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Abstract

The aim of this work is to study multiple cases related to fluid dynamics and heat
transfer. More concretely, six cases of increasing complexity will be approached from
the perspective of computational fluid dynamics, solving the partial di↵erential equa-
tions related to each phenomenon by means of the finite volume method. The cases
that have been simulated are: pure conduction, convection-di↵usion, lid-driven cavity,
di↵erentially heated cavity, one and two-dimensional Burgers equation and homoge-
neous isotropic turbulence (implementing the Smagorinsky turbulence model).

Abstract

L’objectiu d’aquest treball és estudiar multiples casos relacionats amb la dinàmica de
fluids i amb la transferència de calor. Més concretament, sis casos de complexitat
creixent han estat abordats des de la perspectiva de la dinàmica de fluids computa-
cional, resolent les equacions en derivades parcials associades a cada fenomen a partir
del mètode de volums finits. Els casos que han estat simulats són: conducció pura,
convecció-difusió, lid-driven cavity, di↵erentially heated cavity, equació de Burgers en
una i dues dimensions i turbulència isotròpica homogènia (implementant el model de
turbulència de Smagorinsky).
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Introduction

In the present work there have been simulated six cases of increasing complexity in-
volving fluid dynamics and heat transfer. With that aim, we have divided the text
into three parts: firstly, there will be succinctly introduced all mathematical notions,
mainly related to partial di↵erential equations and finite volume method. Secondly,
where the di↵erent cases are presented under the same structure, firstly showing the
discretization of its governing PDEs and, finally, presenting the results obtained after
implementing the discretized equations into separate C++ programs. Finally, some
final remarks are made and possible lines of research are commented.

When it comes to the cases studied, all of them are rather iconic within the field of
computational fluid dynamics (CFD). In particular, we are going to study the following
phenomena:

• Pure conduction: Pure conduction within a square plate composed by 4 dif-
ferent materials.

• Convection-di↵usion: Resolution of energy equation to obtain the distribu-
tions of temperature within two-dimensional fluids for di↵erent velocity fields.

• Lid-driven cavity: Resolution of Navier-Stokes momentum equation to obtain
the velocity fields within a square fluid with fixed velocity at the top border.

• Di↵erentially heated cavity: Coupled resolution of energy and momentum
equations considering the approximation of Boussinesq for buoyancy.

• Burgers equation: Resolution of a simplification of Navier-Stokes momentum
equation to get introduced into turbulence and its paradigmatic behaviour.

• Homogeneous isotropic turbulence: Combination of multiple numerical
techniques to simulate homogeneous isotropic turbulence by approximating pe-
riodic solutions of Navier-Stokes equations.

All along the study of these di↵erent cases, di↵erent numerical methods to simulate
them will be discussed and the validity of the results will be contrasted.

It is worth to mention that the successful simulation of homogeneous isotropic
turbulence is due to the wise combination of our highly e�cient resolution of Burgers
equation by means of pseudo-spectral methods together and the fractional step method
introduced in the study of lid-driven and di↵erentially heated cavities. Additionally,
the Smagorinsky model has been implemented in order to improve our simulations
with coarse meshes.

In order to achieve all these results, there has been performed an intensive research
on numerical methods, computational fluid dynamics and on C++ and MPI languages.
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2

FFTW, a highly optimized open-source library, has been used to compute fast Fourier
transforms and applied in all the problems involving spectral methods, namely Burgers
equation and homogeneous isotropic turbulence.

The applications of the codes that has been implemented are really broad, given
that the boundary conditions of each case can be easily updated, allowing the user
to numerically calculate temperature, velocity and pressure fields. Additionally, the
comparison in terms of e�ciency of di↵erent numerical methods can be very useful to
decide what sort of implementation develop. In particular, in the resolution of Burgers
equation there has been shown the huge improvement that pseudo-spectral methods
suppose with respect to spectral when non-linear terms are present.



Part I

Fundamentals of numerical analysis
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The need for approximations

Most physical phenomena are governed by partial di↵erential equations (PDEs). As a
consequence, very high complexity is added to its understanding and prediction, given
that the general analytical solution of most of the PDEs remain unknown.

Among many other, examples of very relevant PDEs in physics may be the follow-
ing:

Laplace equation: �� = 0

Schrödinger equation: � ~2
2m

��+ V � = i~@�
@t

Maxwell-Faraday equation: r⇥ E = �@B

@t

Wave equation:
@
2
�

@2t
= c

2��

However, in the present work we will only focus on PDEs related to incompressible
fluid dynamics and heat and mass transfer, such as the following:

Convection-di↵usion equation:
@(⇢�)

@t
+r · (⇢�v) = r · (�r�) + S

Continuity equation:
@⇢

@t
= �r · (⇢v)

Incompressible Navier-Stokes equation:
@v

@t
+ (v ·r)v = ⌫�v � 1

⇢
rp

Among them, Navier-Stokes equation plays a fundamental role in fluid mechanics
and, in spite of this fact, its analytical solution remains an open problem. This clearly
shows the need to find a way to deal with such equations in order to be able to continue
doing research in those fields governed by PDEs whose solutions have not been fully
described.

For all these, scientists from many di↵erent branches have needed to find ways
to approximate the solutions of their PDEs by means of a wide variety of numerical
methods and making use of powerful supercomputers.

Throughout the following chapters of Part I, there will be introduced all the formal-
ism used to execute these approximations following the same formal deduction made
by S. Patankar in [1].

In Part II, all these results and, in particular finite volume method (FVM), will be
applied intensively in the six di↵erent cases being studied.
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Discretization of the space

The first step to tackle the problem of approximating solutions of PDEs consists of
discretizing the physical domain that is intended to be studied. This procedure is of
extreme importance, given that it will allow us to make our problem become discrete
instead of continuous, and, as we will see in the following sections, it will allow us to
approach it from an algebraic perspective.

The basic idea shared by many numerical methods to discretize the physical domain
requires considering a set of nodes where we will calculate the physical properties that
we may be studying. Therefore, if we are studying a square material, the simplest
choice will be a set of nodes distributed homogeneously all along the plate as shown
in Figure 0.1.

Figure 0.1: Uniform square mesh.

The grid resulting from dividing the physical domain is commonly referred as mesh

and, as can be expected, gives rise to di↵erent results depending on the number of nodes
it has and its distribution. This is why the discretization of the geometry is crucial
in order to obtain reasonable results without wasting too much computational energy.
To do so, we will have to consider enough nodes to reach the desired resolution, but
trying to keep its number as low as possible to save as much computational energy as
possible. A wise strategy could be, for example, the consideration of inhomogeneous
meshes with higher concentration of nodes where more abrupt fluctuations of the
studied field take place.

5



Finite volume method

At this point, we are ready to introduce the FVM. Given a mesh related to a certain
physical domain, FVM will consider three-dimensional volumes (surfaces or segments
in 2D or 1D, respectively) around the nodes of the mesh. This geometrical entities
will be referred as control volumes (CV), and the fields being studied will be assumed
to remain constant all across them.

Let us note that this could be defined di↵erently, for example, assuming a linear
variation of the field between adjacent nodes. Nevertheless, as we have already said,
we will consider a stepwise profile of the field within the CVs. A reason for that,
as noted in [1], resides in the physically coherent requirement of an integral mass,
energy and momentum conservation over the whole system regardless of the mesh
under consideration. This is ensured by imposing that fluxes at both sides of each face
give the same result. Therefore, not all possible profiles of the field within the CVs
would be acceptable. We just need to take a glance at Figure 0.2.

Figure 0.2: Image extracted from [1]. It shows four nodes belonging to a one-
dimensional mesh and how the consideration of a quadratic field profile within the
CVs results into a mismatch on the derivatives of the field calculated on each side of
the face bordering nodes P and E.

Finally, it is worth to mention that there exist other alternatives to the FVM, such
as the finite element method or the finite di↵erence method, which are out of the scope
of this work.

6



Discretization of PDEs

In this section we will give general guidelines to understand how di↵erential operators
are approximated within the formalism of FVM, giving rise to the discretized PDE.
In spite of the fact that, as we already said, all the deductions of this part are based
on the work made by S. Patankar in [1], there has been also revised the more detailed
study developed by C.D. Pérez-Segarra et al. in [2].

Hence, two main topics will be discussed: discrtized di↵erential operators and
temporal integration schemes.

Spatial di↵erential operators

Given the wide variety of existing approximations of di↵erential operators, this sub-
section could fill a complete independent work. However, pragmatism will be imposed
and we will just introduce the ones that have been used in our simulations. More
particularly, we will make use of a first order approximation over a regular mesh. To
do so, let us consider the following Taylor expansions of a field �:

8
>><

>>:

�E = �e +
@�

@r

����
e

�r

2
+O(�r)2

�P = �e +
@�

@r

����
e

�r

2
+O(�r)2

=) @�

@r

����
e

' �E � �P

�r
, (1)

where P stands for the node related to the CV we are working with, E for the node
corresponding to the adjacent cell in the positive axial direction, e for the surface
between both CVs and �r for the distance between P and E.

Therefore, partial derivatives with respect to any direction r become clearly defined
and, consequently, also the rest of di↵erential operators such as the gradient or the
divergence, as they can be immediately obtained from the spatial partial derivatives
of the field.

Temporal integration schemes

Exactly as we did with the physical domain, the simulated temporal interval can be
divided into discrete pieces known as time-steps. In transient processes, this procedure
is as necessary as the discretization of the space, given that it allows us to calculate
partial derivatives with respect to time and to perform temporal integrals.
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Analogously to what we did in Equation 1, we could approximate temporal deriva-
tives as follows:

@�

@t

����
tn

' �
n+1
P

� �
n

P

tn+1 � tn
(2)

Additionally, further assumptions need to be made in order to compute the tem-
poral integral of any function depending on time (implicitly or explicitly), g(t). More
concretely, exactly as we did for the distribution of � within a CV, we have to set the
distribution of g(t) within a time-step, �t = tn+1 � tn. Although there are several
options available for that, we have summarized the main ones in Figure 0.3.

Figure 0.3: Image extracted from [1]. It shows three temporal schemes: fully explicit,
fully implicit and Crank-Nicolson approaches to the temporal evolution of functions
between consecutive time-steps.

The first one (fully explicit) assumes that g does not change and remains constant
at the value corresponding to tn until tn+1, when it suddenly becomes g(tn+1). The
second option (Crank-Nicolson) consists of assuming that the temperature varies lin-
early between every time-step. Finally, the fully implicit assumption, assumes that
immediately after tn, g reaches the value corresponding to the next time-step, g(tn+1).

