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ABSTRACT 

In this work, a dynamic model describing volatile organic compounds abatement and the 

corresponding biomass accumulation is developed, calibrated and validated. The 

mathematical model is based on detailed mass balances which include the main processes 

involved in the system: advection, absorption, adsorption, diffusion, biodegradation and 

biomass growth. The model overcomes common assumptions considered in classical 

biofiltration models such as uniform, constant biomass distribution. The model was calibrated 

and validated using experimental data obtained from a biofilter packed with clay pellets 

during its operation from inoculation to clogging. The model was able to predict satisfactorily 

experimental data by calibrating only a minimum number of parameters such as the half-

saturation constant for toluene and the volumetric maximum growth rate of microorganisms. 

Kinetic parameters were fitted by means of an optimization routine using toluene 

concentration profiles along the bed height of the biofilter. A confidence interval for each 

parameter was calculated based on the Fisher Information Matrix procedure. The model was 

satisfactorily validated during the operation of the biofilter under different process conditions. 

Biomass accumulation permitted to predict macroscopic, critical operating parameters such as 

the pressure drop through the bed. The model may help predicting energy consumption 

requirements as well as biomass clogging episodes due to excessive biomass growth.  

Keywords: biomass growth, kinetic parameters estimation, modeling, toluene abatement, 

high loads, biofiltration.  
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1. INTRODUCTION 

 

Although biological gas treatment has become an effective and economical alternative to 

traditional systems, biofilter modeling has been scarcely developed due to the complexity of 

describing the fundamental processes and due to the lack of reliable physical, chemical and 

biological parameters. Although more than 200 experimental works focusing on VOCs 

biofiltration have been published in the last 5 years, less than 40 studies dealing with 

mathematical modeling of toluene removal by biofiltration can be found in literature in the 

same period of time. Amongst them, simple and complex models have been employed to 

model biofiltration under both steady-state and dynamic operating conditions [1-6]. Dynamic 

models are generally more interesting since they could serve to predict biofilters performance 

and for process control and optimization [7]. However, most dynamic models in biofiltration 

rarely incorporate biomass accumulation processes, even if experimental observations do not 

correspond with this common assumption. Instead, a constant and uniform biomass 

distribution is commonly assumed. Then, important scenarios in full-scale bioreactors 

operation such as bioreactors startup, starvation periods and clogging episodes are not well-

predicted if biomass accumulation processes are not considered in the model. In addition, 

since biomass density is strictly related with the availability and concentration of pollutant in 

the gas-phase, predicted results could differ significantly from experimental data in the case 

of calibration at low loads and operation at high pollutant loads.  

 

Several authors have addressed biomass growth and modeling from different approaches. 

Arcangeli and Arvin [8] modeled the biodegradation of toluene and the associated biofilm 

growth in a biodrum system (a cylinder rotating inside another with the biomass growing on 

the surface of the rotator and the stator). Alonso et al. [9] developed a model considering a 

homogeneous biomass for one type of microbial species attached to uniformly shaped solids 

expressing mass balance equations in spherical coordinates. However, parameters related with 

biomass growth, e.g. pressure drop, were not described by model predictions. Iliuta et al. [10] 

modeled toluene abatement to illustrate the consequences of excessive biomass formation. 

Kinetics for cell growth and substrate degradation were evaluated from a suspended cell 

culture and, then, assumed equal to those of the immobilized system. Recently, Vergara-

Fernandez et al. [11] focused on biological treatment of hydrophobic compounds by a specific 

fungi consortium. Their model describes the increase in the transport area by the growth of 
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the filamentous mycelia and the relation with n-hexane abatement. Alvarez-Hornos et al. [12] 

studied the modeling of a mixture of toluene and ethyl acetate in view of cross-inhibition 

between substrates. However, biofilm growth with time was assumed negligible although 

stratification of the biomass density in the axial direction was taken into account by means of 

an empirical expression [13].  

