
Int. J. Web and Grid Services, Vol. x, No. x, xxxx 1

Hybrid Algorithms for Independent Batch
Scheduling in Grids

Fatos Xhafa∗

Technical University of Catalonia, Spain
E-mail: fatos@lsi.upc.edu
∗Corresponding author

Joanna Ko lodziej

University of Bielsko-Bia la, Poland
E-mail: jkolodziej@ath.bielsko.pl

Leonard Barolli

Fukuoka Institute of Technology, Japan
E-mail: barolli@fit.ac.jp

Vladi Kolici, Rozeta Miho

Polytechnic University of Tirana, Albania
E-mail: {vkolici,rmiho}@fti.upt.al

Makoto Takizawa

Seikei University, Kichi-Joji, Tokyo, Japan
E-mail: makoto.takizawa@ieee.org

Abstract:

Grid computing has emerged as a wide area distributed paradigm for
solving the large-scale problems in science, engineering, etc., known as
the family of eScience Grid-enabled applications. Computing efficiently
a planning of incoming jobs to available machines in the Grid system is a
main requirement for optimized system performance. One version of the
problem is that of independent batch scheduling in which jobs are as-
sumed independent and are scheduled in batches aiming to minimize the
makespan and flowtime. Given the hardness of the problem, heuristics
are used to find high quality solutions for practical purposes of design-
ing efficient Grid schedulers. Recently, considerable efforts are done in
implementing and evaluating not only stand alone heuristics and meta-
heuristics but also their hybridization into even higher level algorithms.
In this paper we present a study on the performance of two popular al-
gorithms for the problem, namely Genetic Algorithms (GAs) and Tabu
Search (TS), and two hybridizations of them, namely, the GA(TS) and
GA-TS which differ in the way the main control and cooperation among
GA and TS are implemented. The hierarchic and simultaneous opti-
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mization modes are considered for the bi-objective scheduling problem.
The evaluation is done using different grid scenarios generated by a grid
simulator. The computational results showed that the hybrid algorithms
outperforms both the GA and TS for makespan parameter but not for
the flowtime parameter.
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tion, Simultaneous Optimization.
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1 Introduction

Grid computing has emerged as a wide area distributed paradigm for solv-
ing the large-scale problems in science, engineering, etc., known as the family of
eScience Grid-enabled applications (Constantini et al., 2010) as well for advanced
services (Flahive et al., 2009). Computational Grid involves the combination of
many computing resources into a network for the execution of computational tasks.
The resources are distributed across multiple organizations, administrative domains
having their own access, usage policies and local schedulers. The tasks scheduling
and the effective management of the resources in such systems are complex and
therefore, demands sophisticated tools for analyzing the algorithms performances
before applying them to the real systems (Taniar et al., 2007; Goel et al., 2005;
Tanaka et al., 2008; Santos et al., 2008; Reinhard et al., 2008; Taniar et al., 2008).
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During the past three decades, meta-heuristics have been among most stud-
ied approaches to efficiently solve combinatorial optimization problems. Families
of meta-heuristics such as local search methods, population-based methods and
biologically inspired methods were developed for most computationally hard prob-
lems. More recently, attention has been shifted to the design and implementation
of high level algorithms that combine heuristics methods. These algorithms, known
as hybrid algorithms, or hybrid meta-heuristics for the case of meta-heuristics be-
ing hybridized, aim to explore the existing synergies among stand-alone heuristics
methods in order to achieve even more efficient and robust algorithms. Based on
this premise, many optimization frameworks have been proposed in the field.

One of the motivations for developing hybrid meta-heuristics is that of coping
in practice with dynamic and large instances from real-world problems, that is, a
clear practical relevance. In this context, we are interested to see how hybridization
could help in efficiently solving the scheduling problem in Computational Grids.
The problem is very complex due to the large-scale, heterogeneous and dynamic
nature of Grid systems. Additionally, the problem can be formulated for different
modes such as immediate and batch mode and is multi-objective in its general
formulation.