Therefore, we would obtain the following results depending on the temporal scheme
under consideration:

8
>><

>>:

R
tn+1

tn
g(t)dt ' g(tn)�t, for fully explicit scheme

R
tn+1

tn
g(t)dt ' g(tn+1)� g(tn)

2
�t, for Crank-Nicolson scheme

R
tn+1

tn
g(t)dt ' g(tn+1)�t, for fully implicit scheme

(3)

or, more generally, we could write:

Z
tn+1

tn

g(t)dt '
�
�g(tn) + (1� �)g(tn+1)

�
�t, where � 2 [0, 1].



Part II

Numerical simulations: from pure
conduction to turbulence
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Chapter 1

Pure conduction

In this chapter we will simulate the heat transfer within a square plate composed by 4
di↵erent materials as shown in the figure below, starting from a uniform distribution
equal to T0 = 11ºC.

Figure 1.1: Distribution of the di↵erent materials

The physical properties of each material are summarized in Table 1.1.

Material ⇢ (kg/m3) cp (J/kgK) k (W/mK)
M1 2500.0 970.0 180.0
M2 2700.0 930.0 140.0
M3 2200.0 710.0 150.0
M4 1700.0 920.0 140.0

Table 1.1: Physical properties of each material.

Additionally, at the borders of the plate there have been set the boundary condi-
tions shown in Table 1.2.

10



Chapter 1. Pure conduction 11

Material Boundary condition
Bottom T = 18.0ºC
Top Qflow = 89.0W/m

Left Tg = 35.0ºC and ↵g = 8.0W/m2
K

Right T (t) = 11.0 + 0.006tºC

Table 1.2: Physical properties of each material.

Thus, there will be implemented a C++ program based on FVM as presented in [1]
by S. Patankar.



1.1. Discretization 12

1.1 Discretization

The case under study is an example of unsteady two-dimensional heat conduction,
which is governed by the di↵usion equation:

⇢cp
@T

@t
= r · (krT )

Integrating it over the surface of a su�ciently small two-dimensional CV, S, would
result into the following equation:

Z

S

⇢cp
@T

@t
dA =

Z

S

r · (krT )dA (1.1)

If we remember that the material is identical throughout S, as well as its temper-
ature, and if we make use of the divergence theorem, we could rewrite Equation 1.1
as:

⇢cp
@T

@t
S = k

I

C

rT · n̂ds (1.2)

Additionally, given the regular square structure of the mesh that we are using, we
can easily calculate the integral at the right-side of Equation 1.2:

⇢cp
@T

@t
S =

X

faces of S

kf

 
@T

@x

����
f

,
@T

@y

����
f

!
· (nx, ny)Lf (1.3)

where Lf refers to the length of the face (either �x or �y). Furthermore, if we
approximate the gradient of T in terms of the neighbours of a generic point P , we
obtain the following equation:

⇢cp
@T

@t
S ' kN

✓
@T

@x

����
N

,
TN � TP

�y

◆
· (0, 1)�x+ kS

✓
@T

@x

����
S

,
TP � TS

�y

◆
· (0,�1)�x

+ kE

✓
TE � TP

�x
,
@T

@y

����
E

◆
· (1, 0)�y + kW

✓
TP � TW

�x
,
@T

@y

����
W

◆
· (�1, 0)�y,

(1.4)

where �x and �y make reference to the distance between a point and the closest Pi

following either the north, south, east or west direction. However, as we will see in
Section 1.1.1, this will not be totally true, given that it will only hold for the points
inside the plate, and specific considerations will be needed for all the points located
at the borders of the plate.

Thus, it immediately follows from Equation 1.4 that:

⇢cp
@T

@t
S = kN

TN � TP

�y
�x+ kS

TS � TP

�y
�x+ kE

TE � TP

�x
�y + kW

TW � TP

�x
�y (1.5)

Let us note that the right-member of the Equation 1.5 is a function depending on
the temperature. Consequently, we could rewrite it as:

⇢cp
@T

@t
S = g(T ) (1.6)
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Therefore, if we integrate Equation 1.6 between two consecutive time-steps, we
reach: Z

tn+1

tn

⇢cp
@T

@t
Sdt =

Z
tn+1

tn

g(T )dt (1.7)

On the one hand, bearing in mind that time-steps are small enough, we can con-
clude that the left-hand side of Equation 1.7 satisfies:

Z
tn+1

tn

⇢cp
@T

@t
Sdt ' ⇢cp(T

n+1
P

� T
n

P
)S (1.8)

On the other hand, considering a fully implicit scheme (as presented in Part I), we
can assert that: Z

tn+1

tn

g(T )dt ' g(T n+1)�t (1.9)

Finally, if we combine Equation 1.7 with the equalities 1.8 and 1.9, we obtain the
following:

⇢cp(T
n+1
P

� T
n

P
)S

�t
= kN

T
n+1
N

� T
n+1
P

�y
�x+ kS

T
n+1
S

� T
n+1
P

�y
�x

+ kE
T

n+1
E

� T
n+1
P

�x
�y + kW

T
n+1
W

� T
n+1
P

�x
�y,

which can be rewritten in its final discretized form as:

aPT
n+1
P

= aNT
n+1
N

+ aST
n+1
S

+ aET
n+1
E

+ aWT
n+1
W

+ b, (1.10)

where the coe�cients aP , aN , aS, aE, aW and b are defined as follows:

aP = kN�x

�y
+ kS�x

�y
+ kE�y

�x
+ kW�y

�x
+ ⇢cpS

�t

aN = kN�x

�y

aS = kS�x

�y

aE = kE�y

�x

aW = kW�y

�x

b =
⇢cpST

n

P

�t

(1.11)

Thus, we have finally obtained the system of equations that we are going to solve
recursively. Starting with a uniform temperature throughout the plate of 11ºC, we
will be able to calculate the distribution of temperatures at t1. After that, we will be
able to solve the equations for t2, then for t3, and so on.

1.1.1 Boundary Conditions

Even thought we have already found the system of equations that has to be solved in
order to predict the heat transference within our plate, we still need to find the way
of implementing the boundary conditions that define the situation presented in the
problem. Actually, this is how we are going to be able to find its unique solution.

First boundary condition to be considered, and perhaps the simplest one, is to set
the initial temperature of the whole plate at T0 = 11ºC. This can be trivially done by
setting TP = T0, for all the points of the plate at t = 0. Thus, when we try to calculate
T

n+1
P

, which from now on we are going to call TP , we will always have properly defined
the temperature corresponding to the previous time-step, T n

P
.
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Top border - Constant Heat Flow, QF low

Recalling the Fourier’s law, we can see that the vertical heat flow coming from the top
border of the plate will satisfy the following formula:

|QF low| = k
@T

@y

that could be approximated as (see Figure 1.2):

|QF low| ' kN
TN � TP

�y

However, let us point that, as we introduced in the previous section and can be easily
seen in the image below, in this case we will have that �y = �y

2 .

Figure 1.2: Schema of the boundary condition at the top border.

Hence, recalling the term of Equation 1.10,

kN
TN � TP

�y
�x = QF low�x

and so, we will have that:

aPTP = aSTS + aETE + aWTW + b, (1.12)

with:
aP = kS�x

�y
+ kE�y

�x
+ kW�y

�x
+ ⇢cp�x�y

�t

aS = kS�x

�y

aE = kE�y

�x

aW = kW�y

�x

b =
⇢cpST

n

P

�t
+QF low�x

(1.13)
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Left border - Gas Convection, h and TG

Figure 1.3: Schema of the
boundary condition at the
left border.

Similarly to what we saw at the top border, at the left
one we also have a heat flow. Nevertheless, in this case
it is due to the convection with a gas with a determined
heat transfer coe�cient, h, and temperature, TG.

Let us consider a point, Pi, located at the left bor-
der of the plate (as shown in Figure 1.3). As we did
in the precious case, we are going to relate it with the
temperature of its neighbours.

Considering the law of convective heat transfer, we
can reach the following equality:

|QLeft| = h(TG � TW )

and by means of Fourier’s law, we can assert that:

h(TG � TW ) = k
@T

@x

Thus, as we did before, we can approximate it as (see
Figure 1.3):

h(TG � TW ) ' kN
TW � TP

�x
(1.14)

where, similarly to what happened before, �x = �x

2 .
It immediately follows from Equation 1.14 that:

TW =
2kW

�x(h+ 2kW
�x

)
TP +

hTG

h+ 2kW
�x

(1.15)

and if we substitute this expression within Equation 1.10, we reach the following result:

aPTP = aNTN + aSTS + aETE + b, (1.16)

with:
aP = kN�x

�y
+ kS�x

�y
+ kE�y

�x
+ ⇢cp�x�y

�t
+ kW h�y

kW+�xh

aN = kN�x

�y

aS = kS�x

�y

aE = kE�y

�x

b =
⇢cpST

n

P

�t
+ kW h�yTG

kW+�xh

Lower border - Isotherm, TBottom

Given a point Pi such as the one shown in Figure 1.4, we will just have to impose that
TP = TBottom. Thus, we will reach the following results:

aPTP = aNTN + aETE + aWTW + b,
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with:
aP = kN�x

�y
+ 2kS�x

�y
+ kE�y

�x
+ kW�y

�x
+ ⇢cp�x�y

�t

aN = kN�x

�y

aE = kE�y

�x

aW = kW�y

�x

b =
⇢cpST

n

P

�t
+ 2kS�xTBottom

�y

Figure 1.4: Schema of the boundary condition at the lower border.

Right border - Determined Function for Temperature, TRight(t)

Figure 1.5: Schema of
the boundary condition
at the right border.

Finally, given a point Pi, such as the one shown in Figure 1.5,
we will just have to proceed exactly as we did for the previous
case but bearing in mind that now, instead of TBottom, we will
have a function, TRight(t), depending on time. Thus, we will
just have to impose that TE = TRight(t) and we will reach
the following results straightforwardly:

aPTP = aNTN + aSTS + aWTW + b,

with:

aP = kN�x

�y
+ kS�x

�y
+ 2kE�y

�x
+ kW�y

�x
+ ⇢cp�x�y

�t

aN = kN�x

�y

aS = kS�x

�y

aW = kW�y

�x

b =
⇢cpST

n

P

�t
+ 2kE�yTRight(t)

�x
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1.1.2 Material Interfaces

Finally, the last detail to be mentioned, is the treatment that we are making of the
points, Pi, such that any of their faces is in contact with more than one di↵erent
materials.