According to the stated above, the aim of this work is to contribute to the general 

understanding on how biomass growth can be modeled in a biofilter by means of simple 

expressions. A general dynamic biofiltration model for toluene as model pollutant describing 

biomass growth is developed, calibrated and validated. Mathematical equations are based on 

discretized mass balances taking into account the main chemical, physical and biological 

processes involved in the system. Previous experimental results obtained by Dorado et al. 

[14], in which high loads of toluene were treated by biofiltration from inoculation to clogging, 

were used in the present work as input data to calibrate and validate the model. A rigorous 

statistical test is used in order to assess the accuracy of model predictions. The model is aimed 

at predicting observable process variables such as biomass weight, pressure drop across the 

biofilter and toluene concentrations.  

 

2. MODEL DEVELOPMENT 

 

The model developed in the present study was built based on the previous model of Dorado et 

al. [15], which considers the most relevant phenomena occurring during the biofiltration 

process like advection, absorption, adsorption, diffusion and biodegradation. In the present 

model, biomass growth and its effect on those operational parameters commonly monitored in 

biofiltration (specially pressure drop) is included. Dynamic mass balances in the gas phase 

and within the biofilm including biomass growth serve to describe changes in the 

biodegradation capacity of the biofilter during operation, overcoming the limitations of most 

biofiltration models which assume a constant biomass concentration in space and/or in time.  

 

The reactor was divided into 3 different phases in which mass balances are applied: 1) a gas 

phase, where the pollutant is transported by advection; 2) a biofilm phase, where the pollutant 

is transferred from the gas phase and is biologically degraded, and 3) a solid phase made of 

packing material where biofilm grows and pollutant can be adsorbed. As biomass grows, the 
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biofilm thickness increases and fills the void volume of the bed at expenses of the gas phase, 

thus reducing the empty bed section for the air circulation. Therefore, bed porosity decreases 

along the biofilter operation, causing an increase in the system pressure drop.   

 

Important basic assumptions underlying the model are based on consolidated models reported 

in literature [5,6,15]. Specific assumptions were added to account with biomass growth 

modeling: 

 

(1) Biofilm is formed on the surface of the packing material. Model considers that biomass 

grows on the surface of the packing material covering all the pores, discounting 

micropores (aM), and forming a sphere whose area (a) is considered available for 

transferring the pollutant from the gas phase. Thus, biomass grows in the external 

surface and also in the internal macro pores of the packing material but only the external 

surface is available to transfer pollutant from the gas phase. Reactions only take place in 

the biofilm phase.  

(2) Biofilm thickness is uniform at the same height of the biofilter. Thus, radial biomass 

distribution is not considered. In the experimental setup, air inlet was distributed 

uniformly at the bottom of the biofilter and the ratio between particle size and reactor 

diameter was superior to 1:30 to avoid wall effects [16]. 

(3) Adsorption of pollutant onto the support is described by the corresponding isotherm 

obtained in a previous characterization of the packing material [17]. 

(4) Biomass detachment is described by a biomass decay coefficient (kd) based on the 

amount of biomass collected in the leachate as a consequence of wash out during 

watering periods.  

(5) The entire material surface is covered by the biofilm even though the thickness depends 

on axial position and time.  

 

2.1. Mass balance and kinetic expression 

 

Mass balances in the gas and biofilm phases, kinetics and rate equations for the substrate (C) 

and biomass (X) as well as algebraic equations for time-dependent parameters defined in the 

present work are shown in Table 1. Unlike previous mathematical models, where bed porosity 

(ɛ), interstitial velocity (ʋz), biofilm thickness (δ) and biomass concentration (X) are often 

considered constant, in the model presented herein all parameters are described in dynamic 
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conditions as a function of the change in biomass density due to biomass growth during 

reactor operation. This corresponds to a more realistic description of the phenomena 

occurring in a biofilter.  