Various classes of search algorithms can be considered for the purposes of hy-
bridization, such as exact methods, simple heuristic methods (ad hoc methods)
and meta-heuristics. Moreover, meta-heuristics themselves are classified into lo-
cal search based methods, such as Simulated Annealing, Tabu Search, Variable
Neighborhood Search, etc., population based methods such as Genetic Algorithms,
Memetic Algorithms, etc., and other classes of nature inspired meta-heuristics such
as Particle Swarm, Ant Colony Optimization, etc. Therefore, in principle, one has
many choices to select and combine different heuristic methods either methods of
the same type (e.g. local search methods) or methods of different types (e.g. pop-
ulation based methods with local search methods). Thus, as there are plenty of
meta-heuristics methods, which of them coming with many variations, the ques-
tions that arise for hybridizations essentially are “how to hybridize?” and “where
to hybridize”? The former questions refers how to select and combine the differ-
ent methods, in some sense one needs to break the arbitrariness on how to select
methods or modules for hybridization. The later refers to the fact that once we
select the methods to be hybridized, where to introduce the combination, e.g. in
terms of algorithm flow. Formalizing of hybridization approaches is rather difficult
to embrace all kinds of hybridizations (Talbi, 2002; Jourdan et al., 2009). For many,
hybridization is seen as a way to solve real-world problems otherwise intractable
with stand alone heuristic methods. Fortunately, the prototyping of hybrid meta-
heuristics has become easy due to the support of many libraries Alba et al. (2006);
Cahon et al. (2004); Lau et al. (2004) proposed in the field.

Similarly as for other combinatorial optimization problems, many heuristic ap-
proaches have been proposed in the literature for the problem of Grid schedul-
ing Abraham et al. (2000); Ritchie and Levine (2003); Xhafa (2007); Xhafa et al.
(2007, 2009). The existing approaches include local search methods, population
based methods, etc. Therefore, such heuristics methods are candidates for hybrid
approaches.

In our previous works Xhafa et al. (2009, 2011) we presented two hybrid algo-
rithms, GA(TS) and GA-TS, for the problem of independent batch scheduling in
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Grid systems. In the former, the flow of the hybrid algorithm was that of a Genetic
Algorithm (GA) in which Tabu Search (TS) was used to make locally improvements
of new individuals of the population. In the later, the GA and TS were executed in
a sequence-like manner, first the GA, next TS on the best output solution of GA. In
both versions, the independent batch scheduling was formulated as a bi-objective
optimization problem and the hierarchic optimization with makespan as primary
objective and flowtime as secondary objective was considered.

In this work, we evaluate the GA(TS) and GA-TS hybrid algorithms for the
bi-optimization model in which both makespan and flowtime are optimized simul-
taneously using a weighted sum of the objectives as a single objective function.
The proposed algorithm has been experimentally evaluated using Grid simulator
and the results are compared with the results achieved by both GAs and TS used
as stand-alone heuristic schedulers. For the evaluation we have considered different
sizes of the problem instance (number of tasks and number of machines in the Grid
system). For the evaluation of results, we have used as well the results previously
reported in Xhafa et al. (2009, 2011)

The rest of the paper is organized as follows. In Section 2, we briefly present the
scheduling of independent tasks considered as a bi-objective optimization problem
in this work. In Section 3, different types of hybridizations are presented. The
GAs and TS for the problem as well as the GA-TS hybrid approach are given in
Section 4. The experimental study and some computational results are given in
Section 5. We conclude in Section 6 with some remarks and indications for future
work.

2 Scheduling of independent tasks in computational grids

Computational Grids are parallel in nature. Remote users can connect to the
Grid systems and independently submit tasks or applications to the system which
should be scheduled for execution in Grid nodes. It is in this context where arises
the independent task scheduling, in which there are no dependencies among the
tasks. Within this context, depending on user requirements one can consider the
immediate mode (tasks or applications are considered for allocation as soon as they
enter the system) or batch mode (tasks or applications are grouped into batches and
scheduled). The later case of batch mode frequently arises for the case of periodic
submissions.

