learn Swift. Also, 

it’s one of the most used object oriented languages in the industry. 



 

5 

 

1.3. Android 

Android is an open-source, Linux-based software created for different types of 

devices. Now in this section we will explain how it works Android. 

1.3.1. Platform architecture 

Android by default is structured in different layers: 

 

Figure 6: Android software stack 

We will start with the layers from bottom to the top. The first layer Android is 

built is the Linux kernel. It is the layer that doesn’t interact users and 

developers, but it is the heart of the system. It provides security, memory 

management programs, support for shared libraries, network stack… 
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The second layer is the Hardware Abstraction Layer (HAL). It defines a 

standard interface for hardware vendors to implement, and it implements 

functionality without affecting or modifying the higher level system.  

The third layer is the Native C+/C++ Libraries and the Android Runtime. The 

Native Libraries carries a set of instructions for handling different types of 

data. An example will be the Media Framework library, that controls the 

playback and recording of different audio and video formats. At the same level 

there is the Android Runtime, that recently was changed to ART (Android used 

Dalvik before). ART is the one that translates the application bytecode into 

native instructions that are later executed by the device. 

The next layer is the Java API Framework. It is the source code of Android that 

can be used by the developers. It gives us the building blocks we need to 

create the Android apps characterized for being a modular system. It includes 

the following:  

• A View System for building a UI 

• A Resource Manager, that provides access to non-code resources like 

strings, layouts, graphics… 

• A Notification Manager for displaying custom alerts 

• An Activity Manager that manages the lifecycle of apps 

• Content Providers that enables apps to get data from other apps 

And finally, we have the system apps. It is the layer where the user interacts 

most because it provides basic functions such as making phone calls, 

accessing the webbrowser etc. 

1.4. Android SDK 

1.4.1. Definition 

Android SDK (software development kit) is a set of development tools 

released by Google that allows us to build applications in Android. It includes 

a lot of tools like debugging, the libraries needed, sample source code, the 

possibility of using an emulated device, etc. 
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1.4.2. Choosing the correct SDK 

Choosing an Android SDK is an important step when we start developing in 

Android, because it can affect in the success of our app. All apps has three 

types of SDK versions: 

• compileSdkVersion: It’s in which version of Android SDK your app will 

be compiled. We usually use the latest version available. 

• minSdkVersion: It’s the lower bound for your app. It’s the one that 

determinates if an user can install the app in his phone or not, so it’s 

one of the most important parameters. There are some support 

libraries (compatibility between different versions) that require a 

minSdkVersion, if not, it can’t be used. 

• targetSdkVersion: It is the most optimal Android version for the app. It 

gives an idea to Android of how it should handle your app in terms of 

the performance. 

Checking the API version distribution will help us to decide what version are 

we going to use. 

ANDROID VERSION (API LEVEL) 
CUMULATIVE 

DISTRIBUTION 

4.0 Ice Cream Sandwich (15)  

4.1 Jelly Bean (16) 99.2% 

4.2 Jelly Bean (17) 96.0% 

4.3 Jelly Bean (18) 91.4% 

4.4 KitKat (19) 90.1% 

5.0 Lollipop (21) 71.3% 

5.1 Lollipop (22) 62.6% 

6.0 Marshmallow (23) 39.3% 

7.0 Nougat (24) 8.1% 

7.1 Nougat (25) 1.5% 

Table 1: API version distribution (in May 2018) 
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The table above has 3 columns: the first one is the Android version, the 

second one is the API Level (each version is identified by a number) and the 

third value is the cumulative distribution, that tells us how many people has 

that API version. The idea is to get a balance between going down to support 

as many devices as possible and not going low for losing features that the app 

needs, because there are more features when you increase the API level.  

The version chosen for the app is 21 (Android Lollipop) because we need basic 

functionality, such as GPS or file access, and it’s the minimum version 

required for Material Design.  

1.5. Choosing the architecture 

When developing an app, we have different types of apps we can develop 

depending on the needs of the company. Normally, we have three types of 

apps: web apps, hybrid apps and native apps. 

 

1.5.1. Web apps 

A web app is a software application that tries to have the same appearance as 

a native app. It needs a browser to be run and they are programmed using a 

web language, such as HTML, and usually combined with Javascript and CSS. 

They work as the same way as a webpage, but it has a responsive design, so 

it adapts to the screen of the device, and the movement between screens is 

done by visiting different URL paths. As advantages, web apps require a 

minimum memory, so it may work in the majority of the devices. Also, the app 

will work in every SO that has a browser installed and, in relation with that, we 

have to maintain only one code, so it makes the development relatively cheap. 

One of the main disadvantages of using a web app is that we need internet 

connection, resulting in a bad user experience if there is poor connection. As 

a developer point of view, we don’t have too many API, so it’s hard to build 

something with a little bit of complexity. 
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Figure 7: Example of a web app 

 

1.5.2. Hybrid apps 

Hybrids apps are a mix between web apps and native apps. They are built 

using a combination of technologies such as HTML, CSS and Javascript, but 

they are installed in a phone like a native app. The main difference with a 

native app is that hybrid apps are hosted in a native application that uses a 

WebView, that is a “browser” window that can be used in fullscreen mode. This 

allows us to access device capabilities like GPS, gyroscope, camera, etc.  

Some cons are that the performance is not as good as a native app and even 

sharing the same code between platforms the UI (User Interface) may be 

different. 

A lot of companies decided to use hybrid apps: Uber, Instagram, Evernote… 

1.5.3. Native apps 

Native apps, as its name says, are apps that they are “native” for a specific 

mobile operating system. The most important advantage of a native app is the 

high performance, because the code is optimized for a particular OS. Also, we 

ensure a good UX (user experience). Moreover, we have a full access of the 

API so we have more functions to use in comparison with hybrid apps. 