Figure 1.6: Example of face in contact with two di↵erent materials.

It is clear that some special care should be taken with the conductivity of such
faces. It would be reasonable to consider the conductivity of the interface as the
arithmetic mean of k1 and k2. However, this would lead to an undesired result: if, for
example, k1 = 0 and k2 > 0, then kInterface > 0, which would not make any sense,
given that M1 is an ideal thermal insulator.

In order to avoid this behaviour, the harmonic mean could be used:

kInterface =
2k1k2
k1 + k2

However, a more formal justification of this choice could be given. Bearing in mind
the balance that must exist at the interface on the heat fluxes, we could write the
following equality:

q̇e = q̇
�
e
= q̇

+
e

=) q̇e = �k1
Te � TP

(�x)Pe

= �k2
TE � Te

deE

Therefore,

8
><

>:

q̇e(�x)Pe

k1
= �(Te � TP )

q̇e(�x)eE
k2

= �(TE � Te)
=) q̇e = � (�x)PE

(�x)Pe

k1
+ (�x)eE

k2

TE � TP

(�x)PE

,

which, in case of considering a regular mesh becomes:

q̇e = � 2k1k2
k1 + k2

TE � TP

�x
, (1.17)

providing complete coherence to the election of kInterface.
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1.2 Results

Finally, we have created a C++ program that runs all the calculations defined so far,
starting from t = 0 until t = 10000s.

In the following two charts, there is shown the temporal evolution of the tempera-
ture at distinct points of the plate:
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(a) (x, y) = (0.73, 0.62)
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(b) (x, y) = (0.60, 0.16)

Figure 1.7: Evolution of the temperature at two points of the plate.

More generally, the following heat-maps show the distribution of the temperature
throughout the plate at the middle of the temporal interval to be simulated and at its
end:

’HeatMap50.dat’ using 1:2:3
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(a) t = 5000s

’HeatMap100.dat’ using 1:2:3
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(b) t = 10000s

Figure 1.8: Distribution of the temperature throughout the plate at di↵erent instants
of time.

At this point, it is interesting to make a little study regarding the e↵ect of the
mesh on the results of the simulation. With this aim, we have run the same code using
other values of n apart from n = 90. Obviously, a lower n will mean a worse result,
whereas a bigger one will lead to more precision (and more time of computation).

On the images below there is shown the distribution of the temperature throughout
the plate for n = 18, n = 45 and n = 180. It is worth to mention that we have not
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included the graphics showing the evolution of the temperature at (x, y) = (0.73, 0.62)
and (x, y) = (0.60, 0.16), because they are so similar that its di↵erences would not be
noticeable.

’HeatMap50.dat’ using 1:2:3
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(a) t = 5000s and n = 18

’HeatMap100.dat’ using 1:2:3
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(b) t = 10000s and n = 18

Figure 1.9: Distribution of the temperature throughout the plate at di↵erent instants
of time using n = 18.

’HeatMap50.dat’ using 1:2:3
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(a) t = 5000s and n = 45

’HeatMap100.dat’ using 1:2:3
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(b) t = 10000s and n = 45

Figure 1.10: Distribution of the temperature throughout the plate at di↵erent instants
of time using n = 45.

Finally, it is worth to go back a few steps and remember when we decided, without
any justification, to utilize the fully implicit schema (see Figure 0.3). Further comments
about that choice should definitely be made.

On the one side, let us note that if the temperature of either TN , TS, TE or TW

increases, so should do TP (this is an obvious consequence of conductive heat transfer-
ence). Thus, any physically realistic solution that we obtain should satisfy it. There-
fore, if we consider Equation 1.10, it is clear that, in order to reach a coherent solution,
all of its coe�cients have to be positive (even b, given that it relates T n+1

P
with T

n

P
).
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On the other side, it can be seen that fully explicit and Crank-Nicolson schemas
can lead to negative coe�cients of the discretized equation for big enough values of
�t. Thus, the choice of an excessively big time-step would lead to unrealistic results.
Nevertheless, the schema that we have considered (fully implicit), totally avoids this
problematic, allowing us to consider wider time-steps and reach faster the stationary
state (although losing resolution of the transient evolution).

Testing the same code with di↵erent values of �t, result in surprisingly similar val-
ues of the temperature. For example, T (x = 0.60, y = 0.16, t = 10000s) gives a result
of 32.071ºC for �t equal to 1s, 2s, 4s and 10s. Only considering an extreme value
of �t such as 100s would result in a significantly di↵erent value equal to 32.0775ºC.
Another interesting feature to test is the di↵erence of the time that running the whole
simulation takes in a computer depending on the �t under consideration. The follow-
ing table summarizes several results:

Table 1.3: Comparison of the time that the same computer takes to run the whole
simulation with respect to the �t under consideration.

�t Simulation time
1s 3min 34s
2s 2min 56s
4s 2min 42s
10s 2min 33s
100s 1min 25s



Chapter 2

Convection-Di↵usion

In this chapter we will simulate four di↵erent situations governed by the convection-
di↵usion equation, which can be written as follows:

@(⇢�)

@t
+r · (⇢�~v) = r · (�r�) + S

All of the simulations will study the distribution of a general variable � character-
ized by its di↵usion coe�cient, �, and will consider a two-dimensional material as the
one shown in Figure 2.1. Additionally, the velocity field, ~v, will be given in every case.

Figure 2.1: Schema of the plate amongst which the simulations are run.

In some cases it will be possible to find the analytical solution of the convection-
di↵usion equation. If so, it will be used to contrast the results obtained from the
simulation.

Therefore, in the following sections there will be implemented a C++ program
based on FVM following the same lines as S. Patankar in [1].

21
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2.1 Discretization

The cases under study are examples of unsteady two-dimensional heat convection-
di↵usion, which, as we have already advanced, are governed by the following equation:

@(⇢�)

@t
+r · (⇢�~v) = r · (�r�) + S (2.1)

Since there is not either energy production or consumption in any of the cases we
are dealing with, then we can assume S = 0. Thus, we have that:

@(⇢�)

@t
+r · (⇢�~v � �r�) = 0 (2.2)

It is possible to define the total heat flux as:

~J ⌘
convection

⇢�~v �
di↵usion

�r� . (2.3)

Additionally, we can define the Peclet number as follows:

Px =
⇢vx�x

�
and Py =

⇢vy�y

�
, (2.4)

which represents a balance between the strength of convection with respect to di↵usion.
Therefore, fluids with a big Peclet number will present a predominance of convection
in oposition to di↵usion, and viceversa.

Thus, recalling Equation 2.3 we can write:

J
⇤
x
⌘ Jx�x

�
= Px�� d�

d(x/�x)
and J

⇤
y
⌘ Jy�y

�
= Py�� d�

d(y/�y)
. (2.5)

As seen by S. Patankar in [1], it is possible to see that the values of J⇤
x
and J

⇤
y
at

the interfaces between control volumes depend on the values of � inside those control
volumes. Aditionally, S. Patankar is able to see that this dependence is closely related
to the Peclet number arriving to the following discretized form of Equation 2.2:

aP�P = aN�N + aS�S + aE�E + aW�W + b, (2.6)

where the following definitions are given for the coe�cients ai and b:

aN = DNA(|P |) + max {�FN , 0}
aS = DSA(|P |) + max {FS, 0}
aE = DEA(|P |) + max {�FE, 0}
aW = DWA(|P |) + max {FW , 0}
a
0
P

=
⇢
0
P
�x�y

�t

b = a
0
P
�
0
P

aP = aN + aS + aE + aW + a
0
p

(2.7)

with the following parameters:

DN =
�N�x

(�y)N
, DS =

�S�x

(�y)S
, DE =

�E�y

(�x)E
and DW =

�W�y

(�x)W
,
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FN = (⇢vy)N�x, FS = (⇢vy)S�x, FE = (⇢vx)E�y and FW = (⇢vx)W�y,

where �x and �y make reference to the distance between a point and the closest Pi

following either the north, south, east or west direction. Additionally, it can be easily
checked that: Pi = Fi/Di.

Even more interestingly, S. Patankar is able to identify several schemes for the
convection-di↵usion models in terms of the function A(|P |) that one considers. They
are summarized in Table 2.1.

Table 2.1: Relationship of several schemes for the discretization of the convection-
di↵usion equation and its related function A(|P |).

Scheme A(|P|)
Upwind 1

Central di↵erence 1� 0.5|P |
Hybrid max {1� 0.5|P |, 0}

Power Law max
�
(1� 0.1|P |)5 , 0

 

Analytical solution |P |/
�
e
|P | � 1

�

A high level analysis of each scheme would result really appropriate in order to
justify the choice that we are going to make afterwards. It is obvious that, when
it comes to choosing a scheme, the one that would give more exact results is the one
corresponding to the analytical solution of the convection-di↵usion equation. However,
as the computing costs of working with an exponential function would be high, it makes
sense to consider a simplification of that scheme that provides a good balance between
quality of the results obtained and the computation resources that they require.

Firstly, the upwind scheme gives really unrealistic results in presence of a convec-
tion, therefore, it should be absolutely avoided. Next, we find the central di↵erence
scheme, which is not appropriate if considerable velocities are involved. However, the
hybrid model, an improvement of the central di↵erence one, works well in presence
of either low or high velocities, but returning poor results if |P | 2 (1.5, 3.5). Finally,
there is the power law scheme, which gives a really good approximation of the analyt-
ical solution involving less computing resources. For this reason, we have worked with
this scheme, given that it represented a good balance of e�ciency and exactitude.

It si worth to mention that further and more elaborated considerations related to
the di↵erent schemes presented can be found in [3].

Thus, our implementation of the FVM applied to the convection-di↵usion equation
will be entirely based on the equations 2.6 and 2.7, consideringA(|P |) = max

�
(1� 0.1|P |)5 , 0

 
.

2.1.1 Boundary Conditions

All over the last section, we have found the system of equations that has to be solved
in order to predict the heat transference within our plate. Nevertheless, we still need
to find the way of implementing the boundary conditions that define the di↵erent
situations presented in the exercise. Actually, this is how we are going to be able to
find their unique solutions.
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First boundary condition to be considered, and perhaps the simplest one, is to set
the initial value of � at any point of the plate equal to �0. This can be trivially done by
setting �P = �0, for all the points of the plate at t = 0. Thus, when we try to calculate
�
n+1
P

, which from now on we are going to call �P , we will always have properly defined
value of � corresponding to the previous time-step, �n

P
.