2.1 Independent batch scheduling

In this work we are interested in scheduling of independent tasks to grid re-
sources. The formal definition of the problem is based on the definition of the
Expected Time to Compute (ETC) matrix in which ETC[j][m] indicates an es-
timation of the completion of task j in resource m. In fact, one possible way to
compute the entries ETC[j][m] is to divide the workload of task j by the comput-
ing capacity of resource m. Under the ETC matrix model, the scheduling problem
specification is as follows:
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• A number of independent tasks to be allocated to grid resources. Each task
has to be processed entirely in a single resource and is not preempted (once
started, a task runs until completion).

• A number of machines that are candidate to participate in the allocation of
tasks.

• The workload (in millions of instructions) of each task.

• The computing capacity of each machine (in Mips).

• The ready times, denoted readym, indicating when machine m will have fin-
ished the previously assigned tasks. This parameter measures the previous
workload of a machine.

• The ETC matrix of size nb tasks × nb machines, where ETC[j][m] is the
value of the expected time to compute of task j in machine m.

2.2 Optimization criteria

The quality of a schedule can be measured using several optimization criteria,
such as minimizing the makespan (that is, the finishing time of the latest task),
the flowtime (i.e., the sum of finalization times of all the tasks), the completion
time of tasks in every machine (closely related to makespan), which formally can
be defined as follows:

• makespan: minSi∈Sched{maxj∈Tasks Fj} and,

• flowtime: minSi∈Sched{
∑

j∈Tasks Fj} ,

where Fj denotes the time when task j finalizes and Sched is the set of all possible
schedules. In this work we consider two types of optimization models, namely the
hierarchic and simultaneous approach. In the former, we assume that the makespan
is a privileged criterion and flowtime is the second less important scheduler perfor-
mance measure. This hierarchy in the criteria importance is a basis for designing
a hierarchical optimization algorithm, in which the makespan’s values cannot be
worsened when optimizing the flowtime. In the simultaneous approach, both ob-
jectives are optimized simultaneously in a weighted sum objective function: min
λ ·makespan+ (1− λ) ·mean flowtime, for λ = 0.75.

2.3 Batch mode scheduling

Processing tasks that arrive to Grid systems in batch mode is one of the most
common scenarios in Grid systems. It arises due to the independent submissions of
tasks by many user geographically distributed. The problem also arises in massive
processing where tasks spawned by an application do not have dependencies among
them. The batch Grid scheduling essentially includes the phases below, and are
shown in Fig. 1.

1. Gather the information on available resources (machine pool)
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2. Gather the information on pending jobs (job pool)

3. Make a batch and compute a planning for that batch

4. Allocate jobs

5. Monitor job execution (failed jobs are re-scheduled again, entering pool job).

 

Job 

Pool 

Machine  Pool 

Failed jobs 

(re-schedule) 

Planning of a 

Batch of Jobs  

Figure 1 Batch scheduling.

Dealing with dynamic nature of Grid systems. One important requirements in
Grid systems is to address the dynamics of the systems, such as machine failure,
task failure, etc., due to which, depending on scheduling policy, tasks must be
migrated to other nodes on the system or should be re-scheduled. Batch scheduling
has the limitation that tasks are not scheduled for processing as soon as they enter
the system. However, we cope with the dynamics of Grid system by using batch
processing in very short intervals of time. That is, we keep the time among two
successive batches very small (e.g. less than 100 seconds) so that changes in the
system are unlikely to happen in such short time. On the other hand, using the
batch processing has the advantage that an optimized planning of tasks to machines
can be computed as compared to immediate mode processing.

3 Hybridization of meta-heuristics

3.1 How to hybridize, where to hybridize?

One main issue in designing hybrid algorithms is the high degree of arbitrariness,
that is, the many ways one can choose to combine different resolution methods.
Said in other words, the questions are how to hybridize, where to hybridize? The
how refers to the way we “modify”/“combine” some parts of a meta-heuristics by
using other meta-heuristics resulting in a new control flow. The where refers to
the fact that hybridization can take place at different phases of the meta-heuristics,
starting with the computation of the initial solutions up to the modification of some
procedures of the original heuristic method by using procedures of other heuristic
methods. For instance, such procedures are neighborhood exploration or genetic
operators.