 

In the gas phase, pollutant circulates by advection and is transferred to the biofilm according 

to Eq.1. The interstitial gas velocity is calculated as a function of the porosity of the reactor 

bed (Eq. 2) while the mass flux is given by Fick’s law (Eq. 3). In the biofilm phase, the 

pollutant diffuses and is biologically degraded (Eq.4). Because of the high pollutant loads 

tested and the sorption capacity of the packing material used, a sorption isotherm determined 

in wet conditions of the packing material (20) was considered at x = δ. Biomass growth rate is 

based on the net change of  biomass density according to Eq. 5.  

 

Although several kinetic expressions have been used to describe VOCs biodegradation such 

as zero or first-order kinetics [4,18], most of recent works relate the specific consumption rate 

for toluene degradation through a Monod-type equation as this work considers (Eq. 6). In the 

case of toluene abatement, although some authors indicate that at loads higher than 1000 g·m
-

3
h

-1
 toluene becomes inhibitory for bacterial activity [19], inhibition effects have not been 

detected in the experimental period of the present study [14].  

  

The pollutant degradation rate depends on the biomass growth rate and a biomass to substrate 

yield coefficient (Yp) (Eq. 7). The relation VR/Vb is needed in this expression because 

biomass concentration X is expressed as g biomass per m
-3

 reactor. To be consistent with the 

mass balance in the biofilm phase this parameter is referred to the biofilm proportion in the 

total volume of the reactor. In this sense Cb is the concentration of pollutant referred to the 

biofilm volume. The biofilm volume (Eq. 8) and the biofilm thickness (Eq. 9) increase or 

decrease proportionally to the biomass concentration over the packing material. Accordingly, 

the bed porosity is reduced as a consequence of an increased biofilm thickness as expressed in 

Eq. 10. Either provided by the packing material or externally fed through the watering system, 

nutrient concentration was considered to be constant and not limiting along the height of the 

reactor during biofilter operation.  

 

Pressure drop was predicted according to the equation defined in Dorado et al. [17]. A 

modified Ergun equation was adjusted for several packing materials taking into account the 
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dynamic hold-up, the bed porosity and the gas flow rate. In the work herein, only the bed 

porosity was a time-dependent variable in the modified Ergun equation.  

 

2.2. Model calibration and validation 

 

The set of partial differential equations was discretized in space along the bed height and 

biofilm thickness. The conversion of the tubular reactor into a serial of stirred reactors was 

verified running simulations at different discretizations and optimizing results and time 

computing. As a result, an optimal discretization of the biofilter was found, resulting in eight 

nodes along the bed height and eight nodes along the biofilm thickness. 

 

The resulting set of ordinary differential equations was solved using MATLAB in a home-

made modeling environment. A variable order method was used for solving stiff differential 

equations based on the numerical differentiation formulas (NDFs), which are generally more 

efficient than the closely related family of backward differentiation formulas (BDFs), also 

known as Gear's methods. The maximum time step used in the numerical solution routine was 

established in 1 day in accordance with the time interval of the experimental data. Since the 

inlet toluene concentration and inlet gas flow changed throughout biofilter operation, a linear 

interpolation was considered for the time interval comprised between two consecutive inlet 

data. All inlet concentrations and air flowrates collected in the experimental procedure were 

used as input variable of the model. If the data requested by the computing system is at a 

different time than those registered during the experiment, the model interpolates between the 

two closest times. 

 

The calibration procedure was mainly based on direct experimental determination as well as 

on curve fitting of experimental data monitored during biofilter operation. The volumetric 

maximum growth rate (µmax)  and the half-saturation constant (Ks) were the set of parameters 

estimated by curve fitting during the model calibration step. All the other parameters of the 

model, except for the diffusion coefficient and the Henry constant for toluene that were 

obtained from the literature [2],  were experimentally determined.  

 

To start with the calibration procedure, initial guesses were assigned to kinetic parameters 

according to the literature. Predicted outlet concentrations by the model were compared with 

the experimentally measured data and the deviations between both were used to obtain 
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updates for kinetic parameters. Parameter values were sought to minimize the objective 

function (OF) given in Eq. (11).  

where M is the total number of sampling ports along the biofilter height (4 in the present 

study B,C,D,E) ; jgC ,  is the concentration of toluene in gas phase predicted by the model in g 

m
-3

 in the sampling port j; max  and SK  are the unknown kinetic parameters to fit; 
*

, jgC  is the 

concentration of toluene experimentally measured in gas phase in g m
-3

 at the sampling port j; 

and N is the number of measurements realized along the operation time. The total number of 

data sets are M·N and equal to 52 comparisons. 