Two other boundary conditions will be consider throughout the di↵erent cases:
fixed value of � and null heat flow at the borders of the material. In the following two
subsections we will show how to set each of these conditions.

Null Heat Flow

In order to show how to deal with a boundary condition that sets as zero the heat flux
at some of the points located at the border of the material, we will initially assume
that the boundary condition is applied to the top border of the plate, with the aim of
generalizing the procedure afterwards.

Recalling the Fourier’s law, we can see that the vertical heat flow coming from the
top border of the plate will satisfy the following formula:

|QF low| = �
@�

@y

that could be approximated as (see Figure 1.2):

|QF low| ' �N

�N � �P

�y
.

Thus, if |QF low| = 0, we will have that:

�N = �P .

Hence, we will have that:

(aN + aS + aE + aW + a
0
P
)�P = aN�P + aS�S + aE�E + aW�W + b,

and, consequently, the discretized equation will become:

(aS + aE + aW + a
0
P
)�P = aS�S + aE�E + aW�W + b, (2.8)

Note that, if we had to impose a heat flux equal to zero in any other of the borders
of the material, we would actually reach the same results as in Equation 2.8, but
suppressing the values corresponding to the appropriate neighbour instead of the ones
of �N .

Fixed value of �

Once again, with the aim of showing the procedure to impose a boundary condition
that determines the value of � at some of the points of the border of the material, we
will firstly give an example assuming that � is known at the right border, in order to
generalize the procedure afterwards.
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Hence, given a point Pi, such as the one shown in Figure 1.5, we will just have to
impose that:

�E = �Right(t), (2.9)

then, it immediately follows that:

aP�P = aN�N + aS�S + aE�Right(t) + aW�W + b. (2.10)

Note that if we were given the value of � at any other of the borders of the plate,
we would proceed identically but adapting equations 2.9 and 2.10 to the corresponding
neighbour of �P .
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2.2 Results

Finally, we have created a C++ program that runs all the calculations defined so far,
but adapting it to four di↵erent cases and their particular boundary conditions.

However, before presenting the di↵erent cases let us note that we have made use
of the Power-law schema of A(P ) to run the simulations in spite of the fact that we
could have used either the central di↵erence, the hybrid or the exponential schemas,
reaching with all of them really similar results.

2.2.1 Unidimensional flow with a unidimensional variation of
the variable solved in the same direction of the flow

The first case corresponds to a rectangular material with an intern convection going
in the x-direction with a constant velocity. The boundary conditions in the top and
lower borders correspond to a null heat flux (see Section 2.1.1), and in the right and
left borders to two di↵erent fixed values of � (see Section 2.1.1). A diagram sumarizing
this case can be found in the image below.

Figure 2.2: Schema of the boundary conditions for the case corresponding to the
unidimensional flow with a unidimensional variation of the variable solved in the same
direction of the flow.

Therefore, we have applied all the calculations defined so far to this particular case
and run them until the instant when the time derivative of � became smaller than
1.0e-6 (defining this as an acceptable approach to the stationary state). By doing so,
we have obtained the distribution of � all shown in Figure 2.3.

As a validation of our results, we can note that our numerical solution matches with
the analytical solution for the stationary state resulting from solving the convection-
di↵usion equation for this particular case. In particular, the analytical solution would
give:

�(x) = �Left +
e
Px/Lx � 1

eP � 1
(�Right � �Left)

This convergence can be seen in Figure 2.4, that illustrates the convergence to the
stationary state (corresponding to the analytical solution of the convection-di↵usion
equation).
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Figure 2.3: Distribution of � throughout the material at the stationary state (t =
272s). Results obtained using Lx = 1m, Ly = 1m, ⇢ = 2500kg/m2, � = 10, �Initial =
5, �Left = 0, �Right = 10 and U0 = 0.01m/s.
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Figure 2.4: Distribution of �(x, y = 0.5) = �(x) throughout the material at di↵erent
instants of time. Results obtained using Lx = 1m, Ly = 1m, ⇢ = 2500kg/m2, � = 10,
�Initial = 5, �Left = 0, �Right = 10 and U0 = 0.01m/s.
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2.2.2 Unidimensional flow with a unidimensional variation of
the variable solved in the perpendicular direction of the
flow

The second case is identical to the previous one except for the fact that the velocity
of the field is vertical instead of being horizontal (as can be seen in the diagram of
Figure 2.6). Thus, updating the value of the speed will result into the result of the
simulation.

Figure 2.5: Schema of the boundary conditions for the case corresponding to the
unidimensional flow with a unidimensional variation of the variable solved in the per-
pendicular direction of the flow.

Again, we have run the simulation until the stationary state was achieved (when
the time derivative was smaller than 1.0e-6 at all the points of the plate). This has
resulted into the following distribution of �:
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Figure 2.6: Distribution of � throughout the material at the stationary state (t = 91s).
Results obtained using Lx = 1m, Ly = 1m, ⇢ = 2500kg/m2, � = 10, �Initial = 5,
�Left = 0, �Right = 10 and U0 = 0.01m/s.

As in the previous case, the analytical solution for the stationary state resulting
from solving the convection-di↵usion equation in this situation can be obtained. In
particular, the analytical solution would give:

�(x) = �Left +
�Right � �Left

Lx

x
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The following chart shows the quick convergence over time of the distribution of �
to the stationary solution:
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Figure 2.7: Distribution of �(x, y = 0.5) = �(x) throughout the material at di↵erent
instants of time. Results obtained using Lx = 1m, Ly = 1m, ⇢ = 2500kg/m2, � = 10,
�Initial = 5, �Left = 0, �Right = 10 and U0 = 0.01m/s.
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2.2.3 Diagonal flow

In this case we still have the same rectangular material with an internal motion but
with slightly di↵erent boundary conditions: there is a fixed value of � at the top and
left of the material, and another fixed value of � at the bottom and right (see Section
2.1.1). A diagram sumarizing this case can be seen in the image below.

Figure 2.8: Schema of the boundary conditions for the case corresponding to the
diagonal flow.

It is interesting to emphasize an important phenomenon that comes together with
this case. We are talking about false di↵usion, which is a consequence of the fact that
the velocity is not parallel to the mesh that we have considered (it has a rotation equal
to ↵ degrees). Therefore, this results into an attenuation of the quick changes of the
value of � due to this false di↵usion, which can be avoided by considering a finer mesh.

In order to illustrate this fact, we have run the simulation of this case considering
a really big value of the Peclet number and an angle ↵ equal to 45 degrees. Given that
we are taking Lx = Ly = 1, our simulation should result into a sudden change of the
value of �, such that in the limit of P ! 1, � would be equal to �1 above the diagonal
and �2 below (see the diagram of Figure 2.8). As a consequence of this sudden change,
there would appear a false di↵usion whose e↵ects could be decreased by considering a
finer mesh, i.e., bigger values of nx and ny. All these e↵ects are clearly illustrated in
Figure 2.8.
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Figure 2.8: Distribution of � throughout the material at the stationary state for dif-
ferent meshes. Results obtained using Lx = 1m, Ly = 1m, P = 1.0e20, �Initial = 0.5,
�1 = 0 and �2 = 1.
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2.2.4 Solenoidal flow

Finally, the last case that we have simulated implies more complex boundary conditions
that can be summarized, with the help of Figure 2.9, as follows:

8
>>>><

>>>>:

�Inlet(x) = 1 + tanh [10(2x+ 1)] , at the inlet

QOutlet = 0, at the outlet

�border = 1� tanh(10), at the top and lateral borders

On the other side, the velocity field is defined as:

~v =
�
2y(1� x

2),�2x(1� y
2)
�

Figure 2.9: Schema of the boundary conditions for the case corresponding to the
solenoidal flow.

Applying all these boundary conditions, we obtain the following distributions of �
at the stationary state for di↵erent values of ⇢/�.

(a) ⇢/� = 10, t = 13s
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(b) ⇢/� = 1.0e3, t = 14s

(c) ⇢/� = 1.0e6, t = 21s

Figure 2.9: Distribution of � throughout the material at the stationary state for dif-
ferent values of ⇢/�. Results obtained using Lx = 2m, Ly = 1m and �Initial = 0.5.

It is interesting to note that when ⇢/� becomes big, there appears a sudden change
of the value of �. This fact is clearly illustrated in Figure 2.10.

Let us note that, as happened with the diagonal flow corresponding to the previous
case, now we are also dealing with a convective flux that is not parallel to the mesh
considered. Thus, it becomes clear from Figure 2.10 that the bigger ⇢/� is and the
coarser the mesh is, the bigger impact false di↵usion will have. This is why, in order
to avoid this e↵ect and show proper results in Figure 2.9, we have run the calculations
using a fine mesh with nx = 400 and ny = 200.

It is interesting to study the impact that false di↵usion would have on the results
corresponding to ⇢/� = 1.0e6 (that imply an abrupt change on the value of � that
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Figure 2.10: Distribution of � throughout the outlet. Results obtained using Lx = 2m,
Ly = 1m and �Initial = 0.5.

draws a semicircle going from the middle of the inlet to the middle of the outlet).
With this aim, we have run exactly the same calculations but using di↵erent meshes.
The distributions of � that we have obtained can be found in 2.10.
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(a) nx = 2ny = 40
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Figure 2.10: Distribution of � throughout the material at the stationary state using
di↵erent meshes. Results obtained using ⇢/� = 1.0e6, Lx = 2m, Ly = 1m and
�Initial = 0.5.

Comparing this images to its analogue of Figure 2.9 (⇢/� = 1.0e6), definitely
justifies our choice of using a mesh with nx = 2ny = 400, given that it provides really
exact results without consuming so much computing ressources. Although the impact
of false di↵usion related to the usage of coarse meshes is clearly shown in Figure 2.10, it
can be put di↵erently and made even more obvious. To do so, we have plotted in Figure
2.11 the variation of � throughout the outlet calculated using di↵erent meshes. Hence,
as a consequence of the false di↵usion, which tends to smooth the sudden change that
takes place around x = 1.5m, coarse meshes di↵er considerably with respect to the
fine ones.
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Figure 2.11: Distribution of � at the outlet for di↵erent meshes corresponding to the
stationary state. Results obtained using ⇢/� = 1.0e6, Lx = 2m, Ly = 1m, P = 1.0e20
and �Initial = 0.5.



Chapter 3

Lid-driven cavity

In this chapter we are going to simulate the flow of an incompressible fluid within a
square cavity assuming that the velocity remains constant at all of the boundaries of
the cavity. All these conditions are summarized in Figure 3.1.