Let us consider for example a Genetic Algorithm. How to hybridize with local
search methods? We could use the GA as a main algorithm and call local search
methods along the flow. Where to hybridize? Local search methods can be used
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at different places along the GA flow: to generate some of the individuals of the
first population and thus introduce more diversity among individuals, to implement
some genetic operators (e.g. mutation), improving offsprings by local search, etc.

3.2 Hybridization “recipe”

In order to design a hybrid algorithm one essentially needs to specify the infor-
mation below:

1. Number of methods to hybridize;

2. Methods to hybridize;

3. Level of hybridization.

The first refers to the number of methods to hybridize. In principle, there is no
limitations on how many heuristics should be hybridized, however, most proposed
approaches in literature consider two-three heuristics. Then, one has to provide
the concrete methods to hybridize by choosing from the available heuristics for the
problem (exact, local search, population-based, etc.) Finally, and most importantly,
one has to design the flow of the new hybrid algorithm. For this, the crucial point
is the level of hybridization, which refers to the degree of coupling between the
meta-heuristics, the execution sequence and the control strategy.

3.3 Level of hybridization

The level of hybridization expresses the dependencies among the flows of the
considered heuristics. High level hybrid heuristics are loosely coupled and low level
hybrid heuristics are strongly coupled, as described next.

In the Loosely coupled case the hybridized meta-heuristics preserve their iden-
tity, namely, their flow is fully used in the hybridization. This case is also referred
to as high level of hybridization and can be seen as a chain of meta-heuristics exe-
cutions

MH1 →MH2 → · · · →MHk

which can be further looped a certain number of iterations or until a stopping
condition is met. The meaning is that first we run MH1; the output solution is
passed on to MH2 and so on. The best found solution by MHk is the final solution.
In this case, the notation MH1 +MH2 + · · ·+MHk is used (in our case GA-TS).

In Strongly coupled hybridization the combined meta-heuristics interchange their
inner procedures, resulting in a low level of hybridization. The level of hybridiza-
tion expresses the degree of interaction among the meta-heuristic components in
the hybrid structure. In this case, usually one of the heuristics is the main al-
gorithm, which during its flow calls other heuristics procedures. For instance, we
can run GA and then additionally to crossover and mutation, we can apply TS for
improving the newly generated solutions. The notation MH1(MH2) is used in this
case to express that MH1 is the main algorithm and MH2 is subordinated to that
(GA(TS), in our case).
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Execution sequence. The execution sequence refers to the computing medium,
being sequential or distributed. In the sequential case the meta-heuristics flows
are run sequentially while in parallel setting the meta-heuristics flows are run in
parallel in a networked computing environment.

Control strategy The control strategy refers to a flow implemented by the hybrid
meta-heuristic. The control can be

• Coercive: the main flow is that of one of the meta-heuristics, the other meta-
heuristics flow is subordinated to the main flow. It should be noted that in this
case, the implementation of the heuristics requires fine grain implementation
of the search procedures in a way that it’s easy to get the state of the search
at any time along the search process.

• Cooperative: the meta-heuristics explore the solution space cooperatively
(eventually, they can explore different parts of the solution space.)

4 Hybridization of GA and TS algorithms

4.1 The GA(TS) hybrid algorithm

For the design of our hybrid approach we consider two well-known meta-heuristics:
Genetic Algorithms (GAs) and Tabu Search (TS). Both GAs and TS have been de-
veloped for the independent task scheduling in Xhafa et al. Xhafa et al. (2007) and
Xhafa et al. (2009) in sequential setting. We have considered the Steady-State GA
in this work. The choice of these two meta-heuristics is based on the following ob-
servations. First, grid schedulers should be very fast in order to adapt to dynamic
nature of computational grids. Therefore, a fast convergence of the main algorithm
is preferable in this case, which can be achieved through a good trade-off between
exploration and exploitation of the search. Second, in order to achieve high quality
planning in a very short time, it is suggestive to combine the exploration of the so-
lution space by a population of individuals with the exploitation of neighbourhoods
of solutions through local search. In such case, GAs and TS are among the best
representatives of population based and local search methods, respectively.