Some cons to native apps are that the development cost is high, because if we 

want to build an app that extends the main targets (Android & iOS) we have to 

make two different apps. 
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2. Implementation 

In this section is explained all the process of making the app, and also all the 

problems that I have to solve during these months. 

 

2.1. Checking similar apps 

A good way to start developing the app is to check similar apps and see its 

weaknesses, and see how our app can improve it. 

The following app is Missing People Find. 

 

Figure 8: Screenshot of Missing People Find 

We can see that it’s a native app. The UI is not the most appropriate having a 

good user experience. In terms of the design, the font doesn’t fit with the type 

of the app and obviously is not following the rules of Material Design. We also 

see that the we need to register to enter information of a user. 
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Figure 9: Screenshot details person Missing People Find 

If we check in the details of a specific person, there is a disorganization of the 

information, so the user can be confused. In general terms, there is a need of 

improving the UI, it’s an important point because people will not use an app 

that is not well-structured.  

Our app will be different in the concept. As this one tries to find disappeared 

people, our app will display the people disappeared but in a map. We will focus 

on the concept of finding people that is near the user, because we have more 

possibilities of finding it instead of having a list with all the people around the 

world. 
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2.2. General structure of the APP 

The general structure of the app will be the following: 

 

Figure 10: Schema of the app 

In the schema above, we can distinguish two parts: the frontend and the 

backend. The idea is that the user interacts with the frontend. The user will 

move in different screens, and when an action occurs, we will make a request 

to a server and, if’s necessary, it will modify the database and the server 

knows the modification that occurred. Then, the server returns the data in raw 

text (if it’s demanded) and the view of the user is modified accordingly with 

the new information. 

 

2.3. Backend (server side) 

The backend is the part of the project that is not visible. It is the logical of the 

app and usually consists in three parts: the server, the application and a 

database. As an example, if we buy tickets for a concert, the backend will be 

how we store the information of the ticket so a specific user can access it after. 

The backend is also the logic in the Android app: For example, when we click 

x button, disable the text field and show an error. The three types of backend 

are explained here. 
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2.3.1. Server side 

The server side is the one that the user will interact for getting or adding the 

information. In a production app, the server will be hosted anywhere in the 

internet. In our case, the tests will be done in local. 

In the server side, we will use the Restful API architecture. The idea of a 

Restful API is to make HTTP requests and the server answers in a JSON format 

with the data specified. Also, we will use the CRUD principles. CRUD means 

“Create, read/retrieve, update, delete” and it’s referred to the database, so 

we can create new entries, read the information, update information and 

delete entries. CRUD principles are mapped to Rest commands to obtain a full 

Restful architecture. 

In this part we need to choose the programming language for the server. In 

my case, I decided to use NodeJS. 

 

Figure 11: NodeJS logo 

NodeJS is a open-source, Javascript runtine built on Chrome’s V8 Javascript 

Engine. Javascript is usually used to program in the client side but NodeJS 

allows us to do it in server-side. It’s main use is to build scalable network 

applications, so one of the characteristics of NodeJS is to handle concurrently 

a lot of requests. It’s a very recent framework, but because of its lightweight 

and efficiency, a lot of companies are changing the code of the server side and 

migrating to NodeJS. Also, it’s very used for full-stack1 web developers, 

because they don’t have the necessity to learn different languages for making 

a project (they can use Javascript for client side + server side). 

                                        

 

1 Developer that programs the backend and the frontend of a project 
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Anyway, NodeJS doesn’t have in-built libraries to make a web service. So we 

have to download any external packages with npm2. In this case, we will use 

Express.  

Express is a minimal and flexible NodeJS framework that provides a lot of 

features for web and mobile applications, such as how an app responds to a 

client request to a particular endpoint, with a URI and a specific HTTP method 

(routing),the possibility of serving static files or writing our own middlewares. 

Also we need the following packages: 

• body-parser: It’s a middleware that allows us to parse the information 

of the user in as a JSON. 

• connect-multiparty: A middleware for allowing the user to upload 

images in a HTTP request. 

• moment: A package for dealing with datetimes. 

• mongoose: A package that facilitates the use of interacting with the 

database. 

• jsonwebtoken: Library used for using the jsonwebtoken technology. 

• bcrypt: Library used for hashing passwords in the database.   

For making a scalable server and with the possibility of adding more features 

in the future, it is needed to structure the code. This is how I organized the 

data. 

The “package.json” file contains all the packages needed for running the 

server. It is useful if we want to move the server, because we can move only 

the source code files and with a command we can install all the packages, 

reducing the folder size.  

I have two files in the root called “app.js” and “index.js”. In app.js, we 

initialise all that is needed. We load all the routes and the middlewares for 

getting a JSON response and we export the object app. In the index.js, we get 

                                        

 

2 Package manager for Javascript programming language. It’s the default package 

manager for NodeJS 
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the app object from app.js and we connect to the database. If it’s successful, 

we run the server. 

The “uploads” folder contains all the images that the users uploaded from the 

app. 

The “models” folder contains all the models of the database. In our case, we 

have the person model. 

The “controllers” folder contains all the functions that are related with a route. 

This is where we interact with the database, getting, adding or updating data. 

The “routes” folder contains all the routes of our server, divided by the types. 

In our case, we have all the routes of a person, that defines which function will 

be executed in every route.  