Figure 3.1: Schema of the plate amongst which the simulations are run.

In order to complete these task, we will have to solve the unsteady, incompressible
Navier-Stokes equations in primitive variables. With that aim, we will introduce and
apply the strategy followed in [4].

37
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3.1 Discretization

3.1.1 Staggered meshes

In order to run this simulation, we will need to solve the incompressible Navier-Stokes
equations. To do so, we will apply the well known fractional step method but, before
detailing its formulation, we should make some comments regarding the meshes that
are going to be used.

On one side, we will consider a regular square mesh as the one shown in Figure 0.1
and where we will calculate temperature and pressure but not the velocities. However,
given that the gradient of the velocity at any point Pi would satisfy that:

✓
@vx

@x
,
@vy

@y

◆
'
✓
vxe

� vxw

�x
,
vyn � vys

�y

◆
'
✓
vxE

� vxW

�x
,
vyN � vyS

�y

◆
,

then, any velocity field such that it alternates vertically and horizontally a pair of
values, would result into an homogeneous gradient equal to zero throughout the plate,
which, in turn, would not make any sense.

Therefore, in order to avoid this behaviour, we will use two more meshes (arising
from the one shown in Figure 0.1). These two meshes will be called staggered meshes,
and will be defined for the x and y-axis, respectively.

In particular, x-staggered mesh will have its points in the middle of all vertical
walls of the points of the main mesh, whereas y-staggered mesh will have them in the
middle of each horizontal wall. An example of this distribution is shown in Figure 3.2,
where red and green-coloured points belong to x and y-staggered meshes, respectively.

Figure 3.2: Diagram showing the staggered meshes corresponding to the x-axis (red)
and y-axis (green) associated to the regular mesh that we are considering (see Figure
0.1). There are shown, as an example, three control volumes belonging to each of these
meshes.

Hence, throughout this chapter axial velocities will be calculated in its correspond-
ing staggered meshes and the rest of magnitudes in the standard one.
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3.1.2 Fractional step method

In this section, we will summarize the fractional step method (FSM) and detail the
calculations needed in its application. As we advanced, this method is going to be
used to solve the unsteady and incompressible Navier-Stokes equations in primitive
variables, which can be written as follows:

@v

@t
+ (v ·r)v =

1

Re
�v �rp, (3.1)

where Re makes reference to the Reynolds number and is defined as:

Re =
⇢V0L

µ

Additionally, incompressibility results into the following version of the continuity equa-
tion:

r · v = 0 (3.2)

Hence, as seen in [4], FSM can be summarized into the following steps:

1. Evaluate the vector R(v) := �(v ·r)v + 1
Re
�v

2. Evaluate the predictor velocity, vp := vn +�t
�
3
2R(vn)� 1

2R(vn�1)
�

3. Evaluate r ·vp and solve the equation of Poisson �p̃ = r ·vp, in order to obtain
the distribution of the field p̃

4. Obtain the velocity of the following instant of time as vn+1 = vp �rp̃

Let us explain in the following subsections how are we going to complete each of
these steps by means of the FVM.

Evaluation of R(v)

As we have already said, we will define a vector field R(v) = (Rx(v), Ry(v)) as follows:

R(v) := �(v ·r)v +
1

Re
�v

or, equivalently, ⇢
Rx(v) = �(v ·r)vx +

1
Re
�vx

Ry(v) = �(v ·r)vy +
1
Re
�vy

(3.3)

Bearing in mind that each of the components of the velocity is defined in a di↵erent
staggered mesh (see Figure 3.2), then it becomes clear from Equation 3.3 that so will
happen with the components of R(v). Hence, we will assume that the value of Rx(v)
at a certain point of the x-staggered mesh is equal to its integral across that particular
control volume.

Thus, for the horizontal component of R(v) we have that
Z

V

Rx(v)dV =

Z

V

✓
�(v ·r)vx +

1

Re
�vx

◆
dV

=�
Z

V

r · (vvx)dV +
1

Re

Z

V

r · (rvx)dV

=�
I

@V

vxv · n̂dS +
1

Re
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rvx · n̂dS
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Furthermore, taking into account the structure of the mesh that we are considering
(see Figure 3.2), we could make the following approximation:
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and proceeding identically but with for the vertical component of R(v), we reach the
following result:
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Therefore, if we develop the summations across the northern, southern, eastern
and western faces and approximate all derivatives, we can conclude that:
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where vxF
and vyF denote the velocity of the neighbour that is closest following the

direction perpendicular to the face f , vxf
and vyf denote the velocities at the corre-

sponding faces of the control volume obtained by means of a linear interpolation, while
v
⇤
xf

and v
⇤
yf

denote the same velocities but calculated using any schema one may chose,
such as central di↵erence, upwind, exponential... In our case, we have considered the
upwind schema.

Evaluation of the predictor velocity, vp

The evaluation of the predictor velocity turns out to be rather simple. It is defined as:

vp := vn +�t
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or, equivalently, ⇢
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Therefore, when the vector field R(vn) is known at the previous and current in-
stants of time, then the predictor velocity immediately follows.
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Solution of the equation of Poisson for the pseudo-pressure

When the current predictor velocity is known, it is possible to calculate the pseudo-
pressure, p̃ := p�t, by solving the following Posson equation:

�p̃ = r · vp (3.5)

Thus, integrating it across any of the control volumes we have:
Z
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r ·rp̃dV =

Z

V

r · vp
dV (3.6)

and applying the divergence theorem,
I

@V

rp̃ · n̂dS =
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@V

vp · n̂dS (3.7)

Finally, bearing in mind the structure of the regular mesh that we are considering, we
can approximate Equation 3.7 to the following equality:
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Therefore,
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Thus, we can easily reached the final discretized equation to solve the equation of
Poisson of the pseudo-pressure:

aP p̃ = aN p̃N + aS p̃S + aE p̃E + aW p̃W + b,

where
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Calculation of the velocity at the following time-step

This final step results quite simple, given that we just have to calculate the new com-
ponents of the velocity (at its related staggered mesh) using the following expression:

vn+1 = vp �rp̃ (3.9)

or, equivalently, ⇢
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3.1.3 Boundary Conditions

Hence, we have just completed the review of the FSM detailing all of its calculations.
Now, in order to run the simulation of the lid-driven cavity problem, we just need
to implement this procedure in a C++ program conveniently applying all boundary
conditions (velocities at the borders of the cavity). Let us now detail the application
of these boundary conditions.

As presented in Figure 3.1, all boundary conditions that we are given are the
velocities of the fluid at the borders of the cavity (see Table 3.1). On the other side,
let us note that we are going to assume that the fluid is immobile throughout the
cavity at the initial instant of time (this hypothesis does not have any impact on the
results that we aim, given that we are only interested in the final stationary state).

Table 3.1: Summary of the boundary conditions at the borders of the square cavity.

Border vx vy

Top v0 0
Bottom 0 0
Right 0 0
Left 0 0

In order to illustrate the implementation of these boundary conditions into our
algorithm, let us study the successive steps of the calculation separately.

Evaluation of R(v)

As we have already seen, we have that:
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(3.11)

Rx(v) will be clearly calculated at the x-staggered mesh and Ry(v) at the y-staggered
mesh. Therefore, it becomes clear that given a finite volume such that any of its
faces lies on a wall of the cavity, then the velocity at that face will be equal to the
corresponding value of Table 3.1. Figure 3.3 shows an example of this applied to the
upper border of the cavity (the rest of borders are totally analogous).
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Figure 3.3: Schema of the boundary condition at the top border for Rx(v).

Evaluation of the predictor velocity, vp

In Section 3.1.1, two di↵erent staggered meshes have been defined. Additionally each of
the components of vectors v, R(v) and vp are calculated in its related staggered mesh.
Thus, given the definition of these meshes and the boundary conditions summarized
in Table 3.1, we will have that:

⇢
v
p

x
= 0, if the point lies at the right or left borders of the cavity,

v
p

y
= 0, if the point lies at the upper or lower borders of the cavity.

Solution of the equation of Poisson for the pseudo-pressure

In the calculation of the pseudo-pressure, boundary conditions are applied to the coef-
ficients of the discretized equations resulting from the Poisson equation. In particular,
all coe�cients related to a face that lies on a wall of the cavity, will be equal to zero.
For example, if a point has its northern face lying on the upper border of the cavity,
then aN = 0.

Calculation of the velocity at the following time-step

Rather trivially, in the calculation of the velocity at the following time-step, we will
just have to proceed exactly as we did with the predictor velocity, i.e., applying the
following:

⇢
v
n+1
x

= 0, if the point lies at the right or left borders of the cavity,
v
n+1
y

= 0, if the point lies at the upper or lower borders of the cavity.
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3.2 Results

Finally, we have created a C++ program that runs all the calculations defined so far
and adapts them to the lid-driven cavity problem arising from a given value of v0 and
Re.

In the images below, there can be found the pseudo-pressure corresponding to
the stationary state of the lid-driven cavity problem (considering di↵erent boundary
conditions and meshes). The criterion used to decide whether a certain system has
reached the stationary state is:

max
P2Mesh

⇢
v
n+1
xP

� v
n
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,
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Figure 3.4: Distribution of the pseudo-pressure, p̃, throughout the cavity at the sta-
tionary state for di↵erent values of the Reynolds number. Results obtained using a
regular square mesh such that nx = ny = 100.

Additionally, the velocity fields corresponding to di↵erent values of Re, result into
the following distributions:
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Figure 3.5: Distribution of the velocity throughout the material at the stationary
state for di↵erent Reynolds number. Results obtained with nx = ny = 100 and
v0 = ⇢ = µ = Lx = Ly = 1.0.



Chapter 4

Di↵erentially heated cavity

In this chapter, we are going to simulate the natural convection of an incompressible
fluid. More concretely, we will simulate the dynamics and heat transference of an
incompressible two-dimensional fluid enclosed in a square cavity such as the one shown
in Figure 4.1.

Figure 4.1: Diagram summarizing the boundary conditions corresponding to a
di↵erentially-heated cavity.