We are thus considering the case of hybridization of two meta-heuristics running
in sequential environment. We have considered a low level hybridization and the
coercive control strategy. Roughly, our hybrid algorithm runs the GA as the main
algorithm and calls TS to improve individuals of the population.

The hybridization scheme is shown in Figure 2. It should be noted that in the
hybridization scheme in Figure 2, instead of replacing the mutation procedure of
GAs by the TS procedure, we have added a new function to the GA Population
class (namely apply TabuSearch) for applying the TS. This new function could be
applied to any individual of the current population, however, this is computationally
costly. In our case, given that we want to run the Grid scheduler in short times,
the apply TabuSearch is applied with small probabilitya. In fact, this parameter
can well be used to tune the convergence of the GA since TS usually provides
substantial improvements to individuals.

aThis is a user input parameter. apply TabuSearch is applied roughly to 30% of individuals
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Figure 2 The hybrid GA(TS) scheme.

4.2 The GA-TS hybrid approach

The specification of the hybridization for GA-TS is as follows:

• Two meta-heuristics are hybridized.

• The selected methods are GA and TS.

• The hybridization is loosely coupled, in the sequence GA is the first heuristic
to run and TS is the second one.

• The implementation is for sequential setting environments.

The hybridization scheme is shown in Figure 3.

Ad-hoc 

methods

GA algorithm

TS algorithm

Computation of a few individuals

Exploration of solution space

with a population

Exploitation of soultion space 

starting from best solution of GA

Repeat the sequence GA-TS 

until a stopping condition is met

S*

Output: best solution

Figure 3 The hybrid GA-TS scheme.

In the hybridization scheme in Fig. 3, initially, we generate a few individuals
using ad hoc methods aiming to achieve and keep diversity of population in GA.
Then, GA is activated, which outputs a best solution S∗ upon meeting a stopping
condition. The best solution S∗ is then passed on to the TS algorithm in input
(as starting solution). The hybridization scheme can iterate the sequence GA→TS
an a priori number of times or until a stopping criteria is met. It should be also
noted that the stopping condition for each heuristic needs not to be the same. For
instance, in GA the stopping condition could be number of generations while in TS
could be a maximum execution search time.

We shortly present next both the GA and TS meta-heuristics for independent
task scheduling in computational grids (refer to Xhafa et al. (2007) and Xhafa et al.
(2009) for details.)
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4.3 GAs for the scheduling problem in Grids

We have implemented the Steady State version of GAs for the purpose of this
work. In Steady State GAs, a few good individuals of population are selected and
crossed. Then, the worst individuals of the population are replaced by the newly
generated descendants; the rest of the individuals of the population survive and
pass to the next generation (see Alg. 1).

Algorithm 1 Genetic Algorithm template

Generate the initial population P 0 of size µ;
Evaluate P 0;
while not termination-condition do

Select the parental pool T t of size λ; T t := Select(P t);
Perform crossover procedure on pairs of individuals in T t

with probability pc; P t
c := Cross(T t);

Perform mutation procedure on individuals in P t
c

with probability pm; P t
m :=Mutate(P t

c );
Evaluate P t

m ;
Create a new population P t+1 of size µ from individuals in P t and/or P t

m ;
P t+1 := Replace(P t;P t

m)
t := t+ 1;

end while
return Best found individual as solution;

The genetic operators and methods used in the implementation are as follows:

• Initialization methods are MCT and LJFR-SJFR implemented in Xhafa et
al. Xhafa et al. (2007,?);

• Selection operator : Linear ranking;

• Crossover operator : Cycle Crossover (CX);

• Mutation operator : Mutate Rebalancing;

The values for the rest of parameters are given in Section 5.

4.4 Tabu Search for the scheduling problem in Grids

Tabu Search (TS) has shown its effectiveness in a broad range of combina-
torial optimization problems and distinguishes for its flexibility in exploiting do-
main/problem knowledge (see Alg. 2).