An example route will be /showall, and it is going to return all the info of the 

database. The controller will be the function related to showall: 

function showAll(req,res) { 

 Person.find({},(err,people)=>{ 

  console.log(people); 

  if(err) return res.status(500).send({message:"Unknown error!"}); 

  people.forEach((person)=>{ 

   //delete person._id; 

   person.__v=undefined; 

  }); 

  return res.status(200).send(people); 

 }) 

} 

As we can see, we make a query to the Person model, and if there’s not an 

error, we return successfully (200) and we send as a JSON all the people from 

the database. 
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The “utils” folder contains code not related with the MVC. In this case, we have 

que jwt file that manages all the encryption of the payloads for using web 

tokens. 

The constants file contains all the constants related to the project, such as the 

port of the server, the secret key for encrypting the data, the path of the 

images, etc. 

 

2.3.2. Database side 

Because of the requirements of the app, we need any storage system that 

allows us to deal with all the information we will work with. We need only to 

storage text, as in the case of the photo we will save the name of the file. 

When choosing a database, we have to choose first the type. Generally, we 

have two possibilities: 

• Relational databases: Relational databases represent and store the 

data in rows and columns. Its principal advantage is to optimize data 

and don’t use duplicated values. For making a query, we use Structure 

Querying Language (SQL). We can link information from different 

tables using foreign keys, that identify a unique row. MySQL, 

PostgreSQL and SQLite3 are the most famous ones. 

• Non-relational databases: Non-relational databases represent data in 

collections of JSON documents. The main advantages are that the 

latency is low with small pieces of data, it is highly scalable and its 

performance is good. Also, it is very easy to work with this type of 

databases because it is the same as dealing with JSON. MongoDB is 

the most famous non-relational database. 

The database that is using the project is MongoDB, because we need to deal 

with small pieces of data and also because we only need simple relationship 

between collections, and the library Mongoose of NodeJS allows us to do it 

such as a relational database. 

This project has 3 collections: the “Person” model, the “Users” model and the 

“Verification” model. 
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The schema of the database is the following: 

 

Figure 12: Schema of the database 

The users collection is the one that stores the information of a user that is 

using the app and it is registered. In the register form we only ask for an email 

and a password, but in the future it can be implemented for asking more fields 

and make, for example, a “My profile” section. It is related with the verification 

schema, that stores the information of a user when it is not verified. The 

relationship is 1-1, that means that a user can only have one verification entry 

and one verification can be related to one user. 

The Person schema contains all the information related to a disappeared 

person. As saving an image in the database is inefficient, we store the name of 

the file that is in the database. This can cause an integrity problem, because a 

person can point to a file that doesn’t exist. For this reason, we have to take 

care of maintaining a relation and remove or update the information 

accordingly. 
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As we can’t have any relationship between models in a non-relational 

database, we have to use an alternative. The NodeJS library “Mongoose” 

allows us to create different models like in a relational database, and create a 

link between collections. For example, creating a 1-n relationship is as simple 

as creating a field that references the other collection. 

PersonSchema = new Schema({ 

 name: {type: String,required:true}, 

 surname: String, 

 age: Number, 

 latitude: {type:Number, required:true}, 

 longitude: {type:Number, required:true}, 

 image:{type:String,required:true}, 

 contact_phone:{type:String,required:true}, 

 direction:{type:String,required:true}, 

 user: {type: Schema.Types.ObjectId,ref:'User',required:true} 

},{timestamps: {createdAt:'created_at'}}); 

And for creating a 1-1 relationship, we just need to the same as a 1-n but, in 

this case, we just need to pass a parameter called unique. The database will 

crash when we try to add two entries that have the same value. 

2.3.3. Application side 

Not all the logic is involved in the server side. The application also needs a 

logic for working properly. For moving into different screens, we will use 

“activities” and “fragments”. The difference between them is that an activity is 

more slow and a fragment stays in memory. The rule is that we have to use 

fragments when we can, a fragment will be used when we change completely 

a screen. 

The applications is divided in the following form: 
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Figure 13: Diagram of the application 

 

The black arrows represent the movement between activities. The red arrows 

represent the change of a fragment, so we stay at the same activity. In the 

schema, we see that “MainActivity” is the core of the application. It shows a 

map, controls all the gestures of the user (moving through the map, stopping 

the camera) for updating the information accordingly and making the 

necessary requests. Also, it contains all the logic for the navigation drawer. 

Depending if the user is logged or not, we will inflate a navigation drawer or 

another. In the case that the user is not logged, we will inflate a menu that 

contains the login and the people section for checking all the people that is in 

the app. The MainActivity also controls the topic of requesting permission for 

getting the position of the user. 

In the “AddPersonActivity” we have a “FrameLayout”, that is a container 

where you can load a fragment. In our case, we load first the 

“ChooseLocMapFragment” which allows the user to select an ubication. If the 

user selects a correct place, we move to the “EnterDetailsFragment” that asks 

for the basic information, that is uploading a photo, a name, the age and the 

contact phone. If we press back, we move again to the selection of the place. 

If the user enters all the information required, we move to the 

SuccessAddFragment that gives a information to the user that the user had 

been added. We have a button that finishes the “AddPersonActivity”. The 

same happens when the user clicks the back button. 
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The “AuthenticationActivity” contains a bottom navigation view for moving 

into the different sections. Also it contains a frame layout that changes 

fragments between the “LoginFragment” that contains all the logic for logging 

in a user, such as dealing with different type of HTTP error codes and the 

“RegisterFragment” for allowing the user to register. When the user is logged 

in, that activity is not displayed in the navigation drawer until the user clicks 

the logout option. 

The “VerifyAccountActivity” is used for managing the verification of an 

account.  

The “ListPeopleActivity” contains the list of the people who is in the database. 

It contains a RecyclerView and, if the user is logged in, he can see the people 

who added himself and, if we click, it appears a popup with all the information, 

including a map with his/her location and with the possibility of removing the 

user in the case it is found. In this activity, we load two fragments at the same 

time, for improving the user experience and reduce the time of loading. It also 

includes pagination for not loading all the data. 