In order to complete this task, we will have to use numerical methods to solve the
following set of partial di↵erential equations:

Incompressible Continuity Equation. r · v = 0

Momentum Equations.
@v

@t
+ (v ·r)v = � 1

⇢0
rp+

µ0

⇢0
�v + (1� �0(T � T0))g

Energy Equation.
@T

@t
+ v ·rT = ↵�T

Moreover, we are going to derive a slightly modified version of the FSM presented
in Chapter 3, with the aim of implementing a C++ program that solves numerically
a non-dimensional version of the continuity, momentum and energy equations. Addi-
tionally, the results obtained by our simulation will be validated with the bench mark
provided by G. de Vahl Davis and I.P. Jones in [5, 6].
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4.1 Discretization

Exactly as we did in Chapter 3, we will consider 3 meshes, the standard one shown in
Figure 0.1 and two additional staggered meshes as the ones presented in Section 3.1.1.

As has been advanced, we will deal with a non-dimensional version of continuity,
momentum and energy equations, in order to reach simpler and more general results. It
is worth to mention that we are going to make use of the approximation of Boussinesq
to simplify the e↵ects of gravity on the fluid.

Obtaining the equivalent non-dimensional set of equations is as straightforward as
applying to the governing equations the changes of variables shown in Table 4.1.

Table 4.1: Definition of non-dimensional variables..

Variable Non-dimensional equivalent
Position x̃ = x

L
, ỹ = y

L

Velocity ṽx = vx

v0
, ṽy =

vy

v0
, where v0 = ↵/L

Time t̃ = t

L/v0

Temperature T̃ = T�TCold

THot�TCold

Pressure p̃ = p

⇢v20

After doing so, the following equations are reached:

r · ṽ = 0 (4.1)

@ṽ

@ t̃
+ (ṽ · r̃)ṽ = �r̃p̃+ Pr�̃ṽ +RaPrT̃z (4.2)

@T̃

@ t̃
+ ṽ · r̃T̃ = �̃T̃ (4.3)

where Prandtl number, Pr = Cpµ

k
, and Rayleigh number, Ra = g��TL

3

⌫↵
, are used.

Hence, we are finally ready to describe the numerical methods applied to solve
equations 4.1, 4.2 and 4.3. In fact, energy and momentum equations are going to be
solved separately. On one side, energy equation will be treated exactly as proposed
in [1]. However, momentum equation will be solved using a slightly modified version of
the FSM presented in [4]. Thus, we are only going to detail the derivation of this FSM
applied to the non-dimensional momentum equation arising from a two-dimensional
flow under the Boussinesq approximation.

In order to avoid using an unnecessarily overcomplicated notation, from now and
until the end of this chapter, we are going to identify non-dimensional variables exactly
as its primitive analogues, i.e., we are going to avoid all tildes and systematically refer
to non-dimensional variables (even if it is not explicitly noted).

4.1.1 Fractional step method

FSM is based on the Helmholtz-Hodge decomposition theorem, which will be used
to uniquely project vectors into two orthogonal subspaces: a divergence-free one and
another corresponding to pure gradient fields.
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Let us define a linear operator ⇧ that projects vector fields onto divergence-free
subspaces or, equivalently, such that given any vector field a, then r · ⇧(a) = 0.
Throughout this section, two properties of ⇧ are going to be used:

Proposition 1. If a vector field a satisfies that r · a = 0, then ⇧(a) = a.

Proposition 2. Given any scalar field �, then ⇧(r�) = 0.

Hence, two immediate consequences arising from these properties can be stated.
On the one side, we can assert from Proposition 1 that:

⇧(rp) = 0.

On the other side, bearing in mind the incompressibility of the flow and recalling
Proposition 2, we can a�rm that:

⇧

✓
@v

@t

◆
=

@v

@t
. (4.4)

Thus, linearity of ⇧ allows us to conclude that:

⇧

✓
@v

@t
+rp

◆
=

@v

@t
. (4.5)

Additionally, applying ⇧ to both sides of Equation 4.2 and making use of equations
4.4 and 4.5 leads us to:

@v

@t
= ⇧ (�(v ·r)v + Pr�v +RaPrTz) . (4.6)

Finally, Equation 4.6 can be substituted into Equation 4.2 as follows:

@v

@t
= �rp+R(v), (4.7)

where
R(v) := �(v ·r)v + Pr�v +RaPrTz. (4.8)

In spite of the fact that compared to the FSM presented in Chapter 3 we are using
a slightly di↵erent expression for R(v) (see Equation 4.8), the remaining mathematical
deduction of the method totally coincides with the one presented before. Thus, we are
not going to rewrite its details, but will just summarize its application in the following
subsection.

Hence, as we have just seen, FSM can be summarized into the following steps:

1. Evaluate the vector R(v) := �(v ·r)v + Pr�v +RaPrTz

2. Evaluate the predictor velocity, vp := vn +�t
�
3
2R(vn)� 1

2R(vn�1)
�

3. Evaluate r ·vp and solve the equation of Poisson �p̄ = r ·vp, in order to obtain
the distribution of the field p̄

4. Obtain the velocity of the following instant of time as vn+1 = vp �rp̄

Let us explain in the following sections how are we going to complete each of these
steps by means of the FVM.
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Evaluation of R(v)

As we have already said, we will define a vector field R(v) = (Rx(v), Ry(v)) as follows:

R(v) := �(v ·r)v + Pr�v +RaPrTz

or, equivalently, ⇢
Rx(v) = �(v ·r)vx + Pr�vx

Ry(v) = �(v ·r)vy + Pr�vy +RaPrT
(4.9)

Bearing in mind that each of the components of the velocity is defined in a di↵erent
staggered mesh (see Figure 3.2), then it becomes clear from Equation 4.9 that so will
happen with the components of R(v). Hence, we will assume that the value of Rx(v)
at a certain point of the x-staggered mesh is equal to its integral across that particular
control volume.

Thus, for the vertical component of R(v) we have that
Z

V

Ry(v)dV =

Z

V

(�(v ·r)vy + Pr�vy +RaPrT ) dV

=�
Z

V

r · (vvy)dV + Pr

Z

V

r · (rvy)dV +RaPrT

Z

V

1 · dV

=�
I

@V

vyv · ndS + Pr

I

�V

rvy · ndS +RaPrTV

Furthermore, taking into account the structure of the mesh that we are considering
(see Figure 3.2), we could make the following approximation:

Z

V

Ry(v)dV '
X

f2F (@V )

 
�vyf

�
vxf

, vyf

�✓nxf

nyf

◆
Sf + Pr

 
@vy

@x

����
f

,
@vy

@y

����
f

!✓
nxf

nyf

◆
Sf

!

+RaPrT�x�y

and proceeding identically but with for the horizontal component of R(v), we reach
the following result:

Z

V

Rx(v)dV '
X

f2F (@V )

 
�vxf

�
vxf

, vyf

�✓nxf

nyf

◆
Sf + Pr

 
@vx

@x

����
f

,
@vx

@y

����
f

!✓
nxf

nyf

◆
Sf

!

Therefore, if we develop the summations across the northern, southern, eastern
and western faces and approximate all derivatives, we can conclude that:

RxP
(v) = �v

⇤
xn
vyn�x+ Pr

vxN
� vxP

�yN
�x+ v

⇤
xs
vys�x+ Pr

vxS
� vxP

�yS
�x

�v
⇤
xe
vxe

�y + Pr
vxE

� vxP

�xE

�y + v
⇤
xw
vxw

�y + Pr
vxW

� vxP

�xW

�y

and

RyP
(v) = �v

⇤
yn
vyn�x+ Pr

vyN � vyP

�yN
�x+ v

⇤
ys
vys�x+ Pr

vyS � vyP

�yS
�x

�v
⇤
ye
vxe

�y + Pr
vyE � vyP

�xE

�y + v
⇤
yw
vxw

�y + Pr
vyW � vyP

�xW

�y

+RaPrT�x�y
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where vxF
and vyF denote the velocity of the neighbour that is closest following the

direction perpendicular to the face f , vxf
and vyf denote the velocities at the corre-

sponding faces of the control volume obtained by means of a linear interpolation, while
v
⇤
xf

and v
⇤
yf

denote the same velocities but calculated using any schema one may chose,
such as central di↵erence, upwind, exponential... In our case, we have considered the
upwind schema.

Evaluation of the predictor velocity, vp

The evaluation of the predictor velocity turns out to be rather simple. It is defined as:

vp := vn +�t

✓
3

2
R(vn)� 1

2
R(vn�1)

◆

or, equivalently, ⇢
v
p

x
= v

n

x
+�t

�
3
2Rx(vn)� 1

2Rx(vn�1)
�

v
p

y
= v

n

y
+�t

�
3
2Ry(vn)� 1

2Ry(vn�1)
� (4.10)

Therefore, when the vector field R(vn) is known at the previous and current in-
stants of time, then the predictor velocity immediately follows.

Solution of the equation of Poisson for the pseudo-pressure

When the current predictor velocity is known, it is possible to calculate the pseudo-
pressure, p̄ := p�t, by solving the following Posson equation:

�p̄ = r · vp

Thus, integrating it across any of the control volumes we have:
Z

V

r ·rp̄dV =

Z

V

r · vp
dV (4.11)

and applying the divergence theorem,
I

@V

rp̄ · ndS =

I

@V

vp · ndS (4.12)

Finally, bearing in mind the structure of the regular mesh that we are considering, we
can approximate Equation 4.12 to the following equality:

X

f2F (@V )

 
@p̄

@x

����
f

,
@p̄

@y

����
f

!✓
nxf

nyf

◆
Sf '

X

f2F (@V )

⇣
v
p

xf
, v

p

yf

⌘✓
nxf

nyf

◆
Sf (4.13)

Therefore,

p̄N � p̄P

�yN
�x+

p̄S � p̄P

�yS
�x+

p̄E � p̄P

�xE

�y+
p̄W � p̄P

�xW

�y = v
p

yN
�x�v

p

yS
�x+v

p

xE
�y�v

p

xW
�y

Thus, we can easily reached the final discretized equation to solve the equation of
Poisson of the pseudo-pressure:

aP p̄ = aN p̄N + aS p̄S + aE p̄E + aW p̄W + b,
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where
aN = �x/�yN

aS = �x/�yS

aE = �y/�xE

aW = �y/�xW

aP = aN + aS + aE + aW

b = �x(�v
p

yN
+ v

p

yS
) +�y(�v

p

xE
y + v

p

xW
)

Calculation of the velocity at the following time-step

This final step results quite simple, given that we just have to calculate the new com-
ponents of the velocity (at its related staggered mesh) using the following expression:

vn+1 = vp �rp̄

or, equivalently, ⇢
u
n+1
x

= v
p

x
� @p̄/@x

u
n+1
y

= v
p

y
� @p̄/@y

Hence, we have just completed the review of the FSM detailing all of its calcula-
tions. Now, in order to run the simulation of the di↵erentially heated cavity problem,
we just need to implement this procedure in a C++ program conveniently applying all
boundary conditions (velocities and temperatures at the borders of the cavity). The
application of these boundary conditions will be studied in the following section.
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4.2 Results

Finally, we have created a C++ program that runs all the calculations defined so far
and adapts them to the di↵erentially heated problem arising from a given value of Pr

and Ra.
In the images below, there can be found the distributions of temperature and

velocities corresponding to the stationary states of several di↵erentially heated cavities
obtained using Pr = 0.71 (air) and Ra 2 {103, 104, 105, 106}. The criterion used to
decide whether a certain system has reached the stationary state is:

max
P2Mesh

⇢
u
n+1
xP

� u
n

xP

�t
,
u
n+1
yP

� u
n

yP

�t
,
T
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(d) Ra = 106

Figure 4.2: Distribution of the non-dimensional temperature throughout the cavity
for di↵erent values of the Rayleigh number. Results obtained with Pr = 0.71 and
nx = ny = 51.