The main procedures used in TS are summarized next:

• Initial solution is found using Min-Min method Xhafa et al. (2007).

• Historical memory : Both short and long term memories have been used in TS
algorithm. For the recency memory, a matrix TL (nb tasks× nb machines)
is used to maintain the tabu status. In addition, a tabu hash table (TH) is
maintained in order to further filter the tabu solutions.

• Movement : Two types of movement are used, namely, transfer (moves a
task from a machine to another one, appropriately chosen) and swap (two
tasks assigned to two different machines are swapped). The neighborhood
exploration is done using a steepest descent - mildest ascent method.
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Algorithm 2 Tabu Search Algorithm

begin
Compute an initial solution s;
let ŝ← s;
Reset the tabu and aspiration conditions;
while not termination-condition do

Generate a subset N∗(s) ⊆ N(s) of solutions such that:
(none of the tabu conditions is violated) or (the aspiration criteria hold)

Choose the best s′ ∈ N∗(s) with respect to the cost function;
s← s′;
if improvement(s′, ŝ)) then

ŝ← s′;
end if
Update the recency and frequency;
if (intensification condition) then

Perform intensification procedure;
end if
if (diversification condition) then

Perform diversification procedures;
end if

end while
return ŝ;
end;

• Aspiration criteria: Several aspiration criteria are used to remove the tabu
status of movements. They are defined using the fitness of solutions as well
as information from recency matrix.

• Intensification: Implemented using elite solutions;

• Soft Diversification: Implemented using penalties to ETC values, task distri-
bution and task freezing.

• Strong Diversification: Implemented using large perturbations of solutions.

The concrete values for the parameters of TS are given in Section 5.

5 Experimental study

We have used the HyperSim-G simulator (see Fig. 4), a Grid simulator Xhafa
et al. (2007), to evaluate our GA-TS hybrid algorithm. HyperSim-G extends Hyper-
Sim simulation package, an open source, general-purpose discrete event simulation
library developed in C++.

5.1 Simulation environment setting

For the evaluation of the GA-TS hybrid algorithm we used the HyperSim-G
Grid simulator Xhafa et al. (2007). We considered three Grid scenarios: small,
medium and large sizes with 32 hosts / 521 machines, 64 hosts / 1024 machines,
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Figure 4 General Flowchart of HyperSim-G Simulator.

and 128 hosts / 2048 machines respectively. We also consider static and dynamic
grid environments, as explained next.

Simulator’s configuration for the static case
In the static grid the number of tasks and machines are kept constant during

the execution of the simulator. It is thus assumed that the system starts with a
certain number of tasks and machines and that there are no machine drops from
the system. The configuration of simulator is defined by parameters presented in
Table 1.
Table 1 Simulators’ static case configuration.

 Small Medium Large 

Init./Total hosts 32 64   128 

Mips n(1000, 175) 

Init./Total tasks 512 1024 2048 

Workload n(250000000, 43750000) 

Host selection All 

Task selection All 

Local policy SPTF 

Number of runs 30 

Simulator’s configuration for the dynamic case
In the dynamic case the numbers of tasks and machines can vary over time

according to the probability distributions specified in the simulator. More precisely,
one the one hand new tasks can enter the system, and on the other, machines can
leave the Grid system, which provokes the tasks assigned to those machines to be
re-scheduled. The configuration of simulator is presented in Table 2.

5.2 Parameter setting of GA and TS algorithms

For the GA algorithm we have used the parameter values given in Table 3 and
for TS those given in Table 4.

5.3 Static case: Computational results and evaluation

The simulator is run 30 times for each scenario and computational results for
makespan and flowtime are averaged. Standard deviation (at 95% confidence inter-
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Table 2 Simulators’ dynamic case configuration.