 

The parameter estimation was performed using a MATLAB algorithm based on a 

multidimensional unconstrained nonlinear minimization (Nelder-Mead) algorithm. This is a 

direct search method that does not use numerical or analytical gradients. Model calibration 

and validation of the present work was checked by performing a statistic analysis based on a 

paired t-Student’s test at 5% level of significance. 

 

Calibration and validation of the dynamic model was carried out using part of the 

experimental data of the previous work of Dorado et al. [14], in which the biofilter 

performance was studied when treating high loads of toluene under different operating 

conditions in a period of 120 days. In the work presented herein, the first 600 hours of 

operation after the start up were chosen for calibrating the model. The experimental period 

was selected within the interval time where operating conditions were more controlled and 

uniform. Thus, a pseudo steady-state operation was experimentally verified. In this period, the 

biofilter packed with clay pellets was operated at an average inlet load of 600 g toluene m
-3 

h
-1

 

at an EBRT of 35s. The pollutant load treated in this period was high enough to detect a 

concentration profile along the height of the biofilter. Subsequently, the inlet toluene load was 

stopped and the performance of the biofilter was observed under starvation conditions. In this 

period, an important part of accumulated biomass was washed due to watering. After 20 days 

without inlet feed, the biofilter was resumed to a different pollutant load (390 g·m
-3

·h
-1

). The 

resumption period was used to validate the model with the kinetic parameters calibrated in the 
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previous period. Toluene abatement, pressure drop and biofilter weight, among others, were 

monitored to study the suitability of the dynamic model.  

 

3. RESULTS AND DISCUSSION 

 

3.1. Model calibration  

Model calibration was based on the determination of the volumetric maximum growth rate 

and the half-saturation constant. Model parameters used in the present work are shown in 

Table 2. The initial bed porosity (0.38) was experimentally determined in Dorado et al. [14]. 

The biofilm density was calculated by direct measurement of volume and weight of the 

immobilized biomass extracting part of the packing material at frequent operation times and 

scraping biomass from the surface. The initial biomass concentration and the biomass-to-

subtrate yield was determined in Dorado et al. [14] by correlating the toluene load and the 

CO2 production. According to equation (6), the decay coefficient was obtained from the slope 

of the log evolution of the total solid collected in the leachate It was assumed that dead 

biomass was completely detached and washed out by the periodic irrigation. 

 

A volumetric maximum growth rate  of 0.20±0.01 h
-1

 and half-saturation constant  of 

0.0060±3·10
-4

 g toluene m
-3

 were found for the steady operation period of the biofilter. 

Confidence intervals were estimated according to the Fisher Information Matrix (FIM). The 

FIM matrix summarizes the quantity and quality of information obtained during the 

experimental procedure. In the FIM estimation the output sensitivity functions of the model, 

the number of experimental data and the errors of experimental measurements are considered 

[15].  

 

Alonso et al. [9] reported a volumetric maximum growth rate of 0.125 h
-1

 and a half-

saturation constant of 0.15 g toluene·m
-3

 in a biotrickling filter packed with a randomly 

pelletized medium operating at an EBRT between 1 and 2 min. Similarly, Arcangeli and 

Arvin [8] reported a value of 0.15 h
-1

 and 0.6 g·toluene m
-3

 for both kinetic parameters, 

respectively. Dorado et al. [15] found a volumetric maximum growth rate of 1.3 h
-1

 and a 

half-saturation constant of 0.16 g toluene m
-3

 for a bacterial community in a biofilter packed 

with coconut fiber and pine leaves. It is important to highlight that none of them modeled so 

high inlet toluene loads as in the present work, which had an impact on the kinetic parameters 
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estimated. While the maximum volumetric rate is almost similar to previous works, the half-

saturation constant is around three orders of magnitude lower than previously reported values, 

which may indicate that the affinity between toluene and the microbial population developed 

in the present biofilter is enhanced at these operational conditions.  