Additionally, the velocity fields corresponding to di↵erent meshes (either finer or
coarser) and di↵erent values of Re, result into the following distributions:
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Figure 4.3: Distribution of the non-dimensional horizontal velocity throughout the
cavity for di↵erent values of the Rayleigh number. Results obtained with Pr = 0.71
and nx = ny = 51.
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Figure 4.4: Distribution of the non-dimensional vertical velocity throughout the cavity
for di↵erent values of the Rayleigh number. Results obtained with Pr = 0.71 and
nx = ny = 51.



Chapter 5

Burgers equation

Given the extremely high computational cost of directly numerically simulate turbu-
lence resolving Navier-Stokes equation, there has been proposed a simplified model
that shares many of its properties. Thus, resolving it may be an interesting first step
to tackle turbulence. We are talking about Burgers equation, which will be introduced,
discretized and resolved by means of spectral and pseudo-spectral methods.

Hence, Burgers equation can be naturally obtained as a simplification If we consider
the non-dimensional Navier-Stokes equation,

@v

@t
+ (v ·r)v =

1

Re
�v �rp, where Re =

⇢V0L

µ
, (5.1)

we can easily reach Burgers equation substituting the gradient of pressure by a forcing
term, f , as follows:

@v

@t
+ (v ·r)v =

1

Re
�v + f (5.2)

The aim of this chapter is to present the ressolution of the one and two-dimensional
Burgers equation. However, di↵erently to what we did in the preceding cases, we are
going to make use of spectral and pseudo-spectral numerical methods, which are based
on the utilization of Fourier transforms in order to optimize the calculations.

When it comes to the derivation of the spectral methods, our work will be based
on the results obtained in [7]. However, in the implementation of pseudo-spectral
methods we have deducted its expression and implemented it by means of the open-
source library FFTW (see [9]), which calculates Fourier transforms using a highly
e�cient algorithm. Additionally, de-aliasing techniques have been implemented for
the pseudo-spectral methods taking care of the remarks made by F. Lu in [8].
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5.1 Discretization

In order to simplify the presentation of the discretization applied to the Burgers equa-
tion, we are just going to detail the one-dimensional case and, once it has been finished,
make some comments relative to the general one.

Hence, we will work with the following PDE to simulate a one-dimensional ”tur-
bulent” motion:

@u

@t
+ u

@u

@x
=

1

Re

@
2
u

@x2
+ f (5.3)

Following the spectral method presented in [7], we will start applying a discrete
Fourier decomposition to the velocity function, leading to the following approximation:

u(x, t) =
X

�1k1

ûk(t)e
ikx '

k=NX

k=�N

ûk(t)e
ikx

, where ûk(t) 2 C (5.4)

Obviously, the greater N is considered, the better solution (implying a higher
computational cost) is achieved. From the approximation of Equation 5.4, it results
straightforward to reach a version of the Burgers equation in the Fourier space by
rewriting Equation 5.3 as:

k=NX

k=�N

dûk

dt
e
ikx +

 
k=NX

k=�N

ûke
ikx

!
·
 

k=NX

k=�N

ikûke
ikx

!
=

�1

Re

k=NX

k=�N

k
2
ûke

ikx +
k=NX

k=�N

Fke
ikx

(5.5)
or, alternatively,

dûk

dt
+

X

p+q=k

ûpiqûq =
�1

Re
k
2
ûk + Fk, where k 2 {�N, ..., N} (5.6)

In this point, let us make two important comments:

1. As u(x, t) 2 R and ûk(t) 2 C, then:

ûk(t) = û�k(t) 8k 2 C

which represents an important property in terms of e�ciency, given that we will
only need to compute half of the Fourier coe�cients, ûk, and the other half will
be immediately obtained by calculating their complex conjugate. Additionally,
this property also results into an easier and faster way of obtaining the physical
velocity:

u(x, t) '
k=NX

k=�N

ûk(t)e
ikx = û0(t) +

k=NX

k=1

2Re
�
ûk(t)e

ikx
�

(5.7)

2. All along the previous chapters, we have imposed all boundary conditions in
a direct and physically meaningful manner. However, as we are now going to
run practically all the calculations in the Fourier space, this aspect may become
rather fuzzy. More concretely, boundary conditions will be imposed by means
of the forcing term a↵ecting directly the Fourier coe�cients and, implicitly, all
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physical quantities. In particular, we are going to impose the following “bound-
ary conditions”:

Fk =

⇢ P
p+q=k

ûpiqûq +
1
Re
k
2
ûk if k = 1

0 otherwise
(5.8)

Note that this definition implies that:

dû1

dt
= 0 =) û1 ⌘ ct.

Going back to Equation 5.6 and integrating it over a certain time-step �t gives:

Z

�t

dûk

dt
dt =

Z

�t

 
�

X

p+q=k

ûpiqûq �
1

Re
k
2
ûk + Fk

!
dt

and, considering a fully explicit scheme together with Equation 5.8, we can reach the
following expression:

û
n+1
k

=

⇢
ûk if k = 1
ûk

�
1� �t

Re
k
2
�
��t ˆConvk otherwise

(5.9)

where the convective term satisfies the following:

ˆConvk =
X

p+q=k

ûpiqûq

Finally, let us extend all the preceding results to the general Burgers equation. In
that case, Equation 5.4 becomes:

v(x, t) '
X

kkkN

ûk(t)e
ik·r (5.10)

Equation 5.6:

dûk

dt
+ ˆConvk = �kkk2

Re
ûk + Fk, where kkk  N (5.11)

with:
ˆConvk =

X

p+q=k

(ûp · iq) ûq

and Equation 5.9 results into:

ûn+1
k =

⇢
ûk if kkk 2 [0.5, 1.5)
ûk

�
1� �t

Re
kkk2

�
��t ˆConvk otherwise

(5.12)
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Spectral resolution

The recursive application of Equation 5.12 represents a fully explicit algorithm that,
given Re and ûk(t = 0), would allow us to obtain the distribution of Fourier coe�cients
and physical velocities of the system at the stationary state. As all the calculations
take place in the Fourier space, this methods are known as spectral.

In spite of its simplicity, this resolution strategy is not perfect, given that the
computation of the convective term may result very heavy depending on the dimension
of the case being studied. It is enough to have a look at its expression to realize it:

ˆConvk =

8
<

:

P
p+q=k

ûpiqûq 1DP
p1+q1=k1

P
p2+q2=k2

(ûp · iq) ûq 2DP
p1+q1=k1

P
p2+q2=k2

P
p3+q3=k3

(ûp · iq) ûq 3D
(5.13)

Consequently, the application of spectral methods would be really poor in terms of
computational cost if the dimension is higher than one, given that the summation
involved in the convective term becomes bigger and bigger.

Pseudo-spectral resolution

As has just been seen, the application of spectral methods may lead to really high
computational cost, specially if high accuracy is sought. In order to overcome this sit-
uation, there has also been implemented a slight modification of the spectral methods
known as pseudo-spectral.

The main idea of the pseudo-spectral method that we have utilized consists of
calculating the convective term in the physical space, skipping the heavy summations
of Equation 5.13. Therefore, it will be calculated as usual:

Conv = (v ·r)v

When it comes to the spatial partial derivatives involved in the convective term,
they could be approximated in the physical space making use of the approximations
explained in Part I. However, it is possible to obtain a higher accuracy taking advantage
of Fourier coe�cients and applying the following equalities:

ˆ✓
@v

@rµ

◆

k

= ikµûk, where µ 2 {1, 2, 3}

One final remark to be made is that, as explained in [8], in order to avoid aliasing
errors arising from the non-linearity of the convective term, there has been applied
the 3/2-rule, which consists of working with a 3/2 times finer mesh than desired.
Additionally, there will be set to zero all the Fourier coe�cients such that any of the
components of its frequency, k, lies within the interval (N, 3N/2]. This action will
prevent any aliasing error coming from the products made in the physical space to
calculate the convective term.

As a summary of this method, a diagram summarizing its steps per cycle may be
found in Figure 5.1.
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Fourier space Physical space

ûk
// v

ˆ✓
@v

@rµ

◆

k

de-alising
//

@v

@rµ

✏✏

ˆConvk

OO

Conv = (v ·r)voo

Figure 5.1: Diagram showing the steps to be followed recursively in the resolution,
using pseudo-spectral methods, of Burgers equation.
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5.2 Results

In this section there will be shown some particular results arising from the implemen-
tation of the algorithm developed so far and applied to the one and two-dimensional
cases. All results assume the following initial distribution of the Fourier coe�cients:

ûk(t = 0) =

8
<

:

0 if k = 0

1/kkk otherwise
(5.14)

We will now show the results obtained with two di↵erent type of implementations.
First two subsections will deal with one and two-dimensional Burgers equation resolved
using spectral methods, i.e., implementing Equation 5.12. On the other side, last
subsection will present the results of the two-dimensional case resolved by means of
pseudo-spectral methods, which represent an improvement in e�ciency and will be
properly detailed there.

1D Burgers Equation

First of all, let us show the periodic distribution of the velocity for di↵erent values of N .
As is clearly seen in Figure 5.2, too low values of N leave to inaccurate approximations
of the physical velocity, which is quite obvious bearing in mind the approximation made
in Equation 5.4.

Figure 5.2: Distribution of the velocity energy in terms of the position for di↵erent
values of N . Results obtained using Re = 40.