2.3.4. Dealing with possible large amount of 
data 

One problem that we have to solve is how we download all the data from the 

server efficiently, so we have to find a method that has a good performance 

without wasting resources or very consuming.  

The first idea is to download all the data from the database and put all the 

markers. It is not a very suitable method because it will work very well if there 

is not a lot of data but the performance will decrease if we have tons of data. 

A possible solution can be getting the data only from the area that the user is 

looking for with a certain zoom level, because if we do not restrict with zoom 

the user can zoom out and get the full map and we have the same problem as 

downloading all the data. By default, the zoom level is set to 15, that is a zoom 

level that we expect to see street names. Any zoom level that is below we will 

not load the data. 

For knowing the visible area we need to get the latitude and longitude of the 

extremes. Google Maps has a specific function to get the latitude and 
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longitude bounds of the northeast and the southwest zone. We have to do a 

little bit of maths to get the users that are in that area. 

The world map is divided by the following coordinates: 

 

Figure 14: Geographic coordinate system 

The longitude goes from -180 (west) to 180 (east) and the latitude goes from 

90 (north) to -90 (south). If we have the northeast and southwest, we can do 

the following (considering that the map has no rotation, because the rotation 

gesture was disabled by code): 

- First, check if latitude is smaller or equal to the northwest latitude and 
also check if latitude is larger or equal to the southwest latitude. 

- If the condition above is true, check the longitude. If it’s larger or equal 
to southwest longitude and smaller or equal to the northeast longitude, 

it’s in range. 
 

So the pseudocode will be like the following: 

1. users = []  
2. For user in getAllUsers():  
3. if (user.latitude <= northeast_latitude && user.latitude >= southwest_

latitude)   
4.     if (user.longitude >= southwest_longitude && user.longitude <= nor

theast_longitude) users.append(user)  
5. return users;   

 

Also, with this method, we have cons. The most important disadvantage is 

that we make a lot of requests. When the user is scrolling the map and the 

camera is stopped, we make a request to get the data, so another 
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disadvantage related with the one above is that if the user moves to the zone 

of the map that is very next to we get repeated data in every request. 

In the case of displaying all the people in a list, we have the same issue. We 

cannot load all the people in one request because, in the case of having a lot 

of data in the database, both mobile phone and server can reduce the 

performance. This is why we are going to use the pagination. We will achieve 

this using the predefined functions that Mongoose has, particularly the skip 

and the limit. Changing the page will be done by the url type. In this case, 

making a request to /allpeople/1 will output the contents of the page 1. 

In the server case, we need to skip and limit: 

𝑆𝑘𝑖𝑝 = (𝐼𝑇𝐸𝑀𝑆_𝑃𝐸𝑅_𝑃𝐴𝐺𝐸 ∗ 𝑝𝑎𝑔𝑒) − 𝐼𝑇𝐸𝑀𝑆_𝑃𝐸𝑅_𝑃𝐴𝐺𝐸 

𝐿𝑖𝑚𝑖𝑡 = 𝐼𝑇𝐸𝑀𝑆_𝑃𝐸𝑅_𝑃𝐴𝐺𝐸 

For example, if we have 20 entries and we want to see the 1st page with a 

limitation of 5 entries, skip value is 0 (first entry) and the limit is 5, showing 

the values 1,2,3,4,5 from the database. 

In the frontend, we need to implement some method to allow the user move 

between different pages. I’ve used the “load more” method. Initially, we load 

the first page and, if it’s necessary, a load more button in the footer of the list 

is added. If the user clicks, it loads the following page, adding the new 

elements at the bottom of the list. We know the number of pages that we can 

load because the server gives us the total number of pages, so in the first 

request we save it in a local variable. When all pages are loaded, we hide the 

load more button.  

1. int TOTAL_PAGES = 1;   
2. int actual_page = 1;   
3. LoadMoreButton.onClick(   
4.     if (actual_page <= TOTAL_PAGES) {   
5.         hide(LoadMoreButton);   
6.         make(request, actual_page).OnNewRequest(actual_page++;   
7.             if (firstRequest) TOTAL_PAGES = getFromRequest("total_pages"); updateList

WithContent();   
8.             if (ACTUAL_PAGE <= TOTAL_PAGES) show(LoadMoreButton);)   
9.     });   
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Figure 15: Design of pagination in the app 

2.4. Frontend (general design) 

In the section before we have talked of backend, that is the logic that the user 

can’t see. The frontend is the opposite. It is the part that the user can interact 

with. We make this distinction because there are two different parts and we 

usually divide the work for different profiles. The backend is usually made by 

a programmer and the frontend is usually made by a designer, but we also 

have a full stack developer that does both things. The design of the app was 

the hardest part of the project, because the career is more focused in 

programming instead of designing apps. 

2.4.1. Material Design 

Material Design is a design language that was released by Google in 2014. It 

is a set of rules that Google gives us for making the general design of an app 

for being intuitive and easy to work with all the types of users. Material Design 

can be used in Android with an API Level of 21 (Android Lollipop 5.0). 

Nowadays, Google is extending Material Design not only for mobile apps but 

also for the creation of webpages, providing a similar experience in all types of 

platforms. Creating an app using Material Design rules is very important 
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because the majority of the people is used to that design, as all the Google 

applications such as Gmail, Calendar, Play Store… use that design. 

 

Figure 16: Example of a Material Design app 

2.4.2. Design of the app 

The design of the app is the following: 

The “activity_main” layout is related with the “MainActivity”. It contains the 

SlidingPanelLayout, used for displaying the user information in a sliding panel. 