 

Toluene concentrations predicted by the model after curve fitting of the kinetic parameters 

(µmax and KS) describe satisfactorily the evolution of experimental data in the 4 sampling 

ports distributed along the height of the biofilter (Figure 1). The statistical analysis based on a 

paired t-student test performed underlines the good correspondence between model 

predictions and experimental data at 3 different operation periods: at the start of the 

monitoring period (day 6), in the middle of the operation time (day 9) and at the end of the 

period (day 24). Despite the good correlation between model and experimental data in the 

biofilter profiles, concentrations predicted by the model deviate slightly away in the last days 

of the calibration period (t=580h). Observed differences may be partially explained by 

processes not considered in the description of the model such as, irregular biomass growth 

due to the creation of preferential flow channels or the proliferation of dead zones. These 

processes are more important at the end of the calibration period when the amount of biomass 

accumulated over the packing material is higher. Subsequently, Figure 2 shows the toluene 

concentration profiles at the different sampling ports predicted by the dynamic model in 

comparison to all concentrations measured experimentally. Predictions obtained in the first 

module (B), in which higher gas-phase concentrations were found, showed the best fitting 

among all experimental data.  

 

Biomass production predicted by the model corresponded well with those parameters 

measured experimentally to monitor biomass growth. Pressure drop monitored during the 

operation shows a good agreement with results simulated by the model despite of the high 

fluctuations in the measurement of this parameter (Figure 3a). Likewise, the decrease in bed 

porosity due to the biomass growth is well-described by the assumptions and mathematical 

expressions of the model (Figure 3b). Additionally, biomass weight increase due to biomass 

accumulation measured in the lab-scale plant was also verified by model predictions (Figure 

3c). According to the description of the processes involved in the biological system, the 

expected biomass production also agrees with observed results. At the end of the period, 

biomass weight predicted is slightly underestimated, which is explained by the more 

significant water retention achieved due to the decrease in bed porosity and the difficulties of 
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trickling water from irrigation. Overall, it could be affirmed that biomass growth was 

satisfactorily described by the model.  

 

3.2. Model validation 

 

The dynamic model was validated in the same lab-scale plant than in the calibration step but 

under different operating conditions [14].  While kinetic parameters were calibrated for the 

first steady-state operation period, model validation was performed by comparing the 

simulation results to experimental data in a posterior time lapse of operation (days 75 to 95). 

In between both periods, the biofilter was starved for 20 days and continuously watered (300 

mL·d
-1

) in order to wash biomass accumulated in the packed bed.  

 

Model predictions for the resumption period are shown in Figure 4, illustrating an excellent 

agreement with experimental data. Additionally, a statistical analysis based on a paired t-

student test was performed in the validation process in order to quantify the agreement 

between results predicted by the model with the optimized kinetic parameters and 

experimental data. The t-test executed on the outlet toluene concentration measured at the 

different sampling ports yielded an absolute value of 0.83 for the validation period. A t-value 

of 2.01 at a 5% level of significance for 54 degrees of freedom indicates that the difference 

between toluene concentration measured experimentally and toluene concentration predicted 

by the model are not statistically significant in the studied period [22]. Moreover, both the 

progressive increase in the toluene concentration fed to the biofilter and the load shut-down at 

the end of the simulated period are perfectly described by the model in the outlet and 

intermediate ports during the simulation period. As in the calibration step, bed porosity and 

biomass weight (data not shown) as well as the evolution of pressure drop (Figure 5) are in 

good agreement with experimental data.  