 Small Medium Large 

Init. hosts  32 64 128 

Max. Hosts 37 70 135 

Min. Hosts 27 58 121 

Mips n(1000, 175) 

Add host n(625000,93750) n(562500,84375) n(500000,75000) 

Delete host n(625000,93750) 

Total tasks 512 1024 2048 

Init. tasks 384 768 1536 

Workload n(250000000, 43750000) 

Interrarival e(7812.5) e(3906.25) e(1953.125) 

Activation resource_and_time_interval(250000) 

Reschedule True 

Host select All 

Task select All 

Local policy Sptf 

Number runs 15 

Table 3 Parameter values of GA.

Parameter Value

evolution steps 20 ∗ nb tasks
population size 4 ∗ (log2(nb tasks)− 1)

intermediate population size (population size)/3

cross probability 1.0

mutation probability 0.4

Table 4 Parameter values of TS.

Parameter Value

number of iterations nb tasks ∗ nb machines
max. tabu status 1.5 ∗ nb machnies
number of repetitions before
activating intensification/ 4 ∗ ln(nb tasks)∗
diversification ln(nb machines)

number of iterations per
intensification/diversification log2(nb tasks)

number of iterations max tabu status/2−
for aspiration criteria − log2(max tabu status)
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val) is also reported. The results for makespan and flowtime are given in Tables 5
and 6, for GA, TS, GA(TS) and GA-TS in both hierarchic and simultaneous opti-
mization mode.
Table 5 Makespan values in static case.

 Small Medium Large 

GA hierarchic 2808662.116 2760024.390 2764455.222 

 ±1,795% ±1,010% ±0,745% 

GA simultaneous 2809174.783 2762104.889 2764449.781 

 ±1,791% ±1,008% ±0,726% 

TS hierarchic 2805531.301 2752355.018 2748878.934 

 ±1,829% ±1,056% ±0,669% 

TS simultaneous 2823526.492 2790908.892 2825514.732 

 ±1,741% ±1,012% ±0,804% 

GA-TS 

hierarchic 2805527.381 2752256.136 2746662.875 

 ±1,829% ±1,056% ±0,675% 

GA-TS 

simultaneous 2808912.321 2762317.234 2769866.106 

 ±1,797% ±1,004% ±0,750% 

GA(TS) 

hierarchic 2805519.428 2751989.166 2812776.300 

 ±1,829% ±1,058% ±1,176% 

GA(TS) 

simultaneous 2905693.092 2875899.153 2879641.808 

 ±1,995% ±1,191% ±0,819% 

Table 6 Flowtime values in static case.

 Small Medium Large 

GA hierarchic 709845463.699 1405493291.442 2811723598.025 

 ±1,209% ±0,655% ±0,487% 

GA simultaneous 709228929.998 1403917124.018 2809757248.263 

 ±1,194% ±0,646% ±0,476% 

TS hierarchic 710189541.278 1408001699.550 2812229021.221 

 ±1,124% ±0,616% ±0,455% 

TS simultaneous 707139704.477 1402094313.667 2811842741.040 

 ±1,132% ±0,613% ±0,503% 

GA-TS 

hierarchic 709649937.592 1406440866.567 2812036779.732 

 ±1,132% ±0,631% ±0,473% 

GA-TS 

simultaneous 708928372.500 1403896743.275 2809768098.009 

 ±1,172% ±0,622% ±0,475% 

GA(TS) 

hierarchic 711183944.069 1409127007.870 2811605453.116 

 ±1,174% ±0,604% ±0,465% 

GA(TS) 

simultaneous 709647950.762 1408018070.562 2815647561.224 

 ±1,225% ±0,679% ±0,512% 

As can be seen from Table 5, for makespan value the GA(TS) in its hierarchic
version outperforms GA, TS and GA-TS for small and medium size instances,
while GA-TS in its hierarchic version achieved the best results for large size grid
scenarios. Overall, hybrid versions performed better that stand alone versions for
makespan optimization. On the other hand, from Table 6, we can see that the stand
alone approaches of GA and TS outperformed hybrid approaches for the flowtime
optimization.