We also have two floating buttons, one for getting the GPS position and the 

other for updating the information manually. We have a lateral Navigation 

View and a toolbar overlaid for opening it. In total, we have 5 layouts for 

making the main design: activity_main, app_bar_main, content_main, 

nav_header_main and panel_user. 

The design of the choosing a location is very simple. We have a LinearLayout 

that groups all the elements, we have the principal fragment that loads a map, 

below we have a CardView that includes a TextView that is updated when a 

user selects a location and a next step button. Also we can click to the 

TextView and it appears a screen for finding a place. If the user selects one 

place, the map is automatically moved to that position. 
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In the “Entering more details” screen, we have the inputs of the user. A button 

for selecting the image, and all the data needed: name, surname, age and a 

contact phone. If we click next and not all the data is entered, the EditText 

turns red giving an error message. 

The “Success adding a people screen” is simply a TextView informing the user 

that is added and a button for going to the main activity. 

2.4.3. Dealing with phone numbers around the 
world 

One problem that we can have is the phone number prefixes when. How do we 

know if some phone number is from certain country. We need to find a way to 

know from which country is the telephone number when we are asking for the 

contact phone. The solution is adding a widget that allows the user to enter 

the code of the country. With this, we will not have any problem. Google has 

not have any official library for dealing with this, so we need to use an external 

library. The library “Country Code Picker (CPP)” by shivam95 was used. It 

looks like the following: 

 

Figure 17: Country code picker widget 

And when we click on the arrow: 

 

Figure 18: Extendable menu of country code picker 
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2.4.4. Choosing how the user inputs a location 

The selection of how the user will choose a location is not as easy as it seems. 

We have to find an intuitive method for allowing the user to select a place. I 

have found two possible methods: 

• Touch-based method: The touch-based method is based on the 

following: we have a map and the user can click in some place of the 

map and a marker will be added. If the user clicks another place, the old 

marker will be removed and changed for the new position. If we search 

for a place, we will move the camera and add a marker. 

• Scroll-based method: The scroll-based method is the same concept as 

the touch-based method but with the difference that the user has a 

marker in the centre. The marker always remains in the centre and it’s 

the position that the user chose. If the user searches a place, the 

camera is centred at the point so the marker points at the position. 

The final implementation uses the scroll-based method, because it is more 

intuitive for the user and some important apps like myTaxi uses it. 

 

Figure 19: Icon of location 

The icon above was designed with Photoshop. 

The main problem now is how to put the marker in the centre. It can seem 

easy, but we don’t want to put the marker in the centre, we want to put the 

shadow area. We cannot achieve this using only the XML design, so we have 

to do it programmatically. 

The idea to solve this is to get the height of the Google Maps fragment. When 

we have that height, we can apply to the marker a margin top, doing this we 

achieve to have it in the centre, but it’s the same case as before, so in that 

margin we have to minus the height of the icon itself. 

𝑀𝑎𝑟𝑔𝑖𝑛 𝑡𝑜𝑝 𝑚𝑎𝑟𝑘𝑒𝑟 =
𝐻𝑒𝑖𝑔ℎ𝑡 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡

2
− 𝐻𝑒𝑖𝑔ℎ𝑡 𝑖𝑐𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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Constant is a value for fitting the centre of the shadow just in the point (It’s 

approximately 1/13 part of the icon, the value has been achieved by trial and 

error). 

To see if it works, I put a marker just in the centre and see if it matches with 

the marker we’ve added programmatically. This is what I get: 

 

Figure 20: Test of the centre marker 

As we can see, we could put the marker in the centre. 

 

2.4.5. Using clusters for avoiding lag 

The second aspect that I want to talk is about clusters. Imagine we have a 

map zone loaded and a lot of data is inside the map. We will have a lot of lag 

when scrolling. We need to find a solution for avoiding this. Google has a tool 

called “Marker Clustering”. The idea of marker clustering is to group markers 

that are next to, and it appears a numbers that shows the count numbers in 

the area. If we zoom in the map in the cluster zone, we will see the markers, 

and if we zoom out, the cluster will group it again. With this method, we solve 

the overload of markers that cause a poor performance. If we have this: 
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Figure 21: Map with an overload of markers 

With a “Marker Cluster” is converted as the following: 

 

Figure 22: Map using a "Marker Cluster" 

 

2.5. Adding a user role 

Implementing a user role is important for managing the content. A user role, 

as a concept, defines permissions for users for performing different group of 

tasks. In the case of the app, we have only 1 role, that is the user that controls 

the app. Anyway, more roles can be added at the time we are improving the 

application, specially the admin role that allows full access to all of the 

functions, including editing or removing a person and also ban users. For 

controlling the actions that a specific role can do, we can use an integer, which 
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each action has assigned a number that is power of 2 (1,2,4,8..). Then we 

make an and mask comparing if the value is equal. If it is, the user has access 

to that action. 

For adding a user role, we need to use a type of authentication for HTTP 

requests. Nowadays, we have two types: cookies and JSON Web Token. 

2.5.1. Cookies 

In this section we will talk about cookies, more specifically with session 

cookies. Cookies are small piece of data that are stored in the user’s 

computer. They are used for displaying a particular website to a specific user, 

so we are storing state information on the browser. Each cookie is a dictionary 

that contains pairs of key-data values, having the possibility of adding a 

expiration date. 

Session cookies are used for the authentication of users. It works as the 

following way: the user makes a request to the server with the credentials 

(usually the username or email and password). The server receives the 

request and, in the response, we add a Set-Cookie header with a session id. 

The browser saves that session id and, in every request, we add that value. In 

the server side, the session id is stored along with all the data that is needed, 

so deserialize session and the server now has access to a specific user. 