 

Therefore, taking all the results into consideration, it can be stated that the proposed model 

describes satisfactory biomass accumulation and the rest of phenomena occurring in the 

biofiltration of a common volatile organic compound (toluene). From a practical point of 

view, model predictions of pressure drop may be very useful to assess a wide range of 

operating conditions and to carefully estimate the operating cost related with air blowing 

through the reactor and, thus, prevent bed clogging. Including biomass accumulation in the 

mathematical model may be useful in order not to underestimate the energy consumption 
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requirements of a plant and to obtain a more accurately estimation for calculating the financial 

cost of blowing air through a biofilter.  

 

3.3. Model interpretation 

In order to interpret model results, Figure 6 shows the biofilm thickness growth during the 

biofilter startup for the 4 sampling ports (Figure 6A) and thickness profiles along the height at 

different times after startup (Figure 6B). As expected, biomass growth is more significant at 

the lower part of the biofilter where pollutant concentration is higher. This difference 

becomes more important along the time. Biomass growth starts being perceptible in the first 

module after 72 h of operation while around 225 h are needed to detect a significant biofilm 

development in the last module of the biofilter. The biomass distribution profile is flat during 

the first days and becomes sharper after 300 h of operation. As pollutant concentration and 

biofilm thickness are higher at the inlet of the biofilter, the maximum degradation rate is 

always obtained close to this region, which is perfectly consistent with experimental results.  

 

The dynamic behavior of the model is explained by the following observation. Initially, the 

biomass concentration inside the biofilter is extremely low so that the removal efficiency 

(RE) is practically zero. As sorption capacity of packing material is relatively low at wet 

conditions, the material is saturated in few minutes at the high inlet concentrations. As time 

goes by, with a minimum biomass density grown on the support, pollutant load is practically 

abated, showing a minimum outlet toluene concentration. In this time span, toluene abatement 

is limited by biodegradation due to a low microorganism concentration. For the upper 

modules, as the gas-phase concentration is low, the biofilm phase concentration becomes also 

inferior. Consequently, the degradation rate is lower and the outlet toluene concentration 

increases until a quasi-steady value fixed by the biodegradation capacity of microorganisms 

and the mass transfer processes involved in the process.  

 

It is noteworthy that the present model considers neither a uniform biomass nor a constant 

distribution within the biofilter. The biomass distribution in time is only consequence of 

microorganisms’ growth which depends on pollutant availability and bio-kinetic parameters. 

Although uniform biomass is a common assumption used in biofiltration modeling, the model 

predictions for the abatement of high loads of pollutant may differ significantly from the 

observed real behavior. Moreover, clogging is one of the most important operation problems 

related with long term biofilter operation which could be satisfactory prevented by model 
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predictions taking biomass growth into consideration in the description of biofilters behavior. 

For instance, in the present work model could predict, before starting the real operation, that 

operating at these conditions for a biofilter of the same characteristics, the porosity will 

decrease a 60% in 25 days. Predicting biomass clogging may be very useful to program 

maintenance tasks and to estimate packing material replacement or cleaning and their 

economical connotations. In this way, operational conditions can be optimized to favor long-

term operations at lower cost. 

 

A sensitivity analysis was performed with the mathematical model to identify those 

parameters with a higher influence in model predictions. Sensitivity analysis was performed 

for each parameter, including all kinetic, stoichiometric and physicochemical parameters. This 

part of the study was assessed by increasing and decreasing by 10% the values of the 

parameters and comparing the relative change of the state variables (outlet pollutant 

concentration and elimination capacity) to a relative change of the value of the parameter. 

Results revealed that some essential parameters should be carefully determined to minimize 

deviations from real behavior modeled. Specifically, operational parameters (inlet 

concentrations, flow rate and reactor dimensions) firstly, and specific surface area and 

partition coefficient secondly, are the most sensitive among the rest. Immediately afterwards, 

kinetic parameters show strong influence on final results. On the contrary, initial bed porosity 

and initial biomass thickness expose low dependence which it is important to underline since 

both parameters are comparably more difficult to experimentally determined. Interestingly, 

looking at previous sensitivity analysis performed in the former model by Dorado et al. [15], 

present results indicate that the most sensitive parameters in the ranking remain almost 

unaltered after adding the biomass growth equations and corresponding parameters.  