5.4 Dynamic case: Computational results and evaluation

In the dynamic case, the simulator is run 15 times for each scenario and com-
putational results for makespan and flowtime are averaged. Standard deviation (at
95% confidence interval) is also reported. The results for makespan and flowtime
are given in Table 7 and Table 8, resp. In the table, we present the results for GA
(hierarchic), TS (hierarchic), GA(TS) (hierarchic) hybrid algorithm Xhafa et al.
(2009).
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Table 7 Makespan values in dynamic case.

 Small Medium Large 

GA hierarchic 2982577.400 2893818.392 2841147.967 

 ±2,333% ±1,219% ±1,734% 

GA simultaneous 2984736.895 2894982.335 2846359.851 

 ±2,214% ±1,375% ±1,726% 

TS hierarchic 2979512.919 2888888.760 2834225.002 

 ±2,304% ±1,107% ±1,713% 

TS simultaneous 2987369.099 2890788.084 2847143.199 

 ±2,508% ±1,245% ±1,634% 

GA-TS 

hierarchic 2987369.099 2897935.151 2839885.306 

 ±2,418% ±1,038% ±1,711% 

GA-TS 

simultaneous 2982582.663 2895996.446 2837073.631 

 ±2,348% ±1,330% ±1,761% 

GA(TS) 

hierarchic 2973568.178 2889079.691 2847424.376 

 ±2,205% ±1,171% ±1,571% 

GA(TS) 

simultaneous 2964782.651 2886720.095 2838111.918 

 ±2,353% ±1,060% ±1,137% 

Table 8 Flowtime values in dynamic case.

 Small Medium Large 

GA hierarchic 715400219.482 1410799837.874 2803579399.761 

 1,524 0,699 0,731 

GA simultaneous 714192855.967 1409918526.549 2800300798.758 

 1,441 0,711 0,708 

TS hierarchic 716241094.775 1409244604.279 2798012368.133 

 1,377 0,638 0,685 

TS simultaneous 713046299.130 1406852379.473 2797549933.700 

 1,450 0,643 0,737 

GA-TS  
hierarchic 715573207.887 1410988533.602 2800981497.939 

 1,381 0,640 0,705 

GA-TS 
simultaneous 714417906.975 1408474213.235 2799381277.911 

 1,482 0,673 0,693 

GA(TS) 
hierarchic 717402597.534 1413169482.528 2800824873.327 

 1,223 0,638 0,677 

GA(TS) 
simultaneous 714216794.135 1413274833.742 2801052281.191 

 1,388 0,726 0,733 
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As can be seen from Table 7, for makespan value the GA(TS) algorithm (in
its simultaneous version) performed better than GA, TS and GA-TS for all but
large size instances. On the other hand, from Table 8, we can see that TS (in its
simultaneous version) performed better than all other methods for flowtime value.

6 Conclusions and future work

In this paper we have presented an evaluation of two hybrid algorithms, namely
GA(TS) and GA-TS, for the problem of independent batch scheduling in Grid sys-
tems under hierarchic and simultaneous optimization models. In the GA(TS), the
flow of the hybrid algorithm was that of a Genetic Algorithm (GA) in which Tabu
Search (TS) was used to make locally improvements of new individuals of the pop-
ulation. In GA-TS, the GA and TS were executed in a sequence-like manner, first
the GA, next TS on the best output solution of GA. In both versions, the inde-
pendent batch scheduling was formulated as a bi-objective optimization problem
and the hierarchic optimization mode, with makespan as primary objective and
flowtime as secondary objective, and simultaneous optimization using a weighted
sum of the objectives as a single objective function, were considered. The proposed
algorithms have been experimentally evaluated using Grid simulator and the re-
sults are compared with the results achieved by both GA and TS as stand-alone
heuristic schedulers. For the evaluation we have considered different sizes of the
problem instance (number of tasks and number of machines in the Grid system).
The experimental study showed that hybrid versions performed best for the opti-
mization of the makespan while stand alone versions of meta-heuristics performed
better for the flowtime.

In our future work we plan to implement multi-objective versions of meta-
heuristics such as Multi-Objective GAs (MOGAs), to compute the Pareto front,
which would serve as a basis for a decision taking during the scheduling phase in
Grid systems.
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