The biggest advantage of using session cookies is that they can be accessed 

on the browser or by using JavaScript. In our case, it is not needed, because 

we will use the Android app for making the requests. Also, they are restful, so 

requests are not related with the server state.  
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Figure 23: Traditional cookie session authentication 

 

As the biggest drawbacks, we have that: 

• Each cookie is limited to 4kb, with a total of 80kb. 

• Difficulty if we want to use CORS. Cross Origin Resource Sharing is used 

for getting a resource of another webpage using a different origin. 

• We need to implement protection for CSRF (Cross-Site Requests 

Forgery) attacks. 

• The server has to save the session id. 

 

2.5.2. JSON Web Token 

JSON Web Token can be used as an alternative to cookies. JWT is a 

standard created for making access tokens. The token is encoded using an 

algorithm such as HS256 and it ensures the connection between two 
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parties securely. The final token is a string that contains three parts, 

separated using a dot. The first part is the header, that contains about how 

the JWT signature should be computed (algorithm and type). The second 

type is the payload, and it contains the data we want to store. It usually 

includes the expiration time (exp) or the issuer (iss). The payload is not 

encrypted so we can’t save sensitive data because it can be easily 

decrypted. The third part is the signature, used for checking that the 

message hasn’t been modified. It is computed in the following way: 

𝑑𝑎𝑡𝑎𝑡𝑜𝐸𝑛𝑐𝑜𝑑𝑒 = 𝑏𝑎𝑠𝑒64(ℎ𝑒𝑎𝑑𝑒𝑟) + . + 𝑏𝑎𝑠𝑒64(𝑝𝑎𝑦𝑙𝑜𝑎𝑑)  

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝐻𝑀𝐴𝐶𝑆𝐻𝐴256(𝑑𝑎𝑡𝑎𝑡𝑜𝐸𝑛𝑐𝑜𝑑𝑒, 𝑆𝐸𝐶𝑅𝐸𝑇𝐾𝐸𝑌)    

We can use that technology for authentication. Let’s assume that the user 

makes a request sending the credentials. If the data is correct, the server 

makes a token with the information needed, signing using a secret key. 

The user now saves that token and each time it wants to do a request, it 

will include that string in the “Authorization” header. The server will verify 

if it’s not corrupted and will act accordingly. 

 

Figure 24: Modern token based authentication 
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One of the biggest advantages is that the server doesn’t need to save any 

extra data, we can get the data only decrypting, so it’s statelessness and, 

for this reason, it is very scalable if we want to deal with multiple backends. 

Also, it’s very useful for building a mobile-ready backend, because using 

tokens is more easy to deal in comparison with cookies in any mobile 

operating system. 

As a disadvantage, as being a statelessness technology, we can’t disable a 

token in the server side. The only method available is to put an expiration 

date in the payload and, when it’s overpassed, force the user to login 

again. For logging out the user in the client side, we simply remove the 

token. Furthermore, we have to save the secret key securely, as if a 

malicious user gets it, he can generate different tokens and modify the 

behaviour of the app. As a example, he can change the user id in the 

payload and act a as a different user. 

Using JSON Web Tokens is perfect for our application because it’s hard to 

deal with cookies in both client and server side and it’s more easy to make 

requests. We only need to save the token one time and add a new 

Authorization header in each request. In addition to this, JWT has a set of 

libraries for NodeJS that allows us to use the basic functions such as 

signing or verifying. 

2.5.3. Implementing the authorization (server 
side) 

In this section we will explain how it is implemented the authorization on 

the server side. The first issue that we have is that there are some routes 

that we don’t have the necessity to authenticate, so we need a method for 

distinguishing between protected and non protected routes. The solution 

to this problem is to use middlewares. A middleware, in terms of NodeJS, 

as its name says, is a function that is called before the controller (in the 

middle). Using that concept, we can make a function to ensure 

authentication, and apply that middleware only to the routes that is strictly 

necessary. It is implemented in the following way: 
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1. if not requestHeader("Authorization") return response(400);  
2. if verifyToken(token, SECRET_KEY) {   
3.     request.append(decoded_token);   
4.     next();   
5. } else {   
6.     if (verifyToken.error == TOKEN_EXPIRED) return response(401); 
7.     return response(403);   
8. }   

 

First, we check if we have the authorization header. After, we verify the 

token with the secret key stored in constants. If there is an error or the 

token expired, we return a response with status code 400 or 401, that 

means bad request. If not, we put the decoded token in the request and 

call the next function. 

2.5.4. Adding a user verification 

Adding a method of verification a user is very important for avoiding an 

inappropriate use of the application. We will implement a method for checking 

if the email entered in the signup form is genuine. When the user is fully 

registered, we are going to send a verification code in the email account that 

the user has to enter correctly in the app. When the user enters the code, the 

user is verified and he can use the app normally. In the server side, we will 

control if the user is verified by using a boolean field called “isVerified”, that is 

false by default. If the user tries to login and it is not verified, the server will 

response with a status code of 433. In the client side, it will redirect to the 

activity of verification. The pseudocode of the login is the following: 

1. if (User.findBy(email == email, password == password)) {   
2.     if (User.isVerified) return response(createToken());   
3.     else {   
4.         sendCodeToEmail(User);   
5.         return response(433)   
6.     }   
7. }   

   

Not always we send the code when the user logs in. In the verification table, 

we save the date when a code is sent. If the user demands another code, it will 

not be sent after they’ve passed 10 minutes before the last one.  