 

4. CONCLUSIONS 

 

A dynamic model to simulate toluene abatement and biomass accumulation has been 

developed, calibrated and validated through a set of different experimental conditions for a 

biofilter treating toluene at high loads. The rigorous model was able to predict satisfactorily 

experimental data by calibrating only a few numbers of parameters and a relatively simple 

system of equations. Estimated parameters not only predict the removal capacity of the 

biofilter under different operating conditions, but also describe satisfactorily those parameters 
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affected by biomass growth under dynamic conditions. Pressure drop, bed reactor porosity 

and biomass weight were properly described by model predictions. Therefore, the model can 

be useful in the prevention of clogging by excessive growth of biomass and in the estimation 

of operating costs in a wide range of conditions. Model validation was verified using a 

rigorous statistical test which corroborates the accuracy of model estimation in several 

operating environment.  
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SYMBOLS USDED 

 

a  specific surface area of transfer (surface area per unit volume of bed reactor) in m
2
 m

-3
 

am  specific surface area of material (surface area per unit volume of bed reactor) in m
2
 m

-3
 

A  cross-section area of the bioreactor in m
2
 

Cb  pollutant concentration in the biofilm phase in g m
-3

 

Cg  concentration of toluene in the gas phase in g m
-3

  

Cgi  inlet gas concentration in g m
-3

 

Cg j concentration of toluene in gas phase predicted by the model in g m
-3 

in j
 
 

C
*
g j  concentration of toluene experimentally measured in gas phase in g m

-3 
in j

 
 

Cs  pollutant concentration in the support material in g m
-3

 

D  diffusion coefficient in m
2
 h

-1
 

H  gas-liquid distribution coefficient given by Henry’s law 

j  index of the sampling port 

kd  detachment coefficient in h
-1

 

KS  semi-saturation or affinity constant in g m
-3

  

N  number of measurements realized along the operation time 
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Ng-b  specific mass flux from the gas to the biofilm phase for toluene in g m
-2

h
-1

 

Qg  volumetric air flow in m
3
 h

-1
 

r  substrate consumption rate in g substrate m
-3

h
-1

 

t  time in h 

Vb  biofilm volume in m
3
 

VR  reactor volume in m
3
 

vz interstitial gas velocity in m h
-1

 

x  position in the biofilm from the surface in m 

X  biomass density in g biomass m
-3

 reactor 

X0  initial biomass immobilized in the packing material in g biomass m
-3

 reactor 

YP  biomass to substrate yield coefficient in g biomass g
-1

 substrate  

z  position along the biofilter height in m 

δ  biofilm thickness in m 

ε  bioreactor bed porosity   

εo initial bed porosity previous to the inoculation 

µ  growth rate in h
-1

 

µmax  volumetric maximum growth rate in h
-1

 

ρb  biomass density in g biomass m
-3

 biofilm 
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TABLE CAPTIONS 

Table 1. Mathematical equations, boundary and initial conditions for gas phase (Eq. 1-3), 

biofilm phase (Eq. 4) and kinetic expressions (Eq. 5-10). 

Table 2. Physical chemical and biological parameters used in the model. 

FIGURE CAPTIONS 

Figure 1. Experimental toluene profiles concentrations and model predictions at 3 different 

time operation in the calibration procedure of the model. 

Figure 2. Experimental toluene concentrations in the 4 sampling ports along the time 

operation and model predictions in the calibration step. 

Figure 3. Experimental evolution of parameters related with biomass growth and model 

predictions during the calibration period: pressure drop (A), porosity (B) and biomass weight 

(C). 

Figure 4. Experimental toluene concentrations at the 4 sampling ports and model predictions 

in the validation step. 

Figure 5. Experimental pressure drop and model predictions in the validation step. 

Figure 6. Evolution of biofilm thickness predicted by the model in the 4 sampling ports (A) 

and biofilm thickness profiles along the height of the biofilter at 4 different time operations 

(B). 