A really interesting phenomenon related to turbulence consists on the transport of
energy from small frequencies to the high ones or, equivalently, from large scales to
small scales, where energy is dissipated. This results into what is called energy cascade
(see Figure 5.3) and somehow implies that, in order to reach reasonable results, N
needs to be small enough so that the energy gets dissipated realistically.

With the aim of illustrating this behavior, kinetic energy (Ek = ûkûk) has been
plotted in Figure 5.3, clearly showing the energy cascade and the importance of con-
sidering a proper value of N , even if this has a negative impact on the computational
cost of the simulation.
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Figure 5.3: Distribution of kinetic energy in terms of the frequency for di↵erent values
of N . Results obtained using Re = 40.

It is also interesting to see the impact of considering di↵erent Reynolds numbers
on the results. One could think that it is enough to take N = 100, given that, as can
be seen in Figures 5.2 and 5.3, the results are totally accurate regarding our purposes.
However, a higher value of Re implies a need for considering smaller scales, i.e. bigger
values of N , in order to reach the same accuracy. This fact is clearly shown in Figure
5.3, where Re > 40 and N = 100 leads to totally unrealistic results, whereas Re < 40
and N = 100 represents an unnecessarily high resolution.

Precisely for this, the cost of running a DNS (direct numerical simulation) for high
values of Re easily degenerates into an una↵ordable computing cost.

As a final conclusion, it is interesting to note that from all these questions arises the
need for modelling small scales (among other strategies) in order to reach reasonable
results in reasonable times.

(a) Re = 10 (b) Re = 40
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(c) Re = 100 (d) Re = 400

(e) Re = 1000

Figure 5.3: Energy cascades corresponding to di↵erent values of Re. Results obtained
using N = 100.

2D Burgers Equation

In order to compare the huge di↵erences in terms of e�ciency between spectral and
pseudo-spectral methods, we have run the same case with both implementations, reach-
ing totally conclusive results. It is worth to emphasize that the simulation based on
pseudo-spectral methods makes use of the FFTW library (see [9]), which is highly
optimized and allows us to reach an even higher performance.

Hence, the results of comparing the execution time per iteration for di↵erent meshes
has been summarized in Table 5.1. As expected, higher meshes (implying heavier
computations) imply higher di↵erences in performance.

Finally, energy cascades have been plotted for each implementation in Figure 5.4.
The same results as for the one-dimensional case have been obtained. In this cases
kinetic energy has been calculated as follows:

Ek =
X

kkk2[k�0.5,k+0.5)

ûkûk, where k 2 {0, · · · , N}
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N Spectral method Pseudo-spectral method
10 9.27ms 0.151ms
20 140ms 0.894ms
30 688ms 0.981ms
50 5.17s 9.54ms
100 80.1s 22.2ms

Table 5.1: Comparison of the execution time per iteration depending on the method
being used.Results obtained normalizing the times corresponding to 100 iterations.
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(g) Pseudo-spectral method

Figure 5.4: Distribution of kinetic energy in terms of the frequency for di↵erent values
of N . Results obtained using Re = 10.



Chapter 6

Homogeneous Isotropic Turbulence

This chapter contains the last simulation that has been developed. More concretely, we
are going to solve Navier-Stokes equation and study the phenomenon of homogeneous
isotropic turbulence. In spite of the fact that the complexity of this case is considerably
high, we will take advantage of the results obtained all along chapters 3, 4 and 5.

Our aim will consist of simulating periodic solutions of Navier-Stokes equation.
These simulations will be implemented together with a turbulence model that will im-
prove the solutions obtained with coarse meshes (compensating the lack of dissipation
associated to smaller scales).

In particular, we will implement the Smagorinsky-Lilly model as presented in [11–
13]. Additionally, we will adapt our code to study the decay of isotropic turbulence
when no energy is being injected to the system and use the bench marks presented by
A. A. Wray in [14] (case HOM02) to validate our program and adjust the constants
of the turbulence model to that case. Finally, if the reader is not familiar with tensor
operations, revising the summary presented in [10] may be very helpful.

64
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6.1 Discretization

Incompressible Navier-Stokes equation in primitive variables reads:

@v

@t
+ (v ·r)v = �1

⇢
rp+ ⌫�v (6.1)

Large-eddy simulations (from now on LES) arise from filtering Equation 6.1 using a
spatial filter of a certain characteristic length � (we will use � = 3

p
VCV ). Thus, velocity

is split into two components: filtered (v̄) and sub-filtered (v0) velocities. Thus,

v = v̄ + v0 (6.2)

Following the development of LES models made in [11], applying the filtered decom-
position of Equation 6.2 results into the following modified version of the Navier-Stokes
equation:

@v̄

@t
+ (v̄ ·r)v̄ = �1

⇢
rp̄+ ⌫�v̄ �r · ⌧(v̄) (6.3)

where ⌧(v̄) is referred as subgrid-stress tensor and, under the eddy-viscosity assump-
tion, satisfies:

⌧(v̄) ' �2⌫eS(v̄), where

⇢
Eddy-viscosity: ⌫e

Rate-of-strain tensor: S(v̄) = 1/2 (rv̄ +rv̄t))
(6.4)

Additionally, if we consider the Smagorinsky model, then we can assert that:

⌫e = (CS�)
2 |S(v̄)| , where |S(v̄)| =

p
(2S : S) (6.5)

where the Smagorinsky constant, CS, should be tuned adequately (bearing in mind
that, theoretically, CS ' 0.17).

Bearing in mind the development of the FSM done in chapters 3 and 4, one could
easily realize that the predictor velocity that was being calculated there coincides with
the velocity obtained resolving the Burgers equation as in Chapter 5 (for the periodic
solution). Therefore, both methods could be combined to find the periodic solution of
Equation 6.3.

It is worth to mention that, in the current case, the method detailed in Chapter 5
should be reformulated in order to include the modifications due to the application of
the LES model. Additionally, in spite of the fact that throughout this chapter we will
be dealing with the filtered velocity v̄, we will refer to it as v in order to simplify all
notations. Thus, the recursive formula to obtain the predictor velocity (in the Fourier
space) would be:

ûp

k = ûk

✓
1� �t

Re
kkk2

◆
��t ˆConvk �r · ⌧k(v) (6.6)

where ûp

k refers to the predictor velocity of the FSM and the divergence of the subgrid-
stress tensor could be understood as playing the role of the forcing term.

In this point, predictor velocity should be projected to a divergence-free subspace.
Similarly to what we had in Equation 3.5, in the Fourier space we would have:

� ˆ̃pk = r · ûp

k (6.7)



6.1. Discretization 66

which could easily be resolved, leading to:

ˆ̃pk = �i
k · ûp

k

kkk2
, for a given Fourier frequency k (6.8)

and, consequently,

r ˆ̃p '
X

kkkN

ik ˆ̃pke
ik·r =

X

kkkN

k · ûp

k

kkk2
keik·r =

X

kkkN

kt · k
kkk2

ûp

ke
ik·r (6.9)

therefore, the analogue of Equation 3.9 would be:

ûn+1
k = ûp

k �r ˆ̃pk (6.10)

and, combined with Equation 6.9,

ûn+1
k =

✓
I� kt · k

kkk2

◆
ûp

k (6.11)

where

✓
I� kt · k

kkk2

◆
plays the role of a projector to a divergence-free subspace.
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6.2 Results

The implementation of all the formalism introduced in the last subsection has been
implemented in two and three dimensions, leading to totally coherent results. However,
in order to validate definitively our results, it may be interesting to contrast with a
dataset obtained from literature.

With this aim, we have used the results provided in [14]. More concretely, we have
loaded an initial set of velocities which corresponded to a case of isotropic turbulence.
Then, we have let it evolve in absence of any injection of energy and, finally, we have
stored its energy distribution at time t ' 0.494s. Finally, its correspondence with the
given dataset has been checked using N = 30 for di↵erent values of CS, which, as we
said, should take a theoretical value equal to 0.17, even though it normally goes down
to values around 0.11.

E↵ectively, these cases has been plotted in Figure 6.1, leading to the conclusion
that the best value for CS is 0.11, given that it adds the perfect amount of extra
viscosity, dissipating the exact amount of kinetic energy.
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CS=0.13
CS=0.12
CS=0.11
CS=0.10
CS=0.09

Figure 6.1: Distribution of kinetic energy in terms of the frequency for di↵erent values
of CS and compared to the benchmark (WRAY). Results obtained using N = 30 and
⌫ = 3.283e� 4.

Let us also note that, as three-dimensional isotropic turbulence is already a rather
heavy case, we have implemented it in two ways, sequentially and in parallel. Its
parallel version makes use of the libraryMessage passing interface (MPI), which allows
us to run the code by several CPUs concurrently, reducing significantly the total
execution time. However, it has to be parallelized wisely, given that MPI is based on
communications between processors. Therefore, too many communications could have
a worse e↵ect than running the program sequentially. In Table 6.1, there can be found
a comparison of execution times per iteration for di↵erent implementations run with
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the same computer.

N Sequential code 2 CPUs 3 CPUs 4 CPUs
10 17.2ms 12.6ms 11.6.ms 9.16.ms
20 227ms 163ms 121ms 109ms
30 313ms 333ms 340ms 341ms
50 4.67s 3.29s 4.28s 2.20s

Table 6.1: Comparison of the execution time per iteration depending on the method
being used. Results obtained normalizing the times corresponding to 30 iterations.



Part III

Concluding remarks
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Conclusions

After the study of these six cases of fluid dynamics and heat transfer, the potential
utility of CFD to a wide range of sectors will, for sure, have become completely obvious
to any reader. For example, it would make possible to avoid expensive and inaccurate
experimental tests in the industrial sector, or it would enrich the knowledge that one
may have about any sort of device where heat transfer may play a role.

However, considering our results, we can conclude that not only accuracy is decisive
for a successful application of CFD, but also e�ciency and performance (one just needs
to remember the execution times of spectral versus pseudo-spectral methods).

On the one side, lower execution times would increase the range of applications of
the simulations to fields where almost real-time results are needed. On the other side,
this would also suppose lower power consumptions.

Precisely for the huge range of applications of CFD, saving as much computation
power as possible has become a necessity in order to lower its indirect but more than
considerable environmental impact.

Therefore, under these assumptions it makes a lot of sense to focus future research
on the optimization of iterative codes such as the ones involved in CFD. More con-
cretely, it would be really interesting to work in two complementary directions: firstly,
looking for better discretizations and resolution methods and, secondly, adapting the
simulations to parallel computing and optimizing them to the last and most e�cient
architectures.
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