However, the method implemented doesn’t take in account disposable email 

addresses. 
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2.5.5. Securing the database 

Securing the database is a important step if we want to deploy the server in a 

production server. The first thing to implement is hashing passwords. A hash, 

more specifically a cryptographic hash, is a special class of hash suitable for 

cryptography. It consists of mathematical algorithms that converts data in a 

string of fixed size designed for be on a one way. This means that we can 

convert a string to a hash, but not in the reverse way. The ideal cryptographic 

hash function has: 

• Deterministic: The same message always has the same hash 

• It is quick to compute the hash 

• Infeasible: Two different messages can’t have the same hash 

Implemented cryptographic hashes are continuously checked in looking for 

collisions. Collisions occur when two strings have the same hash. The most 

important cryptographic hashes are MD5, SHA-1, SHA-256 and SHA-512. 

For hashing passwords we will use the “bcrypt” library. In the user model, we 

will create a function that it will be executed before saving in the database, 

allowing us to save the hashed password. When we register the user, we save 

the password normally, and when the save method is called, we will put the 

hashed password. The code for doing this is the following: 

1. UserSchema.pre('save', function(next) {   
2.     var user = this;   
3.     if (!user.isModified('password')) return next();   
4.     bcrypt.hash(user.password, DEFAULT_SALT_PASSWORD, function(err, hash) {   
5.         if (err) return next(err);   
6.         user.password = hash;   
7.         next();   
8.     })   
9. });   

 

If we see the database, we have to check that is working: 

 

Figure 25: Test of hashing password 
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3. Future implementations 

The implementation of this course is the base for all that is coming. The 

project is very scalable in both server side and user side. Actually, the app is 

in an earlier release and doesn't have a lot of features, but we can the 

implement the following things: 

• Improve the UI: This is the most important aspect. The app has to get 

an improvement of the User Interface because now is intuitive but at 

the same time very simple. For me, it's the most difficult aspect to 

improve because I'm not a designer and also because on my career I 

was more focused on the backend. 

• Maximum requests per IP per hour: This feature can be implemented 

on the server side. Using this feature we can avoid that, if the user 

knows the location to make the request (or even using it inside the app) 

add, for example, 100 disappeared people every time it makes one 

request. This can cause a security issue in the app and have a lot of fake 

data in the database. If we set a maximum requests per hour, the user 

can do the same but only x times we specify per hour, and we can 

detect easily who enters fake data. Using this, we can ban them to not 

make more requests anymore. 

• Add permission in user roles: In this project, we’ve implemented a 

simple user role, that allows adding or removing the people that they’ve 

previously added. Permissions can be also implemented, allowing, for 

example, an admin to remove all the people, or banning/removing 

users. 

• Add https in the request: As being a development server, https is not 

implemented. If we want to implement this as a production server 

hosted on the internet, https is very important because all the login 

credentials in http goes in plain text and can be a potential issue for 

users when they are using the app in a public hotspot. When you 

purchase a hosting, the majority of companies offers you https for 

improving the security of your server. If not, there are free alternatives 

such as Let’s Encrypt. 
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4. Conclusion 

The project made achieves the purpose of creating the app, that is making a 

tool for help finding people who disappeared. Due to lack of time it could not 

be implemented all the functionality that I wished, but the initial objectives 

were achieved. This project is only the beginning for start making a production 

app, because as a summary it is needed to implement more security in the 

server side. 

In terms of the app development, I did not have any experience with Android, 

only the basic aspects such as programming in Java, so I had to search a lot of 

information of how to do all the things required.  

During all the project, there were a lot of changes to achieve the 

implementation required for improving the existent code, and also for making 

it compatible with different versions of Android, like the GPS permission that 

works different in Android 5.0 and Android 6.0.  

In conclusion, it was a very rewarding project, because I learnt a lot in terms 

of programming, specifically with mobile programming, and also how to 

manage and design (with limited time) a project of this scale. 
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Appendix A: User Manual 

In this appendix we will guide the user how to use the app. 

The app was created for helping people in the research of disappeared people. 

As a general terms, we can see a map of the world and markers that indicates 

that somebody was disappeared in that zone. At first launch, we have the 

following screen: 

 

Figure 26: Main screen of the app 

In the main screen, we see two buttons: the first one is used for updating the 

map manually if it failed, but by default it does it automatically. If we click the 

red button, we will move to the position we are actually. By default it goes to 

the position of the user. We can also move through the map and do the typical 

actions such as zoom in, zoom out and move.  
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Figure 27: Main screen of the map with one marker 

As we can see in the figure above, we see that somebody disappeared near 

the river. We can get all the information clicking in the red circle. 

 

Figure 28: Panel of disappeared person 
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As we can see, a sliding panel appears with all the information needed. If we 

find that people, we can click to the contact phone and the phone dial will be 

shown. 

 

Figure 29: Phone dial 

Now we are going to register a user for being able to add a person. In the 

navigation drawer, we click My Account, and using the bottom navigation, we 

select register. 

 

Figure 30: Navigation drawer of a non-logged user 
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Figure 31: Register screen 

When we’ve registered, a new screen will appear for verifying the account. An 

email will be sent with the verification code, but we can verify the account 

later. Simply we have to login and the verification screen will be redirected. 

 

Figure 32: Verification screen 
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When we are verificated, we can login normally. 

 

Figure 33: Login screen 

Now that we’ve logged in, we can see the panel update, with the possibility of 

adding a person. 

 

Figure 34: Navigation drawer of a logged user 
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Now we will add a user, clicking on the “Add person section”. A new screen will 

be displayed asking for the location. By default, the camera is pointing in the 

user position. For marking a position, we just need to drag the centre pointer 

to the position we want. We can also click in the position and a new screen will 

appear asking for a direction. 

 

Figure 35: Choosing location screen 

 

Figure 36: Choosing a location screen 
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If we input a direction, the map will be automatically moved. The next step is 

filling all the fields with the information of the user. 

 

Figure 37: Entering details screen 

If we click on upload an image, it will appear a new screen that allows choosing 

an image. 

 

Figure 38: Screen choosing an image 
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In the contact phone, we can choose a different prefix depending on the 

country of the mobile phone. 

 

Figure 39: Select country prefix screen 

After filling all the information, if everything went well, a successful message 

will appear. 

 

Figure 40: Successful add screen 
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For managing the people we’ve added before, we simply go to “people” 

section in the lateral navigation drawer. 

 

Figure 41: My people screen 

If we click on the user, a popup will be displayed with all the information of the 

user, with the possibility of removing that user. 

 

Figure 42: User details section 
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If we click on the map, the user will be redirected to the position of that user 

in the map. The user is represented in the centre of the map. 

 

Figure 43: Redirection of user location screen 

We can also see all the people who is added, and using pagination for not 

loading all the data. 

 

Figure 44: All people screen 
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Appendix B: API Manual 

In this section I will describe all the methods that the user can interact with 

the server to get or add information. 

 

GET /allpeople/:page 

Description: Returns an array with all the people that is in the page page. Also 

it returns the total number of pages. 

Input fields: Page (integer) 

Example of output:  

{ 

    "people": [ 

        { 

            "_id": "5b2f7ec04d51a471447eb91b", 

            "name": "ElDto", 

            "latitude": 41.610899975838294, 

            "longitude": 0.6486067548394203, 

            "contact_phone": "+34653234566", 

            "direction": "Carrer Palauet, 131, 25001 Lleida, Spain", 

            "age": 24, 

            "user": "5b267fce0d07c46644f47e1d", 

            "image": "/users/K50UK1TDgbXMSUd33nvXDIB-.png" 

        } 

    ], 

    "total_pages": 2 

} 
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GET /mypeople 

Description: Returns an array with all the people that are added by a user 

without pagination. 

Input fields: Authorization header (string) 

Example of output:  

{ 

    "people": [ 

        { 

            "_id": "5b2e59a1885d7360577c6187", 

            "name": "Guy4", 

            "latitude": 51.8790982930885, 

            "longitude": -8.772150166332722, 

            "contact_phone": "+34656345677", 

            "direction": "Unnamed Road, Co. Cork, Ireland", 

            "age": 34, 

            "user": "5b267fce0d07c46644f47e1d", 

            "image": "/users/3aWlKVRipNGPt7EI33_IfSdI.png" 

        } 

    ] 

} 
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DELETE /deleteperson/:id_person 

Description: Deletes a user with the id id_person. It needs the authorization 

header for checking if the user is the one who added the person. 

Input fields: Authorization header (string), id_person (string) 

Returns a 200 response if the user is removed successfully. 

 

POST /addperson 

Description: Adds a user in the database. The type of request has to be 

multipart/form-data.  

Input fields: Authoritzation header (String), name (String), surname (String, 

optional), age (Number), contact_phone (String), latitude (Number), 

longitude (Number), image (Image) 

Returns the data added. 

 

POST /login 

Description: Method user for logging in a user. 

Input fields: verification_code (Number), email (String) 

Returns the token if the login is successful. If the user is not verified, returns 

a 433 response. 

 

POST /verificate 

Description: Verificates a user 

Input fields: verification_code (Number), email (String) 

Returns a 200 response if the user is verificated correctly. Otherwise, a 400 

response. 
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GET /getusersbylocation 

Description: Returns all the users that are in a specific coordinates. 

Input fields: southwest_latitude (Number), southwest_longitude (Number), 

northeast_latitude (Number), northeast_longitude (Number) 

Example of output:  

{ 

    "users": [ 

        { 

            "latitude": 51.89494864376246, 

            "longitude": -8.789026290178299 

        }, 

        { 

            "latitude": 51.888982267209165, 

            "longitude": -8.790567554533482 

        }, 

        { 

            "latitude": 51.89243783412591, 

            "longitude": -8.786109387874603 

        } 

    ] 

} 
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GET /getuserbylocation 

Description: Returns all the info of a user that is in a location 

Input fields: latitude (Number), longitude (Number) 

Example of output:  

{ 

    "createdAt": "2018-05-10T19:36:15.861Z", 

    "name": "Antonio", 

    "contact_phone": "+34645345677", 

    "age": 34, 

    "surname": "Perea", 

    "image": "UCxv3uaVk62Gcaa1NO2s-1CJ.jpeg" 

} 

 

 

 

 

 

 

 


	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1. Introduction
	1.1. Objectives
	1.2. Choosing the operating system
	1.2.1. Windows Phone
	1.2.2. iOS
	1.2.3. Android
	1.2.4. General overview

	1.3. Android
	1.3.1. Platform architecture

	1.4. Android SDK
	1.4.1. Definition
	1.4.2. Choosing the correct SDK

	1.5. Choosing the architecture
	1.5.1. Web apps
	1.5.2. Hybrid apps
	1.5.3. Native apps


	2. Implementation
	2.1. Checking similar apps
	2.2. General structure of the APP
	2.3. Backend (server side)
	2.3.1. Server side
	2.3.2. Database side
	2.3.3. Application side
	2.3.4. Dealing with possible large amount of data

	2.4. Frontend (general design)
	2.4.1. Material Design
	2.4.2. Design of the app
	2.4.3. Dealing with phone numbers around the world
	2.4.4. Choosing how the user inputs a location
	2.4.5. Using clusters for avoiding lag

	2.5. Adding a user role
	2.5.1. Cookies
	2.5.2. JSON Web Token
	2.5.3. Implementing the authorization (server side)
	2.5.4. Adding a user verification
	2.5.5. Securing the database


	3. Future implementations
	4. Conclusion
	References

	Appendix A: User Manual
	Appendix B: API Manual

